[JFFS2] Core changes required to support JFFS2-on-Dataflash devices.
[safe/jmp/linux-2.6] / fs / jffs2 / gc.c
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright (C) 2001-2003 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <dwmw2@infradead.org>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  * $Id: gc.c,v 1.145 2005/02/09 09:09:01 pavlov Exp $
11  *
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/slab.h>
17 #include <linux/pagemap.h>
18 #include <linux/crc32.h>
19 #include <linux/compiler.h>
20 #include <linux/stat.h>
21 #include "nodelist.h"
22 #include "compr.h"
23
24 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c, 
25                                           struct jffs2_inode_cache *ic,
26                                           struct jffs2_raw_node_ref *raw);
27 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 
28                                         struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
29 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 
30                                         struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
31 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 
32                                         struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
33 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
34                                       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
35                                       uint32_t start, uint32_t end);
36 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
37                                        struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
38                                        uint32_t start, uint32_t end);
39 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
40                                struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
41
42 /* Called with erase_completion_lock held */
43 static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
44 {
45         struct jffs2_eraseblock *ret;
46         struct list_head *nextlist = NULL;
47         int n = jiffies % 128;
48
49         /* Pick an eraseblock to garbage collect next. This is where we'll
50            put the clever wear-levelling algorithms. Eventually.  */
51         /* We possibly want to favour the dirtier blocks more when the
52            number of free blocks is low. */
53         if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
54                 D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
55                 nextlist = &c->bad_used_list;
56         } else if (n < 50 && !list_empty(&c->erasable_list)) {
57                 /* Note that most of them will have gone directly to be erased. 
58                    So don't favour the erasable_list _too_ much. */
59                 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
60                 nextlist = &c->erasable_list;
61         } else if (n < 110 && !list_empty(&c->very_dirty_list)) {
62                 /* Most of the time, pick one off the very_dirty list */
63                 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
64                 nextlist = &c->very_dirty_list;
65         } else if (n < 126 && !list_empty(&c->dirty_list)) {
66                 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
67                 nextlist = &c->dirty_list;
68         } else if (!list_empty(&c->clean_list)) {
69                 D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
70                 nextlist = &c->clean_list;
71         } else if (!list_empty(&c->dirty_list)) {
72                 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
73
74                 nextlist = &c->dirty_list;
75         } else if (!list_empty(&c->very_dirty_list)) {
76                 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
77                 nextlist = &c->very_dirty_list;
78         } else if (!list_empty(&c->erasable_list)) {
79                 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
80
81                 nextlist = &c->erasable_list;
82         } else {
83                 /* Eep. All were empty */
84                 D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
85                 return NULL;
86         }
87
88         ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
89         list_del(&ret->list);
90         c->gcblock = ret;
91         ret->gc_node = ret->first_node;
92         if (!ret->gc_node) {
93                 printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
94                 BUG();
95         }
96         
97         /* Have we accidentally picked a clean block with wasted space ? */
98         if (ret->wasted_size) {
99                 D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
100                 ret->dirty_size += ret->wasted_size;
101                 c->wasted_size -= ret->wasted_size;
102                 c->dirty_size += ret->wasted_size;
103                 ret->wasted_size = 0;
104         }
105
106         D2(jffs2_dump_block_lists(c));
107         return ret;
108 }
109
110 /* jffs2_garbage_collect_pass
111  * Make a single attempt to progress GC. Move one node, and possibly
112  * start erasing one eraseblock.
