ext4: move ext4_forget() to ext4_jbd2.c
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52                                               loff_t new_size)
53 {
54         return jbd2_journal_begin_ordered_truncate(
55                                         EXT4_SB(inode->i_sb)->s_journal,
56                                         &EXT4_I(inode)->jinode,
57                                         new_size);
58 }
59
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
61
62 /*
63  * Test whether an inode is a fast symlink.
64  */
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 {
67         int ea_blocks = EXT4_I(inode)->i_file_acl ?
68                 (inode->i_sb->s_blocksize >> 9) : 0;
69
70         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71 }
72
73 /*
74  * Work out how many blocks we need to proceed with the next chunk of a
75  * truncate transaction.
76  */
77 static unsigned long blocks_for_truncate(struct inode *inode)
78 {
79         ext4_lblk_t needed;
80
81         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
82
83         /* Give ourselves just enough room to cope with inodes in which
84          * i_blocks is corrupt: we've seen disk corruptions in the past
85          * which resulted in random data in an inode which looked enough
86          * like a regular file for ext4 to try to delete it.  Things
87          * will go a bit crazy if that happens, but at least we should
88          * try not to panic the whole kernel. */
89         if (needed < 2)
90                 needed = 2;
91
92         /* But we need to bound the transaction so we don't overflow the
93          * journal. */
94         if (needed > EXT4_MAX_TRANS_DATA)
95                 needed = EXT4_MAX_TRANS_DATA;
96
97         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
98 }
99
100 /*
101  * Truncate transactions can be complex and absolutely huge.  So we need to
102  * be able to restart the transaction at a conventient checkpoint to make
103  * sure we don't overflow the journal.
104  *
105  * start_transaction gets us a new handle for a truncate transaction,
106  * and extend_transaction tries to extend the existing one a bit.  If
107  * extend fails, we need to propagate the failure up and restart the
108  * transaction in the top-level truncate loop. --sct
109  */
110 static handle_t *start_transaction(struct inode *inode)
111 {
112         handle_t *result;
113
114         result = ext4_journal_start(inode, blocks_for_truncate(inode));
115         if (!IS_ERR(result))
116                 return result;
117
118         ext4_std_error(inode->i_sb, PTR_ERR(result));
119         return result;
120 }
121
122 /*
123  * Try to extend this transaction for the purposes of truncation.
124  *
125  * Returns 0 if we managed to create more room.  If we can't create more
126  * room, and the transaction must be restarted we return 1.
127  */
128 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
129 {
130         if (!ext4_handle_valid(handle))
131                 return 0;
132         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
133                 return 0;
134         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
135                 return 0;
136         return 1;
137 }
138
139 /*
140  * Restart the transaction associated with *handle.  This does a commit,
141  * so before we call here everything must be consistently dirtied against
142  * this transaction.
143  */
144 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
145                                  int nblocks)
146 {
147         int ret;
148
149         /*
150          * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
151          * moment, get_block can be called only for blocks inside i_size since
152          * page cache has been already dropped and writes are blocked by
153          * i_mutex. So we can safely drop the i_data_sem here.
154          */
155         BUG_ON(EXT4_JOURNAL(inode) == NULL);
156         jbd_debug(2, "restarting handle %p\n", handle);
157         up_write(&EXT4_I(inode)->i_data_sem);
158         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
159         down_write(&EXT4_I(inode)->i_data_sem);
160         ext4_discard_preallocations(inode);
161
162         return ret;
163 }
164
165 /*
166  * Called at the last iput() if i_nlink is zero.
167  */
168 void ext4_delete_inode(struct inode *inode)
169 {
170         handle_t *handle;
171         int err;
172
173         if (ext4_should_order_data(inode))
174                 ext4_begin_ordered_truncate(inode, 0);
175         truncate_inode_pages(&inode->i_data, 0);
176
177         if (is_bad_inode(inode))
178                 goto no_delete;
179
180         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
181         if (IS_ERR(handle)) {
182                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
183                 /*
184                  * If we're going to skip the normal cleanup, we still need to
185                  * make sure that the in-core orphan linked list is properly
186                  * cleaned up.
187                  */
188                 ext4_orphan_del(NULL, inode);
189                 goto no_delete;
190         }
191
192         if (IS_SYNC(inode))
193                 ext4_handle_sync(handle);
194         inode->i_size = 0;
195         err = ext4_mark_inode_dirty(handle, inode);
196         if (err) {
197                 ext4_warning(inode->i_sb, __func__,
198                              "couldn't mark inode dirty (err %d)", err);
199                 goto stop_handle;
200         }
201         if (inode->i_blocks)
202                 ext4_truncate(inode);
203
204         /*
205          * ext4_ext_truncate() doesn't reserve any slop when it
206          * restarts journal transactions; therefore there may not be
207          * enough credits left in the handle to remove the inode from
208          * the orphan list and set the dtime field.
209          */
210         if (!ext4_handle_has_enough_credits(handle, 3)) {
211                 err = ext4_journal_extend(handle, 3);
212                 if (err > 0)
213                         err = ext4_journal_restart(handle, 3);
214                 if (err != 0) {
215                         ext4_warning(inode->i_sb, __func__,
216                                      "couldn't extend journal (err %d)", err);
217                 stop_handle:
218                         ext4_journal_stop(handle);
219                         goto no_delete;
220                 }
221         }
222
223         /*
224          * Kill off the orphan record which ext4_truncate created.
225          * AKPM: I think this can be inside the above `if'.
226          * Note that ext4_orphan_del() has to be able to cope with the
227          * deletion of a non-existent orphan - this is because we don't
228          * know if ext4_truncate() actually created an orphan record.
229          * (Well, we could do this if we need to, but heck - it works)
230          */
231         ext4_orphan_del(handle, inode);
232         EXT4_I(inode)->i_dtime  = get_seconds();
233
234         /*
235          * One subtle ordering requirement: if anything has gone wrong
236          * (transaction abort, IO errors, whatever), then we can still
237          * do these next steps (the fs will already have been marked as
238          * having errors), but we can't free the inode if the mark_dirty
239          * fails.
240          */
241         if (ext4_mark_inode_dirty(handle, inode))
242                 /* If that failed, just do the required in-core inode clear. */
243                 clear_inode(inode);
244         else
245                 ext4_free_inode(handle, inode);
246         ext4_journal_stop(handle);
247         return;
248 no_delete:
249         clear_inode(inode);     /* We must guarantee clearing of inode... */
250 }
251
252 typedef struct {
253         __le32  *p;
254         __le32  key;
255         struct buffer_head *bh;
256 } Indirect;
257
258 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
259 {
260         p->key = *(p->p = v);
261         p->bh = bh;
262 }
263
264 /**
265  *      ext4_block_to_path - parse the block number into array of offsets
266  *      @inode: inode in question (we are only interested in its superblock)
267  *      @i_block: block number to be parsed
268  *      @offsets: array to store the offsets in
269  *      @boundary: set this non-zero if the referred-to block is likely to be
270  *             followed (on disk) by an indirect block.
271  *
272  *      To store the locations of file's data ext4 uses a data structure common
273  *      for UNIX filesystems - tree of pointers anchored in the inode, with
274  *      data blocks at leaves and indirect blocks in intermediate nodes.
275  *      This function translates the block number into path in that tree -
276  *      return value is the path length and @offsets[n] is the offset of
277  *      pointer to (n+1)th node in the nth one. If @block is out of range
278  *      (negative or too large) warning is printed and zero returned.
279  *
280  *      Note: function doesn't find node addresses, so no IO is needed. All
281  *      we need to know is the capacity of indirect blocks (taken from the
282  *      inode->i_sb).
283  */
284
285 /*
286  * Portability note: the last comparison (check that we fit into triple
287  * indirect block) is spelled differently, because otherwise on an
288  * architecture with 32-bit longs and 8Kb pages we might get into trouble
289  * if our filesystem had 8Kb blocks. We might use long long, but that would
290  * kill us on x86. Oh, well, at least the sign propagation does not matter -
291  * i_block would have to be negative in the very beginning, so we would not
292  * get there at all.
293  */
294
295 static int ext4_block_to_path(struct inode *inode,
296                               ext4_lblk_t i_block,
297                               ext4_lblk_t offsets[4], int *boundary)
298 {
299         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
300         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
301         const long direct_blocks = EXT4_NDIR_BLOCKS,
302                 indirect_blocks = ptrs,
303                 double_blocks = (1 << (ptrs_bits * 2));
304         int n = 0;
305         int final = 0;
306
307         if (i_block < direct_blocks) {
308                 offsets[n++] = i_block;
309                 final = direct_blocks;
310         } else if ((i_block -= direct_blocks) < indirect_blocks) {
311                 offsets[n++] = EXT4_IND_BLOCK;
312                 offsets[n++] = i_block;
313                 final = ptrs;
314         } else if ((i_block -= indirect_blocks) < double_blocks) {
315                 offsets[n++] = EXT4_DIND_BLOCK;
316                 offsets[n++] = i_block >> ptrs_bits;
317                 offsets[n++] = i_block & (ptrs - 1);
318                 final = ptrs;
319         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
320                 offsets[n++] = EXT4_TIND_BLOCK;
321                 offsets[n++] = i_block >> (ptrs_bits * 2);
322                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
323                 offsets[n++] = i_block & (ptrs - 1);
324                 final = ptrs;
325         } else {
326                 ext4_warning(inode->i_sb, "ext4_block_to_path",
327                              "block %lu > max in inode %lu",
328                              i_block + direct_blocks +
329                              indirect_blocks + double_blocks, inode->i_ino);
330         }
331         if (boundary)
332                 *boundary = final - 1 - (i_block & (ptrs - 1));
333         return n;
334 }
335
336 static int __ext4_check_blockref(const char *function, struct inode *inode,
337                                  __le32 *p, unsigned int max)
338 {
339         __le32 *bref = p;
340         unsigned int blk;
341
342         while (bref < p+max) {
343                 blk = le32_to_cpu(*bref++);
344                 if (blk &&
345                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
346                                                     blk, 1))) {
347                         ext4_error(inode->i_sb, function,
348                                    "invalid block reference %u "
349                                    "in inode #%lu", blk, inode->i_ino);
350                         return -EIO;
351                 }
352         }
353         return 0;
354 }
355
356
357 #define ext4_check_indirect_blockref(inode, bh)                         \
358         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
359                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
360
361 #define ext4_check_inode_blockref(inode)                                \
362         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
363                               EXT4_NDIR_BLOCKS)
364
365 /**
366  *      ext4_get_branch - read the chain of indirect blocks leading to data
367  *      @inode: inode in question
368  *      @depth: depth of the chain (1 - direct pointer, etc.)
369  *      @offsets: offsets of pointers in inode/indirect blocks
370  *      @chain: place to store the result
371  *      @err: here we store the error value
372  *
373  *      Function fills the array of triples <key, p, bh> and returns %NULL
374  *      if everything went OK or the pointer to the last filled triple
375  *      (incomplete one) otherwise. Upon the return chain[i].key contains
376  *      the number of (i+1)-th block in the chain (as it is stored in memory,
377  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
378  *      number (it points into struct inode for i==0 and into the bh->b_data
379  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380  *      block for i>0 and NULL for i==0. In other words, it holds the block
381  *      numbers of the chain, addresses they were taken from (and where we can
382  *      verify that chain did not change) and buffer_heads hosting these
383  *      numbers.
384  *
385  *      Function stops when it stumbles upon zero pointer (absent block)
386  *              (pointer to last triple returned, *@err == 0)
387  *      or when it gets an IO error reading an indirect block
388  *              (ditto, *@err == -EIO)
389  *      or when it reads all @depth-1 indirect blocks successfully and finds
390  *      the whole chain, all way to the data (returns %NULL, *err == 0).
391  *
392  *      Need to be called with
393  *      down_read(&EXT4_I(inode)->i_data_sem)
394  */
395 static Indirect *ext4_get_branch(struct inode *inode, int depth,
396                                  ext4_lblk_t  *offsets,
397                                  Indirect chain[4], int *err)
398 {
399         struct super_block *sb = inode->i_sb;
400         Indirect *p = chain;
401         struct buffer_head *bh;
402
403         *err = 0;
404         /* i_data is not going away, no lock needed */
405         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
406         if (!p->key)
407                 goto no_block;
408         while (--depth) {
409                 bh = sb_getblk(sb, le32_to_cpu(p->key));
410                 if (unlikely(!bh))
411                         goto failure;
412
413                 if (!bh_uptodate_or_lock(bh)) {
414                         if (bh_submit_read(bh) < 0) {
415                                 put_bh(bh);
416                                 goto failure;
417                         }
418                         /* validate block references */
419                         if (ext4_check_indirect_blockref(inode, bh)) {
420                                 put_bh(bh);
421                                 goto failure;
422                         }
423                 }
424
425                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
426                 /* Reader: end */
427                 if (!p->key)
428                         goto no_block;
429         }
430         return NULL;
431
432 failure:
433         *err = -EIO;
434 no_block:
435         return p;
436 }
437
438 /**
439  *      ext4_find_near - find a place for allocation with sufficient locality
440  *      @inode: owner
441  *      @ind: descriptor of indirect block.
442  *
443  *      This function returns the preferred place for block allocation.
444  *      It is used when heuristic for sequential allocation fails.
445  *      Rules are:
446  *        + if there is a block to the left of our position - allocate near it.
447  *        + if pointer will live in indirect block - allocate near that block.
448  *        + if pointer will live in inode - allocate in the same
449  *          cylinder group.
450  *
451  * In the latter case we colour the starting block by the callers PID to
452  * prevent it from clashing with concurrent allocations for a different inode
453  * in the same block group.   The PID is used here so that functionally related
454  * files will be close-by on-disk.
455  *
456  *      Caller must make sure that @ind is valid and will stay that way.
457  */
458 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
459 {
460         struct ext4_inode_info *ei = EXT4_I(inode);
461         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
462         __le32 *p;
463         ext4_fsblk_t bg_start;
464         ext4_fsblk_t last_block;
465         ext4_grpblk_t colour;
466         ext4_group_t block_group;
467         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
468
469         /* Try to find previous block */
470         for (p = ind->p - 1; p >= start; p--) {
471                 if (*p)
472                         return le32_to_cpu(*p);
473         }
474
475         /* No such thing, so let's try location of indirect block */
476         if (ind->bh)
477                 return ind->bh->b_blocknr;
478
479         /*
480          * It is going to be referred to from the inode itself? OK, just put it
481          * into the same cylinder group then.
482          */
483         block_group = ei->i_block_group;
484         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
485                 block_group &= ~(flex_size-1);
486                 if (S_ISREG(inode->i_mode))
487                         block_group++;
488         }
489         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
490         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
491
492         /*
493          * If we are doing delayed allocation, we don't need take
494          * colour into account.
495          */
496         if (test_opt(inode->i_sb, DELALLOC))
497                 return bg_start;
498
499         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
500                 colour = (current->pid % 16) *
501                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
502         else
503                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
504         return bg_start + colour;
505 }
506
507 /**
508  *      ext4_find_goal - find a preferred place for allocation.
509  *      @inode: owner
510  *      @block:  block we want
511  *      @partial: pointer to the last triple within a chain
512  *
513  *      Normally this function find the preferred place for block allocation,
514  *      returns it.
515  *      Because this is only used for non-extent files, we limit the block nr
516  *      to 32 bits.
517  */
518 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
519                                    Indirect *partial)
520 {
521         ext4_fsblk_t goal;
522
523         /*
524          * XXX need to get goal block from mballoc's data structures
525          */
526
527         goal = ext4_find_near(inode, partial);
528         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
529         return goal;
530 }
531
532 /**
533  *      ext4_blks_to_allocate: Look up the block map and count the number
534  *      of direct blocks need to be allocated for the given branch.
535  *
536  *      @branch: chain of indirect blocks
537  *      @k: number of blocks need for indirect blocks
538  *      @blks: number of data blocks to be mapped.
539  *      @blocks_to_boundary:  the offset in the indirect block
540  *
541  *      return the total number of blocks to be allocate, including the
542  *      direct and indirect blocks.
543  */
544 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
545                                  int blocks_to_boundary)
546 {
547         unsigned int count = 0;
548
549         /*
550          * Simple case, [t,d]Indirect block(s) has not allocated yet
551          * then it's clear blocks on that path have not allocated
552          */
553         if (k > 0) {
554                 /* right now we don't handle cross boundary allocation */
555                 if (blks < blocks_to_boundary + 1)
556                         count += blks;
557                 else
558                         count += blocks_to_boundary + 1;
559                 return count;
560         }
561
562         count++;
563         while (count < blks && count <= blocks_to_boundary &&
564                 le32_to_cpu(*(branch[0].p + count)) == 0) {
565                 count++;
566         }
567         return count;
568 }
569
570 /**
571  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
572  *      @indirect_blks: the number of blocks need to allocate for indirect
573  *                      blocks
574  *
575  *      @new_blocks: on return it will store the new block numbers for
576  *      the indirect blocks(if needed) and the first direct block,
577  *      @blks:  on return it will store the total number of allocated
578  *              direct blocks
579  */
580 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
581                              ext4_lblk_t iblock, ext4_fsblk_t goal,
582                              int indirect_blks, int blks,
583                              ext4_fsblk_t new_blocks[4], int *err)
584 {
585         struct ext4_allocation_request ar;
586         int target, i;
587         unsigned long count = 0, blk_allocated = 0;
588         int index = 0;
589         ext4_fsblk_t current_block = 0;
590         int ret = 0;
591
592         /*
593          * Here we try to allocate the requested multiple blocks at once,
594          * on a best-effort basis.
595          * To build a branch, we should allocate blocks for
596          * the indirect blocks(if not allocated yet), and at least
597          * the first direct block of this branch.  That's the
598          * minimum number of blocks need to allocate(required)
599          */
600         /* first we try to allocate the indirect blocks */
601         target = indirect_blks;
602         while (target > 0) {
603                 count = target;
604                 /* allocating blocks for indirect blocks and direct blocks */
605                 current_block = ext4_new_meta_blocks(handle, inode,
606                                                         goal, &count, err);
607                 if (*err)
608                         goto failed_out;
609
610                 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
611
612                 target -= count;
613                 /* allocate blocks for indirect blocks */
614                 while (index < indirect_blks && count) {
615                         new_blocks[index++] = current_block++;
616                         count--;
617                 }
618                 if (count > 0) {
619                         /*
620                          * save the new block number
621                          * for the first direct block
622                          */
623                         new_blocks[index] = current_block;
624                         printk(KERN_INFO "%s returned more blocks than "
625                                                 "requested\n", __func__);
626                         WARN_ON(1);
627                         break;
628                 }
629         }
630
631         target = blks - count ;
632         blk_allocated = count;
633         if (!target)
634                 goto allocated;
635         /* Now allocate data blocks */
636         memset(&ar, 0, sizeof(ar));
637         ar.inode = inode;
638         ar.goal = goal;
639         ar.len = target;
640         ar.logical = iblock;
641         if (S_ISREG(inode->i_mode))
642                 /* enable in-core preallocation only for regular files */
643                 ar.flags = EXT4_MB_HINT_DATA;
644
645         current_block = ext4_mb_new_blocks(handle, &ar, err);
646         BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
647
648         if (*err && (target == blks)) {
649                 /*
650                  * if the allocation failed and we didn't allocate
651                  * any blocks before
652                  */
653                 goto failed_out;
654         }
655         if (!*err) {
656                 if (target == blks) {
657                         /*
658                          * save the new block number
659                          * for the first direct block
660                          */
661                         new_blocks[index] = current_block;
662                 }
663                 blk_allocated += ar.len;
664         }
665 allocated:
666         /* total number of blocks allocated for direct blocks */
667         ret = blk_allocated;
668         *err = 0;
669         return ret;
670 failed_out:
671         for (i = 0; i < index; i++)
672                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
673         return ret;
674 }
675
676 /**
677  *      ext4_alloc_branch - allocate and set up a chain of blocks.
678  *      @inode: owner
679  *      @indirect_blks: number of allocated indirect blocks
680  *      @blks: number of allocated direct blocks
681  *      @offsets: offsets (in the blocks) to store the pointers to next.
682  *      @branch: place to store the chain in.
683  *
684  *      This function allocates blocks, zeroes out all but the last one,
685  *      links them into chain and (if we are synchronous) writes them to disk.
686  *      In other words, it prepares a branch that can be spliced onto the
687  *      inode. It stores the information about that chain in the branch[], in
688  *      the same format as ext4_get_branch() would do. We are calling it after
689  *      we had read the existing part of chain and partial points to the last
690  *      triple of that (one with zero ->key). Upon the exit we have the same
691  *      picture as after the successful ext4_get_block(), except that in one
692  *      place chain is disconnected - *branch->p is still zero (we did not
693  *      set the last link), but branch->key contains the number that should
694  *      be placed into *branch->p to fill that gap.
695  *
696  *      If allocation fails we free all blocks we've allocated (and forget
697  *      their buffer_heads) and return the error value the from failed
698  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
699  *      as described above and return 0.
700  */
701 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
702                              ext4_lblk_t iblock, int indirect_blks,
703                              int *blks, ext4_fsblk_t goal,
704                              ext4_lblk_t *offsets, Indirect *branch)
705 {
706         int blocksize = inode->i_sb->s_blocksize;
707         int i, n = 0;
708         int err = 0;
709         struct buffer_head *bh;
710         int num;
711         ext4_fsblk_t new_blocks[4];
712         ext4_fsblk_t current_block;
713
714         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
715                                 *blks, new_blocks, &err);
716         if (err)
717                 return err;
718
719         branch[0].key = cpu_to_le32(new_blocks[0]);
720         /*
721          * metadata blocks and data blocks are allocated.
722          */
723         for (n = 1; n <= indirect_blks;  n++) {
724                 /*
725                  * Get buffer_head for parent block, zero it out
726                  * and set the pointer to new one, then send
727                  * parent to disk.
728                  */
729                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
730                 branch[n].bh = bh;
731                 lock_buffer(bh);
732                 BUFFER_TRACE(bh, "call get_create_access");
733                 err = ext4_journal_get_create_access(handle, bh);
734                 if (err) {
735                         /* Don't brelse(bh) here; it's done in
736                          * ext4_journal_forget() below */
737                         unlock_buffer(bh);
738                         goto failed;
739                 }
740
741                 memset(bh->b_data, 0, blocksize);
742                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
743                 branch[n].key = cpu_to_le32(new_blocks[n]);
744                 *branch[n].p = branch[n].key;
745                 if (n == indirect_blks) {
746                         current_block = new_blocks[n];
747                         /*
748                          * End of chain, update the last new metablock of
749                          * the chain to point to the new allocated
750                          * data blocks numbers
751                          */
752                         for (i = 1; i < num; i++)
753                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
754                 }
755                 BUFFER_TRACE(bh, "marking uptodate");
756                 set_buffer_uptodate(bh);
757                 unlock_buffer(bh);
758
759                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
760                 err = ext4_handle_dirty_metadata(handle, inode, bh);
761                 if (err)
762                         goto failed;
763         }
764         *blks = num;
765         return err;
766 failed:
767         /* Allocation failed, free what we already allocated */
768         for (i = 1; i <= n ; i++) {
769                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
770                 ext4_journal_forget(handle, branch[i].bh);
771         }
772         for (i = 0; i < indirect_blks; i++)
773                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
774
775         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
776
777         return err;
778 }
779
780 /**
781  * ext4_splice_branch - splice the allocated branch onto inode.
