ext4: call ext4_forget() from ext4_free_blocks()
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52                                               loff_t new_size)
53 {
54         return jbd2_journal_begin_ordered_truncate(
55                                         EXT4_SB(inode->i_sb)->s_journal,
56                                         &EXT4_I(inode)->jinode,
57                                         new_size);
58 }
59
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
61
62 /*
63  * Test whether an inode is a fast symlink.
64  */
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 {
67         int ea_blocks = EXT4_I(inode)->i_file_acl ?
68                 (inode->i_sb->s_blocksize >> 9) : 0;
69
70         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71 }
72
73 /*
74  * Work out how many blocks we need to proceed with the next chunk of a
75  * truncate transaction.
76  */
77 static unsigned long blocks_for_truncate(struct inode *inode)
78 {
79         ext4_lblk_t needed;
80
81         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
82
83         /* Give ourselves just enough room to cope with inodes in which
84          * i_blocks is corrupt: we've seen disk corruptions in the past
85          * which resulted in random data in an inode which looked enough
86          * like a regular file for ext4 to try to delete it.  Things
87          * will go a bit crazy if that happens, but at least we should
88          * try not to panic the whole kernel. */
89         if (needed < 2)
90                 needed = 2;
91
92         /* But we need to bound the transaction so we don't overflow the
93          * journal. */
94         if (needed > EXT4_MAX_TRANS_DATA)
95                 needed = EXT4_MAX_TRANS_DATA;
96
97         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
98 }
99
100 /*
101  * Truncate transactions can be complex and absolutely huge.  So we need to
102  * be able to restart the transaction at a conventient checkpoint to make
103  * sure we don't overflow the journal.
104  *
105  * start_transaction gets us a new handle for a truncate transaction,
106  * and extend_transaction tries to extend the existing one a bit.  If
107  * extend fails, we need to propagate the failure up and restart the
108  * transaction in the top-level truncate loop. --sct
109  */
110 static handle_t *start_transaction(struct inode *inode)
111 {
112         handle_t *result;
113
114         result = ext4_journal_start(inode, blocks_for_truncate(inode));
115         if (!IS_ERR(result))
116                 return result;
117
118         ext4_std_error(inode->i_sb, PTR_ERR(result));
119         return result;
120 }
121
122 /*
123  * Try to extend this transaction for the purposes of truncation.
124  *
125  * Returns 0 if we managed to create more room.  If we can't create more
126  * room, and the transaction must be restarted we return 1.
127  */
128 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
129 {
130         if (!ext4_handle_valid(handle))
131                 return 0;
132         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
133                 return 0;
134         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
135                 return 0;
136         return 1;
137 }
138
139 /*
140  * Restart the transaction associated with *handle.  This does a commit,
141  * so before we call here everything must be consistently dirtied against
142  * this transaction.
143  */
144 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
145                                  int nblocks)
146 {
147         int ret;
148
149         /*
150          * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
151          * moment, get_block can be called only for blocks inside i_size since
152          * page cache has been already dropped and writes are blocked by
153          * i_mutex. So we can safely drop the i_data_sem here.
154          */
155         BUG_ON(EXT4_JOURNAL(inode) == NULL);
156         jbd_debug(2, "restarting handle %p\n", handle);
157         up_write(&EXT4_I(inode)->i_data_sem);
158         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
159         down_write(&EXT4_I(inode)->i_data_sem);
160         ext4_discard_preallocations(inode);
161
162         return ret;
163 }
164
165 /*
166  * Called at the last iput() if i_nlink is zero.
167  */
168 void ext4_delete_inode(struct inode *inode)
169 {
170         handle_t *handle;
171         int err;
172
173         if (ext4_should_order_data(inode))
174                 ext4_begin_ordered_truncate(inode, 0);
175         truncate_inode_pages(&inode->i_data, 0);
176
177         if (is_bad_inode(inode))
178                 goto no_delete;
179
180         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
181         if (IS_ERR(handle)) {
182                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
183                 /*
184                  * If we're going to skip the normal cleanup, we still need to
185                  * make sure that the in-core orphan linked list is properly
186                  * cleaned up.
187                  */
188                 ext4_orphan_del(NULL, inode);
189                 goto no_delete;
190         }
191
192         if (IS_SYNC(inode))
193                 ext4_handle_sync(handle);
194         inode->i_size = 0;
195         err = ext4_mark_inode_dirty(handle, inode);
196         if (err) {
197                 ext4_warning(inode->i_sb, __func__,
198                              "couldn't mark inode dirty (err %d)", err);
199                 goto stop_handle;
200         }
201         if (inode->i_blocks)
202                 ext4_truncate(inode);
203
204         /*
205          * ext4_ext_truncate() doesn't reserve any slop when it
206          * restarts journal transactions; therefore there may not be
207          * enough credits left in the handle to remove the inode from
208          * the orphan list and set the dtime field.
209          */
210         if (!ext4_handle_has_enough_credits(handle, 3)) {
211                 err = ext4_journal_extend(handle, 3);
212                 if (err > 0)
213                         err = ext4_journal_restart(handle, 3);
214                 if (err != 0) {
215                         ext4_warning(inode->i_sb, __func__,
216                                      "couldn't extend journal (err %d)", err);
217                 stop_handle:
218                         ext4_journal_stop(handle);
219                         goto no_delete;
220                 }
221         }
222
223         /*
224          * Kill off the orphan record which ext4_truncate created.
225          * AKPM: I think this can be inside the above `if'.
226          * Note that ext4_orphan_del() has to be able to cope with the
227          * deletion of a non-existent orphan - this is because we don't
228          * know if ext4_truncate() actually created an orphan record.
229          * (Well, we could do this if we need to, but heck - it works)
230          */
231         ext4_orphan_del(handle, inode);
232         EXT4_I(inode)->i_dtime  = get_seconds();
233
234         /*
235          * One subtle ordering requirement: if anything has gone wrong
236          * (transaction abort, IO errors, whatever), then we can still
237          * do these next steps (the fs will already have been marked as
238          * having errors), but we can't free the inode if the mark_dirty
239          * fails.
240          */
241         if (ext4_mark_inode_dirty(handle, inode))
242                 /* If that failed, just do the required in-core inode clear. */
243                 clear_inode(inode);
244         else
245                 ext4_free_inode(handle, inode);
246         ext4_journal_stop(handle);
247         return;
248 no_delete:
249         clear_inode(inode);     /* We must guarantee clearing of inode... */
250 }
251
252 typedef struct {
253         __le32  *p;
254         __le32  key;
255         struct buffer_head *bh;
256 } Indirect;
257
258 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
259 {
260         p->key = *(p->p = v);
261         p->bh = bh;
262 }
263
264 /**
265  *      ext4_block_to_path - parse the block number into array of offsets
266  *      @inode: inode in question (we are only interested in its superblock)
267  *      @i_block: block number to be parsed
268  *      @offsets: array to store the offsets in
269  *      @boundary: set this non-zero if the referred-to block is likely to be
270  *             followed (on disk) by an indirect block.
271  *
272  *      To store the locations of file's data ext4 uses a data structure common
273  *      for UNIX filesystems - tree of pointers anchored in the inode, with
274  *      data blocks at leaves and indirect blocks in intermediate nodes.
275  *      This function translates the block number into path in that tree -
276  *      return value is the path length and @offsets[n] is the offset of
277  *      pointer to (n+1)th node in the nth one. If @block is out of range
278  *      (negative or too large) warning is printed and zero returned.
279  *
280  *      Note: function doesn't find node addresses, so no IO is needed. All
281  *      we need to know is the capacity of indirect blocks (taken from the
282  *      inode->i_sb).
283  */
284
285 /*
286  * Portability note: the last comparison (check that we fit into triple
287  * indirect block) is spelled differently, because otherwise on an
288  * architecture with 32-bit longs and 8Kb pages we might get into trouble
289  * if our filesystem had 8Kb blocks. We might use long long, but that would
290  * kill us on x86. Oh, well, at least the sign propagation does not matter -
291  * i_block would have to be negative in the very beginning, so we would not
292  * get there at all.
293  */
294
295 static int ext4_block_to_path(struct inode *inode,
296                               ext4_lblk_t i_block,
297                               ext4_lblk_t offsets[4], int *boundary)
298 {
299         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
300         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
301         const long direct_blocks = EXT4_NDIR_BLOCKS,
302                 indirect_blocks = ptrs,
303                 double_blocks = (1 << (ptrs_bits * 2));
304         int n = 0;
305         int final = 0;
306
307         if (i_block < direct_blocks) {
308                 offsets[n++] = i_block;
309                 final = direct_blocks;
310         } else if ((i_block -= direct_blocks) < indirect_blocks) {
311                 offsets[n++] = EXT4_IND_BLOCK;
312                 offsets[n++] = i_block;
313                 final = ptrs;
314         } else if ((i_block -= indirect_blocks) < double_blocks) {
315                 offsets[n++] = EXT4_DIND_BLOCK;
316                 offsets[n++] = i_block >> ptrs_bits;
317                 offsets[n++] = i_block & (ptrs - 1);
318                 final = ptrs;
319         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
320                 offsets[n++] = EXT4_TIND_BLOCK;
321                 offsets[n++] = i_block >> (ptrs_bits * 2);
322                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
323                 offsets[n++] = i_block & (ptrs - 1);
324                 final = ptrs;
325         } else {
326                 ext4_warning(inode->i_sb, "ext4_block_to_path",
327                              "block %lu > max in inode %lu",
328                              i_block + direct_blocks +
329                              indirect_blocks + double_blocks, inode->i_ino);
330         }
331         if (boundary)
332                 *boundary = final - 1 - (i_block & (ptrs - 1));
333         return n;
334 }
335
336 static int __ext4_check_blockref(const char *function, struct inode *inode,
337                                  __le32 *p, unsigned int max)
338 {
339         __le32 *bref = p;
340         unsigned int blk;
341
342         while (bref < p+max) {
343                 blk = le32_to_cpu(*bref++);
344                 if (blk &&
345                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
346                                                     blk, 1))) {
347                         ext4_error(inode->i_sb, function,
348                                    "invalid block reference %u "
349                                    "in inode #%lu", blk, inode->i_ino);
350                         return -EIO;
351                 }
352         }
353         return 0;
354 }
355
356
357 #define ext4_check_indirect_blockref(inode, bh)                         \
358         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
359                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
360
361 #define ext4_check_inode_blockref(inode)                                \
362         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
363                               EXT4_NDIR_BLOCKS)
364
365 /**
366  *      ext4_get_branch - read the chain of indirect blocks leading to data
367  *      @inode: inode in question
368  *      @depth: depth of the chain (1 - direct pointer, etc.)
369  *      @offsets: offsets of pointers in inode/indirect blocks
370  *      @chain: place to store the result
371  *      @err: here we store the error value
372  *
373  *      Function fills the array of triples <key, p, bh> and returns %NULL
374  *      if everything went OK or the pointer to the last filled triple
375  *      (incomplete one) otherwise. Upon the return chain[i].key contains
376  *      the number of (i+1)-th block in the chain (as it is stored in memory,
377  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
378  *      number (it points into struct inode for i==0 and into the bh->b_data
379  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380  *      block for i>0 and NULL for i==0. In other words, it holds the block
381  *      numbers of the chain, addresses they were taken from (and where we can
382  *      verify that chain did not change) and buffer_heads hosting these
383  *      numbers.
384  *
385  *      Function stops when it stumbles upon zero pointer (absent block)
386  *              (pointer to last triple returned, *@err == 0)
387  *      or when it gets an IO error reading an indirect block
388  *              (ditto, *@err == -EIO)
389  *      or when it reads all @depth-1 indirect blocks successfully and finds
390  *      the whole chain, all way to the data (returns %NULL, *err == 0).
391  *
392  *      Need to be called with
393  *      down_read(&EXT4_I(inode)->i_data_sem)
394  */
395 static Indirect *ext4_get_branch(struct inode *inode, int depth,
396                                  ext4_lblk_t  *offsets,
397                                  Indirect chain[4], int *err)
398 {
399         struct super_block *sb = inode->i_sb;
400         Indirect *p = chain;
401         struct buffer_head *bh;
402
403         *err = 0;
404         /* i_data is not going away, no lock needed */
405         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
406         if (!p->key)
407                 goto no_block;
408         while (--depth) {
409                 bh = sb_getblk(sb, le32_to_cpu(p->key));
410                 if (unlikely(!bh))
411                         goto failure;
412
413                 if (!bh_uptodate_or_lock(bh)) {
414                         if (bh_submit_read(bh) < 0) {
415                                 put_bh(bh);
416                                 goto failure;
417                         }
418                         /* validate block references */
419                         if (ext4_check_indirect_blockref(inode, bh)) {
420                                 put_bh(bh);
421                                 goto failure;
422                         }
423                 }
424
425                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
426                 /* Reader: end */
427                 if (!p->key)
428                         goto no_block;
429         }
430         return NULL;
431
432 failure:
433         *err = -EIO;
434 no_block:
435         return p;
436 }
437
438 /**
439  *      ext4_find_near - find a place for allocation with sufficient locality
440  *      @inode: owner
441  *      @ind: descriptor of indirect block.
442  *
443  *      This function returns the preferred place for block allocation.
444  *      It is used when heuristic for sequential allocation fails.
445  *      Rules are:
446  *        + if there is a block to the left of our position - allocate near it.
447  *        + if pointer will live in indirect block - allocate near that block.
448  *        + if pointer will live in inode - allocate in the same
449  *          cylinder group.
450  *
451  * In the latter case we colour the starting block by the callers PID to
452  * prevent it from clashing with concurrent allocations for a different inode
453  * in the same block group.   The PID is used here so that functionally related
454  * files will be close-by on-disk.
455  *
456  *      Caller must make sure that @ind is valid and will stay that way.
457  */
458 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
459 {
460         struct ext4_inode_info *ei = EXT4_I(inode);
461         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
462         __le32 *p;
463         ext4_fsblk_t bg_start;
464         ext4_fsblk_t last_block;
465         ext4_grpblk_t colour;
466         ext4_group_t block_group;
467         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
468
469         /* Try to find previous block */
470         for (p = ind->p - 1; p >= start; p--) {
471                 if (*p)
472                         return le32_to_cpu(*p);
473         }
474
475         /* No such thing, so let's try location of indirect block */
476         if (ind->bh)
477                 return ind->bh->b_blocknr;
478
479         /*
480          * It is going to be referred to from the inode itself? OK, just put it
481          * into the same cylinder group then.
482          */
483         block_group = ei->i_block_group;
484         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
485                 block_group &= ~(flex_size-1);
486                 if (S_ISREG(inode->i_mode))
487                         block_group++;
488         }
489         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
490         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
491
492         /*
493          * If we are doing delayed allocation, we don't need take
494          * colour into account.
495          */
496         if (test_opt(inode->i_sb, DELALLOC))
497                 return bg_start;
498
499         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
500                 colour = (current->pid % 16) *
501                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
502         else
503                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
504         return bg_start + colour;
505 }
506
507 /**
508  *      ext4_find_goal - find a preferred place for allocation.
509  *      @inode: owner
510  *      @block:  block we want
511  *      @partial: pointer to the last triple within a chain
512  *
513  *      Normally this function find the preferred place for block allocation,
514  *      returns it.
515  *      Because this is only used for non-extent files, we limit the block nr
516  *      to 32 bits.
517  */
518 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
519                                    Indirect *partial)
520 {
521         ext4_fsblk_t goal;
522
523         /*
524          * XXX need to get goal block from mballoc's data structures
525          */
526
527         goal = ext4_find_near(inode, partial);
528         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
529         return goal;
530 }
531
532 /**
533  *      ext4_blks_to_allocate: Look up the block map and count the number
534  *      of direct blocks need to be allocated for the given branch.
535  *
536  *      @branch: chain of indirect blocks
537  *      @k: number of blocks need for indirect blocks
538  *      @blks: number of data blocks to be mapped.
539  *      @blocks_to_boundary:  the offset in the indirect block
540  *
541  *      return the total number of blocks to be allocate, including the
542  *      direct and indirect blocks.
543  */
544 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
545                                  int blocks_to_boundary)
546 {
547         unsigned int count = 0;
548
549         /*
550          * Simple case, [t,d]Indirect block(s) has not allocated yet
551          * then it's clear blocks on that path have not allocated
552          */
553         if (k > 0) {
554                 /* right now we don't handle cross boundary allocation */
555                 if (blks < blocks_to_boundary + 1)
556                         count += blks;
557                 else
558                         count += blocks_to_boundary + 1;
559                 return count;
560         }
561
562         count++;
563         while (count < blks && count <= blocks_to_boundary &&
564                 le32_to_cpu(*(branch[0].p + count)) == 0) {
565                 count++;
566         }
567         return count;
568 }
569
570 /**
571  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
572  *      @indirect_blks: the number of blocks need to allocate for indirect
573  *                      blocks
574  *
575  *      @new_blocks: on return it will store the new block numbers for
576  *      the indirect blocks(if needed) and the first direct block,
577  *      @blks:  on return it will store the total number of allocated
578  *              direct blocks
579  */
580 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
581                              ext4_lblk_t iblock, ext4_fsblk_t goal,
582                              int indirect_blks, int blks,
583                              ext4_fsblk_t new_blocks[4], int *err)
584 {
585         struct ext4_allocation_request ar;
586         int target, i;
587         unsigned long count = 0, blk_allocated = 0;
588         int index = 0;
589         ext4_fsblk_t current_block = 0;
590         int ret = 0;
591
592         /*
593          * Here we try to allocate the requested multiple blocks at once,
594          * on a best-effort basis.
595          * To build a branch, we should allocate blocks for
596          * the indirect blocks(if not allocated yet), and at least
597          * the first direct block of this branch.  That's the
598          * minimum number of blocks need to allocate(required)
599          */
600         /* first we try to allocate the indirect blocks */
601         target = indirect_blks;
602         while (target > 0) {
603                 count = target;
604                 /* allocating blocks for indirect blocks and direct blocks */
605                 current_block = ext4_new_meta_blocks(handle, inode,
606                                                         goal, &count, err);
607                 if (*err)
608                         goto failed_out;
609
610                 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
611
612                 target -= count;
613                 /* allocate blocks for indirect blocks */
614                 while (index < indirect_blks && count) {
615                         new_blocks[index++] = current_block++;
616                         count--;
617                 }
618                 if (count > 0) {
619                         /*
620                          * save the new block number
621                          * for the first direct block
622                          */
623                         new_blocks[index] = current_block;
624                         printk(KERN_INFO "%s returned more blocks than "
625                                                 "requested\n", __func__);
626                         WARN_ON(1);
627                         break;
628                 }
629         }
630
631         target = blks - count ;
632         blk_allocated = count;
633         if (!target)
634                 goto allocated;
635         /* Now allocate data blocks */
636         memset(&ar, 0, sizeof(ar));
637         ar.inode = inode;
638         ar.goal = goal;
639         ar.len = target;
640         ar.logical = iblock;
641         if (S_ISREG(inode->i_mode))
642                 /* enable in-core preallocation only for regular files */
643                 ar.flags = EXT4_MB_HINT_DATA;
644
645         current_block = ext4_mb_new_blocks(handle, &ar, err);
646         BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
647
648         if (*err && (target == blks)) {
649                 /*
650                  * if the allocation failed and we didn't allocate
651                  * any blocks before
652                  */
653                 goto failed_out;
654         }
655         if (!*err) {
656                 if (target == blks) {
657                         /*
658                          * save the new block number
659                          * for the first direct block
660                          */
661                         new_blocks[index] = current_block;
662                 }
663                 blk_allocated += ar.len;
664         }
665 allocated:
666         /* total number of blocks allocated for direct blocks */
667         ret = blk_allocated;
668         *err = 0;
669         return ret;
670 failed_out:
671         for (i = 0; i < index; i++)
672                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
673         return ret;
674 }
675
676 /**
677  *      ext4_alloc_branch - allocate and set up a chain of blocks.
678  *      @inode: owner
679  *      @indirect_blks: number of allocated indirect blocks
680  *      @blks: number of allocated direct blocks
681  *      @offsets: offsets (in the blocks) to store the pointers to next.
682  *      @branch: place to store the chain in.
683  *
684  *      This function allocates blocks, zeroes out all but the last one,
685  *      links them into chain and (if we are synchronous) writes them to disk.
686  *      In other words, it prepares a branch that can be spliced onto the
687  *      inode. It stores the information about that chain in the branch[], in
688  *      the same format as ext4_get_branch() would do. We are calling it after
689  *      we had read the existing part of chain and partial points to the last
690  *      triple of that (one with zero ->key). Upon the exit we have the same
691  *      picture as after the successful ext4_get_block(), except that in one
692  *      place chain is disconnected - *branch->p is still zero (we did not
693  *      set the last link), but branch->key contains the number that should
694  *      be placed into *branch->p to fill that gap.
695  *
696  *      If allocation fails we free all blocks we've allocated (and forget
697  *      their buffer_heads) and return the error value the from failed
698  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
699  *      as described above and return 0.
700  */
701 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
702                              ext4_lblk_t iblock, int indirect_blks,
703                              int *blks, ext4_fsblk_t goal,
704                              ext4_lblk_t *offsets, Indirect *branch)
705 {
706         int blocksize = inode->i_sb->s_blocksize;
707         int i, n = 0;
708         int err = 0;
709         struct buffer_head *bh;
710         int num;
711         ext4_fsblk_t new_blocks[4];
712         ext4_fsblk_t current_block;
713
714         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
715                                 *blks, new_blocks, &err);
716         if (err)
717                 return err;
718
719         branch[0].key = cpu_to_le32(new_blocks[0]);
720         /*
721          * metadata blocks and data blocks are allocated.
722          */
723         for (n = 1; n <= indirect_blks;  n++) {
724                 /*
725                  * Get buffer_head for parent block, zero it out
726                  * and set the pointer to new one, then send
727                  * parent to disk.
728                  */
729                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
730                 branch[n].bh = bh;
731                 lock_buffer(bh);
732                 BUFFER_TRACE(bh, "call get_create_access");
733                 err = ext4_journal_get_create_access(handle, bh);
734                 if (err) {
735                         /* Don't brelse(bh) here; it's done in
736                          * ext4_journal_forget() below */
737                         unlock_buffer(bh);
738                         goto failed;
739                 }
740
741                 memset(bh->b_data, 0, blocksize);
742                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
743                 branch[n].key = cpu_to_le32(new_blocks[n]);
744                 *branch[n].p = branch[n].key;
745                 if (n == indirect_blks) {
746                         current_block = new_blocks[n];
747                         /*
748                          * End of chain, update the last new metablock of
749                          * the chain to point to the new allocated
750                          * data blocks numbers
751                          */
752                         for (i = 1; i < num; i++)
753                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
754                 }
755                 BUFFER_TRACE(bh, "marking uptodate");
756                 set_buffer_uptodate(bh);
757                 unlock_buffer(bh);
758
759                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
760                 err = ext4_handle_dirty_metadata(handle, inode, bh);
761                 if (err)
762                         goto failed;
763         }
764         *blks = num;
765         return err;
766 failed:
767         /* Allocation failed, free what we already allocated */
768         ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
769         for (i = 1; i <= n ; i++) {
770                 /* 
771                  * branch[i].bh is newly allocated, so there is no
772                  * need to revoke the block, which is why we don't
773                  * need to set EXT4_FREE_BLOCKS_METADATA.
