ext4: journal credits reservation fixes for DIO, fallocate
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 static inline int ext4_begin_ordered_truncate(struct inode *inode,
45                                               loff_t new_size)
46 {
47         return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
48                                                    new_size);
49 }
50
51 static void ext4_invalidatepage(struct page *page, unsigned long offset);
52
53 /*
54  * Test whether an inode is a fast symlink.
55  */
56 static int ext4_inode_is_fast_symlink(struct inode *inode)
57 {
58         int ea_blocks = EXT4_I(inode)->i_file_acl ?
59                 (inode->i_sb->s_blocksize >> 9) : 0;
60
61         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
62 }
63
64 /*
65  * The ext4 forget function must perform a revoke if we are freeing data
66  * which has been journaled.  Metadata (eg. indirect blocks) must be
67  * revoked in all cases.
68  *
69  * "bh" may be NULL: a metadata block may have been freed from memory
70  * but there may still be a record of it in the journal, and that record
71  * still needs to be revoked.
72  */
73 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
74                         struct buffer_head *bh, ext4_fsblk_t blocknr)
75 {
76         int err;
77
78         might_sleep();
79
80         BUFFER_TRACE(bh, "enter");
81
82         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
83                   "data mode %lx\n",
84                   bh, is_metadata, inode->i_mode,
85                   test_opt(inode->i_sb, DATA_FLAGS));
86
87         /* Never use the revoke function if we are doing full data
88          * journaling: there is no need to, and a V1 superblock won't
89          * support it.  Otherwise, only skip the revoke on un-journaled
90          * data blocks. */
91
92         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
93             (!is_metadata && !ext4_should_journal_data(inode))) {
94                 if (bh) {
95                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
96                         return ext4_journal_forget(handle, bh);
97                 }
98                 return 0;
99         }
100
101         /*
102          * data!=journal && (is_metadata || should_journal_data(inode))
103          */
104         BUFFER_TRACE(bh, "call ext4_journal_revoke");
105         err = ext4_journal_revoke(handle, blocknr, bh);
106         if (err)
107                 ext4_abort(inode->i_sb, __func__,
108                            "error %d when attempting revoke", err);
109         BUFFER_TRACE(bh, "exit");
110         return err;
111 }
112
113 /*
114  * Work out how many blocks we need to proceed with the next chunk of a
115  * truncate transaction.
116  */
117 static unsigned long blocks_for_truncate(struct inode *inode)
118 {
119         ext4_lblk_t needed;
120
121         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
122
123         /* Give ourselves just enough room to cope with inodes in which
124          * i_blocks is corrupt: we've seen disk corruptions in the past
125          * which resulted in random data in an inode which looked enough
126          * like a regular file for ext4 to try to delete it.  Things
127          * will go a bit crazy if that happens, but at least we should
128          * try not to panic the whole kernel. */
129         if (needed < 2)
130                 needed = 2;
131
132         /* But we need to bound the transaction so we don't overflow the
133          * journal. */
134         if (needed > EXT4_MAX_TRANS_DATA)
135                 needed = EXT4_MAX_TRANS_DATA;
136
137         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
138 }
139
140 /*
141  * Truncate transactions can be complex and absolutely huge.  So we need to
142  * be able to restart the transaction at a conventient checkpoint to make
143  * sure we don't overflow the journal.
144  *
145  * start_transaction gets us a new handle for a truncate transaction,
146  * and extend_transaction tries to extend the existing one a bit.  If
147  * extend fails, we need to propagate the failure up and restart the
148  * transaction in the top-level truncate loop. --sct
149  */
150 static handle_t *start_transaction(struct inode *inode)
151 {
152         handle_t *result;
153
154         result = ext4_journal_start(inode, blocks_for_truncate(inode));
155         if (!IS_ERR(result))
156                 return result;
157
158         ext4_std_error(inode->i_sb, PTR_ERR(result));
159         return result;
160 }
161
162 /*
163  * Try to extend this transaction for the purposes of truncation.
164  *
165  * Returns 0 if we managed to create more room.  If we can't create more
166  * room, and the transaction must be restarted we return 1.
167  */
168 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
169 {
170         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
171                 return 0;
172         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
173                 return 0;
174         return 1;
175 }
176
177 /*
178  * Restart the transaction associated with *handle.  This does a commit,
179  * so before we call here everything must be consistently dirtied against
180  * this transaction.
181  */
182 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
183 {
184         jbd_debug(2, "restarting handle %p\n", handle);
185         return ext4_journal_restart(handle, blocks_for_truncate(inode));
186 }
187
188 /*
189  * Called at the last iput() if i_nlink is zero.
190  */
191 void ext4_delete_inode (struct inode * inode)
192 {
193         handle_t *handle;
194         int err;
195
196         if (ext4_should_order_data(inode))
197                 ext4_begin_ordered_truncate(inode, 0);
198         truncate_inode_pages(&inode->i_data, 0);
199
200         if (is_bad_inode(inode))
201                 goto no_delete;
202
203         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
204         if (IS_ERR(handle)) {
205                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
206                 /*
207                  * If we're going to skip the normal cleanup, we still need to
208                  * make sure that the in-core orphan linked list is properly
209                  * cleaned up.
210                  */
211                 ext4_orphan_del(NULL, inode);
212                 goto no_delete;
213         }
214
215         if (IS_SYNC(inode))
216                 handle->h_sync = 1;
217         inode->i_size = 0;
218         err = ext4_mark_inode_dirty(handle, inode);
219         if (err) {
220                 ext4_warning(inode->i_sb, __func__,
221                              "couldn't mark inode dirty (err %d)", err);
222                 goto stop_handle;
223         }
224         if (inode->i_blocks)
225                 ext4_truncate(inode);
226
227         /*
228          * ext4_ext_truncate() doesn't reserve any slop when it
229          * restarts journal transactions; therefore there may not be
230          * enough credits left in the handle to remove the inode from
231          * the orphan list and set the dtime field.
232          */
233         if (handle->h_buffer_credits < 3) {
234                 err = ext4_journal_extend(handle, 3);
235                 if (err > 0)
236                         err = ext4_journal_restart(handle, 3);
237                 if (err != 0) {
238                         ext4_warning(inode->i_sb, __func__,
239                                      "couldn't extend journal (err %d)", err);
240                 stop_handle:
241                         ext4_journal_stop(handle);
242                         goto no_delete;
243                 }
244         }
245
246         /*
247          * Kill off the orphan record which ext4_truncate created.
248          * AKPM: I think this can be inside the above `if'.
249          * Note that ext4_orphan_del() has to be able to cope with the
250          * deletion of a non-existent orphan - this is because we don't
251          * know if ext4_truncate() actually created an orphan record.
252          * (Well, we could do this if we need to, but heck - it works)
253          */
254         ext4_orphan_del(handle, inode);
255         EXT4_I(inode)->i_dtime  = get_seconds();
256
257         /*
258          * One subtle ordering requirement: if anything has gone wrong
259          * (transaction abort, IO errors, whatever), then we can still
260          * do these next steps (the fs will already have been marked as
261          * having errors), but we can't free the inode if the mark_dirty
262          * fails.
263          */
264         if (ext4_mark_inode_dirty(handle, inode))
265                 /* If that failed, just do the required in-core inode clear. */
266                 clear_inode(inode);
267         else
268                 ext4_free_inode(handle, inode);
269         ext4_journal_stop(handle);
270         return;
271 no_delete:
272         clear_inode(inode);     /* We must guarantee clearing of inode... */
273 }
274
275 typedef struct {
276         __le32  *p;
277         __le32  key;
278         struct buffer_head *bh;
279 } Indirect;
280
281 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
282 {
283         p->key = *(p->p = v);
284         p->bh = bh;
285 }
286
287 /**
288  *      ext4_block_to_path - parse the block number into array of offsets
289  *      @inode: inode in question (we are only interested in its superblock)
290  *      @i_block: block number to be parsed
291  *      @offsets: array to store the offsets in
292  *      @boundary: set this non-zero if the referred-to block is likely to be
293  *             followed (on disk) by an indirect block.
294  *
295  *      To store the locations of file's data ext4 uses a data structure common
296  *      for UNIX filesystems - tree of pointers anchored in the inode, with
297  *      data blocks at leaves and indirect blocks in intermediate nodes.
298  *      This function translates the block number into path in that tree -
299  *      return value is the path length and @offsets[n] is the offset of
300  *      pointer to (n+1)th node in the nth one. If @block is out of range
301  *      (negative or too large) warning is printed and zero returned.
302  *
303  *      Note: function doesn't find node addresses, so no IO is needed. All
304  *      we need to know is the capacity of indirect blocks (taken from the
305  *      inode->i_sb).
306  */
307
308 /*
309  * Portability note: the last comparison (check that we fit into triple
310  * indirect block) is spelled differently, because otherwise on an
311  * architecture with 32-bit longs and 8Kb pages we might get into trouble
312  * if our filesystem had 8Kb blocks. We might use long long, but that would
313  * kill us on x86. Oh, well, at least the sign propagation does not matter -
314  * i_block would have to be negative in the very beginning, so we would not
315  * get there at all.
316  */
317
318 static int ext4_block_to_path(struct inode *inode,
319                         ext4_lblk_t i_block,
320                         ext4_lblk_t offsets[4], int *boundary)
321 {
322         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
323         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
324         const long direct_blocks = EXT4_NDIR_BLOCKS,
325                 indirect_blocks = ptrs,
326                 double_blocks = (1 << (ptrs_bits * 2));
327         int n = 0;
328         int final = 0;
329
330         if (i_block < 0) {
331                 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
332         } else if (i_block < direct_blocks) {
333                 offsets[n++] = i_block;
334                 final = direct_blocks;
335         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
336                 offsets[n++] = EXT4_IND_BLOCK;
337                 offsets[n++] = i_block;
338                 final = ptrs;
339         } else if ((i_block -= indirect_blocks) < double_blocks) {
340                 offsets[n++] = EXT4_DIND_BLOCK;
341                 offsets[n++] = i_block >> ptrs_bits;
342                 offsets[n++] = i_block & (ptrs - 1);
343                 final = ptrs;
344         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
345                 offsets[n++] = EXT4_TIND_BLOCK;
346                 offsets[n++] = i_block >> (ptrs_bits * 2);
347                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
348                 offsets[n++] = i_block & (ptrs - 1);
349                 final = ptrs;
350         } else {
351                 ext4_warning(inode->i_sb, "ext4_block_to_path",
352                                 "block %lu > max",
353                                 i_block + direct_blocks +
354                                 indirect_blocks + double_blocks);
355         }
356         if (boundary)
357                 *boundary = final - 1 - (i_block & (ptrs - 1));
358         return n;
359 }
360
361 /**
362  *      ext4_get_branch - read the chain of indirect blocks leading to data
363  *      @inode: inode in question
364  *      @depth: depth of the chain (1 - direct pointer, etc.)
365  *      @offsets: offsets of pointers in inode/indirect blocks
366  *      @chain: place to store the result
367  *      @err: here we store the error value
368  *
369  *      Function fills the array of triples <key, p, bh> and returns %NULL
370  *      if everything went OK or the pointer to the last filled triple
371  *      (incomplete one) otherwise. Upon the return chain[i].key contains
372  *      the number of (i+1)-th block in the chain (as it is stored in memory,
373  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
374  *      number (it points into struct inode for i==0 and into the bh->b_data
375  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
376  *      block for i>0 and NULL for i==0. In other words, it holds the block
377  *      numbers of the chain, addresses they were taken from (and where we can
378  *      verify that chain did not change) and buffer_heads hosting these
379  *      numbers.
380  *
381  *      Function stops when it stumbles upon zero pointer (absent block)
382  *              (pointer to last triple returned, *@err == 0)
383  *      or when it gets an IO error reading an indirect block
384  *              (ditto, *@err == -EIO)
385  *      or when it reads all @depth-1 indirect blocks successfully and finds
386  *      the whole chain, all way to the data (returns %NULL, *err == 0).
387  *
388  *      Need to be called with
389  *      down_read(&EXT4_I(inode)->i_data_sem)
390  */
391 static Indirect *ext4_get_branch(struct inode *inode, int depth,
392                                  ext4_lblk_t  *offsets,
393                                  Indirect chain[4], int *err)
394 {
395         struct super_block *sb = inode->i_sb;
396         Indirect *p = chain;
397         struct buffer_head *bh;
398
399         *err = 0;
400         /* i_data is not going away, no lock needed */
401         add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
402         if (!p->key)
403                 goto no_block;
404         while (--depth) {
405                 bh = sb_bread(sb, le32_to_cpu(p->key));
406                 if (!bh)
407                         goto failure;
408                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
409                 /* Reader: end */
410                 if (!p->key)
411                         goto no_block;
412         }
413         return NULL;
414
415 failure:
416         *err = -EIO;
417 no_block:
418         return p;
419 }
420
421 /**
422  *      ext4_find_near - find a place for allocation with sufficient locality
423  *      @inode: owner
424  *      @ind: descriptor of indirect block.
425  *
426  *      This function returns the preferred place for block allocation.
427  *      It is used when heuristic for sequential allocation fails.
428  *      Rules are:
429  *        + if there is a block to the left of our position - allocate near it.
430  *        + if pointer will live in indirect block - allocate near that block.
431  *        + if pointer will live in inode - allocate in the same
432  *          cylinder group.
433  *
434  * In the latter case we colour the starting block by the callers PID to
435  * prevent it from clashing with concurrent allocations for a different inode
436  * in the same block group.   The PID is used here so that functionally related
437  * files will be close-by on-disk.
438  *
439  *      Caller must make sure that @ind is valid and will stay that way.
440  */
441 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
442 {
443         struct ext4_inode_info *ei = EXT4_I(inode);
444         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
445         __le32 *p;
446         ext4_fsblk_t bg_start;
447         ext4_fsblk_t last_block;
448         ext4_grpblk_t colour;
449
450         /* Try to find previous block */
451         for (p = ind->p - 1; p >= start; p--) {
452                 if (*p)
453                         return le32_to_cpu(*p);
454         }
455
456         /* No such thing, so let's try location of indirect block */
457         if (ind->bh)
458                 return ind->bh->b_blocknr;
459
460         /*
461          * It is going to be referred to from the inode itself? OK, just put it
462          * into the same cylinder group then.
463          */
464         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
465         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
466
467         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
468                 colour = (current->pid % 16) *
469                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
470         else
471                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
472         return bg_start + colour;
473 }
474
475 /**
476  *      ext4_find_goal - find a preferred place for allocation.
477  *      @inode: owner
478  *      @block:  block we want
479  *      @partial: pointer to the last triple within a chain
480  *
481  *      Normally this function find the preferred place for block allocation,
482  *      returns it.
483  */
484 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
485                 Indirect *partial)
486 {
487         struct ext4_block_alloc_info *block_i;
488
489         block_i =  EXT4_I(inode)->i_block_alloc_info;
490
491         /*
492          * try the heuristic for sequential allocation,
493          * failing that at least try to get decent locality.
494          */
495         if (block_i && (block == block_i->last_alloc_logical_block + 1)
496                 && (block_i->last_alloc_physical_block != 0)) {
497                 return block_i->last_alloc_physical_block + 1;
498         }
499
500         return ext4_find_near(inode, partial);
501 }
502
503 /**
504  *      ext4_blks_to_allocate: Look up the block map and count the number
505  *      of direct blocks need to be allocated for the given branch.
506  *
507  *      @branch: chain of indirect blocks
508  *      @k: number of blocks need for indirect blocks
509  *      @blks: number of data blocks to be mapped.
510  *      @blocks_to_boundary:  the offset in the indirect block
511  *
512  *      return the total number of blocks to be allocate, including the
513  *      direct and indirect blocks.
514  */
515 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
516                 int blocks_to_boundary)
517 {
518         unsigned long count = 0;
519
520         /*
521          * Simple case, [t,d]Indirect block(s) has not allocated yet
522          * then it's clear blocks on that path have not allocated
523          */
524         if (k > 0) {
525                 /* right now we don't handle cross boundary allocation */
526                 if (blks < blocks_to_boundary + 1)
527                         count += blks;
528                 else
529                         count += blocks_to_boundary + 1;
530                 return count;
531         }
532
533         count++;
534         while (count < blks && count <= blocks_to_boundary &&
535                 le32_to_cpu(*(branch[0].p + count)) == 0) {
536                 count++;
537         }
538         return count;
539 }
540
541 /**
542  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
543  *      @indirect_blks: the number of blocks need to allocate for indirect
544  *                      blocks
545  *
546  *      @new_blocks: on return it will store the new block numbers for
547  *      the indirect blocks(if needed) and the first direct block,
548  *      @blks:  on return it will store the total number of allocated
549  *              direct blocks
550  */
551 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
552                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
553                                 int indirect_blks, int blks,
554                                 ext4_fsblk_t new_blocks[4], int *err)
555 {
556         int target, i;
557         unsigned long count = 0, blk_allocated = 0;
558         int index = 0;
559         ext4_fsblk_t current_block = 0;
560         int ret = 0;
561
562         /*
563          * Here we try to allocate the requested multiple blocks at once,
564          * on a best-effort basis.
565          * To build a branch, we should allocate blocks for
566          * the indirect blocks(if not allocated yet), and at least
567          * the first direct block of this branch.  That's the
568          * minimum number of blocks need to allocate(required)
569          */
570         /* first we try to allocate the indirect blocks */
571         target = indirect_blks;
572         while (target > 0) {
573                 count = target;
574                 /* allocating blocks for indirect blocks and direct blocks */
575                 current_block = ext4_new_meta_blocks(handle, inode,
576                                                         goal, &count, err);
577                 if (*err)
578                         goto failed_out;
579
580                 target -= count;
581                 /* allocate blocks for indirect blocks */
582                 while (index < indirect_blks && count) {
583                         new_blocks[index++] = current_block++;
584                         count--;
585                 }
586                 if (count > 0) {
587                         /*
588                          * save the new block number
589                          * for the first direct block
590                          */
591                         new_blocks[index] = current_block;
592                         printk(KERN_INFO "%s returned more blocks than "
593                                                 "requested\n", __func__);
594                         WARN_ON(1);
595                         break;
596                 }
597         }
598
599         target = blks - count ;
600         blk_allocated = count;
601         if (!target)
602                 goto allocated;
603         /* Now allocate data blocks */
604         count = target;
605         /* allocating blocks for data blocks */
606         current_block = ext4_new_blocks(handle, inode, iblock,
607                                                 goal, &count, err);
608         if (*err && (target == blks)) {
609                 /*
610                  * if the allocation failed and we didn't allocate
611                  * any blocks before
612                  */
613                 goto failed_out;
614         }
615         if (!*err) {
616                 if (target == blks) {
617                 /*
618                  * save the new block number
619                  * for the first direct block
620                  */
621                         new_blocks[index] = current_block;
622                 }
623                 blk_allocated += count;
624         }
625 allocated:
626         /* total number of blocks allocated for direct blocks */
627         ret = blk_allocated;
628         *err = 0;
629         return ret;
630 failed_out:
631         for (i = 0; i <index; i++)
632                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
633         return ret;
634 }
635
636 /**
637  *      ext4_alloc_branch - allocate and set up a chain of blocks.
638  *      @inode: owner
639  *      @indirect_blks: number of allocated indirect blocks
640  *      @blks: number of allocated direct blocks
641  *      @offsets: offsets (in the blocks) to store the pointers to next.
642  *      @branch: place to store the chain in.
