[JFFS2] Add length argument to jffs2_add_physical_node_ref()
[safe/jmp/linux-2.6] / fs / jffs2 / gc.c
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright (C) 2001-2003 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <dwmw2@infradead.org>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  * $Id: gc.c,v 1.155 2005/11/07 11:14:39 gleixner Exp $
11  *
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/slab.h>
17 #include <linux/pagemap.h>
18 #include <linux/crc32.h>
19 #include <linux/compiler.h>
20 #include <linux/stat.h>
21 #include "nodelist.h"
22 #include "compr.h"
23
24 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
25                                           struct jffs2_inode_cache *ic,
26                                           struct jffs2_raw_node_ref *raw);
27 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
28                                         struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
29 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
30                                         struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
31 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
32                                         struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
33 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
34                                       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
35                                       uint32_t start, uint32_t end);
36 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
37                                        struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
38                                        uint32_t start, uint32_t end);
39 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
40                                struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
41
42 /* Called with erase_completion_lock held */
43 static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
44 {
45         struct jffs2_eraseblock *ret;
46         struct list_head *nextlist = NULL;
47         int n = jiffies % 128;
48
49         /* Pick an eraseblock to garbage collect next. This is where we'll
50            put the clever wear-levelling algorithms. Eventually.  */
51         /* We possibly want to favour the dirtier blocks more when the
52            number of free blocks is low. */
53 again:
54         if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
55                 D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
56                 nextlist = &c->bad_used_list;
57         } else if (n < 50 && !list_empty(&c->erasable_list)) {
58                 /* Note that most of them will have gone directly to be erased.
59                    So don't favour the erasable_list _too_ much. */
60                 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
61                 nextlist = &c->erasable_list;
62         } else if (n < 110 && !list_empty(&c->very_dirty_list)) {
63                 /* Most of the time, pick one off the very_dirty list */
64                 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
65                 nextlist = &c->very_dirty_list;
66         } else if (n < 126 && !list_empty(&c->dirty_list)) {
67                 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
68                 nextlist = &c->dirty_list;
69         } else if (!list_empty(&c->clean_list)) {
70                 D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
71                 nextlist = &c->clean_list;
72         } else if (!list_empty(&c->dirty_list)) {
73                 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
74
75                 nextlist = &c->dirty_list;
76         } else if (!list_empty(&c->very_dirty_list)) {
77                 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
78                 nextlist = &c->very_dirty_list;
79         } else if (!list_empty(&c->erasable_list)) {
80                 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
81
82                 nextlist = &c->erasable_list;
83         } else if (!list_empty(&c->erasable_pending_wbuf_list)) {
84                 /* There are blocks are wating for the wbuf sync */
85                 D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
86                 spin_unlock(&c->erase_completion_lock);
87                 jffs2_flush_wbuf_pad(c);
88                 spin_lock(&c->erase_completion_lock);
89                 goto again;
90         } else {
91                 /* Eep. All were empty */
92                 D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
93                 return NULL;
94         }
95
96         ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
97         list_del(&ret->list);
98         c->gcblock = ret;
99         ret->gc_node = ret->first_node;
100         if (!ret->gc_node) {
101                 printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
102                 BUG();
103         }
104
105         /* Have we accidentally picked a clean block with wasted space ? */
106         if (ret->wasted_size) {
107                 D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
108                 ret->dirty_size += ret->wasted_size;
109                 c->wasted_size -= ret->wasted_size;
110                 c->dirty_size += ret->wasted_size;
111                 ret->wasted_size = 0;
112         }
113
114         return ret;
115 }
116
117 /* jffs2_garbage_collect_pass
118  * Make a single attempt to progress GC. Move one node, and possibly
119  * start erasing one eraseblock.