774                  */
775                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
776                                  EXT4_FREE_BLOCKS_FORGET);
777         }
778         for (i = n+1; i < indirect_blks; i++)
779                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
780
781         ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
782
783         return err;
784 }
785
786 /**
787  * ext4_splice_branch - splice the allocated branch onto inode.
788  * @inode: owner
789  * @block: (logical) number of block we are adding
790  * @chain: chain of indirect blocks (with a missing link - see
791  *      ext4_alloc_branch)
792  * @where: location of missing link
793  * @num:   number of indirect blocks we are adding
794  * @blks:  number of direct blocks we are adding
795  *
796  * This function fills the missing link and does all housekeeping needed in
797  * inode (->i_blocks, etc.). In case of success we end up with the full
798  * chain to new block and return 0.
799  */
800 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
801                               ext4_lblk_t block, Indirect *where, int num,
802                               int blks)
803 {
804         int i;
805         int err = 0;
806         ext4_fsblk_t current_block;
807
808         /*
809          * If we're splicing into a [td]indirect block (as opposed to the
810          * inode) then we need to get write access to the [td]indirect block
811          * before the splice.
812          */
813         if (where->bh) {
814                 BUFFER_TRACE(where->bh, "get_write_access");
815                 err = ext4_journal_get_write_access(handle, where->bh);
816                 if (err)
817                         goto err_out;
818         }
819         /* That's it */
820
821         *where->p = where->key;
822
823         /*
824          * Update the host buffer_head or inode to point to more just allocated
825          * direct blocks blocks
826          */
827         if (num == 0 && blks > 1) {
828                 current_block = le32_to_cpu(where->key) + 1;
829                 for (i = 1; i < blks; i++)
830                         *(where->p + i) = cpu_to_le32(current_block++);
831         }
832
833         /* We are done with atomic stuff, now do the rest of housekeeping */
834         /* had we spliced it onto indirect block? */
835         if (where->bh) {
836                 /*
837                  * If we spliced it onto an indirect block, we haven't
838                  * altered the inode.  Note however that if it is being spliced
839                  * onto an indirect block at the very end of the file (the
840                  * file is growing) then we *will* alter the inode to reflect
841                  * the new i_size.  But that is not done here - it is done in
842                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
843                  */
844                 jbd_debug(5, "splicing indirect only\n");
845                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
846                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
847                 if (err)
848                         goto err_out;
849         } else {
850                 /*
851                  * OK, we spliced it into the inode itself on a direct block.
852                  */
853                 ext4_mark_inode_dirty(handle, inode);
854                 jbd_debug(5, "splicing direct\n");
855         }
856         return err;
857
858 err_out:
859         for (i = 1; i <= num; i++) {
860                 /* 
861                  * branch[i].bh is newly allocated, so there is no
862                  * need to revoke the block, which is why we don't
863                  * need to set EXT4_FREE_BLOCKS_METADATA.
864                  */
865                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
866                                  EXT4_FREE_BLOCKS_FORGET);
867         }
868         ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
869                          blks, 0);
870
871         return err;
872 }
873
874 /*
875  * The ext4_ind_get_blocks() function handles non-extents inodes
876  * (i.e., using the traditional indirect/double-indirect i_blocks
877  * scheme) for ext4_get_blocks().
878  *
879  * Allocation strategy is simple: if we have to allocate something, we will
880  * have to go the whole way to leaf. So let's do it before attaching anything
881  * to tree, set linkage between the newborn blocks, write them if sync is
882  * required, recheck the path, free and repeat if check fails, otherwise
883  * set the last missing link (that will protect us from any truncate-generated
884  * removals - all blocks on the path are immune now) and possibly force the
885  * write on the parent block.
886  * That has a nice additional property: no special recovery from the failed
887  * allocations is needed - we simply release blocks and do not touch anything
888  * reachable from inode.
889  *
890  * `handle' can be NULL if create == 0.
891  *
892  * return > 0, # of blocks mapped or allocated.
893  * return = 0, if plain lookup failed.
894  * return < 0, error case.
895  *
896  * The ext4_ind_get_blocks() function should be called with
897  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
898  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
899  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
900  * blocks.
901  */
902 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
903                                ext4_lblk_t iblock, unsigned int maxblocks,
904                                struct buffer_head *bh_result,
905                                int flags)
906 {
907         int err = -EIO;
908         ext4_lblk_t offsets[4];
909         Indirect chain[4];
910         Indirect *partial;
911         ext4_fsblk_t goal;
912         int indirect_blks;
913         int blocks_to_boundary = 0;
914         int depth;
915         int count = 0;
916         ext4_fsblk_t first_block = 0;
917
918         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
919         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
920         depth = ext4_block_to_path(inode, iblock, offsets,
921                                    &blocks_to_boundary);
922
923         if (depth == 0)
924                 goto out;
925
926         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
927
928         /* Simplest case - block found, no allocation needed */
929         if (!partial) {
930                 first_block = le32_to_cpu(chain[depth - 1].key);
931                 clear_buffer_new(bh_result);
932                 count++;
933                 /*map more blocks*/
934                 while (count < maxblocks && count <= blocks_to_boundary) {
935                         ext4_fsblk_t blk;
936
937                         blk = le32_to_cpu(*(chain[depth-1].p + count));
938
939                         if (blk == first_block + count)
940                                 count++;
941                         else
942                                 break;
943                 }
944                 goto got_it;
945         }
946
947         /* Next simple case - plain lookup or failed read of indirect block */
948         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
949                 goto cleanup;
950
951         /*
952          * Okay, we need to do block allocation.
953         */
954         goal = ext4_find_goal(inode, iblock, partial);
955
956         /* the number of blocks need to allocate for [d,t]indirect blocks */
957         indirect_blks = (chain + depth) - partial - 1;
958
959         /*
960          * Next look up the indirect map to count the totoal number of
961          * direct blocks to allocate for this branch.
962          */
963         count = ext4_blks_to_allocate(partial, indirect_blks,
964                                         maxblocks, blocks_to_boundary);
965         /*
966          * Block out ext4_truncate while we alter the tree
967          */
968         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
969                                 &count, goal,
970                                 offsets + (partial - chain), partial);
971
972         /*
973          * The ext4_splice_branch call will free and forget any buffers
974          * on the new chain if there is a failure, but that risks using
975          * up transaction credits, especially for bitmaps where the
976          * credits cannot be returned.  Can we handle this somehow?  We
977          * may need to return -EAGAIN upwards in the worst case.  --sct
978          */
979         if (!err)
980                 err = ext4_splice_branch(handle, inode, iblock,
981                                          partial, indirect_blks, count);
982         if (err)
983                 goto cleanup;
984
985         set_buffer_new(bh_result);
986 got_it:
987         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
988         if (count > blocks_to_boundary)
989                 set_buffer_boundary(bh_result);
990         err = count;
991         /* Clean up and exit */
992         partial = chain + depth - 1;    /* the whole chain */
993 cleanup:
994         while (partial > chain) {
995                 BUFFER_TRACE(partial->bh, "call brelse");
996                 brelse(partial->bh);
997                 partial--;
998         }
999         BUFFER_TRACE(bh_result, "returned");
1000 out:
1001         return err;
1002 }
1003
1004 qsize_t ext4_get_reserved_space(struct inode *inode)
1005 {
1006         unsigned long long total;
1007
1008         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1009         total = EXT4_I(inode)->i_reserved_data_blocks +
1010                 EXT4_I(inode)->i_reserved_meta_blocks;
1011         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1012
1013         return total;
1014 }
1015 /*
1016  * Calculate the number of metadata blocks need to reserve
1017  * to allocate @blocks for non extent file based file
1018  */
1019 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1020 {
1021         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1022         int ind_blks, dind_blks, tind_blks;
1023
1024         /* number of new indirect blocks needed */
1025         ind_blks = (blocks + icap - 1) / icap;
1026
1027         dind_blks = (ind_blks + icap - 1) / icap;
1028
1029         tind_blks = 1;
1030
1031         return ind_blks + dind_blks + tind_blks;
1032 }
1033
1034 /*
1035  * Calculate the number of metadata blocks need to reserve
1036  * to allocate given number of blocks
1037  */
1038 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1039 {
1040         if (!blocks)
1041                 return 0;
1042
1043         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1044                 return ext4_ext_calc_metadata_amount(inode, blocks);
1045
1046         return ext4_indirect_calc_metadata_amount(inode, blocks);
1047 }
1048
1049 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1050 {
1051         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1052         int total, mdb, mdb_free;
1053
1054         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1055         /* recalculate the number of metablocks still need to be reserved */
1056         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1057         mdb = ext4_calc_metadata_amount(inode, total);
1058
1059         /* figure out how many metablocks to release */
1060         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1061         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1062
1063         if (mdb_free) {
1064                 /* Account for allocated meta_blocks */
1065                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1066
1067                 /* update fs dirty blocks counter */
1068                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1069                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1070                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1071         }
1072
1073         /* update per-inode reservations */
1074         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1075         EXT4_I(inode)->i_reserved_data_blocks -= used;
1076         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1077
1078         /*
1079          * free those over-booking quota for metadata blocks
1080          */
1081         if (mdb_free)
1082                 vfs_dq_release_reservation_block(inode, mdb_free);
1083
1084         /*
1085          * If we have done all the pending block allocations and if
1086          * there aren't any writers on the inode, we can discard the
1087          * inode's preallocations.
1088          */
1089         if (!total && (atomic_read(&inode->i_writecount) == 0))
1090                 ext4_discard_preallocations(inode);
1091 }
1092
1093 static int check_block_validity(struct inode *inode, const char *msg,
1094                                 sector_t logical, sector_t phys, int len)
1095 {
1096         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1097                 ext4_error(inode->i_sb, msg,
1098                            "inode #%lu logical block %llu mapped to %llu "
1099                            "(size %d)", inode->i_ino,
1100                            (unsigned long long) logical,
1101                            (unsigned long long) phys, len);
1102                 return -EIO;
1103         }
1104         return 0;
1105 }
1106
1107 /*
1108  * Return the number of contiguous dirty pages in a given inode
1109  * starting at page frame idx.
1110  */
1111 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1112                                     unsigned int max_pages)
1113 {
1114         struct address_space *mapping = inode->i_mapping;
1115         pgoff_t index;
1116         struct pagevec pvec;
1117         pgoff_t num = 0;
1118         int i, nr_pages, done = 0;
1119
1120         if (max_pages == 0)
1121                 return 0;
1122         pagevec_init(&pvec, 0);
1123         while (!done) {
1124                 index = idx;
1125                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1126                                               PAGECACHE_TAG_DIRTY,
1127                                               (pgoff_t)PAGEVEC_SIZE);
1128                 if (nr_pages == 0)
1129                         break;
1130                 for (i = 0; i < nr_pages; i++) {
1131                         struct page *page = pvec.pages[i];
1132                         struct buffer_head *bh, *head;
1133
1134                         lock_page(page);
1135                         if (unlikely(page->mapping != mapping) ||
1136                             !PageDirty(page) ||
1137                             PageWriteback(page) ||
1138                             page->index != idx) {
1139                                 done = 1;
1140                                 unlock_page(page);
1141                                 break;
1142                         }
1143                         if (page_has_buffers(page)) {
1144                                 bh = head = page_buffers(page);
1145                                 do {
1146                                         if (!buffer_delay(bh) &&
1147                                             !buffer_unwritten(bh))
1148                                                 done = 1;
1149                                         bh = bh->b_this_page;
1150                                 } while (!done && (bh != head));
1151                         }
1152                         unlock_page(page);
1153                         if (done)
1154                                 break;
1155                         idx++;
1156                         num++;
1157                         if (num >= max_pages)
1158                                 break;
1159                 }
1160                 pagevec_release(&pvec);
1161         }
1162         return num;
1163 }
1164
1165 /*
1166  * The ext4_get_blocks() function tries to look up the requested blocks,
1167  * and returns if the blocks are already mapped.
1168  *
1169  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1170  * and store the allocated blocks in the result buffer head and mark it
1171  * mapped.
1172  *
1173  * If file type is extents based, it will call ext4_ext_get_blocks(),
1174  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1175  * based files
1176  *
1177  * On success, it returns the number of blocks being mapped or allocate.
1178  * if create==0 and the blocks are pre-allocated and uninitialized block,
1179  * the result buffer head is unmapped. If the create ==1, it will make sure
1180  * the buffer head is mapped.
1181  *
1182  * It returns 0 if plain look up failed (blocks have not been allocated), in
1183  * that casem, buffer head is unmapped
1184  *
1185  * It returns the error in case of allocation failure.
1186  */
1187 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1188                     unsigned int max_blocks, struct buffer_head *bh,
1189                     int flags)
1190 {
1191         int retval;
1192
1193         clear_buffer_mapped(bh);
1194         clear_buffer_unwritten(bh);
1195
1196         ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1197                   "logical block %lu\n", inode->i_ino, flags, max_blocks,
1198                   (unsigned long)block);
1199         /*
1200          * Try to see if we can get the block without requesting a new
1201          * file system block.
1202          */
1203         down_read((&EXT4_I(inode)->i_data_sem));
1204         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1205                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1206                                 bh, 0);
1207         } else {
1208                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1209                                              bh, 0);
1210         }
1211         up_read((&EXT4_I(inode)->i_data_sem));
1212
1213         if (retval > 0 && buffer_mapped(bh)) {
1214                 int ret = check_block_validity(inode, "file system corruption",
1215                                                block, bh->b_blocknr, retval);
1216                 if (ret != 0)
1217                         return ret;
1218         }
1219
1220         /* If it is only a block(s) look up */
1221         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1222                 return retval;
1223
1224         /*
1225          * Returns if the blocks have already allocated
1226          *
1227          * Note that if blocks have been preallocated
1228          * ext4_ext_get_block() returns th create = 0
1229          * with buffer head unmapped.
1230          */
1231         if (retval > 0 && buffer_mapped(bh))
1232                 return retval;
1233
1234         /*
1235          * When we call get_blocks without the create flag, the
1236          * BH_Unwritten flag could have gotten set if the blocks
1237          * requested were part of a uninitialized extent.  We need to
1238          * clear this flag now that we are committed to convert all or
1239          * part of the uninitialized extent to be an initialized
1240          * extent.  This is because we need to avoid the combination
1241          * of BH_Unwritten and BH_Mapped flags being simultaneously
1242          * set on the buffer_head.
1243          */
1244         clear_buffer_unwritten(bh);
1245
1246         /*
1247          * New blocks allocate and/or writing to uninitialized extent
1248          * will possibly result in updating i_data, so we take
1249          * the write lock of i_data_sem, and call get_blocks()
1250          * with create == 1 flag.
1251          */
1252         down_write((&EXT4_I(inode)->i_data_sem));
1253
1254         /*
1255          * if the caller is from delayed allocation writeout path
1256          * we have already reserved fs blocks for allocation
1257          * let the underlying get_block() function know to
1258          * avoid double accounting
1259          */
1260         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1261                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1262         /*
1263          * We need to check for EXT4 here because migrate
1264          * could have changed the inode type in between
1265          */
1266         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1267                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1268                                               bh, flags);
1269         } else {
1270                 retval = ext4_ind_get_blocks(handle, inode, block,
1271                                              max_blocks, bh, flags);
1272
1273                 if (retval > 0 && buffer_new(bh)) {
1274                         /*
1275                          * We allocated new blocks which will result in
1276                          * i_data's format changing.  Force the migrate
1277                          * to fail by clearing migrate flags
1278                          */
1279                         EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1280                 }
1281         }
1282
1283         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1284                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1285
1286         /*
1287          * Update reserved blocks/metadata blocks after successful
1288          * block allocation which had been deferred till now.
1289          */
1290         if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1291                 ext4_da_update_reserve_space(inode, retval);
1292
1293         up_write((&EXT4_I(inode)->i_data_sem));
1294         if (retval > 0 && buffer_mapped(bh)) {
1295                 int ret = check_block_validity(inode, "file system "
1296                                                "corruption after allocation",
1297                                                block, bh->b_blocknr, retval);
1298                 if (ret != 0)
1299                         return ret;
1300         }
1301         return retval;
1302 }
1303
1304 /* Maximum number of blocks we map for direct IO at once. */
1305 #define DIO_MAX_BLOCKS 4096
1306
1307 int ext4_get_block(struct inode *inode, sector_t iblock,
1308                    struct buffer_head *bh_result, int create)
1309 {
1310         handle_t *handle = ext4_journal_current_handle();
1311         int ret = 0, started = 0;
1312         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1313         int dio_credits;
1314
1315         if (create && !handle) {
1316                 /* Direct IO write... */
1317                 if (max_blocks > DIO_MAX_BLOCKS)
1318                         max_blocks = DIO_MAX_BLOCKS;
1319                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1320                 handle = ext4_journal_start(inode, dio_credits);
1321                 if (IS_ERR(handle)) {
1322                         ret = PTR_ERR(handle);
1323                         goto out;
1324                 }
1325                 started = 1;
1326         }
1327
1328         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1329                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1330         if (ret > 0) {
1331                 bh_result->b_size = (ret << inode->i_blkbits);
1332                 ret = 0;
1333         }
1334         if (started)
1335                 ext4_journal_stop(handle);
1336 out:
1337         return ret;
1338 }
1339
1340 /*
1341  * `handle' can be NULL if create is zero
1342  */
1343 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1344                                 ext4_lblk_t block, int create, int *errp)
1345 {
1346         struct buffer_head dummy;
1347         int fatal = 0, err;
1348         int flags = 0;
1349
1350         J_ASSERT(handle != NULL || create == 0);
1351
1352         dummy.b_state = 0;
1353         dummy.b_blocknr = -1000;
1354         buffer_trace_init(&dummy.b_history);
1355         if (create)
1356                 flags |= EXT4_GET_BLOCKS_CREATE;
1357         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1358         /*
1359          * ext4_get_blocks() returns number of blocks mapped. 0 in
1360          * case of a HOLE.
1361          */
1362         if (err > 0) {
1363                 if (err > 1)
1364                         WARN_ON(1);
1365                 err = 0;
1366         }
1367         *errp = err;
1368         if (!err && buffer_mapped(&dummy)) {
1369                 struct buffer_head *bh;
1370                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1371                 if (!bh) {
1372                         *errp = -EIO;
1373                         goto err;
1374                 }
1375                 if (buffer_new(&dummy)) {
1376                         J_ASSERT(create != 0);
1377                         J_ASSERT(handle != NULL);
1378
1379                         /*
1380                          * Now that we do not always journal data, we should
1381                          * keep in mind whether this should always journal the
1382                          * new buffer as metadata.  For now, regular file
1383                          * writes use ext4_get_block instead, so it's not a
1384                          * problem.
1385                          */
1386                         lock_buffer(bh);
1387                         BUFFER_TRACE(bh, "call get_create_access");
1388                         fatal = ext4_journal_get_create_access(handle, bh);
1389                         if (!fatal && !buffer_uptodate(bh)) {
1390                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1391                                 set_buffer_uptodate(bh);
1392                         }
1393                         unlock_buffer(bh);
1394                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1395                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1396                         if (!fatal)
1397                                 fatal = err;
1398                 } else {
1399                         BUFFER_TRACE(bh, "not a new buffer");
1400                 }
1401                 if (fatal) {
1402                         *errp = fatal;
1403                         brelse(bh);
1404                         bh = NULL;
1405                 }
1406                 return bh;
1407         }
1408 err:
1409         return NULL;
1410 }
1411
1412 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1413                                ext4_lblk_t block, int create, int *err)
1414 {
1415         struct buffer_head *bh;
1416
1417         bh = ext4_getblk(handle, inode, block, create, err);
1418         if (!bh)
1419                 return bh;
1420         if (buffer_uptodate(bh))
1421                 return bh;
1422         ll_rw_block(READ_META, 1, &bh);
1423         wait_on_buffer(bh);
1424         if (buffer_uptodate(bh))
1425                 return bh;
1426         put_bh(bh);
1427         *err = -EIO;
1428         return NULL;
1429 }
1430
1431 static int walk_page_buffers(handle_t *handle,
1432                              struct buffer_head *head,
1433                              unsigned from,
1434                              unsigned to,
1435                              int *partial,
1436                              int (*fn)(handle_t *handle,
1437                                        struct buffer_head *bh))
1438 {
1439         struct buffer_head *bh;
1440         unsigned block_start, block_end;
1441         unsigned blocksize = head->b_size;
1442         int err, ret = 0;
1443         struct buffer_head *next;
1444
1445         for (bh = head, block_start = 0;
1446              ret == 0 && (bh != head || !block_start);
1447              block_start = block_end, bh = next) {
1448                 next = bh->b_this_page;
1449                 block_end = block_start + blocksize;
1450                 if (block_end <= from || block_start >= to) {
1451                         if (partial && !buffer_uptodate(bh))
1452                                 *partial = 1;
1453                         continue;
1454                 }
1455                 err = (*fn)(handle, bh);
1456                 if (!ret)
1457                         ret = err;
1458         }
1459         return ret;
1460 }
1461
1462 /*
1463  * To preserve ordering, it is essential that the hole instantiation and
1464  * the data write be encapsulated in a single transaction.  We cannot
1465  * close off a transaction and start a new one between the ext4_get_block()
1466  * and the commit_write().  So doing the jbd2_journal_start at the start of
1467  * prepare_write() is the right place.
1468  *
1469  * Also, this function can nest inside ext4_writepage() ->
1470  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1471  * has generated enough buffer credits to do the whole page.  So we won't
1472  * block on the journal in that case, which is good, because the caller may
1473  * be PF_MEMALLOC.
1474  *
1475  * By accident, ext4 can be reentered when a transaction is open via
1476  * quota file writes.  If we were to commit the transaction while thus
1477  * reentered, there can be a deadlock - we would be holding a quota
1478  * lock, and the commit would never complete if another thread had a
1479  * transaction open and was blocking on the quota lock - a ranking
1480  * violation.
1481  *
1482  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1483  * will _not_ run commit under these circumstances because handle->h_ref
1484  * is elevated.  We'll still have enough credits for the tiny quotafile
1485  * write.