643  *
644  *      This function allocates blocks, zeroes out all but the last one,
645  *      links them into chain and (if we are synchronous) writes them to disk.
646  *      In other words, it prepares a branch that can be spliced onto the
647  *      inode. It stores the information about that chain in the branch[], in
648  *      the same format as ext4_get_branch() would do. We are calling it after
649  *      we had read the existing part of chain and partial points to the last
650  *      triple of that (one with zero ->key). Upon the exit we have the same
651  *      picture as after the successful ext4_get_block(), except that in one
652  *      place chain is disconnected - *branch->p is still zero (we did not
653  *      set the last link), but branch->key contains the number that should
654  *      be placed into *branch->p to fill that gap.
655  *
656  *      If allocation fails we free all blocks we've allocated (and forget
657  *      their buffer_heads) and return the error value the from failed
658  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
659  *      as described above and return 0.
660  */
661 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
662                                 ext4_lblk_t iblock, int indirect_blks,
663                                 int *blks, ext4_fsblk_t goal,
664                                 ext4_lblk_t *offsets, Indirect *branch)
665 {
666         int blocksize = inode->i_sb->s_blocksize;
667         int i, n = 0;
668         int err = 0;
669         struct buffer_head *bh;
670         int num;
671         ext4_fsblk_t new_blocks[4];
672         ext4_fsblk_t current_block;
673
674         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
675                                 *blks, new_blocks, &err);
676         if (err)
677                 return err;
678
679         branch[0].key = cpu_to_le32(new_blocks[0]);
680         /*
681          * metadata blocks and data blocks are allocated.
682          */
683         for (n = 1; n <= indirect_blks;  n++) {
684                 /*
685                  * Get buffer_head for parent block, zero it out
686                  * and set the pointer to new one, then send
687                  * parent to disk.
688                  */
689                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
690                 branch[n].bh = bh;
691                 lock_buffer(bh);
692                 BUFFER_TRACE(bh, "call get_create_access");
693                 err = ext4_journal_get_create_access(handle, bh);
694                 if (err) {
695                         unlock_buffer(bh);
696                         brelse(bh);
697                         goto failed;
698                 }
699
700                 memset(bh->b_data, 0, blocksize);
701                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
702                 branch[n].key = cpu_to_le32(new_blocks[n]);
703                 *branch[n].p = branch[n].key;
704                 if ( n == indirect_blks) {
705                         current_block = new_blocks[n];
706                         /*
707                          * End of chain, update the last new metablock of
708                          * the chain to point to the new allocated
709                          * data blocks numbers
710                          */
711                         for (i=1; i < num; i++)
712                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
713                 }
714                 BUFFER_TRACE(bh, "marking uptodate");
715                 set_buffer_uptodate(bh);
716                 unlock_buffer(bh);
717
718                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
719                 err = ext4_journal_dirty_metadata(handle, bh);
720                 if (err)
721                         goto failed;
722         }
723         *blks = num;
724         return err;
725 failed:
726         /* Allocation failed, free what we already allocated */
727         for (i = 1; i <= n ; i++) {
728                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
729                 ext4_journal_forget(handle, branch[i].bh);
730         }
731         for (i = 0; i <indirect_blks; i++)
732                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
733
734         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
735
736         return err;
737 }
738
739 /**
740  * ext4_splice_branch - splice the allocated branch onto inode.
741  * @inode: owner
742  * @block: (logical) number of block we are adding
743  * @chain: chain of indirect blocks (with a missing link - see
744  *      ext4_alloc_branch)
745  * @where: location of missing link
746  * @num:   number of indirect blocks we are adding
747  * @blks:  number of direct blocks we are adding
748  *
749  * This function fills the missing link and does all housekeeping needed in
750  * inode (->i_blocks, etc.). In case of success we end up with the full
751  * chain to new block and return 0.
752  */
753 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
754                         ext4_lblk_t block, Indirect *where, int num, int blks)
755 {
756         int i;
757         int err = 0;
758         struct ext4_block_alloc_info *block_i;
759         ext4_fsblk_t current_block;
760
761         block_i = EXT4_I(inode)->i_block_alloc_info;
762         /*
763          * If we're splicing into a [td]indirect block (as opposed to the
764          * inode) then we need to get write access to the [td]indirect block
765          * before the splice.
766          */
767         if (where->bh) {
768                 BUFFER_TRACE(where->bh, "get_write_access");
769                 err = ext4_journal_get_write_access(handle, where->bh);
770                 if (err)
771                         goto err_out;
772         }
773         /* That's it */
774
775         *where->p = where->key;
776
777         /*
778          * Update the host buffer_head or inode to point to more just allocated
779          * direct blocks blocks
780          */
781         if (num == 0 && blks > 1) {
782                 current_block = le32_to_cpu(where->key) + 1;
783                 for (i = 1; i < blks; i++)
784                         *(where->p + i ) = cpu_to_le32(current_block++);
785         }
786
787         /*
788          * update the most recently allocated logical & physical block
789          * in i_block_alloc_info, to assist find the proper goal block for next
790          * allocation
791          */
792         if (block_i) {
793                 block_i->last_alloc_logical_block = block + blks - 1;
794                 block_i->last_alloc_physical_block =
795                                 le32_to_cpu(where[num].key) + blks - 1;
796         }
797
798         /* We are done with atomic stuff, now do the rest of housekeeping */
799
800         inode->i_ctime = ext4_current_time(inode);
801         ext4_mark_inode_dirty(handle, inode);
802
803         /* had we spliced it onto indirect block? */
804         if (where->bh) {
805                 /*
806                  * If we spliced it onto an indirect block, we haven't
807                  * altered the inode.  Note however that if it is being spliced
808                  * onto an indirect block at the very end of the file (the
809                  * file is growing) then we *will* alter the inode to reflect
810                  * the new i_size.  But that is not done here - it is done in
811                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
812                  */
813                 jbd_debug(5, "splicing indirect only\n");
814                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
815                 err = ext4_journal_dirty_metadata(handle, where->bh);
816                 if (err)
817                         goto err_out;
818         } else {
819                 /*
820                  * OK, we spliced it into the inode itself on a direct block.
821                  * Inode was dirtied above.
822                  */
823                 jbd_debug(5, "splicing direct\n");
824         }
825         return err;
826
827 err_out:
828         for (i = 1; i <= num; i++) {
829                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
830                 ext4_journal_forget(handle, where[i].bh);
831                 ext4_free_blocks(handle, inode,
832                                         le32_to_cpu(where[i-1].key), 1, 0);
833         }
834         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
835
836         return err;
837 }
838
839 /*
840  * Allocation strategy is simple: if we have to allocate something, we will
841  * have to go the whole way to leaf. So let's do it before attaching anything
842  * to tree, set linkage between the newborn blocks, write them if sync is
843  * required, recheck the path, free and repeat if check fails, otherwise
844  * set the last missing link (that will protect us from any truncate-generated
845  * removals - all blocks on the path are immune now) and possibly force the
846  * write on the parent block.
847  * That has a nice additional property: no special recovery from the failed
848  * allocations is needed - we simply release blocks and do not touch anything
849  * reachable from inode.
850  *
851  * `handle' can be NULL if create == 0.
852  *
853  * return > 0, # of blocks mapped or allocated.
854  * return = 0, if plain lookup failed.
855  * return < 0, error case.
856  *
857  *
858  * Need to be called with
859  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
860  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
861  */
862 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
863                 ext4_lblk_t iblock, unsigned long maxblocks,
864                 struct buffer_head *bh_result,
865                 int create, int extend_disksize)
866 {
867         int err = -EIO;
868         ext4_lblk_t offsets[4];
869         Indirect chain[4];
870         Indirect *partial;
871         ext4_fsblk_t goal;
872         int indirect_blks;
873         int blocks_to_boundary = 0;
874         int depth;
875         struct ext4_inode_info *ei = EXT4_I(inode);
876         int count = 0;
877         ext4_fsblk_t first_block = 0;
878         loff_t disksize;
879
880
881         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
882         J_ASSERT(handle != NULL || create == 0);
883         depth = ext4_block_to_path(inode, iblock, offsets,
884                                         &blocks_to_boundary);
885
886         if (depth == 0)
887                 goto out;
888
889         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
890
891         /* Simplest case - block found, no allocation needed */
892         if (!partial) {
893                 first_block = le32_to_cpu(chain[depth - 1].key);
894                 clear_buffer_new(bh_result);
895                 count++;
896                 /*map more blocks*/
897                 while (count < maxblocks && count <= blocks_to_boundary) {
898                         ext4_fsblk_t blk;
899
900                         blk = le32_to_cpu(*(chain[depth-1].p + count));
901
902                         if (blk == first_block + count)
903                                 count++;
904                         else
905                                 break;
906                 }
907                 goto got_it;
908         }
909
910         /* Next simple case - plain lookup or failed read of indirect block */
911         if (!create || err == -EIO)
912                 goto cleanup;
913
914         /*
915          * Okay, we need to do block allocation.  Lazily initialize the block
916          * allocation info here if necessary
917         */
918         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
919                 ext4_init_block_alloc_info(inode);
920
921         goal = ext4_find_goal(inode, iblock, partial);
922
923         /* the number of blocks need to allocate for [d,t]indirect blocks */
924         indirect_blks = (chain + depth) - partial - 1;
925
926         /*
927          * Next look up the indirect map to count the totoal number of
928          * direct blocks to allocate for this branch.
929          */
930         count = ext4_blks_to_allocate(partial, indirect_blks,
931                                         maxblocks, blocks_to_boundary);
932         /*
933          * Block out ext4_truncate while we alter the tree
934          */
935         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
936                                         &count, goal,
937                                         offsets + (partial - chain), partial);
938
939         /*
940          * The ext4_splice_branch call will free and forget any buffers
941          * on the new chain if there is a failure, but that risks using
942          * up transaction credits, especially for bitmaps where the
943          * credits cannot be returned.  Can we handle this somehow?  We
944          * may need to return -EAGAIN upwards in the worst case.  --sct
945          */
946         if (!err)
947                 err = ext4_splice_branch(handle, inode, iblock,
948                                         partial, indirect_blks, count);
949         /*
950          * i_disksize growing is protected by i_data_sem.  Don't forget to
951          * protect it if you're about to implement concurrent
952          * ext4_get_block() -bzzz
953         */
954         if (!err && extend_disksize) {
955                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
956                 if (disksize > i_size_read(inode))
957                         disksize = i_size_read(inode);
958                 if (disksize > ei->i_disksize)
959                         ei->i_disksize = disksize;
960         }
961         if (err)
962                 goto cleanup;
963
964         set_buffer_new(bh_result);
965 got_it:
966         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
967         if (count > blocks_to_boundary)
968                 set_buffer_boundary(bh_result);
969         err = count;
970         /* Clean up and exit */
971         partial = chain + depth - 1;    /* the whole chain */
972 cleanup:
973         while (partial > chain) {
974                 BUFFER_TRACE(partial->bh, "call brelse");
975                 brelse(partial->bh);
976                 partial--;
977         }
978         BUFFER_TRACE(bh_result, "returned");
979 out:
980         return err;
981 }
982
983 /*
984  * Calculate the number of metadata blocks need to reserve
985  * to allocate @blocks for non extent file based file
986  */
987 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
988 {
989         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
990         int ind_blks, dind_blks, tind_blks;
991
992         /* number of new indirect blocks needed */
993         ind_blks = (blocks + icap - 1) / icap;
994
995         dind_blks = (ind_blks + icap - 1) / icap;
996
997         tind_blks = 1;
998
999         return ind_blks + dind_blks + tind_blks;
1000 }
1001
1002 /*
1003  * Calculate the number of metadata blocks need to reserve
1004  * to allocate given number of blocks
1005  */
1006 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1007 {
1008         if (!blocks)
1009                 return 0;
1010
1011         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1012                 return ext4_ext_calc_metadata_amount(inode, blocks);
1013
1014         return ext4_indirect_calc_metadata_amount(inode, blocks);
1015 }
1016
1017 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1018 {
1019         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1020         int total, mdb, mdb_free;
1021
1022         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1023         /* recalculate the number of metablocks still need to be reserved */
1024         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1025         mdb = ext4_calc_metadata_amount(inode, total);
1026
1027         /* figure out how many metablocks to release */
1028         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1029         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1030
1031         /* Account for allocated meta_blocks */
1032         mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1033
1034         /* update fs free blocks counter for truncate case */
1035         percpu_counter_add(&sbi->s_freeblocks_counter, mdb_free);
1036
1037         /* update per-inode reservations */
1038         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1039         EXT4_I(inode)->i_reserved_data_blocks -= used;
1040
1041         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1042         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1043         EXT4_I(inode)->i_allocated_meta_blocks = 0;
1044         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1045 }
1046
1047 /*
1048  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1049  * and returns if the blocks are already mapped.
1050  *
1051  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1052  * and store the allocated blocks in the result buffer head and mark it
1053  * mapped.
1054  *
1055  * If file type is extents based, it will call ext4_ext_get_blocks(),
1056  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1057  * based files
1058  *
1059  * On success, it returns the number of blocks being mapped or allocate.
1060  * if create==0 and the blocks are pre-allocated and uninitialized block,
1061  * the result buffer head is unmapped. If the create ==1, it will make sure
1062  * the buffer head is mapped.
1063  *
1064  * It returns 0 if plain look up failed (blocks have not been allocated), in
1065  * that casem, buffer head is unmapped
1066  *
1067  * It returns the error in case of allocation failure.
1068  */
1069 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1070                         unsigned long max_blocks, struct buffer_head *bh,
1071                         int create, int extend_disksize, int flag)
1072 {
1073         int retval;
1074
1075         clear_buffer_mapped(bh);
1076
1077         /*
1078          * Try to see if we can get  the block without requesting
1079          * for new file system block.
1080          */
1081         down_read((&EXT4_I(inode)->i_data_sem));
1082         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1083                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1084                                 bh, 0, 0);
1085         } else {
1086                 retval = ext4_get_blocks_handle(handle,
1087                                 inode, block, max_blocks, bh, 0, 0);
1088         }
1089         up_read((&EXT4_I(inode)->i_data_sem));
1090
1091         /* If it is only a block(s) look up */
1092         if (!create)
1093                 return retval;
1094
1095         /*
1096          * Returns if the blocks have already allocated
1097          *
1098          * Note that if blocks have been preallocated
1099          * ext4_ext_get_block() returns th create = 0
1100          * with buffer head unmapped.
1101          */
1102         if (retval > 0 && buffer_mapped(bh))
1103                 return retval;
1104
1105         /*
1106          * New blocks allocate and/or writing to uninitialized extent
1107          * will possibly result in updating i_data, so we take
1108          * the write lock of i_data_sem, and call get_blocks()
1109          * with create == 1 flag.
1110          */
1111         down_write((&EXT4_I(inode)->i_data_sem));
1112
1113         /*
1114          * if the caller is from delayed allocation writeout path
1115          * we have already reserved fs blocks for allocation
1116          * let the underlying get_block() function know to
1117          * avoid double accounting
1118          */
1119         if (flag)
1120                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1121         /*
1122          * We need to check for EXT4 here because migrate
1123          * could have changed the inode type in between
1124          */
1125         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1126                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1127                                 bh, create, extend_disksize);
1128         } else {
1129                 retval = ext4_get_blocks_handle(handle, inode, block,
1130                                 max_blocks, bh, create, extend_disksize);
1131
1132                 if (retval > 0 && buffer_new(bh)) {
1133                         /*
1134                          * We allocated new blocks which will result in
1135                          * i_data's format changing.  Force the migrate
1136                          * to fail by clearing migrate flags
1137                          */
1138                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1139                                                         ~EXT4_EXT_MIGRATE;
1140                 }
1141         }
1142
1143         if (flag) {
1144                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1145                 /*
1146                  * Update reserved blocks/metadata blocks
1147                  * after successful block allocation
1148                  * which were deferred till now
1149                  */
1150                 if ((retval > 0) && buffer_delay(bh))
1151                         ext4_da_update_reserve_space(inode, retval);
1152         }
1153
1154         up_write((&EXT4_I(inode)->i_data_sem));
1155         return retval;
1156 }
1157
1158 /* Maximum number of blocks we map for direct IO at once. */
1159 #define DIO_MAX_BLOCKS 4096
1160
1161 static int ext4_get_block(struct inode *inode, sector_t iblock,
1162                         struct buffer_head *bh_result, int create)
1163 {
1164         handle_t *handle = ext4_journal_current_handle();
1165         int ret = 0, started = 0;
1166         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1167         int dio_credits;
1168
1169         if (create && !handle) {
1170                 /* Direct IO write... */
1171                 if (max_blocks > DIO_MAX_BLOCKS)
1172                         max_blocks = DIO_MAX_BLOCKS;
1173                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1174                 handle = ext4_journal_start(inode, dio_credits);
1175                 if (IS_ERR(handle)) {
1176                         ret = PTR_ERR(handle);
1177                         goto out;
1178                 }
1179                 started = 1;
1180         }
1181
1182         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1183                                         max_blocks, bh_result, create, 0, 0);
1184         if (ret > 0) {
1185                 bh_result->b_size = (ret << inode->i_blkbits);
1186                 ret = 0;
1187         }
1188         if (started)
1189                 ext4_journal_stop(handle);
1190 out:
1191         return ret;
1192 }
1193
1194 /*
1195  * `handle' can be NULL if create is zero
1196  */
1197 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1198                                 ext4_lblk_t block, int create, int *errp)
1199 {
1200         struct buffer_head dummy;
1201         int fatal = 0, err;
1202
1203         J_ASSERT(handle != NULL || create == 0);
1204
1205         dummy.b_state = 0;
1206         dummy.b_blocknr = -1000;
1207         buffer_trace_init(&dummy.b_history);
1208         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1209                                         &dummy, create, 1, 0);
1210         /*
1211          * ext4_get_blocks_handle() returns number of blocks
1212          * mapped. 0 in case of a HOLE.
1213          */
1214         if (err > 0) {
1215                 if (err > 1)
1216                         WARN_ON(1);
1217                 err = 0;
1218         }
1219         *errp = err;
1220         if (!err && buffer_mapped(&dummy)) {
1221                 struct buffer_head *bh;
1222                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1223                 if (!bh) {
1224                         *errp = -EIO;
1225                         goto err;
1226                 }
1227                 if (buffer_new(&dummy)) {
1228                         J_ASSERT(create != 0);
1229                         J_ASSERT(handle != NULL);
1230
1231                         /*
1232                          * Now that we do not always journal data, we should
1233                          * keep in mind whether this should always journal the
1234                          * new buffer as metadata.  For now, regular file
1235                          * writes use ext4_get_block instead, so it's not a
1236                          * problem.
