ext4: Use tag dirty lookup during mpage_da_submit_io
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 #define MPAGE_DA_EXTENT_TAIL 0x01
45
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47                                               loff_t new_size)
48 {
49         return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50                                                    new_size);
51 }
52
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
54
55 /*
56  * Test whether an inode is a fast symlink.
57  */
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
59 {
60         int ea_blocks = EXT4_I(inode)->i_file_acl ?
61                 (inode->i_sb->s_blocksize >> 9) : 0;
62
63         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64 }
65
66 /*
67  * The ext4 forget function must perform a revoke if we are freeing data
68  * which has been journaled.  Metadata (eg. indirect blocks) must be
69  * revoked in all cases.
70  *
71  * "bh" may be NULL: a metadata block may have been freed from memory
72  * but there may still be a record of it in the journal, and that record
73  * still needs to be revoked.
74  */
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76                         struct buffer_head *bh, ext4_fsblk_t blocknr)
77 {
78         int err;
79
80         might_sleep();
81
82         BUFFER_TRACE(bh, "enter");
83
84         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85                   "data mode %lx\n",
86                   bh, is_metadata, inode->i_mode,
87                   test_opt(inode->i_sb, DATA_FLAGS));
88
89         /* Never use the revoke function if we are doing full data
90          * journaling: there is no need to, and a V1 superblock won't
91          * support it.  Otherwise, only skip the revoke on un-journaled
92          * data blocks. */
93
94         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95             (!is_metadata && !ext4_should_journal_data(inode))) {
96                 if (bh) {
97                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
98                         return ext4_journal_forget(handle, bh);
99                 }
100                 return 0;
101         }
102
103         /*
104          * data!=journal && (is_metadata || should_journal_data(inode))
105          */
106         BUFFER_TRACE(bh, "call ext4_journal_revoke");
107         err = ext4_journal_revoke(handle, blocknr, bh);
108         if (err)
109                 ext4_abort(inode->i_sb, __func__,
110                            "error %d when attempting revoke", err);
111         BUFFER_TRACE(bh, "exit");
112         return err;
113 }
114
115 /*
116  * Work out how many blocks we need to proceed with the next chunk of a
117  * truncate transaction.
118  */
119 static unsigned long blocks_for_truncate(struct inode *inode)
120 {
121         ext4_lblk_t needed;
122
123         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124
125         /* Give ourselves just enough room to cope with inodes in which
126          * i_blocks is corrupt: we've seen disk corruptions in the past
127          * which resulted in random data in an inode which looked enough
128          * like a regular file for ext4 to try to delete it.  Things
129          * will go a bit crazy if that happens, but at least we should
130          * try not to panic the whole kernel. */
131         if (needed < 2)
132                 needed = 2;
133
134         /* But we need to bound the transaction so we don't overflow the
135          * journal. */
136         if (needed > EXT4_MAX_TRANS_DATA)
137                 needed = EXT4_MAX_TRANS_DATA;
138
139         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
140 }
141
142 /*
143  * Truncate transactions can be complex and absolutely huge.  So we need to
144  * be able to restart the transaction at a conventient checkpoint to make
145  * sure we don't overflow the journal.
146  *
147  * start_transaction gets us a new handle for a truncate transaction,
148  * and extend_transaction tries to extend the existing one a bit.  If
149  * extend fails, we need to propagate the failure up and restart the
150  * transaction in the top-level truncate loop. --sct
151  */
152 static handle_t *start_transaction(struct inode *inode)
153 {
154         handle_t *result;
155
156         result = ext4_journal_start(inode, blocks_for_truncate(inode));
157         if (!IS_ERR(result))
158                 return result;
159
160         ext4_std_error(inode->i_sb, PTR_ERR(result));
161         return result;
162 }
163
164 /*
165  * Try to extend this transaction for the purposes of truncation.
166  *
167  * Returns 0 if we managed to create more room.  If we can't create more
168  * room, and the transaction must be restarted we return 1.
169  */
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171 {
172         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173                 return 0;
174         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175                 return 0;
176         return 1;
177 }
178
179 /*
180  * Restart the transaction associated with *handle.  This does a commit,
181  * so before we call here everything must be consistently dirtied against
182  * this transaction.
183  */
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
185 {
186         jbd_debug(2, "restarting handle %p\n", handle);
187         return ext4_journal_restart(handle, blocks_for_truncate(inode));
188 }
189
190 /*
191  * Called at the last iput() if i_nlink is zero.
192  */
193 void ext4_delete_inode(struct inode *inode)
194 {
195         handle_t *handle;
196         int err;
197
198         if (ext4_should_order_data(inode))
199                 ext4_begin_ordered_truncate(inode, 0);
200         truncate_inode_pages(&inode->i_data, 0);
201
202         if (is_bad_inode(inode))
203                 goto no_delete;
204
205         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206         if (IS_ERR(handle)) {
207                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
208                 /*
209                  * If we're going to skip the normal cleanup, we still need to
210                  * make sure that the in-core orphan linked list is properly
211                  * cleaned up.
212                  */
213                 ext4_orphan_del(NULL, inode);
214                 goto no_delete;
215         }
216
217         if (IS_SYNC(inode))
218                 handle->h_sync = 1;
219         inode->i_size = 0;
220         err = ext4_mark_inode_dirty(handle, inode);
221         if (err) {
222                 ext4_warning(inode->i_sb, __func__,
223                              "couldn't mark inode dirty (err %d)", err);
224                 goto stop_handle;
225         }
226         if (inode->i_blocks)
227                 ext4_truncate(inode);
228
229         /*
230          * ext4_ext_truncate() doesn't reserve any slop when it
231          * restarts journal transactions; therefore there may not be
232          * enough credits left in the handle to remove the inode from
233          * the orphan list and set the dtime field.
234          */
235         if (handle->h_buffer_credits < 3) {
236                 err = ext4_journal_extend(handle, 3);
237                 if (err > 0)
238                         err = ext4_journal_restart(handle, 3);
239                 if (err != 0) {
240                         ext4_warning(inode->i_sb, __func__,
241                                      "couldn't extend journal (err %d)", err);
242                 stop_handle:
243                         ext4_journal_stop(handle);
244                         goto no_delete;
245                 }
246         }
247
248         /*
249          * Kill off the orphan record which ext4_truncate created.
250          * AKPM: I think this can be inside the above `if'.
251          * Note that ext4_orphan_del() has to be able to cope with the
252          * deletion of a non-existent orphan - this is because we don't
253          * know if ext4_truncate() actually created an orphan record.
254          * (Well, we could do this if we need to, but heck - it works)
255          */
256         ext4_orphan_del(handle, inode);
257         EXT4_I(inode)->i_dtime  = get_seconds();
258
259         /*
260          * One subtle ordering requirement: if anything has gone wrong
261          * (transaction abort, IO errors, whatever), then we can still
262          * do these next steps (the fs will already have been marked as
263          * having errors), but we can't free the inode if the mark_dirty
264          * fails.
265          */
266         if (ext4_mark_inode_dirty(handle, inode))
267                 /* If that failed, just do the required in-core inode clear. */
268                 clear_inode(inode);
269         else
270                 ext4_free_inode(handle, inode);
271         ext4_journal_stop(handle);
272         return;
273 no_delete:
274         clear_inode(inode);     /* We must guarantee clearing of inode... */
275 }
276
277 typedef struct {
278         __le32  *p;
279         __le32  key;
280         struct buffer_head *bh;
281 } Indirect;
282
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284 {
285         p->key = *(p->p = v);
286         p->bh = bh;
287 }
288
289 /**
290  *      ext4_block_to_path - parse the block number into array of offsets
291  *      @inode: inode in question (we are only interested in its superblock)
292  *      @i_block: block number to be parsed
293  *      @offsets: array to store the offsets in
294  *      @boundary: set this non-zero if the referred-to block is likely to be
295  *             followed (on disk) by an indirect block.
296  *
297  *      To store the locations of file's data ext4 uses a data structure common
298  *      for UNIX filesystems - tree of pointers anchored in the inode, with
299  *      data blocks at leaves and indirect blocks in intermediate nodes.
300  *      This function translates the block number into path in that tree -
301  *      return value is the path length and @offsets[n] is the offset of
302  *      pointer to (n+1)th node in the nth one. If @block is out of range
303  *      (negative or too large) warning is printed and zero returned.
304  *
305  *      Note: function doesn't find node addresses, so no IO is needed. All
306  *      we need to know is the capacity of indirect blocks (taken from the
307  *      inode->i_sb).
308  */
309
310 /*
311  * Portability note: the last comparison (check that we fit into triple
312  * indirect block) is spelled differently, because otherwise on an
313  * architecture with 32-bit longs and 8Kb pages we might get into trouble
314  * if our filesystem had 8Kb blocks. We might use long long, but that would
315  * kill us on x86. Oh, well, at least the sign propagation does not matter -
316  * i_block would have to be negative in the very beginning, so we would not
317  * get there at all.
318  */
319
320 static int ext4_block_to_path(struct inode *inode,
321                         ext4_lblk_t i_block,
322                         ext4_lblk_t offsets[4], int *boundary)
323 {
324         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326         const long direct_blocks = EXT4_NDIR_BLOCKS,
327                 indirect_blocks = ptrs,
328                 double_blocks = (1 << (ptrs_bits * 2));
329         int n = 0;
330         int final = 0;
331
332         if (i_block < 0) {
333                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
334         } else if (i_block < direct_blocks) {
335                 offsets[n++] = i_block;
336                 final = direct_blocks;
337         } else if ((i_block -= direct_blocks) < indirect_blocks) {
338                 offsets[n++] = EXT4_IND_BLOCK;
339                 offsets[n++] = i_block;
340                 final = ptrs;
341         } else if ((i_block -= indirect_blocks) < double_blocks) {
342                 offsets[n++] = EXT4_DIND_BLOCK;
343                 offsets[n++] = i_block >> ptrs_bits;
344                 offsets[n++] = i_block & (ptrs - 1);
345                 final = ptrs;
346         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347                 offsets[n++] = EXT4_TIND_BLOCK;
348                 offsets[n++] = i_block >> (ptrs_bits * 2);
349                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350                 offsets[n++] = i_block & (ptrs - 1);
351                 final = ptrs;
352         } else {
353                 ext4_warning(inode->i_sb, "ext4_block_to_path",
354                                 "block %lu > max",
355                                 i_block + direct_blocks +
356                                 indirect_blocks + double_blocks);
357         }
358         if (boundary)
359                 *boundary = final - 1 - (i_block & (ptrs - 1));
360         return n;
361 }
362
363 /**
364  *      ext4_get_branch - read the chain of indirect blocks leading to data
365  *      @inode: inode in question
366  *      @depth: depth of the chain (1 - direct pointer, etc.)
367  *      @offsets: offsets of pointers in inode/indirect blocks
368  *      @chain: place to store the result
369  *      @err: here we store the error value
370  *
371  *      Function fills the array of triples <key, p, bh> and returns %NULL
372  *      if everything went OK or the pointer to the last filled triple
373  *      (incomplete one) otherwise. Upon the return chain[i].key contains
374  *      the number of (i+1)-th block in the chain (as it is stored in memory,
375  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
376  *      number (it points into struct inode for i==0 and into the bh->b_data
377  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378  *      block for i>0 and NULL for i==0. In other words, it holds the block
379  *      numbers of the chain, addresses they were taken from (and where we can
380  *      verify that chain did not change) and buffer_heads hosting these
381  *      numbers.
382  *
383  *      Function stops when it stumbles upon zero pointer (absent block)
384  *              (pointer to last triple returned, *@err == 0)
385  *      or when it gets an IO error reading an indirect block
386  *              (ditto, *@err == -EIO)
387  *      or when it reads all @depth-1 indirect blocks successfully and finds
388  *      the whole chain, all way to the data (returns %NULL, *err == 0).
389  *
390  *      Need to be called with
391  *      down_read(&EXT4_I(inode)->i_data_sem)
392  */
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394                                  ext4_lblk_t  *offsets,
395                                  Indirect chain[4], int *err)
396 {
397         struct super_block *sb = inode->i_sb;
398         Indirect *p = chain;
399         struct buffer_head *bh;
400
401         *err = 0;
402         /* i_data is not going away, no lock needed */
403         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404         if (!p->key)
405                 goto no_block;
406         while (--depth) {
407                 bh = sb_bread(sb, le32_to_cpu(p->key));
408                 if (!bh)
409                         goto failure;
410                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
411                 /* Reader: end */
412                 if (!p->key)
413                         goto no_block;
414         }
415         return NULL;
416
417 failure:
418         *err = -EIO;
419 no_block:
420         return p;
421 }
422
423 /**
424  *      ext4_find_near - find a place for allocation with sufficient locality
425  *      @inode: owner
426  *      @ind: descriptor of indirect block.
427  *
428  *      This function returns the preferred place for block allocation.
429  *      It is used when heuristic for sequential allocation fails.
430  *      Rules are:
431  *        + if there is a block to the left of our position - allocate near it.
432  *        + if pointer will live in indirect block - allocate near that block.
433  *        + if pointer will live in inode - allocate in the same
434  *          cylinder group.
435  *
436  * In the latter case we colour the starting block by the callers PID to
437  * prevent it from clashing with concurrent allocations for a different inode
438  * in the same block group.   The PID is used here so that functionally related
439  * files will be close-by on-disk.
440  *
441  *      Caller must make sure that @ind is valid and will stay that way.