782  * @inode: owner
783  * @block: (logical) number of block we are adding
784  * @chain: chain of indirect blocks (with a missing link - see
785  *      ext4_alloc_branch)
786  * @where: location of missing link
787  * @num:   number of indirect blocks we are adding
788  * @blks:  number of direct blocks we are adding
789  *
790  * This function fills the missing link and does all housekeeping needed in
791  * inode (->i_blocks, etc.). In case of success we end up with the full
792  * chain to new block and return 0.
793  */
794 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
795                               ext4_lblk_t block, Indirect *where, int num,
796                               int blks)
797 {
798         int i;
799         int err = 0;
800         ext4_fsblk_t current_block;
801
802         /*
803          * If we're splicing into a [td]indirect block (as opposed to the
804          * inode) then we need to get write access to the [td]indirect block
805          * before the splice.
806          */
807         if (where->bh) {
808                 BUFFER_TRACE(where->bh, "get_write_access");
809                 err = ext4_journal_get_write_access(handle, where->bh);
810                 if (err)
811                         goto err_out;
812         }
813         /* That's it */
814
815         *where->p = where->key;
816
817         /*
818          * Update the host buffer_head or inode to point to more just allocated
819          * direct blocks blocks
820          */
821         if (num == 0 && blks > 1) {
822                 current_block = le32_to_cpu(where->key) + 1;
823                 for (i = 1; i < blks; i++)
824                         *(where->p + i) = cpu_to_le32(current_block++);
825         }
826
827         /* We are done with atomic stuff, now do the rest of housekeeping */
828         /* had we spliced it onto indirect block? */
829         if (where->bh) {
830                 /*
831                  * If we spliced it onto an indirect block, we haven't
832                  * altered the inode.  Note however that if it is being spliced
833                  * onto an indirect block at the very end of the file (the
834                  * file is growing) then we *will* alter the inode to reflect
835                  * the new i_size.  But that is not done here - it is done in
836                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
837                  */
838                 jbd_debug(5, "splicing indirect only\n");
839                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
840                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
841                 if (err)
842                         goto err_out;
843         } else {
844                 /*
845                  * OK, we spliced it into the inode itself on a direct block.
846                  */
847                 ext4_mark_inode_dirty(handle, inode);
848                 jbd_debug(5, "splicing direct\n");
849         }
850         return err;
851
852 err_out:
853         for (i = 1; i <= num; i++) {
854                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
855                 ext4_journal_forget(handle, where[i].bh);
856                 ext4_free_blocks(handle, inode,
857                                         le32_to_cpu(where[i-1].key), 1, 0);
858         }
859         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
860
861         return err;
862 }
863
864 /*
865  * The ext4_ind_get_blocks() function handles non-extents inodes
866  * (i.e., using the traditional indirect/double-indirect i_blocks
867  * scheme) for ext4_get_blocks().
868  *
869  * Allocation strategy is simple: if we have to allocate something, we will
870  * have to go the whole way to leaf. So let's do it before attaching anything
871  * to tree, set linkage between the newborn blocks, write them if sync is
872  * required, recheck the path, free and repeat if check fails, otherwise
873  * set the last missing link (that will protect us from any truncate-generated
874  * removals - all blocks on the path are immune now) and possibly force the
875  * write on the parent block.
876  * That has a nice additional property: no special recovery from the failed
877  * allocations is needed - we simply release blocks and do not touch anything
878  * reachable from inode.
879  *
880  * `handle' can be NULL if create == 0.
881  *
882  * return > 0, # of blocks mapped or allocated.
883  * return = 0, if plain lookup failed.
884  * return < 0, error case.
885  *
886  * The ext4_ind_get_blocks() function should be called with
887  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
888  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
889  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
890  * blocks.
891  */
892 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
893                                ext4_lblk_t iblock, unsigned int maxblocks,
894                                struct buffer_head *bh_result,
895                                int flags)
896 {
897         int err = -EIO;
898         ext4_lblk_t offsets[4];
899         Indirect chain[4];
900         Indirect *partial;
901         ext4_fsblk_t goal;
902         int indirect_blks;
903         int blocks_to_boundary = 0;
904         int depth;
905         int count = 0;
906         ext4_fsblk_t first_block = 0;
907
908         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
909         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
910         depth = ext4_block_to_path(inode, iblock, offsets,
911                                    &blocks_to_boundary);
912
913         if (depth == 0)
914                 goto out;
915
916         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
917
918         /* Simplest case - block found, no allocation needed */
919         if (!partial) {
920                 first_block = le32_to_cpu(chain[depth - 1].key);
921                 clear_buffer_new(bh_result);
922                 count++;
923                 /*map more blocks*/
924                 while (count < maxblocks && count <= blocks_to_boundary) {
925                         ext4_fsblk_t blk;
926
927                         blk = le32_to_cpu(*(chain[depth-1].p + count));
928
929                         if (blk == first_block + count)
930                                 count++;
931                         else
932                                 break;
933                 }
934                 goto got_it;
935         }
936
937         /* Next simple case - plain lookup or failed read of indirect block */
938         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
939                 goto cleanup;
940
941         /*
942          * Okay, we need to do block allocation.
943         */
944         goal = ext4_find_goal(inode, iblock, partial);
945
946         /* the number of blocks need to allocate for [d,t]indirect blocks */
947         indirect_blks = (chain + depth) - partial - 1;
948
949         /*
950          * Next look up the indirect map to count the totoal number of
951          * direct blocks to allocate for this branch.
952          */
953         count = ext4_blks_to_allocate(partial, indirect_blks,
954                                         maxblocks, blocks_to_boundary);
955         /*
956          * Block out ext4_truncate while we alter the tree
957          */
958         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
959                                 &count, goal,
960                                 offsets + (partial - chain), partial);
961
962         /*
963          * The ext4_splice_branch call will free and forget any buffers
964          * on the new chain if there is a failure, but that risks using
965          * up transaction credits, especially for bitmaps where the
966          * credits cannot be returned.  Can we handle this somehow?  We
967          * may need to return -EAGAIN upwards in the worst case.  --sct
968          */
969         if (!err)
970                 err = ext4_splice_branch(handle, inode, iblock,
971                                          partial, indirect_blks, count);
972         if (err)
973                 goto cleanup;
974
975         set_buffer_new(bh_result);
976 got_it:
977         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
978         if (count > blocks_to_boundary)
979                 set_buffer_boundary(bh_result);
980         err = count;
981         /* Clean up and exit */
982         partial = chain + depth - 1;    /* the whole chain */
983 cleanup:
984         while (partial > chain) {
985                 BUFFER_TRACE(partial->bh, "call brelse");
986                 brelse(partial->bh);
987                 partial--;
988         }
989         BUFFER_TRACE(bh_result, "returned");
990 out:
991         return err;
992 }
993
994 qsize_t ext4_get_reserved_space(struct inode *inode)
995 {
996         unsigned long long total;
997
998         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
999         total = EXT4_I(inode)->i_reserved_data_blocks +
1000                 EXT4_I(inode)->i_reserved_meta_blocks;
1001         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1002
1003         return total;
1004 }
1005 /*
1006  * Calculate the number of metadata blocks need to reserve
1007  * to allocate @blocks for non extent file based file
1008  */
1009 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1010 {
1011         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1012         int ind_blks, dind_blks, tind_blks;
1013
1014         /* number of new indirect blocks needed */
1015         ind_blks = (blocks + icap - 1) / icap;
1016
1017         dind_blks = (ind_blks + icap - 1) / icap;
1018
1019         tind_blks = 1;
1020
1021         return ind_blks + dind_blks + tind_blks;
1022 }
1023
1024 /*
1025  * Calculate the number of metadata blocks need to reserve
1026  * to allocate given number of blocks
1027  */
1028 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1029 {
1030         if (!blocks)
1031                 return 0;
1032
1033         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1034                 return ext4_ext_calc_metadata_amount(inode, blocks);
1035
1036         return ext4_indirect_calc_metadata_amount(inode, blocks);
1037 }
1038
1039 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1040 {
1041         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1042         int total, mdb, mdb_free;
1043
1044         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1045         /* recalculate the number of metablocks still need to be reserved */
1046         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1047         mdb = ext4_calc_metadata_amount(inode, total);
1048
1049         /* figure out how many metablocks to release */
1050         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1051         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1052
1053         if (mdb_free) {
1054                 /* Account for allocated meta_blocks */
1055                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1056
1057                 /* update fs dirty blocks counter */
1058                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1059                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1060                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1061         }
1062
1063         /* update per-inode reservations */
1064         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1065         EXT4_I(inode)->i_reserved_data_blocks -= used;
1066         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1067
1068         /*
1069          * free those over-booking quota for metadata blocks
1070          */
1071         if (mdb_free)
1072                 vfs_dq_release_reservation_block(inode, mdb_free);
1073
1074         /*
1075          * If we have done all the pending block allocations and if
1076          * there aren't any writers on the inode, we can discard the
1077          * inode's preallocations.
1078          */
1079         if (!total && (atomic_read(&inode->i_writecount) == 0))
1080                 ext4_discard_preallocations(inode);
1081 }
1082
1083 static int check_block_validity(struct inode *inode, const char *msg,
1084                                 sector_t logical, sector_t phys, int len)
1085 {
1086         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1087                 ext4_error(inode->i_sb, msg,
1088                            "inode #%lu logical block %llu mapped to %llu "
1089                            "(size %d)", inode->i_ino,
1090                            (unsigned long long) logical,
1091                            (unsigned long long) phys, len);
1092                 return -EIO;
1093         }
1094         return 0;
1095 }
1096
1097 /*
1098  * Return the number of contiguous dirty pages in a given inode
1099  * starting at page frame idx.
1100  */
1101 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1102                                     unsigned int max_pages)
1103 {
1104         struct address_space *mapping = inode->i_mapping;
1105         pgoff_t index;
1106         struct pagevec pvec;
1107         pgoff_t num = 0;
1108         int i, nr_pages, done = 0;
1109
1110         if (max_pages == 0)
1111                 return 0;
1112         pagevec_init(&pvec, 0);
1113         while (!done) {
1114                 index = idx;
1115                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1116                                               PAGECACHE_TAG_DIRTY,
1117                                               (pgoff_t)PAGEVEC_SIZE);
1118                 if (nr_pages == 0)
1119                         break;
1120                 for (i = 0; i < nr_pages; i++) {
1121                         struct page *page = pvec.pages[i];
1122                         struct buffer_head *bh, *head;
1123
1124                         lock_page(page);
1125                         if (unlikely(page->mapping != mapping) ||
1126                             !PageDirty(page) ||
1127                             PageWriteback(page) ||
1128                             page->index != idx) {
1129                                 done = 1;
1130                                 unlock_page(page);
1131                                 break;
1132                         }
1133                         if (page_has_buffers(page)) {
1134                                 bh = head = page_buffers(page);
1135                                 do {
1136                                         if (!buffer_delay(bh) &&
1137                                             !buffer_unwritten(bh))
1138                                                 done = 1;
1139                                         bh = bh->b_this_page;
1140                                 } while (!done && (bh != head));
1141                         }
1142                         unlock_page(page);
1143                         if (done)
1144                                 break;
1145                         idx++;
1146                         num++;
1147                         if (num >= max_pages)
1148                                 break;
1149                 }
1150                 pagevec_release(&pvec);
1151         }
1152         return num;
1153 }
1154
1155 /*
1156  * The ext4_get_blocks() function tries to look up the requested blocks,
1157  * and returns if the blocks are already mapped.
1158  *
1159  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1160  * and store the allocated blocks in the result buffer head and mark it
1161  * mapped.
1162  *
1163  * If file type is extents based, it will call ext4_ext_get_blocks(),
1164  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1165  * based files
1166  *
1167  * On success, it returns the number of blocks being mapped or allocate.
1168  * if create==0 and the blocks are pre-allocated and uninitialized block,
1169  * the result buffer head is unmapped. If the create ==1, it will make sure
1170  * the buffer head is mapped.
1171  *
1172  * It returns 0 if plain look up failed (blocks have not been allocated), in
1173  * that casem, buffer head is unmapped
1174  *
1175  * It returns the error in case of allocation failure.
1176  */
1177 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1178                     unsigned int max_blocks, struct buffer_head *bh,
1179                     int flags)
1180 {
1181         int retval;
1182
1183         clear_buffer_mapped(bh);
1184         clear_buffer_unwritten(bh);
1185
1186         ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1187                   "logical block %lu\n", inode->i_ino, flags, max_blocks,
1188                   (unsigned long)block);
1189         /*
1190          * Try to see if we can get the block without requesting a new
1191          * file system block.
1192          */
1193         down_read((&EXT4_I(inode)->i_data_sem));
1194         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1195                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1196                                 bh, 0);
1197         } else {
1198                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1199                                              bh, 0);
1200         }
1201         up_read((&EXT4_I(inode)->i_data_sem));
1202
1203         if (retval > 0 && buffer_mapped(bh)) {
1204                 int ret = check_block_validity(inode, "file system corruption",
1205                                                block, bh->b_blocknr, retval);
1206                 if (ret != 0)
1207                         return ret;
1208         }
1209
1210         /* If it is only a block(s) look up */
1211         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1212                 return retval;
1213
1214         /*
1215          * Returns if the blocks have already allocated
1216          *
1217          * Note that if blocks have been preallocated
1218          * ext4_ext_get_block() returns th create = 0
1219          * with buffer head unmapped.
1220          */
1221         if (retval > 0 && buffer_mapped(bh))
1222                 return retval;
1223
1224         /*
1225          * When we call get_blocks without the create flag, the
1226          * BH_Unwritten flag could have gotten set if the blocks
1227          * requested were part of a uninitialized extent.  We need to
1228          * clear this flag now that we are committed to convert all or
1229          * part of the uninitialized extent to be an initialized
1230          * extent.  This is because we need to avoid the combination
1231          * of BH_Unwritten and BH_Mapped flags being simultaneously
1232          * set on the buffer_head.
1233          */
1234         clear_buffer_unwritten(bh);
1235
1236         /*
1237          * New blocks allocate and/or writing to uninitialized extent
1238          * will possibly result in updating i_data, so we take
1239          * the write lock of i_data_sem, and call get_blocks()
1240          * with create == 1 flag.
1241          */
1242         down_write((&EXT4_I(inode)->i_data_sem));
1243
1244         /*
1245          * if the caller is from delayed allocation writeout path
1246          * we have already reserved fs blocks for allocation
1247          * let the underlying get_block() function know to
1248          * avoid double accounting
1249          */
1250         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1251                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1252         /*
1253          * We need to check for EXT4 here because migrate
1254          * could have changed the inode type in between
1255          */
1256         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1257                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1258                                               bh, flags);
1259         } else {
1260                 retval = ext4_ind_get_blocks(handle, inode, block,
1261                                              max_blocks, bh, flags);
1262
1263                 if (retval > 0 && buffer_new(bh)) {
1264                         /*
1265                          * We allocated new blocks which will result in
1266                          * i_data's format changing.  Force the migrate
1267                          * to fail by clearing migrate flags
1268                          */
1269                         EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1270                 }
1271         }
1272
1273         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1274                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1275
1276         /*
1277          * Update reserved blocks/metadata blocks after successful
1278          * block allocation which had been deferred till now.
1279          */
1280         if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1281                 ext4_da_update_reserve_space(inode, retval);
1282
1283         up_write((&EXT4_I(inode)->i_data_sem));
1284         if (retval > 0 && buffer_mapped(bh)) {
1285                 int ret = check_block_validity(inode, "file system "
1286                                                "corruption after allocation",
1287                                                block, bh->b_blocknr, retval);
1288                 if (ret != 0)
1289                         return ret;
1290         }
1291         return retval;
1292 }
1293
1294 /* Maximum number of blocks we map for direct IO at once. */
1295 #define DIO_MAX_BLOCKS 4096
1296
1297 int ext4_get_block(struct inode *inode, sector_t iblock,
1298                    struct buffer_head *bh_result, int create)
1299 {
1300         handle_t *handle = ext4_journal_current_handle();
1301         int ret = 0, started = 0;
1302         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1303         int dio_credits;
1304
1305         if (create && !handle) {
1306                 /* Direct IO write... */
1307                 if (max_blocks > DIO_MAX_BLOCKS)
1308                         max_blocks = DIO_MAX_BLOCKS;
1309                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1310                 handle = ext4_journal_start(inode, dio_credits);
1311                 if (IS_ERR(handle)) {
1312                         ret = PTR_ERR(handle);
1313                         goto out;
1314                 }
1315                 started = 1;
1316         }
1317
1318         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1319                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1320         if (ret > 0) {
1321                 bh_result->b_size = (ret << inode->i_blkbits);
1322                 ret = 0;
1323         }
1324         if (started)
1325                 ext4_journal_stop(handle);
1326 out:
1327         return ret;
1328 }
1329
1330 /*
1331  * `handle' can be NULL if create is zero
1332  */
1333 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1334                                 ext4_lblk_t block, int create, int *errp)
1335 {
1336         struct buffer_head dummy;
1337         int fatal = 0, err;
1338         int flags = 0;
1339
1340         J_ASSERT(handle != NULL || create == 0);
1341
1342         dummy.b_state = 0;
1343         dummy.b_blocknr = -1000;
1344         buffer_trace_init(&dummy.b_history);
1345         if (create)
1346                 flags |= EXT4_GET_BLOCKS_CREATE;
1347         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1348         /*
1349          * ext4_get_blocks() returns number of blocks mapped. 0 in
1350          * case of a HOLE.
1351          */
1352         if (err > 0) {
1353                 if (err > 1)
1354                         WARN_ON(1);
1355                 err = 0;
1356         }
1357         *errp = err;
1358         if (!err && buffer_mapped(&dummy)) {
1359                 struct buffer_head *bh;
1360                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1361                 if (!bh) {
1362                         *errp = -EIO;
1363                         goto err;
1364                 }
1365                 if (buffer_new(&dummy)) {
1366                         J_ASSERT(create != 0);
1367                         J_ASSERT(handle != NULL);
1368
1369                         /*
1370                          * Now that we do not always journal data, we should
1371                          * keep in mind whether this should always journal the
1372                          * new buffer as metadata.  For now, regular file
1373                          * writes use ext4_get_block instead, so it's not a
1374                          * problem.
1375                          */
1376                         lock_buffer(bh);
1377                         BUFFER_TRACE(bh, "call get_create_access");
1378                         fatal = ext4_journal_get_create_access(handle, bh);
1379                         if (!fatal && !buffer_uptodate(bh)) {
1380                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1381                                 set_buffer_uptodate(bh);
1382                         }
1383                         unlock_buffer(bh);
1384                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1385                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1386                         if (!fatal)
1387                                 fatal = err;
1388                 } else {
1389                         BUFFER_TRACE(bh, "not a new buffer");
1390                 }
1391                 if (fatal) {
1392                         *errp = fatal;
1393                         brelse(bh);
1394                         bh = NULL;
1395                 }
1396                 return bh;
1397         }
1398 err:
1399         return NULL;
1400 }
1401
1402 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1403                                ext4_lblk_t block, int create, int *err)
1404 {
1405         struct buffer_head *bh;
1406
1407         bh = ext4_getblk(handle, inode, block, create, err);
1408         if (!bh)
1409                 return bh;
1410         if (buffer_uptodate(bh))
1411                 return bh;
1412         ll_rw_block(READ_META, 1, &bh);
1413         wait_on_buffer(bh);
1414         if (buffer_uptodate(bh))
1415                 return bh;
1416         put_bh(bh);
1417         *err = -EIO;
1418         return NULL;
1419 }
1420
1421 static int walk_page_buffers(handle_t *handle,
1422                              struct buffer_head *head,
1423                              unsigned from,
1424                              unsigned to,
1425                              int *partial,
1426                              int (*fn)(handle_t *handle,
1427                                        struct buffer_head *bh))
1428 {
1429         struct buffer_head *bh;
1430         unsigned block_start, block_end;
1431         unsigned blocksize = head->b_size;
1432         int err, ret = 0;
1433         struct buffer_head *next;
1434
1435         for (bh = head, block_start = 0;
1436              ret == 0 && (bh != head || !block_start);
1437              block_start = block_end, bh = next) {
1438                 next = bh->b_this_page;
1439                 block_end = block_start + blocksize;
1440                 if (block_end <= from || block_start >= to) {
1441                         if (partial && !buffer_uptodate(bh))
1442                                 *partial = 1;
1443                         continue;
1444                 }
1445                 err = (*fn)(handle, bh);
1446                 if (!ret)
1447                         ret = err;
1448         }
1449         return ret;
1450 }
1451
1452 /*
1453  * To preserve ordering, it is essential that the hole instantiation and
1454  * the data write be encapsulated in a single transaction.  We cannot
1455  * close off a transaction and start a new one between the ext4_get_block()
1456  * and the commit_write().  So doing the jbd2_journal_start at the start of
1457  * prepare_write() is the right place.
1458  *
1459  * Also, this function can nest inside ext4_writepage() ->
1460  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1461  * has generated enough buffer credits to do the whole page.  So we won't
1462  * block on the journal in that case, which is good, because the caller may
1463  * be PF_MEMALLOC.
1464  *
1465  * By accident, ext4 can be reentered when a transaction is open via
1466  * quota file writes.  If we were to commit the transaction while thus
1467  * reentered, there can be a deadlock - we would be holding a quota
1468  * lock, and the commit would never complete if another thread had a
1469  * transaction open and was blocking on the quota lock - a ranking
1470  * violation.
1471  *
1472  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1473  * will _not_ run commit under these circumstances because handle->h_ref
1474  * is elevated.  We'll still have enough credits for the tiny quotafile
1475  * write.
1476  */
1477 static int do_journal_get_write_access(handle_t *handle,
1478                                        struct buffer_head *bh)
1479 {
1480         if (!buffer_mapped(bh) || buffer_freed(bh))
1481                 return 0;
1482         return ext4_journal_get_write_access(handle, bh);
1483 }
1484
1485 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1486                             loff_t pos, unsigned len, unsigned flags,
1487                             struct page **pagep, void **fsdata)
1488 {
1489         struct inode *inode = mapping->host;
1490         int ret, needed_blocks;
1491         handle_t *handle;
1492         int retries = 0;
1493         struct page *page;
1494         pgoff_t index;
1495         unsigned from, to;
1496
1497         trace_ext4_write_begin(inode, pos, len, flags);
1498         /*
1499          * Reserve one block more for addition to orphan list in case
1500          * we allocate blocks but write fails for some reason
1501          */
1502         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1503         index = pos >> PAGE_CACHE_SHIFT;
1504         from = pos & (PAGE_CACHE_SIZE - 1);
1505         to = from + len;
1506
1507 retry:
1508         handle = ext4_journal_start(inode, needed_blocks);
1509         if (IS_ERR(handle)) {
1510                 ret = PTR_ERR(handle);
1511                 goto out;
1512         }
1513
1514         /* We cannot recurse into the filesystem as the transaction is already
1515          * started */
1516         flags |= AOP_FLAG_NOFS;
1517
1518         page = grab_cache_page_write_begin(mapping, index, flags);
1519         if (!page) {
1520                 ext4_journal_stop(handle);
1521                 ret = -ENOMEM;
1522                 goto out;
1523         }
1524         *pagep = page;
1525
1526         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1527                                 ext4_get_block);
1528
1529         if (!ret && ext4_should_journal_data(inode)) {
1530                 ret = walk_page_buffers(handle, page_buffers(page),
1531                                 from, to, NULL, do_journal_get_write_access);
1532         }
1533
1534         if (ret) {
1535                 unlock_page(page);
1536                 page_cache_release(page);
1537                 /*
1538                  * block_write_begin may have instantiated a few blocks
1539                  * outside i_size.  Trim these off again. Don't need
1540                  * i_size_read because we hold i_mutex.