1486  */
1487 static int do_journal_get_write_access(handle_t *handle,
1488                                        struct buffer_head *bh)
1489 {
1490         if (!buffer_mapped(bh) || buffer_freed(bh))
1491                 return 0;
1492         return ext4_journal_get_write_access(handle, bh);
1493 }
1494
1495 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1496                             loff_t pos, unsigned len, unsigned flags,
1497                             struct page **pagep, void **fsdata)
1498 {
1499         struct inode *inode = mapping->host;
1500         int ret, needed_blocks;
1501         handle_t *handle;
1502         int retries = 0;
1503         struct page *page;
1504         pgoff_t index;
1505         unsigned from, to;
1506
1507         trace_ext4_write_begin(inode, pos, len, flags);
1508         /*
1509          * Reserve one block more for addition to orphan list in case
1510          * we allocate blocks but write fails for some reason
1511          */
1512         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1513         index = pos >> PAGE_CACHE_SHIFT;
1514         from = pos & (PAGE_CACHE_SIZE - 1);
1515         to = from + len;
1516
1517 retry:
1518         handle = ext4_journal_start(inode, needed_blocks);
1519         if (IS_ERR(handle)) {
1520                 ret = PTR_ERR(handle);
1521                 goto out;
1522         }
1523
1524         /* We cannot recurse into the filesystem as the transaction is already
1525          * started */
1526         flags |= AOP_FLAG_NOFS;
1527
1528         page = grab_cache_page_write_begin(mapping, index, flags);
1529         if (!page) {
1530                 ext4_journal_stop(handle);
1531                 ret = -ENOMEM;
1532                 goto out;
1533         }
1534         *pagep = page;
1535
1536         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1537                                 ext4_get_block);
1538
1539         if (!ret && ext4_should_journal_data(inode)) {
1540                 ret = walk_page_buffers(handle, page_buffers(page),
1541                                 from, to, NULL, do_journal_get_write_access);
1542         }
1543
1544         if (ret) {
1545                 unlock_page(page);
1546                 page_cache_release(page);
1547                 /*
1548                  * block_write_begin may have instantiated a few blocks
1549                  * outside i_size.  Trim these off again. Don't need
1550                  * i_size_read because we hold i_mutex.
1551                  *
1552                  * Add inode to orphan list in case we crash before
1553                  * truncate finishes
1554                  */
1555                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1556                         ext4_orphan_add(handle, inode);
1557
1558                 ext4_journal_stop(handle);
1559                 if (pos + len > inode->i_size) {
1560                         ext4_truncate(inode);
1561                         /*
1562                          * If truncate failed early the inode might
1563                          * still be on the orphan list; we need to
1564                          * make sure the inode is removed from the
1565                          * orphan list in that case.
1566                          */
1567                         if (inode->i_nlink)
1568                                 ext4_orphan_del(NULL, inode);
1569                 }
1570         }
1571
1572         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1573                 goto retry;
1574 out:
1575         return ret;
1576 }
1577
1578 /* For write_end() in data=journal mode */
1579 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1580 {
1581         if (!buffer_mapped(bh) || buffer_freed(bh))
1582                 return 0;
1583         set_buffer_uptodate(bh);
1584         return ext4_handle_dirty_metadata(handle, NULL, bh);
1585 }
1586
1587 static int ext4_generic_write_end(struct file *file,
1588                                   struct address_space *mapping,
1589                                   loff_t pos, unsigned len, unsigned copied,
1590                                   struct page *page, void *fsdata)
1591 {
1592         int i_size_changed = 0;
1593         struct inode *inode = mapping->host;
1594         handle_t *handle = ext4_journal_current_handle();
1595
1596         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1597
1598         /*
1599          * No need to use i_size_read() here, the i_size
1600          * cannot change under us because we hold i_mutex.
1601          *
1602          * But it's important to update i_size while still holding page lock:
1603          * page writeout could otherwise come in and zero beyond i_size.
1604          */
1605         if (pos + copied > inode->i_size) {
1606                 i_size_write(inode, pos + copied);
1607                 i_size_changed = 1;
1608         }
1609
1610         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1611                 /* We need to mark inode dirty even if
1612                  * new_i_size is less that inode->i_size
1613                  * bu greater than i_disksize.(hint delalloc)
1614                  */
1615                 ext4_update_i_disksize(inode, (pos + copied));
1616                 i_size_changed = 1;
1617         }
1618         unlock_page(page);
1619         page_cache_release(page);
1620
1621         /*
1622          * Don't mark the inode dirty under page lock. First, it unnecessarily
1623          * makes the holding time of page lock longer. Second, it forces lock
1624          * ordering of page lock and transaction start for journaling
1625          * filesystems.
1626          */
1627         if (i_size_changed)
1628                 ext4_mark_inode_dirty(handle, inode);
1629
1630         return copied;
1631 }
1632
1633 /*
1634  * We need to pick up the new inode size which generic_commit_write gave us
1635  * `file' can be NULL - eg, when called from page_symlink().
1636  *
1637  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1638  * buffers are managed internally.
1639  */
1640 static int ext4_ordered_write_end(struct file *file,
1641                                   struct address_space *mapping,
1642                                   loff_t pos, unsigned len, unsigned copied,
1643                                   struct page *page, void *fsdata)
1644 {
1645         handle_t *handle = ext4_journal_current_handle();
1646         struct inode *inode = mapping->host;
1647         int ret = 0, ret2;
1648
1649         trace_ext4_ordered_write_end(inode, pos, len, copied);
1650         ret = ext4_jbd2_file_inode(handle, inode);
1651
1652         if (ret == 0) {
1653                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1654                                                         page, fsdata);
1655                 copied = ret2;
1656                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1657                         /* if we have allocated more blocks and copied
1658                          * less. We will have blocks allocated outside
1659                          * inode->i_size. So truncate them
1660                          */
1661                         ext4_orphan_add(handle, inode);
1662                 if (ret2 < 0)
1663                         ret = ret2;
1664         }
1665         ret2 = ext4_journal_stop(handle);
1666         if (!ret)
1667                 ret = ret2;
1668
1669         if (pos + len > inode->i_size) {
1670                 ext4_truncate(inode);
1671                 /*
1672                  * If truncate failed early the inode might still be
1673                  * on the orphan list; we need to make sure the inode
1674                  * is removed from the orphan list in that case.
1675                  */
1676                 if (inode->i_nlink)
1677                         ext4_orphan_del(NULL, inode);
1678         }
1679
1680
1681         return ret ? ret : copied;
1682 }
1683
1684 static int ext4_writeback_write_end(struct file *file,
1685                                     struct address_space *mapping,
1686                                     loff_t pos, unsigned len, unsigned copied,
1687                                     struct page *page, void *fsdata)
1688 {
1689         handle_t *handle = ext4_journal_current_handle();
1690         struct inode *inode = mapping->host;
1691         int ret = 0, ret2;
1692
1693         trace_ext4_writeback_write_end(inode, pos, len, copied);
1694         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1695                                                         page, fsdata);
1696         copied = ret2;
1697         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1698                 /* if we have allocated more blocks and copied
1699                  * less. We will have blocks allocated outside
1700                  * inode->i_size. So truncate them
1701                  */
1702                 ext4_orphan_add(handle, inode);
1703
1704         if (ret2 < 0)
1705                 ret = ret2;
1706
1707         ret2 = ext4_journal_stop(handle);
1708         if (!ret)
1709                 ret = ret2;
1710
1711         if (pos + len > inode->i_size) {
1712                 ext4_truncate(inode);
1713                 /*
1714                  * If truncate failed early the inode might still be
1715                  * on the orphan list; we need to make sure the inode
1716                  * is removed from the orphan list in that case.
1717                  */
1718                 if (inode->i_nlink)
1719                         ext4_orphan_del(NULL, inode);
1720         }
1721
1722         return ret ? ret : copied;
1723 }
1724
1725 static int ext4_journalled_write_end(struct file *file,
1726                                      struct address_space *mapping,
1727                                      loff_t pos, unsigned len, unsigned copied,
1728                                      struct page *page, void *fsdata)
1729 {
1730         handle_t *handle = ext4_journal_current_handle();
1731         struct inode *inode = mapping->host;
1732         int ret = 0, ret2;
1733         int partial = 0;
1734         unsigned from, to;
1735         loff_t new_i_size;
1736
1737         trace_ext4_journalled_write_end(inode, pos, len, copied);
1738         from = pos & (PAGE_CACHE_SIZE - 1);
1739         to = from + len;
1740
1741         if (copied < len) {
1742                 if (!PageUptodate(page))
1743                         copied = 0;
1744                 page_zero_new_buffers(page, from+copied, to);
1745         }
1746
1747         ret = walk_page_buffers(handle, page_buffers(page), from,
1748                                 to, &partial, write_end_fn);
1749         if (!partial)
1750                 SetPageUptodate(page);
1751         new_i_size = pos + copied;
1752         if (new_i_size > inode->i_size)
1753                 i_size_write(inode, pos+copied);
1754         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1755         if (new_i_size > EXT4_I(inode)->i_disksize) {
1756                 ext4_update_i_disksize(inode, new_i_size);
1757                 ret2 = ext4_mark_inode_dirty(handle, inode);
1758                 if (!ret)
1759                         ret = ret2;
1760         }
1761
1762         unlock_page(page);
1763         page_cache_release(page);
1764         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1765                 /* if we have allocated more blocks and copied
1766                  * less. We will have blocks allocated outside
1767                  * inode->i_size. So truncate them
1768                  */
1769                 ext4_orphan_add(handle, inode);
1770
1771         ret2 = ext4_journal_stop(handle);
1772         if (!ret)
1773                 ret = ret2;
1774         if (pos + len > inode->i_size) {
1775                 ext4_truncate(inode);
1776                 /*
1777                  * If truncate failed early the inode might still be
1778                  * on the orphan list; we need to make sure the inode
1779                  * is removed from the orphan list in that case.
1780                  */
1781                 if (inode->i_nlink)
1782                         ext4_orphan_del(NULL, inode);
1783         }
1784
1785         return ret ? ret : copied;
1786 }
1787
1788 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1789 {
1790         int retries = 0;
1791         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1792         unsigned long md_needed, mdblocks, total = 0;
1793
1794         /*
1795          * recalculate the amount of metadata blocks to reserve
1796          * in order to allocate nrblocks
1797          * worse case is one extent per block
1798          */
1799 repeat:
1800         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1801         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1802         mdblocks = ext4_calc_metadata_amount(inode, total);
1803         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1804
1805         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1806         total = md_needed + nrblocks;
1807
1808         /*
1809          * Make quota reservation here to prevent quota overflow
1810          * later. Real quota accounting is done at pages writeout
1811          * time.
1812          */
1813         if (vfs_dq_reserve_block(inode, total)) {
1814                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1815                 return -EDQUOT;
1816         }
1817
1818         if (ext4_claim_free_blocks(sbi, total)) {
1819                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1820                 vfs_dq_release_reservation_block(inode, total);
1821                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1822                         yield();
1823                         goto repeat;
1824                 }
1825                 return -ENOSPC;
1826         }
1827         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1828         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1829
1830         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1831         return 0;       /* success */
1832 }
1833
1834 static void ext4_da_release_space(struct inode *inode, int to_free)
1835 {
1836         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1837         int total, mdb, mdb_free, release;
1838
1839         if (!to_free)
1840                 return;         /* Nothing to release, exit */
1841
1842         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1843
1844         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1845                 /*
1846                  * if there is no reserved blocks, but we try to free some
1847                  * then the counter is messed up somewhere.
1848                  * but since this function is called from invalidate
1849                  * page, it's harmless to return without any action
1850                  */
1851                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1852                             "blocks for inode %lu, but there is no reserved "
1853                             "data blocks\n", to_free, inode->i_ino);
1854                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1855                 return;
1856         }
1857
1858         /* recalculate the number of metablocks still need to be reserved */
1859         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1860         mdb = ext4_calc_metadata_amount(inode, total);
1861
1862         /* figure out how many metablocks to release */
1863         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1864         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1865
1866         release = to_free + mdb_free;
1867
1868         /* update fs dirty blocks counter for truncate case */
1869         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1870
1871         /* update per-inode reservations */
1872         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1873         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1874
1875         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1876         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1877         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1878
1879         vfs_dq_release_reservation_block(inode, release);
1880 }
1881
1882 static void ext4_da_page_release_reservation(struct page *page,
1883                                              unsigned long offset)
1884 {
1885         int to_release = 0;
1886         struct buffer_head *head, *bh;
1887         unsigned int curr_off = 0;
1888
1889         head = page_buffers(page);
1890         bh = head;
1891         do {
1892                 unsigned int next_off = curr_off + bh->b_size;
1893
1894                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1895                         to_release++;
1896                         clear_buffer_delay(bh);
1897                 }
1898                 curr_off = next_off;
1899         } while ((bh = bh->b_this_page) != head);
1900         ext4_da_release_space(page->mapping->host, to_release);
1901 }
1902
1903 /*
1904  * Delayed allocation stuff
1905  */
1906
1907 /*
1908  * mpage_da_submit_io - walks through extent of pages and try to write
1909  * them with writepage() call back
1910  *
1911  * @mpd->inode: inode
1912  * @mpd->first_page: first page of the extent
1913  * @mpd->next_page: page after the last page of the extent
1914  *
1915  * By the time mpage_da_submit_io() is called we expect all blocks
1916  * to be allocated. this may be wrong if allocation failed.
1917  *
1918  * As pages are already locked by write_cache_pages(), we can't use it
1919  */
1920 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1921 {
1922         long pages_skipped;
1923         struct pagevec pvec;
1924         unsigned long index, end;
1925         int ret = 0, err, nr_pages, i;
1926         struct inode *inode = mpd->inode;
1927         struct address_space *mapping = inode->i_mapping;
1928
1929         BUG_ON(mpd->next_page <= mpd->first_page);
1930         /*
1931          * We need to start from the first_page to the next_page - 1
1932          * to make sure we also write the mapped dirty buffer_heads.
1933          * If we look at mpd->b_blocknr we would only be looking
1934          * at the currently mapped buffer_heads.
1935          */
1936         index = mpd->first_page;
1937         end = mpd->next_page - 1;
1938
1939         pagevec_init(&pvec, 0);
1940         while (index <= end) {
1941                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1942                 if (nr_pages == 0)
1943                         break;
1944                 for (i = 0; i < nr_pages; i++) {
1945                         struct page *page = pvec.pages[i];
1946
1947                         index = page->index;
1948                         if (index > end)
1949                                 break;
1950                         index++;
1951
1952                         BUG_ON(!PageLocked(page));
1953                         BUG_ON(PageWriteback(page));
1954
1955                         pages_skipped = mpd->wbc->pages_skipped;
1956                         err = mapping->a_ops->writepage(page, mpd->wbc);
1957                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1958                                 /*
1959                                  * have successfully written the page
1960                                  * without skipping the same
1961                                  */
1962                                 mpd->pages_written++;
1963                         /*
1964                          * In error case, we have to continue because
1965                          * remaining pages are still locked
1966                          * XXX: unlock and re-dirty them?
1967                          */
1968                         if (ret == 0)
1969                                 ret = err;
1970                 }
1971                 pagevec_release(&pvec);
1972         }
1973         return ret;
1974 }
1975
1976 /*
1977  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1978  *
1979  * @mpd->inode - inode to walk through
1980  * @exbh->b_blocknr - first block on a disk
1981  * @exbh->b_size - amount of space in bytes
1982  * @logical - first logical block to start assignment with
1983  *
1984  * the function goes through all passed space and put actual disk
1985  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1986  */
1987 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1988                                  struct buffer_head *exbh)
1989 {
1990         struct inode *inode = mpd->inode;
1991         struct address_space *mapping = inode->i_mapping;
1992         int blocks = exbh->b_size >> inode->i_blkbits;
1993         sector_t pblock = exbh->b_blocknr, cur_logical;
1994         struct buffer_head *head, *bh;
1995         pgoff_t index, end;
1996         struct pagevec pvec;
1997         int nr_pages, i;
1998
1999         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2000         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2001         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2002
2003         pagevec_init(&pvec, 0);
2004
2005         while (index <= end) {
2006                 /* XXX: optimize tail */
2007                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2008                 if (nr_pages == 0)
2009                         break;
2010                 for (i = 0; i < nr_pages; i++) {
2011                         struct page *page = pvec.pages[i];
2012
2013                         index = page->index;
2014                         if (index > end)
2015                                 break;
2016                         index++;
2017
2018                         BUG_ON(!PageLocked(page));
2019                         BUG_ON(PageWriteback(page));
2020                         BUG_ON(!page_has_buffers(page));
2021
2022                         bh = page_buffers(page);
2023                         head = bh;
2024
2025                         /* skip blocks out of the range */
2026                         do {
2027                                 if (cur_logical >= logical)
2028                                         break;
2029                                 cur_logical++;
2030                         } while ((bh = bh->b_this_page) != head);
2031
2032                         do {
2033                                 if (cur_logical >= logical + blocks)
2034                                         break;
2035
2036                                 if (buffer_delay(bh) ||
2037                                                 buffer_unwritten(bh)) {
2038
2039                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2040
2041                                         if (buffer_delay(bh)) {
2042                                                 clear_buffer_delay(bh);
2043                                                 bh->b_blocknr = pblock;
2044                                         } else {
2045                                                 /*
2046                                                  * unwritten already should have
2047                                                  * blocknr assigned. Verify that
2048                                                  */
2049                                                 clear_buffer_unwritten(bh);
2050                                                 BUG_ON(bh->b_blocknr != pblock);
2051                                         }
2052
2053                                 } else if (buffer_mapped(bh))
2054                                         BUG_ON(bh->b_blocknr != pblock);
2055
2056                                 cur_logical++;
2057                                 pblock++;
2058                         } while ((bh = bh->b_this_page) != head);
2059                 }
2060                 pagevec_release(&pvec);
2061         }
2062 }
2063
2064
2065 /*
2066  * __unmap_underlying_blocks - just a helper function to unmap
2067  * set of blocks described by @bh
2068  */
2069 static inline void __unmap_underlying_blocks(struct inode *inode,
2070                                              struct buffer_head *bh)
2071 {
2072         struct block_device *bdev = inode->i_sb->s_bdev;
2073         int blocks, i;
2074
2075         blocks = bh->b_size >> inode->i_blkbits;
2076         for (i = 0; i < blocks; i++)
2077                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2078 }
2079
2080 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2081                                         sector_t logical, long blk_cnt)
2082 {
2083         int nr_pages, i;
2084         pgoff_t index, end;
2085         struct pagevec pvec;
2086         struct inode *inode = mpd->inode;
2087         struct address_space *mapping = inode->i_mapping;
2088
2089         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2090         end   = (logical + blk_cnt - 1) >>
2091                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2092         while (index <= end) {
2093                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2094                 if (nr_pages == 0)
2095                         break;
2096                 for (i = 0; i < nr_pages; i++) {
2097                         struct page *page = pvec.pages[i];
2098                         index = page->index;
2099                         if (index > end)
2100                                 break;
2101                         index++;
2102
2103                         BUG_ON(!PageLocked(page));
2104                         BUG_ON(PageWriteback(page));
2105                         block_invalidatepage(page, 0);
2106                         ClearPageUptodate(page);
2107                         unlock_page(page);
2108                 }
2109         }
2110         return;
2111 }
2112
2113 static void ext4_print_free_blocks(struct inode *inode)
2114 {
2115         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2116         printk(KERN_CRIT "Total free blocks count %lld\n",
2117                ext4_count_free_blocks(inode->i_sb));
2118         printk(KERN_CRIT "Free/Dirty block details\n");
2119         printk(KERN_CRIT "free_blocks=%lld\n",
2120                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2121         printk(KERN_CRIT "dirty_blocks=%lld\n",
2122                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2123         printk(KERN_CRIT "Block reservation details\n");
2124         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2125                EXT4_I(inode)->i_reserved_data_blocks);
2126         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2127                EXT4_I(inode)->i_reserved_meta_blocks);
2128         return;
2129 }
2130
2131 /*
2132  * mpage_da_map_blocks - go through given space
2133  *
2134  * @mpd - bh describing space
2135  *
2136  * The function skips space we know is already mapped to disk blocks.
2137  *
2138  */
2139 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2140 {
2141         int err, blks, get_blocks_flags;
2142         struct buffer_head new;
2143         sector_t next = mpd->b_blocknr;
2144         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2145         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2146         handle_t *handle = NULL;
2147
2148         /*
2149          * We consider only non-mapped and non-allocated blocks
2150          */
2151         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2152                 !(mpd->b_state & (1 << BH_Delay)) &&
2153                 !(mpd->b_state & (1 << BH_Unwritten)))
2154                 return 0;
2155
2156         /*
2157          * If we didn't accumulate anything to write simply return
2158          */
2159         if (!mpd->b_size)
2160                 return 0;
2161
2162         handle = ext4_journal_current_handle();
2163         BUG_ON(!handle);
2164
2165         /*
2166          * Call ext4_get_blocks() to allocate any delayed allocation
2167          * blocks, or to convert an uninitialized extent to be
2168          * initialized (in the case where we have written into
2169          * one or more preallocated blocks).
2170          *
2171          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2172          * indicate that we are on the delayed allocation path.  This
2173          * affects functions in many different parts of the allocation
2174          * call path.  This flag exists primarily because we don't
2175          * want to change *many* call functions, so ext4_get_blocks()
2176          * will set the magic i_delalloc_reserved_flag once the
2177          * inode's allocation semaphore is taken.
2178          *
2179          * If the blocks in questions were delalloc blocks, set
2180          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2181          * variables are updated after the blocks have been allocated.
2182          */
2183         new.b_state = 0;
2184         get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2185                             EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2186         if (mpd->b_state & (1 << BH_Delay))
2187                 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2188         blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2189                                &new, get_blocks_flags);
2190         if (blks < 0) {
2191                 err = blks;
2192                 /*
2193                  * If get block returns with error we simply
2194                  * return. Later writepage will redirty the page and
2195                  * writepages will find the dirty page again
2196                  */
2197                 if (err == -EAGAIN)
2198                         return 0;
2199
2200                 if (err == -ENOSPC &&
2201                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2202                         mpd->retval = err;
2203                         return 0;
2204                 }
2205
2206                 /*
2207                  * get block failure will cause us to loop in
2208                  * writepages, because a_ops->writepage won't be able
2209                  * to make progress. The page will be redirtied by
2210                  * writepage and writepages will again try to write
2211                  * the same.
2212                  */
2213                 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2214                          "delayed block allocation failed for inode %lu at "
2215                          "logical offset %llu with max blocks %zd with "
2216                          "error %d\n", mpd->inode->i_ino,
2217                          (unsigned long long) next,
2218                          mpd->b_size >> mpd->inode->i_blkbits, err);
2219                 printk(KERN_CRIT "This should not happen!!  "
2220                        "Data will be lost\n");
2221                 if (err == -ENOSPC) {
2222                         ext4_print_free_blocks(mpd->inode);
2223                 }
2224                 /* invalidate all the pages */
2225                 ext4_da_block_invalidatepages(mpd, next,
2226                                 mpd->b_size >> mpd->inode->i_blkbits);
2227                 return err;
2228         }
2229         BUG_ON(blks == 0);
2230
2231         new.b_size = (blks << mpd->inode->i_blkbits);
2232
2233         if (buffer_new(&new))
2234                 __unmap_underlying_blocks(mpd->inode, &new);
2235
2236         /*
2237          * If blocks are delayed marked, we need to
2238          * put actual blocknr and drop delayed bit
2239          */
2240         if ((mpd->b_state & (1 << BH_Delay)) ||
2241             (mpd->b_state & (1 << BH_Unwritten)))
2242                 mpage_put_bnr_to_bhs(mpd, next, &new);
2243
2244         if (ext4_should_order_data(mpd->inode)) {
2245                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2246                 if (err)
2247                         return err;
2248         }
2249
2250         /*
2251          * Update on-disk size along with block allocation.