113  */
114 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
115 {
116         struct jffs2_inode_info *f;
117         struct jffs2_inode_cache *ic;
118         struct jffs2_eraseblock *jeb;
119         struct jffs2_raw_node_ref *raw;
120         int ret = 0, inum, nlink;
121
122         if (down_interruptible(&c->alloc_sem))
123                 return -EINTR;
124
125         for (;;) {
126                 spin_lock(&c->erase_completion_lock);
127                 if (!c->unchecked_size)
128                         break;
129
130                 /* We can't start doing GC yet. We haven't finished checking
131                    the node CRCs etc. Do it now. */
132                 
133                 /* checked_ino is protected by the alloc_sem */
134                 if (c->checked_ino > c->highest_ino) {
135                         printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
136                                c->unchecked_size);
137                         D2(jffs2_dump_block_lists(c));
138                         spin_unlock(&c->erase_completion_lock);
139                         BUG();
140                 }
141
142                 spin_unlock(&c->erase_completion_lock);
143
144                 spin_lock(&c->inocache_lock);
145
146                 ic = jffs2_get_ino_cache(c, c->checked_ino++);
147
148                 if (!ic) {
149                         spin_unlock(&c->inocache_lock);
150                         continue;
151                 }
152
153                 if (!ic->nlink) {
154                         D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n",
155                                   ic->ino));
156                         spin_unlock(&c->inocache_lock);
157                         continue;
158                 }
159                 switch(ic->state) {
160                 case INO_STATE_CHECKEDABSENT:
161                 case INO_STATE_PRESENT:
162                         D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
163                         spin_unlock(&c->inocache_lock);
164                         continue;
165
166                 case INO_STATE_GC:
167                 case INO_STATE_CHECKING:
168                         printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
169                         spin_unlock(&c->inocache_lock);
170                         BUG();
171
172                 case INO_STATE_READING:
173                         /* We need to wait for it to finish, lest we move on
174                            and trigger the BUG() above while we haven't yet 
175                            finished checking all its nodes */
176                         D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
177                         up(&c->alloc_sem);
178                         sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
179                         return 0;
180
181                 default:
182                         BUG();
183
184                 case INO_STATE_UNCHECKED:
185                         ;
186                 }
187                 ic->state = INO_STATE_CHECKING;
188                 spin_unlock(&c->inocache_lock);
189
190                 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
191
192                 ret = jffs2_do_crccheck_inode(c, ic);
193                 if (ret)
194                         printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
195
196                 jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
197                 up(&c->alloc_sem);
198                 return ret;
199         }
200
201         /* First, work out which block we're garbage-collecting */
202         jeb = c->gcblock;
203
204         if (!jeb)
205                 jeb = jffs2_find_gc_block(c);
206
207         if (!jeb) {
208                 D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
209                 spin_unlock(&c->erase_completion_lock);
210                 up(&c->alloc_sem);
211                 return -EIO;
212         }
213
214         D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
215         D1(if (c->nextblock)
216            printk(KERN_DEBUG "Nextblock at  %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
217
218         if (!jeb->used_size) {
219                 up(&c->alloc_sem);
220                 goto eraseit;
221         }
222
223         raw = jeb->gc_node;
224                         
225         while(ref_obsolete(raw)) {
226                 D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
227                 raw = raw->next_phys;
228                 if (unlikely(!raw)) {
229                         printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
230                         printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n", 
231                                jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
232                         jeb->gc_node = raw;
233                         spin_unlock(&c->erase_completion_lock);
234                         up(&c->alloc_sem);
235                         BUG();
236                 }
237         }
238         jeb->gc_node = raw;
239
240         D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
241
242         if (!raw->next_in_ino) {
243                 /* Inode-less node. Clean marker, snapshot or something like that */
244                 /* FIXME: If it's something that needs to be copied, including something
245                    we don't grok that has JFFS2_NODETYPE_RWCOMPAT_COPY, we should do so */
246                 spin_unlock(&c->erase_completion_lock);
247                 jffs2_mark_node_obsolete(c, raw);
248                 up(&c->alloc_sem);
249                 goto eraseit_lock;
250         }
251
252         ic = jffs2_raw_ref_to_ic(raw);
253
254         /* We need to hold the inocache. Either the erase_completion_lock or
255            the inocache_lock are sufficient; we trade down since the inocache_lock 
256            causes less contention. */
257         spin_lock(&c->inocache_lock);
258
259         spin_unlock(&c->erase_completion_lock);
260
261         D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
262
263         /* Three possibilities:
264            1. Inode is already in-core. We must iget it and do proper
265               updating to its fragtree, etc.
266            2. Inode is not in-core, node is REF_PRISTINE. We lock the
267               inocache to prevent a read_inode(), copy the node intact.
268            3. Inode is not in-core, node is not pristine. We must iget()
269               and take the slow path.
270         */
271
272         switch(ic->state) {
273         case INO_STATE_CHECKEDABSENT:
274                 /* It's been checked, but it's not currently in-core. 
275                    We can just copy any pristine nodes, but have
276                    to prevent anyone else from doing read_inode() while
277                    we're at it, so we set the state accordingly */
278                 if (ref_flags(raw) == REF_PRISTINE)
279                         ic->state = INO_STATE_GC;
280                 else {
281                         D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n", 
282                                   ic->ino));
283                 }
284                 break;
285
286         case INO_STATE_PRESENT:
287                 /* It's in-core. GC must iget() it. */
288                 break;
289
290         case INO_STATE_UNCHECKED:
291         case INO_STATE_CHECKING:
292         case INO_STATE_GC:
293                 /* Should never happen. We should have finished checking
294                    by the time we actually start doing any GC, and since 
295                    we're holding the alloc_sem, no other garbage collection 
296                    can happen.
297                 */
298                 printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
299                        ic->ino, ic->state);
300                 up(&c->alloc_sem);
301                 spin_unlock(&c->inocache_lock);
302                 BUG();
303
304         case INO_STATE_READING:
305                 /* Someone's currently trying to read it. We must wait for
306                    them to finish and then go through the full iget() route
307                    to do the GC. However, sometimes read_inode() needs to get
308                    the alloc_sem() (for marking nodes invalid) so we must
309                    drop the alloc_sem before sleeping. */
310
311                 up(&c->alloc_sem);
312                 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
313                           ic->ino, ic->state));
314                 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
315                 /* And because we dropped the alloc_sem we must start again from the 
316                    beginning. Ponder chance of livelock here -- we're returning success
317                    without actually making any progress.