1541                  *
1542                  * Add inode to orphan list in case we crash before
1543                  * truncate finishes
1544                  */
1545                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1546                         ext4_orphan_add(handle, inode);
1547
1548                 ext4_journal_stop(handle);
1549                 if (pos + len > inode->i_size) {
1550                         ext4_truncate(inode);
1551                         /*
1552                          * If truncate failed early the inode might
1553                          * still be on the orphan list; we need to
1554                          * make sure the inode is removed from the
1555                          * orphan list in that case.
1556                          */
1557                         if (inode->i_nlink)
1558                                 ext4_orphan_del(NULL, inode);
1559                 }
1560         }
1561
1562         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1563                 goto retry;
1564 out:
1565         return ret;
1566 }
1567
1568 /* For write_end() in data=journal mode */
1569 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1570 {
1571         if (!buffer_mapped(bh) || buffer_freed(bh))
1572                 return 0;
1573         set_buffer_uptodate(bh);
1574         return ext4_handle_dirty_metadata(handle, NULL, bh);
1575 }
1576
1577 static int ext4_generic_write_end(struct file *file,
1578                                   struct address_space *mapping,
1579                                   loff_t pos, unsigned len, unsigned copied,
1580                                   struct page *page, void *fsdata)
1581 {
1582         int i_size_changed = 0;
1583         struct inode *inode = mapping->host;
1584         handle_t *handle = ext4_journal_current_handle();
1585
1586         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1587
1588         /*
1589          * No need to use i_size_read() here, the i_size
1590          * cannot change under us because we hold i_mutex.
1591          *
1592          * But it's important to update i_size while still holding page lock:
1593          * page writeout could otherwise come in and zero beyond i_size.
1594          */
1595         if (pos + copied > inode->i_size) {
1596                 i_size_write(inode, pos + copied);
1597                 i_size_changed = 1;
1598         }
1599
1600         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1601                 /* We need to mark inode dirty even if
1602                  * new_i_size is less that inode->i_size
1603                  * bu greater than i_disksize.(hint delalloc)
1604                  */
1605                 ext4_update_i_disksize(inode, (pos + copied));
1606                 i_size_changed = 1;
1607         }
1608         unlock_page(page);
1609         page_cache_release(page);
1610
1611         /*
1612          * Don't mark the inode dirty under page lock. First, it unnecessarily
1613          * makes the holding time of page lock longer. Second, it forces lock
1614          * ordering of page lock and transaction start for journaling
1615          * filesystems.
1616          */
1617         if (i_size_changed)
1618                 ext4_mark_inode_dirty(handle, inode);
1619
1620         return copied;
1621 }
1622
1623 /*
1624  * We need to pick up the new inode size which generic_commit_write gave us
1625  * `file' can be NULL - eg, when called from page_symlink().
1626  *
1627  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1628  * buffers are managed internally.
1629  */
1630 static int ext4_ordered_write_end(struct file *file,
1631                                   struct address_space *mapping,
1632                                   loff_t pos, unsigned len, unsigned copied,
1633                                   struct page *page, void *fsdata)
1634 {
1635         handle_t *handle = ext4_journal_current_handle();
1636         struct inode *inode = mapping->host;
1637         int ret = 0, ret2;
1638
1639         trace_ext4_ordered_write_end(inode, pos, len, copied);
1640         ret = ext4_jbd2_file_inode(handle, inode);
1641
1642         if (ret == 0) {
1643                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1644                                                         page, fsdata);
1645                 copied = ret2;
1646                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1647                         /* if we have allocated more blocks and copied
1648                          * less. We will have blocks allocated outside
1649                          * inode->i_size. So truncate them
1650                          */
1651                         ext4_orphan_add(handle, inode);
1652                 if (ret2 < 0)
1653                         ret = ret2;
1654         }
1655         ret2 = ext4_journal_stop(handle);
1656         if (!ret)
1657                 ret = ret2;
1658
1659         if (pos + len > inode->i_size) {
1660                 ext4_truncate(inode);
1661                 /*
1662                  * If truncate failed early the inode might still be
1663                  * on the orphan list; we need to make sure the inode
1664                  * is removed from the orphan list in that case.
1665                  */
1666                 if (inode->i_nlink)
1667                         ext4_orphan_del(NULL, inode);
1668         }
1669
1670
1671         return ret ? ret : copied;
1672 }
1673
1674 static int ext4_writeback_write_end(struct file *file,
1675                                     struct address_space *mapping,
1676                                     loff_t pos, unsigned len, unsigned copied,
1677                                     struct page *page, void *fsdata)
1678 {
1679         handle_t *handle = ext4_journal_current_handle();
1680         struct inode *inode = mapping->host;
1681         int ret = 0, ret2;
1682
1683         trace_ext4_writeback_write_end(inode, pos, len, copied);
1684         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1685                                                         page, fsdata);
1686         copied = ret2;
1687         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1688                 /* if we have allocated more blocks and copied
1689                  * less. We will have blocks allocated outside
1690                  * inode->i_size. So truncate them
1691                  */
1692                 ext4_orphan_add(handle, inode);
1693
1694         if (ret2 < 0)
1695                 ret = ret2;
1696
1697         ret2 = ext4_journal_stop(handle);
1698         if (!ret)
1699                 ret = ret2;
1700
1701         if (pos + len > inode->i_size) {
1702                 ext4_truncate(inode);
1703                 /*
1704                  * If truncate failed early the inode might still be
1705                  * on the orphan list; we need to make sure the inode
1706                  * is removed from the orphan list in that case.
1707                  */
1708                 if (inode->i_nlink)
1709                         ext4_orphan_del(NULL, inode);
1710         }
1711
1712         return ret ? ret : copied;
1713 }
1714
1715 static int ext4_journalled_write_end(struct file *file,
1716                                      struct address_space *mapping,
1717                                      loff_t pos, unsigned len, unsigned copied,
1718                                      struct page *page, void *fsdata)
1719 {
1720         handle_t *handle = ext4_journal_current_handle();
1721         struct inode *inode = mapping->host;
1722         int ret = 0, ret2;
1723         int partial = 0;
1724         unsigned from, to;
1725         loff_t new_i_size;
1726
1727         trace_ext4_journalled_write_end(inode, pos, len, copied);
1728         from = pos & (PAGE_CACHE_SIZE - 1);
1729         to = from + len;
1730
1731         if (copied < len) {
1732                 if (!PageUptodate(page))
1733                         copied = 0;
1734                 page_zero_new_buffers(page, from+copied, to);
1735         }
1736
1737         ret = walk_page_buffers(handle, page_buffers(page), from,
1738                                 to, &partial, write_end_fn);
1739         if (!partial)
1740                 SetPageUptodate(page);
1741         new_i_size = pos + copied;
1742         if (new_i_size > inode->i_size)
1743                 i_size_write(inode, pos+copied);
1744         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1745         if (new_i_size > EXT4_I(inode)->i_disksize) {
1746                 ext4_update_i_disksize(inode, new_i_size);
1747                 ret2 = ext4_mark_inode_dirty(handle, inode);
1748                 if (!ret)
1749                         ret = ret2;
1750         }
1751
1752         unlock_page(page);
1753         page_cache_release(page);
1754         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1755                 /* if we have allocated more blocks and copied
1756                  * less. We will have blocks allocated outside
1757                  * inode->i_size. So truncate them
1758                  */
1759                 ext4_orphan_add(handle, inode);
1760
1761         ret2 = ext4_journal_stop(handle);
1762         if (!ret)
1763                 ret = ret2;
1764         if (pos + len > inode->i_size) {
1765                 ext4_truncate(inode);
1766                 /*
1767                  * If truncate failed early the inode might still be
1768                  * on the orphan list; we need to make sure the inode
1769                  * is removed from the orphan list in that case.
1770                  */
1771                 if (inode->i_nlink)
1772                         ext4_orphan_del(NULL, inode);
1773         }
1774
1775         return ret ? ret : copied;
1776 }
1777
1778 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1779 {
1780         int retries = 0;
1781         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1782         unsigned long md_needed, mdblocks, total = 0;
1783
1784         /*
1785          * recalculate the amount of metadata blocks to reserve
1786          * in order to allocate nrblocks
1787          * worse case is one extent per block
1788          */
1789 repeat:
1790         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1791         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1792         mdblocks = ext4_calc_metadata_amount(inode, total);
1793         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1794
1795         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1796         total = md_needed + nrblocks;
1797
1798         /*
1799          * Make quota reservation here to prevent quota overflow
1800          * later. Real quota accounting is done at pages writeout
1801          * time.
1802          */
1803         if (vfs_dq_reserve_block(inode, total)) {
1804                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1805                 return -EDQUOT;
1806         }
1807
1808         if (ext4_claim_free_blocks(sbi, total)) {
1809                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1810                 vfs_dq_release_reservation_block(inode, total);
1811                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1812                         yield();
1813                         goto repeat;
1814                 }
1815                 return -ENOSPC;
1816         }
1817         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1818         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1819
1820         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1821         return 0;       /* success */
1822 }
1823
1824 static void ext4_da_release_space(struct inode *inode, int to_free)
1825 {
1826         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1827         int total, mdb, mdb_free, release;
1828
1829         if (!to_free)
1830                 return;         /* Nothing to release, exit */
1831
1832         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1833
1834         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1835                 /*
1836                  * if there is no reserved blocks, but we try to free some
1837                  * then the counter is messed up somewhere.
1838                  * but since this function is called from invalidate
1839                  * page, it's harmless to return without any action
1840                  */
1841                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1842                             "blocks for inode %lu, but there is no reserved "
1843                             "data blocks\n", to_free, inode->i_ino);
1844                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1845                 return;
1846         }
1847
1848         /* recalculate the number of metablocks still need to be reserved */
1849         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1850         mdb = ext4_calc_metadata_amount(inode, total);
1851
1852         /* figure out how many metablocks to release */
1853         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1854         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1855
1856         release = to_free + mdb_free;
1857
1858         /* update fs dirty blocks counter for truncate case */
1859         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1860
1861         /* update per-inode reservations */
1862         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1863         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1864
1865         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1866         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1867         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1868
1869         vfs_dq_release_reservation_block(inode, release);
1870 }
1871
1872 static void ext4_da_page_release_reservation(struct page *page,
1873                                              unsigned long offset)
1874 {
1875         int to_release = 0;
1876         struct buffer_head *head, *bh;
1877         unsigned int curr_off = 0;
1878
1879         head = page_buffers(page);
1880         bh = head;
1881         do {
1882                 unsigned int next_off = curr_off + bh->b_size;
1883
1884                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1885                         to_release++;
1886                         clear_buffer_delay(bh);
1887                 }
1888                 curr_off = next_off;
1889         } while ((bh = bh->b_this_page) != head);
1890         ext4_da_release_space(page->mapping->host, to_release);
1891 }
1892
1893 /*
1894  * Delayed allocation stuff
1895  */
1896
1897 /*
1898  * mpage_da_submit_io - walks through extent of pages and try to write
1899  * them with writepage() call back
1900  *
1901  * @mpd->inode: inode
1902  * @mpd->first_page: first page of the extent
1903  * @mpd->next_page: page after the last page of the extent
1904  *
1905  * By the time mpage_da_submit_io() is called we expect all blocks
1906  * to be allocated. this may be wrong if allocation failed.
1907  *
1908  * As pages are already locked by write_cache_pages(), we can't use it
1909  */
1910 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1911 {
1912         long pages_skipped;
1913         struct pagevec pvec;
1914         unsigned long index, end;
1915         int ret = 0, err, nr_pages, i;
1916         struct inode *inode = mpd->inode;
1917         struct address_space *mapping = inode->i_mapping;
1918
1919         BUG_ON(mpd->next_page <= mpd->first_page);
1920         /*
1921          * We need to start from the first_page to the next_page - 1
1922          * to make sure we also write the mapped dirty buffer_heads.
1923          * If we look at mpd->b_blocknr we would only be looking
1924          * at the currently mapped buffer_heads.
1925          */
1926         index = mpd->first_page;
1927         end = mpd->next_page - 1;
1928
1929         pagevec_init(&pvec, 0);
1930         while (index <= end) {
1931                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1932                 if (nr_pages == 0)
1933                         break;
1934                 for (i = 0; i < nr_pages; i++) {
1935                         struct page *page = pvec.pages[i];
1936
1937                         index = page->index;
1938                         if (index > end)
1939                                 break;
1940                         index++;
1941
1942                         BUG_ON(!PageLocked(page));
1943                         BUG_ON(PageWriteback(page));
1944
1945                         pages_skipped = mpd->wbc->pages_skipped;
1946                         err = mapping->a_ops->writepage(page, mpd->wbc);
1947                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1948                                 /*
1949                                  * have successfully written the page
1950                                  * without skipping the same
1951                                  */
1952                                 mpd->pages_written++;
1953                         /*
1954                          * In error case, we have to continue because
1955                          * remaining pages are still locked
1956                          * XXX: unlock and re-dirty them?
1957                          */
1958                         if (ret == 0)
1959                                 ret = err;
1960                 }
1961                 pagevec_release(&pvec);
1962         }
1963         return ret;
1964 }
1965
1966 /*
1967  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1968  *
1969  * @mpd->inode - inode to walk through
1970  * @exbh->b_blocknr - first block on a disk
1971  * @exbh->b_size - amount of space in bytes
1972  * @logical - first logical block to start assignment with
1973  *
1974  * the function goes through all passed space and put actual disk
1975  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1976  */
1977 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1978                                  struct buffer_head *exbh)
1979 {
1980         struct inode *inode = mpd->inode;
1981         struct address_space *mapping = inode->i_mapping;
1982         int blocks = exbh->b_size >> inode->i_blkbits;
1983         sector_t pblock = exbh->b_blocknr, cur_logical;
1984         struct buffer_head *head, *bh;
1985         pgoff_t index, end;
1986         struct pagevec pvec;
1987         int nr_pages, i;
1988
1989         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1990         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1991         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1992
1993         pagevec_init(&pvec, 0);
1994
1995         while (index <= end) {
1996                 /* XXX: optimize tail */
1997                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1998                 if (nr_pages == 0)
1999                         break;
2000                 for (i = 0; i < nr_pages; i++) {
2001                         struct page *page = pvec.pages[i];
2002
2003                         index = page->index;
2004                         if (index > end)
2005                                 break;
2006                         index++;
2007
2008                         BUG_ON(!PageLocked(page));
2009                         BUG_ON(PageWriteback(page));
2010                         BUG_ON(!page_has_buffers(page));
2011
2012                         bh = page_buffers(page);
2013                         head = bh;
2014
2015                         /* skip blocks out of the range */
2016                         do {
2017                                 if (cur_logical >= logical)
2018                                         break;
2019                                 cur_logical++;
2020                         } while ((bh = bh->b_this_page) != head);
2021
2022                         do {
2023                                 if (cur_logical >= logical + blocks)
2024                                         break;
2025
2026                                 if (buffer_delay(bh) ||
2027                                                 buffer_unwritten(bh)) {
2028
2029                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2030
2031                                         if (buffer_delay(bh)) {
2032                                                 clear_buffer_delay(bh);
2033                                                 bh->b_blocknr = pblock;
2034                                         } else {
2035                                                 /*
2036                                                  * unwritten already should have
2037                                                  * blocknr assigned. Verify that
2038                                                  */
2039                                                 clear_buffer_unwritten(bh);
2040                                                 BUG_ON(bh->b_blocknr != pblock);
2041                                         }
2042
2043                                 } else if (buffer_mapped(bh))
2044                                         BUG_ON(bh->b_blocknr != pblock);
2045
2046                                 cur_logical++;
2047                                 pblock++;
2048                         } while ((bh = bh->b_this_page) != head);
2049                 }
2050                 pagevec_release(&pvec);
2051         }
2052 }
2053
2054
2055 /*
2056  * __unmap_underlying_blocks - just a helper function to unmap
2057  * set of blocks described by @bh
2058  */
2059 static inline void __unmap_underlying_blocks(struct inode *inode,
2060                                              struct buffer_head *bh)
2061 {
2062         struct block_device *bdev = inode->i_sb->s_bdev;
2063         int blocks, i;
2064
2065         blocks = bh->b_size >> inode->i_blkbits;
2066         for (i = 0; i < blocks; i++)
2067                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2068 }
2069
2070 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2071                                         sector_t logical, long blk_cnt)
2072 {
2073         int nr_pages, i;
2074         pgoff_t index, end;
2075         struct pagevec pvec;
2076         struct inode *inode = mpd->inode;
2077         struct address_space *mapping = inode->i_mapping;
2078
2079         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2080         end   = (logical + blk_cnt - 1) >>
2081                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2082         while (index <= end) {
2083                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2084                 if (nr_pages == 0)
2085                         break;
2086                 for (i = 0; i < nr_pages; i++) {
2087                         struct page *page = pvec.pages[i];
2088                         index = page->index;
2089                         if (index > end)
2090                                 break;
2091                         index++;
2092
2093                         BUG_ON(!PageLocked(page));
2094                         BUG_ON(PageWriteback(page));
2095                         block_invalidatepage(page, 0);
2096                         ClearPageUptodate(page);
2097                         unlock_page(page);
2098                 }
2099         }
2100         return;
2101 }
2102
2103 static void ext4_print_free_blocks(struct inode *inode)
2104 {
2105         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2106         printk(KERN_CRIT "Total free blocks count %lld\n",
2107                ext4_count_free_blocks(inode->i_sb));
2108         printk(KERN_CRIT "Free/Dirty block details\n");
2109         printk(KERN_CRIT "free_blocks=%lld\n",
2110                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2111         printk(KERN_CRIT "dirty_blocks=%lld\n",
2112                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2113         printk(KERN_CRIT "Block reservation details\n");
2114         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2115                EXT4_I(inode)->i_reserved_data_blocks);
2116         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2117                EXT4_I(inode)->i_reserved_meta_blocks);
2118         return;
2119 }
2120
2121 /*
2122  * mpage_da_map_blocks - go through given space
2123  *
2124  * @mpd - bh describing space
2125  *
2126  * The function skips space we know is already mapped to disk blocks.
2127  *
2128  */
2129 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2130 {
2131         int err, blks, get_blocks_flags;
2132         struct buffer_head new;
2133         sector_t next = mpd->b_blocknr;
2134         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2135         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2136         handle_t *handle = NULL;
2137
2138         /*
2139          * We consider only non-mapped and non-allocated blocks
2140          */
2141         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2142                 !(mpd->b_state & (1 << BH_Delay)) &&
2143                 !(mpd->b_state & (1 << BH_Unwritten)))
2144                 return 0;
2145
2146         /*
2147          * If we didn't accumulate anything to write simply return
2148          */
2149         if (!mpd->b_size)
2150                 return 0;
2151
2152         handle = ext4_journal_current_handle();
2153         BUG_ON(!handle);
2154
2155         /*
2156          * Call ext4_get_blocks() to allocate any delayed allocation
2157          * blocks, or to convert an uninitialized extent to be
2158          * initialized (in the case where we have written into
2159          * one or more preallocated blocks).
2160          *
2161          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2162          * indicate that we are on the delayed allocation path.  This
2163          * affects functions in many different parts of the allocation
2164          * call path.  This flag exists primarily because we don't
2165          * want to change *many* call functions, so ext4_get_blocks()
2166          * will set the magic i_delalloc_reserved_flag once the
2167          * inode's allocation semaphore is taken.
2168          *
2169          * If the blocks in questions were delalloc blocks, set
2170          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2171          * variables are updated after the blocks have been allocated.
2172          */
2173         new.b_state = 0;
2174         get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2175                             EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2176         if (mpd->b_state & (1 << BH_Delay))
2177                 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2178         blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2179                                &new, get_blocks_flags);
2180         if (blks < 0) {
2181                 err = blks;
2182                 /*
2183                  * If get block returns with error we simply
2184                  * return. Later writepage will redirty the page and
2185                  * writepages will find the dirty page again
2186                  */
2187                 if (err == -EAGAIN)
2188                         return 0;
2189
2190                 if (err == -ENOSPC &&
2191                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2192                         mpd->retval = err;
2193                         return 0;
2194                 }
2195
2196                 /*
2197                  * get block failure will cause us to loop in
2198                  * writepages, because a_ops->writepage won't be able
2199                  * to make progress. The page will be redirtied by
2200                  * writepage and writepages will again try to write
2201                  * the same.
2202                  */
2203                 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2204                          "delayed block allocation failed for inode %lu at "
2205                          "logical offset %llu with max blocks %zd with "
2206                          "error %d\n", mpd->inode->i_ino,
2207                          (unsigned long long) next,
2208                          mpd->b_size >> mpd->inode->i_blkbits, err);
2209                 printk(KERN_CRIT "This should not happen!!  "
2210                        "Data will be lost\n");
2211                 if (err == -ENOSPC) {
2212                         ext4_print_free_blocks(mpd->inode);
2213                 }
2214                 /* invalidate all the pages */
2215                 ext4_da_block_invalidatepages(mpd, next,
2216                                 mpd->b_size >> mpd->inode->i_blkbits);
2217                 return err;
2218         }
2219         BUG_ON(blks == 0);
2220
2221         new.b_size = (blks << mpd->inode->i_blkbits);
2222
2223         if (buffer_new(&new))
2224                 __unmap_underlying_blocks(mpd->inode, &new);
2225
2226         /*
2227          * If blocks are delayed marked, we need to
2228          * put actual blocknr and drop delayed bit
2229          */
2230         if ((mpd->b_state & (1 << BH_Delay)) ||
2231             (mpd->b_state & (1 << BH_Unwritten)))
2232                 mpage_put_bnr_to_bhs(mpd, next, &new);
2233
2234         if (ext4_should_order_data(mpd->inode)) {
2235                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2236                 if (err)
2237                         return err;
2238         }
2239
2240         /*
2241          * Update on-disk size along with block allocation.