442  */
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
444 {
445         struct ext4_inode_info *ei = EXT4_I(inode);
446         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
447         __le32 *p;
448         ext4_fsblk_t bg_start;
449         ext4_fsblk_t last_block;
450         ext4_grpblk_t colour;
451
452         /* Try to find previous block */
453         for (p = ind->p - 1; p >= start; p--) {
454                 if (*p)
455                         return le32_to_cpu(*p);
456         }
457
458         /* No such thing, so let's try location of indirect block */
459         if (ind->bh)
460                 return ind->bh->b_blocknr;
461
462         /*
463          * It is going to be referred to from the inode itself? OK, just put it
464          * into the same cylinder group then.
465          */
466         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468
469         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470                 colour = (current->pid % 16) *
471                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472         else
473                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474         return bg_start + colour;
475 }
476
477 /**
478  *      ext4_find_goal - find a preferred place for allocation.
479  *      @inode: owner
480  *      @block:  block we want
481  *      @partial: pointer to the last triple within a chain
482  *
483  *      Normally this function find the preferred place for block allocation,
484  *      returns it.
485  */
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487                 Indirect *partial)
488 {
489         /*
490          * XXX need to get goal block from mballoc's data structures
491          */
492
493         return ext4_find_near(inode, partial);
494 }
495
496 /**
497  *      ext4_blks_to_allocate: Look up the block map and count the number
498  *      of direct blocks need to be allocated for the given branch.
499  *
500  *      @branch: chain of indirect blocks
501  *      @k: number of blocks need for indirect blocks
502  *      @blks: number of data blocks to be mapped.
503  *      @blocks_to_boundary:  the offset in the indirect block
504  *
505  *      return the total number of blocks to be allocate, including the
506  *      direct and indirect blocks.
507  */
508 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
509                 int blocks_to_boundary)
510 {
511         unsigned long count = 0;
512
513         /*
514          * Simple case, [t,d]Indirect block(s) has not allocated yet
515          * then it's clear blocks on that path have not allocated
516          */
517         if (k > 0) {
518                 /* right now we don't handle cross boundary allocation */
519                 if (blks < blocks_to_boundary + 1)
520                         count += blks;
521                 else
522                         count += blocks_to_boundary + 1;
523                 return count;
524         }
525
526         count++;
527         while (count < blks && count <= blocks_to_boundary &&
528                 le32_to_cpu(*(branch[0].p + count)) == 0) {
529                 count++;
530         }
531         return count;
532 }
533
534 /**
535  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
536  *      @indirect_blks: the number of blocks need to allocate for indirect
537  *                      blocks
538  *
539  *      @new_blocks: on return it will store the new block numbers for
540  *      the indirect blocks(if needed) and the first direct block,
541  *      @blks:  on return it will store the total number of allocated
542  *              direct blocks
543  */
544 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
545                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
546                                 int indirect_blks, int blks,
547                                 ext4_fsblk_t new_blocks[4], int *err)
548 {
549         int target, i;
550         unsigned long count = 0, blk_allocated = 0;
551         int index = 0;
552         ext4_fsblk_t current_block = 0;
553         int ret = 0;
554
555         /*
556          * Here we try to allocate the requested multiple blocks at once,
557          * on a best-effort basis.
558          * To build a branch, we should allocate blocks for
559          * the indirect blocks(if not allocated yet), and at least
560          * the first direct block of this branch.  That's the
561          * minimum number of blocks need to allocate(required)
562          */
563         /* first we try to allocate the indirect blocks */
564         target = indirect_blks;
565         while (target > 0) {
566                 count = target;
567                 /* allocating blocks for indirect blocks and direct blocks */
568                 current_block = ext4_new_meta_blocks(handle, inode,
569                                                         goal, &count, err);
570                 if (*err)
571                         goto failed_out;
572
573                 target -= count;
574                 /* allocate blocks for indirect blocks */
575                 while (index < indirect_blks && count) {
576                         new_blocks[index++] = current_block++;
577                         count--;
578                 }
579                 if (count > 0) {
580                         /*
581                          * save the new block number
582                          * for the first direct block
583                          */
584                         new_blocks[index] = current_block;
585                         printk(KERN_INFO "%s returned more blocks than "
586                                                 "requested\n", __func__);
587                         WARN_ON(1);
588                         break;
589                 }
590         }
591
592         target = blks - count ;
593         blk_allocated = count;
594         if (!target)
595                 goto allocated;
596         /* Now allocate data blocks */
597         count = target;
598         /* allocating blocks for data blocks */
599         current_block = ext4_new_blocks(handle, inode, iblock,
600                                                 goal, &count, err);
601         if (*err && (target == blks)) {
602                 /*
603                  * if the allocation failed and we didn't allocate
604                  * any blocks before
605                  */
606                 goto failed_out;
607         }
608         if (!*err) {
609                 if (target == blks) {
610                 /*
611                  * save the new block number
612                  * for the first direct block
613                  */
614                         new_blocks[index] = current_block;
615                 }
616                 blk_allocated += count;
617         }
618 allocated:
619         /* total number of blocks allocated for direct blocks */
620         ret = blk_allocated;
621         *err = 0;
622         return ret;
623 failed_out:
624         for (i = 0; i < index; i++)
625                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
626         return ret;
627 }
628
629 /**
630  *      ext4_alloc_branch - allocate and set up a chain of blocks.
631  *      @inode: owner
632  *      @indirect_blks: number of allocated indirect blocks
633  *      @blks: number of allocated direct blocks
634  *      @offsets: offsets (in the blocks) to store the pointers to next.
635  *      @branch: place to store the chain in.
636  *
637  *      This function allocates blocks, zeroes out all but the last one,
638  *      links them into chain and (if we are synchronous) writes them to disk.
639  *      In other words, it prepares a branch that can be spliced onto the
640  *      inode. It stores the information about that chain in the branch[], in
641  *      the same format as ext4_get_branch() would do. We are calling it after
642  *      we had read the existing part of chain and partial points to the last
643  *      triple of that (one with zero ->key). Upon the exit we have the same
644  *      picture as after the successful ext4_get_block(), except that in one
645  *      place chain is disconnected - *branch->p is still zero (we did not
646  *      set the last link), but branch->key contains the number that should
647  *      be placed into *branch->p to fill that gap.
648  *
649  *      If allocation fails we free all blocks we've allocated (and forget
650  *      their buffer_heads) and return the error value the from failed
651  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
652  *      as described above and return 0.
653  */
654 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
655                                 ext4_lblk_t iblock, int indirect_blks,
656                                 int *blks, ext4_fsblk_t goal,
657                                 ext4_lblk_t *offsets, Indirect *branch)
658 {
659         int blocksize = inode->i_sb->s_blocksize;
660         int i, n = 0;
661         int err = 0;
662         struct buffer_head *bh;
663         int num;
664         ext4_fsblk_t new_blocks[4];
665         ext4_fsblk_t current_block;
666
667         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
668                                 *blks, new_blocks, &err);
669         if (err)
670                 return err;
671
672         branch[0].key = cpu_to_le32(new_blocks[0]);
673         /*
674          * metadata blocks and data blocks are allocated.
675          */
676         for (n = 1; n <= indirect_blks;  n++) {
677                 /*
678                  * Get buffer_head for parent block, zero it out
679                  * and set the pointer to new one, then send
680                  * parent to disk.
681                  */
682                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
683                 branch[n].bh = bh;
684                 lock_buffer(bh);
685                 BUFFER_TRACE(bh, "call get_create_access");
686                 err = ext4_journal_get_create_access(handle, bh);
687                 if (err) {
688                         unlock_buffer(bh);
689                         brelse(bh);
690                         goto failed;
691                 }
692
693                 memset(bh->b_data, 0, blocksize);
694                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
695                 branch[n].key = cpu_to_le32(new_blocks[n]);
696                 *branch[n].p = branch[n].key;
697                 if (n == indirect_blks) {
698                         current_block = new_blocks[n];
699                         /*
700                          * End of chain, update the last new metablock of
701                          * the chain to point to the new allocated
702                          * data blocks numbers
703                          */
704                         for (i=1; i < num; i++)
705                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
706                 }
707                 BUFFER_TRACE(bh, "marking uptodate");
708                 set_buffer_uptodate(bh);
709                 unlock_buffer(bh);
710
711                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
712                 err = ext4_journal_dirty_metadata(handle, bh);
713                 if (err)
714                         goto failed;
715         }
716         *blks = num;
717         return err;
718 failed:
719         /* Allocation failed, free what we already allocated */
720         for (i = 1; i <= n ; i++) {
721                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
722                 ext4_journal_forget(handle, branch[i].bh);
723         }
724         for (i = 0; i < indirect_blks; i++)
725                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
726
727         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
728
729         return err;
730 }
731
732 /**
733  * ext4_splice_branch - splice the allocated branch onto inode.
734  * @inode: owner
735  * @block: (logical) number of block we are adding
736  * @chain: chain of indirect blocks (with a missing link - see
737  *      ext4_alloc_branch)
738  * @where: location of missing link
739  * @num:   number of indirect blocks we are adding
740  * @blks:  number of direct blocks we are adding
741  *
742  * This function fills the missing link and does all housekeeping needed in
743  * inode (->i_blocks, etc.). In case of success we end up with the full
744  * chain to new block and return 0.
745  */
746 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
747                         ext4_lblk_t block, Indirect *where, int num, int blks)
748 {
749         int i;
750         int err = 0;
751         ext4_fsblk_t current_block;
752
753         /*
754          * If we're splicing into a [td]indirect block (as opposed to the
755          * inode) then we need to get write access to the [td]indirect block
756          * before the splice.
757          */
758         if (where->bh) {
759                 BUFFER_TRACE(where->bh, "get_write_access");
760                 err = ext4_journal_get_write_access(handle, where->bh);
761                 if (err)
762                         goto err_out;
763         }
764         /* That's it */
765
766         *where->p = where->key;
767
768         /*
769          * Update the host buffer_head or inode to point to more just allocated
770          * direct blocks blocks
771          */
772         if (num == 0 && blks > 1) {
773                 current_block = le32_to_cpu(where->key) + 1;
774                 for (i = 1; i < blks; i++)
775                         *(where->p + i) = cpu_to_le32(current_block++);
776         }
777
778         /* We are done with atomic stuff, now do the rest of housekeeping */
779
780         inode->i_ctime = ext4_current_time(inode);
781         ext4_mark_inode_dirty(handle, inode);
782
783         /* had we spliced it onto indirect block? */
784         if (where->bh) {
785                 /*
786                  * If we spliced it onto an indirect block, we haven't
787                  * altered the inode.  Note however that if it is being spliced
788                  * onto an indirect block at the very end of the file (the
789                  * file is growing) then we *will* alter the inode to reflect
790                  * the new i_size.  But that is not done here - it is done in
791                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
792                  */
793                 jbd_debug(5, "splicing indirect only\n");
794                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
795                 err = ext4_journal_dirty_metadata(handle, where->bh);
796                 if (err)
797                         goto err_out;
798         } else {
799                 /*
800                  * OK, we spliced it into the inode itself on a direct block.
801                  * Inode was dirtied above.
802                  */
803                 jbd_debug(5, "splicing direct\n");
804         }
805         return err;
806
807 err_out:
808         for (i = 1; i <= num; i++) {
809                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
810                 ext4_journal_forget(handle, where[i].bh);
811                 ext4_free_blocks(handle, inode,
812                                         le32_to_cpu(where[i-1].key), 1, 0);
813         }
814         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
815
816         return err;
817 }
818
819 /*
820  * Allocation strategy is simple: if we have to allocate something, we will
821  * have to go the whole way to leaf. So let's do it before attaching anything
822  * to tree, set linkage between the newborn blocks, write them if sync is
823  * required, recheck the path, free and repeat if check fails, otherwise
824  * set the last missing link (that will protect us from any truncate-generated
825  * removals - all blocks on the path are immune now) and possibly force the
826  * write on the parent block.
827  * That has a nice additional property: no special recovery from the failed
828  * allocations is needed - we simply release blocks and do not touch anything
829  * reachable from inode.
830  *
831  * `handle' can be NULL if create == 0.
832  *
833  * return > 0, # of blocks mapped or allocated.
834  * return = 0, if plain lookup failed.
835  * return < 0, error case.
836  *
837  *
838  * Need to be called with
839  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
840  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
841  */
842 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
843                 ext4_lblk_t iblock, unsigned long maxblocks,
844                 struct buffer_head *bh_result,
845                 int create, int extend_disksize)
846 {
847         int err = -EIO;
848         ext4_lblk_t offsets[4];
849         Indirect chain[4];
850         Indirect *partial;
851         ext4_fsblk_t goal;
852         int indirect_blks;
853         int blocks_to_boundary = 0;
854         int depth;
855         struct ext4_inode_info *ei = EXT4_I(inode);
856         int count = 0;
857         ext4_fsblk_t first_block = 0;
858         loff_t disksize;
859
860
861         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
862         J_ASSERT(handle != NULL || create == 0);
863         depth = ext4_block_to_path(inode, iblock, offsets,
864                                         &blocks_to_boundary);
865
866         if (depth == 0)
867                 goto out;
868
869         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
870
871         /* Simplest case - block found, no allocation needed */
872         if (!partial) {
873                 first_block = le32_to_cpu(chain[depth - 1].key);
874                 clear_buffer_new(bh_result);
875                 count++;
876                 /*map more blocks*/
877                 while (count < maxblocks && count <= blocks_to_boundary) {
878                         ext4_fsblk_t blk;
879
880                         blk = le32_to_cpu(*(chain[depth-1].p + count));
881
882                         if (blk == first_block + count)
883                                 count++;
884                         else
885                                 break;
886                 }
887                 goto got_it;
888         }
889
890         /* Next simple case - plain lookup or failed read of indirect block */
891         if (!create || err == -EIO)
892                 goto cleanup;
893
894         /*
895          * Okay, we need to do block allocation.