120  */
121 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
122 {
123         struct jffs2_inode_info *f;
124         struct jffs2_inode_cache *ic;
125         struct jffs2_eraseblock *jeb;
126         struct jffs2_raw_node_ref *raw;
127         int ret = 0, inum, nlink;
128         int xattr = 0;
129
130         if (down_interruptible(&c->alloc_sem))
131                 return -EINTR;
132
133         for (;;) {
134                 spin_lock(&c->erase_completion_lock);
135                 if (!c->unchecked_size)
136                         break;
137
138                 /* We can't start doing GC yet. We haven't finished checking
139                    the node CRCs etc. Do it now. */
140
141                 /* checked_ino is protected by the alloc_sem */
142                 if (c->checked_ino > c->highest_ino && xattr) {
143                         printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
144                                c->unchecked_size);
145                         jffs2_dbg_dump_block_lists_nolock(c);
146                         spin_unlock(&c->erase_completion_lock);
147                         BUG();
148                 }
149
150                 spin_unlock(&c->erase_completion_lock);
151
152                 if (!xattr)
153                         xattr = jffs2_verify_xattr(c);
154
155                 spin_lock(&c->inocache_lock);
156
157                 ic = jffs2_get_ino_cache(c, c->checked_ino++);
158
159                 if (!ic) {
160                         spin_unlock(&c->inocache_lock);
161                         continue;
162                 }
163
164                 if (!ic->nlink) {
165                         D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n",
166                                   ic->ino));
167                         spin_unlock(&c->inocache_lock);
168                         continue;
169                 }
170                 switch(ic->state) {
171                 case INO_STATE_CHECKEDABSENT:
172                 case INO_STATE_PRESENT:
173                         D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
174                         spin_unlock(&c->inocache_lock);
175                         continue;
176
177                 case INO_STATE_GC:
178                 case INO_STATE_CHECKING:
179                         printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
180                         spin_unlock(&c->inocache_lock);
181                         BUG();
182
183                 case INO_STATE_READING:
184                         /* We need to wait for it to finish, lest we move on
185                            and trigger the BUG() above while we haven't yet
186                            finished checking all its nodes */
187                         D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
188                         /* We need to come back again for the _same_ inode. We've
189                          made no progress in this case, but that should be OK */
190                         c->checked_ino--;
191
192                         up(&c->alloc_sem);
193                         sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
194                         return 0;
195
196                 default:
197                         BUG();
198
199                 case INO_STATE_UNCHECKED:
200                         ;
201                 }
202                 ic->state = INO_STATE_CHECKING;
203                 spin_unlock(&c->inocache_lock);
204
205                 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
206
207                 ret = jffs2_do_crccheck_inode(c, ic);
208                 if (ret)
209                         printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
210
211                 jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
212                 up(&c->alloc_sem);
213                 return ret;
214         }
215
216         /* First, work out which block we're garbage-collecting */
217         jeb = c->gcblock;
218
219         if (!jeb)
220                 jeb = jffs2_find_gc_block(c);
221
222         if (!jeb) {
223                 D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
224                 spin_unlock(&c->erase_completion_lock);
225                 up(&c->alloc_sem);
226                 return -EIO;
227         }
228
229         D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
230         D1(if (c->nextblock)
231            printk(KERN_DEBUG "Nextblock at  %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
232
233         if (!jeb->used_size) {
234                 up(&c->alloc_sem);
235                 goto eraseit;
236         }
237
238         raw = jeb->gc_node;
239
240         while(ref_obsolete(raw)) {
241                 D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
242                 raw = raw->next_phys;
243                 if (unlikely(!raw)) {
244                         printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
245                         printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
246                                jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
247                         jeb->gc_node = raw;
248                         spin_unlock(&c->erase_completion_lock);
249                         up(&c->alloc_sem);
250                         BUG();
251                 }
252         }
253         jeb->gc_node = raw;
254
255         D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
256
257         if (!raw->next_in_ino) {
258                 /* Inode-less node. Clean marker, snapshot or something like that */
259                 spin_unlock(&c->erase_completion_lock);
260                 if (ref_flags(raw) == REF_PRISTINE) {
261                         /* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */
262                         jffs2_garbage_collect_pristine(c, NULL, raw);
263                 } else {
264                         /* Just mark it obsolete */
265                         jffs2_mark_node_obsolete(c, raw);
266                 }
267                 up(&c->alloc_sem);
268                 goto eraseit_lock;
269         }
270
271         ic = jffs2_raw_ref_to_ic(raw);
272
273 #ifdef CONFIG_JFFS2_FS_XATTR
274         /* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
275          * We can decide whether this node is inode or xattr by ic->class.     */
276         if (ic->class == RAWNODE_CLASS_XATTR_DATUM
277             || ic->class == RAWNODE_CLASS_XATTR_REF) {
278                 BUG_ON(raw->next_in_ino != (void *)ic);
279                 spin_unlock(&c->erase_completion_lock);
280
281                 if (ic->class == RAWNODE_CLASS_XATTR_DATUM) {
282                         ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
283                 } else {
284                         ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
285                 }
286                 goto release_sem;
287         }
288 #endif
289
290         /* We need to hold the inocache. Either the erase_completion_lock or
291            the inocache_lock are sufficient; we trade down since the inocache_lock
292            causes less contention. */
293         spin_lock(&c->inocache_lock);
294
295         spin_unlock(&c->erase_completion_lock);
296
297         D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
298
299         /* Three possibilities:
300            1. Inode is already in-core. We must iget it and do proper
301               updating to its fragtree, etc.
302            2. Inode is not in-core, node is REF_PRISTINE. We lock the
303               inocache to prevent a read_inode(), copy the node intact.
304            3. Inode is not in-core, node is not pristine. We must iget()
305               and take the slow path.
306         */
307
308         switch(ic->state) {
309         case INO_STATE_CHECKEDABSENT:
310                 /* It's been checked, but it's not currently in-core.
311                    We can just copy any pristine nodes, but have
312                    to prevent anyone else from doing read_inode() while
313                    we're at it, so we set the state accordingly */
314                 if (ref_flags(raw) == REF_PRISTINE)
315                         ic->state = INO_STATE_GC;
316                 else {
317                         D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
318                                   ic->ino));
319                 }
320                 break;
321
322         case INO_STATE_PRESENT:
323                 /* It's in-core. GC must iget() it. */
324                 break;
325
326         case INO_STATE_UNCHECKED:
327         case INO_STATE_CHECKING:
328         case INO_STATE_GC:
329                 /* Should never happen. We should have finished checking
330                    by the time we actually start doing any GC, and since
331                    we're holding the alloc_sem, no other garbage collection
332                    can happen.