2242          */
2243         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2244         if (disksize > i_size_read(mpd->inode))
2245                 disksize = i_size_read(mpd->inode);
2246         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2247                 ext4_update_i_disksize(mpd->inode, disksize);
2248                 return ext4_mark_inode_dirty(handle, mpd->inode);
2249         }
2250
2251         return 0;
2252 }
2253
2254 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2255                 (1 << BH_Delay) | (1 << BH_Unwritten))
2256
2257 /*
2258  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2259  *
2260  * @mpd->lbh - extent of blocks
2261  * @logical - logical number of the block in the file
2262  * @bh - bh of the block (used to access block's state)
2263  *
2264  * the function is used to collect contig. blocks in same state
2265  */
2266 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2267                                    sector_t logical, size_t b_size,
2268                                    unsigned long b_state)
2269 {
2270         sector_t next;
2271         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2272
2273         /* check if thereserved journal credits might overflow */
2274         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2275                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2276                         /*
2277                          * With non-extent format we are limited by the journal
2278                          * credit available.  Total credit needed to insert
2279                          * nrblocks contiguous blocks is dependent on the
2280                          * nrblocks.  So limit nrblocks.
2281                          */
2282                         goto flush_it;
2283                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2284                                 EXT4_MAX_TRANS_DATA) {
2285                         /*
2286                          * Adding the new buffer_head would make it cross the
2287                          * allowed limit for which we have journal credit
2288                          * reserved. So limit the new bh->b_size
2289                          */
2290                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2291                                                 mpd->inode->i_blkbits;
2292                         /* we will do mpage_da_submit_io in the next loop */
2293                 }
2294         }
2295         /*
2296          * First block in the extent
2297          */
2298         if (mpd->b_size == 0) {
2299                 mpd->b_blocknr = logical;
2300                 mpd->b_size = b_size;
2301                 mpd->b_state = b_state & BH_FLAGS;
2302                 return;
2303         }
2304
2305         next = mpd->b_blocknr + nrblocks;
2306         /*
2307          * Can we merge the block to our big extent?
2308          */
2309         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2310                 mpd->b_size += b_size;
2311                 return;
2312         }
2313
2314 flush_it:
2315         /*
2316          * We couldn't merge the block to our extent, so we
2317          * need to flush current  extent and start new one
2318          */
2319         if (mpage_da_map_blocks(mpd) == 0)
2320                 mpage_da_submit_io(mpd);
2321         mpd->io_done = 1;
2322         return;
2323 }
2324
2325 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2326 {
2327         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2328 }
2329
2330 /*
2331  * __mpage_da_writepage - finds extent of pages and blocks
2332  *
2333  * @page: page to consider
2334  * @wbc: not used, we just follow rules
2335  * @data: context
2336  *
2337  * The function finds extents of pages and scan them for all blocks.
2338  */
2339 static int __mpage_da_writepage(struct page *page,
2340                                 struct writeback_control *wbc, void *data)
2341 {
2342         struct mpage_da_data *mpd = data;
2343         struct inode *inode = mpd->inode;
2344         struct buffer_head *bh, *head;
2345         sector_t logical;
2346
2347         if (mpd->io_done) {
2348                 /*
2349                  * Rest of the page in the page_vec
2350                  * redirty then and skip then. We will
2351                  * try to write them again after
2352                  * starting a new transaction
2353                  */
2354                 redirty_page_for_writepage(wbc, page);
2355                 unlock_page(page);
2356                 return MPAGE_DA_EXTENT_TAIL;
2357         }
2358         /*
2359          * Can we merge this page to current extent?
2360          */
2361         if (mpd->next_page != page->index) {
2362                 /*
2363                  * Nope, we can't. So, we map non-allocated blocks
2364                  * and start IO on them using writepage()
2365                  */
2366                 if (mpd->next_page != mpd->first_page) {
2367                         if (mpage_da_map_blocks(mpd) == 0)
2368                                 mpage_da_submit_io(mpd);
2369                         /*
2370                          * skip rest of the page in the page_vec
2371                          */
2372                         mpd->io_done = 1;
2373                         redirty_page_for_writepage(wbc, page);
2374                         unlock_page(page);
2375                         return MPAGE_DA_EXTENT_TAIL;
2376                 }
2377
2378                 /*
2379                  * Start next extent of pages ...
2380                  */
2381                 mpd->first_page = page->index;
2382
2383                 /*
2384                  * ... and blocks
2385                  */
2386                 mpd->b_size = 0;
2387                 mpd->b_state = 0;
2388                 mpd->b_blocknr = 0;
2389         }
2390
2391         mpd->next_page = page->index + 1;
2392         logical = (sector_t) page->index <<
2393                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2394
2395         if (!page_has_buffers(page)) {
2396                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2397                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2398                 if (mpd->io_done)
2399                         return MPAGE_DA_EXTENT_TAIL;
2400         } else {
2401                 /*
2402                  * Page with regular buffer heads, just add all dirty ones
2403                  */
2404                 head = page_buffers(page);
2405                 bh = head;
2406                 do {
2407                         BUG_ON(buffer_locked(bh));
2408                         /*
2409                          * We need to try to allocate
2410                          * unmapped blocks in the same page.
2411                          * Otherwise we won't make progress
2412                          * with the page in ext4_writepage
2413                          */
2414                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2415                                 mpage_add_bh_to_extent(mpd, logical,
2416                                                        bh->b_size,
2417                                                        bh->b_state);
2418                                 if (mpd->io_done)
2419                                         return MPAGE_DA_EXTENT_TAIL;
2420                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2421                                 /*
2422                                  * mapped dirty buffer. We need to update
2423                                  * the b_state because we look at
2424                                  * b_state in mpage_da_map_blocks. We don't
2425                                  * update b_size because if we find an
2426                                  * unmapped buffer_head later we need to
2427                                  * use the b_state flag of that buffer_head.
2428                                  */
2429                                 if (mpd->b_size == 0)
2430                                         mpd->b_state = bh->b_state & BH_FLAGS;
2431                         }
2432                         logical++;
2433                 } while ((bh = bh->b_this_page) != head);
2434         }
2435
2436         return 0;
2437 }
2438
2439 /*
2440  * This is a special get_blocks_t callback which is used by
2441  * ext4_da_write_begin().  It will either return mapped block or
2442  * reserve space for a single block.
2443  *
2444  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2445  * We also have b_blocknr = -1 and b_bdev initialized properly
2446  *
2447  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2448  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2449  * initialized properly.
2450  */
2451 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2452                                   struct buffer_head *bh_result, int create)
2453 {
2454         int ret = 0;
2455         sector_t invalid_block = ~((sector_t) 0xffff);
2456
2457         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2458                 invalid_block = ~0;
2459
2460         BUG_ON(create == 0);
2461         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2462
2463         /*
2464          * first, we need to know whether the block is allocated already
2465          * preallocated blocks are unmapped but should treated
2466          * the same as allocated blocks.
2467          */
2468         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2469         if ((ret == 0) && !buffer_delay(bh_result)) {
2470                 /* the block isn't (pre)allocated yet, let's reserve space */
2471                 /*
2472                  * XXX: __block_prepare_write() unmaps passed block,
2473                  * is it OK?
2474                  */
2475                 ret = ext4_da_reserve_space(inode, 1);
2476                 if (ret)
2477                         /* not enough space to reserve */
2478                         return ret;
2479
2480                 map_bh(bh_result, inode->i_sb, invalid_block);
2481                 set_buffer_new(bh_result);
2482                 set_buffer_delay(bh_result);
2483         } else if (ret > 0) {
2484                 bh_result->b_size = (ret << inode->i_blkbits);
2485                 if (buffer_unwritten(bh_result)) {
2486                         /* A delayed write to unwritten bh should
2487                          * be marked new and mapped.  Mapped ensures
2488                          * that we don't do get_block multiple times
2489                          * when we write to the same offset and new
2490                          * ensures that we do proper zero out for
2491                          * partial write.
2492                          */
2493                         set_buffer_new(bh_result);
2494                         set_buffer_mapped(bh_result);
2495                 }
2496                 ret = 0;
2497         }
2498
2499         return ret;
2500 }
2501
2502 /*
2503  * This function is used as a standard get_block_t calback function
2504  * when there is no desire to allocate any blocks.  It is used as a
2505  * callback function for block_prepare_write(), nobh_writepage(), and
2506  * block_write_full_page().  These functions should only try to map a
2507  * single block at a time.
2508  *
2509  * Since this function doesn't do block allocations even if the caller
2510  * requests it by passing in create=1, it is critically important that
2511  * any caller checks to make sure that any buffer heads are returned
2512  * by this function are either all already mapped or marked for
2513  * delayed allocation before calling nobh_writepage() or
2514  * block_write_full_page().  Otherwise, b_blocknr could be left
2515  * unitialized, and the page write functions will be taken by
2516  * surprise.
2517  */
2518 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2519                                    struct buffer_head *bh_result, int create)
2520 {
2521         int ret = 0;
2522         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2523
2524         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2525
2526         /*
2527          * we don't want to do block allocation in writepage
2528          * so call get_block_wrap with create = 0
2529          */
2530         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2531         if (ret > 0) {
2532                 bh_result->b_size = (ret << inode->i_blkbits);
2533                 ret = 0;
2534         }
2535         return ret;
2536 }
2537
2538 static int bget_one(handle_t *handle, struct buffer_head *bh)
2539 {
2540         get_bh(bh);
2541         return 0;
2542 }
2543
2544 static int bput_one(handle_t *handle, struct buffer_head *bh)
2545 {
2546         put_bh(bh);
2547         return 0;
2548 }
2549
2550 static int __ext4_journalled_writepage(struct page *page,
2551                                        struct writeback_control *wbc,
2552                                        unsigned int len)
2553 {
2554         struct address_space *mapping = page->mapping;
2555         struct inode *inode = mapping->host;
2556         struct buffer_head *page_bufs;
2557         handle_t *handle = NULL;
2558         int ret = 0;
2559         int err;
2560
2561         page_bufs = page_buffers(page);
2562         BUG_ON(!page_bufs);
2563         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2564         /* As soon as we unlock the page, it can go away, but we have
2565          * references to buffers so we are safe */
2566         unlock_page(page);
2567
2568         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2569         if (IS_ERR(handle)) {
2570                 ret = PTR_ERR(handle);
2571                 goto out;
2572         }
2573
2574         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2575                                 do_journal_get_write_access);
2576
2577         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2578                                 write_end_fn);
2579         if (ret == 0)
2580                 ret = err;
2581         err = ext4_journal_stop(handle);
2582         if (!ret)
2583                 ret = err;
2584
2585         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2586         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2587 out:
2588         return ret;
2589 }
2590
2591 /*
2592  * Note that we don't need to start a transaction unless we're journaling data
2593  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2594  * need to file the inode to the transaction's list in ordered mode because if
2595  * we are writing back data added by write(), the inode is already there and if
2596  * we are writing back data modified via mmap(), noone guarantees in which
2597  * transaction the data will hit the disk. In case we are journaling data, we
2598  * cannot start transaction directly because transaction start ranks above page
2599  * lock so we have to do some magic.
2600  *
2601  * This function can get called via...
2602  *   - ext4_da_writepages after taking page lock (have journal handle)
2603  *   - journal_submit_inode_data_buffers (no journal handle)
2604  *   - shrink_page_list via pdflush (no journal handle)
2605  *   - grab_page_cache when doing write_begin (have journal handle)
2606  *
2607  * We don't do any block allocation in this function. If we have page with
2608  * multiple blocks we need to write those buffer_heads that are mapped. This
2609  * is important for mmaped based write. So if we do with blocksize 1K
2610  * truncate(f, 1024);
2611  * a = mmap(f, 0, 4096);
2612  * a[0] = 'a';
2613  * truncate(f, 4096);
2614  * we have in the page first buffer_head mapped via page_mkwrite call back
2615  * but other bufer_heads would be unmapped but dirty(dirty done via the
2616  * do_wp_page). So writepage should write the first block. If we modify
2617  * the mmap area beyond 1024 we will again get a page_fault and the
2618  * page_mkwrite callback will do the block allocation and mark the
2619  * buffer_heads mapped.
2620  *
2621  * We redirty the page if we have any buffer_heads that is either delay or
2622  * unwritten in the page.
2623  *
2624  * We can get recursively called as show below.
2625  *
2626  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2627  *              ext4_writepage()
2628  *
2629  * But since we don't do any block allocation we should not deadlock.
2630  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2631  */
2632 static int ext4_writepage(struct page *page,
2633                           struct writeback_control *wbc)
2634 {
2635         int ret = 0;
2636         loff_t size;
2637         unsigned int len;
2638         struct buffer_head *page_bufs;
2639         struct inode *inode = page->mapping->host;
2640
2641         trace_ext4_writepage(inode, page);
2642         size = i_size_read(inode);
2643         if (page->index == size >> PAGE_CACHE_SHIFT)
2644                 len = size & ~PAGE_CACHE_MASK;
2645         else
2646                 len = PAGE_CACHE_SIZE;
2647
2648         if (page_has_buffers(page)) {
2649                 page_bufs = page_buffers(page);
2650                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2651                                         ext4_bh_delay_or_unwritten)) {
2652                         /*
2653                          * We don't want to do  block allocation
2654                          * So redirty the page and return
2655                          * We may reach here when we do a journal commit
2656                          * via journal_submit_inode_data_buffers.
2657                          * If we don't have mapping block we just ignore
2658                          * them. We can also reach here via shrink_page_list
2659                          */
2660                         redirty_page_for_writepage(wbc, page);
2661                         unlock_page(page);
2662                         return 0;
2663                 }
2664         } else {
2665                 /*
2666                  * The test for page_has_buffers() is subtle:
2667                  * We know the page is dirty but it lost buffers. That means
2668                  * that at some moment in time after write_begin()/write_end()
2669                  * has been called all buffers have been clean and thus they
2670                  * must have been written at least once. So they are all
2671                  * mapped and we can happily proceed with mapping them
2672                  * and writing the page.
2673                  *
2674                  * Try to initialize the buffer_heads and check whether
2675                  * all are mapped and non delay. We don't want to
2676                  * do block allocation here.
2677                  */
2678                 ret = block_prepare_write(page, 0, len,
2679                                           noalloc_get_block_write);
2680                 if (!ret) {
2681                         page_bufs = page_buffers(page);
2682                         /* check whether all are mapped and non delay */
2683                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2684                                                 ext4_bh_delay_or_unwritten)) {
2685                                 redirty_page_for_writepage(wbc, page);
2686                                 unlock_page(page);
2687                                 return 0;
2688                         }
2689                 } else {
2690                         /*
2691                          * We can't do block allocation here
2692                          * so just redity the page and unlock
2693                          * and return
2694                          */
2695                         redirty_page_for_writepage(wbc, page);
2696                         unlock_page(page);
2697                         return 0;
2698                 }
2699                 /* now mark the buffer_heads as dirty and uptodate */
2700                 block_commit_write(page, 0, len);
2701         }
2702
2703         if (PageChecked(page) && ext4_should_journal_data(inode)) {
2704                 /*
2705                  * It's mmapped pagecache.  Add buffers and journal it.  There
2706                  * doesn't seem much point in redirtying the page here.
2707                  */
2708                 ClearPageChecked(page);
2709                 return __ext4_journalled_writepage(page, wbc, len);
2710         }
2711
2712         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2713                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2714         else
2715                 ret = block_write_full_page(page, noalloc_get_block_write,
2716                                             wbc);
2717
2718         return ret;
2719 }
2720
2721 /*
2722  * This is called via ext4_da_writepages() to
2723  * calulate the total number of credits to reserve to fit
2724  * a single extent allocation into a single transaction,
2725  * ext4_da_writpeages() will loop calling this before
2726  * the block allocation.
2727  */
2728
2729 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2730 {
2731         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2732
2733         /*
2734          * With non-extent format the journal credit needed to
2735          * insert nrblocks contiguous block is dependent on
2736          * number of contiguous block. So we will limit
2737          * number of contiguous block to a sane value
2738          */
2739         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2740             (max_blocks > EXT4_MAX_TRANS_DATA))
2741                 max_blocks = EXT4_MAX_TRANS_DATA;
2742
2743         return ext4_chunk_trans_blocks(inode, max_blocks);
2744 }
2745
2746 static int ext4_da_writepages(struct address_space *mapping,
2747                               struct writeback_control *wbc)
2748 {
2749         pgoff_t index;
2750         int range_whole = 0;
2751         handle_t *handle = NULL;
2752         struct mpage_da_data mpd;
2753         struct inode *inode = mapping->host;
2754         int no_nrwrite_index_update;
2755         int pages_written = 0;
2756         long pages_skipped;
2757         unsigned int max_pages;
2758         int range_cyclic, cycled = 1, io_done = 0;
2759         int needed_blocks, ret = 0;
2760         long desired_nr_to_write, nr_to_writebump = 0;
2761         loff_t range_start = wbc->range_start;
2762         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2763
2764         trace_ext4_da_writepages(inode, wbc);
2765
2766         /*
2767          * No pages to write? This is mainly a kludge to avoid starting
2768          * a transaction for special inodes like journal inode on last iput()
2769          * because that could violate lock ordering on umount
2770          */
2771         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2772                 return 0;
2773
2774         /*
2775          * If the filesystem has aborted, it is read-only, so return
2776          * right away instead of dumping stack traces later on that
2777          * will obscure the real source of the problem.  We test
2778          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2779          * the latter could be true if the filesystem is mounted
2780          * read-only, and in that case, ext4_da_writepages should
2781          * *never* be called, so if that ever happens, we would want
2782          * the stack trace.
2783          */
2784         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2785                 return -EROFS;
2786
2787         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2788                 range_whole = 1;
2789
2790         range_cyclic = wbc->range_cyclic;
2791         if (wbc->range_cyclic) {
2792                 index = mapping->writeback_index;
2793                 if (index)
2794                         cycled = 0;
2795                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2796                 wbc->range_end  = LLONG_MAX;
2797                 wbc->range_cyclic = 0;
2798         } else
2799                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2800
2801         /*
2802          * This works around two forms of stupidity.  The first is in
2803          * the writeback code, which caps the maximum number of pages
2804          * written to be 1024 pages.  This is wrong on multiple
2805          * levels; different architectues have a different page size,
2806          * which changes the maximum amount of data which gets
2807          * written.  Secondly, 4 megabytes is way too small.  XFS
2808          * forces this value to be 16 megabytes by multiplying
2809          * nr_to_write parameter by four, and then relies on its
2810          * allocator to allocate larger extents to make them
2811          * contiguous.  Unfortunately this brings us to the second
2812          * stupidity, which is that ext4's mballoc code only allocates
2813          * at most 2048 blocks.  So we force contiguous writes up to
2814          * the number of dirty blocks in the inode, or
2815          * sbi->max_writeback_mb_bump whichever is smaller.
2816          */
2817         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2818         if (!range_cyclic && range_whole)
2819                 desired_nr_to_write = wbc->nr_to_write * 8;
2820         else
2821                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2822                                                            max_pages);
2823         if (desired_nr_to_write > max_pages)
2824                 desired_nr_to_write = max_pages;
2825
2826         if (wbc->nr_to_write < desired_nr_to_write) {
2827                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2828                 wbc->nr_to_write = desired_nr_to_write;
2829         }
2830
2831         mpd.wbc = wbc;
2832         mpd.inode = mapping->host;
2833
2834         /*
2835          * we don't want write_cache_pages to update
2836          * nr_to_write and writeback_index
2837          */
2838         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2839         wbc->no_nrwrite_index_update = 1;
2840         pages_skipped = wbc->pages_skipped;
2841
2842 retry:
2843         while (!ret && wbc->nr_to_write > 0) {
2844
2845                 /*
2846                  * we  insert one extent at a time. So we need
2847                  * credit needed for single extent allocation.
2848                  * journalled mode is currently not supported
2849                  * by delalloc
2850                  */
2851                 BUG_ON(ext4_should_journal_data(inode));
2852                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2853
2854                 /* start a new transaction*/
2855                 handle = ext4_journal_start(inode, needed_blocks);
2856                 if (IS_ERR(handle)) {
2857                         ret = PTR_ERR(handle);
2858                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2859                                "%ld pages, ino %lu; err %d\n", __func__,
2860                                 wbc->nr_to_write, inode->i_ino, ret);
2861                         goto out_writepages;
2862                 }
2863
2864                 /*
2865                  * Now call __mpage_da_writepage to find the next
2866                  * contiguous region of logical blocks that need
2867                  * blocks to be allocated by ext4.  We don't actually
2868                  * submit the blocks for I/O here, even though
2869                  * write_cache_pages thinks it will, and will set the
2870                  * pages as clean for write before calling
2871                  * __mpage_da_writepage().
2872                  */
2873                 mpd.b_size = 0;
2874                 mpd.b_state = 0;
2875                 mpd.b_blocknr = 0;
2876                 mpd.first_page = 0;
2877                 mpd.next_page = 0;
2878                 mpd.io_done = 0;
2879                 mpd.pages_written = 0;
2880                 mpd.retval = 0;
2881                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2882                                         &mpd);
2883                 /*
2884                  * If we have a contigous extent of pages and we
2885                  * haven't done the I/O yet, map the blocks and submit
2886                  * them for I/O.
2887                  */
2888                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2889                         if (mpage_da_map_blocks(&mpd) == 0)
2890                                 mpage_da_submit_io(&mpd);
2891                         mpd.io_done = 1;
2892                         ret = MPAGE_DA_EXTENT_TAIL;
2893                 }
2894                 trace_ext4_da_write_pages(inode, &mpd);
2895                 wbc->nr_to_write -= mpd.pages_written;
2896
2897                 ext4_journal_stop(handle);
2898
2899                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2900                         /* commit the transaction which would
2901                          * free blocks released in the transaction
2902                          * and try again
2903                          */
2904                         jbd2_journal_force_commit_nested(sbi->s_journal);
2905                         wbc->pages_skipped = pages_skipped;
2906                         ret = 0;
2907                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2908                         /*
2909                          * got one extent now try with
2910                          * rest of the pages
2911                          */
2912                         pages_written += mpd.pages_written;
2913                         wbc->pages_skipped = pages_skipped;
2914                         ret = 0;
2915                         io_done = 1;
2916                 } else if (wbc->nr_to_write)
2917                         /*
2918                          * There is no more writeout needed
2919                          * or we requested for a noblocking writeout
2920                          * and we found the device congested
2921                          */
2922                         break;
2923         }
2924         if (!io_done && !cycled) {
2925                 cycled = 1;
2926                 index = 0;
2927                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2928                 wbc->range_end  = mapping->writeback_index - 1;
2929                 goto retry;
2930         }
2931         if (pages_skipped != wbc->pages_skipped)
2932                 ext4_msg(inode->i_sb, KERN_CRIT,
2933                          "This should not happen leaving %s "
2934                          "with nr_to_write = %ld ret = %d\n",
2935                          __func__, wbc->nr_to_write, ret);
2936
2937         /* Update index */
2938         index += pages_written;
2939         wbc->range_cyclic = range_cyclic;
2940         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2941                 /*
2942                  * set the writeback_index so that range_cyclic
2943                  * mode will write it back later
2944                  */
2945                 mapping->writeback_index = index;
2946
2947 out_writepages:
2948         if (!no_nrwrite_index_update)
2949                 wbc->no_nrwrite_index_update = 0;
2950         if (wbc->nr_to_write > nr_to_writebump)
2951                 wbc->nr_to_write -= nr_to_writebump;
2952         wbc->range_start = range_start;
2953         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2954         return ret;
2955 }
2956
2957 #define FALL_BACK_TO_NONDELALLOC 1
2958 static int ext4_nonda_switch(struct super_block *sb)
2959 {
2960         s64 free_blocks, dirty_blocks;
2961         struct ext4_sb_info *sbi = EXT4_SB(sb);
2962
2963         /*
2964          * switch to non delalloc mode if we are running low
2965          * on free block. The free block accounting via percpu
2966          * counters can get slightly wrong with percpu_counter_batch getting
2967          * accumulated on each CPU without updating global counters
2968          * Delalloc need an accurate free block accounting. So switch
2969          * to non delalloc when we are near to error range.