318
319                    Q: What are the chances that the inode is back in INO_STATE_READING 
320                    again by the time we next enter this function? And that this happens
321                    enough times to cause a real delay?
322
323                    A: Small enough that I don't care :) 
324                 */
325                 return 0;
326         }
327
328         /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
329            node intact, and we don't have to muck about with the fragtree etc. 
330            because we know it's not in-core. If it _was_ in-core, we go through
331            all the iget() crap anyway */
332
333         if (ic->state == INO_STATE_GC) {
334                 spin_unlock(&c->inocache_lock);
335
336                 ret = jffs2_garbage_collect_pristine(c, ic, raw);
337
338                 spin_lock(&c->inocache_lock);
339                 ic->state = INO_STATE_CHECKEDABSENT;
340                 wake_up(&c->inocache_wq);
341
342                 if (ret != -EBADFD) {
343                         spin_unlock(&c->inocache_lock);
344                         goto release_sem;
345                 }
346
347                 /* Fall through if it wanted us to, with inocache_lock held */
348         }
349
350         /* Prevent the fairly unlikely race where the gcblock is
351            entirely obsoleted by the final close of a file which had
352            the only valid nodes in the block, followed by erasure,
353            followed by freeing of the ic because the erased block(s)
354            held _all_ the nodes of that inode.... never been seen but
355            it's vaguely possible. */
356
357         inum = ic->ino;
358         nlink = ic->nlink;
359         spin_unlock(&c->inocache_lock);
360
361         f = jffs2_gc_fetch_inode(c, inum, nlink);
362         if (IS_ERR(f)) {
363                 ret = PTR_ERR(f);
364                 goto release_sem;
365         }
366         if (!f) {
367                 ret = 0;
368                 goto release_sem;
369         }
370
371         ret = jffs2_garbage_collect_live(c, jeb, raw, f);
372
373         jffs2_gc_release_inode(c, f);
374
375  release_sem:
376         up(&c->alloc_sem);
377
378  eraseit_lock:
379         /* If we've finished this block, start it erasing */
380         spin_lock(&c->erase_completion_lock);
381
382  eraseit:
383         if (c->gcblock && !c->gcblock->used_size) {
384                 D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
385                 /* We're GC'ing an empty block? */
386                 list_add_tail(&c->gcblock->list, &c->erase_pending_list);
387                 c->gcblock = NULL;
388                 c->nr_erasing_blocks++;
389                 jffs2_erase_pending_trigger(c);
390         }
391         spin_unlock(&c->erase_completion_lock);
392
393         return ret;
394 }
395
396 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
397                                       struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
398 {
399         struct jffs2_node_frag *frag;
400         struct jffs2_full_dnode *fn = NULL;
401         struct jffs2_full_dirent *fd;
402         uint32_t start = 0, end = 0, nrfrags = 0;
403         int ret = 0;
404
405         down(&f->sem);
406
407         /* Now we have the lock for this inode. Check that it's still the one at the head
408            of the list. */
409
410         spin_lock(&c->erase_completion_lock);
411
412         if (c->gcblock != jeb) {
413                 spin_unlock(&c->erase_completion_lock);
414                 D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
415                 goto upnout;
416         }
417         if (ref_obsolete(raw)) {
418                 spin_unlock(&c->erase_completion_lock);
419                 D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
420                 /* They'll call again */
421                 goto upnout;
422         }
423         spin_unlock(&c->erase_completion_lock);
424
425         /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
426         if (f->metadata && f->metadata->raw == raw) {
427                 fn = f->metadata;
428                 ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
429                 goto upnout;
430         }
431
432         /* FIXME. Read node and do lookup? */
433         for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
434                 if (frag->node && frag->node->raw == raw) {
435                         fn = frag->node;
436                         end = frag->ofs + frag->size;
437                         if (!nrfrags++)
438                                 start = frag->ofs;
439                         if (nrfrags == frag->node->frags)
440                                 break; /* We've found them all */
441                 }
442         }
443         if (fn) {
444                 if (ref_flags(raw) == REF_PRISTINE) {
445                         ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
446                         if (!ret) {
447                                 /* Urgh. Return it sensibly. */
448                                 frag->node->raw = f->inocache->nodes;
449                         }       
450                         if (ret != -EBADFD)
451                                 goto upnout;
452                 }
453                 /* We found a datanode. Do the GC */
454                 if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
455                         /* It crosses a page boundary. Therefore, it must be a hole. */
456                         ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
457                 } else {
458                         /* It could still be a hole. But we GC the page this way anyway */
459                         ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
460                 }
461                 goto upnout;
462         }
463         
464         /* Wasn't a dnode. Try dirent */
465         for (fd = f->dents; fd; fd=fd->next) {
466                 if (fd->raw == raw)
467                         break;
468         }
469
470         if (fd && fd->ino) {
471                 ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
472         } else if (fd) {
473                 ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
474         } else {
475                 printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
476                        ref_offset(raw), f->inocache->ino);
477                 if (ref_obsolete(raw)) {
478                         printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
479                 } else {
480                         ret = -EIO;
481                 }
482         }
483  upnout:
484         up(&f->sem);
485
486         return ret;
487 }
488
489 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c, 