333                 */
334                 printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
335                        ic->ino, ic->state);
336                 up(&c->alloc_sem);
337                 spin_unlock(&c->inocache_lock);
338                 BUG();
339
340         case INO_STATE_READING:
341                 /* Someone's currently trying to read it. We must wait for
342                    them to finish and then go through the full iget() route
343                    to do the GC. However, sometimes read_inode() needs to get
344                    the alloc_sem() (for marking nodes invalid) so we must
345                    drop the alloc_sem before sleeping. */
346
347                 up(&c->alloc_sem);
348                 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
349                           ic->ino, ic->state));
350                 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
351                 /* And because we dropped the alloc_sem we must start again from the
352                    beginning. Ponder chance of livelock here -- we're returning success
353                    without actually making any progress.
354
355                    Q: What are the chances that the inode is back in INO_STATE_READING
356                    again by the time we next enter this function? And that this happens
357                    enough times to cause a real delay?
358
359                    A: Small enough that I don't care :)
360                 */
361                 return 0;
362         }
363
364         /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
365            node intact, and we don't have to muck about with the fragtree etc.
366            because we know it's not in-core. If it _was_ in-core, we go through
367            all the iget() crap anyway */
368
369         if (ic->state == INO_STATE_GC) {
370                 spin_unlock(&c->inocache_lock);
371
372                 ret = jffs2_garbage_collect_pristine(c, ic, raw);
373
374                 spin_lock(&c->inocache_lock);
375                 ic->state = INO_STATE_CHECKEDABSENT;
376                 wake_up(&c->inocache_wq);
377
378                 if (ret != -EBADFD) {
379                         spin_unlock(&c->inocache_lock);
380                         goto release_sem;
381                 }
382
383                 /* Fall through if it wanted us to, with inocache_lock held */
384         }
385
386         /* Prevent the fairly unlikely race where the gcblock is
387            entirely obsoleted by the final close of a file which had
388            the only valid nodes in the block, followed by erasure,
389            followed by freeing of the ic because the erased block(s)
390            held _all_ the nodes of that inode.... never been seen but
391            it's vaguely possible. */
392
393         inum = ic->ino;
394         nlink = ic->nlink;
395         spin_unlock(&c->inocache_lock);
396
397         f = jffs2_gc_fetch_inode(c, inum, nlink);
398         if (IS_ERR(f)) {
399                 ret = PTR_ERR(f);
400                 goto release_sem;
401         }
402         if (!f) {
403                 ret = 0;
404                 goto release_sem;
405         }
406
407         ret = jffs2_garbage_collect_live(c, jeb, raw, f);
408
409         jffs2_gc_release_inode(c, f);
410
411  release_sem:
412         up(&c->alloc_sem);
413
414  eraseit_lock:
415         /* If we've finished this block, start it erasing */
416         spin_lock(&c->erase_completion_lock);
417
418  eraseit:
419         if (c->gcblock && !c->gcblock->used_size) {
420                 D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
421                 /* We're GC'ing an empty block? */
422                 list_add_tail(&c->gcblock->list, &c->erase_pending_list);
423                 c->gcblock = NULL;
424                 c->nr_erasing_blocks++;
425                 jffs2_erase_pending_trigger(c);
426         }
427         spin_unlock(&c->erase_completion_lock);
428
429         return ret;
430 }
431
432 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
433                                       struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
434 {
435         struct jffs2_node_frag *frag;
436         struct jffs2_full_dnode *fn = NULL;
437         struct jffs2_full_dirent *fd;
438         uint32_t start = 0, end = 0, nrfrags = 0;
439         int ret = 0;
440
441         down(&f->sem);
442
443         /* Now we have the lock for this inode. Check that it's still the one at the head
444            of the list. */
445
446         spin_lock(&c->erase_completion_lock);
447
448         if (c->gcblock != jeb) {
449                 spin_unlock(&c->erase_completion_lock);
450                 D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
451                 goto upnout;
452         }
453         if (ref_obsolete(raw)) {
454                 spin_unlock(&c->erase_completion_lock);
455                 D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
456                 /* They'll call again */
457                 goto upnout;
458         }
459         spin_unlock(&c->erase_completion_lock);
460
461         /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
462         if (f->metadata && f->metadata->raw == raw) {
463                 fn = f->metadata;
464                 ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
465                 goto upnout;
466         }
467
468         /* FIXME. Read node and do lookup? */
469         for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
470                 if (frag->node && frag->node->raw == raw) {
471                         fn = frag->node;
472                         end = frag->ofs + frag->size;
473                         if (!nrfrags++)
474                                 start = frag->ofs;
475                         if (nrfrags == frag->node->frags)
476                                 break; /* We've found them all */
477                 }
478         }
479         if (fn) {
480                 if (ref_flags(raw) == REF_PRISTINE) {
481                         ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
482                         if (!ret) {
483                                 /* Urgh. Return it sensibly. */
484                                 frag->node->raw = f->inocache->nodes;
485                         }
486                         if (ret != -EBADFD)
487                                 goto upnout;
488                 }
489                 /* We found a datanode. Do the GC */
490                 if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
491                         /* It crosses a page boundary. Therefore, it must be a hole. */
492                         ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
493                 } else {
494                         /* It could still be a hole. But we GC the page this way anyway */
495                         ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
496                 }
497                 goto upnout;
498         }
499
500         /* Wasn't a dnode. Try dirent */
501         for (fd = f->dents; fd; fd=fd->next) {
502                 if (fd->raw == raw)
503                         break;
504         }
505
506         if (fd && fd->ino) {
507                 ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
508         } else if (fd) {
509                 ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