2970          */
2971         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2972         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2973         if (2 * free_blocks < 3 * dirty_blocks ||
2974                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2975                 /*
2976                  * free block count is less that 150% of dirty blocks
2977                  * or free blocks is less that watermark
2978                  */
2979                 return 1;
2980         }
2981         return 0;
2982 }
2983
2984 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2985                                loff_t pos, unsigned len, unsigned flags,
2986                                struct page **pagep, void **fsdata)
2987 {
2988         int ret, retries = 0;
2989         struct page *page;
2990         pgoff_t index;
2991         unsigned from, to;
2992         struct inode *inode = mapping->host;
2993         handle_t *handle;
2994
2995         index = pos >> PAGE_CACHE_SHIFT;
2996         from = pos & (PAGE_CACHE_SIZE - 1);
2997         to = from + len;
2998
2999         if (ext4_nonda_switch(inode->i_sb)) {
3000                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3001                 return ext4_write_begin(file, mapping, pos,
3002                                         len, flags, pagep, fsdata);
3003         }
3004         *fsdata = (void *)0;
3005         trace_ext4_da_write_begin(inode, pos, len, flags);
3006 retry:
3007         /*
3008          * With delayed allocation, we don't log the i_disksize update
3009          * if there is delayed block allocation. But we still need
3010          * to journalling the i_disksize update if writes to the end
3011          * of file which has an already mapped buffer.
3012          */
3013         handle = ext4_journal_start(inode, 1);
3014         if (IS_ERR(handle)) {
3015                 ret = PTR_ERR(handle);
3016                 goto out;
3017         }
3018         /* We cannot recurse into the filesystem as the transaction is already
3019          * started */
3020         flags |= AOP_FLAG_NOFS;
3021
3022         page = grab_cache_page_write_begin(mapping, index, flags);
3023         if (!page) {
3024                 ext4_journal_stop(handle);
3025                 ret = -ENOMEM;
3026                 goto out;
3027         }
3028         *pagep = page;
3029
3030         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3031                                 ext4_da_get_block_prep);
3032         if (ret < 0) {
3033                 unlock_page(page);
3034                 ext4_journal_stop(handle);
3035                 page_cache_release(page);
3036                 /*
3037                  * block_write_begin may have instantiated a few blocks
3038                  * outside i_size.  Trim these off again. Don't need
3039                  * i_size_read because we hold i_mutex.
3040                  */
3041                 if (pos + len > inode->i_size)
3042                         ext4_truncate(inode);
3043         }
3044
3045         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3046                 goto retry;
3047 out:
3048         return ret;
3049 }
3050
3051 /*
3052  * Check if we should update i_disksize
3053  * when write to the end of file but not require block allocation
3054  */
3055 static int ext4_da_should_update_i_disksize(struct page *page,
3056                                             unsigned long offset)
3057 {
3058         struct buffer_head *bh;
3059         struct inode *inode = page->mapping->host;
3060         unsigned int idx;
3061         int i;
3062
3063         bh = page_buffers(page);
3064         idx = offset >> inode->i_blkbits;
3065
3066         for (i = 0; i < idx; i++)
3067                 bh = bh->b_this_page;
3068
3069         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3070                 return 0;
3071         return 1;
3072 }
3073
3074 static int ext4_da_write_end(struct file *file,
3075                              struct address_space *mapping,
3076                              loff_t pos, unsigned len, unsigned copied,
3077                              struct page *page, void *fsdata)
3078 {
3079         struct inode *inode = mapping->host;
3080         int ret = 0, ret2;
3081         handle_t *handle = ext4_journal_current_handle();
3082         loff_t new_i_size;
3083         unsigned long start, end;
3084         int write_mode = (int)(unsigned long)fsdata;
3085
3086         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3087                 if (ext4_should_order_data(inode)) {
3088                         return ext4_ordered_write_end(file, mapping, pos,
3089                                         len, copied, page, fsdata);
3090                 } else if (ext4_should_writeback_data(inode)) {
3091                         return ext4_writeback_write_end(file, mapping, pos,
3092                                         len, copied, page, fsdata);
3093                 } else {
3094                         BUG();
3095                 }
3096         }
3097
3098         trace_ext4_da_write_end(inode, pos, len, copied);
3099         start = pos & (PAGE_CACHE_SIZE - 1);
3100         end = start + copied - 1;
3101
3102         /*
3103          * generic_write_end() will run mark_inode_dirty() if i_size
3104          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3105          * into that.
3106          */
3107
3108         new_i_size = pos + copied;
3109         if (new_i_size > EXT4_I(inode)->i_disksize) {
3110                 if (ext4_da_should_update_i_disksize(page, end)) {
3111                         down_write(&EXT4_I(inode)->i_data_sem);
3112                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3113                                 /*
3114                                  * Updating i_disksize when extending file
3115                                  * without needing block allocation
3116                                  */
3117                                 if (ext4_should_order_data(inode))
3118                                         ret = ext4_jbd2_file_inode(handle,
3119                                                                    inode);
3120
3121                                 EXT4_I(inode)->i_disksize = new_i_size;
3122                         }
3123                         up_write(&EXT4_I(inode)->i_data_sem);
3124                         /* We need to mark inode dirty even if
3125                          * new_i_size is less that inode->i_size
3126                          * bu greater than i_disksize.(hint delalloc)
3127                          */
3128                         ext4_mark_inode_dirty(handle, inode);
3129                 }
3130         }
3131         ret2 = generic_write_end(file, mapping, pos, len, copied,
3132                                                         page, fsdata);
3133         copied = ret2;
3134         if (ret2 < 0)
3135                 ret = ret2;
3136         ret2 = ext4_journal_stop(handle);
3137         if (!ret)
3138                 ret = ret2;
3139
3140         return ret ? ret : copied;
3141 }
3142
3143 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3144 {
3145         /*
3146          * Drop reserved blocks
3147          */
3148         BUG_ON(!PageLocked(page));
3149         if (!page_has_buffers(page))
3150                 goto out;
3151
3152         ext4_da_page_release_reservation(page, offset);
3153
3154 out:
3155         ext4_invalidatepage(page, offset);
3156
3157         return;
3158 }
3159
3160 /*
3161  * Force all delayed allocation blocks to be allocated for a given inode.
3162  */
3163 int ext4_alloc_da_blocks(struct inode *inode)
3164 {
3165         trace_ext4_alloc_da_blocks(inode);
3166
3167         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3168             !EXT4_I(inode)->i_reserved_meta_blocks)
3169                 return 0;
3170
3171         /*
3172          * We do something simple for now.  The filemap_flush() will
3173          * also start triggering a write of the data blocks, which is
3174          * not strictly speaking necessary (and for users of
3175          * laptop_mode, not even desirable).  However, to do otherwise
3176          * would require replicating code paths in:
3177          *
3178          * ext4_da_writepages() ->
3179          *    write_cache_pages() ---> (via passed in callback function)
3180          *        __mpage_da_writepage() -->
3181          *           mpage_add_bh_to_extent()
3182          *           mpage_da_map_blocks()
3183          *
3184          * The problem is that write_cache_pages(), located in
3185          * mm/page-writeback.c, marks pages clean in preparation for
3186          * doing I/O, which is not desirable if we're not planning on
3187          * doing I/O at all.
3188          *
3189          * We could call write_cache_pages(), and then redirty all of
3190          * the pages by calling redirty_page_for_writeback() but that
3191          * would be ugly in the extreme.  So instead we would need to
3192          * replicate parts of the code in the above functions,
3193          * simplifying them becuase we wouldn't actually intend to
3194          * write out the pages, but rather only collect contiguous
3195          * logical block extents, call the multi-block allocator, and
3196          * then update the buffer heads with the block allocations.
3197          *
3198          * For now, though, we'll cheat by calling filemap_flush(),
3199          * which will map the blocks, and start the I/O, but not
3200          * actually wait for the I/O to complete.
3201          */
3202         return filemap_flush(inode->i_mapping);
3203 }
3204
3205 /*
3206  * bmap() is special.  It gets used by applications such as lilo and by
3207  * the swapper to find the on-disk block of a specific piece of data.
3208  *
3209  * Naturally, this is dangerous if the block concerned is still in the
3210  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3211  * filesystem and enables swap, then they may get a nasty shock when the
3212  * data getting swapped to that swapfile suddenly gets overwritten by
3213  * the original zero's written out previously to the journal and
3214  * awaiting writeback in the kernel's buffer cache.
3215  *
3216  * So, if we see any bmap calls here on a modified, data-journaled file,
3217  * take extra steps to flush any blocks which might be in the cache.
3218  */
3219 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3220 {
3221         struct inode *inode = mapping->host;
3222         journal_t *journal;
3223         int err;
3224
3225         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3226                         test_opt(inode->i_sb, DELALLOC)) {
3227                 /*
3228                  * With delalloc we want to sync the file
3229                  * so that we can make sure we allocate
3230                  * blocks for file
3231                  */
3232                 filemap_write_and_wait(mapping);
3233         }
3234
3235         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3236                 /*
3237                  * This is a REALLY heavyweight approach, but the use of
3238                  * bmap on dirty files is expected to be extremely rare:
3239                  * only if we run lilo or swapon on a freshly made file
3240                  * do we expect this to happen.
3241                  *
3242                  * (bmap requires CAP_SYS_RAWIO so this does not
3243                  * represent an unprivileged user DOS attack --- we'd be
3244                  * in trouble if mortal users could trigger this path at
3245                  * will.)
3246                  *
3247                  * NB. EXT4_STATE_JDATA is not set on files other than
3248                  * regular files.  If somebody wants to bmap a directory
3249                  * or symlink and gets confused because the buffer
3250                  * hasn't yet been flushed to disk, they deserve
3251                  * everything they get.
3252                  */
3253
3254                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3255                 journal = EXT4_JOURNAL(inode);
3256                 jbd2_journal_lock_updates(journal);
3257                 err = jbd2_journal_flush(journal);
3258                 jbd2_journal_unlock_updates(journal);
3259
3260                 if (err)
3261                         return 0;
3262         }
3263
3264         return generic_block_bmap(mapping, block, ext4_get_block);
3265 }
3266
3267 static int ext4_readpage(struct file *file, struct page *page)
3268 {
3269         return mpage_readpage(page, ext4_get_block);
3270 }
3271
3272 static int
3273 ext4_readpages(struct file *file, struct address_space *mapping,
3274                 struct list_head *pages, unsigned nr_pages)
3275 {
3276         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3277 }
3278
3279 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3280 {
3281         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3282
3283         /*
3284          * If it's a full truncate we just forget about the pending dirtying
3285          */
3286         if (offset == 0)
3287                 ClearPageChecked(page);
3288
3289         if (journal)
3290                 jbd2_journal_invalidatepage(journal, page, offset);
3291         else
3292                 block_invalidatepage(page, offset);
3293 }
3294
3295 static int ext4_releasepage(struct page *page, gfp_t wait)
3296 {
3297         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3298
3299         WARN_ON(PageChecked(page));
3300         if (!page_has_buffers(page))
3301                 return 0;
3302         if (journal)
3303                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3304         else
3305                 return try_to_free_buffers(page);
3306 }
3307
3308 /*
3309  * O_DIRECT for ext3 (or indirect map) based files
3310  *
3311  * If the O_DIRECT write will extend the file then add this inode to the
3312  * orphan list.  So recovery will truncate it back to the original size
3313  * if the machine crashes during the write.
3314  *
3315  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3316  * crashes then stale disk data _may_ be exposed inside the file. But current
3317  * VFS code falls back into buffered path in that case so we are safe.
3318  */
3319 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3320                               const struct iovec *iov, loff_t offset,
3321                               unsigned long nr_segs)
3322 {
3323         struct file *file = iocb->ki_filp;
3324         struct inode *inode = file->f_mapping->host;
3325         struct ext4_inode_info *ei = EXT4_I(inode);
3326         handle_t *handle;
3327         ssize_t ret;
3328         int orphan = 0;
3329         size_t count = iov_length(iov, nr_segs);
3330         int retries = 0;
3331
3332         if (rw == WRITE) {
3333                 loff_t final_size = offset + count;
3334
3335                 if (final_size > inode->i_size) {
3336                         /* Credits for sb + inode write */
3337                         handle = ext4_journal_start(inode, 2);
3338                         if (IS_ERR(handle)) {
3339                                 ret = PTR_ERR(handle);
3340                                 goto out;
3341                         }
3342                         ret = ext4_orphan_add(handle, inode);
3343                         if (ret) {
3344                                 ext4_journal_stop(handle);
3345                                 goto out;
3346                         }
3347                         orphan = 1;
3348                         ei->i_disksize = inode->i_size;
3349                         ext4_journal_stop(handle);
3350                 }
3351         }
3352
3353 retry:
3354         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3355                                  offset, nr_segs,
3356                                  ext4_get_block, NULL);
3357         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3358                 goto retry;
3359
3360         if (orphan) {
3361                 int err;
3362
3363                 /* Credits for sb + inode write */
3364                 handle = ext4_journal_start(inode, 2);
3365                 if (IS_ERR(handle)) {
3366                         /* This is really bad luck. We've written the data
3367                          * but cannot extend i_size. Bail out and pretend
3368                          * the write failed... */
3369                         ret = PTR_ERR(handle);
3370                         goto out;
3371                 }
3372                 if (inode->i_nlink)
3373                         ext4_orphan_del(handle, inode);
3374                 if (ret > 0) {
3375                         loff_t end = offset + ret;
3376                         if (end > inode->i_size) {
3377                                 ei->i_disksize = end;
3378                                 i_size_write(inode, end);
3379                                 /*
3380                                  * We're going to return a positive `ret'
3381                                  * here due to non-zero-length I/O, so there's
3382                                  * no way of reporting error returns from
3383                                  * ext4_mark_inode_dirty() to userspace.  So
3384                                  * ignore it.
3385                                  */
3386                                 ext4_mark_inode_dirty(handle, inode);
3387                         }
3388                 }
3389                 err = ext4_journal_stop(handle);
3390                 if (ret == 0)
3391                         ret = err;
3392         }
3393 out:
3394         return ret;
3395 }
3396
3397 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3398                    struct buffer_head *bh_result, int create)
3399 {
3400         handle_t *handle = NULL;
3401         int ret = 0;
3402         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3403         int dio_credits;
3404
3405         ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3406                    inode->i_ino, create);
3407         /*
3408          * DIO VFS code passes create = 0 flag for write to
3409          * the middle of file. It does this to avoid block
3410          * allocation for holes, to prevent expose stale data
3411          * out when there is parallel buffered read (which does
3412          * not hold the i_mutex lock) while direct IO write has
3413          * not completed. DIO request on holes finally falls back
3414          * to buffered IO for this reason.
3415          *
3416          * For ext4 extent based file, since we support fallocate,
3417          * new allocated extent as uninitialized, for holes, we
3418          * could fallocate blocks for holes, thus parallel
3419          * buffered IO read will zero out the page when read on
3420          * a hole while parallel DIO write to the hole has not completed.
3421          *
3422          * when we come here, we know it's a direct IO write to
3423          * to the middle of file (<i_size)
3424          * so it's safe to override the create flag from VFS.
3425          */
3426         create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3427
3428         if (max_blocks > DIO_MAX_BLOCKS)
3429                 max_blocks = DIO_MAX_BLOCKS;
3430         dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3431         handle = ext4_journal_start(inode, dio_credits);
3432         if (IS_ERR(handle)) {
3433                 ret = PTR_ERR(handle);
3434                 goto out;
3435         }
3436         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3437                               create);
3438         if (ret > 0) {
3439                 bh_result->b_size = (ret << inode->i_blkbits);
3440                 ret = 0;
3441         }
3442         ext4_journal_stop(handle);
3443 out:
3444         return ret;
3445 }
3446
3447 static void ext4_free_io_end(ext4_io_end_t *io)
3448 {
3449         BUG_ON(!io);
3450         iput(io->inode);
3451         kfree(io);
3452 }
3453 static void dump_aio_dio_list(struct inode * inode)
3454 {
3455 #ifdef  EXT4_DEBUG
3456         struct list_head *cur, *before, *after;
3457         ext4_io_end_t *io, *io0, *io1;
3458
3459         if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3460                 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3461                 return;
3462         }
3463
3464         ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3465         list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3466                 cur = &io->list;
3467                 before = cur->prev;
3468                 io0 = container_of(before, ext4_io_end_t, list);
3469                 after = cur->next;
3470                 io1 = container_of(after, ext4_io_end_t, list);
3471
3472                 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3473                             io, inode->i_ino, io0, io1);
3474         }
3475 #endif
3476 }
3477
3478 /*
3479  * check a range of space and convert unwritten extents to written.
3480  */
3481 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3482 {
3483         struct inode *inode = io->inode;
3484         loff_t offset = io->offset;
3485         size_t size = io->size;
3486         int ret = 0;
3487
3488         ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3489                    "list->prev 0x%p\n",
3490                    io, inode->i_ino, io->list.next, io->list.prev);
3491
3492         if (list_empty(&io->list))
3493                 return ret;
3494
3495         if (io->flag != DIO_AIO_UNWRITTEN)
3496                 return ret;
3497
3498         if (offset + size <= i_size_read(inode))
3499                 ret = ext4_convert_unwritten_extents(inode, offset, size);
3500
3501         if (ret < 0) {
3502                 printk(KERN_EMERG "%s: failed to convert unwritten"
3503                         "extents to written extents, error is %d"
3504                         " io is still on inode %lu aio dio list\n",
3505                        __func__, ret, inode->i_ino);
3506                 return ret;
3507         }
3508
3509         /* clear the DIO AIO unwritten flag */
3510         io->flag = 0;
3511         return ret;
3512 }
3513 /*
3514  * work on completed aio dio IO, to convert unwritten extents to extents
3515  */
3516 static void ext4_end_aio_dio_work(struct work_struct *work)
3517 {
3518         ext4_io_end_t *io  = container_of(work, ext4_io_end_t, work);
3519         struct inode *inode = io->inode;
3520         int ret = 0;
3521
3522         mutex_lock(&inode->i_mutex);
3523         ret = ext4_end_aio_dio_nolock(io);
3524         if (ret >= 0) {
3525                 if (!list_empty(&io->list))
3526                         list_del_init(&io->list);
3527                 ext4_free_io_end(io);
3528         }
3529         mutex_unlock(&inode->i_mutex);
3530 }
3531 /*
3532  * This function is called from ext4_sync_file().
3533  *
3534  * When AIO DIO IO is completed, the work to convert unwritten
3535  * extents to written is queued on workqueue but may not get immediately
3536  * scheduled. When fsync is called, we need to ensure the
3537  * conversion is complete before fsync returns.
3538  * The inode keeps track of a list of completed AIO from DIO path
3539  * that might needs to do the conversion. This function walks through
3540  * the list and convert the related unwritten extents to written.
3541  */
3542 int flush_aio_dio_completed_IO(struct inode *inode)
3543 {
3544         ext4_io_end_t *io;
3545         int ret = 0;
3546         int ret2 = 0;
3547
3548         if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3549                 return ret;
3550
3551         dump_aio_dio_list(inode);
3552         while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3553                 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3554                                 ext4_io_end_t, list);
3555                 /*
3556                  * Calling ext4_end_aio_dio_nolock() to convert completed
3557                  * IO to written.
3558                  *
3559                  * When ext4_sync_file() is called, run_queue() may already
3560                  * about to flush the work corresponding to this io structure.
3561                  * It will be upset if it founds the io structure related
3562                  * to the work-to-be schedule is freed.
3563                  *
3564                  * Thus we need to keep the io structure still valid here after
3565                  * convertion finished. The io structure has a flag to
3566                  * avoid double converting from both fsync and background work
3567                  * queue work.
3568                  */
3569                 ret = ext4_end_aio_dio_nolock(io);
3570                 if (ret < 0)
3571                         ret2 = ret;
3572                 else
3573                         list_del_init(&io->list);
3574         }
3575         return (ret2 < 0) ? ret2 : 0;
3576 }
3577
3578 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3579 {
3580         ext4_io_end_t *io = NULL;
3581
3582         io = kmalloc(sizeof(*io), GFP_NOFS);
3583
3584         if (io) {
3585                 igrab(inode);
3586                 io->inode = inode;
3587                 io->flag = 0;
3588                 io->offset = 0;
3589                 io->size = 0;
3590                 io->error = 0;
3591                 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3592                 INIT_LIST_HEAD(&io->list);
3593         }
3594
3595         return io;
3596 }
3597
3598 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3599                             ssize_t size, void *private)
3600 {
3601         ext4_io_end_t *io_end = iocb->private;
3602         struct workqueue_struct *wq;
3603
3604         /* if not async direct IO or dio with 0 bytes write, just return */
3605         if (!io_end || !size)
3606                 return;
3607
3608         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3609                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3610                   iocb->private, io_end->inode->i_ino, iocb, offset,
3611                   size);
3612
3613         /* if not aio dio with unwritten extents, just free io and return */
3614         if (io_end->flag != DIO_AIO_UNWRITTEN){
3615                 ext4_free_io_end(io_end);
3616                 iocb->private = NULL;
3617                 return;
3618         }
3619
3620         io_end->offset = offset;
3621         io_end->size = size;
3622         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3623
3624         /* queue the work to convert unwritten extents to written */
3625         queue_work(wq, &io_end->work);
3626
3627         /* Add the io_end to per-inode completed aio dio list*/
3628         list_add_tail(&io_end->list,
3629                  &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3630         iocb->private = NULL;
3631 }
3632 /*
3633  * For ext4 extent files, ext4 will do direct-io write to holes,
3634  * preallocated extents, and those write extend the file, no need to
3635  * fall back to buffered IO.
3636  *
3637  * For holes, we fallocate those blocks, mark them as unintialized
3638  * If those blocks were preallocated, we mark sure they are splited, but
3639  * still keep the range to write as unintialized.
3640  *
3641  * The unwrritten extents will be converted to written when DIO is completed.
3642  * For async direct IO, since the IO may still pending when return, we
3643  * set up an end_io call back function, which will do the convertion
3644  * when async direct IO completed.
3645  *
3646  * If the O_DIRECT write will extend the file then add this inode to the
3647  * orphan list.  So recovery will truncate it back to the original size
3648  * if the machine crashes during the write.