2252          */
2253         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2254         if (disksize > i_size_read(mpd->inode))
2255                 disksize = i_size_read(mpd->inode);
2256         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2257                 ext4_update_i_disksize(mpd->inode, disksize);
2258                 return ext4_mark_inode_dirty(handle, mpd->inode);
2259         }
2260
2261         return 0;
2262 }
2263
2264 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2265                 (1 << BH_Delay) | (1 << BH_Unwritten))
2266
2267 /*
2268  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2269  *
2270  * @mpd->lbh - extent of blocks
2271  * @logical - logical number of the block in the file
2272  * @bh - bh of the block (used to access block's state)
2273  *
2274  * the function is used to collect contig. blocks in same state
2275  */
2276 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2277                                    sector_t logical, size_t b_size,
2278                                    unsigned long b_state)
2279 {
2280         sector_t next;
2281         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2282
2283         /* check if thereserved journal credits might overflow */
2284         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2285                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2286                         /*
2287                          * With non-extent format we are limited by the journal
2288                          * credit available.  Total credit needed to insert
2289                          * nrblocks contiguous blocks is dependent on the
2290                          * nrblocks.  So limit nrblocks.
2291                          */
2292                         goto flush_it;
2293                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2294                                 EXT4_MAX_TRANS_DATA) {
2295                         /*
2296                          * Adding the new buffer_head would make it cross the
2297                          * allowed limit for which we have journal credit
2298                          * reserved. So limit the new bh->b_size
2299                          */
2300                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2301                                                 mpd->inode->i_blkbits;
2302                         /* we will do mpage_da_submit_io in the next loop */
2303                 }
2304         }
2305         /*
2306          * First block in the extent
2307          */
2308         if (mpd->b_size == 0) {
2309                 mpd->b_blocknr = logical;
2310                 mpd->b_size = b_size;
2311                 mpd->b_state = b_state & BH_FLAGS;
2312                 return;
2313         }
2314
2315         next = mpd->b_blocknr + nrblocks;
2316         /*
2317          * Can we merge the block to our big extent?
2318          */
2319         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2320                 mpd->b_size += b_size;
2321                 return;
2322         }
2323
2324 flush_it:
2325         /*
2326          * We couldn't merge the block to our extent, so we
2327          * need to flush current  extent and start new one
2328          */
2329         if (mpage_da_map_blocks(mpd) == 0)
2330                 mpage_da_submit_io(mpd);
2331         mpd->io_done = 1;
2332         return;
2333 }
2334
2335 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2336 {
2337         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2338 }
2339
2340 /*
2341  * __mpage_da_writepage - finds extent of pages and blocks
2342  *
2343  * @page: page to consider
2344  * @wbc: not used, we just follow rules
2345  * @data: context
2346  *
2347  * The function finds extents of pages and scan them for all blocks.
2348  */
2349 static int __mpage_da_writepage(struct page *page,
2350                                 struct writeback_control *wbc, void *data)
2351 {
2352         struct mpage_da_data *mpd = data;
2353         struct inode *inode = mpd->inode;
2354         struct buffer_head *bh, *head;
2355         sector_t logical;
2356
2357         if (mpd->io_done) {
2358                 /*
2359                  * Rest of the page in the page_vec
2360                  * redirty then and skip then. We will
2361                  * try to write them again after
2362                  * starting a new transaction
2363                  */
2364                 redirty_page_for_writepage(wbc, page);
2365                 unlock_page(page);
2366                 return MPAGE_DA_EXTENT_TAIL;
2367         }
2368         /*
2369          * Can we merge this page to current extent?
2370          */
2371         if (mpd->next_page != page->index) {
2372                 /*
2373                  * Nope, we can't. So, we map non-allocated blocks
2374                  * and start IO on them using writepage()
2375                  */
2376                 if (mpd->next_page != mpd->first_page) {
2377                         if (mpage_da_map_blocks(mpd) == 0)
2378                                 mpage_da_submit_io(mpd);
2379                         /*
2380                          * skip rest of the page in the page_vec
2381                          */
2382                         mpd->io_done = 1;
2383                         redirty_page_for_writepage(wbc, page);
2384                         unlock_page(page);
2385                         return MPAGE_DA_EXTENT_TAIL;
2386                 }
2387
2388                 /*
2389                  * Start next extent of pages ...
2390                  */
2391                 mpd->first_page = page->index;
2392
2393                 /*
2394                  * ... and blocks
2395                  */
2396                 mpd->b_size = 0;
2397                 mpd->b_state = 0;
2398                 mpd->b_blocknr = 0;
2399         }
2400
2401         mpd->next_page = page->index + 1;
2402         logical = (sector_t) page->index <<
2403                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2404
2405         if (!page_has_buffers(page)) {
2406                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2407                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2408                 if (mpd->io_done)
2409                         return MPAGE_DA_EXTENT_TAIL;
2410         } else {
2411                 /*
2412                  * Page with regular buffer heads, just add all dirty ones
2413                  */
2414                 head = page_buffers(page);
2415                 bh = head;
2416                 do {
2417                         BUG_ON(buffer_locked(bh));
2418                         /*
2419                          * We need to try to allocate
2420                          * unmapped blocks in the same page.
2421                          * Otherwise we won't make progress
2422                          * with the page in ext4_writepage
2423                          */
2424                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2425                                 mpage_add_bh_to_extent(mpd, logical,
2426                                                        bh->b_size,
2427                                                        bh->b_state);
2428                                 if (mpd->io_done)
2429                                         return MPAGE_DA_EXTENT_TAIL;
2430                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2431                                 /*
2432                                  * mapped dirty buffer. We need to update
2433                                  * the b_state because we look at
2434                                  * b_state in mpage_da_map_blocks. We don't
2435                                  * update b_size because if we find an
2436                                  * unmapped buffer_head later we need to
2437                                  * use the b_state flag of that buffer_head.
2438                                  */
2439                                 if (mpd->b_size == 0)
2440                                         mpd->b_state = bh->b_state & BH_FLAGS;
2441                         }
2442                         logical++;
2443                 } while ((bh = bh->b_this_page) != head);
2444         }
2445
2446         return 0;
2447 }
2448
2449 /*
2450  * This is a special get_blocks_t callback which is used by
2451  * ext4_da_write_begin().  It will either return mapped block or
2452  * reserve space for a single block.
2453  *
2454  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2455  * We also have b_blocknr = -1 and b_bdev initialized properly
2456  *
2457  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2458  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2459  * initialized properly.
2460  */
2461 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2462                                   struct buffer_head *bh_result, int create)
2463 {
2464         int ret = 0;
2465         sector_t invalid_block = ~((sector_t) 0xffff);
2466
2467         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2468                 invalid_block = ~0;
2469
2470         BUG_ON(create == 0);
2471         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2472
2473         /*
2474          * first, we need to know whether the block is allocated already
2475          * preallocated blocks are unmapped but should treated
2476          * the same as allocated blocks.
2477          */
2478         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2479         if ((ret == 0) && !buffer_delay(bh_result)) {
2480                 /* the block isn't (pre)allocated yet, let's reserve space */
2481                 /*
2482                  * XXX: __block_prepare_write() unmaps passed block,
2483                  * is it OK?
2484                  */
2485                 ret = ext4_da_reserve_space(inode, 1);
2486                 if (ret)
2487                         /* not enough space to reserve */
2488                         return ret;
2489
2490                 map_bh(bh_result, inode->i_sb, invalid_block);
2491                 set_buffer_new(bh_result);
2492                 set_buffer_delay(bh_result);
2493         } else if (ret > 0) {
2494                 bh_result->b_size = (ret << inode->i_blkbits);
2495                 if (buffer_unwritten(bh_result)) {
2496                         /* A delayed write to unwritten bh should
2497                          * be marked new and mapped.  Mapped ensures
2498                          * that we don't do get_block multiple times
2499                          * when we write to the same offset and new
2500                          * ensures that we do proper zero out for
2501                          * partial write.
2502                          */
2503                         set_buffer_new(bh_result);
2504                         set_buffer_mapped(bh_result);
2505                 }
2506                 ret = 0;
2507         }
2508
2509         return ret;
2510 }
2511
2512 /*
2513  * This function is used as a standard get_block_t calback function
2514  * when there is no desire to allocate any blocks.  It is used as a
2515  * callback function for block_prepare_write(), nobh_writepage(), and
2516  * block_write_full_page().  These functions should only try to map a
2517  * single block at a time.
2518  *
2519  * Since this function doesn't do block allocations even if the caller
2520  * requests it by passing in create=1, it is critically important that
2521  * any caller checks to make sure that any buffer heads are returned
2522  * by this function are either all already mapped or marked for
2523  * delayed allocation before calling nobh_writepage() or
2524  * block_write_full_page().  Otherwise, b_blocknr could be left
2525  * unitialized, and the page write functions will be taken by
2526  * surprise.
2527  */
2528 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2529                                    struct buffer_head *bh_result, int create)
2530 {
2531         int ret = 0;
2532         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2533
2534         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2535
2536         /*
2537          * we don't want to do block allocation in writepage
2538          * so call get_block_wrap with create = 0
2539          */
2540         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2541         if (ret > 0) {
2542                 bh_result->b_size = (ret << inode->i_blkbits);
2543                 ret = 0;
2544         }
2545         return ret;
2546 }
2547
2548 static int bget_one(handle_t *handle, struct buffer_head *bh)
2549 {
2550         get_bh(bh);
2551         return 0;
2552 }
2553
2554 static int bput_one(handle_t *handle, struct buffer_head *bh)
2555 {
2556         put_bh(bh);
2557         return 0;
2558 }
2559
2560 static int __ext4_journalled_writepage(struct page *page,
2561                                        struct writeback_control *wbc,
2562                                        unsigned int len)
2563 {
2564         struct address_space *mapping = page->mapping;
2565         struct inode *inode = mapping->host;
2566         struct buffer_head *page_bufs;
2567         handle_t *handle = NULL;
2568         int ret = 0;
2569         int err;
2570
2571         page_bufs = page_buffers(page);
2572         BUG_ON(!page_bufs);
2573         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2574         /* As soon as we unlock the page, it can go away, but we have
2575          * references to buffers so we are safe */
2576         unlock_page(page);
2577
2578         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2579         if (IS_ERR(handle)) {
2580                 ret = PTR_ERR(handle);
2581                 goto out;
2582         }
2583
2584         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2585                                 do_journal_get_write_access);
2586
2587         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2588                                 write_end_fn);
2589         if (ret == 0)
2590                 ret = err;
2591         err = ext4_journal_stop(handle);
2592         if (!ret)
2593                 ret = err;
2594
2595         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2596         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2597 out:
2598         return ret;
2599 }
2600
2601 /*
2602  * Note that we don't need to start a transaction unless we're journaling data
2603  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2604  * need to file the inode to the transaction's list in ordered mode because if
2605  * we are writing back data added by write(), the inode is already there and if
2606  * we are writing back data modified via mmap(), noone guarantees in which
2607  * transaction the data will hit the disk. In case we are journaling data, we
2608  * cannot start transaction directly because transaction start ranks above page
2609  * lock so we have to do some magic.
2610  *
2611  * This function can get called via...
2612  *   - ext4_da_writepages after taking page lock (have journal handle)
2613  *   - journal_submit_inode_data_buffers (no journal handle)
2614  *   - shrink_page_list via pdflush (no journal handle)
2615  *   - grab_page_cache when doing write_begin (have journal handle)
2616  *
2617  * We don't do any block allocation in this function. If we have page with
2618  * multiple blocks we need to write those buffer_heads that are mapped. This
2619  * is important for mmaped based write. So if we do with blocksize 1K
2620  * truncate(f, 1024);
2621  * a = mmap(f, 0, 4096);
2622  * a[0] = 'a';
2623  * truncate(f, 4096);
2624  * we have in the page first buffer_head mapped via page_mkwrite call back
2625  * but other bufer_heads would be unmapped but dirty(dirty done via the
2626  * do_wp_page). So writepage should write the first block. If we modify
2627  * the mmap area beyond 1024 we will again get a page_fault and the
2628  * page_mkwrite callback will do the block allocation and mark the
2629  * buffer_heads mapped.
2630  *
2631  * We redirty the page if we have any buffer_heads that is either delay or
2632  * unwritten in the page.
2633  *
2634  * We can get recursively called as show below.
2635  *
2636  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2637  *              ext4_writepage()
2638  *
2639  * But since we don't do any block allocation we should not deadlock.
2640  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2641  */
2642 static int ext4_writepage(struct page *page,
2643                           struct writeback_control *wbc)
2644 {
2645         int ret = 0;
2646         loff_t size;
2647         unsigned int len;
2648         struct buffer_head *page_bufs;
2649         struct inode *inode = page->mapping->host;
2650
2651         trace_ext4_writepage(inode, page);
2652         size = i_size_read(inode);
2653         if (page->index == size >> PAGE_CACHE_SHIFT)
2654                 len = size & ~PAGE_CACHE_MASK;
2655         else
2656                 len = PAGE_CACHE_SIZE;
2657
2658         if (page_has_buffers(page)) {
2659                 page_bufs = page_buffers(page);
2660                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2661                                         ext4_bh_delay_or_unwritten)) {
2662                         /*
2663                          * We don't want to do  block allocation
2664                          * So redirty the page and return
2665                          * We may reach here when we do a journal commit
2666                          * via journal_submit_inode_data_buffers.
2667                          * If we don't have mapping block we just ignore
2668                          * them. We can also reach here via shrink_page_list
2669                          */
2670                         redirty_page_for_writepage(wbc, page);
2671                         unlock_page(page);
2672                         return 0;
2673                 }
2674         } else {
2675                 /*
2676                  * The test for page_has_buffers() is subtle:
2677                  * We know the page is dirty but it lost buffers. That means
2678                  * that at some moment in time after write_begin()/write_end()
2679                  * has been called all buffers have been clean and thus they
2680                  * must have been written at least once. So they are all
2681                  * mapped and we can happily proceed with mapping them
2682                  * and writing the page.
2683                  *
2684                  * Try to initialize the buffer_heads and check whether
2685                  * all are mapped and non delay. We don't want to
2686                  * do block allocation here.
2687                  */
2688                 ret = block_prepare_write(page, 0, len,
2689                                           noalloc_get_block_write);
2690                 if (!ret) {
2691                         page_bufs = page_buffers(page);
2692                         /* check whether all are mapped and non delay */
2693                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2694                                                 ext4_bh_delay_or_unwritten)) {
2695                                 redirty_page_for_writepage(wbc, page);
2696                                 unlock_page(page);
2697                                 return 0;
2698                         }
2699                 } else {
2700                         /*
2701                          * We can't do block allocation here
2702                          * so just redity the page and unlock
2703                          * and return
2704                          */
2705                         redirty_page_for_writepage(wbc, page);
2706                         unlock_page(page);
2707                         return 0;
2708                 }
2709                 /* now mark the buffer_heads as dirty and uptodate */
2710                 block_commit_write(page, 0, len);
2711         }
2712
2713         if (PageChecked(page) && ext4_should_journal_data(inode)) {
2714                 /*
2715                  * It's mmapped pagecache.  Add buffers and journal it.  There
2716                  * doesn't seem much point in redirtying the page here.
2717                  */
2718                 ClearPageChecked(page);
2719                 return __ext4_journalled_writepage(page, wbc, len);
2720         }
2721
2722         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2723                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2724         else
2725                 ret = block_write_full_page(page, noalloc_get_block_write,
2726                                             wbc);
2727
2728         return ret;
2729 }
2730
2731 /*
2732  * This is called via ext4_da_writepages() to
2733  * calulate the total number of credits to reserve to fit
2734  * a single extent allocation into a single transaction,
2735  * ext4_da_writpeages() will loop calling this before
2736  * the block allocation.
2737  */
2738
2739 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2740 {
2741         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2742
2743         /*
2744          * With non-extent format the journal credit needed to
2745          * insert nrblocks contiguous block is dependent on
2746          * number of contiguous block. So we will limit
2747          * number of contiguous block to a sane value
2748          */
2749         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2750             (max_blocks > EXT4_MAX_TRANS_DATA))
2751                 max_blocks = EXT4_MAX_TRANS_DATA;
2752
2753         return ext4_chunk_trans_blocks(inode, max_blocks);
2754 }
2755
2756 static int ext4_da_writepages(struct address_space *mapping,
2757                               struct writeback_control *wbc)
2758 {
2759         pgoff_t index;
2760         int range_whole = 0;
2761         handle_t *handle = NULL;
2762         struct mpage_da_data mpd;
2763         struct inode *inode = mapping->host;
2764         int no_nrwrite_index_update;
2765         int pages_written = 0;
2766         long pages_skipped;
2767         unsigned int max_pages;
2768         int range_cyclic, cycled = 1, io_done = 0;
2769         int needed_blocks, ret = 0;
2770         long desired_nr_to_write, nr_to_writebump = 0;
2771         loff_t range_start = wbc->range_start;
2772         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2773
2774         trace_ext4_da_writepages(inode, wbc);
2775
2776         /*
2777          * No pages to write? This is mainly a kludge to avoid starting
2778          * a transaction for special inodes like journal inode on last iput()
2779          * because that could violate lock ordering on umount
2780          */
2781         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2782                 return 0;
2783
2784         /*
2785          * If the filesystem has aborted, it is read-only, so return
2786          * right away instead of dumping stack traces later on that
2787          * will obscure the real source of the problem.  We test
2788          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2789          * the latter could be true if the filesystem is mounted
2790          * read-only, and in that case, ext4_da_writepages should
2791          * *never* be called, so if that ever happens, we would want
2792          * the stack trace.
2793          */
2794         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2795                 return -EROFS;
2796
2797         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2798                 range_whole = 1;
2799
2800         range_cyclic = wbc->range_cyclic;
2801         if (wbc->range_cyclic) {
2802                 index = mapping->writeback_index;
2803                 if (index)
2804                         cycled = 0;
2805                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2806                 wbc->range_end  = LLONG_MAX;
2807                 wbc->range_cyclic = 0;
2808         } else
2809                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2810
2811         /*
2812          * This works around two forms of stupidity.  The first is in
2813          * the writeback code, which caps the maximum number of pages
2814          * written to be 1024 pages.  This is wrong on multiple
2815          * levels; different architectues have a different page size,
2816          * which changes the maximum amount of data which gets
2817          * written.  Secondly, 4 megabytes is way too small.  XFS
2818          * forces this value to be 16 megabytes by multiplying
2819          * nr_to_write parameter by four, and then relies on its
2820          * allocator to allocate larger extents to make them
2821          * contiguous.  Unfortunately this brings us to the second
2822          * stupidity, which is that ext4's mballoc code only allocates
2823          * at most 2048 blocks.  So we force contiguous writes up to
2824          * the number of dirty blocks in the inode, or
2825          * sbi->max_writeback_mb_bump whichever is smaller.
2826          */
2827         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2828         if (!range_cyclic && range_whole)
2829                 desired_nr_to_write = wbc->nr_to_write * 8;
2830         else
2831                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2832                                                            max_pages);
2833         if (desired_nr_to_write > max_pages)
2834                 desired_nr_to_write = max_pages;
2835
2836         if (wbc->nr_to_write < desired_nr_to_write) {
2837                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2838                 wbc->nr_to_write = desired_nr_to_write;
2839         }
2840
2841         mpd.wbc = wbc;
2842         mpd.inode = mapping->host;
2843
2844         /*
2845          * we don't want write_cache_pages to update
2846          * nr_to_write and writeback_index
2847          */
2848         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2849         wbc->no_nrwrite_index_update = 1;
2850         pages_skipped = wbc->pages_skipped;
2851
2852 retry:
2853         while (!ret && wbc->nr_to_write > 0) {
2854
2855                 /*
2856                  * we  insert one extent at a time. So we need
2857                  * credit needed for single extent allocation.
2858                  * journalled mode is currently not supported
2859                  * by delalloc
2860                  */
2861                 BUG_ON(ext4_should_journal_data(inode));
2862                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2863
2864                 /* start a new transaction*/
2865                 handle = ext4_journal_start(inode, needed_blocks);
2866                 if (IS_ERR(handle)) {
2867                         ret = PTR_ERR(handle);
2868                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2869                                "%ld pages, ino %lu; err %d\n", __func__,
2870                                 wbc->nr_to_write, inode->i_ino, ret);
2871                         goto out_writepages;
2872                 }
2873
2874                 /*
2875                  * Now call __mpage_da_writepage to find the next
2876                  * contiguous region of logical blocks that need
2877                  * blocks to be allocated by ext4.  We don't actually
2878                  * submit the blocks for I/O here, even though
2879                  * write_cache_pages thinks it will, and will set the
2880                  * pages as clean for write before calling
2881                  * __mpage_da_writepage().
2882                  */
2883                 mpd.b_size = 0;
2884                 mpd.b_state = 0;
2885                 mpd.b_blocknr = 0;
2886                 mpd.first_page = 0;
2887                 mpd.next_page = 0;
2888                 mpd.io_done = 0;
2889                 mpd.pages_written = 0;
2890                 mpd.retval = 0;
2891                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2892                                         &mpd);
2893                 /*
2894                  * If we have a contigous extent of pages and we
2895                  * haven't done the I/O yet, map the blocks and submit
2896                  * them for I/O.
2897                  */
2898                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2899                         if (mpage_da_map_blocks(&mpd) == 0)
2900                                 mpage_da_submit_io(&mpd);
2901                         mpd.io_done = 1;
2902                         ret = MPAGE_DA_EXTENT_TAIL;
2903                 }
2904                 trace_ext4_da_write_pages(inode, &mpd);
2905                 wbc->nr_to_write -= mpd.pages_written;
2906
2907                 ext4_journal_stop(handle);
2908
2909                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2910                         /* commit the transaction which would
2911                          * free blocks released in the transaction
2912                          * and try again
2913                          */
2914                         jbd2_journal_force_commit_nested(sbi->s_journal);
2915                         wbc->pages_skipped = pages_skipped;
2916                         ret = 0;
2917                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2918                         /*
2919                          * got one extent now try with
2920                          * rest of the pages
2921                          */
2922                         pages_written += mpd.pages_written;
2923                         wbc->pages_skipped = pages_skipped;
2924                         ret = 0;
2925                         io_done = 1;
2926                 } else if (wbc->nr_to_write)
2927                         /*
2928                          * There is no more writeout needed
2929                          * or we requested for a noblocking writeout
2930                          * and we found the device congested
2931                          */
2932                         break;
2933         }
2934         if (!io_done && !cycled) {
2935                 cycled = 1;
2936                 index = 0;
2937                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2938                 wbc->range_end  = mapping->writeback_index - 1;
2939                 goto retry;
2940         }
2941         if (pages_skipped != wbc->pages_skipped)
2942                 ext4_msg(inode->i_sb, KERN_CRIT,
2943                          "This should not happen leaving %s "
2944                          "with nr_to_write = %ld ret = %d\n",
2945                          __func__, wbc->nr_to_write, ret);
2946
2947         /* Update index */
2948         index += pages_written;
2949         wbc->range_cyclic = range_cyclic;
2950         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2951                 /*
2952                  * set the writeback_index so that range_cyclic
2953                  * mode will write it back later
2954                  */
2955                 mapping->writeback_index = index;
2956
2957 out_writepages:
2958         if (!no_nrwrite_index_update)
2959                 wbc->no_nrwrite_index_update = 0;
2960         if (wbc->nr_to_write > nr_to_writebump)
2961                 wbc->nr_to_write -= nr_to_writebump;
2962         wbc->range_start = range_start;
2963         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2964         return ret;
2965 }
2966
2967 #define FALL_BACK_TO_NONDELALLOC 1
2968 static int ext4_nonda_switch(struct super_block *sb)
2969 {
2970         s64 free_blocks, dirty_blocks;
2971         struct ext4_sb_info *sbi = EXT4_SB(sb);
2972
2973         /*
2974          * switch to non delalloc mode if we are running low
2975          * on free block. The free block accounting via percpu
2976          * counters can get slightly wrong with percpu_counter_batch getting
2977          * accumulated on each CPU without updating global counters
2978          * Delalloc need an accurate free block accounting. So switch
2979          * to non delalloc when we are near to error range.