1237                          */
1238                         lock_buffer(bh);
1239                         BUFFER_TRACE(bh, "call get_create_access");
1240                         fatal = ext4_journal_get_create_access(handle, bh);
1241                         if (!fatal && !buffer_uptodate(bh)) {
1242                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1243                                 set_buffer_uptodate(bh);
1244                         }
1245                         unlock_buffer(bh);
1246                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1247                         err = ext4_journal_dirty_metadata(handle, bh);
1248                         if (!fatal)
1249                                 fatal = err;
1250                 } else {
1251                         BUFFER_TRACE(bh, "not a new buffer");
1252                 }
1253                 if (fatal) {
1254                         *errp = fatal;
1255                         brelse(bh);
1256                         bh = NULL;
1257                 }
1258                 return bh;
1259         }
1260 err:
1261         return NULL;
1262 }
1263
1264 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1265                                ext4_lblk_t block, int create, int *err)
1266 {
1267         struct buffer_head * bh;
1268
1269         bh = ext4_getblk(handle, inode, block, create, err);
1270         if (!bh)
1271                 return bh;
1272         if (buffer_uptodate(bh))
1273                 return bh;
1274         ll_rw_block(READ_META, 1, &bh);
1275         wait_on_buffer(bh);
1276         if (buffer_uptodate(bh))
1277                 return bh;
1278         put_bh(bh);
1279         *err = -EIO;
1280         return NULL;
1281 }
1282
1283 static int walk_page_buffers(   handle_t *handle,
1284                                 struct buffer_head *head,
1285                                 unsigned from,
1286                                 unsigned to,
1287                                 int *partial,
1288                                 int (*fn)(      handle_t *handle,
1289                                                 struct buffer_head *bh))
1290 {
1291         struct buffer_head *bh;
1292         unsigned block_start, block_end;
1293         unsigned blocksize = head->b_size;
1294         int err, ret = 0;
1295         struct buffer_head *next;
1296
1297         for (   bh = head, block_start = 0;
1298                 ret == 0 && (bh != head || !block_start);
1299                 block_start = block_end, bh = next)
1300         {
1301                 next = bh->b_this_page;
1302                 block_end = block_start + blocksize;
1303                 if (block_end <= from || block_start >= to) {
1304                         if (partial && !buffer_uptodate(bh))
1305                                 *partial = 1;
1306                         continue;
1307                 }
1308                 err = (*fn)(handle, bh);
1309                 if (!ret)
1310                         ret = err;
1311         }
1312         return ret;
1313 }
1314
1315 /*
1316  * To preserve ordering, it is essential that the hole instantiation and
1317  * the data write be encapsulated in a single transaction.  We cannot
1318  * close off a transaction and start a new one between the ext4_get_block()
1319  * and the commit_write().  So doing the jbd2_journal_start at the start of
1320  * prepare_write() is the right place.
1321  *
1322  * Also, this function can nest inside ext4_writepage() ->
1323  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1324  * has generated enough buffer credits to do the whole page.  So we won't
1325  * block on the journal in that case, which is good, because the caller may
1326  * be PF_MEMALLOC.
1327  *
1328  * By accident, ext4 can be reentered when a transaction is open via
1329  * quota file writes.  If we were to commit the transaction while thus
1330  * reentered, there can be a deadlock - we would be holding a quota
1331  * lock, and the commit would never complete if another thread had a
1332  * transaction open and was blocking on the quota lock - a ranking
1333  * violation.
1334  *
1335  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1336  * will _not_ run commit under these circumstances because handle->h_ref
1337  * is elevated.  We'll still have enough credits for the tiny quotafile
1338  * write.
1339  */
1340 static int do_journal_get_write_access(handle_t *handle,
1341                                         struct buffer_head *bh)
1342 {
1343         if (!buffer_mapped(bh) || buffer_freed(bh))
1344                 return 0;
1345         return ext4_journal_get_write_access(handle, bh);
1346 }
1347
1348 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1349                                 loff_t pos, unsigned len, unsigned flags,
1350                                 struct page **pagep, void **fsdata)
1351 {
1352         struct inode *inode = mapping->host;
1353         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1354         handle_t *handle;
1355         int retries = 0;
1356         struct page *page;
1357         pgoff_t index;
1358         unsigned from, to;
1359
1360         index = pos >> PAGE_CACHE_SHIFT;
1361         from = pos & (PAGE_CACHE_SIZE - 1);
1362         to = from + len;
1363
1364 retry:
1365         handle = ext4_journal_start(inode, needed_blocks);
1366         if (IS_ERR(handle)) {
1367                 ret = PTR_ERR(handle);
1368                 goto out;
1369         }
1370
1371         page = __grab_cache_page(mapping, index);
1372         if (!page) {
1373                 ext4_journal_stop(handle);
1374                 ret = -ENOMEM;
1375                 goto out;
1376         }
1377         *pagep = page;
1378
1379         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1380                                                         ext4_get_block);
1381
1382         if (!ret && ext4_should_journal_data(inode)) {
1383                 ret = walk_page_buffers(handle, page_buffers(page),
1384                                 from, to, NULL, do_journal_get_write_access);
1385         }
1386
1387         if (ret) {
1388                 unlock_page(page);
1389                 ext4_journal_stop(handle);
1390                 page_cache_release(page);
1391         }
1392
1393         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1394                 goto retry;
1395 out:
1396         return ret;
1397 }
1398
1399 /* For write_end() in data=journal mode */
1400 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1401 {
1402         if (!buffer_mapped(bh) || buffer_freed(bh))
1403                 return 0;
1404         set_buffer_uptodate(bh);
1405         return ext4_journal_dirty_metadata(handle, bh);
1406 }
1407
1408 /*
1409  * We need to pick up the new inode size which generic_commit_write gave us
1410  * `file' can be NULL - eg, when called from page_symlink().
1411  *
1412  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1413  * buffers are managed internally.
1414  */
1415 static int ext4_ordered_write_end(struct file *file,
1416                                 struct address_space *mapping,
1417                                 loff_t pos, unsigned len, unsigned copied,
1418                                 struct page *page, void *fsdata)
1419 {
1420         handle_t *handle = ext4_journal_current_handle();
1421         struct inode *inode = mapping->host;
1422         int ret = 0, ret2;
1423
1424         ret = ext4_jbd2_file_inode(handle, inode);
1425
1426         if (ret == 0) {
1427                 /*
1428                  * generic_write_end() will run mark_inode_dirty() if i_size
1429                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1430                  * into that.
1431                  */
1432                 loff_t new_i_size;
1433
1434                 new_i_size = pos + copied;
1435                 if (new_i_size > EXT4_I(inode)->i_disksize)
1436                         EXT4_I(inode)->i_disksize = new_i_size;
1437                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1438                                                         page, fsdata);
1439                 copied = ret2;
1440                 if (ret2 < 0)
1441                         ret = ret2;
1442         }
1443         ret2 = ext4_journal_stop(handle);
1444         if (!ret)
1445                 ret = ret2;
1446
1447         return ret ? ret : copied;
1448 }
1449
1450 static int ext4_writeback_write_end(struct file *file,
1451                                 struct address_space *mapping,
1452                                 loff_t pos, unsigned len, unsigned copied,
1453                                 struct page *page, void *fsdata)
1454 {
1455         handle_t *handle = ext4_journal_current_handle();
1456         struct inode *inode = mapping->host;
1457         int ret = 0, ret2;
1458         loff_t new_i_size;
1459
1460         new_i_size = pos + copied;
1461         if (new_i_size > EXT4_I(inode)->i_disksize)
1462                 EXT4_I(inode)->i_disksize = new_i_size;
1463
1464         ret2 = generic_write_end(file, mapping, pos, len, copied,
1465                                                         page, fsdata);
1466         copied = ret2;
1467         if (ret2 < 0)
1468                 ret = ret2;
1469
1470         ret2 = ext4_journal_stop(handle);
1471         if (!ret)
1472                 ret = ret2;
1473
1474         return ret ? ret : copied;
1475 }
1476
1477 static int ext4_journalled_write_end(struct file *file,
1478                                 struct address_space *mapping,
1479                                 loff_t pos, unsigned len, unsigned copied,
1480                                 struct page *page, void *fsdata)
1481 {
1482         handle_t *handle = ext4_journal_current_handle();
1483         struct inode *inode = mapping->host;
1484         int ret = 0, ret2;
1485         int partial = 0;
1486         unsigned from, to;
1487
1488         from = pos & (PAGE_CACHE_SIZE - 1);
1489         to = from + len;
1490
1491         if (copied < len) {
1492                 if (!PageUptodate(page))
1493                         copied = 0;
1494                 page_zero_new_buffers(page, from+copied, to);
1495         }
1496
1497         ret = walk_page_buffers(handle, page_buffers(page), from,
1498                                 to, &partial, write_end_fn);
1499         if (!partial)
1500                 SetPageUptodate(page);
1501         if (pos+copied > inode->i_size)
1502                 i_size_write(inode, pos+copied);
1503         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1504         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1505                 EXT4_I(inode)->i_disksize = inode->i_size;
1506                 ret2 = ext4_mark_inode_dirty(handle, inode);
1507                 if (!ret)
1508                         ret = ret2;
1509         }
1510
1511         unlock_page(page);
1512         ret2 = ext4_journal_stop(handle);
1513         if (!ret)
1514                 ret = ret2;
1515         page_cache_release(page);
1516
1517         return ret ? ret : copied;
1518 }
1519
1520 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1521 {
1522        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1523        unsigned long md_needed, mdblocks, total = 0;
1524
1525         /*
1526          * recalculate the amount of metadata blocks to reserve
1527          * in order to allocate nrblocks
1528          * worse case is one extent per block
1529          */
1530         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1531         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1532         mdblocks = ext4_calc_metadata_amount(inode, total);
1533         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1534
1535         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1536         total = md_needed + nrblocks;
1537
1538         if (ext4_has_free_blocks(sbi, total) < total) {
1539                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1540                 return -ENOSPC;
1541         }
1542         /* reduce fs free blocks counter */
1543         percpu_counter_sub(&sbi->s_freeblocks_counter, total);
1544
1545         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1546         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1547
1548         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1549         return 0;       /* success */
1550 }
1551
1552 static void ext4_da_release_space(struct inode *inode, int to_free)
1553 {
1554         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1555         int total, mdb, mdb_free, release;
1556
1557         if (!to_free)
1558                 return;         /* Nothing to release, exit */
1559
1560         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1561
1562         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1563                 /*
1564                  * if there is no reserved blocks, but we try to free some
1565                  * then the counter is messed up somewhere.
1566                  * but since this function is called from invalidate
1567                  * page, it's harmless to return without any action
1568                  */
1569                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1570                             "blocks for inode %lu, but there is no reserved "
1571                             "data blocks\n", to_free, inode->i_ino);
1572                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1573                 return;
1574         }
1575
1576         /* recalculate the number of metablocks still need to be reserved */
1577         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1578         mdb = ext4_calc_metadata_amount(inode, total);
1579
1580         /* figure out how many metablocks to release */
1581         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1582         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1583
1584         release = to_free + mdb_free;
1585
1586         /* update fs free blocks counter for truncate case */
1587         percpu_counter_add(&sbi->s_freeblocks_counter, release);
1588
1589         /* update per-inode reservations */
1590         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1591         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1592
1593         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1594         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1595         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1596 }
1597
1598 static void ext4_da_page_release_reservation(struct page *page,
1599                                                 unsigned long offset)
1600 {
1601         int to_release = 0;
1602         struct buffer_head *head, *bh;
1603         unsigned int curr_off = 0;
1604
1605         head = page_buffers(page);
1606         bh = head;
1607         do {
1608                 unsigned int next_off = curr_off + bh->b_size;
1609
1610                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1611                         to_release++;
1612                         clear_buffer_delay(bh);
1613                 }
1614                 curr_off = next_off;
1615         } while ((bh = bh->b_this_page) != head);
1616         ext4_da_release_space(page->mapping->host, to_release);
1617 }
1618
1619 /*
1620  * Delayed allocation stuff
1621  */
1622
1623 struct mpage_da_data {
1624         struct inode *inode;
1625         struct buffer_head lbh;                 /* extent of blocks */
1626         unsigned long first_page, next_page;    /* extent of pages */
1627         get_block_t *get_block;
1628         struct writeback_control *wbc;
1629 };
1630
1631 /*
1632  * mpage_da_submit_io - walks through extent of pages and try to write
1633  * them with __mpage_writepage()
1634  *
1635  * @mpd->inode: inode
1636  * @mpd->first_page: first page of the extent
1637  * @mpd->next_page: page after the last page of the extent
1638  * @mpd->get_block: the filesystem's block mapper function
1639  *
1640  * By the time mpage_da_submit_io() is called we expect all blocks
1641  * to be allocated. this may be wrong if allocation failed.
1642  *
1643  * As pages are already locked by write_cache_pages(), we can't use it
1644  */
1645 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1646 {
1647         struct address_space *mapping = mpd->inode->i_mapping;
1648         struct mpage_data mpd_pp = {
1649                 .bio = NULL,
1650                 .last_block_in_bio = 0,
1651                 .get_block = mpd->get_block,
1652                 .use_writepage = 1,
1653         };
1654         int ret = 0, err, nr_pages, i;
1655         unsigned long index, end;
1656         struct pagevec pvec;
1657
1658         BUG_ON(mpd->next_page <= mpd->first_page);
1659
1660         pagevec_init(&pvec, 0);
1661         index = mpd->first_page;
1662         end = mpd->next_page - 1;
1663
1664         while (index <= end) {
1665                 /* XXX: optimize tail */
1666                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1667                 if (nr_pages == 0)
1668                         break;
1669                 for (i = 0; i < nr_pages; i++) {
1670                         struct page *page = pvec.pages[i];
1671
1672                         index = page->index;
1673                         if (index > end)
1674                                 break;
1675                         index++;
1676
1677                         err = __mpage_writepage(page, mpd->wbc, &mpd_pp);
1678
1679                         /*
1680                          * In error case, we have to continue because
1681                          * remaining pages are still locked
1682                          * XXX: unlock and re-dirty them?
1683                          */
1684                         if (ret == 0)
1685                                 ret = err;
1686                 }
1687                 pagevec_release(&pvec);
1688         }
1689         if (mpd_pp.bio)
1690                 mpage_bio_submit(WRITE, mpd_pp.bio);
1691
1692         return ret;
1693 }
1694
1695 /*
1696  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1697  *
1698  * @mpd->inode - inode to walk through
1699  * @exbh->b_blocknr - first block on a disk
1700  * @exbh->b_size - amount of space in bytes
1701  * @logical - first logical block to start assignment with
1702  *
1703  * the function goes through all passed space and put actual disk
1704  * block numbers into buffer heads, dropping BH_Delay
1705  */
1706 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1707                                  struct buffer_head *exbh)
1708 {
1709         struct inode *inode = mpd->inode;
1710         struct address_space *mapping = inode->i_mapping;
1711         int blocks = exbh->b_size >> inode->i_blkbits;
1712         sector_t pblock = exbh->b_blocknr, cur_logical;
1713         struct buffer_head *head, *bh;
1714         unsigned long index, end;
1715         struct pagevec pvec;
1716         int nr_pages, i;
1717
1718         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1719         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1720         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1721
1722         pagevec_init(&pvec, 0);
1723
1724         while (index <= end) {
1725                 /* XXX: optimize tail */
1726                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1727                 if (nr_pages == 0)
1728                         break;
1729                 for (i = 0; i < nr_pages; i++) {
1730                         struct page *page = pvec.pages[i];
1731
1732                         index = page->index;
1733                         if (index > end)
1734                                 break;
1735                         index++;
1736
1737                         BUG_ON(!PageLocked(page));
1738                         BUG_ON(PageWriteback(page));
1739                         BUG_ON(!page_has_buffers(page));
1740
1741                         bh = page_buffers(page);
1742                         head = bh;
1743
1744                         /* skip blocks out of the range */
1745                         do {
1746                                 if (cur_logical >= logical)
1747                                         break;
1748                                 cur_logical++;
1749                         } while ((bh = bh->b_this_page) != head);
1750
1751                         do {
1752                                 if (cur_logical >= logical + blocks)
1753                                         break;
1754                                 if (buffer_delay(bh)) {
1755                                         bh->b_blocknr = pblock;
1756                                         clear_buffer_delay(bh);
1757                                         bh->b_bdev = inode->i_sb->s_bdev;
1758                                 } else if (buffer_unwritten(bh)) {
1759                                         bh->b_blocknr = pblock;
1760                                         clear_buffer_unwritten(bh);
1761                                         set_buffer_mapped(bh);
1762                                         set_buffer_new(bh);
1763                                         bh->b_bdev = inode->i_sb->s_bdev;
1764                                 } else if (buffer_mapped(bh))
1765                                         BUG_ON(bh->b_blocknr != pblock);
1766
1767                                 cur_logical++;
1768                                 pblock++;
1769                         } while ((bh = bh->b_this_page) != head);
1770                 }
1771                 pagevec_release(&pvec);
1772         }
1773 }
1774
1775
1776 /*
1777  * __unmap_underlying_blocks - just a helper function to unmap
1778  * set of blocks described by @bh
1779  */
1780 static inline void __unmap_underlying_blocks(struct inode *inode,
1781                                              struct buffer_head *bh)
1782 {
1783         struct block_device *bdev = inode->i_sb->s_bdev;
1784         int blocks, i;
1785
1786         blocks = bh->b_size >> inode->i_blkbits;
1787         for (i = 0; i < blocks; i++)
1788                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1789 }
1790
1791 /*
1792  * mpage_da_map_blocks - go through given space
1793  *
1794  * @mpd->lbh - bh describing space
1795  * @mpd->get_block - the filesystem's block mapper function
1796  *
1797  * The function skips space we know is already mapped to disk blocks.
1798  *
1799  * The function ignores errors ->get_block() returns, thus real
1800  * error handling is postponed to __mpage_writepage()
1801  */
1802 static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1803 {
1804         struct buffer_head *lbh = &mpd->lbh;
1805         int err = 0, remain = lbh->b_size;
1806         sector_t next = lbh->b_blocknr;
1807         struct buffer_head new;
1808
1809         /*
1810          * We consider only non-mapped and non-allocated blocks
1811          */
1812         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1813                 return;
1814
1815         while (remain) {
1816                 new.b_state = lbh->b_state;
1817                 new.b_blocknr = 0;
1818                 new.b_size = remain;
1819                 err = mpd->get_block(mpd->inode, next, &new, 1);
1820                 if (err) {
1821                         /*
1822                          * Rather than implement own error handling
1823                          * here, we just leave remaining blocks
1824                          * unallocated and try again with ->writepage()
1825                          */
1826                         break;
1827                 }
1828                 BUG_ON(new.b_size == 0);
1829
1830                 if (buffer_new(&new))
1831                         __unmap_underlying_blocks(mpd->inode, &new);
1832
1833                 /*
1834                  * If blocks are delayed marked, we need to
1835                  * put actual blocknr and drop delayed bit
1836                  */
1837                 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1838                         mpage_put_bnr_to_bhs(mpd, next, &new);
1839
1840                 /* go for the remaining blocks */
1841                 next += new.b_size >> mpd->inode->i_blkbits;
1842                 remain -= new.b_size;
1843         }
1844 }
1845
1846 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1847                 (1 << BH_Delay) | (1 << BH_Unwritten))
1848
1849 /*
1850  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1851  *
1852  * @mpd->lbh - extent of blocks
1853  * @logical - logical number of the block in the file
1854  * @bh - bh of the block (used to access block's state)
1855  *
1856  * the function is used to collect contig. blocks in same state
1857  */
1858 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1859                                    sector_t logical, struct buffer_head *bh)
1860 {
1861         struct buffer_head *lbh = &mpd->lbh;
1862         sector_t next;
1863
1864         next = lbh->b_blocknr + (lbh->b_size >> mpd->inode->i_blkbits);
1865
1866         /*
1867          * First block in the extent
1868          */
1869         if (lbh->b_size == 0) {
1870                 lbh->b_blocknr = logical;
1871                 lbh->b_size = bh->b_size;
1872                 lbh->b_state = bh->b_state & BH_FLAGS;
1873                 return;
1874         }
1875
1876         /*
1877          * Can we merge the block to our big extent?