3649  *
3650  */
3651 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3652                               const struct iovec *iov, loff_t offset,
3653                               unsigned long nr_segs)
3654 {
3655         struct file *file = iocb->ki_filp;
3656         struct inode *inode = file->f_mapping->host;
3657         ssize_t ret;
3658         size_t count = iov_length(iov, nr_segs);
3659
3660         loff_t final_size = offset + count;
3661         if (rw == WRITE && final_size <= inode->i_size) {
3662                 /*
3663                  * We could direct write to holes and fallocate.
3664                  *
3665                  * Allocated blocks to fill the hole are marked as uninitialized
3666                  * to prevent paralel buffered read to expose the stale data
3667                  * before DIO complete the data IO.
3668                  *
3669                  * As to previously fallocated extents, ext4 get_block
3670                  * will just simply mark the buffer mapped but still
3671                  * keep the extents uninitialized.
3672                  *
3673                  * for non AIO case, we will convert those unwritten extents
3674                  * to written after return back from blockdev_direct_IO.
3675                  *
3676                  * for async DIO, the conversion needs to be defered when
3677                  * the IO is completed. The ext4 end_io callback function
3678                  * will be called to take care of the conversion work.
3679                  * Here for async case, we allocate an io_end structure to
3680                  * hook to the iocb.
3681                  */
3682                 iocb->private = NULL;
3683                 EXT4_I(inode)->cur_aio_dio = NULL;
3684                 if (!is_sync_kiocb(iocb)) {
3685                         iocb->private = ext4_init_io_end(inode);
3686                         if (!iocb->private)
3687                                 return -ENOMEM;
3688                         /*
3689                          * we save the io structure for current async
3690                          * direct IO, so that later ext4_get_blocks()
3691                          * could flag the io structure whether there
3692                          * is a unwritten extents needs to be converted
3693                          * when IO is completed.
3694                          */
3695                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3696                 }
3697
3698                 ret = blockdev_direct_IO(rw, iocb, inode,
3699                                          inode->i_sb->s_bdev, iov,
3700                                          offset, nr_segs,
3701                                          ext4_get_block_dio_write,
3702                                          ext4_end_io_dio);
3703                 if (iocb->private)
3704                         EXT4_I(inode)->cur_aio_dio = NULL;
3705                 /*
3706                  * The io_end structure takes a reference to the inode,
3707                  * that structure needs to be destroyed and the
3708                  * reference to the inode need to be dropped, when IO is
3709                  * complete, even with 0 byte write, or failed.
3710                  *
3711                  * In the successful AIO DIO case, the io_end structure will be
3712                  * desctroyed and the reference to the inode will be dropped
3713                  * after the end_io call back function is called.
3714                  *
3715                  * In the case there is 0 byte write, or error case, since
3716                  * VFS direct IO won't invoke the end_io call back function,
3717                  * we need to free the end_io structure here.
3718                  */
3719                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3720                         ext4_free_io_end(iocb->private);
3721                         iocb->private = NULL;
3722                 } else if (ret > 0 && (EXT4_I(inode)->i_state &
3723                                        EXT4_STATE_DIO_UNWRITTEN)) {
3724                         int err;
3725                         /*
3726                          * for non AIO case, since the IO is already
3727                          * completed, we could do the convertion right here
3728                          */
3729                         err = ext4_convert_unwritten_extents(inode,
3730                                                              offset, ret);
3731                         if (err < 0)
3732                                 ret = err;
3733                         EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3734                 }
3735                 return ret;
3736         }
3737
3738         /* for write the the end of file case, we fall back to old way */
3739         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3740 }
3741
3742 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3743                               const struct iovec *iov, loff_t offset,
3744                               unsigned long nr_segs)
3745 {
3746         struct file *file = iocb->ki_filp;
3747         struct inode *inode = file->f_mapping->host;
3748
3749         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3750                 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3751
3752         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3753 }
3754
3755 /*
3756  * Pages can be marked dirty completely asynchronously from ext4's journalling
3757  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3758  * much here because ->set_page_dirty is called under VFS locks.  The page is
3759  * not necessarily locked.
3760  *
3761  * We cannot just dirty the page and leave attached buffers clean, because the
3762  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3763  * or jbddirty because all the journalling code will explode.
3764  *
3765  * So what we do is to mark the page "pending dirty" and next time writepage
3766  * is called, propagate that into the buffers appropriately.
3767  */
3768 static int ext4_journalled_set_page_dirty(struct page *page)
3769 {
3770         SetPageChecked(page);
3771         return __set_page_dirty_nobuffers(page);
3772 }
3773
3774 static const struct address_space_operations ext4_ordered_aops = {
3775         .readpage               = ext4_readpage,
3776         .readpages              = ext4_readpages,
3777         .writepage              = ext4_writepage,
3778         .sync_page              = block_sync_page,
3779         .write_begin            = ext4_write_begin,
3780         .write_end              = ext4_ordered_write_end,
3781         .bmap                   = ext4_bmap,
3782         .invalidatepage         = ext4_invalidatepage,
3783         .releasepage            = ext4_releasepage,
3784         .direct_IO              = ext4_direct_IO,
3785         .migratepage            = buffer_migrate_page,
3786         .is_partially_uptodate  = block_is_partially_uptodate,
3787         .error_remove_page      = generic_error_remove_page,
3788 };
3789
3790 static const struct address_space_operations ext4_writeback_aops = {
3791         .readpage               = ext4_readpage,
3792         .readpages              = ext4_readpages,
3793         .writepage              = ext4_writepage,
3794         .sync_page              = block_sync_page,
3795         .write_begin            = ext4_write_begin,
3796         .write_end              = ext4_writeback_write_end,
3797         .bmap                   = ext4_bmap,
3798         .invalidatepage         = ext4_invalidatepage,
3799         .releasepage            = ext4_releasepage,
3800         .direct_IO              = ext4_direct_IO,
3801         .migratepage            = buffer_migrate_page,
3802         .is_partially_uptodate  = block_is_partially_uptodate,
3803         .error_remove_page      = generic_error_remove_page,
3804 };
3805
3806 static const struct address_space_operations ext4_journalled_aops = {
3807         .readpage               = ext4_readpage,
3808         .readpages              = ext4_readpages,
3809         .writepage              = ext4_writepage,
3810         .sync_page              = block_sync_page,
3811         .write_begin            = ext4_write_begin,
3812         .write_end              = ext4_journalled_write_end,
3813         .set_page_dirty         = ext4_journalled_set_page_dirty,
3814         .bmap                   = ext4_bmap,
3815         .invalidatepage         = ext4_invalidatepage,
3816         .releasepage            = ext4_releasepage,
3817         .is_partially_uptodate  = block_is_partially_uptodate,
3818         .error_remove_page      = generic_error_remove_page,
3819 };
3820
3821 static const struct address_space_operations ext4_da_aops = {
3822         .readpage               = ext4_readpage,
3823         .readpages              = ext4_readpages,
3824         .writepage              = ext4_writepage,
3825         .writepages             = ext4_da_writepages,
3826         .sync_page              = block_sync_page,
3827         .write_begin            = ext4_da_write_begin,
3828         .write_end              = ext4_da_write_end,
3829         .bmap                   = ext4_bmap,
3830         .invalidatepage         = ext4_da_invalidatepage,
3831         .releasepage            = ext4_releasepage,
3832         .direct_IO              = ext4_direct_IO,
3833         .migratepage            = buffer_migrate_page,
3834         .is_partially_uptodate  = block_is_partially_uptodate,
3835         .error_remove_page      = generic_error_remove_page,
3836 };
3837
3838 void ext4_set_aops(struct inode *inode)
3839 {
3840         if (ext4_should_order_data(inode) &&
3841                 test_opt(inode->i_sb, DELALLOC))
3842                 inode->i_mapping->a_ops = &ext4_da_aops;
3843         else if (ext4_should_order_data(inode))
3844                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3845         else if (ext4_should_writeback_data(inode) &&
3846                  test_opt(inode->i_sb, DELALLOC))
3847                 inode->i_mapping->a_ops = &ext4_da_aops;
3848         else if (ext4_should_writeback_data(inode))
3849                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3850         else
3851                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3852 }
3853
3854 /*
3855  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3856  * up to the end of the block which corresponds to `from'.
3857  * This required during truncate. We need to physically zero the tail end
3858  * of that block so it doesn't yield old data if the file is later grown.
3859  */
3860 int ext4_block_truncate_page(handle_t *handle,
3861                 struct address_space *mapping, loff_t from)
3862 {
3863         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3864         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3865         unsigned blocksize, length, pos;
3866         ext4_lblk_t iblock;
3867         struct inode *inode = mapping->host;
3868         struct buffer_head *bh;
3869         struct page *page;
3870         int err = 0;
3871
3872         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3873                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3874         if (!page)
3875                 return -EINVAL;
3876
3877         blocksize = inode->i_sb->s_blocksize;
3878         length = blocksize - (offset & (blocksize - 1));
3879         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3880
3881         /*
3882          * For "nobh" option,  we can only work if we don't need to
3883          * read-in the page - otherwise we create buffers to do the IO.
3884          */
3885         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3886              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3887                 zero_user(page, offset, length);
3888                 set_page_dirty(page);
3889                 goto unlock;
3890         }
3891
3892         if (!page_has_buffers(page))
3893                 create_empty_buffers(page, blocksize, 0);
3894
3895         /* Find the buffer that contains "offset" */
3896         bh = page_buffers(page);
3897         pos = blocksize;
3898         while (offset >= pos) {
3899                 bh = bh->b_this_page;
3900                 iblock++;
3901                 pos += blocksize;
3902         }
3903
3904         err = 0;
3905         if (buffer_freed(bh)) {
3906                 BUFFER_TRACE(bh, "freed: skip");
3907                 goto unlock;
3908         }
3909
3910         if (!buffer_mapped(bh)) {
3911                 BUFFER_TRACE(bh, "unmapped");
3912                 ext4_get_block(inode, iblock, bh, 0);
3913                 /* unmapped? It's a hole - nothing to do */
3914                 if (!buffer_mapped(bh)) {
3915                         BUFFER_TRACE(bh, "still unmapped");
3916                         goto unlock;
3917                 }
3918         }
3919
3920         /* Ok, it's mapped. Make sure it's up-to-date */
3921         if (PageUptodate(page))
3922                 set_buffer_uptodate(bh);
3923
3924         if (!buffer_uptodate(bh)) {
3925                 err = -EIO;
3926                 ll_rw_block(READ, 1, &bh);
3927                 wait_on_buffer(bh);
3928                 /* Uhhuh. Read error. Complain and punt. */
3929                 if (!buffer_uptodate(bh))
3930                         goto unlock;
3931         }
3932
3933         if (ext4_should_journal_data(inode)) {
3934                 BUFFER_TRACE(bh, "get write access");
3935                 err = ext4_journal_get_write_access(handle, bh);
3936                 if (err)
3937                         goto unlock;
3938         }
3939
3940         zero_user(page, offset, length);
3941
3942         BUFFER_TRACE(bh, "zeroed end of block");
3943
3944         err = 0;
3945         if (ext4_should_journal_data(inode)) {
3946                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3947         } else {
3948                 if (ext4_should_order_data(inode))
3949                         err = ext4_jbd2_file_inode(handle, inode);
3950                 mark_buffer_dirty(bh);
3951         }
3952
3953 unlock:
3954         unlock_page(page);
3955         page_cache_release(page);
3956         return err;
3957 }
3958
3959 /*
3960  * Probably it should be a library function... search for first non-zero word
3961  * or memcmp with zero_page, whatever is better for particular architecture.
3962  * Linus?
3963  */
3964 static inline int all_zeroes(__le32 *p, __le32 *q)
3965 {
3966         while (p < q)
3967                 if (*p++)
3968                         return 0;
3969         return 1;
3970 }
3971
3972 /**
3973  *      ext4_find_shared - find the indirect blocks for partial truncation.
3974  *      @inode:   inode in question
3975  *      @depth:   depth of the affected branch
3976  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3977  *      @chain:   place to store the pointers to partial indirect blocks
3978  *      @top:     place to the (detached) top of branch
3979  *
3980  *      This is a helper function used by ext4_truncate().
3981  *
3982  *      When we do truncate() we may have to clean the ends of several
3983  *      indirect blocks but leave the blocks themselves alive. Block is
3984  *      partially truncated if some data below the new i_size is refered
3985  *      from it (and it is on the path to the first completely truncated
3986  *      data block, indeed).  We have to free the top of that path along
3987  *      with everything to the right of the path. Since no allocation
3988  *      past the truncation point is possible until ext4_truncate()
3989  *      finishes, we may safely do the latter, but top of branch may
3990  *      require special attention - pageout below the truncation point
3991  *      might try to populate it.
3992  *
3993  *      We atomically detach the top of branch from the tree, store the
3994  *      block number of its root in *@top, pointers to buffer_heads of
3995  *      partially truncated blocks - in @chain[].bh and pointers to
3996  *      their last elements that should not be removed - in
3997  *      @chain[].p. Return value is the pointer to last filled element
3998  *      of @chain.
3999  *
4000  *      The work left to caller to do the actual freeing of subtrees:
4001  *              a) free the subtree starting from *@top
4002  *              b) free the subtrees whose roots are stored in
4003  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4004  *              c) free the subtrees growing from the inode past the @chain[0].
4005  *                      (no partially truncated stuff there).  */
4006
4007 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4008                                   ext4_lblk_t offsets[4], Indirect chain[4],
4009                                   __le32 *top)
4010 {
4011         Indirect *partial, *p;
4012         int k, err;
4013
4014         *top = 0;
4015         /* Make k index the deepest non-null offest + 1 */
4016         for (k = depth; k > 1 && !offsets[k-1]; k--)
4017                 ;
4018         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4019         /* Writer: pointers */
4020         if (!partial)
4021                 partial = chain + k-1;
4022         /*
4023          * If the branch acquired continuation since we've looked at it -
4024          * fine, it should all survive and (new) top doesn't belong to us.
4025          */
4026         if (!partial->key && *partial->p)
4027                 /* Writer: end */
4028                 goto no_top;
4029         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4030                 ;
4031         /*
4032          * OK, we've found the last block that must survive. The rest of our
4033          * branch should be detached before unlocking. However, if that rest
4034          * of branch is all ours and does not grow immediately from the inode
4035          * it's easier to cheat and just decrement partial->p.
4036          */
4037         if (p == chain + k - 1 && p > chain) {
4038                 p->p--;
4039         } else {
4040                 *top = *p->p;
4041                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4042 #if 0
4043                 *p->p = 0;
4044 #endif
4045         }
4046         /* Writer: end */
4047
4048         while (partial > p) {
4049                 brelse(partial->bh);
4050                 partial--;
4051         }
4052 no_top:
4053         return partial;
4054 }
4055
4056 /*
4057  * Zero a number of block pointers in either an inode or an indirect block.
4058  * If we restart the transaction we must again get write access to the
4059  * indirect block for further modification.
4060  *
4061  * We release `count' blocks on disk, but (last - first) may be greater
4062  * than `count' because there can be holes in there.
4063  */
4064 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4065                               struct buffer_head *bh,
4066                               ext4_fsblk_t block_to_free,
4067                               unsigned long count, __le32 *first,
4068                               __le32 *last)
4069 {
4070         __le32 *p;
4071         int     is_metadata = S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode);
4072
4073         if (try_to_extend_transaction(handle, inode)) {
4074                 if (bh) {
4075                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4076                         ext4_handle_dirty_metadata(handle, inode, bh);
4077                 }
4078                 ext4_mark_inode_dirty(handle, inode);
4079                 ext4_truncate_restart_trans(handle, inode,
4080                                             blocks_for_truncate(inode));
4081                 if (bh) {
4082                         BUFFER_TRACE(bh, "retaking write access");
4083                         ext4_journal_get_write_access(handle, bh);
4084                 }
4085         }
4086
4087         /*
4088          * Any buffers which are on the journal will be in memory. We
4089          * find them on the hash table so jbd2_journal_revoke() will
4090          * run jbd2_journal_forget() on them.  We've already detached
4091          * each block from the file, so bforget() in
4092          * jbd2_journal_forget() should be safe.
4093          *
4094          * AKPM: turn on bforget in jbd2_journal_forget()!!!
4095          */
4096         for (p = first; p < last; p++) {
4097                 u32 nr = le32_to_cpu(*p);
4098                 if (nr) {
4099                         struct buffer_head *tbh;
4100
4101                         *p = 0;
4102                         tbh = sb_find_get_block(inode->i_sb, nr);
4103                         ext4_forget(handle, is_metadata, inode, tbh, nr);
4104                 }
4105         }
4106
4107         ext4_free_blocks(handle, inode, block_to_free, count, is_metadata);
4108 }
4109
4110 /**
4111  * ext4_free_data - free a list of data blocks
4112  * @handle:     handle for this transaction
4113  * @inode:      inode we are dealing with
4114  * @this_bh:    indirect buffer_head which contains *@first and *@last
4115  * @first:      array of block numbers
4116  * @last:       points immediately past the end of array
4117  *
4118  * We are freeing all blocks refered from that array (numbers are stored as
4119  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4120  *
4121  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4122  * blocks are contiguous then releasing them at one time will only affect one
4123  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4124  * actually use a lot of journal space.
4125  *
4126  * @this_bh will be %NULL if @first and @last point into the inode's direct
4127  * block pointers.
4128  */
4129 static void ext4_free_data(handle_t *handle, struct inode *inode,
4130                            struct buffer_head *this_bh,
4131                            __le32 *first, __le32 *last)
4132 {
4133         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4134         unsigned long count = 0;            /* Number of blocks in the run */
4135         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4136                                                corresponding to
4137                                                block_to_free */
4138         ext4_fsblk_t nr;                    /* Current block # */
4139         __le32 *p;                          /* Pointer into inode/ind
4140                                                for current block */
4141         int err;
4142
4143         if (this_bh) {                          /* For indirect block */
4144                 BUFFER_TRACE(this_bh, "get_write_access");
4145                 err = ext4_journal_get_write_access(handle, this_bh);
4146                 /* Important: if we can't update the indirect pointers
4147                  * to the blocks, we can't free them. */
4148                 if (err)
4149                         return;
4150         }
4151
4152         for (p = first; p < last; p++) {
4153                 nr = le32_to_cpu(*p);
4154                 if (nr) {
4155                         /* accumulate blocks to free if they're contiguous */
4156                         if (count == 0) {
4157                                 block_to_free = nr;
4158                                 block_to_free_p = p;
4159                                 count = 1;
4160                         } else if (nr == block_to_free + count) {
4161                                 count++;
4162                         } else {
4163                                 ext4_clear_blocks(handle, inode, this_bh,
4164                                                   block_to_free,
4165                                                   count, block_to_free_p, p);
4166                                 block_to_free = nr;
4167                                 block_to_free_p = p;
4168                                 count = 1;
4169                         }
4170                 }
4171         }
4172
4173         if (count > 0)
4174                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4175                                   count, block_to_free_p, p);
4176
4177         if (this_bh) {
4178                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4179
4180                 /*
4181                  * The buffer head should have an attached journal head at this
4182                  * point. However, if the data is corrupted and an indirect
4183                  * block pointed to itself, it would have been detached when
4184                  * the block was cleared. Check for this instead of OOPSing.
4185                  */
4186                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4187                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4188                 else
4189                         ext4_error(inode->i_sb, __func__,
4190                                    "circular indirect block detected, "
4191                                    "inode=%lu, block=%llu",
4192                                    inode->i_ino,
4193                                    (unsigned long long) this_bh->b_blocknr);
4194         }
4195 }
4196
4197 /**
4198  *      ext4_free_branches - free an array of branches
4199  *      @handle: JBD handle for this transaction
4200  *      @inode: inode we are dealing with
4201  *      @parent_bh: the buffer_head which contains *@first and *@last
4202  *      @first: array of block numbers
4203  *      @last:  pointer immediately past the end of array
4204  *      @depth: depth of the branches to free
4205  *
4206  *      We are freeing all blocks refered from these branches (numbers are
4207  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4208  *      appropriately.
4209  */
4210 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4211                                struct buffer_head *parent_bh,
4212                                __le32 *first, __le32 *last, int depth)
4213 {
4214         ext4_fsblk_t nr;
4215         __le32 *p;
4216
4217         if (ext4_handle_is_aborted(handle))
4218                 return;
4219
4220         if (depth--) {
4221                 struct buffer_head *bh;
4222                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4223                 p = last;
4224                 while (--p >= first) {
4225                         nr = le32_to_cpu(*p);
4226                         if (!nr)
4227                                 continue;               /* A hole */
4228
4229                         /* Go read the buffer for the next level down */
4230                         bh = sb_bread(inode->i_sb, nr);
4231
4232                         /*
4233                          * A read failure? Report error and clear slot
4234                          * (should be rare).
4235                          */
4236                         if (!bh) {
4237                                 ext4_error(inode->i_sb, "ext4_free_branches",
4238                                            "Read failure, inode=%lu, block=%llu",
4239                                            inode->i_ino, nr);
4240                                 continue;
4241                         }
4242
4243                         /* This zaps the entire block.  Bottom up. */
4244                         BUFFER_TRACE(bh, "free child branches");
4245                         ext4_free_branches(handle, inode, bh,
4246                                         (__le32 *) bh->b_data,
4247                                         (__le32 *) bh->b_data + addr_per_block,
4248                                         depth);
4249
4250                         /*
4251                          * We've probably journalled the indirect block several
4252                          * times during the truncate.  But it's no longer
4253                          * needed and we now drop it from the transaction via
4254                          * jbd2_journal_revoke().
4255                          *
4256                          * That's easy if it's exclusively part of this
4257                          * transaction.  But if it's part of the committing
4258                          * transaction then jbd2_journal_forget() will simply
4259                          * brelse() it.  That means that if the underlying
4260                          * block is reallocated in ext4_get_block(),
4261                          * unmap_underlying_metadata() will find this block
4262                          * and will try to get rid of it.  damn, damn.
4263                          *
4264                          * If this block has already been committed to the
4265                          * journal, a revoke record will be written.  And
4266                          * revoke records must be emitted *before* clearing
4267                          * this block's bit in the bitmaps.
4268                          */
4269                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4270
4271                         /*
4272                          * Everything below this this pointer has been
4273                          * released.  Now let this top-of-subtree go.
4274                          *
4275                          * We want the freeing of this indirect block to be
4276                          * atomic in the journal with the updating of the
4277                          * bitmap block which owns it.  So make some room in
4278                          * the journal.
4279                          *
4280                          * We zero the parent pointer *after* freeing its
4281                          * pointee in the bitmaps, so if extend_transaction()
4282                          * for some reason fails to put the bitmap changes and
4283                          * the release into the same transaction, recovery
4284                          * will merely complain about releasing a free block,
4285                          * rather than leaking blocks.