896         */
897         goal = ext4_find_goal(inode, iblock, partial);
898
899         /* the number of blocks need to allocate for [d,t]indirect blocks */
900         indirect_blks = (chain + depth) - partial - 1;
901
902         /*
903          * Next look up the indirect map to count the totoal number of
904          * direct blocks to allocate for this branch.
905          */
906         count = ext4_blks_to_allocate(partial, indirect_blks,
907                                         maxblocks, blocks_to_boundary);
908         /*
909          * Block out ext4_truncate while we alter the tree
910          */
911         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
912                                         &count, goal,
913                                         offsets + (partial - chain), partial);
914
915         /*
916          * The ext4_splice_branch call will free and forget any buffers
917          * on the new chain if there is a failure, but that risks using
918          * up transaction credits, especially for bitmaps where the
919          * credits cannot be returned.  Can we handle this somehow?  We
920          * may need to return -EAGAIN upwards in the worst case.  --sct
921          */
922         if (!err)
923                 err = ext4_splice_branch(handle, inode, iblock,
924                                         partial, indirect_blks, count);
925         /*
926          * i_disksize growing is protected by i_data_sem.  Don't forget to
927          * protect it if you're about to implement concurrent
928          * ext4_get_block() -bzzz
929         */
930         if (!err && extend_disksize) {
931                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
932                 if (disksize > i_size_read(inode))
933                         disksize = i_size_read(inode);
934                 if (disksize > ei->i_disksize)
935                         ei->i_disksize = disksize;
936         }
937         if (err)
938                 goto cleanup;
939
940         set_buffer_new(bh_result);
941 got_it:
942         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
943         if (count > blocks_to_boundary)
944                 set_buffer_boundary(bh_result);
945         err = count;
946         /* Clean up and exit */
947         partial = chain + depth - 1;    /* the whole chain */
948 cleanup:
949         while (partial > chain) {
950                 BUFFER_TRACE(partial->bh, "call brelse");
951                 brelse(partial->bh);
952                 partial--;
953         }
954         BUFFER_TRACE(bh_result, "returned");
955 out:
956         return err;
957 }
958
959 /*
960  * Calculate the number of metadata blocks need to reserve
961  * to allocate @blocks for non extent file based file
962  */
963 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
964 {
965         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
966         int ind_blks, dind_blks, tind_blks;
967
968         /* number of new indirect blocks needed */
969         ind_blks = (blocks + icap - 1) / icap;
970
971         dind_blks = (ind_blks + icap - 1) / icap;
972
973         tind_blks = 1;
974
975         return ind_blks + dind_blks + tind_blks;
976 }
977
978 /*
979  * Calculate the number of metadata blocks need to reserve
980  * to allocate given number of blocks
981  */
982 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
983 {
984         if (!blocks)
985                 return 0;
986
987         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
988                 return ext4_ext_calc_metadata_amount(inode, blocks);
989
990         return ext4_indirect_calc_metadata_amount(inode, blocks);
991 }
992
993 static void ext4_da_update_reserve_space(struct inode *inode, int used)
994 {
995         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
996         int total, mdb, mdb_free;
997
998         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
999         /* recalculate the number of metablocks still need to be reserved */
1000         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1001         mdb = ext4_calc_metadata_amount(inode, total);
1002
1003         /* figure out how many metablocks to release */
1004         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1005         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1006
1007         if (mdb_free) {
1008                 /* Account for allocated meta_blocks */
1009                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1010
1011                 /* update fs dirty blocks counter */
1012                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1013                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1014                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1015         }
1016
1017         /* update per-inode reservations */
1018         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1019         EXT4_I(inode)->i_reserved_data_blocks -= used;
1020
1021         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1022 }
1023
1024 /*
1025  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1026  * and returns if the blocks are already mapped.
1027  *
1028  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1029  * and store the allocated blocks in the result buffer head and mark it
1030  * mapped.
1031  *
1032  * If file type is extents based, it will call ext4_ext_get_blocks(),
1033  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1034  * based files
1035  *
1036  * On success, it returns the number of blocks being mapped or allocate.
1037  * if create==0 and the blocks are pre-allocated and uninitialized block,
1038  * the result buffer head is unmapped. If the create ==1, it will make sure
1039  * the buffer head is mapped.
1040  *
1041  * It returns 0 if plain look up failed (blocks have not been allocated), in
1042  * that casem, buffer head is unmapped
1043  *
1044  * It returns the error in case of allocation failure.
1045  */
1046 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1047                         unsigned long max_blocks, struct buffer_head *bh,
1048                         int create, int extend_disksize, int flag)
1049 {
1050         int retval;
1051
1052         clear_buffer_mapped(bh);
1053
1054         /*
1055          * Try to see if we can get  the block without requesting
1056          * for new file system block.
1057          */
1058         down_read((&EXT4_I(inode)->i_data_sem));
1059         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1060                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1061                                 bh, 0, 0);
1062         } else {
1063                 retval = ext4_get_blocks_handle(handle,
1064                                 inode, block, max_blocks, bh, 0, 0);
1065         }
1066         up_read((&EXT4_I(inode)->i_data_sem));
1067
1068         /* If it is only a block(s) look up */
1069         if (!create)
1070                 return retval;
1071
1072         /*
1073          * Returns if the blocks have already allocated
1074          *
1075          * Note that if blocks have been preallocated
1076          * ext4_ext_get_block() returns th create = 0
1077          * with buffer head unmapped.
1078          */
1079         if (retval > 0 && buffer_mapped(bh))
1080                 return retval;
1081
1082         /*
1083          * New blocks allocate and/or writing to uninitialized extent
1084          * will possibly result in updating i_data, so we take
1085          * the write lock of i_data_sem, and call get_blocks()
1086          * with create == 1 flag.
1087          */
1088         down_write((&EXT4_I(inode)->i_data_sem));
1089
1090         /*
1091          * if the caller is from delayed allocation writeout path
1092          * we have already reserved fs blocks for allocation
1093          * let the underlying get_block() function know to
1094          * avoid double accounting
1095          */
1096         if (flag)
1097                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1098         /*
1099          * We need to check for EXT4 here because migrate
1100          * could have changed the inode type in between
1101          */
1102         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1103                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1104                                 bh, create, extend_disksize);
1105         } else {
1106                 retval = ext4_get_blocks_handle(handle, inode, block,
1107                                 max_blocks, bh, create, extend_disksize);
1108
1109                 if (retval > 0 && buffer_new(bh)) {
1110                         /*
1111                          * We allocated new blocks which will result in
1112                          * i_data's format changing.  Force the migrate
1113                          * to fail by clearing migrate flags
1114                          */
1115                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1116                                                         ~EXT4_EXT_MIGRATE;
1117                 }
1118         }
1119
1120         if (flag) {
1121                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1122                 /*
1123                  * Update reserved blocks/metadata blocks
1124                  * after successful block allocation
1125                  * which were deferred till now
1126                  */
1127                 if ((retval > 0) && buffer_delay(bh))
1128                         ext4_da_update_reserve_space(inode, retval);
1129         }
1130
1131         up_write((&EXT4_I(inode)->i_data_sem));
1132         return retval;
1133 }
1134
1135 /* Maximum number of blocks we map for direct IO at once. */
1136 #define DIO_MAX_BLOCKS 4096
1137
1138 int ext4_get_block(struct inode *inode, sector_t iblock,
1139                    struct buffer_head *bh_result, int create)
1140 {
1141         handle_t *handle = ext4_journal_current_handle();
1142         int ret = 0, started = 0;
1143         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1144         int dio_credits;
1145
1146         if (create && !handle) {
1147                 /* Direct IO write... */
1148                 if (max_blocks > DIO_MAX_BLOCKS)
1149                         max_blocks = DIO_MAX_BLOCKS;
1150                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1151                 handle = ext4_journal_start(inode, dio_credits);
1152                 if (IS_ERR(handle)) {
1153                         ret = PTR_ERR(handle);
1154                         goto out;
1155                 }
1156                 started = 1;
1157         }
1158
1159         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1160                                         max_blocks, bh_result, create, 0, 0);
1161         if (ret > 0) {
1162                 bh_result->b_size = (ret << inode->i_blkbits);
1163                 ret = 0;
1164         }
1165         if (started)
1166                 ext4_journal_stop(handle);
1167 out:
1168         return ret;
1169 }
1170
1171 /*
1172  * `handle' can be NULL if create is zero
1173  */
1174 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1175                                 ext4_lblk_t block, int create, int *errp)
1176 {
1177         struct buffer_head dummy;
1178         int fatal = 0, err;
1179
1180         J_ASSERT(handle != NULL || create == 0);
1181
1182         dummy.b_state = 0;
1183         dummy.b_blocknr = -1000;
1184         buffer_trace_init(&dummy.b_history);
1185         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1186                                         &dummy, create, 1, 0);
1187         /*
1188          * ext4_get_blocks_handle() returns number of blocks
1189          * mapped. 0 in case of a HOLE.
1190          */
1191         if (err > 0) {
1192                 if (err > 1)
1193                         WARN_ON(1);
1194                 err = 0;
1195         }
1196         *errp = err;
1197         if (!err && buffer_mapped(&dummy)) {
1198                 struct buffer_head *bh;
1199                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1200                 if (!bh) {
1201                         *errp = -EIO;
1202                         goto err;
1203                 }
1204                 if (buffer_new(&dummy)) {
1205                         J_ASSERT(create != 0);
1206                         J_ASSERT(handle != NULL);
1207
1208                         /*
1209                          * Now that we do not always journal data, we should
1210                          * keep in mind whether this should always journal the
1211                          * new buffer as metadata.  For now, regular file
1212                          * writes use ext4_get_block instead, so it's not a
1213                          * problem.
1214                          */
1215                         lock_buffer(bh);
1216                         BUFFER_TRACE(bh, "call get_create_access");
1217                         fatal = ext4_journal_get_create_access(handle, bh);
1218                         if (!fatal && !buffer_uptodate(bh)) {
1219                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1220                                 set_buffer_uptodate(bh);
1221                         }
1222                         unlock_buffer(bh);
1223                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1224                         err = ext4_journal_dirty_metadata(handle, bh);
1225                         if (!fatal)
1226                                 fatal = err;
1227                 } else {
1228                         BUFFER_TRACE(bh, "not a new buffer");
1229                 }
1230                 if (fatal) {
1231                         *errp = fatal;
1232                         brelse(bh);
1233                         bh = NULL;
1234                 }
1235                 return bh;
1236         }
1237 err:
1238         return NULL;
1239 }
1240
1241 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1242                                ext4_lblk_t block, int create, int *err)
1243 {
1244         struct buffer_head *bh;
1245
1246         bh = ext4_getblk(handle, inode, block, create, err);
1247         if (!bh)
1248                 return bh;
1249         if (buffer_uptodate(bh))
1250                 return bh;
1251         ll_rw_block(READ_META, 1, &bh);
1252         wait_on_buffer(bh);
1253         if (buffer_uptodate(bh))
1254                 return bh;
1255         put_bh(bh);
1256         *err = -EIO;
1257         return NULL;
1258 }
1259
1260 static int walk_page_buffers(handle_t *handle,
1261                              struct buffer_head *head,
1262                              unsigned from,
1263                              unsigned to,
1264                              int *partial,
1265                              int (*fn)(handle_t *handle,
1266                                        struct buffer_head *bh))
1267 {
1268         struct buffer_head *bh;
1269         unsigned block_start, block_end;
1270         unsigned blocksize = head->b_size;
1271         int err, ret = 0;
1272         struct buffer_head *next;
1273
1274         for (bh = head, block_start = 0;
1275              ret == 0 && (bh != head || !block_start);
1276              block_start = block_end, bh = next)
1277         {
1278                 next = bh->b_this_page;
1279                 block_end = block_start + blocksize;
1280                 if (block_end <= from || block_start >= to) {
1281                         if (partial && !buffer_uptodate(bh))
1282                                 *partial = 1;
1283                         continue;
1284                 }
1285                 err = (*fn)(handle, bh);
1286                 if (!ret)
1287                         ret = err;
1288         }
1289         return ret;
1290 }
1291
1292 /*
1293  * To preserve ordering, it is essential that the hole instantiation and
1294  * the data write be encapsulated in a single transaction.  We cannot
1295  * close off a transaction and start a new one between the ext4_get_block()
1296  * and the commit_write().  So doing the jbd2_journal_start at the start of
1297  * prepare_write() is the right place.
1298  *
1299  * Also, this function can nest inside ext4_writepage() ->
1300  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1301  * has generated enough buffer credits to do the whole page.  So we won't
1302  * block on the journal in that case, which is good, because the caller may
1303  * be PF_MEMALLOC.
1304  *
1305  * By accident, ext4 can be reentered when a transaction is open via
1306  * quota file writes.  If we were to commit the transaction while thus
1307  * reentered, there can be a deadlock - we would be holding a quota
1308  * lock, and the commit would never complete if another thread had a
1309  * transaction open and was blocking on the quota lock - a ranking
1310  * violation.
1311  *
1312  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1313  * will _not_ run commit under these circumstances because handle->h_ref
1314  * is elevated.  We'll still have enough credits for the tiny quotafile
1315  * write.
