ext4: Make ext4_get_blocks_wrap take the truncate_mutex early.
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "xattr.h"
40 #include "acl.h"
41
42 /*
43  * Test whether an inode is a fast symlink.
44  */
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
46 {
47         int ea_blocks = EXT4_I(inode)->i_file_acl ?
48                 (inode->i_sb->s_blocksize >> 9) : 0;
49
50         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51 }
52
53 /*
54  * The ext4 forget function must perform a revoke if we are freeing data
55  * which has been journaled.  Metadata (eg. indirect blocks) must be
56  * revoked in all cases.
57  *
58  * "bh" may be NULL: a metadata block may have been freed from memory
59  * but there may still be a record of it in the journal, and that record
60  * still needs to be revoked.
61  */
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63                         struct buffer_head *bh, ext4_fsblk_t blocknr)
64 {
65         int err;
66
67         might_sleep();
68
69         BUFFER_TRACE(bh, "enter");
70
71         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72                   "data mode %lx\n",
73                   bh, is_metadata, inode->i_mode,
74                   test_opt(inode->i_sb, DATA_FLAGS));
75
76         /* Never use the revoke function if we are doing full data
77          * journaling: there is no need to, and a V1 superblock won't
78          * support it.  Otherwise, only skip the revoke on un-journaled
79          * data blocks. */
80
81         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82             (!is_metadata && !ext4_should_journal_data(inode))) {
83                 if (bh) {
84                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
85                         return ext4_journal_forget(handle, bh);
86                 }
87                 return 0;
88         }
89
90         /*
91          * data!=journal && (is_metadata || should_journal_data(inode))
92          */
93         BUFFER_TRACE(bh, "call ext4_journal_revoke");
94         err = ext4_journal_revoke(handle, blocknr, bh);
95         if (err)
96                 ext4_abort(inode->i_sb, __FUNCTION__,
97                            "error %d when attempting revoke", err);
98         BUFFER_TRACE(bh, "exit");
99         return err;
100 }
101
102 /*
103  * Work out how many blocks we need to proceed with the next chunk of a
104  * truncate transaction.
105  */
106 static unsigned long blocks_for_truncate(struct inode *inode)
107 {
108         ext4_lblk_t needed;
109
110         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111
112         /* Give ourselves just enough room to cope with inodes in which
113          * i_blocks is corrupt: we've seen disk corruptions in the past
114          * which resulted in random data in an inode which looked enough
115          * like a regular file for ext4 to try to delete it.  Things
116          * will go a bit crazy if that happens, but at least we should
117          * try not to panic the whole kernel. */
118         if (needed < 2)
119                 needed = 2;
120
121         /* But we need to bound the transaction so we don't overflow the
122          * journal. */
123         if (needed > EXT4_MAX_TRANS_DATA)
124                 needed = EXT4_MAX_TRANS_DATA;
125
126         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 }
128
129 /*
130  * Truncate transactions can be complex and absolutely huge.  So we need to
131  * be able to restart the transaction at a conventient checkpoint to make
132  * sure we don't overflow the journal.
133  *
134  * start_transaction gets us a new handle for a truncate transaction,
135  * and extend_transaction tries to extend the existing one a bit.  If
136  * extend fails, we need to propagate the failure up and restart the
137  * transaction in the top-level truncate loop. --sct
138  */
139 static handle_t *start_transaction(struct inode *inode)
140 {
141         handle_t *result;
142
143         result = ext4_journal_start(inode, blocks_for_truncate(inode));
144         if (!IS_ERR(result))
145                 return result;
146
147         ext4_std_error(inode->i_sb, PTR_ERR(result));
148         return result;
149 }
150
151 /*
152  * Try to extend this transaction for the purposes of truncation.
153  *
154  * Returns 0 if we managed to create more room.  If we can't create more
155  * room, and the transaction must be restarted we return 1.
156  */
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158 {
159         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160                 return 0;
161         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162                 return 0;
163         return 1;
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 {
173         jbd_debug(2, "restarting handle %p\n", handle);
174         return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 }
176
177 /*
178  * Called at the last iput() if i_nlink is zero.
179  */
180 void ext4_delete_inode (struct inode * inode)
181 {
182         handle_t *handle;
183
184         truncate_inode_pages(&inode->i_data, 0);
185
186         if (is_bad_inode(inode))
187                 goto no_delete;
188
189         handle = start_transaction(inode);
190         if (IS_ERR(handle)) {
191                 /*
192                  * If we're going to skip the normal cleanup, we still need to
193                  * make sure that the in-core orphan linked list is properly
194                  * cleaned up.
195                  */
196                 ext4_orphan_del(NULL, inode);
197                 goto no_delete;
198         }
199
200         if (IS_SYNC(inode))
201                 handle->h_sync = 1;
202         inode->i_size = 0;
203         if (inode->i_blocks)
204                 ext4_truncate(inode);
205         /*
206          * Kill off the orphan record which ext4_truncate created.
207          * AKPM: I think this can be inside the above `if'.
208          * Note that ext4_orphan_del() has to be able to cope with the
209          * deletion of a non-existent orphan - this is because we don't
210          * know if ext4_truncate() actually created an orphan record.
211          * (Well, we could do this if we need to, but heck - it works)
212          */
213         ext4_orphan_del(handle, inode);
214         EXT4_I(inode)->i_dtime  = get_seconds();
215
216         /*
217          * One subtle ordering requirement: if anything has gone wrong
218          * (transaction abort, IO errors, whatever), then we can still
219          * do these next steps (the fs will already have been marked as
220          * having errors), but we can't free the inode if the mark_dirty
221          * fails.
222          */
223         if (ext4_mark_inode_dirty(handle, inode))
224                 /* If that failed, just do the required in-core inode clear. */
225                 clear_inode(inode);
226         else
227                 ext4_free_inode(handle, inode);
228         ext4_journal_stop(handle);
229         return;
230 no_delete:
231         clear_inode(inode);     /* We must guarantee clearing of inode... */
232 }
233
234 typedef struct {
235         __le32  *p;
236         __le32  key;
237         struct buffer_head *bh;
238 } Indirect;
239
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241 {
242         p->key = *(p->p = v);
243         p->bh = bh;
244 }
245
246 /**
247  *      ext4_block_to_path - parse the block number into array of offsets
248  *      @inode: inode in question (we are only interested in its superblock)
249  *      @i_block: block number to be parsed
250  *      @offsets: array to store the offsets in
251  *      @boundary: set this non-zero if the referred-to block is likely to be
252  *             followed (on disk) by an indirect block.
253  *
254  *      To store the locations of file's data ext4 uses a data structure common
255  *      for UNIX filesystems - tree of pointers anchored in the inode, with
256  *      data blocks at leaves and indirect blocks in intermediate nodes.
257  *      This function translates the block number into path in that tree -
258  *      return value is the path length and @offsets[n] is the offset of
259  *      pointer to (n+1)th node in the nth one. If @block is out of range
260  *      (negative or too large) warning is printed and zero returned.
261  *
262  *      Note: function doesn't find node addresses, so no IO is needed. All
263  *      we need to know is the capacity of indirect blocks (taken from the
264  *      inode->i_sb).
265  */
266
267 /*
268  * Portability note: the last comparison (check that we fit into triple
269  * indirect block) is spelled differently, because otherwise on an
270  * architecture with 32-bit longs and 8Kb pages we might get into trouble
271  * if our filesystem had 8Kb blocks. We might use long long, but that would
272  * kill us on x86. Oh, well, at least the sign propagation does not matter -
273  * i_block would have to be negative in the very beginning, so we would not
274  * get there at all.
275  */
276
277 static int ext4_block_to_path(struct inode *inode,
278                         ext4_lblk_t i_block,
279                         ext4_lblk_t offsets[4], int *boundary)
280 {
281         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283         const long direct_blocks = EXT4_NDIR_BLOCKS,
284                 indirect_blocks = ptrs,
285                 double_blocks = (1 << (ptrs_bits * 2));
286         int n = 0;
287         int final = 0;
288
289         if (i_block < 0) {
290                 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291         } else if (i_block < direct_blocks) {
292                 offsets[n++] = i_block;
293                 final = direct_blocks;
294         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
295                 offsets[n++] = EXT4_IND_BLOCK;
296                 offsets[n++] = i_block;
297                 final = ptrs;
298         } else if ((i_block -= indirect_blocks) < double_blocks) {
299                 offsets[n++] = EXT4_DIND_BLOCK;
300                 offsets[n++] = i_block >> ptrs_bits;
301                 offsets[n++] = i_block & (ptrs - 1);
302                 final = ptrs;
303         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304                 offsets[n++] = EXT4_TIND_BLOCK;
305                 offsets[n++] = i_block >> (ptrs_bits * 2);
306                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307                 offsets[n++] = i_block & (ptrs - 1);
308                 final = ptrs;
309         } else {
310                 ext4_warning(inode->i_sb, "ext4_block_to_path",
311                                 "block %u > max",
312                                 i_block + direct_blocks +
313                                 indirect_blocks + double_blocks);
314         }
315         if (boundary)
316                 *boundary = final - 1 - (i_block & (ptrs - 1));
317         return n;
318 }
319
320 /**
321  *      ext4_get_branch - read the chain of indirect blocks leading to data
322  *      @inode: inode in question
323  *      @depth: depth of the chain (1 - direct pointer, etc.)
324  *      @offsets: offsets of pointers in inode/indirect blocks
325  *      @chain: place to store the result
326  *      @err: here we store the error value
327  *
328  *      Function fills the array of triples <key, p, bh> and returns %NULL
329  *      if everything went OK or the pointer to the last filled triple
330  *      (incomplete one) otherwise. Upon the return chain[i].key contains
331  *      the number of (i+1)-th block in the chain (as it is stored in memory,
332  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
333  *      number (it points into struct inode for i==0 and into the bh->b_data
334  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335  *      block for i>0 and NULL for i==0. In other words, it holds the block
336  *      numbers of the chain, addresses they were taken from (and where we can
337  *      verify that chain did not change) and buffer_heads hosting these
338  *      numbers.
339  *
340  *      Function stops when it stumbles upon zero pointer (absent block)
341  *              (pointer to last triple returned, *@err == 0)
342  *      or when it gets an IO error reading an indirect block
343  *              (ditto, *@err == -EIO)
344  *      or when it reads all @depth-1 indirect blocks successfully and finds
345  *      the whole chain, all way to the data (returns %NULL, *err == 0).
346  *
347  *      Need to be called with
348  *      mutex_lock(&EXT4_I(inode)->truncate_mutex)
349  */
350 static Indirect *ext4_get_branch(struct inode *inode, int depth,
351                                  ext4_lblk_t  *offsets,
352                                  Indirect chain[4], int *err)
353 {
354         struct super_block *sb = inode->i_sb;
355         Indirect *p = chain;
356         struct buffer_head *bh;
357
358         *err = 0;
359         /* i_data is not going away, no lock needed */
360         add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361         if (!p->key)
362                 goto no_block;
363         while (--depth) {
364                 bh = sb_bread(sb, le32_to_cpu(p->key));
365                 if (!bh)
366                         goto failure;
367                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368                 /* Reader: end */
369                 if (!p->key)
370                         goto no_block;
371         }
372         return NULL;
373
374 failure:
375         *err = -EIO;
376 no_block:
377         return p;
378 }
379
380 /**
381  *      ext4_find_near - find a place for allocation with sufficient locality
382  *      @inode: owner
383  *      @ind: descriptor of indirect block.
384  *
385  *      This function returns the prefered place for block allocation.
386  *      It is used when heuristic for sequential allocation fails.
387  *      Rules are:
388  *        + if there is a block to the left of our position - allocate near it.
389  *        + if pointer will live in indirect block - allocate near that block.
390  *        + if pointer will live in inode - allocate in the same
391  *          cylinder group.
392  *
393  * In the latter case we colour the starting block by the callers PID to
394  * prevent it from clashing with concurrent allocations for a different inode
395  * in the same block group.   The PID is used here so that functionally related
396  * files will be close-by on-disk.
397  *
398  *      Caller must make sure that @ind is valid and will stay that way.
399  */
400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
401 {
402         struct ext4_inode_info *ei = EXT4_I(inode);
403         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404         __le32 *p;
405         ext4_fsblk_t bg_start;
406         ext4_grpblk_t colour;
407
408         /* Try to find previous block */
409         for (p = ind->p - 1; p >= start; p--) {
410                 if (*p)
411                         return le32_to_cpu(*p);
412         }
413
414         /* No such thing, so let's try location of indirect block */
415         if (ind->bh)
416                 return ind->bh->b_blocknr;
417
418         /*
419          * It is going to be referred to from the inode itself? OK, just put it
420          * into the same cylinder group then.
421          */
422         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
423         colour = (current->pid % 16) *
424                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
425         return bg_start + colour;
426 }
427
428 /**
429  *      ext4_find_goal - find a prefered place for allocation.
430  *      @inode: owner
431  *      @block:  block we want
432  *      @chain:  chain of indirect blocks
433  *      @partial: pointer to the last triple within a chain
434  *      @goal:  place to store the result.
435  *
436  *      Normally this function find the prefered place for block allocation,
437  *      stores it in *@goal and returns zero.
438  */
439
440 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
441                 Indirect chain[4], Indirect *partial)
442 {
443         struct ext4_block_alloc_info *block_i;
444
445         block_i =  EXT4_I(inode)->i_block_alloc_info;
446
447         /*
448          * try the heuristic for sequential allocation,
449          * failing that at least try to get decent locality.
450          */
451         if (block_i && (block == block_i->last_alloc_logical_block + 1)
452                 && (block_i->last_alloc_physical_block != 0)) {
453                 return block_i->last_alloc_physical_block + 1;
454         }
455
456         return ext4_find_near(inode, partial);
457 }
458
459 /**
460  *      ext4_blks_to_allocate: Look up the block map and count the number
461  *      of direct blocks need to be allocated for the given branch.
462  *
463  *      @branch: chain of indirect blocks
464  *      @k: number of blocks need for indirect blocks
465  *      @blks: number of data blocks to be mapped.