490                                           struct jffs2_inode_cache *ic,
491                                           struct jffs2_raw_node_ref *raw)
492 {
493         union jffs2_node_union *node;
494         struct jffs2_raw_node_ref *nraw;
495         size_t retlen;
496         int ret;
497         uint32_t phys_ofs, alloclen;
498         uint32_t crc, rawlen;
499         int retried = 0;
500
501         D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
502
503         rawlen = ref_totlen(c, c->gcblock, raw);
504
505         /* Ask for a small amount of space (or the totlen if smaller) because we
506            don't want to force wastage of the end of a block if splitting would
507            work. */
508         ret = jffs2_reserve_space_gc(c, min_t(uint32_t, sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN, 
509                                               rawlen), &phys_ofs, &alloclen);
510         if (ret)
511                 return ret;
512
513         if (alloclen < rawlen) {
514                 /* Doesn't fit untouched. We'll go the old route and split it */
515                 return -EBADFD;
516         }
517
518         node = kmalloc(rawlen, GFP_KERNEL);
519         if (!node)
520                return -ENOMEM;
521
522         ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
523         if (!ret && retlen != rawlen)
524                 ret = -EIO;
525         if (ret)
526                 goto out_node;
527
528         crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
529         if (je32_to_cpu(node->u.hdr_crc) != crc) {
530                 printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
531                        ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
532                 goto bail;
533         }
534
535         switch(je16_to_cpu(node->u.nodetype)) {
536         case JFFS2_NODETYPE_INODE:
537                 crc = crc32(0, node, sizeof(node->i)-8);
538                 if (je32_to_cpu(node->i.node_crc) != crc) {
539                         printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
540                                ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
541                         goto bail;
542                 }
543
544                 if (je32_to_cpu(node->i.dsize)) {
545                         crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
546                         if (je32_to_cpu(node->i.data_crc) != crc) {
547                                 printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
548                                        ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
549                                 goto bail;
550                         }
551                 }
552                 break;
553
554         case JFFS2_NODETYPE_DIRENT:
555                 crc = crc32(0, node, sizeof(node->d)-8);
556                 if (je32_to_cpu(node->d.node_crc) != crc) {
557                         printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
558                                ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
559                         goto bail;
560                 }
561
562                 if (node->d.nsize) {
563                         crc = crc32(0, node->d.name, node->d.nsize);
564                         if (je32_to_cpu(node->d.name_crc) != crc) {
565                                 printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
566                                        ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
567                                 goto bail;
568                         }
569                 }
570                 break;
571         default:
572                 printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n", 
573                        ref_offset(raw), je16_to_cpu(node->u.nodetype));
574                 goto bail;
575         }
576
577         nraw = jffs2_alloc_raw_node_ref();
578         if (!nraw) {
579                 ret = -ENOMEM;
580                 goto out_node;
581         }
582
583         /* OK, all the CRCs are good; this node can just be copied as-is. */
584  retry:
585         nraw->flash_offset = phys_ofs;
586         nraw->__totlen = rawlen;
587         nraw->next_phys = NULL;
588
589         ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
590
591         if (ret || (retlen != rawlen)) {
592                 printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
593                        rawlen, phys_ofs, ret, retlen);
594                 if (retlen) {
595                         /* Doesn't belong to any inode */
596                         nraw->next_in_ino = NULL;
597
598                         nraw->flash_offset |= REF_OBSOLETE;
599                         jffs2_add_physical_node_ref(c, nraw);
600                         jffs2_mark_node_obsolete(c, nraw);
601                 } else {
602                         printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", nraw->flash_offset);
603                         jffs2_free_raw_node_ref(nraw);
604                 }
605                 if (!retried && (nraw = jffs2_alloc_raw_node_ref())) {
606                         /* Try to reallocate space and retry */
607                         uint32_t dummy;
608                         struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
609
610                         retried = 1;
611
612                         D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
613                         
614                         ACCT_SANITY_CHECK(c,jeb);
615                         D1(ACCT_PARANOIA_CHECK(jeb));
616
617                         ret = jffs2_reserve_space_gc(c, rawlen, &phys_ofs, &dummy);
618
619                         if (!ret) {
620                                 D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
621
622                                 ACCT_SANITY_CHECK(c,jeb);
623                                 D1(ACCT_PARANOIA_CHECK(jeb));
624
625                                 goto retry;
626                         }
627                         D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
628                         jffs2_free_raw_node_ref(nraw);
629                 }
630
631                 jffs2_free_raw_node_ref(nraw);
632                 if (!ret)
633                         ret = -EIO;
634                 goto out_node;
635         }
636         nraw->flash_offset |= REF_PRISTINE;
637         jffs2_add_physical_node_ref(c, nraw);
638
639         /* Link into per-inode list. This is safe because of the ic
640            state being INO_STATE_GC. Note that if we're doing this
641            for an inode which is in-core, the 'nraw' pointer is then
642            going to be fetched from ic->nodes by our caller. */
643         spin_lock(&c->erase_completion_lock);
644         nraw->next_in_ino = ic->nodes;
645         ic->nodes = nraw;