1316  */
1317 static int do_journal_get_write_access(handle_t *handle,
1318                                         struct buffer_head *bh)
1319 {
1320         if (!buffer_mapped(bh) || buffer_freed(bh))
1321                 return 0;
1322         return ext4_journal_get_write_access(handle, bh);
1323 }
1324
1325 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1326                                 loff_t pos, unsigned len, unsigned flags,
1327                                 struct page **pagep, void **fsdata)
1328 {
1329         struct inode *inode = mapping->host;
1330         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1331         handle_t *handle;
1332         int retries = 0;
1333         struct page *page;
1334         pgoff_t index;
1335         unsigned from, to;
1336
1337         index = pos >> PAGE_CACHE_SHIFT;
1338         from = pos & (PAGE_CACHE_SIZE - 1);
1339         to = from + len;
1340
1341 retry:
1342         handle = ext4_journal_start(inode, needed_blocks);
1343         if (IS_ERR(handle)) {
1344                 ret = PTR_ERR(handle);
1345                 goto out;
1346         }
1347
1348         page = __grab_cache_page(mapping, index);
1349         if (!page) {
1350                 ext4_journal_stop(handle);
1351                 ret = -ENOMEM;
1352                 goto out;
1353         }
1354         *pagep = page;
1355
1356         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1357                                                         ext4_get_block);
1358
1359         if (!ret && ext4_should_journal_data(inode)) {
1360                 ret = walk_page_buffers(handle, page_buffers(page),
1361                                 from, to, NULL, do_journal_get_write_access);
1362         }
1363
1364         if (ret) {
1365                 unlock_page(page);
1366                 ext4_journal_stop(handle);
1367                 page_cache_release(page);
1368                 /*
1369                  * block_write_begin may have instantiated a few blocks
1370                  * outside i_size.  Trim these off again. Don't need
1371                  * i_size_read because we hold i_mutex.
1372                  */
1373                 if (pos + len > inode->i_size)
1374                         vmtruncate(inode, inode->i_size);
1375         }
1376
1377         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1378                 goto retry;
1379 out:
1380         return ret;
1381 }
1382
1383 /* For write_end() in data=journal mode */
1384 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1385 {
1386         if (!buffer_mapped(bh) || buffer_freed(bh))
1387                 return 0;
1388         set_buffer_uptodate(bh);
1389         return ext4_journal_dirty_metadata(handle, bh);
1390 }
1391
1392 /*
1393  * We need to pick up the new inode size which generic_commit_write gave us
1394  * `file' can be NULL - eg, when called from page_symlink().
1395  *
1396  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1397  * buffers are managed internally.
1398  */
1399 static int ext4_ordered_write_end(struct file *file,
1400                                 struct address_space *mapping,
1401                                 loff_t pos, unsigned len, unsigned copied,
1402                                 struct page *page, void *fsdata)
1403 {
1404         handle_t *handle = ext4_journal_current_handle();
1405         struct inode *inode = mapping->host;
1406         int ret = 0, ret2;
1407
1408         ret = ext4_jbd2_file_inode(handle, inode);
1409
1410         if (ret == 0) {
1411                 loff_t new_i_size;
1412
1413                 new_i_size = pos + copied;
1414                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1415                         ext4_update_i_disksize(inode, new_i_size);
1416                         /* We need to mark inode dirty even if
1417                          * new_i_size is less that inode->i_size
1418                          * bu greater than i_disksize.(hint delalloc)
1419                          */
1420                         ext4_mark_inode_dirty(handle, inode);
1421                 }
1422
1423                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1424                                                         page, fsdata);
1425                 copied = ret2;
1426                 if (ret2 < 0)
1427                         ret = ret2;
1428         }
1429         ret2 = ext4_journal_stop(handle);
1430         if (!ret)
1431                 ret = ret2;
1432
1433         return ret ? ret : copied;
1434 }
1435
1436 static int ext4_writeback_write_end(struct file *file,
1437                                 struct address_space *mapping,
1438                                 loff_t pos, unsigned len, unsigned copied,
1439                                 struct page *page, void *fsdata)
1440 {
1441         handle_t *handle = ext4_journal_current_handle();
1442         struct inode *inode = mapping->host;
1443         int ret = 0, ret2;
1444         loff_t new_i_size;
1445
1446         new_i_size = pos + copied;
1447         if (new_i_size > EXT4_I(inode)->i_disksize) {
1448                 ext4_update_i_disksize(inode, new_i_size);
1449                 /* We need to mark inode dirty even if
1450                  * new_i_size is less that inode->i_size
1451                  * bu greater than i_disksize.(hint delalloc)
1452                  */
1453                 ext4_mark_inode_dirty(handle, inode);
1454         }
1455
1456         ret2 = generic_write_end(file, mapping, pos, len, copied,
1457                                                         page, fsdata);
1458         copied = ret2;
1459         if (ret2 < 0)
1460                 ret = ret2;
1461
1462         ret2 = ext4_journal_stop(handle);
1463         if (!ret)
1464                 ret = ret2;
1465
1466         return ret ? ret : copied;
1467 }
1468
1469 static int ext4_journalled_write_end(struct file *file,
1470                                 struct address_space *mapping,
1471                                 loff_t pos, unsigned len, unsigned copied,
1472                                 struct page *page, void *fsdata)
1473 {
1474         handle_t *handle = ext4_journal_current_handle();
1475         struct inode *inode = mapping->host;
1476         int ret = 0, ret2;
1477         int partial = 0;
1478         unsigned from, to;
1479         loff_t new_i_size;
1480
1481         from = pos & (PAGE_CACHE_SIZE - 1);
1482         to = from + len;
1483
1484         if (copied < len) {
1485                 if (!PageUptodate(page))
1486                         copied = 0;
1487                 page_zero_new_buffers(page, from+copied, to);
1488         }
1489
1490         ret = walk_page_buffers(handle, page_buffers(page), from,
1491                                 to, &partial, write_end_fn);
1492         if (!partial)
1493                 SetPageUptodate(page);
1494         new_i_size = pos + copied;
1495         if (new_i_size > inode->i_size)
1496                 i_size_write(inode, pos+copied);
1497         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1498         if (new_i_size > EXT4_I(inode)->i_disksize) {
1499                 ext4_update_i_disksize(inode, new_i_size);
1500                 ret2 = ext4_mark_inode_dirty(handle, inode);
1501                 if (!ret)
1502                         ret = ret2;
1503         }
1504
1505         unlock_page(page);
1506         ret2 = ext4_journal_stop(handle);
1507         if (!ret)
1508                 ret = ret2;
1509         page_cache_release(page);
1510
1511         return ret ? ret : copied;
1512 }
1513
1514 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1515 {
1516         int retries = 0;
1517        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1518        unsigned long md_needed, mdblocks, total = 0;
1519
1520         /*
1521          * recalculate the amount of metadata blocks to reserve
1522          * in order to allocate nrblocks
1523          * worse case is one extent per block
1524          */
1525 repeat:
1526         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1527         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1528         mdblocks = ext4_calc_metadata_amount(inode, total);
1529         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1530
1531         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1532         total = md_needed + nrblocks;
1533
1534         if (ext4_claim_free_blocks(sbi, total)) {
1535                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1536                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1537                         yield();
1538                         goto repeat;
1539                 }
1540                 return -ENOSPC;
1541         }
1542         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1543         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1544
1545         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1546         return 0;       /* success */
1547 }
1548
1549 static void ext4_da_release_space(struct inode *inode, int to_free)
1550 {
1551         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1552         int total, mdb, mdb_free, release;
1553
1554         if (!to_free)
1555                 return;         /* Nothing to release, exit */
1556
1557         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1558
1559         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1560                 /*
1561                  * if there is no reserved blocks, but we try to free some
1562                  * then the counter is messed up somewhere.
1563                  * but since this function is called from invalidate
1564                  * page, it's harmless to return without any action
1565                  */
1566                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1567                             "blocks for inode %lu, but there is no reserved "
1568                             "data blocks\n", to_free, inode->i_ino);
1569                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1570                 return;
1571         }
1572
1573         /* recalculate the number of metablocks still need to be reserved */
1574         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1575         mdb = ext4_calc_metadata_amount(inode, total);
1576
1577         /* figure out how many metablocks to release */
1578         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1579         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1580
1581         release = to_free + mdb_free;
1582
1583         /* update fs dirty blocks counter for truncate case */
1584         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1585
1586         /* update per-inode reservations */
1587         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1588         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1589
1590         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1591         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1592         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1593 }
1594
1595 static void ext4_da_page_release_reservation(struct page *page,
1596                                                 unsigned long offset)
1597 {
1598         int to_release = 0;
1599         struct buffer_head *head, *bh;
1600         unsigned int curr_off = 0;
1601
1602         head = page_buffers(page);
1603         bh = head;
1604         do {
1605                 unsigned int next_off = curr_off + bh->b_size;
1606
1607                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1608                         to_release++;
1609                         clear_buffer_delay(bh);
1610                 }
1611                 curr_off = next_off;
1612         } while ((bh = bh->b_this_page) != head);
1613         ext4_da_release_space(page->mapping->host, to_release);
1614 }
1615
1616 /*
1617  * Delayed allocation stuff
1618  */
1619
1620 struct mpage_da_data {
1621         struct inode *inode;
1622         struct buffer_head lbh;                 /* extent of blocks */
1623         unsigned long first_page, next_page;    /* extent of pages */
1624         get_block_t *get_block;
1625         struct writeback_control *wbc;
1626         int io_done;
1627         long pages_written;
1628         int retval;
1629 };
1630
1631 /*
1632  * mpage_da_submit_io - walks through extent of pages and try to write
1633  * them with writepage() call back
1634  *
1635  * @mpd->inode: inode
1636  * @mpd->first_page: first page of the extent
1637  * @mpd->next_page: page after the last page of the extent
1638  * @mpd->get_block: the filesystem's block mapper function
1639  *
1640  * By the time mpage_da_submit_io() is called we expect all blocks
1641  * to be allocated. this may be wrong if allocation failed.
1642  *
1643  * As pages are already locked by write_cache_pages(), we can't use it
1644  */
1645 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1646 {
1647         struct address_space *mapping = mpd->inode->i_mapping;
1648         int ret = 0, err, nr_pages, i;
1649         unsigned long index, end;
1650         struct pagevec pvec;
1651
1652         BUG_ON(mpd->next_page <= mpd->first_page);
1653         pagevec_init(&pvec, 0);
1654         index = mpd->first_page;
1655         end = mpd->next_page - 1;
1656
1657         while (index <= end) {
1658                 /* XXX: optimize tail */
1659                 /*
1660                  * We can use PAGECACHE_TAG_DIRTY lookup here because
1661                  * even though we have cleared the dirty flag on the page
1662                  * We still keep the page in the radix tree with tag
1663                  * PAGECACHE_TAG_DIRTY. See clear_page_dirty_for_io.
1664                  * The PAGECACHE_TAG_DIRTY is cleared in set_page_writeback
1665                  * which is called via the below writepage callback.
1666                  */
1667                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1668                                         PAGECACHE_TAG_DIRTY,
1669                                         min(end - index,
1670                                         (pgoff_t)PAGEVEC_SIZE-1) + 1);
1671                 if (nr_pages == 0)
1672                         break;
1673                 for (i = 0; i < nr_pages; i++) {
1674                         struct page *page = pvec.pages[i];
1675
1676                         err = mapping->a_ops->writepage(page, mpd->wbc);
1677                         if (!err)
1678                                 mpd->pages_written++;
1679                         /*
1680                          * In error case, we have to continue because
1681                          * remaining pages are still locked
1682                          * XXX: unlock and re-dirty them?