510         } else {
511                 printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
512                        ref_offset(raw), f->inocache->ino);
513                 if (ref_obsolete(raw)) {
514                         printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
515                 } else {
516                         jffs2_dbg_dump_node(c, ref_offset(raw));
517                         BUG();
518                 }
519         }
520  upnout:
521         up(&f->sem);
522
523         return ret;
524 }
525
526 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
527                                           struct jffs2_inode_cache *ic,
528                                           struct jffs2_raw_node_ref *raw)
529 {
530         union jffs2_node_union *node;
531         struct jffs2_raw_node_ref *nraw;
532         size_t retlen;
533         int ret;
534         uint32_t phys_ofs, alloclen;
535         uint32_t crc, rawlen;
536         int retried = 0;
537
538         D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
539
540         alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
541
542         /* Ask for a small amount of space (or the totlen if smaller) because we
543            don't want to force wastage of the end of a block if splitting would
544            work. */
545         if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
546                 alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN;
547
548         ret = jffs2_reserve_space_gc(c, alloclen, &phys_ofs, &alloclen, rawlen);
549         /* 'rawlen' is not the exact summary size; it is only an upper estimation */
550
551         if (ret)
552                 return ret;
553
554         if (alloclen < rawlen) {
555                 /* Doesn't fit untouched. We'll go the old route and split it */
556                 return -EBADFD;
557         }
558
559         node = kmalloc(rawlen, GFP_KERNEL);
560         if (!node)
561                return -ENOMEM;
562
563         ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
564         if (!ret && retlen != rawlen)
565                 ret = -EIO;
566         if (ret)
567                 goto out_node;
568
569         crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
570         if (je32_to_cpu(node->u.hdr_crc) != crc) {
571                 printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
572                        ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
573                 goto bail;
574         }
575
576         switch(je16_to_cpu(node->u.nodetype)) {
577         case JFFS2_NODETYPE_INODE:
578                 crc = crc32(0, node, sizeof(node->i)-8);
579                 if (je32_to_cpu(node->i.node_crc) != crc) {
580                         printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
581                                ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
582                         goto bail;
583                 }
584
585                 if (je32_to_cpu(node->i.dsize)) {
586                         crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
587                         if (je32_to_cpu(node->i.data_crc) != crc) {
588                                 printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
589                                        ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
590                                 goto bail;
591                         }
592                 }
593                 break;
594
595         case JFFS2_NODETYPE_DIRENT:
596                 crc = crc32(0, node, sizeof(node->d)-8);
597                 if (je32_to_cpu(node->d.node_crc) != crc) {
598                         printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
599                                ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
600                         goto bail;
601                 }
602
603                 if (node->d.nsize) {
604                         crc = crc32(0, node->d.name, node->d.nsize);
605                         if (je32_to_cpu(node->d.name_crc) != crc) {
606                                 printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
607                                        ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
608                                 goto bail;
609                         }
610                 }
611                 break;
612         default:
613                 /* If it's inode-less, we don't _know_ what it is. Just copy it intact */
614                 if (ic) {
615                         printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
616                                ref_offset(raw), je16_to_cpu(node->u.nodetype));
617                         goto bail;
618                 }
619         }
620
621         nraw = jffs2_alloc_raw_node_ref();
622         if (!nraw) {
623                 ret = -ENOMEM;
624                 goto out_node;
625         }
626
627         /* OK, all the CRCs are good; this node can just be copied as-is. */
628  retry:
629         nraw->flash_offset = phys_ofs;
630
631         ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
632
633         if (ret || (retlen != rawlen)) {
634                 printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
635                        rawlen, phys_ofs, ret, retlen);
636                 if (retlen) {
637                         /* Doesn't belong to any inode */
638                         nraw->next_in_ino = NULL;
639
640                         nraw->flash_offset |= REF_OBSOLETE;
641                         jffs2_add_physical_node_ref(c, nraw, rawlen);
642                         jffs2_mark_node_obsolete(c, nraw);
643                 } else {
644                         printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", nraw->flash_offset);
645                         jffs2_free_raw_node_ref(nraw);
646                 }
647                 if (!retried && (nraw = jffs2_alloc_raw_node_ref())) {
648                         /* Try to reallocate space and retry */
649                         uint32_t dummy;
650                         struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
651
652                         retried = 1;
653
654                         D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
655
656                         jffs2_dbg_acct_sanity_check(c,jeb);
657                         jffs2_dbg_acct_paranoia_check(c, jeb);
658
659                         ret = jffs2_reserve_space_gc(c, rawlen, &phys_ofs, &dummy, rawlen);
660                                                 /* this is not the exact summary size of it,
661                                                         it is only an upper estimation */
662
663                         if (!ret) {
664                                 D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
665
666                                 jffs2_dbg_acct_sanity_check(c,jeb);
667                                 jffs2_dbg_acct_paranoia_check(c, jeb);
668
669                                 goto retry;
670                         }
671                         D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
672                         jffs2_free_raw_node_ref(nraw);
673                 }
674
675                 jffs2_free_raw_node_ref(nraw);
676                 if (!ret)
677                         ret = -EIO;
678                 goto out_node;
679         }