1878          */
1879         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1880                 lbh->b_size += bh->b_size;
1881                 return;
1882         }
1883
1884         /*
1885          * We couldn't merge the block to our extent, so we
1886          * need to flush current  extent and start new one
1887          */
1888         mpage_da_map_blocks(mpd);
1889
1890         /*
1891          * Now start a new extent
1892          */
1893         lbh->b_size = bh->b_size;
1894         lbh->b_state = bh->b_state & BH_FLAGS;
1895         lbh->b_blocknr = logical;
1896 }
1897
1898 /*
1899  * __mpage_da_writepage - finds extent of pages and blocks
1900  *
1901  * @page: page to consider
1902  * @wbc: not used, we just follow rules
1903  * @data: context
1904  *
1905  * The function finds extents of pages and scan them for all blocks.
1906  */
1907 static int __mpage_da_writepage(struct page *page,
1908                                 struct writeback_control *wbc, void *data)
1909 {
1910         struct mpage_da_data *mpd = data;
1911         struct inode *inode = mpd->inode;
1912         struct buffer_head *bh, *head, fake;
1913         sector_t logical;
1914
1915         /*
1916          * Can we merge this page to current extent?
1917          */
1918         if (mpd->next_page != page->index) {
1919                 /*
1920                  * Nope, we can't. So, we map non-allocated blocks
1921                  * and start IO on them using __mpage_writepage()
1922                  */
1923                 if (mpd->next_page != mpd->first_page) {
1924                         mpage_da_map_blocks(mpd);
1925                         mpage_da_submit_io(mpd);
1926                 }
1927
1928                 /*
1929                  * Start next extent of pages ...
1930                  */
1931                 mpd->first_page = page->index;
1932
1933                 /*
1934                  * ... and blocks
1935                  */
1936                 mpd->lbh.b_size = 0;
1937                 mpd->lbh.b_state = 0;
1938                 mpd->lbh.b_blocknr = 0;
1939         }
1940
1941         mpd->next_page = page->index + 1;
1942         logical = (sector_t) page->index <<
1943                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
1944
1945         if (!page_has_buffers(page)) {
1946                 /*
1947                  * There is no attached buffer heads yet (mmap?)
1948                  * we treat the page asfull of dirty blocks
1949                  */
1950                 bh = &fake;
1951                 bh->b_size = PAGE_CACHE_SIZE;
1952                 bh->b_state = 0;
1953                 set_buffer_dirty(bh);
1954                 set_buffer_uptodate(bh);
1955                 mpage_add_bh_to_extent(mpd, logical, bh);
1956         } else {
1957                 /*
1958                  * Page with regular buffer heads, just add all dirty ones
1959                  */
1960                 head = page_buffers(page);
1961                 bh = head;
1962                 do {
1963                         BUG_ON(buffer_locked(bh));
1964                         if (buffer_dirty(bh))
1965                                 mpage_add_bh_to_extent(mpd, logical, bh);
1966                         logical++;
1967                 } while ((bh = bh->b_this_page) != head);
1968         }
1969
1970         return 0;
1971 }
1972
1973 /*
1974  * mpage_da_writepages - walk the list of dirty pages of the given
1975  * address space, allocates non-allocated blocks, maps newly-allocated
1976  * blocks to existing bhs and issue IO them
1977  *
1978  * @mapping: address space structure to write
1979  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1980  * @get_block: the filesystem's block mapper function.
1981  *
1982  * This is a library function, which implements the writepages()
1983  * address_space_operation.
1984  *
1985  * In order to avoid duplication of logic that deals with partial pages,
1986  * multiple bio per page, etc, we find non-allocated blocks, allocate
1987  * them with minimal calls to ->get_block() and re-use __mpage_writepage()
1988  *
1989  * It's important that we call __mpage_writepage() only once for each
1990  * involved page, otherwise we'd have to implement more complicated logic
1991  * to deal with pages w/o PG_lock or w/ PG_writeback and so on.
1992  *
1993  * See comments to mpage_writepages()
1994  */
1995 static int mpage_da_writepages(struct address_space *mapping,
1996                                struct writeback_control *wbc,
1997                                get_block_t get_block)
1998 {
1999         struct mpage_da_data mpd;
2000         int ret;
2001
2002         if (!get_block)
2003                 return generic_writepages(mapping, wbc);
2004
2005         mpd.wbc = wbc;
2006         mpd.inode = mapping->host;
2007         mpd.lbh.b_size = 0;
2008         mpd.lbh.b_state = 0;
2009         mpd.lbh.b_blocknr = 0;
2010         mpd.first_page = 0;
2011         mpd.next_page = 0;
2012         mpd.get_block = get_block;
2013
2014         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
2015
2016         /*
2017          * Handle last extent of pages
2018          */
2019         if (mpd.next_page != mpd.first_page) {
2020                 mpage_da_map_blocks(&mpd);
2021                 mpage_da_submit_io(&mpd);
2022         }
2023
2024         return ret;
2025 }
2026
2027 /*
2028  * this is a special callback for ->write_begin() only
2029  * it's intention is to return mapped block or reserve space
2030  */
2031 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2032                                   struct buffer_head *bh_result, int create)
2033 {
2034         int ret = 0;
2035
2036         BUG_ON(create == 0);
2037         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2038
2039         /*
2040          * first, we need to know whether the block is allocated already
2041          * preallocated blocks are unmapped but should treated
2042          * the same as allocated blocks.
2043          */
2044         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2045         if ((ret == 0) && !buffer_delay(bh_result)) {
2046                 /* the block isn't (pre)allocated yet, let's reserve space */
2047                 /*
2048                  * XXX: __block_prepare_write() unmaps passed block,
2049                  * is it OK?
2050                  */
2051                 ret = ext4_da_reserve_space(inode, 1);
2052                 if (ret)
2053                         /* not enough space to reserve */
2054                         return ret;
2055
2056                 map_bh(bh_result, inode->i_sb, 0);
2057                 set_buffer_new(bh_result);
2058                 set_buffer_delay(bh_result);
2059         } else if (ret > 0) {
2060                 bh_result->b_size = (ret << inode->i_blkbits);
2061                 ret = 0;
2062         }
2063
2064         return ret;
2065 }
2066 #define         EXT4_DELALLOC_RSVED     1
2067 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2068                                    struct buffer_head *bh_result, int create)
2069 {
2070         int ret;
2071         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2072         loff_t disksize = EXT4_I(inode)->i_disksize;
2073         handle_t *handle = NULL;
2074
2075         handle = ext4_journal_current_handle();
2076         if (!handle) {
2077                 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2078                                    bh_result, 0, 0, 0);
2079                 BUG_ON(!ret);
2080         } else {
2081                 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2082                                    bh_result, create, 0, EXT4_DELALLOC_RSVED);
2083         }
2084
2085         if (ret > 0) {
2086                 bh_result->b_size = (ret << inode->i_blkbits);
2087
2088                 /*
2089                  * Update on-disk size along with block allocation
2090                  * we don't use 'extend_disksize' as size may change
2091                  * within already allocated block -bzzz
2092                  */
2093                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2094                 if (disksize > i_size_read(inode))
2095                         disksize = i_size_read(inode);
2096                 if (disksize > EXT4_I(inode)->i_disksize) {
2097                         /*
2098                          * XXX: replace with spinlock if seen contended -bzzz
2099                          */
2100                         down_write(&EXT4_I(inode)->i_data_sem);
2101                         if (disksize > EXT4_I(inode)->i_disksize)
2102                                 EXT4_I(inode)->i_disksize = disksize;
2103                         up_write(&EXT4_I(inode)->i_data_sem);
2104
2105                         if (EXT4_I(inode)->i_disksize == disksize) {
2106                                 ret = ext4_mark_inode_dirty(handle, inode);
2107                                 return ret;
2108                         }
2109                 }
2110                 ret = 0;
2111         }
2112         return ret;
2113 }
2114
2115 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2116 {
2117         /*
2118          * unmapped buffer is possible for holes.
2119          * delay buffer is possible with delayed allocation
2120          */
2121         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2122 }
2123
2124 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2125                                    struct buffer_head *bh_result, int create)
2126 {
2127         int ret = 0;
2128         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2129
2130         /*
2131          * we don't want to do block allocation in writepage
2132          * so call get_block_wrap with create = 0
2133          */
2134         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2135                                    bh_result, 0, 0, 0);
2136         if (ret > 0) {
2137                 bh_result->b_size = (ret << inode->i_blkbits);
2138                 ret = 0;
2139         }
2140         return ret;
2141 }
2142
2143 /*
2144  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2145  * get called via journal_submit_inode_data_buffers (no journal handle)
2146  * get called via shrink_page_list via pdflush (no journal handle)
2147  * or grab_page_cache when doing write_begin (have journal handle)
2148  */
2149 static int ext4_da_writepage(struct page *page,
2150                                 struct writeback_control *wbc)
2151 {
2152         int ret = 0;
2153         loff_t size;
2154         unsigned long len;
2155         struct buffer_head *page_bufs;
2156         struct inode *inode = page->mapping->host;
2157
2158         size = i_size_read(inode);
2159         if (page->index == size >> PAGE_CACHE_SHIFT)
2160                 len = size & ~PAGE_CACHE_MASK;
2161         else
2162                 len = PAGE_CACHE_SIZE;
2163
2164         if (page_has_buffers(page)) {
2165                 page_bufs = page_buffers(page);
2166                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2167                                         ext4_bh_unmapped_or_delay)) {
2168                         /*
2169                          * We don't want to do  block allocation
2170                          * So redirty the page and return
2171                          * We may reach here when we do a journal commit
2172                          * via journal_submit_inode_data_buffers.
2173                          * If we don't have mapping block we just ignore
2174                          * them. We can also reach here via shrink_page_list
2175                          */
2176                         redirty_page_for_writepage(wbc, page);
2177                         unlock_page(page);
2178                         return 0;
2179                 }
2180         } else {
2181                 /*
2182                  * The test for page_has_buffers() is subtle:
2183                  * We know the page is dirty but it lost buffers. That means
2184                  * that at some moment in time after write_begin()/write_end()
2185                  * has been called all buffers have been clean and thus they
2186                  * must have been written at least once. So they are all
2187                  * mapped and we can happily proceed with mapping them
2188                  * and writing the page.
2189                  *
2190                  * Try to initialize the buffer_heads and check whether
2191                  * all are mapped and non delay. We don't want to
2192                  * do block allocation here.
2193                  */
2194                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2195                                                 ext4_normal_get_block_write);
2196                 if (!ret) {
2197                         page_bufs = page_buffers(page);
2198                         /* check whether all are mapped and non delay */
2199                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2200                                                 ext4_bh_unmapped_or_delay)) {
2201                                 redirty_page_for_writepage(wbc, page);
2202                                 unlock_page(page);
2203                                 return 0;
2204                         }
2205                 } else {
2206                         /*
2207                          * We can't do block allocation here
2208                          * so just redity the page and unlock
2209                          * and return
2210                          */
2211                         redirty_page_for_writepage(wbc, page);
2212                         unlock_page(page);
2213                         return 0;
2214                 }
2215         }
2216
2217         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2218                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2219         else
2220                 ret = block_write_full_page(page,
2221                                                 ext4_normal_get_block_write,
2222                                                 wbc);
2223
2224         return ret;
2225 }
2226
2227 /*
2228  * For now just follow the DIO way to estimate the max credits
2229  * needed to write out EXT4_MAX_WRITEBACK_PAGES.
2230  * todo: need to calculate the max credits need for
2231  * extent based files, currently the DIO credits is based on
2232  * indirect-blocks mapping way.
2233  *
2234  * Probably should have a generic way to calculate credits
2235  * for DIO, writepages, and truncate
2236  */
2237 #define EXT4_MAX_WRITEBACK_PAGES      DIO_MAX_BLOCKS
2238 #define EXT4_MAX_WRITEBACK_CREDITS    25
2239
2240 static int ext4_da_writepages(struct address_space *mapping,
2241                                 struct writeback_control *wbc)
2242 {
2243         struct inode *inode = mapping->host;
2244         handle_t *handle = NULL;
2245         int needed_blocks;
2246         int ret = 0;
2247         long to_write;
2248         loff_t range_start = 0;
2249
2250         /*
2251          * No pages to write? This is mainly a kludge to avoid starting
2252          * a transaction for special inodes like journal inode on last iput()
2253          * because that could violate lock ordering on umount
2254          */
2255         if (!mapping->nrpages)
2256                 return 0;
2257
2258         /*
2259          * Estimate the worse case needed credits to write out
2260          * EXT4_MAX_BUF_BLOCKS pages
2261          */
2262         needed_blocks = EXT4_MAX_WRITEBACK_CREDITS;
2263
2264         to_write = wbc->nr_to_write;
2265         if (!wbc->range_cyclic) {
2266                 /*
2267                  * If range_cyclic is not set force range_cont
2268                  * and save the old writeback_index
2269                  */
2270                 wbc->range_cont = 1;
2271                 range_start =  wbc->range_start;
2272         }
2273
2274         while (!ret && to_write) {
2275                 /* start a new transaction*/
2276                 handle = ext4_journal_start(inode, needed_blocks);
2277                 if (IS_ERR(handle)) {
2278                         ret = PTR_ERR(handle);
2279                         goto out_writepages;
2280                 }
2281                 if (ext4_should_order_data(inode)) {
2282                         /*
2283                          * With ordered mode we need to add
2284                          * the inode to the journal handle
2285                          * when we do block allocation.
2286                          */
2287                         ret = ext4_jbd2_file_inode(handle, inode);
2288                         if (ret) {
2289                                 ext4_journal_stop(handle);
2290                                 goto out_writepages;
2291                         }
2292
2293                 }
2294                 /*
2295                  * set the max dirty pages could be write at a time
2296                  * to fit into the reserved transaction credits
2297                  */
2298                 if (wbc->nr_to_write > EXT4_MAX_WRITEBACK_PAGES)
2299                         wbc->nr_to_write = EXT4_MAX_WRITEBACK_PAGES;
2300
2301                 to_write -= wbc->nr_to_write;
2302                 ret = mpage_da_writepages(mapping, wbc,
2303                                                 ext4_da_get_block_write);
2304                 ext4_journal_stop(handle);
2305                 if (wbc->nr_to_write) {
2306                         /*
2307                          * There is no more writeout needed
2308                          * or we requested for a noblocking writeout
2309                          * and we found the device congested
2310                          */
2311                         to_write += wbc->nr_to_write;
2312                         break;
2313                 }
2314                 wbc->nr_to_write = to_write;
2315         }
2316
2317 out_writepages:
2318         wbc->nr_to_write = to_write;
2319         if (range_start)
2320                 wbc->range_start = range_start;
2321         return ret;
2322 }
2323
2324 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2325                                 loff_t pos, unsigned len, unsigned flags,
2326                                 struct page **pagep, void **fsdata)
2327 {
2328         int ret, retries = 0;
2329         struct page *page;
2330         pgoff_t index;
2331         unsigned from, to;
2332         struct inode *inode = mapping->host;
2333         handle_t *handle;
2334
2335         index = pos >> PAGE_CACHE_SHIFT;
2336         from = pos & (PAGE_CACHE_SIZE - 1);
2337         to = from + len;
2338
2339 retry:
2340         /*
2341          * With delayed allocation, we don't log the i_disksize update
2342          * if there is delayed block allocation. But we still need
2343          * to journalling the i_disksize update if writes to the end
2344          * of file which has an already mapped buffer.
2345          */
2346         handle = ext4_journal_start(inode, 1);
2347         if (IS_ERR(handle)) {
2348                 ret = PTR_ERR(handle);
2349                 goto out;
2350         }
2351
2352         page = __grab_cache_page(mapping, index);
2353         if (!page) {
2354                 ext4_journal_stop(handle);
2355                 ret = -ENOMEM;
2356                 goto out;
2357         }
2358         *pagep = page;
2359
2360         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2361                                                         ext4_da_get_block_prep);
2362         if (ret < 0) {
2363                 unlock_page(page);
2364                 ext4_journal_stop(handle);
2365                 page_cache_release(page);
2366         }
2367
2368         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2369                 goto retry;
2370 out:
2371         return ret;
2372 }
2373
2374 /*
2375  * Check if we should update i_disksize
2376  * when write to the end of file but not require block allocation
2377  */
2378 static int ext4_da_should_update_i_disksize(struct page *page,
2379                                          unsigned long offset)
2380 {
2381         struct buffer_head *bh;
2382         struct inode *inode = page->mapping->host;
2383         unsigned int idx;
2384         int i;
2385
2386         bh = page_buffers(page);
2387         idx = offset >> inode->i_blkbits;
2388
2389         for (i=0; i < idx; i++)
2390                 bh = bh->b_this_page;
2391
2392         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2393                 return 0;
2394         return 1;
2395 }
2396
2397 static int ext4_da_write_end(struct file *file,
2398                                 struct address_space *mapping,
2399                                 loff_t pos, unsigned len, unsigned copied,
2400                                 struct page *page, void *fsdata)
2401 {
2402         struct inode *inode = mapping->host;
2403         int ret = 0, ret2;
2404         handle_t *handle = ext4_journal_current_handle();
2405         loff_t new_i_size;
2406         unsigned long start, end;
2407
2408         start = pos & (PAGE_CACHE_SIZE - 1);
2409         end = start + copied -1;
2410
2411         /*
2412          * generic_write_end() will run mark_inode_dirty() if i_size
2413          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2414          * into that.
2415          */
2416
2417         new_i_size = pos + copied;
2418         if (new_i_size > EXT4_I(inode)->i_disksize) {
2419                 if (ext4_da_should_update_i_disksize(page, end)) {
2420                         down_write(&EXT4_I(inode)->i_data_sem);
2421                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2422                                 /*
2423                                  * Updating i_disksize when extending file
2424                                  * without needing block allocation
2425                                  */
2426                                 if (ext4_should_order_data(inode))
2427                                         ret = ext4_jbd2_file_inode(handle,
2428                                                                    inode);
2429
2430                                 EXT4_I(inode)->i_disksize = new_i_size;
2431                         }
2432                         up_write(&EXT4_I(inode)->i_data_sem);
2433                 }
2434         }
2435         ret2 = generic_write_end(file, mapping, pos, len, copied,
2436                                                         page, fsdata);
2437         copied = ret2;
2438         if (ret2 < 0)
2439                 ret = ret2;
2440         ret2 = ext4_journal_stop(handle);
2441         if (!ret)
2442                 ret = ret2;
2443
2444         return ret ? ret : copied;
2445 }
2446
2447 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2448 {
2449         /*
2450          * Drop reserved blocks
2451          */
2452         BUG_ON(!PageLocked(page));
2453         if (!page_has_buffers(page))
2454                 goto out;
2455
2456         ext4_da_page_release_reservation(page, offset);
2457
2458 out:
2459         ext4_invalidatepage(page, offset);
2460
2461         return;
2462 }
2463
2464
2465 /*
2466  * bmap() is special.  It gets used by applications such as lilo and by
2467  * the swapper to find the on-disk block of a specific piece of data.
2468  *
2469  * Naturally, this is dangerous if the block concerned is still in the
2470  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2471  * filesystem and enables swap, then they may get a nasty shock when the
2472  * data getting swapped to that swapfile suddenly gets overwritten by
2473  * the original zero's written out previously to the journal and
2474  * awaiting writeback in the kernel's buffer cache.