1683                          */
1684                         if (ret == 0)
1685                                 ret = err;
1686                 }
1687                 pagevec_release(&pvec);
1688         }
1689         return ret;
1690 }
1691
1692 /*
1693  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1694  *
1695  * @mpd->inode - inode to walk through
1696  * @exbh->b_blocknr - first block on a disk
1697  * @exbh->b_size - amount of space in bytes
1698  * @logical - first logical block to start assignment with
1699  *
1700  * the function goes through all passed space and put actual disk
1701  * block numbers into buffer heads, dropping BH_Delay
1702  */
1703 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1704                                  struct buffer_head *exbh)
1705 {
1706         struct inode *inode = mpd->inode;
1707         struct address_space *mapping = inode->i_mapping;
1708         int blocks = exbh->b_size >> inode->i_blkbits;
1709         sector_t pblock = exbh->b_blocknr, cur_logical;
1710         struct buffer_head *head, *bh;
1711         pgoff_t index, end;
1712         struct pagevec pvec;
1713         int nr_pages, i;
1714
1715         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1716         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1717         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1718
1719         pagevec_init(&pvec, 0);
1720
1721         while (index <= end) {
1722                 /* XXX: optimize tail */
1723                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1724                 if (nr_pages == 0)
1725                         break;
1726                 for (i = 0; i < nr_pages; i++) {
1727                         struct page *page = pvec.pages[i];
1728
1729                         index = page->index;
1730                         if (index > end)
1731                                 break;
1732                         index++;
1733
1734                         BUG_ON(!PageLocked(page));
1735                         BUG_ON(PageWriteback(page));
1736                         BUG_ON(!page_has_buffers(page));
1737
1738                         bh = page_buffers(page);
1739                         head = bh;
1740
1741                         /* skip blocks out of the range */
1742                         do {
1743                                 if (cur_logical >= logical)
1744                                         break;
1745                                 cur_logical++;
1746                         } while ((bh = bh->b_this_page) != head);
1747
1748                         do {
1749                                 if (cur_logical >= logical + blocks)
1750                                         break;
1751                                 if (buffer_delay(bh)) {
1752                                         bh->b_blocknr = pblock;
1753                                         clear_buffer_delay(bh);
1754                                         bh->b_bdev = inode->i_sb->s_bdev;
1755                                 } else if (buffer_unwritten(bh)) {
1756                                         bh->b_blocknr = pblock;
1757                                         clear_buffer_unwritten(bh);
1758                                         set_buffer_mapped(bh);
1759                                         set_buffer_new(bh);
1760                                         bh->b_bdev = inode->i_sb->s_bdev;
1761                                 } else if (buffer_mapped(bh))
1762                                         BUG_ON(bh->b_blocknr != pblock);
1763
1764                                 cur_logical++;
1765                                 pblock++;
1766                         } while ((bh = bh->b_this_page) != head);
1767                 }
1768                 pagevec_release(&pvec);
1769         }
1770 }
1771
1772
1773 /*
1774  * __unmap_underlying_blocks - just a helper function to unmap
1775  * set of blocks described by @bh
1776  */
1777 static inline void __unmap_underlying_blocks(struct inode *inode,
1778                                              struct buffer_head *bh)
1779 {
1780         struct block_device *bdev = inode->i_sb->s_bdev;
1781         int blocks, i;
1782
1783         blocks = bh->b_size >> inode->i_blkbits;
1784         for (i = 0; i < blocks; i++)
1785                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1786 }
1787
1788 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1789                                         sector_t logical, long blk_cnt)
1790 {
1791         int nr_pages, i;
1792         pgoff_t index, end;
1793         struct pagevec pvec;
1794         struct inode *inode = mpd->inode;
1795         struct address_space *mapping = inode->i_mapping;
1796
1797         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1798         end   = (logical + blk_cnt - 1) >>
1799                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1800         while (index <= end) {
1801                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1802                 if (nr_pages == 0)
1803                         break;
1804                 for (i = 0; i < nr_pages; i++) {
1805                         struct page *page = pvec.pages[i];
1806                         index = page->index;
1807                         if (index > end)
1808                                 break;
1809                         index++;
1810
1811                         BUG_ON(!PageLocked(page));
1812                         BUG_ON(PageWriteback(page));
1813                         block_invalidatepage(page, 0);
1814                         ClearPageUptodate(page);
1815                         unlock_page(page);
1816                 }
1817         }
1818         return;
1819 }
1820
1821 static void ext4_print_free_blocks(struct inode *inode)
1822 {
1823         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1824         printk(KERN_EMERG "Total free blocks count %lld\n",
1825                         ext4_count_free_blocks(inode->i_sb));
1826         printk(KERN_EMERG "Free/Dirty block details\n");
1827         printk(KERN_EMERG "free_blocks=%lld\n",
1828                         percpu_counter_sum(&sbi->s_freeblocks_counter));
1829         printk(KERN_EMERG "dirty_blocks=%lld\n",
1830                         percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1831         printk(KERN_EMERG "Block reservation details\n");
1832         printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1833                         EXT4_I(inode)->i_reserved_data_blocks);
1834         printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1835                         EXT4_I(inode)->i_reserved_meta_blocks);
1836         return;
1837 }
1838
1839 /*
1840  * mpage_da_map_blocks - go through given space
1841  *
1842  * @mpd->lbh - bh describing space
1843  * @mpd->get_block - the filesystem's block mapper function
1844  *
1845  * The function skips space we know is already mapped to disk blocks.
1846  *
1847  */
1848 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1849 {
1850         int err = 0;
1851         struct buffer_head new;
1852         struct buffer_head *lbh = &mpd->lbh;
1853         sector_t next;
1854
1855         /*
1856          * We consider only non-mapped and non-allocated blocks
1857          */
1858         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1859                 return 0;
1860         new.b_state = lbh->b_state;
1861         new.b_blocknr = 0;
1862         new.b_size = lbh->b_size;
1863         next = lbh->b_blocknr;
1864         /*
1865          * If we didn't accumulate anything
1866          * to write simply return
1867          */
1868         if (!new.b_size)
1869                 return 0;
1870         err = mpd->get_block(mpd->inode, next, &new, 1);
1871         if (err) {
1872
1873                 /* If get block returns with error
1874                  * we simply return. Later writepage
1875                  * will redirty the page and writepages
1876                  * will find the dirty page again
1877                  */
1878                 if (err == -EAGAIN)
1879                         return 0;
1880
1881                 if (err == -ENOSPC &&
1882                                 ext4_count_free_blocks(mpd->inode->i_sb)) {
1883                         mpd->retval = err;
1884                         return 0;
1885                 }
1886
1887                 /*
1888                  * get block failure will cause us
1889                  * to loop in writepages. Because
1890                  * a_ops->writepage won't be able to
1891                  * make progress. The page will be redirtied
1892                  * by writepage and writepages will again
1893                  * try to write the same.
1894                  */
1895                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1896                                   "at logical offset %llu with max blocks "
1897                                   "%zd with error %d\n",
1898                                   __func__, mpd->inode->i_ino,
1899                                   (unsigned long long)next,
1900                                   lbh->b_size >> mpd->inode->i_blkbits, err);
1901                 printk(KERN_EMERG "This should not happen.!! "
1902                                         "Data will be lost\n");
1903                 if (err == -ENOSPC) {
1904                         ext4_print_free_blocks(mpd->inode);
1905                 }
1906                 /* invlaidate all the pages */
1907                 ext4_da_block_invalidatepages(mpd, next,
1908                                 lbh->b_size >> mpd->inode->i_blkbits);
1909                 return err;
1910         }
1911         BUG_ON(new.b_size == 0);
1912
1913         if (buffer_new(&new))
1914                 __unmap_underlying_blocks(mpd->inode, &new);
1915
1916         /*
1917          * If blocks are delayed marked, we need to
1918          * put actual blocknr and drop delayed bit
1919          */
1920         if (buffer_delay(lbh) || buffer_unwritten(lbh))
1921                 mpage_put_bnr_to_bhs(mpd, next, &new);
1922
1923         return 0;
1924 }
1925
1926 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1927                 (1 << BH_Delay) | (1 << BH_Unwritten))
1928
1929 /*
1930  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1931  *
1932  * @mpd->lbh - extent of blocks
1933  * @logical - logical number of the block in the file
1934  * @bh - bh of the block (used to access block's state)
1935  *
1936  * the function is used to collect contig. blocks in same state
1937  */
1938 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1939                                    sector_t logical, struct buffer_head *bh)
1940 {
1941         sector_t next;
1942         size_t b_size = bh->b_size;
1943         struct buffer_head *lbh = &mpd->lbh;
1944         int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1945
1946         /* check if thereserved journal credits might overflow */
1947         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1948                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1949                         /*
1950                          * With non-extent format we are limited by the journal
1951                          * credit available.  Total credit needed to insert
1952                          * nrblocks contiguous blocks is dependent on the
1953                          * nrblocks.  So limit nrblocks.
1954                          */
1955                         goto flush_it;
1956                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1957                                 EXT4_MAX_TRANS_DATA) {
1958                         /*
1959                          * Adding the new buffer_head would make it cross the
1960                          * allowed limit for which we have journal credit
1961                          * reserved. So limit the new bh->b_size
1962                          */
1963                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1964                                                 mpd->inode->i_blkbits;
1965                         /* we will do mpage_da_submit_io in the next loop */
1966                 }
1967         }
1968         /*
1969          * First block in the extent
1970          */
1971         if (lbh->b_size == 0) {
1972                 lbh->b_blocknr = logical;
1973                 lbh->b_size = b_size;
1974                 lbh->b_state = bh->b_state & BH_FLAGS;
1975                 return;
1976         }
1977
1978         next = lbh->b_blocknr + nrblocks;
1979         /*
1980          * Can we merge the block to our big extent?
1981          */
1982         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1983                 lbh->b_size += b_size;
1984                 return;
1985         }
1986
1987 flush_it:
1988         /*
1989          * We couldn't merge the block to our extent, so we
1990          * need to flush current  extent and start new one
1991          */
1992         if (mpage_da_map_blocks(mpd) == 0)
1993                 mpage_da_submit_io(mpd);
1994         mpd->io_done = 1;
1995         return;
1996 }
1997
1998 /*
1999  * __mpage_da_writepage - finds extent of pages and blocks
2000  *
2001  * @page: page to consider
2002  * @wbc: not used, we just follow rules
2003  * @data: context
2004  *
2005  * The function finds extents of pages and scan them for all blocks.
2006  */
2007 static int __mpage_da_writepage(struct page *page,
2008                                 struct writeback_control *wbc, void *data)
2009 {
2010         struct mpage_da_data *mpd = data;
2011         struct inode *inode = mpd->inode;
2012         struct buffer_head *bh, *head, fake;
2013         sector_t logical;
2014
2015         if (mpd->io_done) {
2016                 /*
2017                  * Rest of the page in the page_vec
2018                  * redirty then and skip then. We will
2019                  * try to to write them again after
2020                  * starting a new transaction
2021                  */
2022                 redirty_page_for_writepage(wbc, page);
2023                 unlock_page(page);
2024                 return MPAGE_DA_EXTENT_TAIL;
2025         }
2026         /*
2027          * Can we merge this page to current extent?
2028          */
2029         if (mpd->next_page != page->index) {
2030                 /*
2031                  * Nope, we can't. So, we map non-allocated blocks
2032                  * and start IO on them using writepage()
2033                  */
2034                 if (mpd->next_page != mpd->first_page) {
2035                         if (mpage_da_map_blocks(mpd) == 0)
2036                                 mpage_da_submit_io(mpd);
2037                         /*
2038                          * skip rest of the page in the page_vec
2039                          */
2040                         mpd->io_done = 1;
2041                         redirty_page_for_writepage(wbc, page);
2042                         unlock_page(page);
2043                         return MPAGE_DA_EXTENT_TAIL;
2044                 }
2045
2046                 /*
2047                  * Start next extent of pages ...
2048                  */
2049                 mpd->first_page = page->index;
2050
2051                 /*
2052                  * ... and blocks
2053                  */
2054                 mpd->lbh.b_size = 0;
2055                 mpd->lbh.b_state = 0;
2056                 mpd->lbh.b_blocknr = 0;
2057         }
2058
2059         mpd->next_page = page->index + 1;
2060         logical = (sector_t) page->index <<
2061                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2062
2063         if (!page_has_buffers(page)) {
2064                 /*
2065                  * There is no attached buffer heads yet (mmap?)
2066                  * we treat the page asfull of dirty blocks
2067                  */
2068                 bh = &fake;
2069                 bh->b_size = PAGE_CACHE_SIZE;
2070                 bh->b_state = 0;
2071                 set_buffer_dirty(bh);
2072                 set_buffer_uptodate(bh);
2073                 mpage_add_bh_to_extent(mpd, logical, bh);
2074                 if (mpd->io_done)
2075                         return MPAGE_DA_EXTENT_TAIL;
2076         } else {
2077                 /*
2078                  * Page with regular buffer heads, just add all dirty ones
2079                  */
2080                 head = page_buffers(page);
2081                 bh = head;
2082                 do {
2083                         BUG_ON(buffer_locked(bh));
2084                         if (buffer_dirty(bh) &&
2085                                 (!buffer_mapped(bh) || buffer_delay(bh))) {
2086                                 mpage_add_bh_to_extent(mpd, logical, bh);
2087                                 if (mpd->io_done)
2088                                         return MPAGE_DA_EXTENT_TAIL;
2089                         }
2090                         logical++;
2091                 } while ((bh = bh->b_this_page) != head);
2092         }
2093
2094         return 0;
2095 }
2096
2097 /*
2098  * mpage_da_writepages - walk the list of dirty pages of the given
2099  * address space, allocates non-allocated blocks, maps newly-allocated
2100  * blocks to existing bhs and issue IO them
2101  *
2102  * @mapping: address space structure to write
2103  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2104  * @get_block: the filesystem's block mapper function.
2105  *
2106  * This is a library function, which implements the writepages()
2107  * address_space_operation.
2108  */
2109 static int mpage_da_writepages(struct address_space *mapping,
2110                                struct writeback_control *wbc,
2111                                struct mpage_da_data *mpd)
2112 {
2113         long to_write;
2114         int ret;
2115
2116         if (!mpd->get_block)
2117                 return generic_writepages(mapping, wbc);
2118
2119         mpd->lbh.b_size = 0;
2120         mpd->lbh.b_state = 0;
2121         mpd->lbh.b_blocknr = 0;
2122         mpd->first_page = 0;
2123         mpd->next_page = 0;
2124         mpd->io_done = 0;
2125         mpd->pages_written = 0;
2126         mpd->retval = 0;
2127
2128         to_write = wbc->nr_to_write;
2129
2130         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2131
2132         /*
2133          * Handle last extent of pages
2134          */
2135         if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2136                 if (mpage_da_map_blocks(mpd) == 0)
2137                         mpage_da_submit_io(mpd);
2138         }
2139
2140         wbc->nr_to_write = to_write - mpd->pages_written;
2141         return ret;
2142 }
2143
2144 /*
2145  * this is a special callback for ->write_begin() only
2146  * it's intention is to return mapped block or reserve space
2147  */
2148 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2149                                   struct buffer_head *bh_result, int create)
2150 {
2151         int ret = 0;
2152
2153         BUG_ON(create == 0);
2154         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2155
2156         /*
2157          * first, we need to know whether the block is allocated already
2158          * preallocated blocks are unmapped but should treated
2159          * the same as allocated blocks.
2160          */
2161         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2162         if ((ret == 0) && !buffer_delay(bh_result)) {
2163                 /* the block isn't (pre)allocated yet, let's reserve space */
2164                 /*
2165                  * XXX: __block_prepare_write() unmaps passed block,
2166                  * is it OK?