646         spin_unlock(&c->erase_completion_lock);
647
648         jffs2_mark_node_obsolete(c, raw);
649         D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
650
651  out_node:
652         kfree(node);
653         return ret;
654  bail:
655         ret = -EBADFD;
656         goto out_node;
657 }
658
659 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 
660                                         struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
661 {
662         struct jffs2_full_dnode *new_fn;
663         struct jffs2_raw_inode ri;
664         jint16_t dev;
665         char *mdata = NULL, mdatalen = 0;
666         uint32_t alloclen, phys_ofs;
667         int ret;
668
669         if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
670             S_ISCHR(JFFS2_F_I_MODE(f)) ) {
671                 /* For these, we don't actually need to read the old node */
672                 /* FIXME: for minor or major > 255. */
673                 dev = cpu_to_je16(((JFFS2_F_I_RDEV_MAJ(f) << 8) | 
674                         JFFS2_F_I_RDEV_MIN(f)));
675                 mdata = (char *)&dev;
676                 mdatalen = sizeof(dev);
677                 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
678         } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
679                 mdatalen = fn->size;
680                 mdata = kmalloc(fn->size, GFP_KERNEL);
681                 if (!mdata) {
682                         printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
683                         return -ENOMEM;
684                 }
685                 ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
686                 if (ret) {
687                         printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
688                         kfree(mdata);
689                         return ret;
690                 }
691                 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
692
693         }
694         
695         ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &phys_ofs, &alloclen);
696         if (ret) {
697                 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
698                        sizeof(ri)+ mdatalen, ret);
699                 goto out;
700         }
701         
702         memset(&ri, 0, sizeof(ri));
703         ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
704         ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
705         ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
706         ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
707
708         ri.ino = cpu_to_je32(f->inocache->ino);
709         ri.version = cpu_to_je32(++f->highest_version);
710         ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
711         ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
712         ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
713         ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
714         ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
715         ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
716         ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
717         ri.offset = cpu_to_je32(0);
718         ri.csize = cpu_to_je32(mdatalen);
719         ri.dsize = cpu_to_je32(mdatalen);
720         ri.compr = JFFS2_COMPR_NONE;
721         ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
722         ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
723
724         new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, phys_ofs, ALLOC_GC);
725
726         if (IS_ERR(new_fn)) {
727                 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
728                 ret = PTR_ERR(new_fn);
729                 goto out;
730         }
731         jffs2_mark_node_obsolete(c, fn->raw);
732         jffs2_free_full_dnode(fn);
733         f->metadata = new_fn;
734  out:
735         if (S_ISLNK(JFFS2_F_I_MODE(f)))
736                 kfree(mdata);
737         return ret;
738 }
739
740 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 
741                                         struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
742 {
743         struct jffs2_full_dirent *new_fd;
744         struct jffs2_raw_dirent rd;
745         uint32_t alloclen, phys_ofs;
746         int ret;
747
748         rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
749         rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
750         rd.nsize = strlen(fd->name);
751         rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
752         rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
753
754         rd.pino = cpu_to_je32(f->inocache->ino);
755         rd.version = cpu_to_je32(++f->highest_version);
756         rd.ino = cpu_to_je32(fd->ino);
757         rd.mctime = cpu_to_je32(max(JFFS2_F_I_MTIME(f), JFFS2_F_I_CTIME(f)));
758         rd.type = fd->type;
759         rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
760         rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
761         
762         ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &phys_ofs, &alloclen);
763         if (ret) {
764                 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
765                        sizeof(rd)+rd.nsize, ret);
766                 return ret;
767         }
768         new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, phys_ofs, ALLOC_GC);
769
770         if (IS_ERR(new_fd)) {
771                 printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
772                 return PTR_ERR(new_fd);
773         }
774         jffs2_add_fd_to_list(c, new_fd, &f->dents);
775         return 0;
776 }
777
778 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 
779                                         struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
780 {
781         struct jffs2_full_dirent **fdp = &f->dents;
782         int found = 0;
783
784         /* On a medium where we can't actually mark nodes obsolete
785            pernamently, such as NAND flash, we need to work out
786            whether this deletion dirent is still needed to actively
787            delete a 'real' dirent with the same name that's still
788            somewhere else on the flash. */
789         if (!jffs2_can_mark_obsolete(c)) {
790                 struct jffs2_raw_dirent *rd;
791                 struct jffs2_raw_node_ref *raw;
792                 int ret;
793                 size_t retlen;
794                 int name_len = strlen(fd->name);
795                 uint32_t name_crc = crc32(0, fd->name, name_len);
796                 uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
797
798                 rd = kmalloc(rawlen, GFP_KERNEL);
799                 if (!rd)
800                         return -ENOMEM;
801
802                 /* Prevent the erase code from nicking the obsolete node refs while