2475  *
2476  * So, if we see any bmap calls here on a modified, data-journaled file,
2477  * take extra steps to flush any blocks which might be in the cache.
2478  */
2479 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2480 {
2481         struct inode *inode = mapping->host;
2482         journal_t *journal;
2483         int err;
2484
2485         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2486                         test_opt(inode->i_sb, DELALLOC)) {
2487                 /*
2488                  * With delalloc we want to sync the file
2489                  * so that we can make sure we allocate
2490                  * blocks for file
2491                  */
2492                 filemap_write_and_wait(mapping);
2493         }
2494
2495         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2496                 /*
2497                  * This is a REALLY heavyweight approach, but the use of
2498                  * bmap on dirty files is expected to be extremely rare:
2499                  * only if we run lilo or swapon on a freshly made file
2500                  * do we expect this to happen.
2501                  *
2502                  * (bmap requires CAP_SYS_RAWIO so this does not
2503                  * represent an unprivileged user DOS attack --- we'd be
2504                  * in trouble if mortal users could trigger this path at
2505                  * will.)
2506                  *
2507                  * NB. EXT4_STATE_JDATA is not set on files other than
2508                  * regular files.  If somebody wants to bmap a directory
2509                  * or symlink and gets confused because the buffer
2510                  * hasn't yet been flushed to disk, they deserve
2511                  * everything they get.
2512                  */
2513
2514                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2515                 journal = EXT4_JOURNAL(inode);
2516                 jbd2_journal_lock_updates(journal);
2517                 err = jbd2_journal_flush(journal);
2518                 jbd2_journal_unlock_updates(journal);
2519
2520                 if (err)
2521                         return 0;
2522         }
2523
2524         return generic_block_bmap(mapping,block,ext4_get_block);
2525 }
2526
2527 static int bget_one(handle_t *handle, struct buffer_head *bh)
2528 {
2529         get_bh(bh);
2530         return 0;
2531 }
2532
2533 static int bput_one(handle_t *handle, struct buffer_head *bh)
2534 {
2535         put_bh(bh);
2536         return 0;
2537 }
2538
2539 /*
2540  * Note that we don't need to start a transaction unless we're journaling data
2541  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2542  * need to file the inode to the transaction's list in ordered mode because if
2543  * we are writing back data added by write(), the inode is already there and if
2544  * we are writing back data modified via mmap(), noone guarantees in which
2545  * transaction the data will hit the disk. In case we are journaling data, we
2546  * cannot start transaction directly because transaction start ranks above page
2547  * lock so we have to do some magic.
2548  *
2549  * In all journaling modes block_write_full_page() will start the I/O.
2550  *
2551  * Problem:
2552  *
2553  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2554  *              ext4_writepage()
2555  *
2556  * Similar for:
2557  *
2558  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2559  *
2560  * Same applies to ext4_get_block().  We will deadlock on various things like
2561  * lock_journal and i_data_sem
2562  *
2563  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2564  * allocations fail.
2565  *
2566  * 16May01: If we're reentered then journal_current_handle() will be
2567  *          non-zero. We simply *return*.
2568  *
2569  * 1 July 2001: @@@ FIXME:
2570  *   In journalled data mode, a data buffer may be metadata against the
2571  *   current transaction.  But the same file is part of a shared mapping
2572  *   and someone does a writepage() on it.
2573  *
2574  *   We will move the buffer onto the async_data list, but *after* it has
2575  *   been dirtied. So there's a small window where we have dirty data on
2576  *   BJ_Metadata.
2577  *
2578  *   Note that this only applies to the last partial page in the file.  The
2579  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2580  *   broken code anyway: it's wrong for msync()).
2581  *
2582  *   It's a rare case: affects the final partial page, for journalled data
2583  *   where the file is subject to bith write() and writepage() in the same
2584  *   transction.  To fix it we'll need a custom block_write_full_page().
2585  *   We'll probably need that anyway for journalling writepage() output.
2586  *
2587  * We don't honour synchronous mounts for writepage().  That would be
2588  * disastrous.  Any write() or metadata operation will sync the fs for
2589  * us.
2590  *
2591  */
2592 static int __ext4_normal_writepage(struct page *page,
2593                                 struct writeback_control *wbc)
2594 {
2595         struct inode *inode = page->mapping->host;
2596
2597         if (test_opt(inode->i_sb, NOBH))
2598                 return nobh_writepage(page,
2599                                         ext4_normal_get_block_write, wbc);
2600         else
2601                 return block_write_full_page(page,
2602                                                 ext4_normal_get_block_write,
2603                                                 wbc);
2604 }
2605
2606 static int ext4_normal_writepage(struct page *page,
2607                                 struct writeback_control *wbc)
2608 {
2609         struct inode *inode = page->mapping->host;
2610         loff_t size = i_size_read(inode);
2611         loff_t len;
2612
2613         J_ASSERT(PageLocked(page));
2614         if (page->index == size >> PAGE_CACHE_SHIFT)
2615                 len = size & ~PAGE_CACHE_MASK;
2616         else
2617                 len = PAGE_CACHE_SIZE;
2618
2619         if (page_has_buffers(page)) {
2620                 /* if page has buffers it should all be mapped
2621                  * and allocated. If there are not buffers attached
2622                  * to the page we know the page is dirty but it lost
2623                  * buffers. That means that at some moment in time
2624                  * after write_begin() / write_end() has been called
2625                  * all buffers have been clean and thus they must have been
2626                  * written at least once. So they are all mapped and we can
2627                  * happily proceed with mapping them and writing the page.
2628                  */
2629                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2630                                         ext4_bh_unmapped_or_delay));
2631         }
2632
2633         if (!ext4_journal_current_handle())
2634                 return __ext4_normal_writepage(page, wbc);
2635
2636         redirty_page_for_writepage(wbc, page);
2637         unlock_page(page);
2638         return 0;
2639 }
2640
2641 static int __ext4_journalled_writepage(struct page *page,
2642                                 struct writeback_control *wbc)
2643 {
2644         struct address_space *mapping = page->mapping;
2645         struct inode *inode = mapping->host;
2646         struct buffer_head *page_bufs;
2647         handle_t *handle = NULL;
2648         int ret = 0;
2649         int err;
2650
2651         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2652                                         ext4_normal_get_block_write);
2653         if (ret != 0)
2654                 goto out_unlock;
2655
2656         page_bufs = page_buffers(page);
2657         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2658                                                                 bget_one);
2659         /* As soon as we unlock the page, it can go away, but we have
2660          * references to buffers so we are safe */
2661         unlock_page(page);
2662
2663         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2664         if (IS_ERR(handle)) {
2665                 ret = PTR_ERR(handle);
2666                 goto out;
2667         }
2668
2669         ret = walk_page_buffers(handle, page_bufs, 0,
2670                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2671
2672         err = walk_page_buffers(handle, page_bufs, 0,
2673                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2674         if (ret == 0)
2675                 ret = err;
2676         err = ext4_journal_stop(handle);
2677         if (!ret)
2678                 ret = err;
2679
2680         walk_page_buffers(handle, page_bufs, 0,
2681                                 PAGE_CACHE_SIZE, NULL, bput_one);
2682         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2683         goto out;
2684
2685 out_unlock:
2686         unlock_page(page);
2687 out:
2688         return ret;
2689 }
2690
2691 static int ext4_journalled_writepage(struct page *page,
2692                                 struct writeback_control *wbc)
2693 {
2694         struct inode *inode = page->mapping->host;
2695         loff_t size = i_size_read(inode);
2696         loff_t len;
2697
2698         J_ASSERT(PageLocked(page));
2699         if (page->index == size >> PAGE_CACHE_SHIFT)
2700                 len = size & ~PAGE_CACHE_MASK;
2701         else
2702                 len = PAGE_CACHE_SIZE;
2703
2704         if (page_has_buffers(page)) {
2705                 /* if page has buffers it should all be mapped
2706                  * and allocated. If there are not buffers attached
2707                  * to the page we know the page is dirty but it lost
2708                  * buffers. That means that at some moment in time
2709                  * after write_begin() / write_end() has been called
2710                  * all buffers have been clean and thus they must have been
2711                  * written at least once. So they are all mapped and we can
2712                  * happily proceed with mapping them and writing the page.
2713                  */
2714                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2715                                         ext4_bh_unmapped_or_delay));
2716         }
2717
2718         if (ext4_journal_current_handle())
2719                 goto no_write;
2720
2721         if (PageChecked(page)) {
2722                 /*
2723                  * It's mmapped pagecache.  Add buffers and journal it.  There
2724                  * doesn't seem much point in redirtying the page here.
2725                  */
2726                 ClearPageChecked(page);
2727                 return __ext4_journalled_writepage(page, wbc);
2728         } else {
2729                 /*
2730                  * It may be a page full of checkpoint-mode buffers.  We don't
2731                  * really know unless we go poke around in the buffer_heads.
2732                  * But block_write_full_page will do the right thing.
2733                  */
2734                 return block_write_full_page(page,
2735                                                 ext4_normal_get_block_write,
2736                                                 wbc);
2737         }
2738 no_write:
2739         redirty_page_for_writepage(wbc, page);
2740         unlock_page(page);
2741         return 0;
2742 }
2743
2744 static int ext4_readpage(struct file *file, struct page *page)
2745 {
2746         return mpage_readpage(page, ext4_get_block);
2747 }
2748
2749 static int
2750 ext4_readpages(struct file *file, struct address_space *mapping,
2751                 struct list_head *pages, unsigned nr_pages)
2752 {
2753         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2754 }
2755
2756 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2757 {
2758         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2759
2760         /*
2761          * If it's a full truncate we just forget about the pending dirtying
2762          */
2763         if (offset == 0)
2764                 ClearPageChecked(page);
2765
2766         jbd2_journal_invalidatepage(journal, page, offset);
2767 }
2768
2769 static int ext4_releasepage(struct page *page, gfp_t wait)
2770 {
2771         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2772
2773         WARN_ON(PageChecked(page));
2774         if (!page_has_buffers(page))
2775                 return 0;
2776         return jbd2_journal_try_to_free_buffers(journal, page, wait);
2777 }
2778
2779 /*
2780  * If the O_DIRECT write will extend the file then add this inode to the
2781  * orphan list.  So recovery will truncate it back to the original size
2782  * if the machine crashes during the write.
2783  *
2784  * If the O_DIRECT write is intantiating holes inside i_size and the machine
2785  * crashes then stale disk data _may_ be exposed inside the file. But current
2786  * VFS code falls back into buffered path in that case so we are safe.
2787  */
2788 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2789                         const struct iovec *iov, loff_t offset,
2790                         unsigned long nr_segs)
2791 {
2792         struct file *file = iocb->ki_filp;
2793         struct inode *inode = file->f_mapping->host;
2794         struct ext4_inode_info *ei = EXT4_I(inode);
2795         handle_t *handle;
2796         ssize_t ret;
2797         int orphan = 0;
2798         size_t count = iov_length(iov, nr_segs);
2799
2800         if (rw == WRITE) {
2801                 loff_t final_size = offset + count;
2802
2803                 if (final_size > inode->i_size) {
2804                         /* Credits for sb + inode write */
2805                         handle = ext4_journal_start(inode, 2);
2806                         if (IS_ERR(handle)) {
2807                                 ret = PTR_ERR(handle);
2808                                 goto out;
2809                         }
2810                         ret = ext4_orphan_add(handle, inode);
2811                         if (ret) {
2812                                 ext4_journal_stop(handle);
2813                                 goto out;
2814                         }
2815                         orphan = 1;
2816                         ei->i_disksize = inode->i_size;
2817                         ext4_journal_stop(handle);
2818                 }
2819         }
2820
2821         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2822                                  offset, nr_segs,
2823                                  ext4_get_block, NULL);
2824
2825         if (orphan) {
2826                 int err;
2827
2828                 /* Credits for sb + inode write */
2829                 handle = ext4_journal_start(inode, 2);
2830                 if (IS_ERR(handle)) {
2831                         /* This is really bad luck. We've written the data
2832                          * but cannot extend i_size. Bail out and pretend
2833                          * the write failed... */
2834                         ret = PTR_ERR(handle);
2835                         goto out;
2836                 }
2837                 if (inode->i_nlink)
2838                         ext4_orphan_del(handle, inode);
2839                 if (ret > 0) {
2840                         loff_t end = offset + ret;
2841                         if (end > inode->i_size) {
2842                                 ei->i_disksize = end;
2843                                 i_size_write(inode, end);
2844                                 /*
2845                                  * We're going to return a positive `ret'
2846                                  * here due to non-zero-length I/O, so there's
2847                                  * no way of reporting error returns from
2848                                  * ext4_mark_inode_dirty() to userspace.  So
2849                                  * ignore it.
2850                                  */
2851                                 ext4_mark_inode_dirty(handle, inode);
2852                         }
2853                 }
2854                 err = ext4_journal_stop(handle);
2855                 if (ret == 0)
2856                         ret = err;
2857         }
2858 out:
2859         return ret;
2860 }
2861
2862 /*
2863  * Pages can be marked dirty completely asynchronously from ext4's journalling
2864  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
2865  * much here because ->set_page_dirty is called under VFS locks.  The page is
2866  * not necessarily locked.
2867  *
2868  * We cannot just dirty the page and leave attached buffers clean, because the
2869  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
2870  * or jbddirty because all the journalling code will explode.
2871  *
2872  * So what we do is to mark the page "pending dirty" and next time writepage
2873  * is called, propagate that into the buffers appropriately.
2874  */
2875 static int ext4_journalled_set_page_dirty(struct page *page)
2876 {
2877         SetPageChecked(page);
2878         return __set_page_dirty_nobuffers(page);
2879 }
2880
2881 static const struct address_space_operations ext4_ordered_aops = {
2882         .readpage               = ext4_readpage,
2883         .readpages              = ext4_readpages,
2884         .writepage              = ext4_normal_writepage,
2885         .sync_page              = block_sync_page,
2886         .write_begin            = ext4_write_begin,
2887         .write_end              = ext4_ordered_write_end,
2888         .bmap                   = ext4_bmap,
2889         .invalidatepage         = ext4_invalidatepage,
2890         .releasepage            = ext4_releasepage,
2891         .direct_IO              = ext4_direct_IO,
2892         .migratepage            = buffer_migrate_page,
2893         .is_partially_uptodate  = block_is_partially_uptodate,
2894 };
2895
2896 static const struct address_space_operations ext4_writeback_aops = {
2897         .readpage               = ext4_readpage,
2898         .readpages              = ext4_readpages,
2899         .writepage              = ext4_normal_writepage,
2900         .sync_page              = block_sync_page,
2901         .write_begin            = ext4_write_begin,
2902         .write_end              = ext4_writeback_write_end,
2903         .bmap                   = ext4_bmap,
2904         .invalidatepage         = ext4_invalidatepage,
2905         .releasepage            = ext4_releasepage,
2906         .direct_IO              = ext4_direct_IO,
2907         .migratepage            = buffer_migrate_page,
2908         .is_partially_uptodate  = block_is_partially_uptodate,
2909 };
2910
2911 static const struct address_space_operations ext4_journalled_aops = {
2912         .readpage               = ext4_readpage,
2913         .readpages              = ext4_readpages,
2914         .writepage              = ext4_journalled_writepage,
2915         .sync_page              = block_sync_page,
2916         .write_begin            = ext4_write_begin,
2917         .write_end              = ext4_journalled_write_end,
2918         .set_page_dirty         = ext4_journalled_set_page_dirty,
2919         .bmap                   = ext4_bmap,
2920         .invalidatepage         = ext4_invalidatepage,
2921         .releasepage            = ext4_releasepage,
2922         .is_partially_uptodate  = block_is_partially_uptodate,
2923 };
2924
2925 static const struct address_space_operations ext4_da_aops = {
2926         .readpage               = ext4_readpage,
2927         .readpages              = ext4_readpages,
2928         .writepage              = ext4_da_writepage,
2929         .writepages             = ext4_da_writepages,
2930         .sync_page              = block_sync_page,
2931         .write_begin            = ext4_da_write_begin,
2932         .write_end              = ext4_da_write_end,
2933         .bmap                   = ext4_bmap,
2934         .invalidatepage         = ext4_da_invalidatepage,
2935         .releasepage            = ext4_releasepage,
2936         .direct_IO              = ext4_direct_IO,
2937         .migratepage            = buffer_migrate_page,
2938         .is_partially_uptodate  = block_is_partially_uptodate,
2939 };
2940
2941 void ext4_set_aops(struct inode *inode)
2942 {
2943         if (ext4_should_order_data(inode) &&
2944                 test_opt(inode->i_sb, DELALLOC))
2945                 inode->i_mapping->a_ops = &ext4_da_aops;
2946         else if (ext4_should_order_data(inode))
2947                 inode->i_mapping->a_ops = &ext4_ordered_aops;
2948         else if (ext4_should_writeback_data(inode) &&
2949                  test_opt(inode->i_sb, DELALLOC))
2950                 inode->i_mapping->a_ops = &ext4_da_aops;
2951         else if (ext4_should_writeback_data(inode))
2952                 inode->i_mapping->a_ops = &ext4_writeback_aops;
2953         else
2954                 inode->i_mapping->a_ops = &ext4_journalled_aops;
2955 }
2956
2957 /*
2958  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2959  * up to the end of the block which corresponds to `from'.
2960  * This required during truncate. We need to physically zero the tail end
2961  * of that block so it doesn't yield old data if the file is later grown.
2962  */
2963 int ext4_block_truncate_page(handle_t *handle,
2964                 struct address_space *mapping, loff_t from)
2965 {
2966         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2967         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2968         unsigned blocksize, length, pos;
2969         ext4_lblk_t iblock;
2970         struct inode *inode = mapping->host;
2971         struct buffer_head *bh;
2972         struct page *page;
2973         int err = 0;
2974
2975         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
2976         if (!page)
2977                 return -EINVAL;
2978
2979         blocksize = inode->i_sb->s_blocksize;
2980         length = blocksize - (offset & (blocksize - 1));
2981         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2982
2983         /*
2984          * For "nobh" option,  we can only work if we don't need to
2985          * read-in the page - otherwise we create buffers to do the IO.