4286                          */
4287                         if (ext4_handle_is_aborted(handle))
4288                                 return;
4289                         if (try_to_extend_transaction(handle, inode)) {
4290                                 ext4_mark_inode_dirty(handle, inode);
4291                                 ext4_truncate_restart_trans(handle, inode,
4292                                             blocks_for_truncate(inode));
4293                         }
4294
4295                         ext4_free_blocks(handle, inode, nr, 1, 1);
4296
4297                         if (parent_bh) {
4298                                 /*
4299                                  * The block which we have just freed is
4300                                  * pointed to by an indirect block: journal it
4301                                  */
4302                                 BUFFER_TRACE(parent_bh, "get_write_access");
4303                                 if (!ext4_journal_get_write_access(handle,
4304                                                                    parent_bh)){
4305                                         *p = 0;
4306                                         BUFFER_TRACE(parent_bh,
4307                                         "call ext4_handle_dirty_metadata");
4308                                         ext4_handle_dirty_metadata(handle,
4309                                                                    inode,
4310                                                                    parent_bh);
4311                                 }
4312                         }
4313                 }
4314         } else {
4315                 /* We have reached the bottom of the tree. */
4316                 BUFFER_TRACE(parent_bh, "free data blocks");
4317                 ext4_free_data(handle, inode, parent_bh, first, last);
4318         }
4319 }
4320
4321 int ext4_can_truncate(struct inode *inode)
4322 {
4323         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4324                 return 0;
4325         if (S_ISREG(inode->i_mode))
4326                 return 1;
4327         if (S_ISDIR(inode->i_mode))
4328                 return 1;
4329         if (S_ISLNK(inode->i_mode))
4330                 return !ext4_inode_is_fast_symlink(inode);
4331         return 0;
4332 }
4333
4334 /*
4335  * ext4_truncate()
4336  *
4337  * We block out ext4_get_block() block instantiations across the entire
4338  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4339  * simultaneously on behalf of the same inode.
4340  *
4341  * As we work through the truncate and commmit bits of it to the journal there
4342  * is one core, guiding principle: the file's tree must always be consistent on
4343  * disk.  We must be able to restart the truncate after a crash.
4344  *
4345  * The file's tree may be transiently inconsistent in memory (although it
4346  * probably isn't), but whenever we close off and commit a journal transaction,
4347  * the contents of (the filesystem + the journal) must be consistent and
4348  * restartable.  It's pretty simple, really: bottom up, right to left (although
4349  * left-to-right works OK too).
4350  *
4351  * Note that at recovery time, journal replay occurs *before* the restart of
4352  * truncate against the orphan inode list.
4353  *
4354  * The committed inode has the new, desired i_size (which is the same as
4355  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4356  * that this inode's truncate did not complete and it will again call
4357  * ext4_truncate() to have another go.  So there will be instantiated blocks
4358  * to the right of the truncation point in a crashed ext4 filesystem.  But
4359  * that's fine - as long as they are linked from the inode, the post-crash
4360  * ext4_truncate() run will find them and release them.
4361  */
4362 void ext4_truncate(struct inode *inode)
4363 {
4364         handle_t *handle;
4365         struct ext4_inode_info *ei = EXT4_I(inode);
4366         __le32 *i_data = ei->i_data;
4367         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4368         struct address_space *mapping = inode->i_mapping;
4369         ext4_lblk_t offsets[4];
4370         Indirect chain[4];
4371         Indirect *partial;
4372         __le32 nr = 0;
4373         int n;
4374         ext4_lblk_t last_block;
4375         unsigned blocksize = inode->i_sb->s_blocksize;
4376
4377         if (!ext4_can_truncate(inode))
4378                 return;
4379
4380         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4381                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4382
4383         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4384                 ext4_ext_truncate(inode);
4385                 return;
4386         }
4387
4388         handle = start_transaction(inode);
4389         if (IS_ERR(handle))
4390                 return;         /* AKPM: return what? */
4391
4392         last_block = (inode->i_size + blocksize-1)
4393                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4394
4395         if (inode->i_size & (blocksize - 1))
4396                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4397                         goto out_stop;
4398
4399         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4400         if (n == 0)
4401                 goto out_stop;  /* error */
4402
4403         /*
4404          * OK.  This truncate is going to happen.  We add the inode to the
4405          * orphan list, so that if this truncate spans multiple transactions,
4406          * and we crash, we will resume the truncate when the filesystem
4407          * recovers.  It also marks the inode dirty, to catch the new size.
4408          *
4409          * Implication: the file must always be in a sane, consistent
4410          * truncatable state while each transaction commits.
4411          */
4412         if (ext4_orphan_add(handle, inode))
4413                 goto out_stop;
4414
4415         /*
4416          * From here we block out all ext4_get_block() callers who want to
4417          * modify the block allocation tree.
4418          */
4419         down_write(&ei->i_data_sem);
4420
4421         ext4_discard_preallocations(inode);
4422
4423         /*
4424          * The orphan list entry will now protect us from any crash which
4425          * occurs before the truncate completes, so it is now safe to propagate
4426          * the new, shorter inode size (held for now in i_size) into the
4427          * on-disk inode. We do this via i_disksize, which is the value which
4428          * ext4 *really* writes onto the disk inode.
4429          */
4430         ei->i_disksize = inode->i_size;
4431
4432         if (n == 1) {           /* direct blocks */
4433                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4434                                i_data + EXT4_NDIR_BLOCKS);
4435                 goto do_indirects;
4436         }
4437
4438         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4439         /* Kill the top of shared branch (not detached) */
4440         if (nr) {
4441                 if (partial == chain) {
4442                         /* Shared branch grows from the inode */
4443                         ext4_free_branches(handle, inode, NULL,
4444                                            &nr, &nr+1, (chain+n-1) - partial);
4445                         *partial->p = 0;
4446                         /*
4447                          * We mark the inode dirty prior to restart,
4448                          * and prior to stop.  No need for it here.
4449                          */
4450                 } else {
4451                         /* Shared branch grows from an indirect block */
4452                         BUFFER_TRACE(partial->bh, "get_write_access");
4453                         ext4_free_branches(handle, inode, partial->bh,
4454                                         partial->p,
4455                                         partial->p+1, (chain+n-1) - partial);
4456                 }
4457         }
4458         /* Clear the ends of indirect blocks on the shared branch */
4459         while (partial > chain) {
4460                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4461                                    (__le32*)partial->bh->b_data+addr_per_block,
4462                                    (chain+n-1) - partial);
4463                 BUFFER_TRACE(partial->bh, "call brelse");
4464                 brelse(partial->bh);
4465                 partial--;
4466         }
4467 do_indirects:
4468         /* Kill the remaining (whole) subtrees */
4469         switch (offsets[0]) {
4470         default:
4471                 nr = i_data[EXT4_IND_BLOCK];
4472                 if (nr) {
4473                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4474                         i_data[EXT4_IND_BLOCK] = 0;
4475                 }
4476         case EXT4_IND_BLOCK:
4477                 nr = i_data[EXT4_DIND_BLOCK];
4478                 if (nr) {
4479                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4480                         i_data[EXT4_DIND_BLOCK] = 0;
4481                 }
4482         case EXT4_DIND_BLOCK:
4483                 nr = i_data[EXT4_TIND_BLOCK];
4484                 if (nr) {
4485                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4486                         i_data[EXT4_TIND_BLOCK] = 0;
4487                 }
4488         case EXT4_TIND_BLOCK:
4489                 ;
4490         }
4491
4492         up_write(&ei->i_data_sem);
4493         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4494         ext4_mark_inode_dirty(handle, inode);
4495
4496         /*
4497          * In a multi-transaction truncate, we only make the final transaction
4498          * synchronous
4499          */
4500         if (IS_SYNC(inode))
4501                 ext4_handle_sync(handle);
4502 out_stop:
4503         /*
4504          * If this was a simple ftruncate(), and the file will remain alive
4505          * then we need to clear up the orphan record which we created above.
4506          * However, if this was a real unlink then we were called by
4507          * ext4_delete_inode(), and we allow that function to clean up the
4508          * orphan info for us.
4509          */
4510         if (inode->i_nlink)
4511                 ext4_orphan_del(handle, inode);
4512
4513         ext4_journal_stop(handle);
4514 }
4515
4516 /*
4517  * ext4_get_inode_loc returns with an extra refcount against the inode's
4518  * underlying buffer_head on success. If 'in_mem' is true, we have all
4519  * data in memory that is needed to recreate the on-disk version of this
4520  * inode.
4521  */
4522 static int __ext4_get_inode_loc(struct inode *inode,
4523                                 struct ext4_iloc *iloc, int in_mem)
4524 {
4525         struct ext4_group_desc  *gdp;
4526         struct buffer_head      *bh;
4527         struct super_block      *sb = inode->i_sb;
4528         ext4_fsblk_t            block;
4529         int                     inodes_per_block, inode_offset;
4530
4531         iloc->bh = NULL;
4532         if (!ext4_valid_inum(sb, inode->i_ino))
4533                 return -EIO;
4534
4535         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4536         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4537         if (!gdp)
4538                 return -EIO;
4539
4540         /*
4541          * Figure out the offset within the block group inode table
4542          */
4543         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4544         inode_offset = ((inode->i_ino - 1) %
4545                         EXT4_INODES_PER_GROUP(sb));
4546         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4547         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4548
4549         bh = sb_getblk(sb, block);
4550         if (!bh) {
4551                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4552                            "inode block - inode=%lu, block=%llu",
4553                            inode->i_ino, block);
4554                 return -EIO;
4555         }
4556         if (!buffer_uptodate(bh)) {
4557                 lock_buffer(bh);
4558
4559                 /*
4560                  * If the buffer has the write error flag, we have failed
4561                  * to write out another inode in the same block.  In this
4562                  * case, we don't have to read the block because we may
4563                  * read the old inode data successfully.
4564                  */
4565                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4566                         set_buffer_uptodate(bh);
4567
4568                 if (buffer_uptodate(bh)) {
4569                         /* someone brought it uptodate while we waited */
4570                         unlock_buffer(bh);
4571                         goto has_buffer;
4572                 }
4573
4574                 /*
4575                  * If we have all information of the inode in memory and this
4576                  * is the only valid inode in the block, we need not read the
4577                  * block.
4578                  */
4579                 if (in_mem) {
4580                         struct buffer_head *bitmap_bh;
4581                         int i, start;
4582
4583                         start = inode_offset & ~(inodes_per_block - 1);
4584
4585                         /* Is the inode bitmap in cache? */
4586                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4587                         if (!bitmap_bh)
4588                                 goto make_io;
4589
4590                         /*
4591                          * If the inode bitmap isn't in cache then the
4592                          * optimisation may end up performing two reads instead
4593                          * of one, so skip it.
4594                          */
4595                         if (!buffer_uptodate(bitmap_bh)) {
4596                                 brelse(bitmap_bh);
4597                                 goto make_io;
4598                         }
4599                         for (i = start; i < start + inodes_per_block; i++) {
4600                                 if (i == inode_offset)
4601                                         continue;
4602                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4603                                         break;
4604                         }
4605                         brelse(bitmap_bh);
4606                         if (i == start + inodes_per_block) {
4607                                 /* all other inodes are free, so skip I/O */
4608                                 memset(bh->b_data, 0, bh->b_size);
4609                                 set_buffer_uptodate(bh);
4610                                 unlock_buffer(bh);
4611                                 goto has_buffer;
4612                         }
4613                 }
4614
4615 make_io:
4616                 /*
4617                  * If we need to do any I/O, try to pre-readahead extra
4618                  * blocks from the inode table.
4619                  */
4620                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4621                         ext4_fsblk_t b, end, table;
4622                         unsigned num;
4623
4624                         table = ext4_inode_table(sb, gdp);
4625                         /* s_inode_readahead_blks is always a power of 2 */
4626                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4627                         if (table > b)
4628                                 b = table;
4629                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4630                         num = EXT4_INODES_PER_GROUP(sb);
4631                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4632                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4633                                 num -= ext4_itable_unused_count(sb, gdp);
4634                         table += num / inodes_per_block;
4635                         if (end > table)
4636                                 end = table;
4637                         while (b <= end)
4638                                 sb_breadahead(sb, b++);
4639                 }
4640
4641                 /*
4642                  * There are other valid inodes in the buffer, this inode
4643                  * has in-inode xattrs, or we don't have this inode in memory.
4644                  * Read the block from disk.
4645                  */
4646                 get_bh(bh);
4647                 bh->b_end_io = end_buffer_read_sync;
4648                 submit_bh(READ_META, bh);
4649                 wait_on_buffer(bh);
4650                 if (!buffer_uptodate(bh)) {
4651                         ext4_error(sb, __func__,
4652                                    "unable to read inode block - inode=%lu, "
4653                                    "block=%llu", inode->i_ino, block);
4654                         brelse(bh);
4655                         return -EIO;
4656                 }
4657         }
4658 has_buffer:
4659         iloc->bh = bh;
4660         return 0;
4661 }
4662
4663 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4664 {
4665         /* We have all inode data except xattrs in memory here. */
4666         return __ext4_get_inode_loc(inode, iloc,
4667                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4668 }
4669
4670 void ext4_set_inode_flags(struct inode *inode)
4671 {
4672         unsigned int flags = EXT4_I(inode)->i_flags;
4673
4674         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4675         if (flags & EXT4_SYNC_FL)
4676                 inode->i_flags |= S_SYNC;
4677         if (flags & EXT4_APPEND_FL)
4678                 inode->i_flags |= S_APPEND;
4679         if (flags & EXT4_IMMUTABLE_FL)
4680                 inode->i_flags |= S_IMMUTABLE;
4681         if (flags & EXT4_NOATIME_FL)
4682                 inode->i_flags |= S_NOATIME;
4683         if (flags & EXT4_DIRSYNC_FL)
4684                 inode->i_flags |= S_DIRSYNC;
4685 }
4686
4687 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4688 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4689 {
4690         unsigned int flags = ei->vfs_inode.i_flags;
4691
4692         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4693                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4694         if (flags & S_SYNC)
4695                 ei->i_flags |= EXT4_SYNC_FL;
4696         if (flags & S_APPEND)
4697                 ei->i_flags |= EXT4_APPEND_FL;
4698         if (flags & S_IMMUTABLE)
4699                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4700         if (flags & S_NOATIME)
4701                 ei->i_flags |= EXT4_NOATIME_FL;
4702         if (flags & S_DIRSYNC)
4703                 ei->i_flags |= EXT4_DIRSYNC_FL;
4704 }
4705
4706 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4707                                   struct ext4_inode_info *ei)
4708 {
4709         blkcnt_t i_blocks ;
4710         struct inode *inode = &(ei->vfs_inode);
4711         struct super_block *sb = inode->i_sb;
4712
4713         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4714                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4715                 /* we are using combined 48 bit field */
4716                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4717                                         le32_to_cpu(raw_inode->i_blocks_lo);
4718                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4719                         /* i_blocks represent file system block size */
4720                         return i_blocks  << (inode->i_blkbits - 9);
4721                 } else {
4722                         return i_blocks;
4723                 }
4724         } else {
4725                 return le32_to_cpu(raw_inode->i_blocks_lo);
4726         }
4727 }
4728
4729 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4730 {
4731         struct ext4_iloc iloc;
4732         struct ext4_inode *raw_inode;
4733         struct ext4_inode_info *ei;
4734         struct inode *inode;
4735         long ret;
4736         int block;
4737
4738         inode = iget_locked(sb, ino);
4739         if (!inode)
4740                 return ERR_PTR(-ENOMEM);
4741         if (!(inode->i_state & I_NEW))
4742                 return inode;
4743
4744         ei = EXT4_I(inode);
4745         iloc.bh = 0;
4746
4747         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4748         if (ret < 0)
4749                 goto bad_inode;
4750         raw_inode = ext4_raw_inode(&iloc);
4751         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4752         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4753         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4754         if (!(test_opt(inode->i_sb, NO_UID32))) {
4755                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4756                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4757         }
4758         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4759
4760         ei->i_state = 0;
4761         ei->i_dir_start_lookup = 0;
4762         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4763         /* We now have enough fields to check if the inode was active or not.
4764          * This is needed because nfsd might try to access dead inodes
4765          * the test is that same one that e2fsck uses
4766          * NeilBrown 1999oct15
4767          */
4768         if (inode->i_nlink == 0) {
4769                 if (inode->i_mode == 0 ||
4770                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4771                         /* this inode is deleted */
4772                         ret = -ESTALE;
4773                         goto bad_inode;
4774                 }
4775                 /* The only unlinked inodes we let through here have
4776                  * valid i_mode and are being read by the orphan
4777                  * recovery code: that's fine, we're about to complete
4778                  * the process of deleting those. */
4779         }
4780         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4781         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4782         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4783         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4784                 ei->i_file_acl |=
4785                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4786         inode->i_size = ext4_isize(raw_inode);
4787         ei->i_disksize = inode->i_size;
4788         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4789         ei->i_block_group = iloc.block_group;
4790         ei->i_last_alloc_group = ~0;
4791         /*
4792          * NOTE! The in-memory inode i_data array is in little-endian order
4793          * even on big-endian machines: we do NOT byteswap the block numbers!
4794          */
4795         for (block = 0; block < EXT4_N_BLOCKS; block++)
4796                 ei->i_data[block] = raw_inode->i_block[block];
4797         INIT_LIST_HEAD(&ei->i_orphan);
4798
4799         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4800                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4801                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4802                     EXT4_INODE_SIZE(inode->i_sb)) {
4803                         ret = -EIO;
4804                         goto bad_inode;
4805                 }
4806                 if (ei->i_extra_isize == 0) {
4807                         /* The extra space is currently unused. Use it. */
4808                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4809                                             EXT4_GOOD_OLD_INODE_SIZE;
4810                 } else {
4811                         __le32 *magic = (void *)raw_inode +
4812                                         EXT4_GOOD_OLD_INODE_SIZE +
4813                                         ei->i_extra_isize;
4814                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4815                                 ei->i_state |= EXT4_STATE_XATTR;
4816                 }
4817         } else
4818                 ei->i_extra_isize = 0;
4819
4820         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4821         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4822         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4823         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4824
4825         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4826         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4827                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4828                         inode->i_version |=
4829                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4830         }
4831
4832         ret = 0;
4833         if (ei->i_file_acl &&
4834             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4835                 ext4_error(sb, __func__,
4836                            "bad extended attribute block %llu in inode #%lu",
4837                            ei->i_file_acl, inode->i_ino);
4838                 ret = -EIO;
4839                 goto bad_inode;
4840         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4841                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4842                     (S_ISLNK(inode->i_mode) &&
4843                      !ext4_inode_is_fast_symlink(inode)))
4844                         /* Validate extent which is part of inode */
4845                         ret = ext4_ext_check_inode(inode);
4846         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4847                    (S_ISLNK(inode->i_mode) &&
4848                     !ext4_inode_is_fast_symlink(inode))) {
4849                 /* Validate block references which are part of inode */
4850                 ret = ext4_check_inode_blockref(inode);
4851         }
4852         if (ret)
4853                 goto bad_inode;
4854
4855         if (S_ISREG(inode->i_mode)) {
4856                 inode->i_op = &ext4_file_inode_operations;
4857                 inode->i_fop = &ext4_file_operations;
4858                 ext4_set_aops(inode);
4859         } else if (S_ISDIR(inode->i_mode)) {
4860                 inode->i_op = &ext4_dir_inode_operations;
4861                 inode->i_fop = &ext4_dir_operations;
4862         } else if (S_ISLNK(inode->i_mode)) {
4863                 if (ext4_inode_is_fast_symlink(inode)) {
4864                         inode->i_op = &ext4_fast_symlink_inode_operations;
4865                         nd_terminate_link(ei->i_data, inode->i_size,
4866                                 sizeof(ei->i_data) - 1);
4867                 } else {
4868                         inode->i_op = &ext4_symlink_inode_operations;
4869                         ext4_set_aops(inode);
4870                 }
4871         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4872               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4873                 inode->i_op = &ext4_special_inode_operations;
4874                 if (raw_inode->i_block[0])
4875                         init_special_inode(inode, inode->i_mode,
4876                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4877                 else
4878                         init_special_inode(inode, inode->i_mode,
4879                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4880         } else {
4881                 ret = -EIO;
4882                 ext4_error(inode->i_sb, __func__,
4883                            "bogus i_mode (%o) for inode=%lu",
4884                            inode->i_mode, inode->i_ino);
4885                 goto bad_inode;
4886         }
4887         brelse(iloc.bh);
4888         ext4_set_inode_flags(inode);
4889         unlock_new_inode(inode);
4890         return inode;
4891
4892 bad_inode:
4893         brelse(iloc.bh);
4894         iget_failed(inode);
4895         return ERR_PTR(ret);
4896 }
4897
4898 static int ext4_inode_blocks_set(handle_t *handle,
4899                                 struct ext4_inode *raw_inode,
4900                                 struct ext4_inode_info *ei)
4901 {
4902         struct inode *inode = &(ei->vfs_inode);
4903         u64 i_blocks = inode->i_blocks;
4904         struct super_block *sb = inode->i_sb;
4905
4906         if (i_blocks <= ~0U) {
4907                 /*
4908                  * i_blocks can be represnted in a 32 bit variable
4909                  * as multiple of 512 bytes
4910                  */
4911                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4912                 raw_inode->i_blocks_high = 0;
4913                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4914                 return 0;
4915         }
4916         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4917                 return -EFBIG;
4918
4919         if (i_blocks <= 0xffffffffffffULL) {
4920                 /*
4921                  * i_blocks can be represented in a 48 bit variable
4922                  * as multiple of 512 bytes
4923                  */
4924                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4925                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4926                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4927         } else {
4928                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4929                 /* i_block is stored in file system block size */
4930                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4931                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4932                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4933         }
4934         return 0;
4935 }
4936
4937 /*
4938  * Post the struct inode info into an on-disk inode location in the
4939  * buffer-cache.  This gobbles the caller's reference to the
4940  * buffer_head in the inode location struct.
4941  *
4942  * The caller must have write access to iloc->bh.
4943  */
4944 static int ext4_do_update_inode(handle_t *handle,
4945                                 struct inode *inode,
4946                                 struct ext4_iloc *iloc)
4947 {
4948         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4949         struct ext4_inode_info *ei = EXT4_I(inode);
4950         struct buffer_head *bh = iloc->bh;
4951         int err = 0, rc, block;
4952
4953         /* For fields not not tracking in the in-memory inode,
4954          * initialise them to zero for new inodes. */
4955         if (ei->i_state & EXT4_STATE_NEW)
4956                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4957
4958         ext4_get_inode_flags(ei);
4959         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4960         if (!(test_opt(inode->i_sb, NO_UID32))) {
4961                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4962                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4963 /*
4964  * Fix up interoperability with old kernels. Otherwise, old inodes get
4965  * re-used with the upper 16 bits of the uid/gid intact
4966  */
4967                 if (!ei->i_dtime) {
4968                         raw_inode->i_uid_high =
4969                                 cpu_to_le16(high_16_bits(inode->i_uid));
4970                         raw_inode->i_gid_high =
4971                                 cpu_to_le16(high_16_bits(inode->i_gid));
4972                 } else {
4973                         raw_inode->i_uid_high = 0;
4974                         raw_inode->i_gid_high = 0;
4975                 }
4976         } else {
4977                 raw_inode->i_uid_low =
4978                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4979                 raw_inode->i_gid_low =
4980                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4981                 raw_inode->i_uid_high = 0;
4982                 raw_inode->i_gid_high = 0;
4983         }
4984         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4985
4986         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4987         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4988         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4989         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4990
4991         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4992                 goto out_brelse;
4993         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4994         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
4995         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4996             cpu_to_le32(EXT4_OS_HURD))
4997                 raw_inode->i_file_acl_high =
4998                         cpu_to_le16(ei->i_file_acl >> 32);
4999         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5000         ext4_isize_set(raw_inode, ei->i_disksize);
5001         if (ei->i_disksize > 0x7fffffffULL) {
5002                 struct super_block *sb = inode->i_sb;
5003                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5004                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5005                                 EXT4_SB(sb)->s_es->s_rev_level ==
5006                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5007                         /* If this is the first large file
5008                          * created, add a flag to the superblock.