2167                  */
2168                 ret = ext4_da_reserve_space(inode, 1);
2169                 if (ret)
2170                         /* not enough space to reserve */
2171                         return ret;
2172
2173                 map_bh(bh_result, inode->i_sb, 0);
2174                 set_buffer_new(bh_result);
2175                 set_buffer_delay(bh_result);
2176         } else if (ret > 0) {
2177                 bh_result->b_size = (ret << inode->i_blkbits);
2178                 ret = 0;
2179         }
2180
2181         return ret;
2182 }
2183 #define         EXT4_DELALLOC_RSVED     1
2184 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2185                                    struct buffer_head *bh_result, int create)
2186 {
2187         int ret;
2188         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2189         loff_t disksize = EXT4_I(inode)->i_disksize;
2190         handle_t *handle = NULL;
2191
2192         handle = ext4_journal_current_handle();
2193         BUG_ON(!handle);
2194         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2195                         bh_result, create, 0, EXT4_DELALLOC_RSVED);
2196         if (ret > 0) {
2197
2198                 bh_result->b_size = (ret << inode->i_blkbits);
2199
2200                 if (ext4_should_order_data(inode)) {
2201                         int retval;
2202                         retval = ext4_jbd2_file_inode(handle, inode);
2203                         if (retval)
2204                                 /*
2205                                  * Failed to add inode for ordered
2206                                  * mode. Don't update file size
2207                                  */
2208                                 return retval;
2209                 }
2210
2211                 /*
2212                  * Update on-disk size along with block allocation
2213                  * we don't use 'extend_disksize' as size may change
2214                  * within already allocated block -bzzz
2215                  */
2216                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2217                 if (disksize > i_size_read(inode))
2218                         disksize = i_size_read(inode);
2219                 if (disksize > EXT4_I(inode)->i_disksize) {
2220                         ext4_update_i_disksize(inode, disksize);
2221                         ret = ext4_mark_inode_dirty(handle, inode);
2222                         return ret;
2223                 }
2224                 ret = 0;
2225         }
2226         return ret;
2227 }
2228
2229 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2230 {
2231         /*
2232          * unmapped buffer is possible for holes.
2233          * delay buffer is possible with delayed allocation
2234          */
2235         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2236 }
2237
2238 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2239                                    struct buffer_head *bh_result, int create)
2240 {
2241         int ret = 0;
2242         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2243
2244         /*
2245          * we don't want to do block allocation in writepage
2246          * so call get_block_wrap with create = 0
2247          */
2248         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2249                                    bh_result, 0, 0, 0);
2250         if (ret > 0) {
2251                 bh_result->b_size = (ret << inode->i_blkbits);
2252                 ret = 0;
2253         }
2254         return ret;
2255 }
2256
2257 /*
2258  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2259  * get called via journal_submit_inode_data_buffers (no journal handle)
2260  * get called via shrink_page_list via pdflush (no journal handle)
2261  * or grab_page_cache when doing write_begin (have journal handle)
2262  */
2263 static int ext4_da_writepage(struct page *page,
2264                                 struct writeback_control *wbc)
2265 {
2266         int ret = 0;
2267         loff_t size;
2268         unsigned long len;
2269         struct buffer_head *page_bufs;
2270         struct inode *inode = page->mapping->host;
2271
2272         size = i_size_read(inode);
2273         if (page->index == size >> PAGE_CACHE_SHIFT)
2274                 len = size & ~PAGE_CACHE_MASK;
2275         else
2276                 len = PAGE_CACHE_SIZE;
2277
2278         if (page_has_buffers(page)) {
2279                 page_bufs = page_buffers(page);
2280                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2281                                         ext4_bh_unmapped_or_delay)) {
2282                         /*
2283                          * We don't want to do  block allocation
2284                          * So redirty the page and return
2285                          * We may reach here when we do a journal commit
2286                          * via journal_submit_inode_data_buffers.
2287                          * If we don't have mapping block we just ignore
2288                          * them. We can also reach here via shrink_page_list
2289                          */
2290                         redirty_page_for_writepage(wbc, page);
2291                         unlock_page(page);
2292                         return 0;
2293                 }
2294         } else {
2295                 /*
2296                  * The test for page_has_buffers() is subtle:
2297                  * We know the page is dirty but it lost buffers. That means
2298                  * that at some moment in time after write_begin()/write_end()
2299                  * has been called all buffers have been clean and thus they
2300                  * must have been written at least once. So they are all
2301                  * mapped and we can happily proceed with mapping them
2302                  * and writing the page.
2303                  *
2304                  * Try to initialize the buffer_heads and check whether
2305                  * all are mapped and non delay. We don't want to
2306                  * do block allocation here.
2307                  */
2308                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2309                                                 ext4_normal_get_block_write);
2310                 if (!ret) {
2311                         page_bufs = page_buffers(page);
2312                         /* check whether all are mapped and non delay */
2313                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2314                                                 ext4_bh_unmapped_or_delay)) {
2315                                 redirty_page_for_writepage(wbc, page);
2316                                 unlock_page(page);
2317                                 return 0;
2318                         }
2319                 } else {
2320                         /*
2321                          * We can't do block allocation here
2322                          * so just redity the page and unlock
2323                          * and return
2324                          */
2325                         redirty_page_for_writepage(wbc, page);
2326                         unlock_page(page);
2327                         return 0;
2328                 }
2329         }
2330
2331         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2332                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2333         else
2334                 ret = block_write_full_page(page,
2335                                                 ext4_normal_get_block_write,
2336                                                 wbc);
2337
2338         return ret;
2339 }
2340
2341 /*
2342  * This is called via ext4_da_writepages() to
2343  * calulate the total number of credits to reserve to fit
2344  * a single extent allocation into a single transaction,
2345  * ext4_da_writpeages() will loop calling this before
2346  * the block allocation.
2347  */
2348
2349 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2350 {
2351         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2352
2353         /*
2354          * With non-extent format the journal credit needed to
2355          * insert nrblocks contiguous block is dependent on
2356          * number of contiguous block. So we will limit
2357          * number of contiguous block to a sane value
2358          */
2359         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2360             (max_blocks > EXT4_MAX_TRANS_DATA))
2361                 max_blocks = EXT4_MAX_TRANS_DATA;
2362
2363         return ext4_chunk_trans_blocks(inode, max_blocks);
2364 }
2365
2366 static int ext4_da_writepages(struct address_space *mapping,
2367                               struct writeback_control *wbc)
2368 {
2369         handle_t *handle = NULL;
2370         struct mpage_da_data mpd;
2371         struct inode *inode = mapping->host;
2372         int needed_blocks, ret = 0, nr_to_writebump = 0;
2373         long to_write, pages_skipped = 0;
2374         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2375
2376         /*
2377          * No pages to write? This is mainly a kludge to avoid starting
2378          * a transaction for special inodes like journal inode on last iput()
2379          * because that could violate lock ordering on umount
2380          */
2381         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2382                 return 0;
2383         /*
2384          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2385          * This make sure small files blocks are allocated in
2386          * single attempt. This ensure that small files
2387          * get less fragmented.
2388          */
2389         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2390                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2391                 wbc->nr_to_write = sbi->s_mb_stream_request;
2392         }
2393
2394
2395         pages_skipped = wbc->pages_skipped;
2396
2397         mpd.wbc = wbc;
2398         mpd.inode = mapping->host;
2399
2400 restart_loop:
2401         to_write = wbc->nr_to_write;
2402         while (!ret && to_write > 0) {
2403
2404                 /*
2405                  * we  insert one extent at a time. So we need
2406                  * credit needed for single extent allocation.
2407                  * journalled mode is currently not supported
2408                  * by delalloc
2409                  */
2410                 BUG_ON(ext4_should_journal_data(inode));
2411                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2412
2413                 /* start a new transaction*/
2414                 handle = ext4_journal_start(inode, needed_blocks);
2415                 if (IS_ERR(handle)) {
2416                         ret = PTR_ERR(handle);
2417                         printk(KERN_EMERG "%s: jbd2_start: "
2418                                "%ld pages, ino %lu; err %d\n", __func__,
2419                                 wbc->nr_to_write, inode->i_ino, ret);
2420                         dump_stack();
2421                         goto out_writepages;
2422                 }
2423                 to_write -= wbc->nr_to_write;
2424
2425                 mpd.get_block = ext4_da_get_block_write;
2426                 ret = mpage_da_writepages(mapping, wbc, &mpd);
2427
2428                 ext4_journal_stop(handle);
2429
2430                 if (mpd.retval == -ENOSPC)
2431                         jbd2_journal_force_commit_nested(sbi->s_journal);
2432
2433                 /* reset the retry count */
2434                 if (ret == MPAGE_DA_EXTENT_TAIL) {
2435                         /*
2436                          * got one extent now try with
2437                          * rest of the pages
2438                          */
2439                         to_write += wbc->nr_to_write;
2440                         ret = 0;
2441                 } else if (wbc->nr_to_write) {
2442                         /*
2443                          * There is no more writeout needed
2444                          * or we requested for a noblocking writeout
2445                          * and we found the device congested
2446                          */
2447                         to_write += wbc->nr_to_write;
2448                         break;
2449                 }
2450                 wbc->nr_to_write = to_write;
2451         }
2452
2453         if (!wbc->range_cyclic && (pages_skipped != wbc->pages_skipped)) {
2454                 /* We skipped pages in this loop */
2455                 wbc->nr_to_write = to_write +
2456                                 wbc->pages_skipped - pages_skipped;
2457                 wbc->pages_skipped = pages_skipped;
2458                 goto restart_loop;
2459         }
2460
2461 out_writepages:
2462         wbc->nr_to_write = to_write - nr_to_writebump;
2463         return ret;
2464 }
2465
2466 #define FALL_BACK_TO_NONDELALLOC 1
2467 static int ext4_nonda_switch(struct super_block *sb)
2468 {
2469         s64 free_blocks, dirty_blocks;
2470         struct ext4_sb_info *sbi = EXT4_SB(sb);
2471
2472         /*
2473          * switch to non delalloc mode if we are running low
2474          * on free block. The free block accounting via percpu
2475          * counters can get slightly wrong with FBC_BATCH getting
2476          * accumulated on each CPU without updating global counters
2477          * Delalloc need an accurate free block accounting. So switch
2478          * to non delalloc when we are near to error range.
2479          */
2480         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2481         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2482         if (2 * free_blocks < 3 * dirty_blocks ||
2483                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2484                 /*
2485                  * free block count is less that 150% of dirty blocks
2486                  * or free blocks is less that watermark
2487                  */
2488                 return 1;
2489         }
2490         return 0;
2491 }
2492
2493 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2494                                 loff_t pos, unsigned len, unsigned flags,
2495                                 struct page **pagep, void **fsdata)
2496 {
2497         int ret, retries = 0;
2498         struct page *page;
2499         pgoff_t index;
2500         unsigned from, to;
2501         struct inode *inode = mapping->host;
2502         handle_t *handle;
2503
2504         index = pos >> PAGE_CACHE_SHIFT;
2505         from = pos & (PAGE_CACHE_SIZE - 1);
2506         to = from + len;
2507
2508         if (ext4_nonda_switch(inode->i_sb)) {
2509                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2510                 return ext4_write_begin(file, mapping, pos,
2511                                         len, flags, pagep, fsdata);
2512         }
2513         *fsdata = (void *)0;
2514 retry:
2515         /*
2516          * With delayed allocation, we don't log the i_disksize update
2517          * if there is delayed block allocation. But we still need
2518          * to journalling the i_disksize update if writes to the end
2519          * of file which has an already mapped buffer.
2520          */
2521         handle = ext4_journal_start(inode, 1);
2522         if (IS_ERR(handle)) {
2523                 ret = PTR_ERR(handle);
2524                 goto out;
2525         }
2526
2527         page = __grab_cache_page(mapping, index);
2528         if (!page) {
2529                 ext4_journal_stop(handle);
2530                 ret = -ENOMEM;
2531                 goto out;
2532         }
2533         *pagep = page;
2534
2535         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2536                                                         ext4_da_get_block_prep);
2537         if (ret < 0) {
2538                 unlock_page(page);
2539                 ext4_journal_stop(handle);
2540                 page_cache_release(page);
2541                 /*
2542                  * block_write_begin may have instantiated a few blocks
2543                  * outside i_size.  Trim these off again. Don't need
2544                  * i_size_read because we hold i_mutex.
2545                  */
2546                 if (pos + len > inode->i_size)
2547                         vmtruncate(inode, inode->i_size);
2548         }
2549
2550         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2551                 goto retry;
2552 out:
2553         return ret;
2554 }
2555
2556 /*
2557  * Check if we should update i_disksize
2558  * when write to the end of file but not require block allocation
2559  */
2560 static int ext4_da_should_update_i_disksize(struct page *page,
2561                                          unsigned long offset)
2562 {
2563         struct buffer_head *bh;
2564         struct inode *inode = page->mapping->host;
2565         unsigned int idx;
2566         int i;
2567
2568         bh = page_buffers(page);
2569         idx = offset >> inode->i_blkbits;
2570
2571         for (i = 0; i < idx; i++)
2572                 bh = bh->b_this_page;
2573
2574         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2575                 return 0;
2576         return 1;
2577 }
2578
2579 static int ext4_da_write_end(struct file *file,
2580                                 struct address_space *mapping,
2581                                 loff_t pos, unsigned len, unsigned copied,
2582                                 struct page *page, void *fsdata)
2583 {
2584         struct inode *inode = mapping->host;
2585         int ret = 0, ret2;
2586         handle_t *handle = ext4_journal_current_handle();
2587         loff_t new_i_size;
2588         unsigned long start, end;
2589         int write_mode = (int)(unsigned long)fsdata;
2590
2591         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2592                 if (ext4_should_order_data(inode)) {
2593                         return ext4_ordered_write_end(file, mapping, pos,
2594                                         len, copied, page, fsdata);
2595                 } else if (ext4_should_writeback_data(inode)) {
2596                         return ext4_writeback_write_end(file, mapping, pos,
2597                                         len, copied, page, fsdata);
2598                 } else {
2599                         BUG();
2600                 }
2601         }
2602
2603         start = pos & (PAGE_CACHE_SIZE - 1);
2604         end = start + copied - 1;
2605
2606         /*
2607          * generic_write_end() will run mark_inode_dirty() if i_size
2608          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2609          * into that.