2980          */
2981         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2982         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2983         if (2 * free_blocks < 3 * dirty_blocks ||
2984                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2985                 /*
2986                  * free block count is less that 150% of dirty blocks
2987                  * or free blocks is less that watermark
2988                  */
2989                 return 1;
2990         }
2991         return 0;
2992 }
2993
2994 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2995                                loff_t pos, unsigned len, unsigned flags,
2996                                struct page **pagep, void **fsdata)
2997 {
2998         int ret, retries = 0;
2999         struct page *page;
3000         pgoff_t index;
3001         unsigned from, to;
3002         struct inode *inode = mapping->host;
3003         handle_t *handle;
3004
3005         index = pos >> PAGE_CACHE_SHIFT;
3006         from = pos & (PAGE_CACHE_SIZE - 1);
3007         to = from + len;
3008
3009         if (ext4_nonda_switch(inode->i_sb)) {
3010                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3011                 return ext4_write_begin(file, mapping, pos,
3012                                         len, flags, pagep, fsdata);
3013         }
3014         *fsdata = (void *)0;
3015         trace_ext4_da_write_begin(inode, pos, len, flags);
3016 retry:
3017         /*
3018          * With delayed allocation, we don't log the i_disksize update
3019          * if there is delayed block allocation. But we still need
3020          * to journalling the i_disksize update if writes to the end
3021          * of file which has an already mapped buffer.
3022          */
3023         handle = ext4_journal_start(inode, 1);
3024         if (IS_ERR(handle)) {
3025                 ret = PTR_ERR(handle);
3026                 goto out;
3027         }
3028         /* We cannot recurse into the filesystem as the transaction is already
3029          * started */
3030         flags |= AOP_FLAG_NOFS;
3031
3032         page = grab_cache_page_write_begin(mapping, index, flags);
3033         if (!page) {
3034                 ext4_journal_stop(handle);
3035                 ret = -ENOMEM;
3036                 goto out;
3037         }
3038         *pagep = page;
3039
3040         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3041                                 ext4_da_get_block_prep);
3042         if (ret < 0) {
3043                 unlock_page(page);
3044                 ext4_journal_stop(handle);
3045                 page_cache_release(page);
3046                 /*
3047                  * block_write_begin may have instantiated a few blocks
3048                  * outside i_size.  Trim these off again. Don't need
3049                  * i_size_read because we hold i_mutex.
3050                  */
3051                 if (pos + len > inode->i_size)
3052                         ext4_truncate(inode);
3053         }
3054
3055         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3056                 goto retry;
3057 out:
3058         return ret;
3059 }
3060
3061 /*
3062  * Check if we should update i_disksize
3063  * when write to the end of file but not require block allocation
3064  */
3065 static int ext4_da_should_update_i_disksize(struct page *page,
3066                                             unsigned long offset)
3067 {
3068         struct buffer_head *bh;
3069         struct inode *inode = page->mapping->host;
3070         unsigned int idx;
3071         int i;
3072
3073         bh = page_buffers(page);
3074         idx = offset >> inode->i_blkbits;
3075
3076         for (i = 0; i < idx; i++)
3077                 bh = bh->b_this_page;
3078
3079         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3080                 return 0;
3081         return 1;
3082 }
3083
3084 static int ext4_da_write_end(struct file *file,
3085                              struct address_space *mapping,
3086                              loff_t pos, unsigned len, unsigned copied,
3087                              struct page *page, void *fsdata)
3088 {
3089         struct inode *inode = mapping->host;
3090         int ret = 0, ret2;
3091         handle_t *handle = ext4_journal_current_handle();
3092         loff_t new_i_size;
3093         unsigned long start, end;
3094         int write_mode = (int)(unsigned long)fsdata;
3095
3096         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3097                 if (ext4_should_order_data(inode)) {
3098                         return ext4_ordered_write_end(file, mapping, pos,
3099                                         len, copied, page, fsdata);
3100                 } else if (ext4_should_writeback_data(inode)) {
3101                         return ext4_writeback_write_end(file, mapping, pos,
3102                                         len, copied, page, fsdata);
3103                 } else {
3104                         BUG();
3105                 }
3106         }
3107
3108         trace_ext4_da_write_end(inode, pos, len, copied);
3109         start = pos & (PAGE_CACHE_SIZE - 1);
3110         end = start + copied - 1;
3111
3112         /*
3113          * generic_write_end() will run mark_inode_dirty() if i_size
3114          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3115          * into that.
3116          */
3117
3118         new_i_size = pos + copied;
3119         if (new_i_size > EXT4_I(inode)->i_disksize) {
3120                 if (ext4_da_should_update_i_disksize(page, end)) {
3121                         down_write(&EXT4_I(inode)->i_data_sem);
3122                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3123                                 /*
3124                                  * Updating i_disksize when extending file
3125                                  * without needing block allocation
3126                                  */
3127                                 if (ext4_should_order_data(inode))
3128                                         ret = ext4_jbd2_file_inode(handle,
3129                                                                    inode);
3130
3131                                 EXT4_I(inode)->i_disksize = new_i_size;
3132                         }
3133                         up_write(&EXT4_I(inode)->i_data_sem);
3134                         /* We need to mark inode dirty even if
3135                          * new_i_size is less that inode->i_size
3136                          * bu greater than i_disksize.(hint delalloc)
3137                          */
3138                         ext4_mark_inode_dirty(handle, inode);
3139                 }
3140         }
3141         ret2 = generic_write_end(file, mapping, pos, len, copied,
3142                                                         page, fsdata);
3143         copied = ret2;
3144         if (ret2 < 0)
3145                 ret = ret2;
3146         ret2 = ext4_journal_stop(handle);
3147         if (!ret)
3148                 ret = ret2;
3149
3150         return ret ? ret : copied;
3151 }
3152
3153 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3154 {
3155         /*
3156          * Drop reserved blocks
3157          */
3158         BUG_ON(!PageLocked(page));
3159         if (!page_has_buffers(page))
3160                 goto out;
3161
3162         ext4_da_page_release_reservation(page, offset);
3163
3164 out:
3165         ext4_invalidatepage(page, offset);
3166
3167         return;
3168 }
3169
3170 /*
3171  * Force all delayed allocation blocks to be allocated for a given inode.
3172  */
3173 int ext4_alloc_da_blocks(struct inode *inode)
3174 {
3175         trace_ext4_alloc_da_blocks(inode);
3176
3177         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3178             !EXT4_I(inode)->i_reserved_meta_blocks)
3179                 return 0;
3180
3181         /*
3182          * We do something simple for now.  The filemap_flush() will
3183          * also start triggering a write of the data blocks, which is
3184          * not strictly speaking necessary (and for users of
3185          * laptop_mode, not even desirable).  However, to do otherwise
3186          * would require replicating code paths in:
3187          *
3188          * ext4_da_writepages() ->
3189          *    write_cache_pages() ---> (via passed in callback function)
3190          *        __mpage_da_writepage() -->
3191          *           mpage_add_bh_to_extent()
3192          *           mpage_da_map_blocks()
3193          *
3194          * The problem is that write_cache_pages(), located in
3195          * mm/page-writeback.c, marks pages clean in preparation for
3196          * doing I/O, which is not desirable if we're not planning on
3197          * doing I/O at all.
3198          *
3199          * We could call write_cache_pages(), and then redirty all of
3200          * the pages by calling redirty_page_for_writeback() but that
3201          * would be ugly in the extreme.  So instead we would need to
3202          * replicate parts of the code in the above functions,
3203          * simplifying them becuase we wouldn't actually intend to
3204          * write out the pages, but rather only collect contiguous
3205          * logical block extents, call the multi-block allocator, and
3206          * then update the buffer heads with the block allocations.
3207          *
3208          * For now, though, we'll cheat by calling filemap_flush(),
3209          * which will map the blocks, and start the I/O, but not
3210          * actually wait for the I/O to complete.
3211          */
3212         return filemap_flush(inode->i_mapping);
3213 }
3214
3215 /*
3216  * bmap() is special.  It gets used by applications such as lilo and by
3217  * the swapper to find the on-disk block of a specific piece of data.
3218  *
3219  * Naturally, this is dangerous if the block concerned is still in the
3220  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3221  * filesystem and enables swap, then they may get a nasty shock when the
3222  * data getting swapped to that swapfile suddenly gets overwritten by
3223  * the original zero's written out previously to the journal and
3224  * awaiting writeback in the kernel's buffer cache.
3225  *
3226  * So, if we see any bmap calls here on a modified, data-journaled file,
3227  * take extra steps to flush any blocks which might be in the cache.
3228  */
3229 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3230 {
3231         struct inode *inode = mapping->host;
3232         journal_t *journal;
3233         int err;
3234
3235         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3236                         test_opt(inode->i_sb, DELALLOC)) {
3237                 /*
3238                  * With delalloc we want to sync the file
3239                  * so that we can make sure we allocate
3240                  * blocks for file
3241                  */
3242                 filemap_write_and_wait(mapping);
3243         }
3244
3245         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3246                 /*
3247                  * This is a REALLY heavyweight approach, but the use of
3248                  * bmap on dirty files is expected to be extremely rare:
3249                  * only if we run lilo or swapon on a freshly made file
3250                  * do we expect this to happen.
3251                  *
3252                  * (bmap requires CAP_SYS_RAWIO so this does not
3253                  * represent an unprivileged user DOS attack --- we'd be
3254                  * in trouble if mortal users could trigger this path at
3255                  * will.)
3256                  *
3257                  * NB. EXT4_STATE_JDATA is not set on files other than
3258                  * regular files.  If somebody wants to bmap a directory
3259                  * or symlink and gets confused because the buffer
3260                  * hasn't yet been flushed to disk, they deserve
3261                  * everything they get.
3262                  */
3263
3264                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3265                 journal = EXT4_JOURNAL(inode);
3266                 jbd2_journal_lock_updates(journal);
3267                 err = jbd2_journal_flush(journal);
3268                 jbd2_journal_unlock_updates(journal);
3269
3270                 if (err)
3271                         return 0;
3272         }
3273
3274         return generic_block_bmap(mapping, block, ext4_get_block);
3275 }
3276
3277 static int ext4_readpage(struct file *file, struct page *page)
3278 {
3279         return mpage_readpage(page, ext4_get_block);
3280 }
3281
3282 static int
3283 ext4_readpages(struct file *file, struct address_space *mapping,
3284                 struct list_head *pages, unsigned nr_pages)
3285 {
3286         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3287 }
3288
3289 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3290 {
3291         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3292
3293         /*
3294          * If it's a full truncate we just forget about the pending dirtying
3295          */
3296         if (offset == 0)
3297                 ClearPageChecked(page);
3298
3299         if (journal)
3300                 jbd2_journal_invalidatepage(journal, page, offset);
3301         else
3302                 block_invalidatepage(page, offset);
3303 }
3304
3305 static int ext4_releasepage(struct page *page, gfp_t wait)
3306 {
3307         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3308
3309         WARN_ON(PageChecked(page));
3310         if (!page_has_buffers(page))
3311                 return 0;
3312         if (journal)
3313                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3314         else
3315                 return try_to_free_buffers(page);
3316 }
3317
3318 /*
3319  * O_DIRECT for ext3 (or indirect map) based files
3320  *
3321  * If the O_DIRECT write will extend the file then add this inode to the
3322  * orphan list.  So recovery will truncate it back to the original size
3323  * if the machine crashes during the write.
3324  *
3325  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3326  * crashes then stale disk data _may_ be exposed inside the file. But current
3327  * VFS code falls back into buffered path in that case so we are safe.
3328  */
3329 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3330                               const struct iovec *iov, loff_t offset,
3331                               unsigned long nr_segs)
3332 {
3333         struct file *file = iocb->ki_filp;
3334         struct inode *inode = file->f_mapping->host;
3335         struct ext4_inode_info *ei = EXT4_I(inode);
3336         handle_t *handle;
3337         ssize_t ret;
3338         int orphan = 0;
3339         size_t count = iov_length(iov, nr_segs);
3340         int retries = 0;
3341
3342         if (rw == WRITE) {
3343                 loff_t final_size = offset + count;
3344
3345                 if (final_size > inode->i_size) {
3346                         /* Credits for sb + inode write */
3347                         handle = ext4_journal_start(inode, 2);
3348                         if (IS_ERR(handle)) {
3349                                 ret = PTR_ERR(handle);
3350                                 goto out;
3351                         }
3352                         ret = ext4_orphan_add(handle, inode);
3353                         if (ret) {
3354                                 ext4_journal_stop(handle);
3355                                 goto out;
3356                         }
3357                         orphan = 1;
3358                         ei->i_disksize = inode->i_size;
3359                         ext4_journal_stop(handle);
3360                 }
3361         }
3362
3363 retry:
3364         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3365                                  offset, nr_segs,
3366                                  ext4_get_block, NULL);
3367         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3368                 goto retry;
3369
3370         if (orphan) {
3371                 int err;
3372
3373                 /* Credits for sb + inode write */
3374                 handle = ext4_journal_start(inode, 2);
3375                 if (IS_ERR(handle)) {
3376                         /* This is really bad luck. We've written the data
3377                          * but cannot extend i_size. Bail out and pretend
3378                          * the write failed... */
3379                         ret = PTR_ERR(handle);
3380                         goto out;
3381                 }
3382                 if (inode->i_nlink)
3383                         ext4_orphan_del(handle, inode);
3384                 if (ret > 0) {
3385                         loff_t end = offset + ret;
3386                         if (end > inode->i_size) {
3387                                 ei->i_disksize = end;
3388                                 i_size_write(inode, end);
3389                                 /*
3390                                  * We're going to return a positive `ret'
3391                                  * here due to non-zero-length I/O, so there's
3392                                  * no way of reporting error returns from
3393                                  * ext4_mark_inode_dirty() to userspace.  So
3394                                  * ignore it.
3395                                  */
3396                                 ext4_mark_inode_dirty(handle, inode);
3397                         }
3398                 }
3399                 err = ext4_journal_stop(handle);
3400                 if (ret == 0)
3401                         ret = err;
3402         }
3403 out:
3404         return ret;
3405 }
3406
3407 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3408                    struct buffer_head *bh_result, int create)
3409 {
3410         handle_t *handle = NULL;
3411         int ret = 0;
3412         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3413         int dio_credits;
3414
3415         ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3416                    inode->i_ino, create);
3417         /*
3418          * DIO VFS code passes create = 0 flag for write to
3419          * the middle of file. It does this to avoid block
3420          * allocation for holes, to prevent expose stale data
3421          * out when there is parallel buffered read (which does
3422          * not hold the i_mutex lock) while direct IO write has
3423          * not completed. DIO request on holes finally falls back
3424          * to buffered IO for this reason.
3425          *
3426          * For ext4 extent based file, since we support fallocate,
3427          * new allocated extent as uninitialized, for holes, we
3428          * could fallocate blocks for holes, thus parallel
3429          * buffered IO read will zero out the page when read on
3430          * a hole while parallel DIO write to the hole has not completed.
3431          *
3432          * when we come here, we know it's a direct IO write to
3433          * to the middle of file (<i_size)
3434          * so it's safe to override the create flag from VFS.
3435          */
3436         create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3437
3438         if (max_blocks > DIO_MAX_BLOCKS)
3439                 max_blocks = DIO_MAX_BLOCKS;
3440         dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3441         handle = ext4_journal_start(inode, dio_credits);
3442         if (IS_ERR(handle)) {
3443                 ret = PTR_ERR(handle);
3444                 goto out;
3445         }
3446         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3447                               create);
3448         if (ret > 0) {
3449                 bh_result->b_size = (ret << inode->i_blkbits);
3450                 ret = 0;
3451         }
3452         ext4_journal_stop(handle);
3453 out:
3454         return ret;
3455 }
3456
3457 static void ext4_free_io_end(ext4_io_end_t *io)
3458 {
3459         BUG_ON(!io);
3460         iput(io->inode);
3461         kfree(io);
3462 }
3463 static void dump_aio_dio_list(struct inode * inode)
3464 {
3465 #ifdef  EXT4_DEBUG
3466         struct list_head *cur, *before, *after;
3467         ext4_io_end_t *io, *io0, *io1;
3468
3469         if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3470                 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3471                 return;
3472         }
3473
3474         ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3475         list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3476                 cur = &io->list;
3477                 before = cur->prev;
3478                 io0 = container_of(before, ext4_io_end_t, list);
3479                 after = cur->next;
3480                 io1 = container_of(after, ext4_io_end_t, list);
3481
3482                 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3483                             io, inode->i_ino, io0, io1);
3484         }
3485 #endif
3486 }
3487
3488 /*
3489  * check a range of space and convert unwritten extents to written.
3490  */
3491 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3492 {
3493         struct inode *inode = io->inode;
3494         loff_t offset = io->offset;
3495         size_t size = io->size;
3496         int ret = 0;
3497
3498         ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3499                    "list->prev 0x%p\n",
3500                    io, inode->i_ino, io->list.next, io->list.prev);
3501
3502         if (list_empty(&io->list))
3503                 return ret;
3504
3505         if (io->flag != DIO_AIO_UNWRITTEN)
3506                 return ret;
3507
3508         if (offset + size <= i_size_read(inode))
3509                 ret = ext4_convert_unwritten_extents(inode, offset, size);
3510
3511         if (ret < 0) {
3512                 printk(KERN_EMERG "%s: failed to convert unwritten"
3513                         "extents to written extents, error is %d"
3514                         " io is still on inode %lu aio dio list\n",
3515                        __func__, ret, inode->i_ino);
3516                 return ret;
3517         }
3518
3519         /* clear the DIO AIO unwritten flag */
3520         io->flag = 0;
3521         return ret;
3522 }
3523 /*
3524  * work on completed aio dio IO, to convert unwritten extents to extents
3525  */
3526 static void ext4_end_aio_dio_work(struct work_struct *work)
3527 {
3528         ext4_io_end_t *io  = container_of(work, ext4_io_end_t, work);
3529         struct inode *inode = io->inode;
3530         int ret = 0;
3531
3532         mutex_lock(&inode->i_mutex);
3533         ret = ext4_end_aio_dio_nolock(io);
3534         if (ret >= 0) {
3535                 if (!list_empty(&io->list))
3536                         list_del_init(&io->list);
3537                 ext4_free_io_end(io);
3538         }
3539         mutex_unlock(&inode->i_mutex);
3540 }
3541 /*
3542  * This function is called from ext4_sync_file().
3543  *
3544  * When AIO DIO IO is completed, the work to convert unwritten
3545  * extents to written is queued on workqueue but may not get immediately
3546  * scheduled. When fsync is called, we need to ensure the
3547  * conversion is complete before fsync returns.
3548  * The inode keeps track of a list of completed AIO from DIO path
3549  * that might needs to do the conversion. This function walks through
3550  * the list and convert the related unwritten extents to written.
3551  */
3552 int flush_aio_dio_completed_IO(struct inode *inode)
3553 {
3554         ext4_io_end_t *io;
3555         int ret = 0;
3556         int ret2 = 0;
3557
3558         if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3559                 return ret;
3560
3561         dump_aio_dio_list(inode);
3562         while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3563                 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3564                                 ext4_io_end_t, list);
3565                 /*
3566                  * Calling ext4_end_aio_dio_nolock() to convert completed
3567                  * IO to written.
3568                  *
3569                  * When ext4_sync_file() is called, run_queue() may already
3570                  * about to flush the work corresponding to this io structure.
3571                  * It will be upset if it founds the io structure related
3572                  * to the work-to-be schedule is freed.
3573                  *
3574                  * Thus we need to keep the io structure still valid here after
3575                  * convertion finished. The io structure has a flag to
3576                  * avoid double converting from both fsync and background work
3577                  * queue work.
3578                  */
3579                 ret = ext4_end_aio_dio_nolock(io);
3580                 if (ret < 0)
3581                         ret2 = ret;
3582                 else
3583                         list_del_init(&io->list);
3584         }
3585         return (ret2 < 0) ? ret2 : 0;
3586 }
3587
3588 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3589 {
3590         ext4_io_end_t *io = NULL;
3591
3592         io = kmalloc(sizeof(*io), GFP_NOFS);
3593
3594         if (io) {
3595                 igrab(inode);
3596                 io->inode = inode;
3597                 io->flag = 0;
3598                 io->offset = 0;
3599                 io->size = 0;
3600                 io->error = 0;
3601                 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3602                 INIT_LIST_HEAD(&io->list);
3603         }
3604
3605         return io;
3606 }
3607
3608 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3609                             ssize_t size, void *private)
3610 {
3611         ext4_io_end_t *io_end = iocb->private;
3612         struct workqueue_struct *wq;
3613
3614         /* if not async direct IO or dio with 0 bytes write, just return */
3615         if (!io_end || !size)
3616                 return;
3617
3618         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3619                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3620                   iocb->private, io_end->inode->i_ino, iocb, offset,
3621                   size);
3622
3623         /* if not aio dio with unwritten extents, just free io and return */
3624         if (io_end->flag != DIO_AIO_UNWRITTEN){
3625                 ext4_free_io_end(io_end);
3626                 iocb->private = NULL;
3627                 return;
3628         }
3629
3630         io_end->offset = offset;
3631         io_end->size = size;
3632         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3633
3634         /* queue the work to convert unwritten extents to written */
3635         queue_work(wq, &io_end->work);
3636
3637         /* Add the io_end to per-inode completed aio dio list*/
3638         list_add_tail(&io_end->list,
3639                  &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3640         iocb->private = NULL;
3641 }
3642 /*
3643  * For ext4 extent files, ext4 will do direct-io write to holes,
3644  * preallocated extents, and those write extend the file, no need to
3645  * fall back to buffered IO.
3646  *
3647  * For holes, we fallocate those blocks, mark them as unintialized
3648  * If those blocks were preallocated, we mark sure they are splited, but
3649  * still keep the range to write as unintialized.