466  *      @blocks_to_boundary:  the offset in the indirect block
467  *
468  *      return the total number of blocks to be allocate, including the
469  *      direct and indirect blocks.
470  */
471 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
472                 int blocks_to_boundary)
473 {
474         unsigned long count = 0;
475
476         /*
477          * Simple case, [t,d]Indirect block(s) has not allocated yet
478          * then it's clear blocks on that path have not allocated
479          */
480         if (k > 0) {
481                 /* right now we don't handle cross boundary allocation */
482                 if (blks < blocks_to_boundary + 1)
483                         count += blks;
484                 else
485                         count += blocks_to_boundary + 1;
486                 return count;
487         }
488
489         count++;
490         while (count < blks && count <= blocks_to_boundary &&
491                 le32_to_cpu(*(branch[0].p + count)) == 0) {
492                 count++;
493         }
494         return count;
495 }
496
497 /**
498  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
499  *      @indirect_blks: the number of blocks need to allocate for indirect
500  *                      blocks
501  *
502  *      @new_blocks: on return it will store the new block numbers for
503  *      the indirect blocks(if needed) and the first direct block,
504  *      @blks:  on return it will store the total number of allocated
505  *              direct blocks
506  */
507 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
508                         ext4_fsblk_t goal, int indirect_blks, int blks,
509                         ext4_fsblk_t new_blocks[4], int *err)
510 {
511         int target, i;
512         unsigned long count = 0;
513         int index = 0;
514         ext4_fsblk_t current_block = 0;
515         int ret = 0;
516
517         /*
518          * Here we try to allocate the requested multiple blocks at once,
519          * on a best-effort basis.
520          * To build a branch, we should allocate blocks for
521          * the indirect blocks(if not allocated yet), and at least
522          * the first direct block of this branch.  That's the
523          * minimum number of blocks need to allocate(required)
524          */
525         target = blks + indirect_blks;
526
527         while (1) {
528                 count = target;
529                 /* allocating blocks for indirect blocks and direct blocks */
530                 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
531                 if (*err)
532                         goto failed_out;
533
534                 target -= count;
535                 /* allocate blocks for indirect blocks */
536                 while (index < indirect_blks && count) {
537                         new_blocks[index++] = current_block++;
538                         count--;
539                 }
540
541                 if (count > 0)
542                         break;
543         }
544
545         /* save the new block number for the first direct block */
546         new_blocks[index] = current_block;
547
548         /* total number of blocks allocated for direct blocks */
549         ret = count;
550         *err = 0;
551         return ret;
552 failed_out:
553         for (i = 0; i <index; i++)
554                 ext4_free_blocks(handle, inode, new_blocks[i], 1);
555         return ret;
556 }
557
558 /**
559  *      ext4_alloc_branch - allocate and set up a chain of blocks.
560  *      @inode: owner
561  *      @indirect_blks: number of allocated indirect blocks
562  *      @blks: number of allocated direct blocks
563  *      @offsets: offsets (in the blocks) to store the pointers to next.
564  *      @branch: place to store the chain in.
565  *
566  *      This function allocates blocks, zeroes out all but the last one,
567  *      links them into chain and (if we are synchronous) writes them to disk.
568  *      In other words, it prepares a branch that can be spliced onto the
569  *      inode. It stores the information about that chain in the branch[], in
570  *      the same format as ext4_get_branch() would do. We are calling it after
571  *      we had read the existing part of chain and partial points to the last
572  *      triple of that (one with zero ->key). Upon the exit we have the same
573  *      picture as after the successful ext4_get_block(), except that in one
574  *      place chain is disconnected - *branch->p is still zero (we did not
575  *      set the last link), but branch->key contains the number that should
576  *      be placed into *branch->p to fill that gap.
577  *
578  *      If allocation fails we free all blocks we've allocated (and forget
579  *      their buffer_heads) and return the error value the from failed
580  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
581  *      as described above and return 0.
582  */
583 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
584                         int indirect_blks, int *blks, ext4_fsblk_t goal,
585                         ext4_lblk_t *offsets, Indirect *branch)
586 {
587         int blocksize = inode->i_sb->s_blocksize;
588         int i, n = 0;
589         int err = 0;
590         struct buffer_head *bh;
591         int num;
592         ext4_fsblk_t new_blocks[4];
593         ext4_fsblk_t current_block;
594
595         num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
596                                 *blks, new_blocks, &err);
597         if (err)
598                 return err;
599
600         branch[0].key = cpu_to_le32(new_blocks[0]);
601         /*
602          * metadata blocks and data blocks are allocated.
603          */
604         for (n = 1; n <= indirect_blks;  n++) {
605                 /*
606                  * Get buffer_head for parent block, zero it out
607                  * and set the pointer to new one, then send
608                  * parent to disk.
609                  */
610                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
611                 branch[n].bh = bh;
612                 lock_buffer(bh);
613                 BUFFER_TRACE(bh, "call get_create_access");
614                 err = ext4_journal_get_create_access(handle, bh);
615                 if (err) {
616                         unlock_buffer(bh);
617                         brelse(bh);
618                         goto failed;
619                 }
620
621                 memset(bh->b_data, 0, blocksize);
622                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
623                 branch[n].key = cpu_to_le32(new_blocks[n]);
624                 *branch[n].p = branch[n].key;
625                 if ( n == indirect_blks) {
626                         current_block = new_blocks[n];
627                         /*
628                          * End of chain, update the last new metablock of
629                          * the chain to point to the new allocated
630                          * data blocks numbers
631                          */
632                         for (i=1; i < num; i++)
633                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
634                 }
635                 BUFFER_TRACE(bh, "marking uptodate");
636                 set_buffer_uptodate(bh);
637                 unlock_buffer(bh);
638
639                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
640                 err = ext4_journal_dirty_metadata(handle, bh);
641                 if (err)
642                         goto failed;
643         }
644         *blks = num;
645         return err;
646 failed:
647         /* Allocation failed, free what we already allocated */
648         for (i = 1; i <= n ; i++) {
649                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
650                 ext4_journal_forget(handle, branch[i].bh);
651         }
652         for (i = 0; i <indirect_blks; i++)
653                 ext4_free_blocks(handle, inode, new_blocks[i], 1);
654
655         ext4_free_blocks(handle, inode, new_blocks[i], num);
656
657         return err;
658 }
659
660 /**
661  * ext4_splice_branch - splice the allocated branch onto inode.
662  * @inode: owner
663  * @block: (logical) number of block we are adding
664  * @chain: chain of indirect blocks (with a missing link - see
665  *      ext4_alloc_branch)
666  * @where: location of missing link
667  * @num:   number of indirect blocks we are adding
668  * @blks:  number of direct blocks we are adding
669  *
670  * This function fills the missing link and does all housekeeping needed in
671  * inode (->i_blocks, etc.). In case of success we end up with the full
672  * chain to new block and return 0.
673  */
674 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
675                         ext4_lblk_t block, Indirect *where, int num, int blks)
676 {
677         int i;
678         int err = 0;
679         struct ext4_block_alloc_info *block_i;
680         ext4_fsblk_t current_block;
681
682         block_i = EXT4_I(inode)->i_block_alloc_info;
683         /*
684          * If we're splicing into a [td]indirect block (as opposed to the
685          * inode) then we need to get write access to the [td]indirect block
686          * before the splice.
687          */
688         if (where->bh) {
689                 BUFFER_TRACE(where->bh, "get_write_access");
690                 err = ext4_journal_get_write_access(handle, where->bh);
691                 if (err)
692                         goto err_out;
693         }
694         /* That's it */
695
696         *where->p = where->key;
697
698         /*
699          * Update the host buffer_head or inode to point to more just allocated
700          * direct blocks blocks
701          */
702         if (num == 0 && blks > 1) {
703                 current_block = le32_to_cpu(where->key) + 1;
704                 for (i = 1; i < blks; i++)
705                         *(where->p + i ) = cpu_to_le32(current_block++);
706         }
707
708         /*
709          * update the most recently allocated logical & physical block
710          * in i_block_alloc_info, to assist find the proper goal block for next
711          * allocation
712          */
713         if (block_i) {
714                 block_i->last_alloc_logical_block = block + blks - 1;
715                 block_i->last_alloc_physical_block =
716                                 le32_to_cpu(where[num].key) + blks - 1;
717         }
718
719         /* We are done with atomic stuff, now do the rest of housekeeping */
720
721         inode->i_ctime = ext4_current_time(inode);
722         ext4_mark_inode_dirty(handle, inode);
723
724         /* had we spliced it onto indirect block? */
725         if (where->bh) {
726                 /*
727                  * If we spliced it onto an indirect block, we haven't
728                  * altered the inode.  Note however that if it is being spliced
729                  * onto an indirect block at the very end of the file (the
730                  * file is growing) then we *will* alter the inode to reflect
731                  * the new i_size.  But that is not done here - it is done in
732                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
733                  */
734                 jbd_debug(5, "splicing indirect only\n");
735                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
736                 err = ext4_journal_dirty_metadata(handle, where->bh);
737                 if (err)
738                         goto err_out;
739         } else {
740                 /*
741                  * OK, we spliced it into the inode itself on a direct block.
742                  * Inode was dirtied above.
743                  */
744                 jbd_debug(5, "splicing direct\n");
745         }
746         return err;
747
748 err_out:
749         for (i = 1; i <= num; i++) {
750                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
751                 ext4_journal_forget(handle, where[i].bh);
752                 ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
753         }
754         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
755
756         return err;
757 }
758
759 /*
760  * Allocation strategy is simple: if we have to allocate something, we will
761  * have to go the whole way to leaf. So let's do it before attaching anything
762  * to tree, set linkage between the newborn blocks, write them if sync is
763  * required, recheck the path, free and repeat if check fails, otherwise
764  * set the last missing link (that will protect us from any truncate-generated
765  * removals - all blocks on the path are immune now) and possibly force the
766  * write on the parent block.
767  * That has a nice additional property: no special recovery from the failed
768  * allocations is needed - we simply release blocks and do not touch anything
769  * reachable from inode.
770  *
771  * `handle' can be NULL if create == 0.
772  *
773  * The BKL may not be held on entry here.  Be sure to take it early.
774  * return > 0, # of blocks mapped or allocated.
775  * return = 0, if plain lookup failed.
776  * return < 0, error case.
777  *
778  *
779  * Need to be called with
780  * mutex_lock(&EXT4_I(inode)->truncate_mutex)
781  */
782 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
783                 ext4_lblk_t iblock, unsigned long maxblocks,
784                 struct buffer_head *bh_result,
785                 int create, int extend_disksize)
786 {
787         int err = -EIO;
788         ext4_lblk_t offsets[4];
789         Indirect chain[4];
790         Indirect *partial;
791         ext4_fsblk_t goal;
792         int indirect_blks;
793         int blocks_to_boundary = 0;
794         int depth;
795         struct ext4_inode_info *ei = EXT4_I(inode);
796         int count = 0;
797         ext4_fsblk_t first_block = 0;
798
799
800         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
801         J_ASSERT(handle != NULL || create == 0);
802         depth = ext4_block_to_path(inode, iblock, offsets,
803                                         &blocks_to_boundary);
804
805         if (depth == 0)
806                 goto out;
807
808         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
809
810         /* Simplest case - block found, no allocation needed */
811         if (!partial) {
812                 first_block = le32_to_cpu(chain[depth - 1].key);
813                 clear_buffer_new(bh_result);
814                 count++;
815                 /*map more blocks*/
816                 while (count < maxblocks && count <= blocks_to_boundary) {
817                         ext4_fsblk_t blk;
818
819                         blk = le32_to_cpu(*(chain[depth-1].p + count));
820
821                         if (blk == first_block + count)
822                                 count++;
823                         else
824                                 break;
825                 }
826                 goto got_it;
827         }
828
829         /* Next simple case - plain lookup or failed read of indirect block */
830         if (!create || err == -EIO)
831                 goto cleanup;
832
833         /*
834          * Okay, we need to do block allocation.  Lazily initialize the block
835          * allocation info here if necessary
836         */
837         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
838                 ext4_init_block_alloc_info(inode);
839
840         goal = ext4_find_goal(inode, iblock, chain, partial);
841
842         /* the number of blocks need to allocate for [d,t]indirect blocks */
843         indirect_blks = (chain + depth) - partial - 1;
844
845         /*
846          * Next look up the indirect map to count the totoal number of
847          * direct blocks to allocate for this branch.
848          */
849         count = ext4_blks_to_allocate(partial, indirect_blks,
850                                         maxblocks, blocks_to_boundary);
851         /*
852          * Block out ext4_truncate while we alter the tree
853          */
854         err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
855                                 offsets + (partial - chain), partial);
856
857         /*
858          * The ext4_splice_branch call will free and forget any buffers
859          * on the new chain if there is a failure, but that risks using
860          * up transaction credits, especially for bitmaps where the
861          * credits cannot be returned.  Can we handle this somehow?  We
862          * may need to return -EAGAIN upwards in the worst case.  --sct
863          */
864         if (!err)
865                 err = ext4_splice_branch(handle, inode, iblock,
866                                         partial, indirect_blks, count);
867         /*
868          * i_disksize growing is protected by truncate_mutex.  Don't forget to
869          * protect it if you're about to implement concurrent
870          * ext4_get_block() -bzzz
871         */
872         if (!err && extend_disksize && inode->i_size > ei->i_disksize)
873                 ei->i_disksize = inode->i_size;
874         if (err)
875                 goto cleanup;
876
877         set_buffer_new(bh_result);
878 got_it:
879         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
880         if (count > blocks_to_boundary)
881                 set_buffer_boundary(bh_result);
882         err = count;
883         /* Clean up and exit */
884         partial = chain + depth - 1;    /* the whole chain */
885 cleanup:
886         while (partial > chain) {
887                 BUFFER_TRACE(partial->bh, "call brelse");
888                 brelse(partial->bh);
889                 partial--;
890         }
891         BUFFER_TRACE(bh_result, "returned");
892 out:
893         return err;
894 }
895
896 #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
897
898 static int ext4_get_block(struct inode *inode, sector_t iblock,
899                         struct buffer_head *bh_result, int create)
900 {
901         handle_t *handle = ext4_journal_current_handle();
902         int ret = 0;
903         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
904
905         if (!create)
906                 goto get_block;         /* A read */
907
908         if (max_blocks == 1)
909                 goto get_block;         /* A single block get */
910
911         if (handle->h_transaction->t_state == T_LOCKED) {
912                 /*
913                  * Huge direct-io writes can hold off commits for long
914                  * periods of time.  Let this commit run.