680         nraw->flash_offset |= REF_PRISTINE;
681         jffs2_add_physical_node_ref(c, nraw, rawlen);
682
683         if (ic) {
684                 /* Link into per-inode list. This is safe because of the ic
685                    state being INO_STATE_GC. Note that if we're doing this
686                    for an inode which is in-core, the 'nraw' pointer is then
687                    going to be fetched from ic->nodes by our caller. */
688                 spin_lock(&c->erase_completion_lock);
689                 nraw->next_in_ino = ic->nodes;
690                 ic->nodes = nraw;
691                 spin_unlock(&c->erase_completion_lock);
692         }
693         jffs2_mark_node_obsolete(c, raw);
694         D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
695
696  out_node:
697         kfree(node);
698         return ret;
699  bail:
700         ret = -EBADFD;
701         goto out_node;
702 }
703
704 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
705                                         struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
706 {
707         struct jffs2_full_dnode *new_fn;
708         struct jffs2_raw_inode ri;
709         struct jffs2_node_frag *last_frag;
710         union jffs2_device_node dev;
711         char *mdata = NULL, mdatalen = 0;
712         uint32_t alloclen, phys_ofs, ilen;
713         int ret;
714
715         if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
716             S_ISCHR(JFFS2_F_I_MODE(f)) ) {
717                 /* For these, we don't actually need to read the old node */
718                 mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
719                 mdata = (char *)&dev;
720                 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
721         } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
722                 mdatalen = fn->size;
723                 mdata = kmalloc(fn->size, GFP_KERNEL);
724                 if (!mdata) {
725                         printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
726                         return -ENOMEM;
727                 }
728                 ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
729                 if (ret) {
730                         printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
731                         kfree(mdata);
732                         return ret;
733                 }
734                 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
735
736         }
737
738         ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &phys_ofs, &alloclen,
739                                 JFFS2_SUMMARY_INODE_SIZE);
740         if (ret) {
741                 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
742                        sizeof(ri)+ mdatalen, ret);
743                 goto out;
744         }
745
746         last_frag = frag_last(&f->fragtree);
747         if (last_frag)
748                 /* Fetch the inode length from the fragtree rather then
749                  * from i_size since i_size may have not been updated yet */
750                 ilen = last_frag->ofs + last_frag->size;
751         else
752                 ilen = JFFS2_F_I_SIZE(f);
753
754         memset(&ri, 0, sizeof(ri));
755         ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
756         ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
757         ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
758         ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
759
760         ri.ino = cpu_to_je32(f->inocache->ino);
761         ri.version = cpu_to_je32(++f->highest_version);
762         ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
763         ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
764         ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
765         ri.isize = cpu_to_je32(ilen);
766         ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
767         ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
768         ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
769         ri.offset = cpu_to_je32(0);
770         ri.csize = cpu_to_je32(mdatalen);
771         ri.dsize = cpu_to_je32(mdatalen);
772         ri.compr = JFFS2_COMPR_NONE;
773         ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
774         ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
775
776         new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, phys_ofs, ALLOC_GC);
777
778         if (IS_ERR(new_fn)) {
779                 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
780                 ret = PTR_ERR(new_fn);
781                 goto out;
782         }
783         jffs2_mark_node_obsolete(c, fn->raw);
784         jffs2_free_full_dnode(fn);
785         f->metadata = new_fn;
786  out:
787         if (S_ISLNK(JFFS2_F_I_MODE(f)))
788                 kfree(mdata);
789         return ret;
790 }
791
792 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
793                                         struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
794 {
795         struct jffs2_full_dirent *new_fd;
796         struct jffs2_raw_dirent rd;
797         uint32_t alloclen, phys_ofs;
798         int ret;
799
800         rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
801         rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
802         rd.nsize = strlen(fd->name);
803         rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
804         rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
805
806         rd.pino = cpu_to_je32(f->inocache->ino);
807         rd.version = cpu_to_je32(++f->highest_version);
808         rd.ino = cpu_to_je32(fd->ino);
809         /* If the times on this inode were set by explicit utime() they can be different,
810            so refrain from splatting them. */
811         if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
812                 rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
813         else
814                 rd.mctime = cpu_to_je32(0);
815         rd.type = fd->type;
816         rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
817         rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
818
819         ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &phys_ofs, &alloclen,
820                                 JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
821         if (ret) {
822                 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
823                        sizeof(rd)+rd.nsize, ret);
824                 return ret;
825         }
826         new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, phys_ofs, ALLOC_GC);
827
828         if (IS_ERR(new_fd)) {
829                 printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
830                 return PTR_ERR(new_fd);
831         }
832         jffs2_add_fd_to_list(c, new_fd, &f->dents);
833         return 0;
834 }
835
836 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
837                                         struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
838 {
839         struct jffs2_full_dirent **fdp = &f->dents;
840         int found = 0;
841
842         /* On a medium where we can't actually mark nodes obsolete
843            pernamently, such as NAND flash, we need to work out
844            whether this deletion dirent is still needed to actively
845            delete a 'real' dirent with the same name that's still