2986          */
2987         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
2988              ext4_should_writeback_data(inode) && PageUptodate(page)) {
2989                 zero_user(page, offset, length);
2990                 set_page_dirty(page);
2991                 goto unlock;
2992         }
2993
2994         if (!page_has_buffers(page))
2995                 create_empty_buffers(page, blocksize, 0);
2996
2997         /* Find the buffer that contains "offset" */
2998         bh = page_buffers(page);
2999         pos = blocksize;
3000         while (offset >= pos) {
3001                 bh = bh->b_this_page;
3002                 iblock++;
3003                 pos += blocksize;
3004         }
3005
3006         err = 0;
3007         if (buffer_freed(bh)) {
3008                 BUFFER_TRACE(bh, "freed: skip");
3009                 goto unlock;
3010         }
3011
3012         if (!buffer_mapped(bh)) {
3013                 BUFFER_TRACE(bh, "unmapped");
3014                 ext4_get_block(inode, iblock, bh, 0);
3015                 /* unmapped? It's a hole - nothing to do */
3016                 if (!buffer_mapped(bh)) {
3017                         BUFFER_TRACE(bh, "still unmapped");
3018                         goto unlock;
3019                 }
3020         }
3021
3022         /* Ok, it's mapped. Make sure it's up-to-date */
3023         if (PageUptodate(page))
3024                 set_buffer_uptodate(bh);
3025
3026         if (!buffer_uptodate(bh)) {
3027                 err = -EIO;
3028                 ll_rw_block(READ, 1, &bh);
3029                 wait_on_buffer(bh);
3030                 /* Uhhuh. Read error. Complain and punt. */
3031                 if (!buffer_uptodate(bh))
3032                         goto unlock;
3033         }
3034
3035         if (ext4_should_journal_data(inode)) {
3036                 BUFFER_TRACE(bh, "get write access");
3037                 err = ext4_journal_get_write_access(handle, bh);
3038                 if (err)
3039                         goto unlock;
3040         }
3041
3042         zero_user(page, offset, length);
3043
3044         BUFFER_TRACE(bh, "zeroed end of block");
3045
3046         err = 0;
3047         if (ext4_should_journal_data(inode)) {
3048                 err = ext4_journal_dirty_metadata(handle, bh);
3049         } else {
3050                 if (ext4_should_order_data(inode))
3051                         err = ext4_jbd2_file_inode(handle, inode);
3052                 mark_buffer_dirty(bh);
3053         }
3054
3055 unlock:
3056         unlock_page(page);
3057         page_cache_release(page);
3058         return err;
3059 }
3060
3061 /*
3062  * Probably it should be a library function... search for first non-zero word
3063  * or memcmp with zero_page, whatever is better for particular architecture.
3064  * Linus?
3065  */
3066 static inline int all_zeroes(__le32 *p, __le32 *q)
3067 {
3068         while (p < q)
3069                 if (*p++)
3070                         return 0;
3071         return 1;
3072 }
3073
3074 /**
3075  *      ext4_find_shared - find the indirect blocks for partial truncation.
3076  *      @inode:   inode in question
3077  *      @depth:   depth of the affected branch
3078  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3079  *      @chain:   place to store the pointers to partial indirect blocks
3080  *      @top:     place to the (detached) top of branch
3081  *
3082  *      This is a helper function used by ext4_truncate().
3083  *
3084  *      When we do truncate() we may have to clean the ends of several
3085  *      indirect blocks but leave the blocks themselves alive. Block is
3086  *      partially truncated if some data below the new i_size is refered
3087  *      from it (and it is on the path to the first completely truncated
3088  *      data block, indeed).  We have to free the top of that path along
3089  *      with everything to the right of the path. Since no allocation
3090  *      past the truncation point is possible until ext4_truncate()
3091  *      finishes, we may safely do the latter, but top of branch may
3092  *      require special attention - pageout below the truncation point
3093  *      might try to populate it.
3094  *
3095  *      We atomically detach the top of branch from the tree, store the
3096  *      block number of its root in *@top, pointers to buffer_heads of
3097  *      partially truncated blocks - in @chain[].bh and pointers to
3098  *      their last elements that should not be removed - in
3099  *      @chain[].p. Return value is the pointer to last filled element
3100  *      of @chain.
3101  *
3102  *      The work left to caller to do the actual freeing of subtrees:
3103  *              a) free the subtree starting from *@top
3104  *              b) free the subtrees whose roots are stored in
3105  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3106  *              c) free the subtrees growing from the inode past the @chain[0].
3107  *                      (no partially truncated stuff there).  */
3108
3109 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3110                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3111 {
3112         Indirect *partial, *p;
3113         int k, err;
3114
3115         *top = 0;
3116         /* Make k index the deepest non-null offest + 1 */
3117         for (k = depth; k > 1 && !offsets[k-1]; k--)
3118                 ;
3119         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3120         /* Writer: pointers */
3121         if (!partial)
3122                 partial = chain + k-1;
3123         /*
3124          * If the branch acquired continuation since we've looked at it -
3125          * fine, it should all survive and (new) top doesn't belong to us.
3126          */
3127         if (!partial->key && *partial->p)
3128                 /* Writer: end */
3129                 goto no_top;
3130         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
3131                 ;
3132         /*
3133          * OK, we've found the last block that must survive. The rest of our
3134          * branch should be detached before unlocking. However, if that rest
3135          * of branch is all ours and does not grow immediately from the inode
3136          * it's easier to cheat and just decrement partial->p.
3137          */
3138         if (p == chain + k - 1 && p > chain) {
3139                 p->p--;
3140         } else {
3141                 *top = *p->p;
3142                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3143 #if 0
3144                 *p->p = 0;
3145 #endif
3146         }
3147         /* Writer: end */
3148
3149         while(partial > p) {
3150                 brelse(partial->bh);
3151                 partial--;
3152         }
3153 no_top:
3154         return partial;
3155 }
3156
3157 /*
3158  * Zero a number of block pointers in either an inode or an indirect block.
3159  * If we restart the transaction we must again get write access to the
3160  * indirect block for further modification.
3161  *
3162  * We release `count' blocks on disk, but (last - first) may be greater
3163  * than `count' because there can be holes in there.
3164  */
3165 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3166                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3167                 unsigned long count, __le32 *first, __le32 *last)
3168 {
3169         __le32 *p;
3170         if (try_to_extend_transaction(handle, inode)) {
3171                 if (bh) {
3172                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3173                         ext4_journal_dirty_metadata(handle, bh);
3174                 }
3175                 ext4_mark_inode_dirty(handle, inode);
3176                 ext4_journal_test_restart(handle, inode);
3177                 if (bh) {
3178                         BUFFER_TRACE(bh, "retaking write access");
3179                         ext4_journal_get_write_access(handle, bh);
3180                 }
3181         }
3182
3183         /*
3184          * Any buffers which are on the journal will be in memory. We find
3185          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3186          * on them.  We've already detached each block from the file, so
3187          * bforget() in jbd2_journal_forget() should be safe.
3188          *
3189          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3190          */
3191         for (p = first; p < last; p++) {
3192                 u32 nr = le32_to_cpu(*p);
3193                 if (nr) {
3194                         struct buffer_head *tbh;
3195
3196                         *p = 0;
3197                         tbh = sb_find_get_block(inode->i_sb, nr);
3198                         ext4_forget(handle, 0, inode, tbh, nr);
3199                 }
3200         }
3201
3202         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3203 }
3204
3205 /**
3206  * ext4_free_data - free a list of data blocks
3207  * @handle:     handle for this transaction
3208  * @inode:      inode we are dealing with
3209  * @this_bh:    indirect buffer_head which contains *@first and *@last
3210  * @first:      array of block numbers
3211  * @last:       points immediately past the end of array
3212  *
3213  * We are freeing all blocks refered from that array (numbers are stored as
3214  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3215  *
3216  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3217  * blocks are contiguous then releasing them at one time will only affect one
3218  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3219  * actually use a lot of journal space.
3220  *
3221  * @this_bh will be %NULL if @first and @last point into the inode's direct
3222  * block pointers.
3223  */
3224 static void ext4_free_data(handle_t *handle, struct inode *inode,
3225                            struct buffer_head *this_bh,
3226                            __le32 *first, __le32 *last)
3227 {
3228         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3229         unsigned long count = 0;            /* Number of blocks in the run */
3230         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3231                                                corresponding to
3232                                                block_to_free */
3233         ext4_fsblk_t nr;                    /* Current block # */
3234         __le32 *p;                          /* Pointer into inode/ind
3235                                                for current block */
3236         int err;
3237
3238         if (this_bh) {                          /* For indirect block */
3239                 BUFFER_TRACE(this_bh, "get_write_access");
3240                 err = ext4_journal_get_write_access(handle, this_bh);
3241                 /* Important: if we can't update the indirect pointers
3242                  * to the blocks, we can't free them. */
3243                 if (err)
3244                         return;
3245         }
3246
3247         for (p = first; p < last; p++) {
3248                 nr = le32_to_cpu(*p);
3249                 if (nr) {
3250                         /* accumulate blocks to free if they're contiguous */
3251                         if (count == 0) {
3252                                 block_to_free = nr;
3253                                 block_to_free_p = p;
3254                                 count = 1;
3255                         } else if (nr == block_to_free + count) {
3256                                 count++;
3257                         } else {
3258                                 ext4_clear_blocks(handle, inode, this_bh,
3259                                                   block_to_free,
3260                                                   count, block_to_free_p, p);
3261                                 block_to_free = nr;
3262                                 block_to_free_p = p;
3263                                 count = 1;
3264                         }
3265                 }
3266         }
3267
3268         if (count > 0)
3269                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3270                                   count, block_to_free_p, p);
3271
3272         if (this_bh) {
3273                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3274
3275                 /*
3276                  * The buffer head should have an attached journal head at this
3277                  * point. However, if the data is corrupted and an indirect
3278                  * block pointed to itself, it would have been detached when
3279                  * the block was cleared. Check for this instead of OOPSing.
3280                  */
3281                 if (bh2jh(this_bh))
3282                         ext4_journal_dirty_metadata(handle, this_bh);
3283                 else
3284                         ext4_error(inode->i_sb, __func__,
3285                                    "circular indirect block detected, "
3286                                    "inode=%lu, block=%llu",
3287                                    inode->i_ino,
3288                                    (unsigned long long) this_bh->b_blocknr);
3289         }
3290 }
3291
3292 /**
3293  *      ext4_free_branches - free an array of branches
3294  *      @handle: JBD handle for this transaction
3295  *      @inode: inode we are dealing with
3296  *      @parent_bh: the buffer_head which contains *@first and *@last
3297  *      @first: array of block numbers
3298  *      @last:  pointer immediately past the end of array
3299  *      @depth: depth of the branches to free
3300  *
3301  *      We are freeing all blocks refered from these branches (numbers are
3302  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3303  *      appropriately.
3304  */
3305 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3306                                struct buffer_head *parent_bh,
3307                                __le32 *first, __le32 *last, int depth)
3308 {
3309         ext4_fsblk_t nr;
3310         __le32 *p;
3311
3312         if (is_handle_aborted(handle))
3313                 return;
3314
3315         if (depth--) {
3316                 struct buffer_head *bh;
3317                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3318                 p = last;
3319                 while (--p >= first) {
3320                         nr = le32_to_cpu(*p);
3321                         if (!nr)
3322                                 continue;               /* A hole */
3323
3324                         /* Go read the buffer for the next level down */
3325                         bh = sb_bread(inode->i_sb, nr);
3326
3327                         /*
3328                          * A read failure? Report error and clear slot
3329                          * (should be rare).
3330                          */
3331                         if (!bh) {
3332                                 ext4_error(inode->i_sb, "ext4_free_branches",
3333                                            "Read failure, inode=%lu, block=%llu",
3334                                            inode->i_ino, nr);
3335                                 continue;
3336                         }
3337
3338                         /* This zaps the entire block.  Bottom up. */
3339                         BUFFER_TRACE(bh, "free child branches");
3340                         ext4_free_branches(handle, inode, bh,
3341                                            (__le32*)bh->b_data,
3342                                            (__le32*)bh->b_data + addr_per_block,
3343                                            depth);
3344
3345                         /*
3346                          * We've probably journalled the indirect block several
3347                          * times during the truncate.  But it's no longer
3348                          * needed and we now drop it from the transaction via
3349                          * jbd2_journal_revoke().
3350                          *
3351                          * That's easy if it's exclusively part of this
3352                          * transaction.  But if it's part of the committing
3353                          * transaction then jbd2_journal_forget() will simply
3354                          * brelse() it.  That means that if the underlying
3355                          * block is reallocated in ext4_get_block(),
3356                          * unmap_underlying_metadata() will find this block
3357                          * and will try to get rid of it.  damn, damn.
3358                          *
3359                          * If this block has already been committed to the
3360                          * journal, a revoke record will be written.  And
3361                          * revoke records must be emitted *before* clearing
3362                          * this block's bit in the bitmaps.
3363                          */
3364                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3365
3366                         /*
3367                          * Everything below this this pointer has been
3368                          * released.  Now let this top-of-subtree go.
3369                          *
3370                          * We want the freeing of this indirect block to be
3371                          * atomic in the journal with the updating of the
3372                          * bitmap block which owns it.  So make some room in
3373                          * the journal.
3374                          *
3375                          * We zero the parent pointer *after* freeing its
3376                          * pointee in the bitmaps, so if extend_transaction()
3377                          * for some reason fails to put the bitmap changes and
3378                          * the release into the same transaction, recovery
3379                          * will merely complain about releasing a free block,
3380                          * rather than leaking blocks.
3381                          */
3382                         if (is_handle_aborted(handle))
3383                                 return;
3384                         if (try_to_extend_transaction(handle, inode)) {
3385                                 ext4_mark_inode_dirty(handle, inode);
3386                                 ext4_journal_test_restart(handle, inode);
3387                         }
3388
3389                         ext4_free_blocks(handle, inode, nr, 1, 1);
3390
3391                         if (parent_bh) {
3392                                 /*
3393                                  * The block which we have just freed is
3394                                  * pointed to by an indirect block: journal it
3395                                  */
3396                                 BUFFER_TRACE(parent_bh, "get_write_access");
3397                                 if (!ext4_journal_get_write_access(handle,
3398                                                                    parent_bh)){
3399                                         *p = 0;
3400                                         BUFFER_TRACE(parent_bh,
3401                                         "call ext4_journal_dirty_metadata");
3402                                         ext4_journal_dirty_metadata(handle,
3403                                                                     parent_bh);
3404                                 }
3405                         }
3406                 }
3407         } else {
3408                 /* We have reached the bottom of the tree. */
3409                 BUFFER_TRACE(parent_bh, "free data blocks");
3410                 ext4_free_data(handle, inode, parent_bh, first, last);
3411         }
3412 }
3413
3414 int ext4_can_truncate(struct inode *inode)
3415 {
3416         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3417                 return 0;
3418         if (S_ISREG(inode->i_mode))
3419                 return 1;
3420         if (S_ISDIR(inode->i_mode))
3421                 return 1;
3422         if (S_ISLNK(inode->i_mode))
3423                 return !ext4_inode_is_fast_symlink(inode);
3424         return 0;
3425 }
3426
3427 /*
3428  * ext4_truncate()
3429  *
3430  * We block out ext4_get_block() block instantiations across the entire
3431  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3432  * simultaneously on behalf of the same inode.
3433  *
3434  * As we work through the truncate and commmit bits of it to the journal there
3435  * is one core, guiding principle: the file's tree must always be consistent on
3436  * disk.  We must be able to restart the truncate after a crash.
3437  *
3438  * The file's tree may be transiently inconsistent in memory (although it
3439  * probably isn't), but whenever we close off and commit a journal transaction,
3440  * the contents of (the filesystem + the journal) must be consistent and
3441  * restartable.  It's pretty simple, really: bottom up, right to left (although
3442  * left-to-right works OK too).
3443  *
3444  * Note that at recovery time, journal replay occurs *before* the restart of
3445  * truncate against the orphan inode list.
3446  *
3447  * The committed inode has the new, desired i_size (which is the same as
3448  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3449  * that this inode's truncate did not complete and it will again call
3450  * ext4_truncate() to have another go.  So there will be instantiated blocks
3451  * to the right of the truncation point in a crashed ext4 filesystem.  But
3452  * that's fine - as long as they are linked from the inode, the post-crash
3453  * ext4_truncate() run will find them and release them.
3454  */
3455 void ext4_truncate(struct inode *inode)
3456 {
3457         handle_t *handle;
3458         struct ext4_inode_info *ei = EXT4_I(inode);
3459         __le32 *i_data = ei->i_data;
3460         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3461         struct address_space *mapping = inode->i_mapping;
3462         ext4_lblk_t offsets[4];
3463         Indirect chain[4];
3464         Indirect *partial;
3465         __le32 nr = 0;
3466         int n;
3467         ext4_lblk_t last_block;
3468         unsigned blocksize = inode->i_sb->s_blocksize;
3469
3470         if (!ext4_can_truncate(inode))
3471                 return;
3472
3473         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3474                 ext4_ext_truncate(inode);
3475                 return;
3476         }
3477
3478         handle = start_transaction(inode);
3479         if (IS_ERR(handle))
3480                 return;         /* AKPM: return what? */
3481
3482         last_block = (inode->i_size + blocksize-1)
3483                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3484
3485         if (inode->i_size & (blocksize - 1))
3486                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3487                         goto out_stop;
3488
3489         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3490         if (n == 0)
3491                 goto out_stop;  /* error */
3492
3493         /*
3494          * OK.  This truncate is going to happen.  We add the inode to the
3495          * orphan list, so that if this truncate spans multiple transactions,
3496          * and we crash, we will resume the truncate when the filesystem
3497          * recovers.  It also marks the inode dirty, to catch the new size.
3498          *
3499          * Implication: the file must always be in a sane, consistent
3500          * truncatable state while each transaction commits.
3501          */
3502         if (ext4_orphan_add(handle, inode))
3503                 goto out_stop;
3504
3505         /*
3506          * From here we block out all ext4_get_block() callers who want to
3507          * modify the block allocation tree.
3508          */
3509         down_write(&ei->i_data_sem);
3510
3511         ext4_discard_reservation(inode);
3512
3513         /*
3514          * The orphan list entry will now protect us from any crash which
3515          * occurs before the truncate completes, so it is now safe to propagate
3516          * the new, shorter inode size (held for now in i_size) into the
3517          * on-disk inode. We do this via i_disksize, which is the value which
3518          * ext4 *really* writes onto the disk inode.
3519          */
3520         ei->i_disksize = inode->i_size;
3521
3522         if (n == 1) {           /* direct blocks */
3523                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3524                                i_data + EXT4_NDIR_BLOCKS);
3525                 goto do_indirects;
3526         }
3527
3528         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3529         /* Kill the top of shared branch (not detached) */
3530         if (nr) {
3531                 if (partial == chain) {
3532                         /* Shared branch grows from the inode */
3533                         ext4_free_branches(handle, inode, NULL,
3534                                            &nr, &nr+1, (chain+n-1) - partial);
3535                         *partial->p = 0;
3536                         /*
3537                          * We mark the inode dirty prior to restart,
3538                          * and prior to stop.  No need for it here.
3539                          */
3540                 } else {
3541                         /* Shared branch grows from an indirect block */
3542                         BUFFER_TRACE(partial->bh, "get_write_access");
3543                         ext4_free_branches(handle, inode, partial->bh,
3544                                         partial->p,
3545                                         partial->p+1, (chain+n-1) - partial);
3546                 }
3547         }
3548         /* Clear the ends of indirect blocks on the shared branch */
3549         while (partial > chain) {
3550                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3551                                    (__le32*)partial->bh->b_data+addr_per_block,
3552                                    (chain+n-1) - partial);
3553                 BUFFER_TRACE(partial->bh, "call brelse");
3554                 brelse (partial->bh);
3555                 partial--;
3556         }
3557 do_indirects:
3558         /* Kill the remaining (whole) subtrees */
3559         switch (offsets[0]) {
3560         default:
3561                 nr = i_data[EXT4_IND_BLOCK];
3562                 if (nr) {
3563                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3564                         i_data[EXT4_IND_BLOCK] = 0;
3565                 }
3566         case EXT4_IND_BLOCK:
3567                 nr = i_data[EXT4_DIND_BLOCK];
3568                 if (nr) {
3569                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3570                         i_data[EXT4_DIND_BLOCK] = 0;
3571                 }
3572         case EXT4_DIND_BLOCK:
3573                 nr = i_data[EXT4_TIND_BLOCK];
3574                 if (nr) {
3575                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3576                         i_data[EXT4_TIND_BLOCK] = 0;
3577                 }
3578         case EXT4_TIND_BLOCK:
3579                 ;
3580         }
3581
3582         up_write(&ei->i_data_sem);
3583         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3584         ext4_mark_inode_dirty(handle, inode);
3585
3586         /*
3587          * In a multi-transaction truncate, we only make the final transaction
3588          * synchronous
3589          */
3590         if (IS_SYNC(inode))
3591                 handle->h_sync = 1;
3592 out_stop:
3593         /*
3594          * If this was a simple ftruncate(), and the file will remain alive
3595          * then we need to clear up the orphan record which we created above.