803                    we're looking at them. I really don't like this extra lock but
804                    can't see any alternative. Suggestions on a postcard to... */
805                 down(&c->erase_free_sem);
806
807                 for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
808
809                         /* We only care about obsolete ones */
810                         if (!(ref_obsolete(raw)))
811                                 continue;
812
813                         /* Any dirent with the same name is going to have the same length... */
814                         if (ref_totlen(c, NULL, raw) != rawlen)
815                                 continue;
816
817                         /* Doesn't matter if there's one in the same erase block. We're going to 
818                            delete it too at the same time. */
819                         if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
820                                 continue;
821
822                         D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
823
824                         /* This is an obsolete node belonging to the same directory, and it's of the right
825                            length. We need to take a closer look...*/
826                         ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
827                         if (ret) {
828                                 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
829                                 /* If we can't read it, we don't need to continue to obsolete it. Continue */
830                                 continue;
831                         }
832                         if (retlen != rawlen) {
833                                 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
834                                        retlen, rawlen, ref_offset(raw));
835                                 continue;
836                         }
837
838                         if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
839                                 continue;
840
841                         /* If the name CRC doesn't match, skip */
842                         if (je32_to_cpu(rd->name_crc) != name_crc)
843                                 continue;
844
845                         /* If the name length doesn't match, or it's another deletion dirent, skip */
846                         if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
847                                 continue;
848
849                         /* OK, check the actual name now */
850                         if (memcmp(rd->name, fd->name, name_len))
851                                 continue;
852
853                         /* OK. The name really does match. There really is still an older node on
854                            the flash which our deletion dirent obsoletes. So we have to write out
855                            a new deletion dirent to replace it */
856                         up(&c->erase_free_sem);
857
858                         D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
859                                   ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
860                         kfree(rd);
861
862                         return jffs2_garbage_collect_dirent(c, jeb, f, fd);
863                 }
864
865                 up(&c->erase_free_sem);
866                 kfree(rd);
867         }
868
869         /* No need for it any more. Just mark it obsolete and remove it from the list */
870         while (*fdp) {
871                 if ((*fdp) == fd) {
872                         found = 1;
873                         *fdp = fd->next;
874                         break;
875                 }
876                 fdp = &(*fdp)->next;
877         }
878         if (!found) {
879                 printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
880         }
881         jffs2_mark_node_obsolete(c, fd->raw);
882         jffs2_free_full_dirent(fd);
883         return 0;
884 }
885
886 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
887                                       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
888                                       uint32_t start, uint32_t end)
889 {
890         struct jffs2_raw_inode ri;
891         struct jffs2_node_frag *frag;
892         struct jffs2_full_dnode *new_fn;
893         uint32_t alloclen, phys_ofs;
894         int ret;
895
896         D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
897                   f->inocache->ino, start, end));
898         
899         memset(&ri, 0, sizeof(ri));
900
901         if(fn->frags > 1) {
902                 size_t readlen;
903                 uint32_t crc;
904                 /* It's partially obsoleted by a later write. So we have to 
905                    write it out again with the _same_ version as before */
906                 ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
907                 if (readlen != sizeof(ri) || ret) {
908                         printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
909                         goto fill;
910                 }
911                 if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
912                         printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
913                                ref_offset(fn->raw),
914                                je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
915                         return -EIO;
916                 }
917                 if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
918                         printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
919                                ref_offset(fn->raw),
920                                je32_to_cpu(ri.totlen), sizeof(ri));
921                         return -EIO;
922                 }
923                 crc = crc32(0, &ri, sizeof(ri)-8);
924                 if (crc != je32_to_cpu(ri.node_crc)) {
925                         printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
926                                ref_offset(fn->raw), 
927                                je32_to_cpu(ri.node_crc), crc);
928                         /* FIXME: We could possibly deal with this by writing new holes for each frag */
929                         printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n", 
930                                start, end, f->inocache->ino);
931                         goto fill;
932                 }
933                 if (ri.compr != JFFS2_COMPR_ZERO) {
934                         printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
935                         printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n", 
936                                start, end, f->inocache->ino);
937                         goto fill;