915                  */
916                 ext4_journal_stop(handle);
917                 handle = ext4_journal_start(inode, DIO_CREDITS);
918                 if (IS_ERR(handle))
919                         ret = PTR_ERR(handle);
920                 goto get_block;
921         }
922
923         if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
924                 /*
925                  * Getting low on buffer credits...
926                  */
927                 ret = ext4_journal_extend(handle, DIO_CREDITS);
928                 if (ret > 0) {
929                         /*
930                          * Couldn't extend the transaction.  Start a new one.
931                          */
932                         ret = ext4_journal_restart(handle, DIO_CREDITS);
933                 }
934         }
935
936 get_block:
937         if (ret == 0) {
938                 ret = ext4_get_blocks_wrap(handle, inode, iblock,
939                                         max_blocks, bh_result, create, 0);
940                 if (ret > 0) {
941                         bh_result->b_size = (ret << inode->i_blkbits);
942                         ret = 0;
943                 }
944         }
945         return ret;
946 }
947
948 /*
949  * `handle' can be NULL if create is zero
950  */
951 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
952                                 ext4_lblk_t block, int create, int *errp)
953 {
954         struct buffer_head dummy;
955         int fatal = 0, err;
956
957         J_ASSERT(handle != NULL || create == 0);
958
959         dummy.b_state = 0;
960         dummy.b_blocknr = -1000;
961         buffer_trace_init(&dummy.b_history);
962         err = ext4_get_blocks_wrap(handle, inode, block, 1,
963                                         &dummy, create, 1);
964         /*
965          * ext4_get_blocks_handle() returns number of blocks
966          * mapped. 0 in case of a HOLE.
967          */
968         if (err > 0) {
969                 if (err > 1)
970                         WARN_ON(1);
971                 err = 0;
972         }
973         *errp = err;
974         if (!err && buffer_mapped(&dummy)) {
975                 struct buffer_head *bh;
976                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
977                 if (!bh) {
978                         *errp = -EIO;
979                         goto err;
980                 }
981                 if (buffer_new(&dummy)) {
982                         J_ASSERT(create != 0);
983                         J_ASSERT(handle != NULL);
984
985                         /*
986                          * Now that we do not always journal data, we should
987                          * keep in mind whether this should always journal the
988                          * new buffer as metadata.  For now, regular file
989                          * writes use ext4_get_block instead, so it's not a
990                          * problem.
991                          */
992                         lock_buffer(bh);
993                         BUFFER_TRACE(bh, "call get_create_access");
994                         fatal = ext4_journal_get_create_access(handle, bh);
995                         if (!fatal && !buffer_uptodate(bh)) {
996                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
997                                 set_buffer_uptodate(bh);
998                         }
999                         unlock_buffer(bh);
1000                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1001                         err = ext4_journal_dirty_metadata(handle, bh);
1002                         if (!fatal)
1003                                 fatal = err;
1004                 } else {
1005                         BUFFER_TRACE(bh, "not a new buffer");
1006                 }
1007                 if (fatal) {
1008                         *errp = fatal;
1009                         brelse(bh);
1010                         bh = NULL;
1011                 }
1012                 return bh;
1013         }
1014 err:
1015         return NULL;
1016 }
1017
1018 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1019                                ext4_lblk_t block, int create, int *err)
1020 {
1021         struct buffer_head * bh;
1022
1023         bh = ext4_getblk(handle, inode, block, create, err);
1024         if (!bh)
1025                 return bh;
1026         if (buffer_uptodate(bh))
1027                 return bh;
1028         ll_rw_block(READ_META, 1, &bh);
1029         wait_on_buffer(bh);
1030         if (buffer_uptodate(bh))
1031                 return bh;
1032         put_bh(bh);
1033         *err = -EIO;
1034         return NULL;
1035 }
1036
1037 static int walk_page_buffers(   handle_t *handle,
1038                                 struct buffer_head *head,
1039                                 unsigned from,
1040                                 unsigned to,
1041                                 int *partial,
1042                                 int (*fn)(      handle_t *handle,
1043                                                 struct buffer_head *bh))
1044 {
1045         struct buffer_head *bh;
1046         unsigned block_start, block_end;
1047         unsigned blocksize = head->b_size;
1048         int err, ret = 0;
1049         struct buffer_head *next;
1050
1051         for (   bh = head, block_start = 0;
1052                 ret == 0 && (bh != head || !block_start);
1053                 block_start = block_end, bh = next)
1054         {
1055                 next = bh->b_this_page;
1056                 block_end = block_start + blocksize;
1057                 if (block_end <= from || block_start >= to) {
1058                         if (partial && !buffer_uptodate(bh))
1059                                 *partial = 1;
1060                         continue;
1061                 }
1062                 err = (*fn)(handle, bh);
1063                 if (!ret)
1064                         ret = err;
1065         }
1066         return ret;
1067 }
1068
1069 /*
1070  * To preserve ordering, it is essential that the hole instantiation and
1071  * the data write be encapsulated in a single transaction.  We cannot
1072  * close off a transaction and start a new one between the ext4_get_block()
1073  * and the commit_write().  So doing the jbd2_journal_start at the start of
1074  * prepare_write() is the right place.
1075  *
1076  * Also, this function can nest inside ext4_writepage() ->
1077  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1078  * has generated enough buffer credits to do the whole page.  So we won't
1079  * block on the journal in that case, which is good, because the caller may
1080  * be PF_MEMALLOC.
1081  *
1082  * By accident, ext4 can be reentered when a transaction is open via
1083  * quota file writes.  If we were to commit the transaction while thus
1084  * reentered, there can be a deadlock - we would be holding a quota
1085  * lock, and the commit would never complete if another thread had a
1086  * transaction open and was blocking on the quota lock - a ranking
1087  * violation.
1088  *
1089  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1090  * will _not_ run commit under these circumstances because handle->h_ref
1091  * is elevated.  We'll still have enough credits for the tiny quotafile
1092  * write.
1093  */
1094 static int do_journal_get_write_access(handle_t *handle,
1095                                         struct buffer_head *bh)
1096 {
1097         if (!buffer_mapped(bh) || buffer_freed(bh))
1098                 return 0;
1099         return ext4_journal_get_write_access(handle, bh);
1100 }
1101
1102 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1103                                 loff_t pos, unsigned len, unsigned flags,
1104                                 struct page **pagep, void **fsdata)
1105 {
1106         struct inode *inode = mapping->host;
1107         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1108         handle_t *handle;
1109         int retries = 0;
1110         struct page *page;
1111         pgoff_t index;
1112         unsigned from, to;
1113
1114         index = pos >> PAGE_CACHE_SHIFT;
1115         from = pos & (PAGE_CACHE_SIZE - 1);
1116         to = from + len;
1117
1118 retry:
1119         page = __grab_cache_page(mapping, index);
1120         if (!page)
1121                 return -ENOMEM;
1122         *pagep = page;
1123
1124         handle = ext4_journal_start(inode, needed_blocks);
1125         if (IS_ERR(handle)) {
1126                 unlock_page(page);
1127                 page_cache_release(page);
1128                 ret = PTR_ERR(handle);
1129                 goto out;
1130         }
1131
1132         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1133                                                         ext4_get_block);
1134
1135         if (!ret && ext4_should_journal_data(inode)) {
1136                 ret = walk_page_buffers(handle, page_buffers(page),
1137                                 from, to, NULL, do_journal_get_write_access);
1138         }
1139
1140         if (ret) {
1141                 ext4_journal_stop(handle);
1142                 unlock_page(page);
1143                 page_cache_release(page);
1144         }
1145
1146         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1147                 goto retry;
1148 out:
1149         return ret;
1150 }
1151
1152 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1153 {
1154         int err = jbd2_journal_dirty_data(handle, bh);
1155         if (err)
1156                 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1157                                                 bh, handle, err);
1158         return err;
1159 }
1160
1161 /* For write_end() in data=journal mode */
1162 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1163 {
1164         if (!buffer_mapped(bh) || buffer_freed(bh))
1165                 return 0;
1166         set_buffer_uptodate(bh);
1167         return ext4_journal_dirty_metadata(handle, bh);
1168 }
1169
1170 /*
1171  * Generic write_end handler for ordered and writeback ext4 journal modes.
1172  * We can't use generic_write_end, because that unlocks the page and we need to
1173  * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1174  * after block_write_end.
1175  */
1176 static int ext4_generic_write_end(struct file *file,
1177                                 struct address_space *mapping,
1178                                 loff_t pos, unsigned len, unsigned copied,
1179                                 struct page *page, void *fsdata)
1180 {
1181         struct inode *inode = file->f_mapping->host;
1182
1183         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1184
1185         if (pos+copied > inode->i_size) {
1186                 i_size_write(inode, pos+copied);
1187                 mark_inode_dirty(inode);
1188         }
1189
1190         return copied;
1191 }
1192
1193 /*
1194  * We need to pick up the new inode size which generic_commit_write gave us
1195  * `file' can be NULL - eg, when called from page_symlink().
1196  *
1197  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1198  * buffers are managed internally.
1199  */
1200 static int ext4_ordered_write_end(struct file *file,
1201                                 struct address_space *mapping,
1202                                 loff_t pos, unsigned len, unsigned copied,
1203                                 struct page *page, void *fsdata)
1204 {
1205         handle_t *handle = ext4_journal_current_handle();
1206         struct inode *inode = file->f_mapping->host;
1207         unsigned from, to;
1208         int ret = 0, ret2;
1209
1210         from = pos & (PAGE_CACHE_SIZE - 1);
1211         to = from + len;
1212
1213         ret = walk_page_buffers(handle, page_buffers(page),
1214                 from, to, NULL, ext4_journal_dirty_data);
1215
1216         if (ret == 0) {
1217                 /*
1218                  * generic_write_end() will run mark_inode_dirty() if i_size
1219                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1220                  * into that.
1221                  */
1222                 loff_t new_i_size;
1223
1224                 new_i_size = pos + copied;
1225                 if (new_i_size > EXT4_I(inode)->i_disksize)
1226                         EXT4_I(inode)->i_disksize = new_i_size;
1227                 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1228                                                         page, fsdata);
1229                 if (copied < 0)
1230                         ret = copied;
1231         }
1232         ret2 = ext4_journal_stop(handle);
1233         if (!ret)
1234                 ret = ret2;
1235         unlock_page(page);
1236         page_cache_release(page);
1237
1238         return ret ? ret : copied;
1239 }
1240
1241 static int ext4_writeback_write_end(struct file *file,
1242                                 struct address_space *mapping,
1243                                 loff_t pos, unsigned len, unsigned copied,
1244                                 struct page *page, void *fsdata)
1245 {
1246         handle_t *handle = ext4_journal_current_handle();
1247         struct inode *inode = file->f_mapping->host;
1248         int ret = 0, ret2;
1249         loff_t new_i_size;
1250
1251         new_i_size = pos + copied;
1252         if (new_i_size > EXT4_I(inode)->i_disksize)
1253                 EXT4_I(inode)->i_disksize = new_i_size;
1254
1255         copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1256                                                         page, fsdata);
1257         if (copied < 0)
1258                 ret = copied;
1259
1260         ret2 = ext4_journal_stop(handle);
1261         if (!ret)
1262                 ret = ret2;
1263         unlock_page(page);
1264         page_cache_release(page);
1265
1266         return ret ? ret : copied;
1267 }
1268
1269 static int ext4_journalled_write_end(struct file *file,
1270                                 struct address_space *mapping,
1271                                 loff_t pos, unsigned len, unsigned copied,
1272                                 struct page *page, void *fsdata)
1273 {
1274         handle_t *handle = ext4_journal_current_handle();
1275         struct inode *inode = mapping->host;
1276         int ret = 0, ret2;
1277         int partial = 0;
1278         unsigned from, to;
1279
1280         from = pos & (PAGE_CACHE_SIZE - 1);
1281         to = from + len;
1282
1283         if (copied < len) {
1284                 if (!PageUptodate(page))
1285                         copied = 0;
1286                 page_zero_new_buffers(page, from+copied, to);
1287         }
1288
1289         ret = walk_page_buffers(handle, page_buffers(page), from,
1290                                 to, &partial, write_end_fn);
1291         if (!partial)
1292                 SetPageUptodate(page);
1293         if (pos+copied > inode->i_size)
1294                 i_size_write(inode, pos+copied);
1295         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1296         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1297                 EXT4_I(inode)->i_disksize = inode->i_size;
1298                 ret2 = ext4_mark_inode_dirty(handle, inode);
1299                 if (!ret)
1300                         ret = ret2;
1301         }
1302
1303         ret2 = ext4_journal_stop(handle);
1304         if (!ret)
1305                 ret = ret2;
1306         unlock_page(page);
1307         page_cache_release(page);
1308
1309         return ret ? ret : copied;
1310 }
1311
1312 /*
1313  * bmap() is special.  It gets used by applications such as lilo and by
1314  * the swapper to find the on-disk block of a specific piece of data.
1315  *
1316  * Naturally, this is dangerous if the block concerned is still in the
1317  * journal.  If somebody makes a swapfile on an ext4 data-journaling
1318  * filesystem and enables swap, then they may get a nasty shock when the
1319  * data getting swapped to that swapfile suddenly gets overwritten by
1320  * the original zero's written out previously to the journal and
1321  * awaiting writeback in the kernel's buffer cache.
1322  *
1323  * So, if we see any bmap calls here on a modified, data-journaled file,
1324  * take extra steps to flush any blocks which might be in the cache.