3650  *
3651  * The unwrritten extents will be converted to written when DIO is completed.
3652  * For async direct IO, since the IO may still pending when return, we
3653  * set up an end_io call back function, which will do the convertion
3654  * when async direct IO completed.
3655  *
3656  * If the O_DIRECT write will extend the file then add this inode to the
3657  * orphan list.  So recovery will truncate it back to the original size
3658  * if the machine crashes during the write.
3659  *
3660  */
3661 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3662                               const struct iovec *iov, loff_t offset,
3663                               unsigned long nr_segs)
3664 {
3665         struct file *file = iocb->ki_filp;
3666         struct inode *inode = file->f_mapping->host;
3667         ssize_t ret;
3668         size_t count = iov_length(iov, nr_segs);
3669
3670         loff_t final_size = offset + count;
3671         if (rw == WRITE && final_size <= inode->i_size) {
3672                 /*
3673                  * We could direct write to holes and fallocate.
3674                  *
3675                  * Allocated blocks to fill the hole are marked as uninitialized
3676                  * to prevent paralel buffered read to expose the stale data
3677                  * before DIO complete the data IO.
3678                  *
3679                  * As to previously fallocated extents, ext4 get_block
3680                  * will just simply mark the buffer mapped but still
3681                  * keep the extents uninitialized.
3682                  *
3683                  * for non AIO case, we will convert those unwritten extents
3684                  * to written after return back from blockdev_direct_IO.
3685                  *
3686                  * for async DIO, the conversion needs to be defered when
3687                  * the IO is completed. The ext4 end_io callback function
3688                  * will be called to take care of the conversion work.
3689                  * Here for async case, we allocate an io_end structure to
3690                  * hook to the iocb.
3691                  */
3692                 iocb->private = NULL;
3693                 EXT4_I(inode)->cur_aio_dio = NULL;
3694                 if (!is_sync_kiocb(iocb)) {
3695                         iocb->private = ext4_init_io_end(inode);
3696                         if (!iocb->private)
3697                                 return -ENOMEM;
3698                         /*
3699                          * we save the io structure for current async
3700                          * direct IO, so that later ext4_get_blocks()
3701                          * could flag the io structure whether there
3702                          * is a unwritten extents needs to be converted
3703                          * when IO is completed.
3704                          */
3705                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3706                 }
3707
3708                 ret = blockdev_direct_IO(rw, iocb, inode,
3709                                          inode->i_sb->s_bdev, iov,
3710                                          offset, nr_segs,
3711                                          ext4_get_block_dio_write,
3712                                          ext4_end_io_dio);
3713                 if (iocb->private)
3714                         EXT4_I(inode)->cur_aio_dio = NULL;
3715                 /*
3716                  * The io_end structure takes a reference to the inode,
3717                  * that structure needs to be destroyed and the
3718                  * reference to the inode need to be dropped, when IO is
3719                  * complete, even with 0 byte write, or failed.
3720                  *
3721                  * In the successful AIO DIO case, the io_end structure will be
3722                  * desctroyed and the reference to the inode will be dropped
3723                  * after the end_io call back function is called.
3724                  *
3725                  * In the case there is 0 byte write, or error case, since
3726                  * VFS direct IO won't invoke the end_io call back function,
3727                  * we need to free the end_io structure here.
3728                  */
3729                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3730                         ext4_free_io_end(iocb->private);
3731                         iocb->private = NULL;
3732                 } else if (ret > 0 && (EXT4_I(inode)->i_state &
3733                                        EXT4_STATE_DIO_UNWRITTEN)) {
3734                         int err;
3735                         /*
3736                          * for non AIO case, since the IO is already
3737                          * completed, we could do the convertion right here
3738                          */
3739                         err = ext4_convert_unwritten_extents(inode,
3740                                                              offset, ret);
3741                         if (err < 0)
3742                                 ret = err;
3743                         EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3744                 }
3745                 return ret;
3746         }
3747
3748         /* for write the the end of file case, we fall back to old way */
3749         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3750 }
3751
3752 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3753                               const struct iovec *iov, loff_t offset,
3754                               unsigned long nr_segs)
3755 {
3756         struct file *file = iocb->ki_filp;
3757         struct inode *inode = file->f_mapping->host;
3758
3759         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3760                 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3761
3762         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3763 }
3764
3765 /*
3766  * Pages can be marked dirty completely asynchronously from ext4's journalling
3767  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3768  * much here because ->set_page_dirty is called under VFS locks.  The page is
3769  * not necessarily locked.
3770  *
3771  * We cannot just dirty the page and leave attached buffers clean, because the
3772  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3773  * or jbddirty because all the journalling code will explode.
3774  *
3775  * So what we do is to mark the page "pending dirty" and next time writepage
3776  * is called, propagate that into the buffers appropriately.
3777  */
3778 static int ext4_journalled_set_page_dirty(struct page *page)
3779 {
3780         SetPageChecked(page);
3781         return __set_page_dirty_nobuffers(page);
3782 }
3783
3784 static const struct address_space_operations ext4_ordered_aops = {
3785         .readpage               = ext4_readpage,
3786         .readpages              = ext4_readpages,
3787         .writepage              = ext4_writepage,
3788         .sync_page              = block_sync_page,
3789         .write_begin            = ext4_write_begin,
3790         .write_end              = ext4_ordered_write_end,
3791         .bmap                   = ext4_bmap,
3792         .invalidatepage         = ext4_invalidatepage,
3793         .releasepage            = ext4_releasepage,
3794         .direct_IO              = ext4_direct_IO,
3795         .migratepage            = buffer_migrate_page,
3796         .is_partially_uptodate  = block_is_partially_uptodate,
3797         .error_remove_page      = generic_error_remove_page,
3798 };
3799
3800 static const struct address_space_operations ext4_writeback_aops = {
3801         .readpage               = ext4_readpage,
3802         .readpages              = ext4_readpages,
3803         .writepage              = ext4_writepage,
3804         .sync_page              = block_sync_page,
3805         .write_begin            = ext4_write_begin,
3806         .write_end              = ext4_writeback_write_end,
3807         .bmap                   = ext4_bmap,
3808         .invalidatepage         = ext4_invalidatepage,
3809         .releasepage            = ext4_releasepage,
3810         .direct_IO              = ext4_direct_IO,
3811         .migratepage            = buffer_migrate_page,
3812         .is_partially_uptodate  = block_is_partially_uptodate,
3813         .error_remove_page      = generic_error_remove_page,
3814 };
3815
3816 static const struct address_space_operations ext4_journalled_aops = {
3817         .readpage               = ext4_readpage,
3818         .readpages              = ext4_readpages,
3819         .writepage              = ext4_writepage,
3820         .sync_page              = block_sync_page,
3821         .write_begin            = ext4_write_begin,
3822         .write_end              = ext4_journalled_write_end,
3823         .set_page_dirty         = ext4_journalled_set_page_dirty,
3824         .bmap                   = ext4_bmap,
3825         .invalidatepage         = ext4_invalidatepage,
3826         .releasepage            = ext4_releasepage,
3827         .is_partially_uptodate  = block_is_partially_uptodate,
3828         .error_remove_page      = generic_error_remove_page,
3829 };
3830
3831 static const struct address_space_operations ext4_da_aops = {
3832         .readpage               = ext4_readpage,
3833         .readpages              = ext4_readpages,
3834         .writepage              = ext4_writepage,
3835         .writepages             = ext4_da_writepages,
3836         .sync_page              = block_sync_page,
3837         .write_begin            = ext4_da_write_begin,
3838         .write_end              = ext4_da_write_end,
3839         .bmap                   = ext4_bmap,
3840         .invalidatepage         = ext4_da_invalidatepage,
3841         .releasepage            = ext4_releasepage,
3842         .direct_IO              = ext4_direct_IO,
3843         .migratepage            = buffer_migrate_page,
3844         .is_partially_uptodate  = block_is_partially_uptodate,
3845         .error_remove_page      = generic_error_remove_page,
3846 };
3847
3848 void ext4_set_aops(struct inode *inode)
3849 {
3850         if (ext4_should_order_data(inode) &&
3851                 test_opt(inode->i_sb, DELALLOC))
3852                 inode->i_mapping->a_ops = &ext4_da_aops;
3853         else if (ext4_should_order_data(inode))
3854                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3855         else if (ext4_should_writeback_data(inode) &&
3856                  test_opt(inode->i_sb, DELALLOC))
3857                 inode->i_mapping->a_ops = &ext4_da_aops;
3858         else if (ext4_should_writeback_data(inode))
3859                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3860         else
3861                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3862 }
3863
3864 /*
3865  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3866  * up to the end of the block which corresponds to `from'.
3867  * This required during truncate. We need to physically zero the tail end
3868  * of that block so it doesn't yield old data if the file is later grown.
3869  */
3870 int ext4_block_truncate_page(handle_t *handle,
3871                 struct address_space *mapping, loff_t from)
3872 {
3873         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3874         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3875         unsigned blocksize, length, pos;
3876         ext4_lblk_t iblock;
3877         struct inode *inode = mapping->host;
3878         struct buffer_head *bh;
3879         struct page *page;
3880         int err = 0;
3881
3882         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3883                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3884         if (!page)
3885                 return -EINVAL;
3886
3887         blocksize = inode->i_sb->s_blocksize;
3888         length = blocksize - (offset & (blocksize - 1));
3889         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3890
3891         /*
3892          * For "nobh" option,  we can only work if we don't need to
3893          * read-in the page - otherwise we create buffers to do the IO.
3894          */
3895         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3896              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3897                 zero_user(page, offset, length);
3898                 set_page_dirty(page);
3899                 goto unlock;
3900         }
3901
3902         if (!page_has_buffers(page))
3903                 create_empty_buffers(page, blocksize, 0);
3904
3905         /* Find the buffer that contains "offset" */
3906         bh = page_buffers(page);
3907         pos = blocksize;
3908         while (offset >= pos) {
3909                 bh = bh->b_this_page;
3910                 iblock++;
3911                 pos += blocksize;
3912         }
3913
3914         err = 0;
3915         if (buffer_freed(bh)) {
3916                 BUFFER_TRACE(bh, "freed: skip");
3917                 goto unlock;
3918         }
3919
3920         if (!buffer_mapped(bh)) {
3921                 BUFFER_TRACE(bh, "unmapped");
3922                 ext4_get_block(inode, iblock, bh, 0);
3923                 /* unmapped? It's a hole - nothing to do */
3924                 if (!buffer_mapped(bh)) {
3925                         BUFFER_TRACE(bh, "still unmapped");
3926                         goto unlock;
3927                 }
3928         }
3929
3930         /* Ok, it's mapped. Make sure it's up-to-date */
3931         if (PageUptodate(page))
3932                 set_buffer_uptodate(bh);
3933
3934         if (!buffer_uptodate(bh)) {
3935                 err = -EIO;
3936                 ll_rw_block(READ, 1, &bh);
3937                 wait_on_buffer(bh);
3938                 /* Uhhuh. Read error. Complain and punt. */
3939                 if (!buffer_uptodate(bh))
3940                         goto unlock;
3941         }
3942
3943         if (ext4_should_journal_data(inode)) {
3944                 BUFFER_TRACE(bh, "get write access");
3945                 err = ext4_journal_get_write_access(handle, bh);
3946                 if (err)
3947                         goto unlock;
3948         }
3949
3950         zero_user(page, offset, length);
3951
3952         BUFFER_TRACE(bh, "zeroed end of block");
3953
3954         err = 0;
3955         if (ext4_should_journal_data(inode)) {
3956                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3957         } else {
3958                 if (ext4_should_order_data(inode))
3959                         err = ext4_jbd2_file_inode(handle, inode);
3960                 mark_buffer_dirty(bh);
3961         }
3962
3963 unlock:
3964         unlock_page(page);
3965         page_cache_release(page);
3966         return err;
3967 }
3968
3969 /*
3970  * Probably it should be a library function... search for first non-zero word
3971  * or memcmp with zero_page, whatever is better for particular architecture.
3972  * Linus?
3973  */
3974 static inline int all_zeroes(__le32 *p, __le32 *q)
3975 {
3976         while (p < q)
3977                 if (*p++)
3978                         return 0;
3979         return 1;
3980 }
3981
3982 /**
3983  *      ext4_find_shared - find the indirect blocks for partial truncation.
3984  *      @inode:   inode in question
3985  *      @depth:   depth of the affected branch
3986  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3987  *      @chain:   place to store the pointers to partial indirect blocks
3988  *      @top:     place to the (detached) top of branch
3989  *
3990  *      This is a helper function used by ext4_truncate().
3991  *
3992  *      When we do truncate() we may have to clean the ends of several
3993  *      indirect blocks but leave the blocks themselves alive. Block is
3994  *      partially truncated if some data below the new i_size is refered
3995  *      from it (and it is on the path to the first completely truncated
3996  *      data block, indeed).  We have to free the top of that path along
3997  *      with everything to the right of the path. Since no allocation
3998  *      past the truncation point is possible until ext4_truncate()
3999  *      finishes, we may safely do the latter, but top of branch may
4000  *      require special attention - pageout below the truncation point
4001  *      might try to populate it.
4002  *
4003  *      We atomically detach the top of branch from the tree, store the
4004  *      block number of its root in *@top, pointers to buffer_heads of
4005  *      partially truncated blocks - in @chain[].bh and pointers to
4006  *      their last elements that should not be removed - in
4007  *      @chain[].p. Return value is the pointer to last filled element
4008  *      of @chain.
4009  *
4010  *      The work left to caller to do the actual freeing of subtrees:
4011  *              a) free the subtree starting from *@top
4012  *              b) free the subtrees whose roots are stored in
4013  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4014  *              c) free the subtrees growing from the inode past the @chain[0].
4015  *                      (no partially truncated stuff there).  */
4016
4017 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4018                                   ext4_lblk_t offsets[4], Indirect chain[4],
4019                                   __le32 *top)
4020 {
4021         Indirect *partial, *p;
4022         int k, err;
4023
4024         *top = 0;
4025         /* Make k index the deepest non-null offest + 1 */
4026         for (k = depth; k > 1 && !offsets[k-1]; k--)
4027                 ;
4028         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4029         /* Writer: pointers */
4030         if (!partial)
4031                 partial = chain + k-1;
4032         /*
4033          * If the branch acquired continuation since we've looked at it -
4034          * fine, it should all survive and (new) top doesn't belong to us.
4035          */
4036         if (!partial->key && *partial->p)
4037                 /* Writer: end */
4038                 goto no_top;
4039         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4040                 ;
4041         /*
4042          * OK, we've found the last block that must survive. The rest of our
4043          * branch should be detached before unlocking. However, if that rest
4044          * of branch is all ours and does not grow immediately from the inode
4045          * it's easier to cheat and just decrement partial->p.
4046          */
4047         if (p == chain + k - 1 && p > chain) {
4048                 p->p--;
4049         } else {
4050                 *top = *p->p;
4051                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4052 #if 0
4053                 *p->p = 0;
4054 #endif
4055         }
4056         /* Writer: end */
4057
4058         while (partial > p) {
4059                 brelse(partial->bh);
4060                 partial--;
4061         }
4062 no_top:
4063         return partial;
4064 }
4065
4066 /*
4067  * Zero a number of block pointers in either an inode or an indirect block.
4068  * If we restart the transaction we must again get write access to the
4069  * indirect block for further modification.
4070  *
4071  * We release `count' blocks on disk, but (last - first) may be greater
4072  * than `count' because there can be holes in there.
4073  */
4074 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4075                               struct buffer_head *bh,
4076                               ext4_fsblk_t block_to_free,
4077                               unsigned long count, __le32 *first,
4078                               __le32 *last)
4079 {
4080         __le32 *p;
4081         int     flags = EXT4_FREE_BLOCKS_FORGET;
4082
4083         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4084                 flags |= EXT4_FREE_BLOCKS_METADATA;
4085
4086         if (try_to_extend_transaction(handle, inode)) {
4087                 if (bh) {
4088                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4089                         ext4_handle_dirty_metadata(handle, inode, bh);
4090                 }
4091                 ext4_mark_inode_dirty(handle, inode);
4092                 ext4_truncate_restart_trans(handle, inode,
4093                                             blocks_for_truncate(inode));
4094                 if (bh) {
4095                         BUFFER_TRACE(bh, "retaking write access");
4096                         ext4_journal_get_write_access(handle, bh);
4097                 }
4098         }
4099
4100         for (p = first; p < last; p++)
4101                 *p = 0;
4102
4103         ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4104 }
4105
4106 /**
4107  * ext4_free_data - free a list of data blocks
4108  * @handle:     handle for this transaction
4109  * @inode:      inode we are dealing with
4110  * @this_bh:    indirect buffer_head which contains *@first and *@last
4111  * @first:      array of block numbers
4112  * @last:       points immediately past the end of array
4113  *
4114  * We are freeing all blocks refered from that array (numbers are stored as
4115  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4116  *
4117  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4118  * blocks are contiguous then releasing them at one time will only affect one
4119  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4120  * actually use a lot of journal space.
4121  *
4122  * @this_bh will be %NULL if @first and @last point into the inode's direct
4123  * block pointers.
4124  */
4125 static void ext4_free_data(handle_t *handle, struct inode *inode,
4126                            struct buffer_head *this_bh,
4127                            __le32 *first, __le32 *last)
4128 {
4129         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4130         unsigned long count = 0;            /* Number of blocks in the run */
4131         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4132                                                corresponding to
4133                                                block_to_free */
4134         ext4_fsblk_t nr;                    /* Current block # */
4135         __le32 *p;                          /* Pointer into inode/ind
4136                                                for current block */
4137         int err;
4138
4139         if (this_bh) {                          /* For indirect block */
4140                 BUFFER_TRACE(this_bh, "get_write_access");
4141                 err = ext4_journal_get_write_access(handle, this_bh);
4142                 /* Important: if we can't update the indirect pointers
4143                  * to the blocks, we can't free them. */
4144                 if (err)
4145                         return;
4146         }
4147
4148         for (p = first; p < last; p++) {
4149                 nr = le32_to_cpu(*p);
4150                 if (nr) {
4151                         /* accumulate blocks to free if they're contiguous */
4152                         if (count == 0) {
4153                                 block_to_free = nr;
4154                                 block_to_free_p = p;
4155                                 count = 1;
4156                         } else if (nr == block_to_free + count) {
4157                                 count++;
4158                         } else {
4159                                 ext4_clear_blocks(handle, inode, this_bh,
4160                                                   block_to_free,
4161                                                   count, block_to_free_p, p);
4162                                 block_to_free = nr;
4163                                 block_to_free_p = p;
4164                                 count = 1;
4165                         }
4166                 }
4167         }
4168
4169         if (count > 0)
4170                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4171                                   count, block_to_free_p, p);
4172
4173         if (this_bh) {
4174                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4175
4176                 /*
4177                  * The buffer head should have an attached journal head at this
4178                  * point. However, if the data is corrupted and an indirect
4179                  * block pointed to itself, it would have been detached when
4180                  * the block was cleared. Check for this instead of OOPSing.
4181                  */
4182                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4183                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4184                 else
4185                         ext4_error(inode->i_sb, __func__,
4186                                    "circular indirect block detected, "
4187                                    "inode=%lu, block=%llu",
4188                                    inode->i_ino,
4189                                    (unsigned long long) this_bh->b_blocknr);
4190         }
4191 }
4192
4193 /**
4194  *      ext4_free_branches - free an array of branches
4195  *      @handle: JBD handle for this transaction
4196  *      @inode: inode we are dealing with
4197  *      @parent_bh: the buffer_head which contains *@first and *@last
4198  *      @first: array of block numbers
4199  *      @last:  pointer immediately past the end of array
4200  *      @depth: depth of the branches to free
4201  *
4202  *      We are freeing all blocks refered from these branches (numbers are
4203  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4204  *      appropriately.
4205  */
4206 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4207                                struct buffer_head *parent_bh,
4208                                __le32 *first, __le32 *last, int depth)
4209 {
4210         ext4_fsblk_t nr;
4211         __le32 *p;
4212
4213         if (ext4_handle_is_aborted(handle))
4214                 return;
4215
4216         if (depth--) {
4217                 struct buffer_head *bh;
4218                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4219                 p = last;
4220                 while (--p >= first) {
4221                         nr = le32_to_cpu(*p);
4222                         if (!nr)
4223                                 continue;               /* A hole */
4224
4225                         /* Go read the buffer for the next level down */
4226                         bh = sb_bread(inode->i_sb, nr);
4227
4228                         /*
4229                          * A read failure? Report error and clear slot
4230                          * (should be rare).
4231                          */
4232                         if (!bh) {
4233                                 ext4_error(inode->i_sb, "ext4_free_branches",
4234                                            "Read failure, inode=%lu, block=%llu",
4235                                            inode->i_ino, nr);
4236                                 continue;
4237                         }
4238
4239                         /* This zaps the entire block.  Bottom up. */
4240                         BUFFER_TRACE(bh, "free child branches");
4241                         ext4_free_branches(handle, inode, bh,
4242                                         (__le32 *) bh->b_data,
4243                                         (__le32 *) bh->b_data + addr_per_block,
4244                                         depth);
4245
4246                         /*
4247                          * We've probably journalled the indirect block several
4248                          * times during the truncate.  But it's no longer
4249                          * needed and we now drop it from the transaction via
4250                          * jbd2_journal_revoke().
4251                          *
4252                          * That's easy if it's exclusively part of this
4253                          * transaction.  But if it's part of the committing
4254                          * transaction then jbd2_journal_forget() will simply
4255                          * brelse() it.  That means that if the underlying
4256                          * block is reallocated in ext4_get_block(),
4257                          * unmap_underlying_metadata() will find this block
4258                          * and will try to get rid of it.  damn, damn.
4259                          *
4260                          * If this block has already been committed to the
4261                          * journal, a revoke record will be written.  And
4262                          * revoke records must be emitted *before* clearing
4263                          * this block's bit in the bitmaps.
4264                          */
4265                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4266
4267                         /*
4268                          * Everything below this this pointer has been
4269                          * released.  Now let this top-of-subtree go.
4270                          *
4271                          * We want the freeing of this indirect block to be
4272                          * atomic in the journal with the updating of the
4273                          * bitmap block which owns it.  So make some room in
4274                          * the journal.
4275                          *
4276                          * We zero the parent pointer *after* freeing its
4277                          * pointee in the bitmaps, so if extend_transaction()
4278                          * for some reason fails to put the bitmap changes and
4279                          * the release into the same transaction, recovery
4280                          * will merely complain about releasing a free block,
4281                          * rather than leaking blocks.