3596          * However, if this was a real unlink then we were called by
3597          * ext4_delete_inode(), and we allow that function to clean up the
3598          * orphan info for us.
3599          */
3600         if (inode->i_nlink)
3601                 ext4_orphan_del(handle, inode);
3602
3603         ext4_journal_stop(handle);
3604 }
3605
3606 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3607                 unsigned long ino, struct ext4_iloc *iloc)
3608 {
3609         ext4_group_t block_group;
3610         unsigned long offset;
3611         ext4_fsblk_t block;
3612         struct ext4_group_desc *gdp;
3613
3614         if (!ext4_valid_inum(sb, ino)) {
3615                 /*
3616                  * This error is already checked for in namei.c unless we are
3617                  * looking at an NFS filehandle, in which case no error
3618                  * report is needed
3619                  */
3620                 return 0;
3621         }
3622
3623         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3624         gdp = ext4_get_group_desc(sb, block_group, NULL);
3625         if (!gdp)
3626                 return 0;
3627
3628         /*
3629          * Figure out the offset within the block group inode table
3630          */
3631         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3632                 EXT4_INODE_SIZE(sb);
3633         block = ext4_inode_table(sb, gdp) +
3634                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3635
3636         iloc->block_group = block_group;
3637         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3638         return block;
3639 }
3640
3641 /*
3642  * ext4_get_inode_loc returns with an extra refcount against the inode's
3643  * underlying buffer_head on success. If 'in_mem' is true, we have all
3644  * data in memory that is needed to recreate the on-disk version of this
3645  * inode.
3646  */
3647 static int __ext4_get_inode_loc(struct inode *inode,
3648                                 struct ext4_iloc *iloc, int in_mem)
3649 {
3650         ext4_fsblk_t block;
3651         struct buffer_head *bh;
3652
3653         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3654         if (!block)
3655                 return -EIO;
3656
3657         bh = sb_getblk(inode->i_sb, block);
3658         if (!bh) {
3659                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3660                                 "unable to read inode block - "
3661                                 "inode=%lu, block=%llu",
3662                                  inode->i_ino, block);
3663                 return -EIO;
3664         }
3665         if (!buffer_uptodate(bh)) {
3666                 lock_buffer(bh);
3667
3668                 /*
3669                  * If the buffer has the write error flag, we have failed
3670                  * to write out another inode in the same block.  In this
3671                  * case, we don't have to read the block because we may
3672                  * read the old inode data successfully.
3673                  */
3674                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3675                         set_buffer_uptodate(bh);
3676
3677                 if (buffer_uptodate(bh)) {
3678                         /* someone brought it uptodate while we waited */
3679                         unlock_buffer(bh);
3680                         goto has_buffer;
3681                 }
3682
3683                 /*
3684                  * If we have all information of the inode in memory and this
3685                  * is the only valid inode in the block, we need not read the
3686                  * block.
3687                  */
3688                 if (in_mem) {
3689                         struct buffer_head *bitmap_bh;
3690                         struct ext4_group_desc *desc;
3691                         int inodes_per_buffer;
3692                         int inode_offset, i;
3693                         ext4_group_t block_group;
3694                         int start;
3695
3696                         block_group = (inode->i_ino - 1) /
3697                                         EXT4_INODES_PER_GROUP(inode->i_sb);
3698                         inodes_per_buffer = bh->b_size /
3699                                 EXT4_INODE_SIZE(inode->i_sb);
3700                         inode_offset = ((inode->i_ino - 1) %
3701                                         EXT4_INODES_PER_GROUP(inode->i_sb));
3702                         start = inode_offset & ~(inodes_per_buffer - 1);
3703
3704                         /* Is the inode bitmap in cache? */
3705                         desc = ext4_get_group_desc(inode->i_sb,
3706                                                 block_group, NULL);
3707                         if (!desc)
3708                                 goto make_io;
3709
3710                         bitmap_bh = sb_getblk(inode->i_sb,
3711                                 ext4_inode_bitmap(inode->i_sb, desc));
3712                         if (!bitmap_bh)
3713                                 goto make_io;
3714
3715                         /*
3716                          * If the inode bitmap isn't in cache then the
3717                          * optimisation may end up performing two reads instead
3718                          * of one, so skip it.
3719                          */
3720                         if (!buffer_uptodate(bitmap_bh)) {
3721                                 brelse(bitmap_bh);
3722                                 goto make_io;
3723                         }
3724                         for (i = start; i < start + inodes_per_buffer; i++) {
3725                                 if (i == inode_offset)
3726                                         continue;
3727                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3728                                         break;
3729                         }
3730                         brelse(bitmap_bh);
3731                         if (i == start + inodes_per_buffer) {
3732                                 /* all other inodes are free, so skip I/O */
3733                                 memset(bh->b_data, 0, bh->b_size);
3734                                 set_buffer_uptodate(bh);
3735                                 unlock_buffer(bh);
3736                                 goto has_buffer;
3737                         }
3738                 }
3739
3740 make_io:
3741                 /*
3742                  * There are other valid inodes in the buffer, this inode
3743                  * has in-inode xattrs, or we don't have this inode in memory.
3744                  * Read the block from disk.
3745                  */
3746                 get_bh(bh);
3747                 bh->b_end_io = end_buffer_read_sync;
3748                 submit_bh(READ_META, bh);
3749                 wait_on_buffer(bh);
3750                 if (!buffer_uptodate(bh)) {
3751                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
3752                                         "unable to read inode block - "
3753                                         "inode=%lu, block=%llu",
3754                                         inode->i_ino, block);
3755                         brelse(bh);
3756                         return -EIO;
3757                 }
3758         }
3759 has_buffer:
3760         iloc->bh = bh;
3761         return 0;
3762 }
3763
3764 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3765 {
3766         /* We have all inode data except xattrs in memory here. */
3767         return __ext4_get_inode_loc(inode, iloc,
3768                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3769 }
3770
3771 void ext4_set_inode_flags(struct inode *inode)
3772 {
3773         unsigned int flags = EXT4_I(inode)->i_flags;
3774
3775         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3776         if (flags & EXT4_SYNC_FL)
3777                 inode->i_flags |= S_SYNC;
3778         if (flags & EXT4_APPEND_FL)
3779                 inode->i_flags |= S_APPEND;
3780         if (flags & EXT4_IMMUTABLE_FL)
3781                 inode->i_flags |= S_IMMUTABLE;
3782         if (flags & EXT4_NOATIME_FL)
3783                 inode->i_flags |= S_NOATIME;
3784         if (flags & EXT4_DIRSYNC_FL)
3785                 inode->i_flags |= S_DIRSYNC;
3786 }
3787
3788 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3789 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3790 {
3791         unsigned int flags = ei->vfs_inode.i_flags;
3792
3793         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3794                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3795         if (flags & S_SYNC)
3796                 ei->i_flags |= EXT4_SYNC_FL;
3797         if (flags & S_APPEND)
3798                 ei->i_flags |= EXT4_APPEND_FL;
3799         if (flags & S_IMMUTABLE)
3800                 ei->i_flags |= EXT4_IMMUTABLE_FL;
3801         if (flags & S_NOATIME)
3802                 ei->i_flags |= EXT4_NOATIME_FL;
3803         if (flags & S_DIRSYNC)
3804                 ei->i_flags |= EXT4_DIRSYNC_FL;
3805 }
3806 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3807                                         struct ext4_inode_info *ei)
3808 {
3809         blkcnt_t i_blocks ;
3810         struct inode *inode = &(ei->vfs_inode);
3811         struct super_block *sb = inode->i_sb;
3812
3813         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3814                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3815                 /* we are using combined 48 bit field */
3816                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3817                                         le32_to_cpu(raw_inode->i_blocks_lo);
3818                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3819                         /* i_blocks represent file system block size */
3820                         return i_blocks  << (inode->i_blkbits - 9);
3821                 } else {
3822                         return i_blocks;
3823                 }
3824         } else {
3825                 return le32_to_cpu(raw_inode->i_blocks_lo);
3826         }
3827 }
3828
3829 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3830 {
3831         struct ext4_iloc iloc;
3832         struct ext4_inode *raw_inode;
3833         struct ext4_inode_info *ei;
3834         struct buffer_head *bh;
3835         struct inode *inode;
3836         long ret;
3837         int block;
3838
3839         inode = iget_locked(sb, ino);
3840         if (!inode)
3841                 return ERR_PTR(-ENOMEM);
3842         if (!(inode->i_state & I_NEW))
3843                 return inode;
3844
3845         ei = EXT4_I(inode);
3846 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3847         ei->i_acl = EXT4_ACL_NOT_CACHED;
3848         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
3849 #endif
3850         ei->i_block_alloc_info = NULL;
3851
3852         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3853         if (ret < 0)
3854                 goto bad_inode;
3855         bh = iloc.bh;
3856         raw_inode = ext4_raw_inode(&iloc);
3857         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3858         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3859         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3860         if(!(test_opt (inode->i_sb, NO_UID32))) {
3861                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3862                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3863         }
3864         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3865
3866         ei->i_state = 0;
3867         ei->i_dir_start_lookup = 0;
3868         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3869         /* We now have enough fields to check if the inode was active or not.
3870          * This is needed because nfsd might try to access dead inodes
3871          * the test is that same one that e2fsck uses
3872          * NeilBrown 1999oct15
3873          */
3874         if (inode->i_nlink == 0) {
3875                 if (inode->i_mode == 0 ||
3876                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3877                         /* this inode is deleted */
3878                         brelse (bh);
3879                         ret = -ESTALE;
3880                         goto bad_inode;
3881                 }
3882                 /* The only unlinked inodes we let through here have
3883                  * valid i_mode and are being read by the orphan
3884                  * recovery code: that's fine, we're about to complete
3885                  * the process of deleting those. */
3886         }
3887         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3888         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3889         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3890         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3891             cpu_to_le32(EXT4_OS_HURD)) {
3892                 ei->i_file_acl |=
3893                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3894         }
3895         inode->i_size = ext4_isize(raw_inode);
3896         ei->i_disksize = inode->i_size;
3897         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3898         ei->i_block_group = iloc.block_group;
3899         /*
3900          * NOTE! The in-memory inode i_data array is in little-endian order
3901          * even on big-endian machines: we do NOT byteswap the block numbers!
3902          */
3903         for (block = 0; block < EXT4_N_BLOCKS; block++)
3904                 ei->i_data[block] = raw_inode->i_block[block];
3905         INIT_LIST_HEAD(&ei->i_orphan);
3906
3907         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3908                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3909                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3910                     EXT4_INODE_SIZE(inode->i_sb)) {
3911                         brelse (bh);
3912                         ret = -EIO;
3913                         goto bad_inode;
3914                 }
3915                 if (ei->i_extra_isize == 0) {
3916                         /* The extra space is currently unused. Use it. */
3917                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3918                                             EXT4_GOOD_OLD_INODE_SIZE;
3919                 } else {
3920                         __le32 *magic = (void *)raw_inode +
3921                                         EXT4_GOOD_OLD_INODE_SIZE +
3922                                         ei->i_extra_isize;
3923                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3924                                  ei->i_state |= EXT4_STATE_XATTR;
3925                 }
3926         } else
3927                 ei->i_extra_isize = 0;
3928
3929         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3930         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3931         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3932         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3933
3934         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3935         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3936                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3937                         inode->i_version |=
3938                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3939         }
3940
3941         if (S_ISREG(inode->i_mode)) {
3942                 inode->i_op = &ext4_file_inode_operations;
3943                 inode->i_fop = &ext4_file_operations;
3944                 ext4_set_aops(inode);
3945         } else if (S_ISDIR(inode->i_mode)) {
3946                 inode->i_op = &ext4_dir_inode_operations;
3947                 inode->i_fop = &ext4_dir_operations;
3948         } else if (S_ISLNK(inode->i_mode)) {
3949                 if (ext4_inode_is_fast_symlink(inode))
3950                         inode->i_op = &ext4_fast_symlink_inode_operations;
3951                 else {
3952                         inode->i_op = &ext4_symlink_inode_operations;
3953                         ext4_set_aops(inode);
3954                 }
3955         } else {
3956                 inode->i_op = &ext4_special_inode_operations;
3957                 if (raw_inode->i_block[0])
3958                         init_special_inode(inode, inode->i_mode,
3959                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3960                 else
3961                         init_special_inode(inode, inode->i_mode,
3962                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3963         }
3964         brelse (iloc.bh);
3965         ext4_set_inode_flags(inode);
3966         unlock_new_inode(inode);
3967         return inode;
3968
3969 bad_inode:
3970         iget_failed(inode);
3971         return ERR_PTR(ret);
3972 }
3973
3974 static int ext4_inode_blocks_set(handle_t *handle,
3975                                 struct ext4_inode *raw_inode,
3976                                 struct ext4_inode_info *ei)
3977 {
3978         struct inode *inode = &(ei->vfs_inode);
3979         u64 i_blocks = inode->i_blocks;
3980         struct super_block *sb = inode->i_sb;
3981         int err = 0;
3982
3983         if (i_blocks <= ~0U) {
3984                 /*
3985                  * i_blocks can be represnted in a 32 bit variable
3986                  * as multiple of 512 bytes
3987                  */
3988                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3989                 raw_inode->i_blocks_high = 0;
3990                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3991         } else if (i_blocks <= 0xffffffffffffULL) {
3992                 /*
3993                  * i_blocks can be represented in a 48 bit variable
3994                  * as multiple of 512 bytes
3995                  */
3996                 err = ext4_update_rocompat_feature(handle, sb,
3997                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3998                 if (err)
3999                         goto  err_out;
4000                 /* i_block is stored in the split  48 bit fields */
4001                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4002                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4003                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4004         } else {
4005                 /*
4006                  * i_blocks should be represented in a 48 bit variable
4007                  * as multiple of  file system block size
4008                  */
4009                 err = ext4_update_rocompat_feature(handle, sb,
4010                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4011                 if (err)
4012                         goto  err_out;
4013                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4014                 /* i_block is stored in file system block size */
4015                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4016                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4017                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4018         }
4019 err_out:
4020         return err;
4021 }
4022
4023 /*
4024  * Post the struct inode info into an on-disk inode location in the
4025  * buffer-cache.  This gobbles the caller's reference to the
4026  * buffer_head in the inode location struct.
4027  *
4028  * The caller must have write access to iloc->bh.
4029  */
4030 static int ext4_do_update_inode(handle_t *handle,
4031                                 struct inode *inode,
4032                                 struct ext4_iloc *iloc)
4033 {
4034         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4035         struct ext4_inode_info *ei = EXT4_I(inode);
4036         struct buffer_head *bh = iloc->bh;
4037         int err = 0, rc, block;
4038
4039         /* For fields not not tracking in the in-memory inode,
4040          * initialise them to zero for new inodes. */
4041         if (ei->i_state & EXT4_STATE_NEW)
4042                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4043
4044         ext4_get_inode_flags(ei);
4045         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4046         if(!(test_opt(inode->i_sb, NO_UID32))) {
4047                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4048                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4049 /*
4050  * Fix up interoperability with old kernels. Otherwise, old inodes get
4051  * re-used with the upper 16 bits of the uid/gid intact
4052  */
4053                 if(!ei->i_dtime) {
4054                         raw_inode->i_uid_high =
4055                                 cpu_to_le16(high_16_bits(inode->i_uid));
4056                         raw_inode->i_gid_high =
4057                                 cpu_to_le16(high_16_bits(inode->i_gid));
4058                 } else {
4059                         raw_inode->i_uid_high = 0;
4060                         raw_inode->i_gid_high = 0;
4061                 }
4062         } else {
4063                 raw_inode->i_uid_low =
4064                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4065                 raw_inode->i_gid_low =
4066                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4067                 raw_inode->i_uid_high = 0;
4068                 raw_inode->i_gid_high = 0;
4069         }
4070         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4071
4072         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4073         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4074         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4075         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4076
4077         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4078                 goto out_brelse;
4079         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4080         /* clear the migrate flag in the raw_inode */
4081         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4082         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4083             cpu_to_le32(EXT4_OS_HURD))
4084                 raw_inode->i_file_acl_high =
4085                         cpu_to_le16(ei->i_file_acl >> 32);
4086         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4087         ext4_isize_set(raw_inode, ei->i_disksize);
4088         if (ei->i_disksize > 0x7fffffffULL) {
4089                 struct super_block *sb = inode->i_sb;
4090                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4091                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4092                                 EXT4_SB(sb)->s_es->s_rev_level ==
4093                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4094                         /* If this is the first large file
4095                          * created, add a flag to the superblock.
4096                          */
4097                         err = ext4_journal_get_write_access(handle,
4098                                         EXT4_SB(sb)->s_sbh);
4099                         if (err)
4100                                 goto out_brelse;
4101                         ext4_update_dynamic_rev(sb);
4102                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4103                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4104                         sb->s_dirt = 1;
4105                         handle->h_sync = 1;
4106                         err = ext4_journal_dirty_metadata(handle,
4107                                         EXT4_SB(sb)->s_sbh);
4108                 }
4109         }
4110         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4111         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4112                 if (old_valid_dev(inode->i_rdev)) {
4113                         raw_inode->i_block[0] =
4114                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4115                         raw_inode->i_block[1] = 0;
4116                 } else {
4117                         raw_inode->i_block[0] = 0;
4118                         raw_inode->i_block[1] =
4119                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4120                         raw_inode->i_block[2] = 0;
4121                 }
4122         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4123                 raw_inode->i_block[block] = ei->i_data[block];
4124
4125         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4126         if (ei->i_extra_isize) {
4127                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4128                         raw_inode->i_version_hi =
4129                         cpu_to_le32(inode->i_version >> 32);
4130                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4131         }
4132
4133
4134         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4135         rc = ext4_journal_dirty_metadata(handle, bh);
4136         if (!err)
4137                 err = rc;
4138         ei->i_state &= ~EXT4_STATE_NEW;
4139
4140 out_brelse:
4141         brelse (bh);
4142         ext4_std_error(inode->i_sb, err);
4143         return err;
4144 }
4145
4146 /*
4147  * ext4_write_inode()
4148  *
4149  * We are called from a few places:
4150  *
4151  * - Within generic_file_write() for O_SYNC files.
4152  *   Here, there will be no transaction running. We wait for any running
4153  *   trasnaction to commit.
4154  *
4155  * - Within sys_sync(), kupdate and such.
4156  *   We wait on commit, if tol to.
4157  *
4158  * - Within prune_icache() (PF_MEMALLOC == true)
4159  *   Here we simply return.  We can't afford to block kswapd on the
4160  *   journal commit.
4161  *
4162  * In all cases it is actually safe for us to return without doing anything,
4163  * because the inode has been copied into a raw inode buffer in
4164  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4165  * knfsd.
4166  *
4167  * Note that we are absolutely dependent upon all inode dirtiers doing the
4168  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4169  * which we are interested.