5009                          */
5010                         err = ext4_journal_get_write_access(handle,
5011                                         EXT4_SB(sb)->s_sbh);
5012                         if (err)
5013                                 goto out_brelse;
5014                         ext4_update_dynamic_rev(sb);
5015                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5016                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5017                         sb->s_dirt = 1;
5018                         ext4_handle_sync(handle);
5019                         err = ext4_handle_dirty_metadata(handle, inode,
5020                                         EXT4_SB(sb)->s_sbh);
5021                 }
5022         }
5023         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5024         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5025                 if (old_valid_dev(inode->i_rdev)) {
5026                         raw_inode->i_block[0] =
5027                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5028                         raw_inode->i_block[1] = 0;
5029                 } else {
5030                         raw_inode->i_block[0] = 0;
5031                         raw_inode->i_block[1] =
5032                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5033                         raw_inode->i_block[2] = 0;
5034                 }
5035         } else
5036                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5037                         raw_inode->i_block[block] = ei->i_data[block];
5038
5039         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5040         if (ei->i_extra_isize) {
5041                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5042                         raw_inode->i_version_hi =
5043                         cpu_to_le32(inode->i_version >> 32);
5044                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5045         }
5046
5047         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5048         rc = ext4_handle_dirty_metadata(handle, inode, bh);
5049         if (!err)
5050                 err = rc;
5051         ei->i_state &= ~EXT4_STATE_NEW;
5052
5053 out_brelse:
5054         brelse(bh);
5055         ext4_std_error(inode->i_sb, err);
5056         return err;
5057 }
5058
5059 /*
5060  * ext4_write_inode()
5061  *
5062  * We are called from a few places:
5063  *
5064  * - Within generic_file_write() for O_SYNC files.
5065  *   Here, there will be no transaction running. We wait for any running
5066  *   trasnaction to commit.
5067  *
5068  * - Within sys_sync(), kupdate and such.
5069  *   We wait on commit, if tol to.
5070  *
5071  * - Within prune_icache() (PF_MEMALLOC == true)
5072  *   Here we simply return.  We can't afford to block kswapd on the
5073  *   journal commit.
5074  *
5075  * In all cases it is actually safe for us to return without doing anything,
5076  * because the inode has been copied into a raw inode buffer in
5077  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5078  * knfsd.
5079  *
5080  * Note that we are absolutely dependent upon all inode dirtiers doing the
5081  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5082  * which we are interested.
5083  *
5084  * It would be a bug for them to not do this.  The code:
5085  *
5086  *      mark_inode_dirty(inode)
5087  *      stuff();
5088  *      inode->i_size = expr;
5089  *
5090  * is in error because a kswapd-driven write_inode() could occur while
5091  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5092  * will no longer be on the superblock's dirty inode list.
5093  */
5094 int ext4_write_inode(struct inode *inode, int wait)
5095 {
5096         int err;
5097
5098         if (current->flags & PF_MEMALLOC)
5099                 return 0;
5100
5101         if (EXT4_SB(inode->i_sb)->s_journal) {
5102                 if (ext4_journal_current_handle()) {
5103                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5104                         dump_stack();
5105                         return -EIO;
5106                 }
5107
5108                 if (!wait)
5109                         return 0;
5110
5111                 err = ext4_force_commit(inode->i_sb);
5112         } else {
5113                 struct ext4_iloc iloc;
5114
5115                 err = ext4_get_inode_loc(inode, &iloc);
5116                 if (err)
5117                         return err;
5118                 if (wait)
5119                         sync_dirty_buffer(iloc.bh);
5120                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5121                         ext4_error(inode->i_sb, __func__,
5122                                    "IO error syncing inode, "
5123                                    "inode=%lu, block=%llu",
5124                                    inode->i_ino,
5125                                    (unsigned long long)iloc.bh->b_blocknr);
5126                         err = -EIO;
5127                 }
5128         }
5129         return err;
5130 }
5131
5132 /*
5133  * ext4_setattr()
5134  *
5135  * Called from notify_change.
5136  *
5137  * We want to trap VFS attempts to truncate the file as soon as
5138  * possible.  In particular, we want to make sure that when the VFS
5139  * shrinks i_size, we put the inode on the orphan list and modify
5140  * i_disksize immediately, so that during the subsequent flushing of
5141  * dirty pages and freeing of disk blocks, we can guarantee that any
5142  * commit will leave the blocks being flushed in an unused state on
5143  * disk.  (On recovery, the inode will get truncated and the blocks will
5144  * be freed, so we have a strong guarantee that no future commit will
5145  * leave these blocks visible to the user.)
5146  *
5147  * Another thing we have to assure is that if we are in ordered mode
5148  * and inode is still attached to the committing transaction, we must
5149  * we start writeout of all the dirty pages which are being truncated.
5150  * This way we are sure that all the data written in the previous
5151  * transaction are already on disk (truncate waits for pages under
5152  * writeback).
5153  *
5154  * Called with inode->i_mutex down.
5155  */
5156 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5157 {
5158         struct inode *inode = dentry->d_inode;
5159         int error, rc = 0;
5160         const unsigned int ia_valid = attr->ia_valid;
5161
5162         error = inode_change_ok(inode, attr);
5163         if (error)
5164                 return error;
5165
5166         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5167                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5168                 handle_t *handle;
5169
5170                 /* (user+group)*(old+new) structure, inode write (sb,
5171                  * inode block, ? - but truncate inode update has it) */
5172                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
5173                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
5174                 if (IS_ERR(handle)) {
5175                         error = PTR_ERR(handle);
5176                         goto err_out;
5177                 }
5178                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5179                 if (error) {
5180                         ext4_journal_stop(handle);
5181                         return error;
5182                 }
5183                 /* Update corresponding info in inode so that everything is in
5184                  * one transaction */
5185                 if (attr->ia_valid & ATTR_UID)
5186                         inode->i_uid = attr->ia_uid;
5187                 if (attr->ia_valid & ATTR_GID)
5188                         inode->i_gid = attr->ia_gid;
5189                 error = ext4_mark_inode_dirty(handle, inode);
5190                 ext4_journal_stop(handle);
5191         }
5192
5193         if (attr->ia_valid & ATTR_SIZE) {
5194                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5195                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5196
5197                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5198                                 error = -EFBIG;
5199                                 goto err_out;
5200                         }
5201                 }
5202         }
5203
5204         if (S_ISREG(inode->i_mode) &&
5205             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5206                 handle_t *handle;
5207
5208                 handle = ext4_journal_start(inode, 3);
5209                 if (IS_ERR(handle)) {
5210                         error = PTR_ERR(handle);
5211                         goto err_out;
5212                 }
5213
5214                 error = ext4_orphan_add(handle, inode);
5215                 EXT4_I(inode)->i_disksize = attr->ia_size;
5216                 rc = ext4_mark_inode_dirty(handle, inode);
5217                 if (!error)
5218                         error = rc;
5219                 ext4_journal_stop(handle);
5220
5221                 if (ext4_should_order_data(inode)) {
5222                         error = ext4_begin_ordered_truncate(inode,
5223                                                             attr->ia_size);
5224                         if (error) {
5225                                 /* Do as much error cleanup as possible */
5226                                 handle = ext4_journal_start(inode, 3);
5227                                 if (IS_ERR(handle)) {
5228                                         ext4_orphan_del(NULL, inode);
5229                                         goto err_out;
5230                                 }
5231                                 ext4_orphan_del(handle, inode);
5232                                 ext4_journal_stop(handle);
5233                                 goto err_out;
5234                         }
5235                 }
5236         }
5237
5238         rc = inode_setattr(inode, attr);
5239
5240         /* If inode_setattr's call to ext4_truncate failed to get a
5241          * transaction handle at all, we need to clean up the in-core
5242          * orphan list manually. */
5243         if (inode->i_nlink)
5244                 ext4_orphan_del(NULL, inode);
5245
5246         if (!rc && (ia_valid & ATTR_MODE))
5247                 rc = ext4_acl_chmod(inode);
5248
5249 err_out:
5250         ext4_std_error(inode->i_sb, error);
5251         if (!error)
5252                 error = rc;
5253         return error;
5254 }
5255
5256 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5257                  struct kstat *stat)
5258 {
5259         struct inode *inode;
5260         unsigned long delalloc_blocks;
5261
5262         inode = dentry->d_inode;
5263         generic_fillattr(inode, stat);
5264
5265         /*
5266          * We can't update i_blocks if the block allocation is delayed
5267          * otherwise in the case of system crash before the real block
5268          * allocation is done, we will have i_blocks inconsistent with
5269          * on-disk file blocks.
5270          * We always keep i_blocks updated together with real
5271          * allocation. But to not confuse with user, stat
5272          * will return the blocks that include the delayed allocation
5273          * blocks for this file.
5274          */
5275         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5276         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5277         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5278
5279         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5280         return 0;
5281 }
5282
5283 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5284                                       int chunk)
5285 {
5286         int indirects;
5287
5288         /* if nrblocks are contiguous */
5289         if (chunk) {
5290                 /*
5291                  * With N contiguous data blocks, it need at most
5292                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5293                  * 2 dindirect blocks
5294                  * 1 tindirect block
5295                  */
5296                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5297                 return indirects + 3;
5298         }
5299         /*
5300          * if nrblocks are not contiguous, worse case, each block touch
5301          * a indirect block, and each indirect block touch a double indirect
5302          * block, plus a triple indirect block
5303          */
5304         indirects = nrblocks * 2 + 1;
5305         return indirects;
5306 }
5307
5308 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5309 {
5310         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5311                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5312         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5313 }
5314
5315 /*
5316  * Account for index blocks, block groups bitmaps and block group
5317  * descriptor blocks if modify datablocks and index blocks
5318  * worse case, the indexs blocks spread over different block groups
5319  *
5320  * If datablocks are discontiguous, they are possible to spread over
5321  * different block groups too. If they are contiugous, with flexbg,
5322  * they could still across block group boundary.
5323  *
5324  * Also account for superblock, inode, quota and xattr blocks
5325  */
5326 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5327 {
5328         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5329         int gdpblocks;
5330         int idxblocks;
5331         int ret = 0;
5332
5333         /*
5334          * How many index blocks need to touch to modify nrblocks?
5335          * The "Chunk" flag indicating whether the nrblocks is
5336          * physically contiguous on disk
5337          *
5338          * For Direct IO and fallocate, they calls get_block to allocate
5339          * one single extent at a time, so they could set the "Chunk" flag
5340          */
5341         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5342
5343         ret = idxblocks;
5344
5345         /*
5346          * Now let's see how many group bitmaps and group descriptors need
5347          * to account
5348          */
5349         groups = idxblocks;
5350         if (chunk)
5351                 groups += 1;
5352         else
5353                 groups += nrblocks;
5354
5355         gdpblocks = groups;
5356         if (groups > ngroups)
5357                 groups = ngroups;
5358         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5359                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5360
5361         /* bitmaps and block group descriptor blocks */
5362         ret += groups + gdpblocks;
5363
5364         /* Blocks for super block, inode, quota and xattr blocks */
5365         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5366
5367         return ret;
5368 }
5369
5370 /*
5371  * Calulate the total number of credits to reserve to fit
5372  * the modification of a single pages into a single transaction,
5373  * which may include multiple chunks of block allocations.
5374  *
5375  * This could be called via ext4_write_begin()
5376  *
5377  * We need to consider the worse case, when
5378  * one new block per extent.
5379  */
5380 int ext4_writepage_trans_blocks(struct inode *inode)
5381 {
5382         int bpp = ext4_journal_blocks_per_page(inode);
5383         int ret;
5384
5385         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5386
5387         /* Account for data blocks for journalled mode */
5388         if (ext4_should_journal_data(inode))
5389                 ret += bpp;
5390         return ret;
5391 }
5392
5393 /*
5394  * Calculate the journal credits for a chunk of data modification.
5395  *
5396  * This is called from DIO, fallocate or whoever calling
5397  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5398  *
5399  * journal buffers for data blocks are not included here, as DIO
5400  * and fallocate do no need to journal data buffers.
5401  */
5402 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5403 {
5404         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5405 }
5406
5407 /*
5408  * The caller must have previously called ext4_reserve_inode_write().
5409  * Give this, we know that the caller already has write access to iloc->bh.
5410  */
5411 int ext4_mark_iloc_dirty(handle_t *handle,
5412                          struct inode *inode, struct ext4_iloc *iloc)
5413 {
5414         int err = 0;
5415
5416         if (test_opt(inode->i_sb, I_VERSION))
5417                 inode_inc_iversion(inode);
5418
5419         /* the do_update_inode consumes one bh->b_count */
5420         get_bh(iloc->bh);
5421
5422         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5423         err = ext4_do_update_inode(handle, inode, iloc);
5424         put_bh(iloc->bh);
5425         return err;
5426 }
5427
5428 /*
5429  * On success, We end up with an outstanding reference count against
5430  * iloc->bh.  This _must_ be cleaned up later.
5431  */
5432
5433 int
5434 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5435                          struct ext4_iloc *iloc)
5436 {
5437         int err;
5438
5439         err = ext4_get_inode_loc(inode, iloc);
5440         if (!err) {
5441                 BUFFER_TRACE(iloc->bh, "get_write_access");
5442                 err = ext4_journal_get_write_access(handle, iloc->bh);
5443                 if (err) {
5444                         brelse(iloc->bh);
5445                         iloc->bh = NULL;
5446                 }
5447         }
5448         ext4_std_error(inode->i_sb, err);
5449         return err;
5450 }
5451
5452 /*
5453  * Expand an inode by new_extra_isize bytes.
5454  * Returns 0 on success or negative error number on failure.
5455  */
5456 static int ext4_expand_extra_isize(struct inode *inode,
5457                                    unsigned int new_extra_isize,
5458                                    struct ext4_iloc iloc,
5459                                    handle_t *handle)
5460 {
5461         struct ext4_inode *raw_inode;
5462         struct ext4_xattr_ibody_header *header;
5463         struct ext4_xattr_entry *entry;
5464
5465         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5466                 return 0;
5467
5468         raw_inode = ext4_raw_inode(&iloc);
5469
5470         header = IHDR(inode, raw_inode);
5471         entry = IFIRST(header);
5472
5473         /* No extended attributes present */
5474         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5475                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5476                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5477                         new_extra_isize);
5478                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5479                 return 0;
5480         }
5481
5482         /* try to expand with EAs present */
5483         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5484                                           raw_inode, handle);
5485 }
5486
5487 /*
5488  * What we do here is to mark the in-core inode as clean with respect to inode
5489  * dirtiness (it may still be data-dirty).
5490  * This means that the in-core inode may be reaped by prune_icache
5491  * without having to perform any I/O.  This is a very good thing,
5492  * because *any* task may call prune_icache - even ones which
5493  * have a transaction open against a different journal.
5494  *
5495  * Is this cheating?  Not really.  Sure, we haven't written the
5496  * inode out, but prune_icache isn't a user-visible syncing function.
5497  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5498  * we start and wait on commits.
5499  *
5500  * Is this efficient/effective?  Well, we're being nice to the system
5501  * by cleaning up our inodes proactively so they can be reaped
5502  * without I/O.  But we are potentially leaving up to five seconds'
5503  * worth of inodes floating about which prune_icache wants us to
5504  * write out.  One way to fix that would be to get prune_icache()
5505  * to do a write_super() to free up some memory.  It has the desired
5506  * effect.
5507  */
5508 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5509 {
5510         struct ext4_iloc iloc;
5511         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5512         static unsigned int mnt_count;
5513         int err, ret;
5514
5515         might_sleep();
5516         err = ext4_reserve_inode_write(handle, inode, &iloc);
5517         if (ext4_handle_valid(handle) &&
5518             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5519             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5520                 /*
5521                  * We need extra buffer credits since we may write into EA block
5522                  * with this same handle. If journal_extend fails, then it will
5523                  * only result in a minor loss of functionality for that inode.
5524                  * If this is felt to be critical, then e2fsck should be run to
5525                  * force a large enough s_min_extra_isize.
5526                  */
5527                 if ((jbd2_journal_extend(handle,
5528                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5529                         ret = ext4_expand_extra_isize(inode,
5530                                                       sbi->s_want_extra_isize,
5531                                                       iloc, handle);
5532                         if (ret) {
5533                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5534                                 if (mnt_count !=
5535                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5536                                         ext4_warning(inode->i_sb, __func__,
5537                                         "Unable to expand inode %lu. Delete"
5538                                         " some EAs or run e2fsck.",
5539                                         inode->i_ino);
5540                                         mnt_count =
5541                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5542                                 }
5543                         }
5544                 }
5545         }
5546         if (!err)
5547                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5548         return err;
5549 }
5550
5551 /*
5552  * ext4_dirty_inode() is called from __mark_inode_dirty()
5553  *
5554  * We're really interested in the case where a file is being extended.
5555  * i_size has been changed by generic_commit_write() and we thus need
5556  * to include the updated inode in the current transaction.
5557  *
5558  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5559  * are allocated to the file.
5560  *
5561  * If the inode is marked synchronous, we don't honour that here - doing
5562  * so would cause a commit on atime updates, which we don't bother doing.
5563  * We handle synchronous inodes at the highest possible level.
5564  */
5565 void ext4_dirty_inode(struct inode *inode)
5566 {
5567         handle_t *handle;
5568
5569         handle = ext4_journal_start(inode, 2);
5570         if (IS_ERR(handle))
5571                 goto out;
5572
5573         ext4_mark_inode_dirty(handle, inode);
5574
5575         ext4_journal_stop(handle);
5576 out:
5577         return;
5578 }
5579
5580 #if 0
5581 /*
5582  * Bind an inode's backing buffer_head into this transaction, to prevent
5583  * it from being flushed to disk early.  Unlike
5584  * ext4_reserve_inode_write, this leaves behind no bh reference and
5585  * returns no iloc structure, so the caller needs to repeat the iloc
5586  * lookup to mark the inode dirty later.
5587  */
5588 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5589 {
5590         struct ext4_iloc iloc;
5591
5592         int err = 0;
5593         if (handle) {
5594                 err = ext4_get_inode_loc(inode, &iloc);
5595                 if (!err) {
5596                         BUFFER_TRACE(iloc.bh, "get_write_access");
5597                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5598                         if (!err)
5599                                 err = ext4_handle_dirty_metadata(handle,
5600                                                                  inode,
5601                                                                  iloc.bh);
5602                         brelse(iloc.bh);
5603                 }
5604         }
5605         ext4_std_error(inode->i_sb, err);
5606         return err;
5607 }
5608 #endif
5609
5610 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5611 {
5612         journal_t *journal;
5613         handle_t *handle;
5614         int err;
5615
5616         /*
5617          * We have to be very careful here: changing a data block's
5618          * journaling status dynamically is dangerous.  If we write a
5619          * data block to the journal, change the status and then delete
5620          * that block, we risk forgetting to revoke the old log record
5621          * from the journal and so a subsequent replay can corrupt data.
5622          * So, first we make sure that the journal is empty and that
5623          * nobody is changing anything.
5624          */
5625
5626         journal = EXT4_JOURNAL(inode);
5627         if (!journal)
5628                 return 0;
5629         if (is_journal_aborted(journal))
5630                 return -EROFS;
5631
5632         jbd2_journal_lock_updates(journal);
5633         jbd2_journal_flush(journal);
5634
5635         /*
5636          * OK, there are no updates running now, and all cached data is
5637          * synced to disk.  We are now in a completely consistent state
5638          * which doesn't have anything in the journal, and we know that
5639          * no filesystem updates are running, so it is safe to modify
5640          * the inode's in-core data-journaling state flag now.
5641          */
5642
5643         if (val)
5644                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5645         else
5646                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5647         ext4_set_aops(inode);
5648
5649         jbd2_journal_unlock_updates(journal);
5650
5651         /* Finally we can mark the inode as dirty. */
5652
5653         handle = ext4_journal_start(inode, 1);
5654         if (IS_ERR(handle))
5655                 return PTR_ERR(handle);
5656
5657         err = ext4_mark_inode_dirty(handle, inode);
5658         ext4_handle_sync(handle);
5659         ext4_journal_stop(handle);
5660         ext4_std_error(inode->i_sb, err);
5661
5662         return err;
5663 }
5664
5665 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5666 {
5667         return !buffer_mapped(bh);
5668 }
5669
5670 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5671 {
5672         struct page *page = vmf->page;
5673         loff_t size;
5674         unsigned long len;
5675         int ret = -EINVAL;
5676         void *fsdata;
5677         struct file *file = vma->vm_file;
5678         struct inode *inode = file->f_path.dentry->d_inode;
5679         struct address_space *mapping = inode->i_mapping;
5680
5681         /*
5682          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5683          * get i_mutex because we are already holding mmap_sem.
5684          */
5685         down_read(&inode->i_alloc_sem);
5686         size = i_size_read(inode);
5687         if (page->mapping != mapping || size <= page_offset(page)
5688             || !PageUptodate(page)) {
5689                 /* page got truncated from under us? */
5690                 goto out_unlock;
5691         }
5692         ret = 0;
5693         if (PageMappedToDisk(page))
5694                 goto out_unlock;
5695
5696         if (page->index == size >> PAGE_CACHE_SHIFT)
5697                 len = size & ~PAGE_CACHE_MASK;
5698         else
5699                 len = PAGE_CACHE_SIZE;
5700
5701         lock_page(page);
5702         /*
5703          * return if we have all the buffers mapped. This avoid
5704          * the need to call write_begin/write_end which does a
5705          * journal_start/journal_stop which can block and take
5706          * long time
5707          */
5708         if (page_has_buffers(page)) {
5709                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5710                                         ext4_bh_unmapped)) {
5711                         unlock_page(page);
5712                         goto out_unlock;
5713                 }
5714         }
5715         unlock_page(page);
5716         /*
5717          * OK, we need to fill the hole... Do write_begin write_end
5718          * to do block allocation/reservation.We are not holding
5719          * inode.i__mutex here. That allow * parallel write_begin,
5720          * write_end call. lock_page prevent this from happening
5721          * on the same page though
5722          */
5723         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5724                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5725         if (ret < 0)
5726                 goto out_unlock;
5727         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5728                         len, len, page, fsdata);
5729         if (ret < 0)
5730                 goto out_unlock;
5731         ret = 0;
5732 out_unlock:
5733         if (ret)
5734                 ret = VM_FAULT_SIGBUS;
5735         up_read(&inode->i_alloc_sem);
5736         return ret;
5737 }