2610          */
2611
2612         new_i_size = pos + copied;
2613         if (new_i_size > EXT4_I(inode)->i_disksize) {
2614                 if (ext4_da_should_update_i_disksize(page, end)) {
2615                         down_write(&EXT4_I(inode)->i_data_sem);
2616                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2617                                 /*
2618                                  * Updating i_disksize when extending file
2619                                  * without needing block allocation
2620                                  */
2621                                 if (ext4_should_order_data(inode))
2622                                         ret = ext4_jbd2_file_inode(handle,
2623                                                                    inode);
2624
2625                                 EXT4_I(inode)->i_disksize = new_i_size;
2626                         }
2627                         up_write(&EXT4_I(inode)->i_data_sem);
2628                         /* We need to mark inode dirty even if
2629                          * new_i_size is less that inode->i_size
2630                          * bu greater than i_disksize.(hint delalloc)
2631                          */
2632                         ext4_mark_inode_dirty(handle, inode);
2633                 }
2634         }
2635         ret2 = generic_write_end(file, mapping, pos, len, copied,
2636                                                         page, fsdata);
2637         copied = ret2;
2638         if (ret2 < 0)
2639                 ret = ret2;
2640         ret2 = ext4_journal_stop(handle);
2641         if (!ret)
2642                 ret = ret2;
2643
2644         return ret ? ret : copied;
2645 }
2646
2647 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2648 {
2649         /*
2650          * Drop reserved blocks
2651          */
2652         BUG_ON(!PageLocked(page));
2653         if (!page_has_buffers(page))
2654                 goto out;
2655
2656         ext4_da_page_release_reservation(page, offset);
2657
2658 out:
2659         ext4_invalidatepage(page, offset);
2660
2661         return;
2662 }
2663
2664
2665 /*
2666  * bmap() is special.  It gets used by applications such as lilo and by
2667  * the swapper to find the on-disk block of a specific piece of data.
2668  *
2669  * Naturally, this is dangerous if the block concerned is still in the
2670  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2671  * filesystem and enables swap, then they may get a nasty shock when the
2672  * data getting swapped to that swapfile suddenly gets overwritten by
2673  * the original zero's written out previously to the journal and
2674  * awaiting writeback in the kernel's buffer cache.
2675  *
2676  * So, if we see any bmap calls here on a modified, data-journaled file,
2677  * take extra steps to flush any blocks which might be in the cache.
2678  */
2679 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2680 {
2681         struct inode *inode = mapping->host;
2682         journal_t *journal;
2683         int err;
2684
2685         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2686                         test_opt(inode->i_sb, DELALLOC)) {
2687                 /*
2688                  * With delalloc we want to sync the file
2689                  * so that we can make sure we allocate
2690                  * blocks for file
2691                  */
2692                 filemap_write_and_wait(mapping);
2693         }
2694
2695         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2696                 /*
2697                  * This is a REALLY heavyweight approach, but the use of
2698                  * bmap on dirty files is expected to be extremely rare:
2699                  * only if we run lilo or swapon on a freshly made file
2700                  * do we expect this to happen.
2701                  *
2702                  * (bmap requires CAP_SYS_RAWIO so this does not
2703                  * represent an unprivileged user DOS attack --- we'd be
2704                  * in trouble if mortal users could trigger this path at
2705                  * will.)
2706                  *
2707                  * NB. EXT4_STATE_JDATA is not set on files other than
2708                  * regular files.  If somebody wants to bmap a directory
2709                  * or symlink and gets confused because the buffer
2710                  * hasn't yet been flushed to disk, they deserve
2711                  * everything they get.
2712                  */
2713
2714                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2715                 journal = EXT4_JOURNAL(inode);
2716                 jbd2_journal_lock_updates(journal);
2717                 err = jbd2_journal_flush(journal);
2718                 jbd2_journal_unlock_updates(journal);
2719
2720                 if (err)
2721                         return 0;
2722         }
2723
2724         return generic_block_bmap(mapping, block, ext4_get_block);
2725 }
2726
2727 static int bget_one(handle_t *handle, struct buffer_head *bh)
2728 {
2729         get_bh(bh);
2730         return 0;
2731 }
2732
2733 static int bput_one(handle_t *handle, struct buffer_head *bh)
2734 {
2735         put_bh(bh);
2736         return 0;
2737 }
2738
2739 /*
2740  * Note that we don't need to start a transaction unless we're journaling data
2741  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2742  * need to file the inode to the transaction's list in ordered mode because if
2743  * we are writing back data added by write(), the inode is already there and if
2744  * we are writing back data modified via mmap(), noone guarantees in which
2745  * transaction the data will hit the disk. In case we are journaling data, we
2746  * cannot start transaction directly because transaction start ranks above page
2747  * lock so we have to do some magic.
2748  *
2749  * In all journaling modes block_write_full_page() will start the I/O.
2750  *
2751  * Problem:
2752  *
2753  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2754  *              ext4_writepage()
2755  *
2756  * Similar for:
2757  *
2758  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2759  *
2760  * Same applies to ext4_get_block().  We will deadlock on various things like
2761  * lock_journal and i_data_sem
2762  *
2763  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2764  * allocations fail.
2765  *
2766  * 16May01: If we're reentered then journal_current_handle() will be
2767  *          non-zero. We simply *return*.
2768  *
2769  * 1 July 2001: @@@ FIXME:
2770  *   In journalled data mode, a data buffer may be metadata against the
2771  *   current transaction.  But the same file is part of a shared mapping
2772  *   and someone does a writepage() on it.
2773  *
2774  *   We will move the buffer onto the async_data list, but *after* it has
2775  *   been dirtied. So there's a small window where we have dirty data on
2776  *   BJ_Metadata.
2777  *
2778  *   Note that this only applies to the last partial page in the file.  The
2779  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2780  *   broken code anyway: it's wrong for msync()).
2781  *
2782  *   It's a rare case: affects the final partial page, for journalled data
2783  *   where the file is subject to bith write() and writepage() in the same
2784  *   transction.  To fix it we'll need a custom block_write_full_page().
2785  *   We'll probably need that anyway for journalling writepage() output.
2786  *
2787  * We don't honour synchronous mounts for writepage().  That would be
2788  * disastrous.  Any write() or metadata operation will sync the fs for
2789  * us.
2790  *
2791  */
2792 static int __ext4_normal_writepage(struct page *page,
2793                                 struct writeback_control *wbc)
2794 {
2795         struct inode *inode = page->mapping->host;
2796
2797         if (test_opt(inode->i_sb, NOBH))
2798                 return nobh_writepage(page,
2799                                         ext4_normal_get_block_write, wbc);
2800         else
2801                 return block_write_full_page(page,
2802                                                 ext4_normal_get_block_write,
2803                                                 wbc);
2804 }
2805
2806 static int ext4_normal_writepage(struct page *page,
2807                                 struct writeback_control *wbc)
2808 {
2809         struct inode *inode = page->mapping->host;
2810         loff_t size = i_size_read(inode);
2811         loff_t len;
2812
2813         J_ASSERT(PageLocked(page));
2814         if (page->index == size >> PAGE_CACHE_SHIFT)
2815                 len = size & ~PAGE_CACHE_MASK;
2816         else
2817                 len = PAGE_CACHE_SIZE;
2818
2819         if (page_has_buffers(page)) {
2820                 /* if page has buffers it should all be mapped
2821                  * and allocated. If there are not buffers attached
2822                  * to the page we know the page is dirty but it lost
2823                  * buffers. That means that at some moment in time
2824                  * after write_begin() / write_end() has been called
2825                  * all buffers have been clean and thus they must have been
2826                  * written at least once. So they are all mapped and we can
2827                  * happily proceed with mapping them and writing the page.
2828                  */
2829                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2830                                         ext4_bh_unmapped_or_delay));
2831         }
2832
2833         if (!ext4_journal_current_handle())
2834                 return __ext4_normal_writepage(page, wbc);
2835
2836         redirty_page_for_writepage(wbc, page);
2837         unlock_page(page);
2838         return 0;
2839 }
2840
2841 static int __ext4_journalled_writepage(struct page *page,
2842                                 struct writeback_control *wbc)
2843 {
2844         struct address_space *mapping = page->mapping;
2845         struct inode *inode = mapping->host;
2846         struct buffer_head *page_bufs;
2847         handle_t *handle = NULL;
2848         int ret = 0;
2849         int err;
2850
2851         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2852                                         ext4_normal_get_block_write);
2853         if (ret != 0)
2854                 goto out_unlock;
2855
2856         page_bufs = page_buffers(page);
2857         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2858                                                                 bget_one);
2859         /* As soon as we unlock the page, it can go away, but we have
2860          * references to buffers so we are safe */
2861         unlock_page(page);
2862
2863         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2864         if (IS_ERR(handle)) {
2865                 ret = PTR_ERR(handle);
2866                 goto out;
2867         }
2868
2869         ret = walk_page_buffers(handle, page_bufs, 0,
2870                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2871
2872         err = walk_page_buffers(handle, page_bufs, 0,
2873                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2874         if (ret == 0)
2875                 ret = err;
2876         err = ext4_journal_stop(handle);
2877         if (!ret)
2878                 ret = err;
2879
2880         walk_page_buffers(handle, page_bufs, 0,
2881                                 PAGE_CACHE_SIZE, NULL, bput_one);
2882         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2883         goto out;
2884
2885 out_unlock:
2886         unlock_page(page);
2887 out:
2888         return ret;
2889 }
2890
2891 static int ext4_journalled_writepage(struct page *page,
2892                                 struct writeback_control *wbc)
2893 {
2894         struct inode *inode = page->mapping->host;
2895         loff_t size = i_size_read(inode);
2896         loff_t len;
2897
2898         J_ASSERT(PageLocked(page));
2899         if (page->index == size >> PAGE_CACHE_SHIFT)
2900                 len = size & ~PAGE_CACHE_MASK;
2901         else
2902                 len = PAGE_CACHE_SIZE;
2903
2904         if (page_has_buffers(page)) {
2905                 /* if page has buffers it should all be mapped
2906                  * and allocated. If there are not buffers attached
2907                  * to the page we know the page is dirty but it lost
2908                  * buffers. That means that at some moment in time
2909                  * after write_begin() / write_end() has been called
2910                  * all buffers have been clean and thus they must have been
2911                  * written at least once. So they are all mapped and we can
2912                  * happily proceed with mapping them and writing the page.
2913                  */
2914                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2915                                         ext4_bh_unmapped_or_delay));
2916         }
2917
2918         if (ext4_journal_current_handle())
2919                 goto no_write;
2920
2921         if (PageChecked(page)) {
2922                 /*
2923                  * It's mmapped pagecache.  Add buffers and journal it.  There
2924                  * doesn't seem much point in redirtying the page here.
2925                  */
2926                 ClearPageChecked(page);
2927                 return __ext4_journalled_writepage(page, wbc);
2928         } else {
2929                 /*
2930                  * It may be a page full of checkpoint-mode buffers.  We don't
2931                  * really know unless we go poke around in the buffer_heads.
2932                  * But block_write_full_page will do the right thing.
2933                  */
2934                 return block_write_full_page(page,
2935                                                 ext4_normal_get_block_write,
2936                                                 wbc);
2937         }
2938 no_write:
2939         redirty_page_for_writepage(wbc, page);
2940         unlock_page(page);
2941         return 0;
2942 }
2943
2944 static int ext4_readpage(struct file *file, struct page *page)
2945 {
2946         return mpage_readpage(page, ext4_get_block);
2947 }
2948
2949 static int
2950 ext4_readpages(struct file *file, struct address_space *mapping,
2951                 struct list_head *pages, unsigned nr_pages)
2952 {
2953         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2954 }
2955
2956 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2957 {
2958         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2959
2960         /*
2961          * If it's a full truncate we just forget about the pending dirtying
2962          */
2963         if (offset == 0)
2964                 ClearPageChecked(page);
2965
2966         jbd2_journal_invalidatepage(journal, page, offset);
2967 }
2968
2969 static int ext4_releasepage(struct page *page, gfp_t wait)
2970 {
2971         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2972
2973         WARN_ON(PageChecked(page));
2974         if (!page_has_buffers(page))
2975                 return 0;
2976         return jbd2_journal_try_to_free_buffers(journal, page, wait);
2977 }
2978
2979 /*
2980  * If the O_DIRECT write will extend the file then add this inode to the
2981  * orphan list.  So recovery will truncate it back to the original size
2982  * if the machine crashes during the write.
2983  *
2984  * If the O_DIRECT write is intantiating holes inside i_size and the machine
2985  * crashes then stale disk data _may_ be exposed inside the file. But current
2986  * VFS code falls back into buffered path in that case so we are safe.