846            somewhere else on the flash. */
847         if (!jffs2_can_mark_obsolete(c)) {
848                 struct jffs2_raw_dirent *rd;
849                 struct jffs2_raw_node_ref *raw;
850                 int ret;
851                 size_t retlen;
852                 int name_len = strlen(fd->name);
853                 uint32_t name_crc = crc32(0, fd->name, name_len);
854                 uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
855
856                 rd = kmalloc(rawlen, GFP_KERNEL);
857                 if (!rd)
858                         return -ENOMEM;
859
860                 /* Prevent the erase code from nicking the obsolete node refs while
861                    we're looking at them. I really don't like this extra lock but
862                    can't see any alternative. Suggestions on a postcard to... */
863                 down(&c->erase_free_sem);
864
865                 for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
866
867                         /* We only care about obsolete ones */
868                         if (!(ref_obsolete(raw)))
869                                 continue;
870
871                         /* Any dirent with the same name is going to have the same length... */
872                         if (ref_totlen(c, NULL, raw) != rawlen)
873                                 continue;
874
875                         /* Doesn't matter if there's one in the same erase block. We're going to
876                            delete it too at the same time. */
877                         if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
878                                 continue;
879
880                         D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
881
882                         /* This is an obsolete node belonging to the same directory, and it's of the right
883                            length. We need to take a closer look...*/
884                         ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
885                         if (ret) {
886                                 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
887                                 /* If we can't read it, we don't need to continue to obsolete it. Continue */
888                                 continue;
889                         }
890                         if (retlen != rawlen) {
891                                 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
892                                        retlen, rawlen, ref_offset(raw));
893                                 continue;
894                         }
895
896                         if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
897                                 continue;
898
899                         /* If the name CRC doesn't match, skip */
900                         if (je32_to_cpu(rd->name_crc) != name_crc)
901                                 continue;
902
903                         /* If the name length doesn't match, or it's another deletion dirent, skip */
904                         if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
905                                 continue;
906
907                         /* OK, check the actual name now */
908                         if (memcmp(rd->name, fd->name, name_len))
909                                 continue;
910
911                         /* OK. The name really does match. There really is still an older node on
912                            the flash which our deletion dirent obsoletes. So we have to write out
913                            a new deletion dirent to replace it */
914                         up(&c->erase_free_sem);
915
916                         D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
917                                   ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
918                         kfree(rd);
919
920                         return jffs2_garbage_collect_dirent(c, jeb, f, fd);
921                 }
922
923                 up(&c->erase_free_sem);
924                 kfree(rd);
925         }
926
927         /* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
928            we should update the metadata node with those times accordingly */
929
930         /* No need for it any more. Just mark it obsolete and remove it from the list */
931         while (*fdp) {
932                 if ((*fdp) == fd) {
933                         found = 1;
934                         *fdp = fd->next;
935                         break;
936                 }
937                 fdp = &(*fdp)->next;
938         }
939         if (!found) {
940                 printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
941         }
942         jffs2_mark_node_obsolete(c, fd->raw);
943         jffs2_free_full_dirent(fd);
944         return 0;
945 }
946
947 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
948                                       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
949                                       uint32_t start, uint32_t end)
950 {
951         struct jffs2_raw_inode ri;
952         struct jffs2_node_frag *frag;
953         struct jffs2_full_dnode *new_fn;
954         uint32_t alloclen, phys_ofs, ilen;
955         int ret;
956
957         D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
958                   f->inocache->ino, start, end));
959
960         memset(&ri, 0, sizeof(ri));
961
962         if(fn->frags > 1) {
963                 size_t readlen;
964                 uint32_t crc;
965                 /* It's partially obsoleted by a later write. So we have to
966                    write it out again with the _same_ version as before */
967                 ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
968                 if (readlen != sizeof(ri) || ret) {
969                         printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
970                         goto fill;
971                 }
972                 if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
973                         printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
974                                ref_offset(fn->raw),
975                                je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
976                         return -EIO;
977                 }
978                 if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
979                         printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
980                                ref_offset(fn->raw),
981                                je32_to_cpu(ri.totlen), sizeof(ri));
982                         return -EIO;
983                 }
984                 crc = crc32(0, &ri, sizeof(ri)-8);
985                 if (crc != je32_to_cpu(ri.node_crc)) {
986                         printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
987                                ref_offset(fn->raw),
988                                je32_to_cpu(ri.node_crc), crc);
989                         /* FIXME: We could possibly deal with this by writing new holes for each frag */
990                         printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
991                                start, end, f->inocache->ino);
992                         goto fill;
993                 }
994                 if (ri.compr != JFFS2_COMPR_ZERO) {
995                         printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