1325  */
1326 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1327 {
1328         struct inode *inode = mapping->host;
1329         journal_t *journal;
1330         int err;
1331
1332         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1333                 /*
1334                  * This is a REALLY heavyweight approach, but the use of
1335                  * bmap on dirty files is expected to be extremely rare:
1336                  * only if we run lilo or swapon on a freshly made file
1337                  * do we expect this to happen.
1338                  *
1339                  * (bmap requires CAP_SYS_RAWIO so this does not
1340                  * represent an unprivileged user DOS attack --- we'd be
1341                  * in trouble if mortal users could trigger this path at
1342                  * will.)
1343                  *
1344                  * NB. EXT4_STATE_JDATA is not set on files other than
1345                  * regular files.  If somebody wants to bmap a directory
1346                  * or symlink and gets confused because the buffer
1347                  * hasn't yet been flushed to disk, they deserve
1348                  * everything they get.
1349                  */
1350
1351                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1352                 journal = EXT4_JOURNAL(inode);
1353                 jbd2_journal_lock_updates(journal);
1354                 err = jbd2_journal_flush(journal);
1355                 jbd2_journal_unlock_updates(journal);
1356
1357                 if (err)
1358                         return 0;
1359         }
1360
1361         return generic_block_bmap(mapping,block,ext4_get_block);
1362 }
1363
1364 static int bget_one(handle_t *handle, struct buffer_head *bh)
1365 {
1366         get_bh(bh);
1367         return 0;
1368 }
1369
1370 static int bput_one(handle_t *handle, struct buffer_head *bh)
1371 {
1372         put_bh(bh);
1373         return 0;
1374 }
1375
1376 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1377 {
1378         if (buffer_mapped(bh))
1379                 return ext4_journal_dirty_data(handle, bh);
1380         return 0;
1381 }
1382
1383 /*
1384  * Note that we always start a transaction even if we're not journalling
1385  * data.  This is to preserve ordering: any hole instantiation within
1386  * __block_write_full_page -> ext4_get_block() should be journalled
1387  * along with the data so we don't crash and then get metadata which
1388  * refers to old data.
1389  *
1390  * In all journalling modes block_write_full_page() will start the I/O.
1391  *
1392  * Problem:
1393  *
1394  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1395  *              ext4_writepage()
1396  *
1397  * Similar for:
1398  *
1399  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1400  *
1401  * Same applies to ext4_get_block().  We will deadlock on various things like
1402  * lock_journal and i_truncate_mutex.
1403  *
1404  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1405  * allocations fail.
1406  *
1407  * 16May01: If we're reentered then journal_current_handle() will be
1408  *          non-zero. We simply *return*.
1409  *
1410  * 1 July 2001: @@@ FIXME:
1411  *   In journalled data mode, a data buffer may be metadata against the
1412  *   current transaction.  But the same file is part of a shared mapping
1413  *   and someone does a writepage() on it.
1414  *
1415  *   We will move the buffer onto the async_data list, but *after* it has
1416  *   been dirtied. So there's a small window where we have dirty data on
1417  *   BJ_Metadata.
1418  *
1419  *   Note that this only applies to the last partial page in the file.  The
1420  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1421  *   broken code anyway: it's wrong for msync()).
1422  *
1423  *   It's a rare case: affects the final partial page, for journalled data
1424  *   where the file is subject to bith write() and writepage() in the same
1425  *   transction.  To fix it we'll need a custom block_write_full_page().
1426  *   We'll probably need that anyway for journalling writepage() output.
1427  *
1428  * We don't honour synchronous mounts for writepage().  That would be
1429  * disastrous.  Any write() or metadata operation will sync the fs for
1430  * us.
1431  *
1432  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1433  * we don't need to open a transaction here.
1434  */
1435 static int ext4_ordered_writepage(struct page *page,
1436                                 struct writeback_control *wbc)
1437 {
1438         struct inode *inode = page->mapping->host;
1439         struct buffer_head *page_bufs;
1440         handle_t *handle = NULL;
1441         int ret = 0;
1442         int err;
1443
1444         J_ASSERT(PageLocked(page));
1445
1446         /*
1447          * We give up here if we're reentered, because it might be for a
1448          * different filesystem.
1449          */
1450         if (ext4_journal_current_handle())
1451                 goto out_fail;
1452
1453         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1454
1455         if (IS_ERR(handle)) {
1456                 ret = PTR_ERR(handle);
1457                 goto out_fail;
1458         }
1459
1460         if (!page_has_buffers(page)) {
1461                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1462                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1463         }
1464         page_bufs = page_buffers(page);
1465         walk_page_buffers(handle, page_bufs, 0,
1466                         PAGE_CACHE_SIZE, NULL, bget_one);
1467
1468         ret = block_write_full_page(page, ext4_get_block, wbc);
1469
1470         /*
1471          * The page can become unlocked at any point now, and
1472          * truncate can then come in and change things.  So we
1473          * can't touch *page from now on.  But *page_bufs is
1474          * safe due to elevated refcount.
1475          */
1476
1477         /*
1478          * And attach them to the current transaction.  But only if
1479          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1480          * and generally junk.
1481          */
1482         if (ret == 0) {
1483                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1484                                         NULL, jbd2_journal_dirty_data_fn);
1485                 if (!ret)
1486                         ret = err;
1487         }
1488         walk_page_buffers(handle, page_bufs, 0,
1489                         PAGE_CACHE_SIZE, NULL, bput_one);
1490         err = ext4_journal_stop(handle);
1491         if (!ret)
1492                 ret = err;
1493         return ret;
1494
1495 out_fail:
1496         redirty_page_for_writepage(wbc, page);
1497         unlock_page(page);
1498         return ret;
1499 }
1500
1501 static int ext4_writeback_writepage(struct page *page,
1502                                 struct writeback_control *wbc)
1503 {
1504         struct inode *inode = page->mapping->host;
1505         handle_t *handle = NULL;
1506         int ret = 0;
1507         int err;
1508
1509         if (ext4_journal_current_handle())
1510                 goto out_fail;
1511
1512         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1513         if (IS_ERR(handle)) {
1514                 ret = PTR_ERR(handle);
1515                 goto out_fail;
1516         }
1517
1518         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1519                 ret = nobh_writepage(page, ext4_get_block, wbc);
1520         else
1521                 ret = block_write_full_page(page, ext4_get_block, wbc);
1522
1523         err = ext4_journal_stop(handle);
1524         if (!ret)
1525                 ret = err;
1526         return ret;
1527
1528 out_fail:
1529         redirty_page_for_writepage(wbc, page);
1530         unlock_page(page);
1531         return ret;
1532 }
1533
1534 static int ext4_journalled_writepage(struct page *page,
1535                                 struct writeback_control *wbc)
1536 {
1537         struct inode *inode = page->mapping->host;
1538         handle_t *handle = NULL;
1539         int ret = 0;
1540         int err;
1541
1542         if (ext4_journal_current_handle())
1543                 goto no_write;
1544
1545         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1546         if (IS_ERR(handle)) {
1547                 ret = PTR_ERR(handle);
1548                 goto no_write;
1549         }
1550
1551         if (!page_has_buffers(page) || PageChecked(page)) {
1552                 /*
1553                  * It's mmapped pagecache.  Add buffers and journal it.  There
1554                  * doesn't seem much point in redirtying the page here.
1555                  */
1556                 ClearPageChecked(page);
1557                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1558                                         ext4_get_block);
1559                 if (ret != 0) {
1560                         ext4_journal_stop(handle);
1561                         goto out_unlock;
1562                 }
1563                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1564                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1565
1566                 err = walk_page_buffers(handle, page_buffers(page), 0,
1567                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1568                 if (ret == 0)
1569                         ret = err;
1570                 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1571                 unlock_page(page);
1572         } else {
1573                 /*
1574                  * It may be a page full of checkpoint-mode buffers.  We don't
1575                  * really know unless we go poke around in the buffer_heads.
1576                  * But block_write_full_page will do the right thing.
1577                  */
1578                 ret = block_write_full_page(page, ext4_get_block, wbc);
1579         }
1580         err = ext4_journal_stop(handle);
1581         if (!ret)
1582                 ret = err;
1583 out:
1584         return ret;
1585
1586 no_write:
1587         redirty_page_for_writepage(wbc, page);
1588 out_unlock:
1589         unlock_page(page);
1590         goto out;
1591 }
1592
1593 static int ext4_readpage(struct file *file, struct page *page)
1594 {
1595         return mpage_readpage(page, ext4_get_block);
1596 }
1597
1598 static int
1599 ext4_readpages(struct file *file, struct address_space *mapping,
1600                 struct list_head *pages, unsigned nr_pages)
1601 {
1602         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1603 }
1604
1605 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1606 {
1607         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1608
1609         /*
1610          * If it's a full truncate we just forget about the pending dirtying
1611          */
1612         if (offset == 0)
1613                 ClearPageChecked(page);
1614
1615         jbd2_journal_invalidatepage(journal, page, offset);
1616 }
1617
1618 static int ext4_releasepage(struct page *page, gfp_t wait)
1619 {
1620         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1621
1622         WARN_ON(PageChecked(page));
1623         if (!page_has_buffers(page))
1624                 return 0;
1625         return jbd2_journal_try_to_free_buffers(journal, page, wait);
1626 }
1627
1628 /*
1629  * If the O_DIRECT write will extend the file then add this inode to the
1630  * orphan list.  So recovery will truncate it back to the original size
1631  * if the machine crashes during the write.
1632  *
1633  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1634  * crashes then stale disk data _may_ be exposed inside the file.
1635  */
1636 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1637                         const struct iovec *iov, loff_t offset,
1638                         unsigned long nr_segs)
1639 {
1640         struct file *file = iocb->ki_filp;
1641         struct inode *inode = file->f_mapping->host;
1642         struct ext4_inode_info *ei = EXT4_I(inode);
1643         handle_t *handle = NULL;
1644         ssize_t ret;
1645         int orphan = 0;
1646         size_t count = iov_length(iov, nr_segs);
1647
1648         if (rw == WRITE) {
1649                 loff_t final_size = offset + count;
1650
1651                 handle = ext4_journal_start(inode, DIO_CREDITS);
1652                 if (IS_ERR(handle)) {
1653                         ret = PTR_ERR(handle);
1654                         goto out;
1655                 }
1656                 if (final_size > inode->i_size) {
1657                         ret = ext4_orphan_add(handle, inode);
1658                         if (ret)
1659                                 goto out_stop;
1660                         orphan = 1;
1661                         ei->i_disksize = inode->i_size;
1662                 }
1663         }
1664
1665         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1666                                  offset, nr_segs,
1667                                  ext4_get_block, NULL);
1668
1669         /*
1670          * Reacquire the handle: ext4_get_block() can restart the transaction
1671          */
1672         handle = ext4_journal_current_handle();
1673
1674 out_stop:
1675         if (handle) {
1676                 int err;
1677
1678                 if (orphan && inode->i_nlink)
1679                         ext4_orphan_del(handle, inode);
1680                 if (orphan && ret > 0) {
1681                         loff_t end = offset + ret;
1682                         if (end > inode->i_size) {
1683                                 ei->i_disksize = end;
1684                                 i_size_write(inode, end);
1685                                 /*
1686                                  * We're going to return a positive `ret'
1687                                  * here due to non-zero-length I/O, so there's
1688                                  * no way of reporting error returns from
1689                                  * ext4_mark_inode_dirty() to userspace.  So
1690                                  * ignore it.
1691                                  */
1692                                 ext4_mark_inode_dirty(handle, inode);
1693                         }
1694                 }
1695                 err = ext4_journal_stop(handle);
1696                 if (ret == 0)
1697                         ret = err;
1698         }
1699 out:
1700         return ret;
1701 }
1702
1703 /*
1704  * Pages can be marked dirty completely asynchronously from ext4's journalling
1705  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1706  * much here because ->set_page_dirty is called under VFS locks.  The page is
1707  * not necessarily locked.
1708  *
1709  * We cannot just dirty the page and leave attached buffers clean, because the
1710  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1711  * or jbddirty because all the journalling code will explode.
1712  *
1713  * So what we do is to mark the page "pending dirty" and next time writepage
1714  * is called, propagate that into the buffers appropriately.
1715  */
1716 static int ext4_journalled_set_page_dirty(struct page *page)
1717 {
1718         SetPageChecked(page);
1719         return __set_page_dirty_nobuffers(page);
1720 }
1721
1722 static const struct address_space_operations ext4_ordered_aops = {
1723         .readpage       = ext4_readpage,
1724         .readpages      = ext4_readpages,
1725         .writepage      = ext4_ordered_writepage,
1726         .sync_page      = block_sync_page,
1727         .write_begin    = ext4_write_begin,
1728         .write_end      = ext4_ordered_write_end,
1729         .bmap           = ext4_bmap,
1730         .invalidatepage = ext4_invalidatepage,
1731         .releasepage    = ext4_releasepage,
1732         .direct_IO      = ext4_direct_IO,
1733         .migratepage    = buffer_migrate_page,
1734 };
1735
1736 static const struct address_space_operations ext4_writeback_aops = {
1737         .readpage       = ext4_readpage,
1738         .readpages      = ext4_readpages,
1739         .writepage      = ext4_writeback_writepage,
1740         .sync_page      = block_sync_page,
1741         .write_begin    = ext4_write_begin,
1742         .write_end      = ext4_writeback_write_end,
1743         .bmap           = ext4_bmap,
1744         .invalidatepage = ext4_invalidatepage,
1745         .releasepage    = ext4_releasepage,
1746         .direct_IO      = ext4_direct_IO,
1747         .migratepage    = buffer_migrate_page,
1748 };
1749
1750 static const struct address_space_operations ext4_journalled_aops = {
1751         .readpage       = ext4_readpage,
1752         .readpages      = ext4_readpages,
1753         .writepage      = ext4_journalled_writepage,
1754         .sync_page      = block_sync_page,
1755         .write_begin    = ext4_write_begin,
1756         .write_end      = ext4_journalled_write_end,
1757         .set_page_dirty = ext4_journalled_set_page_dirty,
1758         .bmap           = ext4_bmap,
1759         .invalidatepage = ext4_invalidatepage,
1760         .releasepage    = ext4_releasepage,
1761 };
1762
1763 void ext4_set_aops(struct inode *inode)
1764 {
1765         if (ext4_should_order_data(inode))
1766                 inode->i_mapping->a_ops = &ext4_ordered_aops;
1767         else if (ext4_should_writeback_data(inode))
1768                 inode->i_mapping->a_ops = &ext4_writeback_aops;
1769         else
1770                 inode->i_mapping->a_ops = &ext4_journalled_aops;
1771 }
1772
1773 /*
1774  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1775  * up to the end of the block which corresponds to `from'.