4282                          */
4283                         if (ext4_handle_is_aborted(handle))
4284                                 return;
4285                         if (try_to_extend_transaction(handle, inode)) {
4286                                 ext4_mark_inode_dirty(handle, inode);
4287                                 ext4_truncate_restart_trans(handle, inode,
4288                                             blocks_for_truncate(inode));
4289                         }
4290
4291                         ext4_free_blocks(handle, inode, 0, nr, 1,
4292                                          EXT4_FREE_BLOCKS_METADATA);
4293
4294                         if (parent_bh) {
4295                                 /*
4296                                  * The block which we have just freed is
4297                                  * pointed to by an indirect block: journal it
4298                                  */
4299                                 BUFFER_TRACE(parent_bh, "get_write_access");
4300                                 if (!ext4_journal_get_write_access(handle,
4301                                                                    parent_bh)){
4302                                         *p = 0;
4303                                         BUFFER_TRACE(parent_bh,
4304                                         "call ext4_handle_dirty_metadata");
4305                                         ext4_handle_dirty_metadata(handle,
4306                                                                    inode,
4307                                                                    parent_bh);
4308                                 }
4309                         }
4310                 }
4311         } else {
4312                 /* We have reached the bottom of the tree. */
4313                 BUFFER_TRACE(parent_bh, "free data blocks");
4314                 ext4_free_data(handle, inode, parent_bh, first, last);
4315         }
4316 }
4317
4318 int ext4_can_truncate(struct inode *inode)
4319 {
4320         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4321                 return 0;
4322         if (S_ISREG(inode->i_mode))
4323                 return 1;
4324         if (S_ISDIR(inode->i_mode))
4325                 return 1;
4326         if (S_ISLNK(inode->i_mode))
4327                 return !ext4_inode_is_fast_symlink(inode);
4328         return 0;
4329 }
4330
4331 /*
4332  * ext4_truncate()
4333  *
4334  * We block out ext4_get_block() block instantiations across the entire
4335  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4336  * simultaneously on behalf of the same inode.
4337  *
4338  * As we work through the truncate and commmit bits of it to the journal there
4339  * is one core, guiding principle: the file's tree must always be consistent on
4340  * disk.  We must be able to restart the truncate after a crash.
4341  *
4342  * The file's tree may be transiently inconsistent in memory (although it
4343  * probably isn't), but whenever we close off and commit a journal transaction,
4344  * the contents of (the filesystem + the journal) must be consistent and
4345  * restartable.  It's pretty simple, really: bottom up, right to left (although
4346  * left-to-right works OK too).
4347  *
4348  * Note that at recovery time, journal replay occurs *before* the restart of
4349  * truncate against the orphan inode list.
4350  *
4351  * The committed inode has the new, desired i_size (which is the same as
4352  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4353  * that this inode's truncate did not complete and it will again call
4354  * ext4_truncate() to have another go.  So there will be instantiated blocks
4355  * to the right of the truncation point in a crashed ext4 filesystem.  But
4356  * that's fine - as long as they are linked from the inode, the post-crash
4357  * ext4_truncate() run will find them and release them.
4358  */
4359 void ext4_truncate(struct inode *inode)
4360 {
4361         handle_t *handle;
4362         struct ext4_inode_info *ei = EXT4_I(inode);
4363         __le32 *i_data = ei->i_data;
4364         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4365         struct address_space *mapping = inode->i_mapping;
4366         ext4_lblk_t offsets[4];
4367         Indirect chain[4];
4368         Indirect *partial;
4369         __le32 nr = 0;
4370         int n;
4371         ext4_lblk_t last_block;
4372         unsigned blocksize = inode->i_sb->s_blocksize;
4373
4374         if (!ext4_can_truncate(inode))
4375                 return;
4376
4377         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4378                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4379
4380         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4381                 ext4_ext_truncate(inode);
4382                 return;
4383         }
4384
4385         handle = start_transaction(inode);
4386         if (IS_ERR(handle))
4387                 return;         /* AKPM: return what? */
4388
4389         last_block = (inode->i_size + blocksize-1)
4390                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4391
4392         if (inode->i_size & (blocksize - 1))
4393                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4394                         goto out_stop;
4395
4396         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4397         if (n == 0)
4398                 goto out_stop;  /* error */
4399
4400         /*
4401          * OK.  This truncate is going to happen.  We add the inode to the
4402          * orphan list, so that if this truncate spans multiple transactions,
4403          * and we crash, we will resume the truncate when the filesystem
4404          * recovers.  It also marks the inode dirty, to catch the new size.
4405          *
4406          * Implication: the file must always be in a sane, consistent
4407          * truncatable state while each transaction commits.
4408          */
4409         if (ext4_orphan_add(handle, inode))
4410                 goto out_stop;
4411
4412         /*
4413          * From here we block out all ext4_get_block() callers who want to
4414          * modify the block allocation tree.
4415          */
4416         down_write(&ei->i_data_sem);
4417
4418         ext4_discard_preallocations(inode);
4419
4420         /*
4421          * The orphan list entry will now protect us from any crash which
4422          * occurs before the truncate completes, so it is now safe to propagate
4423          * the new, shorter inode size (held for now in i_size) into the
4424          * on-disk inode. We do this via i_disksize, which is the value which
4425          * ext4 *really* writes onto the disk inode.
4426          */
4427         ei->i_disksize = inode->i_size;
4428
4429         if (n == 1) {           /* direct blocks */
4430                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4431                                i_data + EXT4_NDIR_BLOCKS);
4432                 goto do_indirects;
4433         }
4434
4435         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4436         /* Kill the top of shared branch (not detached) */
4437         if (nr) {
4438                 if (partial == chain) {
4439                         /* Shared branch grows from the inode */
4440                         ext4_free_branches(handle, inode, NULL,
4441                                            &nr, &nr+1, (chain+n-1) - partial);
4442                         *partial->p = 0;
4443                         /*
4444                          * We mark the inode dirty prior to restart,
4445                          * and prior to stop.  No need for it here.
4446                          */
4447                 } else {
4448                         /* Shared branch grows from an indirect block */
4449                         BUFFER_TRACE(partial->bh, "get_write_access");
4450                         ext4_free_branches(handle, inode, partial->bh,
4451                                         partial->p,
4452                                         partial->p+1, (chain+n-1) - partial);
4453                 }
4454         }
4455         /* Clear the ends of indirect blocks on the shared branch */
4456         while (partial > chain) {
4457                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4458                                    (__le32*)partial->bh->b_data+addr_per_block,
4459                                    (chain+n-1) - partial);
4460                 BUFFER_TRACE(partial->bh, "call brelse");
4461                 brelse(partial->bh);
4462                 partial--;
4463         }
4464 do_indirects:
4465         /* Kill the remaining (whole) subtrees */
4466         switch (offsets[0]) {
4467         default:
4468                 nr = i_data[EXT4_IND_BLOCK];
4469                 if (nr) {
4470                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4471                         i_data[EXT4_IND_BLOCK] = 0;
4472                 }
4473         case EXT4_IND_BLOCK:
4474                 nr = i_data[EXT4_DIND_BLOCK];
4475                 if (nr) {
4476                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4477                         i_data[EXT4_DIND_BLOCK] = 0;
4478                 }
4479         case EXT4_DIND_BLOCK:
4480                 nr = i_data[EXT4_TIND_BLOCK];
4481                 if (nr) {
4482                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4483                         i_data[EXT4_TIND_BLOCK] = 0;
4484                 }
4485         case EXT4_TIND_BLOCK:
4486                 ;
4487         }
4488
4489         up_write(&ei->i_data_sem);
4490         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4491         ext4_mark_inode_dirty(handle, inode);
4492
4493         /*
4494          * In a multi-transaction truncate, we only make the final transaction
4495          * synchronous
4496          */
4497         if (IS_SYNC(inode))
4498                 ext4_handle_sync(handle);
4499 out_stop:
4500         /*
4501          * If this was a simple ftruncate(), and the file will remain alive
4502          * then we need to clear up the orphan record which we created above.
4503          * However, if this was a real unlink then we were called by
4504          * ext4_delete_inode(), and we allow that function to clean up the
4505          * orphan info for us.
4506          */
4507         if (inode->i_nlink)
4508                 ext4_orphan_del(handle, inode);
4509
4510         ext4_journal_stop(handle);
4511 }
4512
4513 /*
4514  * ext4_get_inode_loc returns with an extra refcount against the inode's
4515  * underlying buffer_head on success. If 'in_mem' is true, we have all
4516  * data in memory that is needed to recreate the on-disk version of this
4517  * inode.
4518  */
4519 static int __ext4_get_inode_loc(struct inode *inode,
4520                                 struct ext4_iloc *iloc, int in_mem)
4521 {
4522         struct ext4_group_desc  *gdp;
4523         struct buffer_head      *bh;
4524         struct super_block      *sb = inode->i_sb;
4525         ext4_fsblk_t            block;
4526         int                     inodes_per_block, inode_offset;
4527
4528         iloc->bh = NULL;
4529         if (!ext4_valid_inum(sb, inode->i_ino))
4530                 return -EIO;
4531
4532         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4533         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4534         if (!gdp)
4535                 return -EIO;
4536
4537         /*
4538          * Figure out the offset within the block group inode table
4539          */
4540         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4541         inode_offset = ((inode->i_ino - 1) %
4542                         EXT4_INODES_PER_GROUP(sb));
4543         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4544         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4545
4546         bh = sb_getblk(sb, block);
4547         if (!bh) {
4548                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4549                            "inode block - inode=%lu, block=%llu",
4550                            inode->i_ino, block);
4551                 return -EIO;
4552         }
4553         if (!buffer_uptodate(bh)) {
4554                 lock_buffer(bh);
4555
4556                 /*
4557                  * If the buffer has the write error flag, we have failed
4558                  * to write out another inode in the same block.  In this
4559                  * case, we don't have to read the block because we may
4560                  * read the old inode data successfully.
4561                  */
4562                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4563                         set_buffer_uptodate(bh);
4564
4565                 if (buffer_uptodate(bh)) {
4566                         /* someone brought it uptodate while we waited */
4567                         unlock_buffer(bh);
4568                         goto has_buffer;
4569                 }
4570
4571                 /*
4572                  * If we have all information of the inode in memory and this
4573                  * is the only valid inode in the block, we need not read the
4574                  * block.
4575                  */
4576                 if (in_mem) {
4577                         struct buffer_head *bitmap_bh;
4578                         int i, start;
4579
4580                         start = inode_offset & ~(inodes_per_block - 1);
4581
4582                         /* Is the inode bitmap in cache? */
4583                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4584                         if (!bitmap_bh)
4585                                 goto make_io;
4586
4587                         /*
4588                          * If the inode bitmap isn't in cache then the
4589                          * optimisation may end up performing two reads instead
4590                          * of one, so skip it.
4591                          */
4592                         if (!buffer_uptodate(bitmap_bh)) {
4593                                 brelse(bitmap_bh);
4594                                 goto make_io;
4595                         }
4596                         for (i = start; i < start + inodes_per_block; i++) {
4597                                 if (i == inode_offset)
4598                                         continue;
4599                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4600                                         break;
4601                         }
4602                         brelse(bitmap_bh);
4603                         if (i == start + inodes_per_block) {
4604                                 /* all other inodes are free, so skip I/O */
4605                                 memset(bh->b_data, 0, bh->b_size);
4606                                 set_buffer_uptodate(bh);
4607                                 unlock_buffer(bh);
4608                                 goto has_buffer;
4609                         }
4610                 }
4611
4612 make_io:
4613                 /*
4614                  * If we need to do any I/O, try to pre-readahead extra
4615                  * blocks from the inode table.
4616                  */
4617                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4618                         ext4_fsblk_t b, end, table;
4619                         unsigned num;
4620
4621                         table = ext4_inode_table(sb, gdp);
4622                         /* s_inode_readahead_blks is always a power of 2 */
4623                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4624                         if (table > b)
4625                                 b = table;
4626                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4627                         num = EXT4_INODES_PER_GROUP(sb);
4628                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4629                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4630                                 num -= ext4_itable_unused_count(sb, gdp);
4631                         table += num / inodes_per_block;
4632                         if (end > table)
4633                                 end = table;
4634                         while (b <= end)
4635                                 sb_breadahead(sb, b++);
4636                 }
4637
4638                 /*
4639                  * There are other valid inodes in the buffer, this inode
4640                  * has in-inode xattrs, or we don't have this inode in memory.
4641                  * Read the block from disk.
4642                  */
4643                 get_bh(bh);
4644                 bh->b_end_io = end_buffer_read_sync;
4645                 submit_bh(READ_META, bh);
4646                 wait_on_buffer(bh);
4647                 if (!buffer_uptodate(bh)) {
4648                         ext4_error(sb, __func__,
4649                                    "unable to read inode block - inode=%lu, "
4650                                    "block=%llu", inode->i_ino, block);
4651                         brelse(bh);
4652                         return -EIO;
4653                 }
4654         }
4655 has_buffer:
4656         iloc->bh = bh;
4657         return 0;
4658 }
4659
4660 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4661 {
4662         /* We have all inode data except xattrs in memory here. */
4663         return __ext4_get_inode_loc(inode, iloc,
4664                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4665 }
4666
4667 void ext4_set_inode_flags(struct inode *inode)
4668 {
4669         unsigned int flags = EXT4_I(inode)->i_flags;
4670
4671         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4672         if (flags & EXT4_SYNC_FL)
4673                 inode->i_flags |= S_SYNC;
4674         if (flags & EXT4_APPEND_FL)
4675                 inode->i_flags |= S_APPEND;
4676         if (flags & EXT4_IMMUTABLE_FL)
4677                 inode->i_flags |= S_IMMUTABLE;
4678         if (flags & EXT4_NOATIME_FL)
4679                 inode->i_flags |= S_NOATIME;
4680         if (flags & EXT4_DIRSYNC_FL)
4681                 inode->i_flags |= S_DIRSYNC;
4682 }
4683
4684 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4685 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4686 {
4687         unsigned int flags = ei->vfs_inode.i_flags;
4688
4689         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4690                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4691         if (flags & S_SYNC)
4692                 ei->i_flags |= EXT4_SYNC_FL;
4693         if (flags & S_APPEND)
4694                 ei->i_flags |= EXT4_APPEND_FL;
4695         if (flags & S_IMMUTABLE)
4696                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4697         if (flags & S_NOATIME)
4698                 ei->i_flags |= EXT4_NOATIME_FL;
4699         if (flags & S_DIRSYNC)
4700                 ei->i_flags |= EXT4_DIRSYNC_FL;
4701 }
4702
4703 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4704                                   struct ext4_inode_info *ei)
4705 {
4706         blkcnt_t i_blocks ;
4707         struct inode *inode = &(ei->vfs_inode);
4708         struct super_block *sb = inode->i_sb;
4709
4710         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4711                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4712                 /* we are using combined 48 bit field */
4713                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4714                                         le32_to_cpu(raw_inode->i_blocks_lo);
4715                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4716                         /* i_blocks represent file system block size */
4717                         return i_blocks  << (inode->i_blkbits - 9);
4718                 } else {
4719                         return i_blocks;
4720                 }
4721         } else {
4722                 return le32_to_cpu(raw_inode->i_blocks_lo);
4723         }
4724 }
4725
4726 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4727 {
4728         struct ext4_iloc iloc;
4729         struct ext4_inode *raw_inode;
4730         struct ext4_inode_info *ei;
4731         struct inode *inode;
4732         long ret;
4733         int block;
4734
4735         inode = iget_locked(sb, ino);
4736         if (!inode)
4737                 return ERR_PTR(-ENOMEM);
4738         if (!(inode->i_state & I_NEW))
4739                 return inode;
4740
4741         ei = EXT4_I(inode);
4742         iloc.bh = 0;
4743
4744         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4745         if (ret < 0)
4746                 goto bad_inode;
4747         raw_inode = ext4_raw_inode(&iloc);
4748         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4749         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4750         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4751         if (!(test_opt(inode->i_sb, NO_UID32))) {
4752                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4753                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4754         }
4755         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4756
4757         ei->i_state = 0;
4758         ei->i_dir_start_lookup = 0;
4759         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4760         /* We now have enough fields to check if the inode was active or not.
4761          * This is needed because nfsd might try to access dead inodes
4762          * the test is that same one that e2fsck uses
4763          * NeilBrown 1999oct15
4764          */
4765         if (inode->i_nlink == 0) {
4766                 if (inode->i_mode == 0 ||
4767                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4768                         /* this inode is deleted */
4769                         ret = -ESTALE;
4770                         goto bad_inode;
4771                 }
4772                 /* The only unlinked inodes we let through here have
4773                  * valid i_mode and are being read by the orphan
4774                  * recovery code: that's fine, we're about to complete
4775                  * the process of deleting those. */
4776         }
4777         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4778         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4779         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4780         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4781                 ei->i_file_acl |=
4782                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4783         inode->i_size = ext4_isize(raw_inode);
4784         ei->i_disksize = inode->i_size;
4785         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4786         ei->i_block_group = iloc.block_group;
4787         ei->i_last_alloc_group = ~0;
4788         /*
4789          * NOTE! The in-memory inode i_data array is in little-endian order
4790          * even on big-endian machines: we do NOT byteswap the block numbers!
4791          */
4792         for (block = 0; block < EXT4_N_BLOCKS; block++)
4793                 ei->i_data[block] = raw_inode->i_block[block];
4794         INIT_LIST_HEAD(&ei->i_orphan);
4795
4796         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4797                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4798                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4799                     EXT4_INODE_SIZE(inode->i_sb)) {
4800                         ret = -EIO;
4801                         goto bad_inode;
4802                 }
4803                 if (ei->i_extra_isize == 0) {
4804                         /* The extra space is currently unused. Use it. */
4805                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4806                                             EXT4_GOOD_OLD_INODE_SIZE;
4807                 } else {
4808                         __le32 *magic = (void *)raw_inode +
4809                                         EXT4_GOOD_OLD_INODE_SIZE +
4810                                         ei->i_extra_isize;
4811                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4812                                 ei->i_state |= EXT4_STATE_XATTR;
4813                 }
4814         } else
4815                 ei->i_extra_isize = 0;
4816
4817         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4818         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4819         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4820         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4821
4822         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4823         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4824                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4825                         inode->i_version |=
4826                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4827         }
4828
4829         ret = 0;
4830         if (ei->i_file_acl &&
4831             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4832                 ext4_error(sb, __func__,
4833                            "bad extended attribute block %llu in inode #%lu",
4834                            ei->i_file_acl, inode->i_ino);
4835                 ret = -EIO;
4836                 goto bad_inode;
4837         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4838                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4839                     (S_ISLNK(inode->i_mode) &&
4840                      !ext4_inode_is_fast_symlink(inode)))
4841                         /* Validate extent which is part of inode */
4842                         ret = ext4_ext_check_inode(inode);
4843         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4844                    (S_ISLNK(inode->i_mode) &&
4845                     !ext4_inode_is_fast_symlink(inode))) {
4846                 /* Validate block references which are part of inode */
4847                 ret = ext4_check_inode_blockref(inode);
4848         }
4849         if (ret)
4850                 goto bad_inode;
4851
4852         if (S_ISREG(inode->i_mode)) {
4853                 inode->i_op = &ext4_file_inode_operations;
4854                 inode->i_fop = &ext4_file_operations;
4855                 ext4_set_aops(inode);
4856         } else if (S_ISDIR(inode->i_mode)) {
4857                 inode->i_op = &ext4_dir_inode_operations;
4858                 inode->i_fop = &ext4_dir_operations;
4859         } else if (S_ISLNK(inode->i_mode)) {
4860                 if (ext4_inode_is_fast_symlink(inode)) {
4861                         inode->i_op = &ext4_fast_symlink_inode_operations;
4862                         nd_terminate_link(ei->i_data, inode->i_size,
4863                                 sizeof(ei->i_data) - 1);
4864                 } else {
4865                         inode->i_op = &ext4_symlink_inode_operations;
4866                         ext4_set_aops(inode);
4867                 }
4868         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4869               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4870                 inode->i_op = &ext4_special_inode_operations;
4871                 if (raw_inode->i_block[0])
4872                         init_special_inode(inode, inode->i_mode,
4873                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4874                 else
4875                         init_special_inode(inode, inode->i_mode,
4876                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4877         } else {
4878                 ret = -EIO;
4879                 ext4_error(inode->i_sb, __func__,
4880                            "bogus i_mode (%o) for inode=%lu",
4881                            inode->i_mode, inode->i_ino);
4882                 goto bad_inode;
4883         }
4884         brelse(iloc.bh);
4885         ext4_set_inode_flags(inode);
4886         unlock_new_inode(inode);
4887         return inode;
4888
4889 bad_inode:
4890         brelse(iloc.bh);
4891         iget_failed(inode);
4892         return ERR_PTR(ret);
4893 }
4894
4895 static int ext4_inode_blocks_set(handle_t *handle,
4896                                 struct ext4_inode *raw_inode,
4897                                 struct ext4_inode_info *ei)
4898 {
4899         struct inode *inode = &(ei->vfs_inode);
4900         u64 i_blocks = inode->i_blocks;
4901         struct super_block *sb = inode->i_sb;
4902
4903         if (i_blocks <= ~0U) {
4904                 /*
4905                  * i_blocks can be represnted in a 32 bit variable
4906                  * as multiple of 512 bytes
4907                  */
4908                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4909                 raw_inode->i_blocks_high = 0;
4910                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4911                 return 0;
4912         }
4913         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4914                 return -EFBIG;
4915
4916         if (i_blocks <= 0xffffffffffffULL) {
4917                 /*
4918                  * i_blocks can be represented in a 48 bit variable
4919                  * as multiple of 512 bytes
4920                  */
4921                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4922                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4923                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4924         } else {
4925                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4926                 /* i_block is stored in file system block size */
4927                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4928                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4929                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4930         }
4931         return 0;
4932 }
4933
4934 /*
4935  * Post the struct inode info into an on-disk inode location in the
4936  * buffer-cache.  This gobbles the caller's reference to the
4937  * buffer_head in the inode location struct.
4938  *
4939  * The caller must have write access to iloc->bh.
4940  */
4941 static int ext4_do_update_inode(handle_t *handle,
4942                                 struct inode *inode,
4943                                 struct ext4_iloc *iloc)
4944 {
4945         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4946         struct ext4_inode_info *ei = EXT4_I(inode);
4947         struct buffer_head *bh = iloc->bh;
4948         int err = 0, rc, block;
4949
4950         /* For fields not not tracking in the in-memory inode,
4951          * initialise them to zero for new inodes. */
4952         if (ei->i_state & EXT4_STATE_NEW)
4953                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4954
4955         ext4_get_inode_flags(ei);
4956         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4957         if (!(test_opt(inode->i_sb, NO_UID32))) {
4958                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4959                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4960 /*
4961  * Fix up interoperability with old kernels. Otherwise, old inodes get
4962  * re-used with the upper 16 bits of the uid/gid intact
4963  */
4964                 if (!ei->i_dtime) {
4965                         raw_inode->i_uid_high =
4966                                 cpu_to_le16(high_16_bits(inode->i_uid));
4967                         raw_inode->i_gid_high =
4968                                 cpu_to_le16(high_16_bits(inode->i_gid));
4969                 } else {
4970                         raw_inode->i_uid_high = 0;
4971                         raw_inode->i_gid_high = 0;
4972                 }
4973         } else {
4974                 raw_inode->i_uid_low =
4975                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4976                 raw_inode->i_gid_low =
4977                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4978                 raw_inode->i_uid_high = 0;
4979                 raw_inode->i_gid_high = 0;
4980         }
4981         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4982
4983         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4984         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4985         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4986         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4987
4988         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4989                 goto out_brelse;
4990         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4991         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
4992         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4993             cpu_to_le32(EXT4_OS_HURD))
4994                 raw_inode->i_file_acl_high =
4995                         cpu_to_le16(ei->i_file_acl >> 32);
4996         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4997         ext4_isize_set(raw_inode, ei->i_disksize);
4998         if (ei->i_disksize > 0x7fffffffULL) {
4999                 struct super_block *sb = inode->i_sb;
5000                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5001                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5002                                 EXT4_SB(sb)->s_es->s_rev_level ==
5003                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5004                         /* If this is the first large file
5005                          * created, add a flag to the superblock.