996                         printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
997                                start, end, f->inocache->ino);
998                         goto fill;
999                 }
1000         } else {
1001         fill:
1002                 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1003                 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1004                 ri.totlen = cpu_to_je32(sizeof(ri));
1005                 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1006
1007                 ri.ino = cpu_to_je32(f->inocache->ino);
1008                 ri.version = cpu_to_je32(++f->highest_version);
1009                 ri.offset = cpu_to_je32(start);
1010                 ri.dsize = cpu_to_je32(end - start);
1011                 ri.csize = cpu_to_je32(0);
1012                 ri.compr = JFFS2_COMPR_ZERO;
1013         }
1014
1015         frag = frag_last(&f->fragtree);
1016         if (frag)
1017                 /* Fetch the inode length from the fragtree rather then
1018                  * from i_size since i_size may have not been updated yet */
1019                 ilen = frag->ofs + frag->size;
1020         else
1021                 ilen = JFFS2_F_I_SIZE(f);
1022
1023         ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1024         ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1025         ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1026         ri.isize = cpu_to_je32(ilen);
1027         ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1028         ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1029         ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1030         ri.data_crc = cpu_to_je32(0);
1031         ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1032
1033         ret = jffs2_reserve_space_gc(c, sizeof(ri), &phys_ofs, &alloclen,
1034                                 JFFS2_SUMMARY_INODE_SIZE);
1035         if (ret) {
1036                 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1037                        sizeof(ri), ret);
1038                 return ret;
1039         }
1040         new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, phys_ofs, ALLOC_GC);
1041
1042         if (IS_ERR(new_fn)) {
1043                 printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1044                 return PTR_ERR(new_fn);
1045         }
1046         if (je32_to_cpu(ri.version) == f->highest_version) {
1047                 jffs2_add_full_dnode_to_inode(c, f, new_fn);
1048                 if (f->metadata) {
1049                         jffs2_mark_node_obsolete(c, f->metadata->raw);
1050                         jffs2_free_full_dnode(f->metadata);
1051                         f->metadata = NULL;
1052                 }
1053                 return 0;
1054         }
1055
1056         /*
1057          * We should only get here in the case where the node we are
1058          * replacing had more than one frag, so we kept the same version
1059          * number as before. (Except in case of error -- see 'goto fill;'
1060          * above.)
1061          */
1062         D1(if(unlikely(fn->frags <= 1)) {
1063                 printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1064                        fn->frags, je32_to_cpu(ri.version), f->highest_version,
1065                        je32_to_cpu(ri.ino));
1066         });
1067
1068         /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1069         mark_ref_normal(new_fn->raw);
1070
1071         for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1072              frag; frag = frag_next(frag)) {
1073                 if (frag->ofs > fn->size + fn->ofs)
1074                         break;
1075                 if (frag->node == fn) {
1076                         frag->node = new_fn;
1077                         new_fn->frags++;
1078                         fn->frags--;
1079                 }
1080         }
1081         if (fn->frags) {
1082                 printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1083                 BUG();
1084         }
1085         if (!new_fn->frags) {
1086                 printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1087                 BUG();
1088         }
1089
1090         jffs2_mark_node_obsolete(c, fn->raw);
1091         jffs2_free_full_dnode(fn);
1092
1093         return 0;
1094 }
1095
1096 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1097                                        struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1098                                        uint32_t start, uint32_t end)
1099 {
1100         struct jffs2_full_dnode *new_fn;
1101         struct jffs2_raw_inode ri;
1102         uint32_t alloclen, phys_ofs, offset, orig_end, orig_start;
1103         int ret = 0;
1104         unsigned char *comprbuf = NULL, *writebuf;
1105         unsigned long pg;
1106         unsigned char *pg_ptr;
1107
1108         memset(&ri, 0, sizeof(ri));
1109
1110         D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1111                   f->inocache->ino, start, end));
1112
1113         orig_end = end;
1114         orig_start = start;
1115
1116         if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1117                 /* Attempt to do some merging. But only expand to cover logically
1118                    adjacent frags if the block containing them is already considered
1119                    to be dirty. Otherwise we end up with GC just going round in
1120                    circles dirtying the nodes it already wrote out, especially
1121                    on NAND where we have small eraseblocks and hence a much higher
1122                    chance of nodes having to be split to cross boundaries. */
1123
1124                 struct jffs2_node_frag *frag;
1125                 uint32_t min, max;
1126
1127                 min = start & ~(PAGE_CACHE_SIZE-1);
1128                 max = min + PAGE_CACHE_SIZE;
1129
1130                 frag = jffs2_lookup_node_frag(&f->fragtree, start);
1131
1132                 /* BUG_ON(!frag) but that'll happen anyway... */
1133
1134                 BUG_ON(frag->ofs != start);
1135
1136                 /* First grow down... */
1137                 while((frag = frag_prev(frag)) && frag->ofs >= min) {
1138
1139                         /* If the previous frag doesn't even reach the beginning, there's
1140                            excessive fragmentation. Just merge. */
1141                         if (frag->ofs > min) {
1142                                 D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1143                                           frag->ofs, frag->ofs+frag->size));
1144                                 start = frag->ofs;
1145                                 continue;
1146                         }
1147                         /* OK. This frag holds the first byte of the page. */
1148                         if (!frag->node || !frag->node->raw) {
1149                                 D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1150                                           frag->ofs, frag->ofs+frag->size));
1151                                 break;
1152                         } else {
1153
1154                                 /* OK, it's a frag which extends to the beginning of the page. Does it live
1155                                    in a block which is still considered clean? If so, don't obsolete it.