1776  * This required during truncate. We need to physically zero the tail end
1777  * of that block so it doesn't yield old data if the file is later grown.
1778  */
1779 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1780                 struct address_space *mapping, loff_t from)
1781 {
1782         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1783         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1784         unsigned blocksize, length, pos;
1785         ext4_lblk_t iblock;
1786         struct inode *inode = mapping->host;
1787         struct buffer_head *bh;
1788         int err = 0;
1789
1790         blocksize = inode->i_sb->s_blocksize;
1791         length = blocksize - (offset & (blocksize - 1));
1792         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1793
1794         /*
1795          * For "nobh" option,  we can only work if we don't need to
1796          * read-in the page - otherwise we create buffers to do the IO.
1797          */
1798         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1799              ext4_should_writeback_data(inode) && PageUptodate(page)) {
1800                 zero_user_page(page, offset, length, KM_USER0);
1801                 set_page_dirty(page);
1802                 goto unlock;
1803         }
1804
1805         if (!page_has_buffers(page))
1806                 create_empty_buffers(page, blocksize, 0);
1807
1808         /* Find the buffer that contains "offset" */
1809         bh = page_buffers(page);
1810         pos = blocksize;
1811         while (offset >= pos) {
1812                 bh = bh->b_this_page;
1813                 iblock++;
1814                 pos += blocksize;
1815         }
1816
1817         err = 0;
1818         if (buffer_freed(bh)) {
1819                 BUFFER_TRACE(bh, "freed: skip");
1820                 goto unlock;
1821         }
1822
1823         if (!buffer_mapped(bh)) {
1824                 BUFFER_TRACE(bh, "unmapped");
1825                 ext4_get_block(inode, iblock, bh, 0);
1826                 /* unmapped? It's a hole - nothing to do */
1827                 if (!buffer_mapped(bh)) {
1828                         BUFFER_TRACE(bh, "still unmapped");
1829                         goto unlock;
1830                 }
1831         }
1832
1833         /* Ok, it's mapped. Make sure it's up-to-date */
1834         if (PageUptodate(page))
1835                 set_buffer_uptodate(bh);
1836
1837         if (!buffer_uptodate(bh)) {
1838                 err = -EIO;
1839                 ll_rw_block(READ, 1, &bh);
1840                 wait_on_buffer(bh);
1841                 /* Uhhuh. Read error. Complain and punt. */
1842                 if (!buffer_uptodate(bh))
1843                         goto unlock;
1844         }
1845
1846         if (ext4_should_journal_data(inode)) {
1847                 BUFFER_TRACE(bh, "get write access");
1848                 err = ext4_journal_get_write_access(handle, bh);
1849                 if (err)
1850                         goto unlock;
1851         }
1852
1853         zero_user_page(page, offset, length, KM_USER0);
1854
1855         BUFFER_TRACE(bh, "zeroed end of block");
1856
1857         err = 0;
1858         if (ext4_should_journal_data(inode)) {
1859                 err = ext4_journal_dirty_metadata(handle, bh);
1860         } else {
1861                 if (ext4_should_order_data(inode))
1862                         err = ext4_journal_dirty_data(handle, bh);
1863                 mark_buffer_dirty(bh);
1864         }
1865
1866 unlock:
1867         unlock_page(page);
1868         page_cache_release(page);
1869         return err;
1870 }
1871
1872 /*
1873  * Probably it should be a library function... search for first non-zero word
1874  * or memcmp with zero_page, whatever is better for particular architecture.
1875  * Linus?
1876  */
1877 static inline int all_zeroes(__le32 *p, __le32 *q)
1878 {
1879         while (p < q)
1880                 if (*p++)
1881                         return 0;
1882         return 1;
1883 }
1884
1885 /**
1886  *      ext4_find_shared - find the indirect blocks for partial truncation.
1887  *      @inode:   inode in question
1888  *      @depth:   depth of the affected branch
1889  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1890  *      @chain:   place to store the pointers to partial indirect blocks
1891  *      @top:     place to the (detached) top of branch
1892  *
1893  *      This is a helper function used by ext4_truncate().
1894  *
1895  *      When we do truncate() we may have to clean the ends of several
1896  *      indirect blocks but leave the blocks themselves alive. Block is
1897  *      partially truncated if some data below the new i_size is refered
1898  *      from it (and it is on the path to the first completely truncated
1899  *      data block, indeed).  We have to free the top of that path along
1900  *      with everything to the right of the path. Since no allocation
1901  *      past the truncation point is possible until ext4_truncate()
1902  *      finishes, we may safely do the latter, but top of branch may
1903  *      require special attention - pageout below the truncation point
1904  *      might try to populate it.
1905  *
1906  *      We atomically detach the top of branch from the tree, store the
1907  *      block number of its root in *@top, pointers to buffer_heads of
1908  *      partially truncated blocks - in @chain[].bh and pointers to
1909  *      their last elements that should not be removed - in
1910  *      @chain[].p. Return value is the pointer to last filled element
1911  *      of @chain.
1912  *
1913  *      The work left to caller to do the actual freeing of subtrees:
1914  *              a) free the subtree starting from *@top
1915  *              b) free the subtrees whose roots are stored in
1916  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1917  *              c) free the subtrees growing from the inode past the @chain[0].
1918  *                      (no partially truncated stuff there).  */
1919
1920 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1921                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
1922 {
1923         Indirect *partial, *p;
1924         int k, err;
1925
1926         *top = 0;
1927         /* Make k index the deepest non-null offest + 1 */
1928         for (k = depth; k > 1 && !offsets[k-1]; k--)
1929                 ;
1930         partial = ext4_get_branch(inode, k, offsets, chain, &err);
1931         /* Writer: pointers */
1932         if (!partial)
1933                 partial = chain + k-1;
1934         /*
1935          * If the branch acquired continuation since we've looked at it -
1936          * fine, it should all survive and (new) top doesn't belong to us.
1937          */
1938         if (!partial->key && *partial->p)
1939                 /* Writer: end */
1940                 goto no_top;
1941         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1942                 ;
1943         /*
1944          * OK, we've found the last block that must survive. The rest of our
1945          * branch should be detached before unlocking. However, if that rest
1946          * of branch is all ours and does not grow immediately from the inode
1947          * it's easier to cheat and just decrement partial->p.
1948          */
1949         if (p == chain + k - 1 && p > chain) {
1950                 p->p--;
1951         } else {
1952                 *top = *p->p;
1953                 /* Nope, don't do this in ext4.  Must leave the tree intact */
1954 #if 0
1955                 *p->p = 0;
1956 #endif
1957         }
1958         /* Writer: end */
1959
1960         while(partial > p) {
1961                 brelse(partial->bh);
1962                 partial--;
1963         }
1964 no_top:
1965         return partial;
1966 }
1967
1968 /*
1969  * Zero a number of block pointers in either an inode or an indirect block.
1970  * If we restart the transaction we must again get write access to the
1971  * indirect block for further modification.
1972  *
1973  * We release `count' blocks on disk, but (last - first) may be greater
1974  * than `count' because there can be holes in there.
1975  */
1976 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
1977                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
1978                 unsigned long count, __le32 *first, __le32 *last)
1979 {
1980         __le32 *p;
1981         if (try_to_extend_transaction(handle, inode)) {
1982                 if (bh) {
1983                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1984                         ext4_journal_dirty_metadata(handle, bh);
1985                 }
1986                 ext4_mark_inode_dirty(handle, inode);
1987                 ext4_journal_test_restart(handle, inode);
1988                 if (bh) {
1989                         BUFFER_TRACE(bh, "retaking write access");
1990                         ext4_journal_get_write_access(handle, bh);
1991                 }
1992         }
1993
1994         /*
1995          * Any buffers which are on the journal will be in memory. We find
1996          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
1997          * on them.  We've already detached each block from the file, so
1998          * bforget() in jbd2_journal_forget() should be safe.
1999          *
2000          * AKPM: turn on bforget in jbd2_journal_forget()!!!
2001          */
2002         for (p = first; p < last; p++) {
2003                 u32 nr = le32_to_cpu(*p);
2004                 if (nr) {
2005                         struct buffer_head *tbh;
2006
2007                         *p = 0;
2008                         tbh = sb_find_get_block(inode->i_sb, nr);
2009                         ext4_forget(handle, 0, inode, tbh, nr);
2010                 }
2011         }
2012
2013         ext4_free_blocks(handle, inode, block_to_free, count);
2014 }
2015
2016 /**
2017  * ext4_free_data - free a list of data blocks
2018  * @handle:     handle for this transaction
2019  * @inode:      inode we are dealing with
2020  * @this_bh:    indirect buffer_head which contains *@first and *@last
2021  * @first:      array of block numbers
2022  * @last:       points immediately past the end of array
2023  *
2024  * We are freeing all blocks refered from that array (numbers are stored as
2025  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2026  *
2027  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2028  * blocks are contiguous then releasing them at one time will only affect one
2029  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2030  * actually use a lot of journal space.
2031  *
2032  * @this_bh will be %NULL if @first and @last point into the inode's direct
2033  * block pointers.
2034  */
2035 static void ext4_free_data(handle_t *handle, struct inode *inode,
2036                            struct buffer_head *this_bh,
2037                            __le32 *first, __le32 *last)
2038 {
2039         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2040         unsigned long count = 0;            /* Number of blocks in the run */
2041         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2042                                                corresponding to
2043                                                block_to_free */
2044         ext4_fsblk_t nr;                    /* Current block # */
2045         __le32 *p;                          /* Pointer into inode/ind
2046                                                for current block */
2047         int err;
2048
2049         if (this_bh) {                          /* For indirect block */
2050                 BUFFER_TRACE(this_bh, "get_write_access");
2051                 err = ext4_journal_get_write_access(handle, this_bh);
2052                 /* Important: if we can't update the indirect pointers
2053                  * to the blocks, we can't free them. */
2054                 if (err)
2055                         return;
2056         }
2057
2058         for (p = first; p < last; p++) {
2059                 nr = le32_to_cpu(*p);
2060                 if (nr) {
2061                         /* accumulate blocks to free if they're contiguous */
2062                         if (count == 0) {
2063                                 block_to_free = nr;
2064                                 block_to_free_p = p;
2065                                 count = 1;
2066                         } else if (nr == block_to_free + count) {
2067                                 count++;
2068                         } else {
2069                                 ext4_clear_blocks(handle, inode, this_bh,
2070                                                   block_to_free,
2071                                                   count, block_to_free_p, p);
2072                                 block_to_free = nr;
2073                                 block_to_free_p = p;
2074                                 count = 1;
2075                         }
2076                 }
2077         }
2078
2079         if (count > 0)
2080                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2081                                   count, block_to_free_p, p);
2082
2083         if (this_bh) {
2084                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2085                 ext4_journal_dirty_metadata(handle, this_bh);
2086         }
2087 }
2088
2089 /**
2090  *      ext4_free_branches - free an array of branches
2091  *      @handle: JBD handle for this transaction
2092  *      @inode: inode we are dealing with
2093  *      @parent_bh: the buffer_head which contains *@first and *@last
2094  *      @first: array of block numbers
2095  *      @last:  pointer immediately past the end of array
2096  *      @depth: depth of the branches to free
2097  *
2098  *      We are freeing all blocks refered from these branches (numbers are
2099  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2100  *      appropriately.
2101  */
2102 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2103                                struct buffer_head *parent_bh,
2104                                __le32 *first, __le32 *last, int depth)
2105 {
2106         ext4_fsblk_t nr;
2107         __le32 *p;
2108
2109         if (is_handle_aborted(handle))
2110                 return;
2111
2112         if (depth--) {
2113                 struct buffer_head *bh;
2114                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2115                 p = last;
2116                 while (--p >= first) {
2117                         nr = le32_to_cpu(*p);
2118                         if (!nr)
2119                                 continue;               /* A hole */
2120
2121                         /* Go read the buffer for the next level down */
2122                         bh = sb_bread(inode->i_sb, nr);
2123
2124                         /*
2125                          * A read failure? Report error and clear slot
2126                          * (should be rare).
2127                          */
2128                         if (!bh) {
2129                                 ext4_error(inode->i_sb, "ext4_free_branches",
2130                                            "Read failure, inode=%lu, block=%llu",
2131                                            inode->i_ino, nr);
2132                                 continue;
2133                         }
2134
2135                         /* This zaps the entire block.  Bottom up. */
2136                         BUFFER_TRACE(bh, "free child branches");
2137                         ext4_free_branches(handle, inode, bh,
2138                                            (__le32*)bh->b_data,
2139                                            (__le32*)bh->b_data + addr_per_block,
2140                                            depth);
2141
2142                         /*
2143                          * We've probably journalled the indirect block several
2144                          * times during the truncate.  But it's no longer
2145                          * needed and we now drop it from the transaction via
2146                          * jbd2_journal_revoke().
2147                          *
2148                          * That's easy if it's exclusively part of this
2149                          * transaction.  But if it's part of the committing
2150                          * transaction then jbd2_journal_forget() will simply
2151                          * brelse() it.  That means that if the underlying
2152                          * block is reallocated in ext4_get_block(),
2153                          * unmap_underlying_metadata() will find this block
2154                          * and will try to get rid of it.  damn, damn.
2155                          *
2156                          * If this block has already been committed to the
2157                          * journal, a revoke record will be written.  And
2158                          * revoke records must be emitted *before* clearing
2159                          * this block's bit in the bitmaps.