938                 }
939         } else {
940         fill:
941                 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
942                 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
943                 ri.totlen = cpu_to_je32(sizeof(ri));
944                 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
945
946                 ri.ino = cpu_to_je32(f->inocache->ino);
947                 ri.version = cpu_to_je32(++f->highest_version);
948                 ri.offset = cpu_to_je32(start);
949                 ri.dsize = cpu_to_je32(end - start);
950                 ri.csize = cpu_to_je32(0);
951                 ri.compr = JFFS2_COMPR_ZERO;
952         }
953         ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
954         ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
955         ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
956         ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
957         ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
958         ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
959         ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
960         ri.data_crc = cpu_to_je32(0);
961         ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
962
963         ret = jffs2_reserve_space_gc(c, sizeof(ri), &phys_ofs, &alloclen);
964         if (ret) {
965                 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
966                        sizeof(ri), ret);
967                 return ret;
968         }
969         new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, phys_ofs, ALLOC_GC);
970
971         if (IS_ERR(new_fn)) {
972                 printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
973                 return PTR_ERR(new_fn);
974         }
975         if (je32_to_cpu(ri.version) == f->highest_version) {
976                 jffs2_add_full_dnode_to_inode(c, f, new_fn);
977                 if (f->metadata) {
978                         jffs2_mark_node_obsolete(c, f->metadata->raw);
979                         jffs2_free_full_dnode(f->metadata);
980                         f->metadata = NULL;
981                 }
982                 return 0;
983         }
984
985         /* 
986          * We should only get here in the case where the node we are
987          * replacing had more than one frag, so we kept the same version
988          * number as before. (Except in case of error -- see 'goto fill;' 
989          * above.)
990          */
991         D1(if(unlikely(fn->frags <= 1)) {
992                 printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
993                        fn->frags, je32_to_cpu(ri.version), f->highest_version,
994                        je32_to_cpu(ri.ino));
995         });
996
997         /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
998         mark_ref_normal(new_fn->raw);
999
1000         for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs); 
1001              frag; frag = frag_next(frag)) {
1002                 if (frag->ofs > fn->size + fn->ofs)
1003                         break;
1004                 if (frag->node == fn) {
1005                         frag->node = new_fn;
1006                         new_fn->frags++;
1007                         fn->frags--;
1008                 }
1009         }
1010         if (fn->frags) {
1011                 printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1012                 BUG();
1013         }
1014         if (!new_fn->frags) {
1015                 printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1016                 BUG();
1017         }
1018                 
1019         jffs2_mark_node_obsolete(c, fn->raw);
1020         jffs2_free_full_dnode(fn);
1021         
1022         return 0;
1023 }
1024
1025 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1026                                        struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1027                                        uint32_t start, uint32_t end)
1028 {
1029         struct jffs2_full_dnode *new_fn;
1030         struct jffs2_raw_inode ri;
1031         uint32_t alloclen, phys_ofs, offset, orig_end, orig_start;      
1032         int ret = 0;
1033         unsigned char *comprbuf = NULL, *writebuf;
1034         unsigned long pg;
1035         unsigned char *pg_ptr;
1036  
1037         memset(&ri, 0, sizeof(ri));
1038
1039         D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1040                   f->inocache->ino, start, end));
1041
1042         orig_end = end;
1043         orig_start = start;
1044
1045         if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1046                 /* Attempt to do some merging. But only expand to cover logically
1047                    adjacent frags if the block containing them is already considered
1048                    to be dirty. Otherwise we end up with GC just going round in 
1049                    circles dirtying the nodes it already wrote out, especially 
1050                    on NAND where we have small eraseblocks and hence a much higher
1051                    chance of nodes having to be split to cross boundaries. */
1052
1053                 struct jffs2_node_frag *frag;
1054                 uint32_t min, max;
1055
1056                 min = start & ~(PAGE_CACHE_SIZE-1);
1057                 max = min + PAGE_CACHE_SIZE;
1058
1059                 frag = jffs2_lookup_node_frag(&f->fragtree, start);
1060
1061                 /* BUG_ON(!frag) but that'll happen anyway... */
1062
1063                 BUG_ON(frag->ofs != start);
1064
1065                 /* First grow down... */
1066                 while((frag = frag_prev(frag)) && frag->ofs >= min) {
1067
1068                         /* If the previous frag doesn't even reach the beginning, there's
1069                            excessive fragmentation. Just merge. */
1070                         if (frag->ofs > min) {
1071                                 D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1072                                           frag->ofs, frag->ofs+frag->size));
1073                                 start = frag->ofs;
1074                                 continue;
1075                         }
1076                         /* OK. This frag holds the first byte of the page. */
1077                         if (!frag->node || !frag->node->raw) {
1078                                 D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1079                                           frag->ofs, frag->ofs+frag->size));
1080                                 break;
1081                         } else {
1082
1083                                 /* OK, it's a frag which extends to the beginning of the page. Does it live 
1084                                    in a block which is still considered clean? If so, don't obsolete it.