4170  *
4171  * It would be a bug for them to not do this.  The code:
4172  *
4173  *      mark_inode_dirty(inode)
4174  *      stuff();
4175  *      inode->i_size = expr;
4176  *
4177  * is in error because a kswapd-driven write_inode() could occur while
4178  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4179  * will no longer be on the superblock's dirty inode list.
4180  */
4181 int ext4_write_inode(struct inode *inode, int wait)
4182 {
4183         if (current->flags & PF_MEMALLOC)
4184                 return 0;
4185
4186         if (ext4_journal_current_handle()) {
4187                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4188                 dump_stack();
4189                 return -EIO;
4190         }
4191
4192         if (!wait)
4193                 return 0;
4194
4195         return ext4_force_commit(inode->i_sb);
4196 }
4197
4198 /*
4199  * ext4_setattr()
4200  *
4201  * Called from notify_change.
4202  *
4203  * We want to trap VFS attempts to truncate the file as soon as
4204  * possible.  In particular, we want to make sure that when the VFS
4205  * shrinks i_size, we put the inode on the orphan list and modify
4206  * i_disksize immediately, so that during the subsequent flushing of
4207  * dirty pages and freeing of disk blocks, we can guarantee that any
4208  * commit will leave the blocks being flushed in an unused state on
4209  * disk.  (On recovery, the inode will get truncated and the blocks will
4210  * be freed, so we have a strong guarantee that no future commit will
4211  * leave these blocks visible to the user.)
4212  *
4213  * Another thing we have to assure is that if we are in ordered mode
4214  * and inode is still attached to the committing transaction, we must
4215  * we start writeout of all the dirty pages which are being truncated.
4216  * This way we are sure that all the data written in the previous
4217  * transaction are already on disk (truncate waits for pages under
4218  * writeback).
4219  *
4220  * Called with inode->i_mutex down.
4221  */
4222 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4223 {
4224         struct inode *inode = dentry->d_inode;
4225         int error, rc = 0;
4226         const unsigned int ia_valid = attr->ia_valid;
4227
4228         error = inode_change_ok(inode, attr);
4229         if (error)
4230                 return error;
4231
4232         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4233                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4234                 handle_t *handle;
4235
4236                 /* (user+group)*(old+new) structure, inode write (sb,
4237                  * inode block, ? - but truncate inode update has it) */
4238                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4239                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4240                 if (IS_ERR(handle)) {
4241                         error = PTR_ERR(handle);
4242                         goto err_out;
4243                 }
4244                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4245                 if (error) {
4246                         ext4_journal_stop(handle);
4247                         return error;
4248                 }
4249                 /* Update corresponding info in inode so that everything is in
4250                  * one transaction */
4251                 if (attr->ia_valid & ATTR_UID)
4252                         inode->i_uid = attr->ia_uid;
4253                 if (attr->ia_valid & ATTR_GID)
4254                         inode->i_gid = attr->ia_gid;
4255                 error = ext4_mark_inode_dirty(handle, inode);
4256                 ext4_journal_stop(handle);
4257         }
4258
4259         if (attr->ia_valid & ATTR_SIZE) {
4260                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4261                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4262
4263                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4264                                 error = -EFBIG;
4265                                 goto err_out;
4266                         }
4267                 }
4268         }
4269
4270         if (S_ISREG(inode->i_mode) &&
4271             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4272                 handle_t *handle;
4273
4274                 handle = ext4_journal_start(inode, 3);
4275                 if (IS_ERR(handle)) {
4276                         error = PTR_ERR(handle);
4277                         goto err_out;
4278                 }
4279
4280                 error = ext4_orphan_add(handle, inode);
4281                 EXT4_I(inode)->i_disksize = attr->ia_size;
4282                 rc = ext4_mark_inode_dirty(handle, inode);
4283                 if (!error)
4284                         error = rc;
4285                 ext4_journal_stop(handle);
4286
4287                 if (ext4_should_order_data(inode)) {
4288                         error = ext4_begin_ordered_truncate(inode,
4289                                                             attr->ia_size);
4290                         if (error) {
4291                                 /* Do as much error cleanup as possible */
4292                                 handle = ext4_journal_start(inode, 3);
4293                                 if (IS_ERR(handle)) {
4294                                         ext4_orphan_del(NULL, inode);
4295                                         goto err_out;
4296                                 }
4297                                 ext4_orphan_del(handle, inode);
4298                                 ext4_journal_stop(handle);
4299                                 goto err_out;
4300                         }
4301                 }
4302         }
4303
4304         rc = inode_setattr(inode, attr);
4305
4306         /* If inode_setattr's call to ext4_truncate failed to get a
4307          * transaction handle at all, we need to clean up the in-core
4308          * orphan list manually. */
4309         if (inode->i_nlink)
4310                 ext4_orphan_del(NULL, inode);
4311
4312         if (!rc && (ia_valid & ATTR_MODE))
4313                 rc = ext4_acl_chmod(inode);
4314
4315 err_out:
4316         ext4_std_error(inode->i_sb, error);
4317         if (!error)
4318                 error = rc;
4319         return error;
4320 }
4321
4322 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4323                  struct kstat *stat)
4324 {
4325         struct inode *inode;
4326         unsigned long delalloc_blocks;
4327
4328         inode = dentry->d_inode;
4329         generic_fillattr(inode, stat);
4330
4331         /*
4332          * We can't update i_blocks if the block allocation is delayed
4333          * otherwise in the case of system crash before the real block
4334          * allocation is done, we will have i_blocks inconsistent with
4335          * on-disk file blocks.
4336          * We always keep i_blocks updated together with real
4337          * allocation. But to not confuse with user, stat
4338          * will return the blocks that include the delayed allocation
4339          * blocks for this file.
4340          */
4341         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4342         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4343         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4344
4345         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4346         return 0;
4347 }
4348
4349 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4350                                       int chunk)
4351 {
4352         int indirects;
4353
4354         /* if nrblocks are contiguous */
4355         if (chunk) {
4356                 /*
4357                  * With N contiguous data blocks, it need at most
4358                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4359                  * 2 dindirect blocks
4360                  * 1 tindirect block
4361                  */
4362                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4363                 return indirects + 3;
4364         }
4365         /*
4366          * if nrblocks are not contiguous, worse case, each block touch
4367          * a indirect block, and each indirect block touch a double indirect
4368          * block, plus a triple indirect block
4369          */
4370         indirects = nrblocks * 2 + 1;
4371         return indirects;
4372 }
4373
4374 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4375 {
4376         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4377                 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4378         return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4379 }
4380 /*
4381  * Account for index blocks, block groups bitmaps and block group
4382  * descriptor blocks if modify datablocks and index blocks
4383  * worse case, the indexs blocks spread over different block groups
4384  *
4385  * If datablocks are discontiguous, they are possible to spread over
4386  * different block groups too. If they are contiugous, with flexbg,
4387  * they could still across block group boundary.
4388  *
4389  * Also account for superblock, inode, quota and xattr blocks
4390  */
4391 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4392 {
4393         int groups, gdpblocks;
4394         int idxblocks;
4395         int ret = 0;
4396
4397         /*
4398          * How many index blocks need to touch to modify nrblocks?
4399          * The "Chunk" flag indicating whether the nrblocks is
4400          * physically contiguous on disk
4401          *
4402          * For Direct IO and fallocate, they calls get_block to allocate
4403          * one single extent at a time, so they could set the "Chunk" flag
4404          */
4405         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4406
4407         ret = idxblocks;
4408
4409         /*
4410          * Now let's see how many group bitmaps and group descriptors need
4411          * to account
4412          */
4413         groups = idxblocks;
4414         if (chunk)
4415                 groups += 1;
4416         else
4417                 groups += nrblocks;
4418
4419         gdpblocks = groups;
4420         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4421                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4422         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4423                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4424
4425         /* bitmaps and block group descriptor blocks */
4426         ret += groups + gdpblocks;
4427
4428         /* Blocks for super block, inode, quota and xattr blocks */
4429         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4430
4431         return ret;
4432 }
4433
4434 /*
4435  * Calulate the total number of credits to reserve to fit
4436  * the modification of a single pages into a single transaction,
4437  * which may include multiple chunks of block allocations.
4438  *
4439  * This could be called via ext4_write_begin() or later
4440  * ext4_da_writepages() in delalyed allocation case.
4441  *
4442  * In both case it's possible that we could allocating multiple
4443  * chunks of blocks. We need to consider the worse case, when
4444  * one new block per extent.
4445  */
4446 int ext4_writepage_trans_blocks(struct inode *inode)
4447 {
4448         int bpp = ext4_journal_blocks_per_page(inode);
4449         int ret;
4450
4451         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4452
4453         /* Account for data blocks for journalled mode */
4454         if (ext4_should_journal_data(inode))
4455                 ret += bpp;
4456         return ret;
4457 }
4458
4459 /*
4460  * Calculate the journal credits for a chunk of data modification.
4461  *
4462  * This is called from DIO, fallocate or whoever calling
4463  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4464  *
4465  * journal buffers for data blocks are not included here, as DIO
4466  * and fallocate do no need to journal data buffers.
4467  */
4468 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4469 {
4470         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4471 }
4472
4473 /*
4474  * The caller must have previously called ext4_reserve_inode_write().
4475  * Give this, we know that the caller already has write access to iloc->bh.
4476  */
4477 int ext4_mark_iloc_dirty(handle_t *handle,
4478                 struct inode *inode, struct ext4_iloc *iloc)
4479 {
4480         int err = 0;
4481
4482         if (test_opt(inode->i_sb, I_VERSION))
4483                 inode_inc_iversion(inode);
4484
4485         /* the do_update_inode consumes one bh->b_count */
4486         get_bh(iloc->bh);
4487
4488         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4489         err = ext4_do_update_inode(handle, inode, iloc);
4490         put_bh(iloc->bh);
4491         return err;
4492 }
4493
4494 /*
4495  * On success, We end up with an outstanding reference count against
4496  * iloc->bh.  This _must_ be cleaned up later.
4497  */
4498
4499 int
4500 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4501                          struct ext4_iloc *iloc)
4502 {
4503         int err = 0;
4504         if (handle) {
4505                 err = ext4_get_inode_loc(inode, iloc);
4506                 if (!err) {
4507                         BUFFER_TRACE(iloc->bh, "get_write_access");
4508                         err = ext4_journal_get_write_access(handle, iloc->bh);
4509                         if (err) {
4510                                 brelse(iloc->bh);
4511                                 iloc->bh = NULL;
4512                         }
4513                 }
4514         }
4515         ext4_std_error(inode->i_sb, err);
4516         return err;
4517 }
4518
4519 /*
4520  * Expand an inode by new_extra_isize bytes.
4521  * Returns 0 on success or negative error number on failure.
4522  */
4523 static int ext4_expand_extra_isize(struct inode *inode,
4524                                    unsigned int new_extra_isize,
4525                                    struct ext4_iloc iloc,
4526                                    handle_t *handle)
4527 {
4528         struct ext4_inode *raw_inode;
4529         struct ext4_xattr_ibody_header *header;
4530         struct ext4_xattr_entry *entry;
4531
4532         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4533                 return 0;
4534
4535         raw_inode = ext4_raw_inode(&iloc);
4536
4537         header = IHDR(inode, raw_inode);
4538         entry = IFIRST(header);
4539
4540         /* No extended attributes present */
4541         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4542                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4543                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4544                         new_extra_isize);
4545                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4546                 return 0;
4547         }
4548
4549         /* try to expand with EAs present */
4550         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4551                                           raw_inode, handle);
4552 }
4553
4554 /*
4555  * What we do here is to mark the in-core inode as clean with respect to inode
4556  * dirtiness (it may still be data-dirty).
4557  * This means that the in-core inode may be reaped by prune_icache
4558  * without having to perform any I/O.  This is a very good thing,
4559  * because *any* task may call prune_icache - even ones which
4560  * have a transaction open against a different journal.
4561  *
4562  * Is this cheating?  Not really.  Sure, we haven't written the
4563  * inode out, but prune_icache isn't a user-visible syncing function.
4564  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4565  * we start and wait on commits.
4566  *
4567  * Is this efficient/effective?  Well, we're being nice to the system
4568  * by cleaning up our inodes proactively so they can be reaped
4569  * without I/O.  But we are potentially leaving up to five seconds'
4570  * worth of inodes floating about which prune_icache wants us to
4571  * write out.  One way to fix that would be to get prune_icache()
4572  * to do a write_super() to free up some memory.  It has the desired
4573  * effect.
4574  */
4575 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4576 {
4577         struct ext4_iloc iloc;
4578         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4579         static unsigned int mnt_count;
4580         int err, ret;
4581
4582         might_sleep();
4583         err = ext4_reserve_inode_write(handle, inode, &iloc);
4584         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4585             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4586                 /*
4587                  * We need extra buffer credits since we may write into EA block
4588                  * with this same handle. If journal_extend fails, then it will
4589                  * only result in a minor loss of functionality for that inode.
4590                  * If this is felt to be critical, then e2fsck should be run to
4591                  * force a large enough s_min_extra_isize.
4592                  */
4593                 if ((jbd2_journal_extend(handle,
4594                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4595                         ret = ext4_expand_extra_isize(inode,
4596                                                       sbi->s_want_extra_isize,
4597                                                       iloc, handle);
4598                         if (ret) {
4599                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4600                                 if (mnt_count !=
4601                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4602                                         ext4_warning(inode->i_sb, __func__,
4603                                         "Unable to expand inode %lu. Delete"
4604                                         " some EAs or run e2fsck.",
4605                                         inode->i_ino);
4606                                         mnt_count =
4607                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4608                                 }
4609                         }
4610                 }
4611         }
4612         if (!err)
4613                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4614         return err;
4615 }
4616
4617 /*
4618  * ext4_dirty_inode() is called from __mark_inode_dirty()
4619  *
4620  * We're really interested in the case where a file is being extended.
4621  * i_size has been changed by generic_commit_write() and we thus need
4622  * to include the updated inode in the current transaction.
4623  *
4624  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4625  * are allocated to the file.
4626  *
4627  * If the inode is marked synchronous, we don't honour that here - doing
4628  * so would cause a commit on atime updates, which we don't bother doing.
4629  * We handle synchronous inodes at the highest possible level.
4630  */
4631 void ext4_dirty_inode(struct inode *inode)
4632 {
4633         handle_t *current_handle = ext4_journal_current_handle();
4634         handle_t *handle;
4635
4636         handle = ext4_journal_start(inode, 2);
4637         if (IS_ERR(handle))
4638                 goto out;
4639         if (current_handle &&
4640                 current_handle->h_transaction != handle->h_transaction) {
4641                 /* This task has a transaction open against a different fs */
4642                 printk(KERN_EMERG "%s: transactions do not match!\n",
4643                        __func__);
4644         } else {
4645                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4646                                 current_handle);
4647                 ext4_mark_inode_dirty(handle, inode);
4648         }
4649         ext4_journal_stop(handle);
4650 out:
4651         return;
4652 }
4653
4654 #if 0
4655 /*
4656  * Bind an inode's backing buffer_head into this transaction, to prevent
4657  * it from being flushed to disk early.  Unlike
4658  * ext4_reserve_inode_write, this leaves behind no bh reference and
4659  * returns no iloc structure, so the caller needs to repeat the iloc
4660  * lookup to mark the inode dirty later.
4661  */
4662 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4663 {
4664         struct ext4_iloc iloc;
4665
4666         int err = 0;
4667         if (handle) {
4668                 err = ext4_get_inode_loc(inode, &iloc);
4669                 if (!err) {
4670                         BUFFER_TRACE(iloc.bh, "get_write_access");
4671                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4672                         if (!err)
4673                                 err = ext4_journal_dirty_metadata(handle,
4674                                                                   iloc.bh);
4675                         brelse(iloc.bh);
4676                 }
4677         }
4678         ext4_std_error(inode->i_sb, err);
4679         return err;
4680 }
4681 #endif
4682
4683 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4684 {
4685         journal_t *journal;
4686         handle_t *handle;
4687         int err;
4688
4689         /*
4690          * We have to be very careful here: changing a data block's
4691          * journaling status dynamically is dangerous.  If we write a
4692          * data block to the journal, change the status and then delete
4693          * that block, we risk forgetting to revoke the old log record
4694          * from the journal and so a subsequent replay can corrupt data.
4695          * So, first we make sure that the journal is empty and that
4696          * nobody is changing anything.
4697          */
4698
4699         journal = EXT4_JOURNAL(inode);
4700         if (is_journal_aborted(journal))
4701                 return -EROFS;
4702
4703         jbd2_journal_lock_updates(journal);
4704         jbd2_journal_flush(journal);
4705
4706         /*
4707          * OK, there are no updates running now, and all cached data is
4708          * synced to disk.  We are now in a completely consistent state
4709          * which doesn't have anything in the journal, and we know that
4710          * no filesystem updates are running, so it is safe to modify
4711          * the inode's in-core data-journaling state flag now.
4712          */
4713
4714         if (val)
4715                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4716         else
4717                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4718         ext4_set_aops(inode);
4719
4720         jbd2_journal_unlock_updates(journal);
4721
4722         /* Finally we can mark the inode as dirty. */
4723
4724         handle = ext4_journal_start(inode, 1);
4725         if (IS_ERR(handle))
4726                 return PTR_ERR(handle);
4727
4728         err = ext4_mark_inode_dirty(handle, inode);
4729         handle->h_sync = 1;
4730         ext4_journal_stop(handle);
4731         ext4_std_error(inode->i_sb, err);
4732
4733         return err;
4734 }
4735
4736 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4737 {
4738         return !buffer_mapped(bh);
4739 }
4740
4741 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4742 {
4743         loff_t size;
4744         unsigned long len;
4745         int ret = -EINVAL;
4746         struct file *file = vma->vm_file;
4747         struct inode *inode = file->f_path.dentry->d_inode;
4748         struct address_space *mapping = inode->i_mapping;
4749
4750         /*
4751          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4752          * get i_mutex because we are already holding mmap_sem.
4753          */
4754         down_read(&inode->i_alloc_sem);
4755         size = i_size_read(inode);
4756         if (page->mapping != mapping || size <= page_offset(page)
4757             || !PageUptodate(page)) {
4758                 /* page got truncated from under us? */
4759                 goto out_unlock;
4760         }
4761         ret = 0;
4762         if (PageMappedToDisk(page))
4763                 goto out_unlock;
4764
4765         if (page->index == size >> PAGE_CACHE_SHIFT)
4766                 len = size & ~PAGE_CACHE_MASK;
4767         else
4768                 len = PAGE_CACHE_SIZE;
4769
4770         if (page_has_buffers(page)) {
4771                 /* return if we have all the buffers mapped */
4772                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4773                                        ext4_bh_unmapped))
4774                         goto out_unlock;
4775         }
4776         /*
4777          * OK, we need to fill the hole... Do write_begin write_end
4778          * to do block allocation/reservation.We are not holding
4779          * inode.i__mutex here. That allow * parallel write_begin,
4780          * write_end call. lock_page prevent this from happening
4781          * on the same page though
4782          */
4783         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4784                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4785         if (ret < 0)
4786                 goto out_unlock;
4787         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4788                         len, len, page, NULL);
4789         if (ret < 0)
4790                 goto out_unlock;
4791         ret = 0;
4792 out_unlock:
4793         up_read(&inode->i_alloc_sem);
4794         return ret;
4795 }