2160                          */
2161                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2162
2163                         /*
2164                          * Everything below this this pointer has been
2165                          * released.  Now let this top-of-subtree go.
2166                          *
2167                          * We want the freeing of this indirect block to be
2168                          * atomic in the journal with the updating of the
2169                          * bitmap block which owns it.  So make some room in
2170                          * the journal.
2171                          *
2172                          * We zero the parent pointer *after* freeing its
2173                          * pointee in the bitmaps, so if extend_transaction()
2174                          * for some reason fails to put the bitmap changes and
2175                          * the release into the same transaction, recovery
2176                          * will merely complain about releasing a free block,
2177                          * rather than leaking blocks.
2178                          */
2179                         if (is_handle_aborted(handle))
2180                                 return;
2181                         if (try_to_extend_transaction(handle, inode)) {
2182                                 ext4_mark_inode_dirty(handle, inode);
2183                                 ext4_journal_test_restart(handle, inode);
2184                         }
2185
2186                         ext4_free_blocks(handle, inode, nr, 1);
2187
2188                         if (parent_bh) {
2189                                 /*
2190                                  * The block which we have just freed is
2191                                  * pointed to by an indirect block: journal it
2192                                  */
2193                                 BUFFER_TRACE(parent_bh, "get_write_access");
2194                                 if (!ext4_journal_get_write_access(handle,
2195                                                                    parent_bh)){
2196                                         *p = 0;
2197                                         BUFFER_TRACE(parent_bh,
2198                                         "call ext4_journal_dirty_metadata");
2199                                         ext4_journal_dirty_metadata(handle,
2200                                                                     parent_bh);
2201                                 }
2202                         }
2203                 }
2204         } else {
2205                 /* We have reached the bottom of the tree. */
2206                 BUFFER_TRACE(parent_bh, "free data blocks");
2207                 ext4_free_data(handle, inode, parent_bh, first, last);
2208         }
2209 }
2210
2211 /*
2212  * ext4_truncate()
2213  *
2214  * We block out ext4_get_block() block instantiations across the entire
2215  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2216  * simultaneously on behalf of the same inode.
2217  *
2218  * As we work through the truncate and commmit bits of it to the journal there
2219  * is one core, guiding principle: the file's tree must always be consistent on
2220  * disk.  We must be able to restart the truncate after a crash.
2221  *
2222  * The file's tree may be transiently inconsistent in memory (although it
2223  * probably isn't), but whenever we close off and commit a journal transaction,
2224  * the contents of (the filesystem + the journal) must be consistent and
2225  * restartable.  It's pretty simple, really: bottom up, right to left (although
2226  * left-to-right works OK too).
2227  *
2228  * Note that at recovery time, journal replay occurs *before* the restart of
2229  * truncate against the orphan inode list.
2230  *
2231  * The committed inode has the new, desired i_size (which is the same as
2232  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2233  * that this inode's truncate did not complete and it will again call
2234  * ext4_truncate() to have another go.  So there will be instantiated blocks
2235  * to the right of the truncation point in a crashed ext4 filesystem.  But
2236  * that's fine - as long as they are linked from the inode, the post-crash
2237  * ext4_truncate() run will find them and release them.
2238  */
2239 void ext4_truncate(struct inode *inode)
2240 {
2241         handle_t *handle;
2242         struct ext4_inode_info *ei = EXT4_I(inode);
2243         __le32 *i_data = ei->i_data;
2244         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2245         struct address_space *mapping = inode->i_mapping;
2246         ext4_lblk_t offsets[4];
2247         Indirect chain[4];
2248         Indirect *partial;
2249         __le32 nr = 0;
2250         int n;
2251         ext4_lblk_t last_block;
2252         unsigned blocksize = inode->i_sb->s_blocksize;
2253         struct page *page;
2254
2255         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2256             S_ISLNK(inode->i_mode)))
2257                 return;
2258         if (ext4_inode_is_fast_symlink(inode))
2259                 return;
2260         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2261                 return;
2262
2263         /*
2264          * We have to lock the EOF page here, because lock_page() nests
2265          * outside jbd2_journal_start().
2266          */
2267         if ((inode->i_size & (blocksize - 1)) == 0) {
2268                 /* Block boundary? Nothing to do */
2269                 page = NULL;
2270         } else {
2271                 page = grab_cache_page(mapping,
2272                                 inode->i_size >> PAGE_CACHE_SHIFT);
2273                 if (!page)
2274                         return;
2275         }
2276
2277         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2278                 ext4_ext_truncate(inode, page);
2279                 return;
2280         }
2281
2282         handle = start_transaction(inode);
2283         if (IS_ERR(handle)) {
2284                 if (page) {
2285                         clear_highpage(page);
2286                         flush_dcache_page(page);
2287                         unlock_page(page);
2288                         page_cache_release(page);
2289                 }
2290                 return;         /* AKPM: return what? */
2291         }
2292
2293         last_block = (inode->i_size + blocksize-1)
2294                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2295
2296         if (page)
2297                 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2298
2299         n = ext4_block_to_path(inode, last_block, offsets, NULL);
2300         if (n == 0)
2301                 goto out_stop;  /* error */
2302
2303         /*
2304          * OK.  This truncate is going to happen.  We add the inode to the
2305          * orphan list, so that if this truncate spans multiple transactions,
2306          * and we crash, we will resume the truncate when the filesystem
2307          * recovers.  It also marks the inode dirty, to catch the new size.
2308          *
2309          * Implication: the file must always be in a sane, consistent
2310          * truncatable state while each transaction commits.
2311          */
2312         if (ext4_orphan_add(handle, inode))
2313                 goto out_stop;
2314
2315         /*
2316          * The orphan list entry will now protect us from any crash which
2317          * occurs before the truncate completes, so it is now safe to propagate
2318          * the new, shorter inode size (held for now in i_size) into the
2319          * on-disk inode. We do this via i_disksize, which is the value which
2320          * ext4 *really* writes onto the disk inode.
2321          */
2322         ei->i_disksize = inode->i_size;
2323
2324         /*
2325          * From here we block out all ext4_get_block() callers who want to
2326          * modify the block allocation tree.
2327          */
2328         mutex_lock(&ei->truncate_mutex);
2329
2330         if (n == 1) {           /* direct blocks */
2331                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2332                                i_data + EXT4_NDIR_BLOCKS);
2333                 goto do_indirects;
2334         }
2335
2336         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2337         /* Kill the top of shared branch (not detached) */
2338         if (nr) {
2339                 if (partial == chain) {
2340                         /* Shared branch grows from the inode */
2341                         ext4_free_branches(handle, inode, NULL,
2342                                            &nr, &nr+1, (chain+n-1) - partial);
2343                         *partial->p = 0;
2344                         /*
2345                          * We mark the inode dirty prior to restart,
2346                          * and prior to stop.  No need for it here.
2347                          */
2348                 } else {
2349                         /* Shared branch grows from an indirect block */
2350                         BUFFER_TRACE(partial->bh, "get_write_access");
2351                         ext4_free_branches(handle, inode, partial->bh,
2352                                         partial->p,
2353                                         partial->p+1, (chain+n-1) - partial);
2354                 }
2355         }
2356         /* Clear the ends of indirect blocks on the shared branch */
2357         while (partial > chain) {
2358                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2359                                    (__le32*)partial->bh->b_data+addr_per_block,
2360                                    (chain+n-1) - partial);
2361                 BUFFER_TRACE(partial->bh, "call brelse");
2362                 brelse (partial->bh);
2363                 partial--;
2364         }
2365 do_indirects:
2366         /* Kill the remaining (whole) subtrees */
2367         switch (offsets[0]) {
2368         default:
2369                 nr = i_data[EXT4_IND_BLOCK];
2370                 if (nr) {
2371                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2372                         i_data[EXT4_IND_BLOCK] = 0;
2373                 }
2374         case EXT4_IND_BLOCK:
2375                 nr = i_data[EXT4_DIND_BLOCK];
2376                 if (nr) {
2377                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2378                         i_data[EXT4_DIND_BLOCK] = 0;
2379                 }
2380         case EXT4_DIND_BLOCK:
2381                 nr = i_data[EXT4_TIND_BLOCK];
2382                 if (nr) {
2383                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2384                         i_data[EXT4_TIND_BLOCK] = 0;
2385                 }
2386         case EXT4_TIND_BLOCK:
2387                 ;
2388         }
2389
2390         ext4_discard_reservation(inode);
2391
2392         mutex_unlock(&ei->truncate_mutex);
2393         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2394         ext4_mark_inode_dirty(handle, inode);
2395
2396         /*
2397          * In a multi-transaction truncate, we only make the final transaction
2398          * synchronous
2399          */
2400         if (IS_SYNC(inode))
2401                 handle->h_sync = 1;
2402 out_stop:
2403         /*
2404          * If this was a simple ftruncate(), and the file will remain alive
2405          * then we need to clear up the orphan record which we created above.
2406          * However, if this was a real unlink then we were called by
2407          * ext4_delete_inode(), and we allow that function to clean up the
2408          * orphan info for us.
2409          */
2410         if (inode->i_nlink)
2411                 ext4_orphan_del(handle, inode);
2412
2413         ext4_journal_stop(handle);
2414 }
2415
2416 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2417                 unsigned long ino, struct ext4_iloc *iloc)
2418 {
2419         unsigned long desc, group_desc;
2420         ext4_group_t block_group;
2421         unsigned long offset;
2422         ext4_fsblk_t block;
2423         struct buffer_head *bh;
2424         struct ext4_group_desc * gdp;
2425
2426         if (!ext4_valid_inum(sb, ino)) {
2427                 /*
2428                  * This error is already checked for in namei.c unless we are
2429                  * looking at an NFS filehandle, in which case no error
2430                  * report is needed
2431                  */
2432                 return 0;
2433         }
2434
2435         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2436         if (block_group >= EXT4_SB(sb)->s_groups_count) {
2437                 ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2438                 return 0;
2439         }
2440         smp_rmb();
2441         group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2442         desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2443         bh = EXT4_SB(sb)->s_group_desc[group_desc];
2444         if (!bh) {
2445                 ext4_error (sb, "ext4_get_inode_block",
2446                             "Descriptor not loaded");
2447                 return 0;
2448         }
2449
2450         gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2451                 desc * EXT4_DESC_SIZE(sb));
2452         /*
2453          * Figure out the offset within the block group inode table
2454          */
2455         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2456                 EXT4_INODE_SIZE(sb);
2457         block = ext4_inode_table(sb, gdp) +
2458                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2459
2460         iloc->block_group = block_group;
2461         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2462         return block;
2463 }
2464
2465 /*
2466  * ext4_get_inode_loc returns with an extra refcount against the inode's
2467  * underlying buffer_head on success. If 'in_mem' is true, we have all
2468  * data in memory that is needed to recreate the on-disk version of this
2469  * inode.
2470  */
2471 static int __ext4_get_inode_loc(struct inode *inode,
2472                                 struct ext4_iloc *iloc, int in_mem)
2473 {
2474         ext4_fsblk_t block;
2475         struct buffer_head *bh;
2476
2477         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2478         if (!block)
2479                 return -EIO;
2480
2481         bh = sb_getblk(inode->i_sb, block);
2482         if (!bh) {
2483                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
2484                                 "unable to read inode block - "
2485                                 "inode=%lu, block=%llu",
2486                                  inode->i_ino, block);
2487                 return -EIO;
2488         }
2489         if (!buffer_uptodate(bh)) {
2490                 lock_buffer(bh);
2491                 if (buffer_uptodate(bh)) {
2492                         /* someone brought it uptodate while we waited */
2493                         unlock_buffer(bh);
2494                         goto has_buffer;
2495                 }
2496
2497                 /*
2498                  * If we have all information of the inode in memory and this
2499                  * is the only valid inode in the block, we need not read the
2500                  * block.
2501                  */
2502                 if (in_mem) {
2503                         struct buffer_head *bitmap_bh;
2504                         struct ext4_group_desc *desc;
2505                         int inodes_per_buffer;
2506                         int inode_offset, i;
2507                         ext4_group_t block_group;
2508                         int start;
2509
2510                         block_group = (inode->i_ino - 1) /
2511                                         EXT4_INODES_PER_GROUP(inode->i_sb);
2512                         inodes_per_buffer = bh->b_size /
2513                                 EXT4_INODE_SIZE(inode->i_sb);
2514                         inode_offset = ((inode->i_ino - 1) %
2515                                         EXT4_INODES_PER_GROUP(inode->i_sb));
2516                         start = inode_offset & ~(inodes_per_buffer - 1);
2517
2518                         /* Is the inode bitmap in cache? */
2519                         desc = ext4_get_group_desc(inode->i_sb,
2520                                                 block_group, NULL);
2521                         if (!desc)
2522                                 goto make_io;
2523
2524                         bitmap_bh = sb_getblk(inode->i_sb,
2525                                 ext4_inode_bitmap(inode->i_sb, desc));
2526                         if (!bitmap_bh)
2527                                 goto make_io;
2528
2529                         /*
2530                          * If the inode bitmap isn't in cache then the
2531                          * optimisation may end up performing two reads instead
2532                          * of one, so skip it.
2533                          */
2534                         if (!buffer_uptodate(bitmap_bh)) {
2535                                 brelse(bitmap_bh);
2536                                 goto make_io;
2537                         }
2538                         for (i = start; i < start + inodes_per_buffer; i++) {
2539                                 if (i == inode_offset)
2540                                         continue;
2541                                 if (ext4_test_bit(i, bitmap_bh->b_data))
2542                                         break;
2543                         }
2544                         brelse(bitmap_bh);
2545                         if (i == start + inodes_per_buffer) {
2546                                 /* all other inodes are free, so skip I/O */
2547                                 memset(bh->b_data, 0, bh->b_size);
2548                                 set_buffer_uptodate(bh);
2549                                 unlock_buffer(bh);
2550                                 goto has_buffer;
2551                         }
2552                 }
2553
2554 make_io:
2555                 /*
2556                  * There are other valid inodes in the buffer, this inode
2557                  * has in-inode xattrs, or we don't have this inode in memory.