1085                                    If not, cover it anyway. */
1086
1087                                 struct jffs2_raw_node_ref *raw = frag->node->raw;
1088                                 struct jffs2_eraseblock *jeb;
1089
1090                                 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1091
1092                                 if (jeb == c->gcblock) {
1093                                         D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1094                                                   frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1095                                         start = frag->ofs;
1096                                         break;
1097                                 }
1098                                 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1099                                         D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1100                                                   frag->ofs, frag->ofs+frag->size, jeb->offset));
1101                                         break;
1102                                 }
1103
1104                                 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1105                                                   frag->ofs, frag->ofs+frag->size, jeb->offset));
1106                                 start = frag->ofs;
1107                                 break;
1108                         }
1109                 }
1110
1111                 /* ... then up */
1112
1113                 /* Find last frag which is actually part of the node we're to GC. */
1114                 frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1115
1116                 while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1117
1118                         /* If the previous frag doesn't even reach the beginning, there's lots
1119                            of fragmentation. Just merge. */
1120                         if (frag->ofs+frag->size < max) {
1121                                 D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1122                                           frag->ofs, frag->ofs+frag->size));
1123                                 end = frag->ofs + frag->size;
1124                                 continue;
1125                         }
1126
1127                         if (!frag->node || !frag->node->raw) {
1128                                 D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1129                                           frag->ofs, frag->ofs+frag->size));
1130                                 break;
1131                         } else {
1132
1133                                 /* OK, it's a frag which extends to the beginning of the page. Does it live 
1134                                    in a block which is still considered clean? If so, don't obsolete it.
1135                                    If not, cover it anyway. */
1136
1137                                 struct jffs2_raw_node_ref *raw = frag->node->raw;
1138                                 struct jffs2_eraseblock *jeb;
1139
1140                                 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1141
1142                                 if (jeb == c->gcblock) {
1143                                         D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1144                                                   frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1145                                         end = frag->ofs + frag->size;
1146                                         break;
1147                                 }
1148                                 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1149                                         D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1150                                                   frag->ofs, frag->ofs+frag->size, jeb->offset));
1151                                         break;
1152                                 }
1153
1154                                 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1155                                                   frag->ofs, frag->ofs+frag->size, jeb->offset));
1156                                 end = frag->ofs + frag->size;
1157                                 break;
1158                         }
1159                 }
1160                 D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n", 
1161                           orig_start, orig_end, start, end));
1162
1163                 BUG_ON(end > JFFS2_F_I_SIZE(f));
1164                 BUG_ON(end < orig_end);
1165                 BUG_ON(start > orig_start);
1166         }
1167         
1168         /* First, use readpage() to read the appropriate page into the page cache */
1169         /* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1170          *    triggered garbage collection in the first place?
1171          * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1172          *    page OK. We'll actually write it out again in commit_write, which is a little
1173          *    suboptimal, but at least we're correct.
1174          */
1175         pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1176
1177         if (IS_ERR(pg_ptr)) {
1178                 printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1179                 return PTR_ERR(pg_ptr);
1180         }
1181
1182         offset = start;
1183         while(offset < orig_end) {
1184                 uint32_t datalen;
1185                 uint32_t cdatalen;
1186                 uint16_t comprtype = JFFS2_COMPR_NONE;
1187
1188                 ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, &phys_ofs, &alloclen);
1189
1190                 if (ret) {
1191                         printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1192                                sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1193                         break;
1194                 }
1195                 cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1196                 datalen = end - offset;
1197
1198                 writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1199
1200                 comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1201
1202                 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1203                 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1204                 ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1205                 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1206
1207                 ri.ino = cpu_to_je32(f->inocache->ino);
1208                 ri.version = cpu_to_je32(++f->highest_version);
1209                 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1210                 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1211                 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1212                 ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1213                 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1214                 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1215                 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1216                 ri.offset = cpu_to_je32(offset);
1217                 ri.csize = cpu_to_je32(cdatalen);
1218                 ri.dsize = cpu_to_je32(datalen);
1219                 ri.compr = comprtype & 0xff;
1220                 ri.usercompr = (comprtype >> 8) & 0xff;
1221                 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1222                 ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1223         
1224                 new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, phys_ofs, ALLOC_GC);
1225
1226                 jffs2_free_comprbuf(comprbuf, writebuf);
1227
1228                 if (IS_ERR(new_fn)) {
1229                         printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1230                         ret = PTR_ERR(new_fn);
1231                         break;
1232                 }
1233                 ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1234                 offset += datalen;
1235                 if (f->metadata) {
1236                         jffs2_mark_node_obsolete(c, f->metadata->raw);
1237                         jffs2_free_full_dnode(f->metadata);
1238                         f->metadata = NULL;
1239                 }
1240         }
1241
1242         jffs2_gc_release_page(c, pg_ptr, &pg);
1243         return ret;
1244 }
1245