1156                                    If not, cover it anyway. */
1157
1158                                 struct jffs2_raw_node_ref *raw = frag->node->raw;
1159                                 struct jffs2_eraseblock *jeb;
1160
1161                                 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1162
1163                                 if (jeb == c->gcblock) {
1164                                         D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1165                                                   frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1166                                         start = frag->ofs;
1167                                         break;
1168                                 }
1169                                 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1170                                         D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1171                                                   frag->ofs, frag->ofs+frag->size, jeb->offset));
1172                                         break;
1173                                 }
1174
1175                                 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1176                                                   frag->ofs, frag->ofs+frag->size, jeb->offset));
1177                                 start = frag->ofs;
1178                                 break;
1179                         }
1180                 }
1181
1182                 /* ... then up */
1183
1184                 /* Find last frag which is actually part of the node we're to GC. */
1185                 frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1186
1187                 while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1188
1189                         /* If the previous frag doesn't even reach the beginning, there's lots
1190                            of fragmentation. Just merge. */
1191                         if (frag->ofs+frag->size < max) {
1192                                 D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1193                                           frag->ofs, frag->ofs+frag->size));
1194                                 end = frag->ofs + frag->size;
1195                                 continue;
1196                         }
1197
1198                         if (!frag->node || !frag->node->raw) {
1199                                 D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1200                                           frag->ofs, frag->ofs+frag->size));
1201                                 break;
1202                         } else {
1203
1204                                 /* OK, it's a frag which extends to the beginning of the page. Does it live
1205                                    in a block which is still considered clean? If so, don't obsolete it.
1206                                    If not, cover it anyway. */
1207
1208                                 struct jffs2_raw_node_ref *raw = frag->node->raw;
1209                                 struct jffs2_eraseblock *jeb;
1210
1211                                 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1212
1213                                 if (jeb == c->gcblock) {
1214                                         D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1215                                                   frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1216                                         end = frag->ofs + frag->size;
1217                                         break;
1218                                 }
1219                                 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1220                                         D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1221                                                   frag->ofs, frag->ofs+frag->size, jeb->offset));
1222                                         break;
1223                                 }
1224
1225                                 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1226                                                   frag->ofs, frag->ofs+frag->size, jeb->offset));
1227                                 end = frag->ofs + frag->size;
1228                                 break;
1229                         }
1230                 }
1231                 D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1232                           orig_start, orig_end, start, end));
1233
1234                 D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1235                 BUG_ON(end < orig_end);
1236                 BUG_ON(start > orig_start);
1237         }
1238
1239         /* First, use readpage() to read the appropriate page into the page cache */
1240         /* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1241          *    triggered garbage collection in the first place?
1242          * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1243          *    page OK. We'll actually write it out again in commit_write, which is a little
1244          *    suboptimal, but at least we're correct.
1245          */
1246         pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1247
1248         if (IS_ERR(pg_ptr)) {
1249                 printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1250                 return PTR_ERR(pg_ptr);
1251         }
1252
1253         offset = start;
1254         while(offset < orig_end) {
1255                 uint32_t datalen;
1256                 uint32_t cdatalen;
1257                 uint16_t comprtype = JFFS2_COMPR_NONE;
1258
1259                 ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, &phys_ofs,
1260                                         &alloclen, JFFS2_SUMMARY_INODE_SIZE);
1261
1262                 if (ret) {
1263                         printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1264                                sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1265                         break;
1266                 }
1267                 cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1268                 datalen = end - offset;
1269
1270                 writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1271
1272                 comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1273
1274                 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1275                 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1276                 ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1277                 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1278
1279                 ri.ino = cpu_to_je32(f->inocache->ino);
1280                 ri.version = cpu_to_je32(++f->highest_version);
1281                 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1282                 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1283                 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1284                 ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1285                 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1286                 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1287                 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1288                 ri.offset = cpu_to_je32(offset);
1289                 ri.csize = cpu_to_je32(cdatalen);
1290                 ri.dsize = cpu_to_je32(datalen);
1291                 ri.compr = comprtype & 0xff;
1292                 ri.usercompr = (comprtype >> 8) & 0xff;
1293                 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1294                 ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1295
1296                 new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, phys_ofs, ALLOC_GC);
1297
1298                 jffs2_free_comprbuf(comprbuf, writebuf);
1299
1300                 if (IS_ERR(new_fn)) {
1301                         printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1302                         ret = PTR_ERR(new_fn);
1303                         break;
1304                 }
1305                 ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1306                 offset += datalen;
1307                 if (f->metadata) {
1308                         jffs2_mark_node_obsolete(c, f->metadata->raw);
1309                         jffs2_free_full_dnode(f->metadata);
1310                         f->metadata = NULL;
1311                 }
1312         }
1313
1314         jffs2_gc_release_page(c, pg_ptr, &pg);
1315         return ret;
1316 }