2558                  * Read the block from disk.
2559                  */
2560                 get_bh(bh);
2561                 bh->b_end_io = end_buffer_read_sync;
2562                 submit_bh(READ_META, bh);
2563                 wait_on_buffer(bh);
2564                 if (!buffer_uptodate(bh)) {
2565                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
2566                                         "unable to read inode block - "
2567                                         "inode=%lu, block=%llu",
2568                                         inode->i_ino, block);
2569                         brelse(bh);
2570                         return -EIO;
2571                 }
2572         }
2573 has_buffer:
2574         iloc->bh = bh;
2575         return 0;
2576 }
2577
2578 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2579 {
2580         /* We have all inode data except xattrs in memory here. */
2581         return __ext4_get_inode_loc(inode, iloc,
2582                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2583 }
2584
2585 void ext4_set_inode_flags(struct inode *inode)
2586 {
2587         unsigned int flags = EXT4_I(inode)->i_flags;
2588
2589         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2590         if (flags & EXT4_SYNC_FL)
2591                 inode->i_flags |= S_SYNC;
2592         if (flags & EXT4_APPEND_FL)
2593                 inode->i_flags |= S_APPEND;
2594         if (flags & EXT4_IMMUTABLE_FL)
2595                 inode->i_flags |= S_IMMUTABLE;
2596         if (flags & EXT4_NOATIME_FL)
2597                 inode->i_flags |= S_NOATIME;
2598         if (flags & EXT4_DIRSYNC_FL)
2599                 inode->i_flags |= S_DIRSYNC;
2600 }
2601
2602 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2603 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2604 {
2605         unsigned int flags = ei->vfs_inode.i_flags;
2606
2607         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2608                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2609         if (flags & S_SYNC)
2610                 ei->i_flags |= EXT4_SYNC_FL;
2611         if (flags & S_APPEND)
2612                 ei->i_flags |= EXT4_APPEND_FL;
2613         if (flags & S_IMMUTABLE)
2614                 ei->i_flags |= EXT4_IMMUTABLE_FL;
2615         if (flags & S_NOATIME)
2616                 ei->i_flags |= EXT4_NOATIME_FL;
2617         if (flags & S_DIRSYNC)
2618                 ei->i_flags |= EXT4_DIRSYNC_FL;
2619 }
2620 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2621                                         struct ext4_inode_info *ei)
2622 {
2623         blkcnt_t i_blocks ;
2624         struct inode *inode = &(ei->vfs_inode);
2625         struct super_block *sb = inode->i_sb;
2626
2627         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2628                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2629                 /* we are using combined 48 bit field */
2630                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2631                                         le32_to_cpu(raw_inode->i_blocks_lo);
2632                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2633                         /* i_blocks represent file system block size */
2634                         return i_blocks  << (inode->i_blkbits - 9);
2635                 } else {
2636                         return i_blocks;
2637                 }
2638         } else {
2639                 return le32_to_cpu(raw_inode->i_blocks_lo);
2640         }
2641 }
2642
2643 void ext4_read_inode(struct inode * inode)
2644 {
2645         struct ext4_iloc iloc;
2646         struct ext4_inode *raw_inode;
2647         struct ext4_inode_info *ei = EXT4_I(inode);
2648         struct buffer_head *bh;
2649         int block;
2650
2651 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2652         ei->i_acl = EXT4_ACL_NOT_CACHED;
2653         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2654 #endif
2655         ei->i_block_alloc_info = NULL;
2656
2657         if (__ext4_get_inode_loc(inode, &iloc, 0))
2658                 goto bad_inode;
2659         bh = iloc.bh;
2660         raw_inode = ext4_raw_inode(&iloc);
2661         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2662         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2663         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2664         if(!(test_opt (inode->i_sb, NO_UID32))) {
2665                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2666                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2667         }
2668         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2669
2670         ei->i_state = 0;
2671         ei->i_dir_start_lookup = 0;
2672         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2673         /* We now have enough fields to check if the inode was active or not.
2674          * This is needed because nfsd might try to access dead inodes
2675          * the test is that same one that e2fsck uses
2676          * NeilBrown 1999oct15
2677          */
2678         if (inode->i_nlink == 0) {
2679                 if (inode->i_mode == 0 ||
2680                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2681                         /* this inode is deleted */
2682                         brelse (bh);
2683                         goto bad_inode;
2684                 }
2685                 /* The only unlinked inodes we let through here have
2686                  * valid i_mode and are being read by the orphan
2687                  * recovery code: that's fine, we're about to complete
2688                  * the process of deleting those. */
2689         }
2690         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2691         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2692         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2693         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2694             cpu_to_le32(EXT4_OS_HURD)) {
2695                 ei->i_file_acl |=
2696                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2697         }
2698         inode->i_size = ext4_isize(raw_inode);
2699         ei->i_disksize = inode->i_size;
2700         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2701         ei->i_block_group = iloc.block_group;
2702         /*
2703          * NOTE! The in-memory inode i_data array is in little-endian order
2704          * even on big-endian machines: we do NOT byteswap the block numbers!
2705          */
2706         for (block = 0; block < EXT4_N_BLOCKS; block++)
2707                 ei->i_data[block] = raw_inode->i_block[block];
2708         INIT_LIST_HEAD(&ei->i_orphan);
2709
2710         if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
2711             EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2712                 /*
2713                  * When mke2fs creates big inodes it does not zero out
2714                  * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2715                  * so ignore those first few inodes.
2716                  */
2717                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2718                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2719                     EXT4_INODE_SIZE(inode->i_sb)) {
2720                         brelse (bh);
2721                         goto bad_inode;
2722                 }
2723                 if (ei->i_extra_isize == 0) {
2724                         /* The extra space is currently unused. Use it. */
2725                         ei->i_extra_isize = sizeof(struct ext4_inode) -
2726                                             EXT4_GOOD_OLD_INODE_SIZE;
2727                 } else {
2728                         __le32 *magic = (void *)raw_inode +
2729                                         EXT4_GOOD_OLD_INODE_SIZE +
2730                                         ei->i_extra_isize;
2731                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2732                                  ei->i_state |= EXT4_STATE_XATTR;
2733                 }
2734         } else
2735                 ei->i_extra_isize = 0;
2736
2737         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2738         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2739         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2740         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2741
2742         if (S_ISREG(inode->i_mode)) {
2743                 inode->i_op = &ext4_file_inode_operations;
2744                 inode->i_fop = &ext4_file_operations;
2745                 ext4_set_aops(inode);
2746         } else if (S_ISDIR(inode->i_mode)) {
2747                 inode->i_op = &ext4_dir_inode_operations;
2748                 inode->i_fop = &ext4_dir_operations;
2749         } else if (S_ISLNK(inode->i_mode)) {
2750                 if (ext4_inode_is_fast_symlink(inode))
2751                         inode->i_op = &ext4_fast_symlink_inode_operations;
2752                 else {
2753                         inode->i_op = &ext4_symlink_inode_operations;
2754                         ext4_set_aops(inode);
2755                 }
2756         } else {
2757                 inode->i_op = &ext4_special_inode_operations;
2758                 if (raw_inode->i_block[0])
2759                         init_special_inode(inode, inode->i_mode,
2760                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2761                 else
2762                         init_special_inode(inode, inode->i_mode,
2763                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2764         }
2765         brelse (iloc.bh);
2766         ext4_set_inode_flags(inode);
2767         return;
2768
2769 bad_inode:
2770         make_bad_inode(inode);
2771         return;
2772 }
2773
2774 static int ext4_inode_blocks_set(handle_t *handle,
2775                                 struct ext4_inode *raw_inode,
2776                                 struct ext4_inode_info *ei)
2777 {
2778         struct inode *inode = &(ei->vfs_inode);
2779         u64 i_blocks = inode->i_blocks;
2780         struct super_block *sb = inode->i_sb;
2781         int err = 0;
2782
2783         if (i_blocks <= ~0U) {
2784                 /*
2785                  * i_blocks can be represnted in a 32 bit variable
2786                  * as multiple of 512 bytes
2787                  */
2788                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2789                 raw_inode->i_blocks_high = 0;
2790                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2791         } else if (i_blocks <= 0xffffffffffffULL) {
2792                 /*
2793                  * i_blocks can be represented in a 48 bit variable
2794                  * as multiple of 512 bytes
2795                  */
2796                 err = ext4_update_rocompat_feature(handle, sb,
2797                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2798                 if (err)
2799                         goto  err_out;
2800                 /* i_block is stored in the split  48 bit fields */
2801                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2802                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2803                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2804         } else {
2805                 /*
2806                  * i_blocks should be represented in a 48 bit variable
2807                  * as multiple of  file system block size
2808                  */
2809                 err = ext4_update_rocompat_feature(handle, sb,
2810                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2811                 if (err)
2812                         goto  err_out;
2813                 ei->i_flags |= EXT4_HUGE_FILE_FL;
2814                 /* i_block is stored in file system block size */
2815                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2816                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2817                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2818         }
2819 err_out:
2820         return err;
2821 }
2822
2823 /*
2824  * Post the struct inode info into an on-disk inode location in the
2825  * buffer-cache.  This gobbles the caller's reference to the
2826  * buffer_head in the inode location struct.
2827  *
2828  * The caller must have write access to iloc->bh.
2829  */
2830 static int ext4_do_update_inode(handle_t *handle,
2831                                 struct inode *inode,
2832                                 struct ext4_iloc *iloc)
2833 {
2834         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2835         struct ext4_inode_info *ei = EXT4_I(inode);
2836         struct buffer_head *bh = iloc->bh;
2837         int err = 0, rc, block;
2838
2839         /* For fields not not tracking in the in-memory inode,
2840          * initialise them to zero for new inodes. */
2841         if (ei->i_state & EXT4_STATE_NEW)
2842                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2843
2844         ext4_get_inode_flags(ei);
2845         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2846         if(!(test_opt(inode->i_sb, NO_UID32))) {
2847                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2848                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2849 /*
2850  * Fix up interoperability with old kernels. Otherwise, old inodes get
2851  * re-used with the upper 16 bits of the uid/gid intact
2852  */
2853                 if(!ei->i_dtime) {
2854                         raw_inode->i_uid_high =
2855                                 cpu_to_le16(high_16_bits(inode->i_uid));
2856                         raw_inode->i_gid_high =
2857                                 cpu_to_le16(high_16_bits(inode->i_gid));
2858                 } else {
2859                         raw_inode->i_uid_high = 0;
2860                         raw_inode->i_gid_high = 0;
2861                 }
2862         } else {
2863                 raw_inode->i_uid_low =
2864                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
2865                 raw_inode->i_gid_low =
2866                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
2867                 raw_inode->i_uid_high = 0;
2868                 raw_inode->i_gid_high = 0;
2869         }
2870         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2871
2872         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2873         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2874         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2875         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2876
2877         if (ext4_inode_blocks_set(handle, raw_inode, ei))
2878                 goto out_brelse;
2879         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2880         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2881         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2882             cpu_to_le32(EXT4_OS_HURD))
2883                 raw_inode->i_file_acl_high =
2884                         cpu_to_le16(ei->i_file_acl >> 32);
2885         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2886         ext4_isize_set(raw_inode, ei->i_disksize);
2887         if (ei->i_disksize > 0x7fffffffULL) {
2888                 struct super_block *sb = inode->i_sb;
2889                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2890                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2891                                 EXT4_SB(sb)->s_es->s_rev_level ==
2892                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2893                         /* If this is the first large file
2894                          * created, add a flag to the superblock.
2895                          */
2896                         err = ext4_journal_get_write_access(handle,
2897                                         EXT4_SB(sb)->s_sbh);
2898                         if (err)
2899                                 goto out_brelse;
2900                         ext4_update_dynamic_rev(sb);
2901                         EXT4_SET_RO_COMPAT_FEATURE(sb,
2902                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2903                         sb->s_dirt = 1;
2904                         handle->h_sync = 1;
2905                         err = ext4_journal_dirty_metadata(handle,
2906                                         EXT4_SB(sb)->s_sbh);
2907                 }
2908         }
2909         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2910         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2911                 if (old_valid_dev(inode->i_rdev)) {
2912                         raw_inode->i_block[0] =
2913                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
2914                         raw_inode->i_block[1] = 0;
2915                 } else {
2916                         raw_inode->i_block[0] = 0;
2917                         raw_inode->i_block[1] =
2918                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
2919                         raw_inode->i_block[2] = 0;
2920                 }
2921         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
2922                 raw_inode->i_block[block] = ei->i_data[block];
2923
2924         if (ei->i_extra_isize)
2925                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2926
2927         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2928         rc = ext4_journal_dirty_metadata(handle, bh);
2929         if (!err)
2930                 err = rc;
2931         ei->i_state &= ~EXT4_STATE_NEW;
2932
2933 out_brelse:
2934         brelse (bh);
2935         ext4_std_error(inode->i_sb, err);
2936         return err;
2937 }
2938
2939 /*
2940  * ext4_write_inode()
2941  *
2942  * We are called from a few places:
2943  *
2944  * - Within generic_file_write() for O_SYNC files.
2945  *   Here, there will be no transaction running. We wait for any running
2946  *   trasnaction to commit.
2947  *
2948  * - Within sys_sync(), kupdate and such.
2949  *   We wait on commit, if tol to.
2950  *
2951  * - Within prune_icache() (PF_MEMALLOC == true)
2952  *   Here we simply return.  We can't afford to block kswapd on the
2953  *   journal commit.
2954  *
2955  * In all cases it is actually safe for us to return without doing anything,
2956  * because the inode has been copied into a raw inode buffer in
2957  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
2958  * knfsd.
2959  *
2960  * Note that we are absolutely dependent upon all inode dirtiers doing the
2961  * right thing: they *must* call mark_inode_dirty() after dirtying info in
2962  * which we are interested.
2963  *
2964  * It would be a bug for them to not do this.  The code:
2965  *
2966  *      mark_inode_dirty(inode)
2967  *      stuff();
2968  *      inode->i_size = expr;
2969  *
2970  * is in error because a kswapd-driven write_inode() could occur while
2971  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
2972  * will no longer be on the superblock's dirty inode list.