5006                          */
5007                         err = ext4_journal_get_write_access(handle,
5008                                         EXT4_SB(sb)->s_sbh);
5009                         if (err)
5010                                 goto out_brelse;
5011                         ext4_update_dynamic_rev(sb);
5012                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5013                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5014                         sb->s_dirt = 1;
5015                         ext4_handle_sync(handle);
5016                         err = ext4_handle_dirty_metadata(handle, inode,
5017                                         EXT4_SB(sb)->s_sbh);
5018                 }
5019         }
5020         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5021         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5022                 if (old_valid_dev(inode->i_rdev)) {
5023                         raw_inode->i_block[0] =
5024                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5025                         raw_inode->i_block[1] = 0;
5026                 } else {
5027                         raw_inode->i_block[0] = 0;
5028                         raw_inode->i_block[1] =
5029                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5030                         raw_inode->i_block[2] = 0;
5031                 }
5032         } else
5033                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5034                         raw_inode->i_block[block] = ei->i_data[block];
5035
5036         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5037         if (ei->i_extra_isize) {
5038                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5039                         raw_inode->i_version_hi =
5040                         cpu_to_le32(inode->i_version >> 32);
5041                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5042         }
5043
5044         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5045         rc = ext4_handle_dirty_metadata(handle, inode, bh);
5046         if (!err)
5047                 err = rc;
5048         ei->i_state &= ~EXT4_STATE_NEW;
5049
5050 out_brelse:
5051         brelse(bh);
5052         ext4_std_error(inode->i_sb, err);
5053         return err;
5054 }
5055
5056 /*
5057  * ext4_write_inode()
5058  *
5059  * We are called from a few places:
5060  *
5061  * - Within generic_file_write() for O_SYNC files.
5062  *   Here, there will be no transaction running. We wait for any running
5063  *   trasnaction to commit.
5064  *
5065  * - Within sys_sync(), kupdate and such.
5066  *   We wait on commit, if tol to.
5067  *
5068  * - Within prune_icache() (PF_MEMALLOC == true)
5069  *   Here we simply return.  We can't afford to block kswapd on the
5070  *   journal commit.
5071  *
5072  * In all cases it is actually safe for us to return without doing anything,
5073  * because the inode has been copied into a raw inode buffer in
5074  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5075  * knfsd.
5076  *
5077  * Note that we are absolutely dependent upon all inode dirtiers doing the
5078  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5079  * which we are interested.
5080  *
5081  * It would be a bug for them to not do this.  The code:
5082  *
5083  *      mark_inode_dirty(inode)
5084  *      stuff();
5085  *      inode->i_size = expr;
5086  *
5087  * is in error because a kswapd-driven write_inode() could occur while
5088  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5089  * will no longer be on the superblock's dirty inode list.
5090  */
5091 int ext4_write_inode(struct inode *inode, int wait)
5092 {
5093         int err;
5094
5095         if (current->flags & PF_MEMALLOC)
5096                 return 0;
5097
5098         if (EXT4_SB(inode->i_sb)->s_journal) {
5099                 if (ext4_journal_current_handle()) {
5100                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5101                         dump_stack();
5102                         return -EIO;
5103                 }
5104
5105                 if (!wait)
5106                         return 0;
5107
5108                 err = ext4_force_commit(inode->i_sb);
5109         } else {
5110                 struct ext4_iloc iloc;
5111
5112                 err = ext4_get_inode_loc(inode, &iloc);
5113                 if (err)
5114                         return err;
5115                 if (wait)
5116                         sync_dirty_buffer(iloc.bh);
5117                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5118                         ext4_error(inode->i_sb, __func__,
5119                                    "IO error syncing inode, "
5120                                    "inode=%lu, block=%llu",
5121                                    inode->i_ino,
5122                                    (unsigned long long)iloc.bh->b_blocknr);
5123                         err = -EIO;
5124                 }
5125         }
5126         return err;
5127 }
5128
5129 /*
5130  * ext4_setattr()
5131  *
5132  * Called from notify_change.
5133  *
5134  * We want to trap VFS attempts to truncate the file as soon as
5135  * possible.  In particular, we want to make sure that when the VFS
5136  * shrinks i_size, we put the inode on the orphan list and modify
5137  * i_disksize immediately, so that during the subsequent flushing of
5138  * dirty pages and freeing of disk blocks, we can guarantee that any
5139  * commit will leave the blocks being flushed in an unused state on
5140  * disk.  (On recovery, the inode will get truncated and the blocks will
5141  * be freed, so we have a strong guarantee that no future commit will
5142  * leave these blocks visible to the user.)
5143  *
5144  * Another thing we have to assure is that if we are in ordered mode
5145  * and inode is still attached to the committing transaction, we must
5146  * we start writeout of all the dirty pages which are being truncated.
5147  * This way we are sure that all the data written in the previous
5148  * transaction are already on disk (truncate waits for pages under
5149  * writeback).
5150  *
5151  * Called with inode->i_mutex down.
5152  */
5153 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5154 {
5155         struct inode *inode = dentry->d_inode;
5156         int error, rc = 0;
5157         const unsigned int ia_valid = attr->ia_valid;
5158
5159         error = inode_change_ok(inode, attr);
5160         if (error)
5161                 return error;
5162
5163         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5164                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5165                 handle_t *handle;
5166
5167                 /* (user+group)*(old+new) structure, inode write (sb,
5168                  * inode block, ? - but truncate inode update has it) */
5169                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
5170                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
5171                 if (IS_ERR(handle)) {
5172                         error = PTR_ERR(handle);
5173                         goto err_out;
5174                 }
5175                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5176                 if (error) {
5177                         ext4_journal_stop(handle);
5178                         return error;
5179                 }
5180                 /* Update corresponding info in inode so that everything is in
5181                  * one transaction */
5182                 if (attr->ia_valid & ATTR_UID)
5183                         inode->i_uid = attr->ia_uid;
5184                 if (attr->ia_valid & ATTR_GID)
5185                         inode->i_gid = attr->ia_gid;
5186                 error = ext4_mark_inode_dirty(handle, inode);
5187                 ext4_journal_stop(handle);
5188         }
5189
5190         if (attr->ia_valid & ATTR_SIZE) {
5191                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5192                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5193
5194                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5195                                 error = -EFBIG;
5196                                 goto err_out;
5197                         }
5198                 }
5199         }
5200
5201         if (S_ISREG(inode->i_mode) &&
5202             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5203                 handle_t *handle;
5204
5205                 handle = ext4_journal_start(inode, 3);
5206                 if (IS_ERR(handle)) {
5207                         error = PTR_ERR(handle);
5208                         goto err_out;
5209                 }
5210
5211                 error = ext4_orphan_add(handle, inode);
5212                 EXT4_I(inode)->i_disksize = attr->ia_size;
5213                 rc = ext4_mark_inode_dirty(handle, inode);
5214                 if (!error)
5215                         error = rc;
5216                 ext4_journal_stop(handle);
5217
5218                 if (ext4_should_order_data(inode)) {
5219                         error = ext4_begin_ordered_truncate(inode,
5220                                                             attr->ia_size);
5221                         if (error) {
5222                                 /* Do as much error cleanup as possible */
5223                                 handle = ext4_journal_start(inode, 3);
5224                                 if (IS_ERR(handle)) {
5225                                         ext4_orphan_del(NULL, inode);
5226                                         goto err_out;
5227                                 }
5228                                 ext4_orphan_del(handle, inode);
5229                                 ext4_journal_stop(handle);
5230                                 goto err_out;
5231                         }
5232                 }
5233         }
5234
5235         rc = inode_setattr(inode, attr);
5236
5237         /* If inode_setattr's call to ext4_truncate failed to get a
5238          * transaction handle at all, we need to clean up the in-core
5239          * orphan list manually. */
5240         if (inode->i_nlink)
5241                 ext4_orphan_del(NULL, inode);
5242
5243         if (!rc && (ia_valid & ATTR_MODE))
5244                 rc = ext4_acl_chmod(inode);
5245
5246 err_out:
5247         ext4_std_error(inode->i_sb, error);
5248         if (!error)
5249                 error = rc;
5250         return error;
5251 }
5252
5253 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5254                  struct kstat *stat)
5255 {
5256         struct inode *inode;
5257         unsigned long delalloc_blocks;
5258
5259         inode = dentry->d_inode;
5260         generic_fillattr(inode, stat);
5261
5262         /*
5263          * We can't update i_blocks if the block allocation is delayed
5264          * otherwise in the case of system crash before the real block
5265          * allocation is done, we will have i_blocks inconsistent with
5266          * on-disk file blocks.
5267          * We always keep i_blocks updated together with real
5268          * allocation. But to not confuse with user, stat
5269          * will return the blocks that include the delayed allocation
5270          * blocks for this file.
5271          */
5272         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5273         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5274         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5275
5276         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5277         return 0;
5278 }
5279
5280 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5281                                       int chunk)
5282 {
5283         int indirects;
5284
5285         /* if nrblocks are contiguous */
5286         if (chunk) {
5287                 /*
5288                  * With N contiguous data blocks, it need at most
5289                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5290                  * 2 dindirect blocks
5291                  * 1 tindirect block
5292                  */
5293                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5294                 return indirects + 3;
5295         }
5296         /*
5297          * if nrblocks are not contiguous, worse case, each block touch
5298          * a indirect block, and each indirect block touch a double indirect
5299          * block, plus a triple indirect block
5300          */
5301         indirects = nrblocks * 2 + 1;
5302         return indirects;
5303 }
5304
5305 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5306 {
5307         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5308                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5309         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5310 }
5311
5312 /*
5313  * Account for index blocks, block groups bitmaps and block group
5314  * descriptor blocks if modify datablocks and index blocks
5315  * worse case, the indexs blocks spread over different block groups
5316  *
5317  * If datablocks are discontiguous, they are possible to spread over
5318  * different block groups too. If they are contiugous, with flexbg,
5319  * they could still across block group boundary.
5320  *
5321  * Also account for superblock, inode, quota and xattr blocks
5322  */
5323 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5324 {
5325         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5326         int gdpblocks;
5327         int idxblocks;
5328         int ret = 0;
5329
5330         /*
5331          * How many index blocks need to touch to modify nrblocks?
5332          * The "Chunk" flag indicating whether the nrblocks is
5333          * physically contiguous on disk
5334          *
5335          * For Direct IO and fallocate, they calls get_block to allocate
5336          * one single extent at a time, so they could set the "Chunk" flag
5337          */
5338         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5339
5340         ret = idxblocks;
5341
5342         /*
5343          * Now let's see how many group bitmaps and group descriptors need
5344          * to account
5345          */
5346         groups = idxblocks;
5347         if (chunk)
5348                 groups += 1;
5349         else
5350                 groups += nrblocks;
5351
5352         gdpblocks = groups;
5353         if (groups > ngroups)
5354                 groups = ngroups;
5355         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5356                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5357
5358         /* bitmaps and block group descriptor blocks */
5359         ret += groups + gdpblocks;
5360
5361         /* Blocks for super block, inode, quota and xattr blocks */
5362         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5363
5364         return ret;
5365 }
5366
5367 /*
5368  * Calulate the total number of credits to reserve to fit
5369  * the modification of a single pages into a single transaction,
5370  * which may include multiple chunks of block allocations.
5371  *
5372  * This could be called via ext4_write_begin()
5373  *
5374  * We need to consider the worse case, when
5375  * one new block per extent.
5376  */
5377 int ext4_writepage_trans_blocks(struct inode *inode)
5378 {
5379         int bpp = ext4_journal_blocks_per_page(inode);
5380         int ret;
5381
5382         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5383
5384         /* Account for data blocks for journalled mode */
5385         if (ext4_should_journal_data(inode))
5386                 ret += bpp;
5387         return ret;
5388 }
5389
5390 /*
5391  * Calculate the journal credits for a chunk of data modification.
5392  *
5393  * This is called from DIO, fallocate or whoever calling
5394  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5395  *
5396  * journal buffers for data blocks are not included here, as DIO
5397  * and fallocate do no need to journal data buffers.
5398  */
5399 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5400 {
5401         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5402 }
5403
5404 /*
5405  * The caller must have previously called ext4_reserve_inode_write().
5406  * Give this, we know that the caller already has write access to iloc->bh.
5407  */
5408 int ext4_mark_iloc_dirty(handle_t *handle,
5409                          struct inode *inode, struct ext4_iloc *iloc)
5410 {
5411         int err = 0;
5412
5413         if (test_opt(inode->i_sb, I_VERSION))
5414                 inode_inc_iversion(inode);
5415
5416         /* the do_update_inode consumes one bh->b_count */
5417         get_bh(iloc->bh);
5418
5419         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5420         err = ext4_do_update_inode(handle, inode, iloc);
5421         put_bh(iloc->bh);
5422         return err;
5423 }
5424
5425 /*
5426  * On success, We end up with an outstanding reference count against
5427  * iloc->bh.  This _must_ be cleaned up later.
5428  */
5429
5430 int
5431 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5432                          struct ext4_iloc *iloc)
5433 {
5434         int err;
5435
5436         err = ext4_get_inode_loc(inode, iloc);
5437         if (!err) {
5438                 BUFFER_TRACE(iloc->bh, "get_write_access");
5439                 err = ext4_journal_get_write_access(handle, iloc->bh);
5440                 if (err) {
5441                         brelse(iloc->bh);
5442                         iloc->bh = NULL;
5443                 }
5444         }
5445         ext4_std_error(inode->i_sb, err);
5446         return err;
5447 }
5448
5449 /*
5450  * Expand an inode by new_extra_isize bytes.
5451  * Returns 0 on success or negative error number on failure.
5452  */
5453 static int ext4_expand_extra_isize(struct inode *inode,
5454                                    unsigned int new_extra_isize,
5455                                    struct ext4_iloc iloc,
5456                                    handle_t *handle)
5457 {
5458         struct ext4_inode *raw_inode;
5459         struct ext4_xattr_ibody_header *header;
5460         struct ext4_xattr_entry *entry;
5461
5462         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5463                 return 0;
5464
5465         raw_inode = ext4_raw_inode(&iloc);
5466
5467         header = IHDR(inode, raw_inode);
5468         entry = IFIRST(header);
5469
5470         /* No extended attributes present */
5471         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5472                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5473                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5474                         new_extra_isize);
5475                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5476                 return 0;
5477         }
5478
5479         /* try to expand with EAs present */
5480         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5481                                           raw_inode, handle);
5482 }
5483
5484 /*
5485  * What we do here is to mark the in-core inode as clean with respect to inode
5486  * dirtiness (it may still be data-dirty).
5487  * This means that the in-core inode may be reaped by prune_icache
5488  * without having to perform any I/O.  This is a very good thing,
5489  * because *any* task may call prune_icache - even ones which
5490  * have a transaction open against a different journal.
5491  *
5492  * Is this cheating?  Not really.  Sure, we haven't written the
5493  * inode out, but prune_icache isn't a user-visible syncing function.
5494  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5495  * we start and wait on commits.
5496  *
5497  * Is this efficient/effective?  Well, we're being nice to the system
5498  * by cleaning up our inodes proactively so they can be reaped
5499  * without I/O.  But we are potentially leaving up to five seconds'
5500  * worth of inodes floating about which prune_icache wants us to
5501  * write out.  One way to fix that would be to get prune_icache()
5502  * to do a write_super() to free up some memory.  It has the desired
5503  * effect.
5504  */
5505 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5506 {
5507         struct ext4_iloc iloc;
5508         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5509         static unsigned int mnt_count;
5510         int err, ret;
5511
5512         might_sleep();
5513         err = ext4_reserve_inode_write(handle, inode, &iloc);
5514         if (ext4_handle_valid(handle) &&
5515             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5516             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5517                 /*
5518                  * We need extra buffer credits since we may write into EA block
5519                  * with this same handle. If journal_extend fails, then it will
5520                  * only result in a minor loss of functionality for that inode.
5521                  * If this is felt to be critical, then e2fsck should be run to
5522                  * force a large enough s_min_extra_isize.
5523                  */
5524                 if ((jbd2_journal_extend(handle,
5525                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5526                         ret = ext4_expand_extra_isize(inode,
5527                                                       sbi->s_want_extra_isize,
5528                                                       iloc, handle);
5529                         if (ret) {
5530                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5531                                 if (mnt_count !=
5532                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5533                                         ext4_warning(inode->i_sb, __func__,
5534                                         "Unable to expand inode %lu. Delete"
5535                                         " some EAs or run e2fsck.",
5536                                         inode->i_ino);
5537                                         mnt_count =
5538                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5539                                 }
5540                         }
5541                 }
5542         }
5543         if (!err)
5544                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5545         return err;
5546 }
5547
5548 /*
5549  * ext4_dirty_inode() is called from __mark_inode_dirty()
5550  *
5551  * We're really interested in the case where a file is being extended.
5552  * i_size has been changed by generic_commit_write() and we thus need
5553  * to include the updated inode in the current transaction.
5554  *
5555  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5556  * are allocated to the file.
5557  *
5558  * If the inode is marked synchronous, we don't honour that here - doing
5559  * so would cause a commit on atime updates, which we don't bother doing.
5560  * We handle synchronous inodes at the highest possible level.
5561  */
5562 void ext4_dirty_inode(struct inode *inode)
5563 {
5564         handle_t *handle;
5565
5566         handle = ext4_journal_start(inode, 2);
5567         if (IS_ERR(handle))
5568                 goto out;
5569
5570         ext4_mark_inode_dirty(handle, inode);
5571
5572         ext4_journal_stop(handle);
5573 out:
5574         return;
5575 }
5576
5577 #if 0
5578 /*
5579  * Bind an inode's backing buffer_head into this transaction, to prevent
5580  * it from being flushed to disk early.  Unlike
5581  * ext4_reserve_inode_write, this leaves behind no bh reference and
5582  * returns no iloc structure, so the caller needs to repeat the iloc
5583  * lookup to mark the inode dirty later.
5584  */
5585 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5586 {
5587         struct ext4_iloc iloc;
5588
5589         int err = 0;
5590         if (handle) {
5591                 err = ext4_get_inode_loc(inode, &iloc);
5592                 if (!err) {
5593                         BUFFER_TRACE(iloc.bh, "get_write_access");
5594                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5595                         if (!err)
5596                                 err = ext4_handle_dirty_metadata(handle,
5597                                                                  inode,
5598                                                                  iloc.bh);
5599                         brelse(iloc.bh);
5600                 }
5601         }
5602         ext4_std_error(inode->i_sb, err);
5603         return err;
5604 }
5605 #endif
5606
5607 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5608 {
5609         journal_t *journal;
5610         handle_t *handle;
5611         int err;
5612
5613         /*
5614          * We have to be very careful here: changing a data block's
5615          * journaling status dynamically is dangerous.  If we write a
5616          * data block to the journal, change the status and then delete
5617          * that block, we risk forgetting to revoke the old log record
5618          * from the journal and so a subsequent replay can corrupt data.
5619          * So, first we make sure that the journal is empty and that
5620          * nobody is changing anything.
5621          */
5622
5623         journal = EXT4_JOURNAL(inode);
5624         if (!journal)
5625                 return 0;
5626         if (is_journal_aborted(journal))
5627                 return -EROFS;
5628
5629         jbd2_journal_lock_updates(journal);
5630         jbd2_journal_flush(journal);
5631
5632         /*
5633          * OK, there are no updates running now, and all cached data is
5634          * synced to disk.  We are now in a completely consistent state
5635          * which doesn't have anything in the journal, and we know that
5636          * no filesystem updates are running, so it is safe to modify
5637          * the inode's in-core data-journaling state flag now.
5638          */
5639
5640         if (val)
5641                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5642         else
5643                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5644         ext4_set_aops(inode);
5645
5646         jbd2_journal_unlock_updates(journal);
5647
5648         /* Finally we can mark the inode as dirty. */
5649
5650         handle = ext4_journal_start(inode, 1);
5651         if (IS_ERR(handle))
5652                 return PTR_ERR(handle);
5653
5654         err = ext4_mark_inode_dirty(handle, inode);
5655         ext4_handle_sync(handle);
5656         ext4_journal_stop(handle);
5657         ext4_std_error(inode->i_sb, err);
5658
5659         return err;
5660 }
5661
5662 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5663 {
5664         return !buffer_mapped(bh);
5665 }
5666
5667 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5668 {
5669         struct page *page = vmf->page;
5670         loff_t size;
5671         unsigned long len;
5672         int ret = -EINVAL;
5673         void *fsdata;
5674         struct file *file = vma->vm_file;
5675         struct inode *inode = file->f_path.dentry->d_inode;
5676         struct address_space *mapping = inode->i_mapping;
5677
5678         /*
5679          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5680          * get i_mutex because we are already holding mmap_sem.
5681          */
5682         down_read(&inode->i_alloc_sem);
5683         size = i_size_read(inode);
5684         if (page->mapping != mapping || size <= page_offset(page)
5685             || !PageUptodate(page)) {
5686                 /* page got truncated from under us? */
5687                 goto out_unlock;
5688         }
5689         ret = 0;
5690         if (PageMappedToDisk(page))
5691                 goto out_unlock;
5692
5693         if (page->index == size >> PAGE_CACHE_SHIFT)
5694                 len = size & ~PAGE_CACHE_MASK;
5695         else
5696                 len = PAGE_CACHE_SIZE;
5697
5698         lock_page(page);
5699         /*
5700          * return if we have all the buffers mapped. This avoid
5701          * the need to call write_begin/write_end which does a
5702          * journal_start/journal_stop which can block and take
5703          * long time
5704          */
5705         if (page_has_buffers(page)) {
5706                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5707                                         ext4_bh_unmapped)) {
5708                         unlock_page(page);
5709                         goto out_unlock;
5710                 }
5711         }
5712         unlock_page(page);
5713         /*
5714          * OK, we need to fill the hole... Do write_begin write_end
5715          * to do block allocation/reservation.We are not holding
5716          * inode.i__mutex here. That allow * parallel write_begin,
5717          * write_end call. lock_page prevent this from happening
5718          * on the same page though
5719          */
5720         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5721                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5722         if (ret < 0)
5723                 goto out_unlock;
5724         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5725                         len, len, page, fsdata);
5726         if (ret < 0)
5727                 goto out_unlock;
5728         ret = 0;
5729 out_unlock:
5730         if (ret)
5731                 ret = VM_FAULT_SIGBUS;
5732         up_read(&inode->i_alloc_sem);
5733         return ret;
5734 }