2973  */
2974 int ext4_write_inode(struct inode *inode, int wait)
2975 {
2976         if (current->flags & PF_MEMALLOC)
2977                 return 0;
2978
2979         if (ext4_journal_current_handle()) {
2980                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
2981                 dump_stack();
2982                 return -EIO;
2983         }
2984
2985         if (!wait)
2986                 return 0;
2987
2988         return ext4_force_commit(inode->i_sb);
2989 }
2990
2991 /*
2992  * ext4_setattr()
2993  *
2994  * Called from notify_change.
2995  *
2996  * We want to trap VFS attempts to truncate the file as soon as
2997  * possible.  In particular, we want to make sure that when the VFS
2998  * shrinks i_size, we put the inode on the orphan list and modify
2999  * i_disksize immediately, so that during the subsequent flushing of
3000  * dirty pages and freeing of disk blocks, we can guarantee that any
3001  * commit will leave the blocks being flushed in an unused state on
3002  * disk.  (On recovery, the inode will get truncated and the blocks will
3003  * be freed, so we have a strong guarantee that no future commit will
3004  * leave these blocks visible to the user.)
3005  *
3006  * Called with inode->sem down.
3007  */
3008 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3009 {
3010         struct inode *inode = dentry->d_inode;
3011         int error, rc = 0;
3012         const unsigned int ia_valid = attr->ia_valid;
3013
3014         error = inode_change_ok(inode, attr);
3015         if (error)
3016                 return error;
3017
3018         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3019                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3020                 handle_t *handle;
3021
3022                 /* (user+group)*(old+new) structure, inode write (sb,
3023                  * inode block, ? - but truncate inode update has it) */
3024                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3025                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3026                 if (IS_ERR(handle)) {
3027                         error = PTR_ERR(handle);
3028                         goto err_out;
3029                 }
3030                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3031                 if (error) {
3032                         ext4_journal_stop(handle);
3033                         return error;
3034                 }
3035                 /* Update corresponding info in inode so that everything is in
3036                  * one transaction */
3037                 if (attr->ia_valid & ATTR_UID)
3038                         inode->i_uid = attr->ia_uid;
3039                 if (attr->ia_valid & ATTR_GID)
3040                         inode->i_gid = attr->ia_gid;
3041                 error = ext4_mark_inode_dirty(handle, inode);
3042                 ext4_journal_stop(handle);
3043         }
3044
3045         if (attr->ia_valid & ATTR_SIZE) {
3046                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3047                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3048
3049                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3050                                 error = -EFBIG;
3051                                 goto err_out;
3052                         }
3053                 }
3054         }
3055
3056         if (S_ISREG(inode->i_mode) &&
3057             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3058                 handle_t *handle;
3059
3060                 handle = ext4_journal_start(inode, 3);
3061                 if (IS_ERR(handle)) {
3062                         error = PTR_ERR(handle);
3063                         goto err_out;
3064                 }
3065
3066                 error = ext4_orphan_add(handle, inode);
3067                 EXT4_I(inode)->i_disksize = attr->ia_size;
3068                 rc = ext4_mark_inode_dirty(handle, inode);
3069                 if (!error)
3070                         error = rc;
3071                 ext4_journal_stop(handle);
3072         }
3073
3074         rc = inode_setattr(inode, attr);
3075
3076         /* If inode_setattr's call to ext4_truncate failed to get a
3077          * transaction handle at all, we need to clean up the in-core
3078          * orphan list manually. */
3079         if (inode->i_nlink)
3080                 ext4_orphan_del(NULL, inode);
3081
3082         if (!rc && (ia_valid & ATTR_MODE))
3083                 rc = ext4_acl_chmod(inode);
3084
3085 err_out:
3086         ext4_std_error(inode->i_sb, error);
3087         if (!error)
3088                 error = rc;
3089         return error;
3090 }
3091
3092
3093 /*
3094  * How many blocks doth make a writepage()?
3095  *
3096  * With N blocks per page, it may be:
3097  * N data blocks
3098  * 2 indirect block
3099  * 2 dindirect
3100  * 1 tindirect
3101  * N+5 bitmap blocks (from the above)
3102  * N+5 group descriptor summary blocks
3103  * 1 inode block
3104  * 1 superblock.
3105  * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3106  *
3107  * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3108  *
3109  * With ordered or writeback data it's the same, less the N data blocks.
3110  *
3111  * If the inode's direct blocks can hold an integral number of pages then a
3112  * page cannot straddle two indirect blocks, and we can only touch one indirect
3113  * and dindirect block, and the "5" above becomes "3".
3114  *
3115  * This still overestimates under most circumstances.  If we were to pass the
3116  * start and end offsets in here as well we could do block_to_path() on each
3117  * block and work out the exact number of indirects which are touched.  Pah.
3118  */
3119
3120 int ext4_writepage_trans_blocks(struct inode *inode)
3121 {
3122         int bpp = ext4_journal_blocks_per_page(inode);
3123         int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3124         int ret;
3125
3126         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3127                 return ext4_ext_writepage_trans_blocks(inode, bpp);
3128
3129         if (ext4_should_journal_data(inode))
3130                 ret = 3 * (bpp + indirects) + 2;
3131         else
3132                 ret = 2 * (bpp + indirects) + 2;
3133
3134 #ifdef CONFIG_QUOTA
3135         /* We know that structure was already allocated during DQUOT_INIT so
3136          * we will be updating only the data blocks + inodes */
3137         ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3138 #endif
3139
3140         return ret;
3141 }
3142
3143 /*
3144  * The caller must have previously called ext4_reserve_inode_write().
3145  * Give this, we know that the caller already has write access to iloc->bh.
3146  */
3147 int ext4_mark_iloc_dirty(handle_t *handle,
3148                 struct inode *inode, struct ext4_iloc *iloc)
3149 {
3150         int err = 0;
3151
3152         /* the do_update_inode consumes one bh->b_count */
3153         get_bh(iloc->bh);
3154
3155         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3156         err = ext4_do_update_inode(handle, inode, iloc);
3157         put_bh(iloc->bh);
3158         return err;
3159 }
3160
3161 /*
3162  * On success, We end up with an outstanding reference count against
3163  * iloc->bh.  This _must_ be cleaned up later.
3164  */
3165
3166 int
3167 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3168                          struct ext4_iloc *iloc)
3169 {
3170         int err = 0;
3171         if (handle) {
3172                 err = ext4_get_inode_loc(inode, iloc);
3173                 if (!err) {
3174                         BUFFER_TRACE(iloc->bh, "get_write_access");
3175                         err = ext4_journal_get_write_access(handle, iloc->bh);
3176                         if (err) {
3177                                 brelse(iloc->bh);
3178                                 iloc->bh = NULL;
3179                         }
3180                 }
3181         }
3182         ext4_std_error(inode->i_sb, err);
3183         return err;
3184 }
3185
3186 /*
3187  * Expand an inode by new_extra_isize bytes.
3188  * Returns 0 on success or negative error number on failure.
3189  */
3190 static int ext4_expand_extra_isize(struct inode *inode,
3191                                    unsigned int new_extra_isize,
3192                                    struct ext4_iloc iloc,
3193                                    handle_t *handle)
3194 {
3195         struct ext4_inode *raw_inode;
3196         struct ext4_xattr_ibody_header *header;
3197         struct ext4_xattr_entry *entry;
3198
3199         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3200                 return 0;
3201
3202         raw_inode = ext4_raw_inode(&iloc);
3203
3204         header = IHDR(inode, raw_inode);
3205         entry = IFIRST(header);
3206
3207         /* No extended attributes present */
3208         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3209                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3210                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3211                         new_extra_isize);
3212                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3213                 return 0;
3214         }
3215
3216         /* try to expand with EAs present */
3217         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3218                                           raw_inode, handle);
3219 }
3220
3221 /*
3222  * What we do here is to mark the in-core inode as clean with respect to inode
3223  * dirtiness (it may still be data-dirty).
3224  * This means that the in-core inode may be reaped by prune_icache
3225  * without having to perform any I/O.  This is a very good thing,
3226  * because *any* task may call prune_icache - even ones which
3227  * have a transaction open against a different journal.
3228  *
3229  * Is this cheating?  Not really.  Sure, we haven't written the
3230  * inode out, but prune_icache isn't a user-visible syncing function.
3231  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3232  * we start and wait on commits.
3233  *
3234  * Is this efficient/effective?  Well, we're being nice to the system
3235  * by cleaning up our inodes proactively so they can be reaped
3236  * without I/O.  But we are potentially leaving up to five seconds'
3237  * worth of inodes floating about which prune_icache wants us to
3238  * write out.  One way to fix that would be to get prune_icache()
3239  * to do a write_super() to free up some memory.  It has the desired
3240  * effect.
3241  */
3242 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3243 {
3244         struct ext4_iloc iloc;
3245         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3246         static unsigned int mnt_count;
3247         int err, ret;
3248
3249         might_sleep();
3250         err = ext4_reserve_inode_write(handle, inode, &iloc);
3251         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3252             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3253                 /*
3254                  * We need extra buffer credits since we may write into EA block
3255                  * with this same handle. If journal_extend fails, then it will
3256                  * only result in a minor loss of functionality for that inode.
3257                  * If this is felt to be critical, then e2fsck should be run to
3258                  * force a large enough s_min_extra_isize.
3259                  */
3260                 if ((jbd2_journal_extend(handle,
3261                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3262                         ret = ext4_expand_extra_isize(inode,
3263                                                       sbi->s_want_extra_isize,
3264                                                       iloc, handle);
3265                         if (ret) {
3266                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3267                                 if (mnt_count !=
3268                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
3269                                         ext4_warning(inode->i_sb, __FUNCTION__,
3270                                         "Unable to expand inode %lu. Delete"
3271                                         " some EAs or run e2fsck.",
3272                                         inode->i_ino);
3273                                         mnt_count =
3274                                           le16_to_cpu(sbi->s_es->s_mnt_count);
3275                                 }
3276                         }
3277                 }
3278         }
3279         if (!err)
3280                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3281         return err;
3282 }
3283
3284 /*
3285  * ext4_dirty_inode() is called from __mark_inode_dirty()
3286  *
3287  * We're really interested in the case where a file is being extended.
3288  * i_size has been changed by generic_commit_write() and we thus need
3289  * to include the updated inode in the current transaction.
3290  *
3291  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3292  * are allocated to the file.
3293  *
3294  * If the inode is marked synchronous, we don't honour that here - doing
3295  * so would cause a commit on atime updates, which we don't bother doing.
3296  * We handle synchronous inodes at the highest possible level.
3297  */
3298 void ext4_dirty_inode(struct inode *inode)
3299 {
3300         handle_t *current_handle = ext4_journal_current_handle();
3301         handle_t *handle;
3302
3303         handle = ext4_journal_start(inode, 2);
3304         if (IS_ERR(handle))
3305                 goto out;
3306         if (current_handle &&
3307                 current_handle->h_transaction != handle->h_transaction) {
3308                 /* This task has a transaction open against a different fs */
3309                 printk(KERN_EMERG "%s: transactions do not match!\n",
3310                        __FUNCTION__);
3311         } else {
3312                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3313                                 current_handle);
3314                 ext4_mark_inode_dirty(handle, inode);
3315         }
3316         ext4_journal_stop(handle);
3317 out:
3318         return;
3319 }
3320
3321 #if 0
3322 /*
3323  * Bind an inode's backing buffer_head into this transaction, to prevent
3324  * it from being flushed to disk early.  Unlike
3325  * ext4_reserve_inode_write, this leaves behind no bh reference and
3326  * returns no iloc structure, so the caller needs to repeat the iloc
3327  * lookup to mark the inode dirty later.
3328  */
3329 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3330 {
3331         struct ext4_iloc iloc;
3332
3333         int err = 0;
3334         if (handle) {
3335                 err = ext4_get_inode_loc(inode, &iloc);
3336                 if (!err) {
3337                         BUFFER_TRACE(iloc.bh, "get_write_access");
3338                         err = jbd2_journal_get_write_access(handle, iloc.bh);
3339                         if (!err)
3340                                 err = ext4_journal_dirty_metadata(handle,
3341                                                                   iloc.bh);
3342                         brelse(iloc.bh);
3343                 }
3344         }
3345         ext4_std_error(inode->i_sb, err);
3346         return err;
3347 }
3348 #endif
3349
3350 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3351 {
3352         journal_t *journal;
3353         handle_t *handle;
3354         int err;
3355
3356         /*
3357          * We have to be very careful here: changing a data block's
3358          * journaling status dynamically is dangerous.  If we write a
3359          * data block to the journal, change the status and then delete
3360          * that block, we risk forgetting to revoke the old log record
3361          * from the journal and so a subsequent replay can corrupt data.
3362          * So, first we make sure that the journal is empty and that
3363          * nobody is changing anything.
3364          */
3365
3366         journal = EXT4_JOURNAL(inode);
3367         if (is_journal_aborted(journal))
3368                 return -EROFS;
3369
3370         jbd2_journal_lock_updates(journal);
3371         jbd2_journal_flush(journal);
3372
3373         /*
3374          * OK, there are no updates running now, and all cached data is
3375          * synced to disk.  We are now in a completely consistent state
3376          * which doesn't have anything in the journal, and we know that
3377          * no filesystem updates are running, so it is safe to modify
3378          * the inode's in-core data-journaling state flag now.
3379          */
3380
3381         if (val)
3382                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3383         else
3384                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3385         ext4_set_aops(inode);
3386
3387         jbd2_journal_unlock_updates(journal);
3388
3389         /* Finally we can mark the inode as dirty. */
3390
3391         handle = ext4_journal_start(inode, 1);
3392         if (IS_ERR(handle))
3393                 return PTR_ERR(handle);
3394
3395         err = ext4_mark_inode_dirty(handle, inode);
3396         handle->h_sync = 1;
3397         ext4_journal_stop(handle);
3398         ext4_std_error(inode->i_sb, err);
3399
3400         return err;
3401 }