2987  */
2988 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2989                         const struct iovec *iov, loff_t offset,
2990                         unsigned long nr_segs)
2991 {
2992         struct file *file = iocb->ki_filp;
2993         struct inode *inode = file->f_mapping->host;
2994         struct ext4_inode_info *ei = EXT4_I(inode);
2995         handle_t *handle;
2996         ssize_t ret;
2997         int orphan = 0;
2998         size_t count = iov_length(iov, nr_segs);
2999
3000         if (rw == WRITE) {
3001                 loff_t final_size = offset + count;
3002
3003                 if (final_size > inode->i_size) {
3004                         /* Credits for sb + inode write */
3005                         handle = ext4_journal_start(inode, 2);
3006                         if (IS_ERR(handle)) {
3007                                 ret = PTR_ERR(handle);
3008                                 goto out;
3009                         }
3010                         ret = ext4_orphan_add(handle, inode);
3011                         if (ret) {
3012                                 ext4_journal_stop(handle);
3013                                 goto out;
3014                         }
3015                         orphan = 1;
3016                         ei->i_disksize = inode->i_size;
3017                         ext4_journal_stop(handle);
3018                 }
3019         }
3020
3021         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3022                                  offset, nr_segs,
3023                                  ext4_get_block, NULL);
3024
3025         if (orphan) {
3026                 int err;
3027
3028                 /* Credits for sb + inode write */
3029                 handle = ext4_journal_start(inode, 2);
3030                 if (IS_ERR(handle)) {
3031                         /* This is really bad luck. We've written the data
3032                          * but cannot extend i_size. Bail out and pretend
3033                          * the write failed... */
3034                         ret = PTR_ERR(handle);
3035                         goto out;
3036                 }
3037                 if (inode->i_nlink)
3038                         ext4_orphan_del(handle, inode);
3039                 if (ret > 0) {
3040                         loff_t end = offset + ret;
3041                         if (end > inode->i_size) {
3042                                 ei->i_disksize = end;
3043                                 i_size_write(inode, end);
3044                                 /*
3045                                  * We're going to return a positive `ret'
3046                                  * here due to non-zero-length I/O, so there's
3047                                  * no way of reporting error returns from
3048                                  * ext4_mark_inode_dirty() to userspace.  So
3049                                  * ignore it.
3050                                  */
3051                                 ext4_mark_inode_dirty(handle, inode);
3052                         }
3053                 }
3054                 err = ext4_journal_stop(handle);
3055                 if (ret == 0)
3056                         ret = err;
3057         }
3058 out:
3059         return ret;
3060 }
3061
3062 /*
3063  * Pages can be marked dirty completely asynchronously from ext4's journalling
3064  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3065  * much here because ->set_page_dirty is called under VFS locks.  The page is
3066  * not necessarily locked.
3067  *
3068  * We cannot just dirty the page and leave attached buffers clean, because the
3069  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3070  * or jbddirty because all the journalling code will explode.
3071  *
3072  * So what we do is to mark the page "pending dirty" and next time writepage
3073  * is called, propagate that into the buffers appropriately.
3074  */
3075 static int ext4_journalled_set_page_dirty(struct page *page)
3076 {
3077         SetPageChecked(page);
3078         return __set_page_dirty_nobuffers(page);
3079 }
3080
3081 static const struct address_space_operations ext4_ordered_aops = {
3082         .readpage               = ext4_readpage,
3083         .readpages              = ext4_readpages,
3084         .writepage              = ext4_normal_writepage,
3085         .sync_page              = block_sync_page,
3086         .write_begin            = ext4_write_begin,
3087         .write_end              = ext4_ordered_write_end,
3088         .bmap                   = ext4_bmap,
3089         .invalidatepage         = ext4_invalidatepage,
3090         .releasepage            = ext4_releasepage,
3091         .direct_IO              = ext4_direct_IO,
3092         .migratepage            = buffer_migrate_page,
3093         .is_partially_uptodate  = block_is_partially_uptodate,
3094 };
3095
3096 static const struct address_space_operations ext4_writeback_aops = {
3097         .readpage               = ext4_readpage,
3098         .readpages              = ext4_readpages,
3099         .writepage              = ext4_normal_writepage,
3100         .sync_page              = block_sync_page,
3101         .write_begin            = ext4_write_begin,
3102         .write_end              = ext4_writeback_write_end,
3103         .bmap                   = ext4_bmap,
3104         .invalidatepage         = ext4_invalidatepage,
3105         .releasepage            = ext4_releasepage,
3106         .direct_IO              = ext4_direct_IO,
3107         .migratepage            = buffer_migrate_page,
3108         .is_partially_uptodate  = block_is_partially_uptodate,
3109 };
3110
3111 static const struct address_space_operations ext4_journalled_aops = {
3112         .readpage               = ext4_readpage,
3113         .readpages              = ext4_readpages,
3114         .writepage              = ext4_journalled_writepage,
3115         .sync_page              = block_sync_page,
3116         .write_begin            = ext4_write_begin,
3117         .write_end              = ext4_journalled_write_end,
3118         .set_page_dirty         = ext4_journalled_set_page_dirty,
3119         .bmap                   = ext4_bmap,
3120         .invalidatepage         = ext4_invalidatepage,
3121         .releasepage            = ext4_releasepage,
3122         .is_partially_uptodate  = block_is_partially_uptodate,
3123 };
3124
3125 static const struct address_space_operations ext4_da_aops = {
3126         .readpage               = ext4_readpage,
3127         .readpages              = ext4_readpages,
3128         .writepage              = ext4_da_writepage,
3129         .writepages             = ext4_da_writepages,
3130         .sync_page              = block_sync_page,
3131         .write_begin            = ext4_da_write_begin,
3132         .write_end              = ext4_da_write_end,
3133         .bmap                   = ext4_bmap,
3134         .invalidatepage         = ext4_da_invalidatepage,
3135         .releasepage            = ext4_releasepage,
3136         .direct_IO              = ext4_direct_IO,
3137         .migratepage            = buffer_migrate_page,
3138         .is_partially_uptodate  = block_is_partially_uptodate,
3139 };
3140
3141 void ext4_set_aops(struct inode *inode)
3142 {
3143         if (ext4_should_order_data(inode) &&
3144                 test_opt(inode->i_sb, DELALLOC))
3145                 inode->i_mapping->a_ops = &ext4_da_aops;
3146         else if (ext4_should_order_data(inode))
3147                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3148         else if (ext4_should_writeback_data(inode) &&
3149                  test_opt(inode->i_sb, DELALLOC))
3150                 inode->i_mapping->a_ops = &ext4_da_aops;
3151         else if (ext4_should_writeback_data(inode))
3152                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3153         else
3154                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3155 }
3156
3157 /*
3158  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3159  * up to the end of the block which corresponds to `from'.
3160  * This required during truncate. We need to physically zero the tail end
3161  * of that block so it doesn't yield old data if the file is later grown.
3162  */
3163 int ext4_block_truncate_page(handle_t *handle,
3164                 struct address_space *mapping, loff_t from)
3165 {
3166         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3167         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3168         unsigned blocksize, length, pos;
3169         ext4_lblk_t iblock;
3170         struct inode *inode = mapping->host;
3171         struct buffer_head *bh;
3172         struct page *page;
3173         int err = 0;
3174
3175         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3176         if (!page)
3177                 return -EINVAL;
3178
3179         blocksize = inode->i_sb->s_blocksize;
3180         length = blocksize - (offset & (blocksize - 1));
3181         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3182
3183         /*
3184          * For "nobh" option,  we can only work if we don't need to
3185          * read-in the page - otherwise we create buffers to do the IO.
3186          */
3187         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3188              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3189                 zero_user(page, offset, length);
3190                 set_page_dirty(page);
3191                 goto unlock;
3192         }
3193
3194         if (!page_has_buffers(page))
3195                 create_empty_buffers(page, blocksize, 0);
3196
3197         /* Find the buffer that contains "offset" */
3198         bh = page_buffers(page);
3199         pos = blocksize;
3200         while (offset >= pos) {
3201                 bh = bh->b_this_page;
3202                 iblock++;
3203                 pos += blocksize;
3204         }
3205
3206         err = 0;
3207         if (buffer_freed(bh)) {
3208                 BUFFER_TRACE(bh, "freed: skip");
3209                 goto unlock;
3210         }
3211
3212         if (!buffer_mapped(bh)) {
3213                 BUFFER_TRACE(bh, "unmapped");
3214                 ext4_get_block(inode, iblock, bh, 0);
3215                 /* unmapped? It's a hole - nothing to do */
3216                 if (!buffer_mapped(bh)) {
3217                         BUFFER_TRACE(bh, "still unmapped");
3218                         goto unlock;
3219                 }
3220         }
3221
3222         /* Ok, it's mapped. Make sure it's up-to-date */
3223         if (PageUptodate(page))
3224                 set_buffer_uptodate(bh);
3225
3226         if (!buffer_uptodate(bh)) {
3227                 err = -EIO;
3228                 ll_rw_block(READ, 1, &bh);
3229                 wait_on_buffer(bh);
3230                 /* Uhhuh. Read error. Complain and punt. */
3231                 if (!buffer_uptodate(bh))
3232                         goto unlock;
3233         }
3234
3235         if (ext4_should_journal_data(inode)) {
3236                 BUFFER_TRACE(bh, "get write access");
3237                 err = ext4_journal_get_write_access(handle, bh);
3238                 if (err)
3239                         goto unlock;
3240         }
3241
3242         zero_user(page, offset, length);
3243
3244         BUFFER_TRACE(bh, "zeroed end of block");
3245
3246         err = 0;
3247         if (ext4_should_journal_data(inode)) {
3248                 err = ext4_journal_dirty_metadata(handle, bh);
3249         } else {
3250                 if (ext4_should_order_data(inode))
3251                         err = ext4_jbd2_file_inode(handle, inode);
3252                 mark_buffer_dirty(bh);
3253         }
3254
3255 unlock:
3256         unlock_page(page);
3257         page_cache_release(page);
3258         return err;
3259 }
3260
3261 /*
3262  * Probably it should be a library function... search for first non-zero word
3263  * or memcmp with zero_page, whatever is better for particular architecture.
3264  * Linus?
3265  */
3266 static inline int all_zeroes(__le32 *p, __le32 *q)
3267 {
3268         while (p < q)
3269                 if (*p++)
3270                         return 0;
3271         return 1;
3272 }
3273
3274 /**
3275  *      ext4_find_shared - find the indirect blocks for partial truncation.
3276  *      @inode:   inode in question
3277  *      @depth:   depth of the affected branch
3278  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3279  *      @chain:   place to store the pointers to partial indirect blocks
3280  *      @top:     place to the (detached) top of branch
3281  *
3282  *      This is a helper function used by ext4_truncate().
3283  *
3284  *      When we do truncate() we may have to clean the ends of several
3285  *      indirect blocks but leave the blocks themselves alive. Block is
3286  *      partially truncated if some data below the new i_size is refered
3287  *      from it (and it is on the path to the first completely truncated
3288  *      data block, indeed).  We have to free the top of that path along
3289  *      with everything to the right of the path. Since no allocation
3290  *      past the truncation point is possible until ext4_truncate()
3291  *      finishes, we may safely do the latter, but top of branch may
3292  *      require special attention - pageout below the truncation point
3293  *      might try to populate it.
3294  *
3295  *      We atomically detach the top of branch from the tree, store the
3296  *      block number of its root in *@top, pointers to buffer_heads of
3297  *      partially truncated blocks - in @chain[].bh and pointers to
3298  *      their last elements that should not be removed - in
3299  *      @chain[].p. Return value is the pointer to last filled element
3300  *      of @chain.
3301  *
3302  *      The work left to caller to do the actual freeing of subtrees:
3303  *              a) free the subtree starting from *@top
3304  *              b) free the subtrees whose roots are stored in
3305  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3306  *              c) free the subtrees growing from the inode past the @chain[0].
3307  *                      (no partially truncated stuff there).  */
3308
3309 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3310                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3311 {
3312         Indirect *partial, *p;
3313         int k, err;
3314
3315         *top = 0;
3316         /* Make k index the deepest non-null offest + 1 */
3317         for (k = depth; k > 1 && !offsets[k-1]; k--)
3318                 ;
3319         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3320         /* Writer: pointers */
3321         if (!partial)
3322                 partial = chain + k-1;
3323         /*
3324          * If the branch acquired continuation since we've looked at it -
3325          * fine, it should all survive and (new) top doesn't belong to us.
3326          */
3327         if (!partial->key && *partial->p)
3328                 /* Writer: end */
3329                 goto no_top;
3330         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3331                 ;
3332         /*
3333          * OK, we've found the last block that must survive. The rest of our
3334          * branch should be detached before unlocking. However, if that rest
3335          * of branch is all ours and does not grow immediately from the inode
3336          * it's easier to cheat and just decrement partial->p.
3337          */
3338         if (p == chain + k - 1 && p > chain) {
3339                 p->p--;
3340         } else {
3341                 *top = *p->p;
3342                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3343 #if 0
3344                 *p->p = 0;
3345 #endif
3346         }
3347         /* Writer: end */
3348
3349         while (partial > p) {
3350                 brelse(partial->bh);
3351                 partial--;
3352         }
3353 no_top:
3354         return partial;
3355 }
3356
3357 /*
3358  * Zero a number of block pointers in either an inode or an indirect block.
3359  * If we restart the transaction we must again get write access to the
3360  * indirect block for further modification.
3361  *
3362  * We release `count' blocks on disk, but (last - first) may be greater
3363  * than `count' because there can be holes in there.
3364  */
3365 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3366                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3367                 unsigned long count, __le32 *first, __le32 *last)
3368 {
3369         __le32 *p;
3370         if (try_to_extend_transaction(handle, inode)) {
3371                 if (bh) {
3372                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3373                         ext4_journal_dirty_metadata(handle, bh);
3374                 }
3375                 ext4_mark_inode_dirty(handle, inode);
3376                 ext4_journal_test_restart(handle, inode);
3377                 if (bh) {
3378                         BUFFER_TRACE(bh, "retaking write access");
3379                         ext4_journal_get_write_access(handle, bh);
3380                 }
3381         }
3382
3383         /*
3384          * Any buffers which are on the journal will be in memory. We find
3385          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3386          * on them.  We've already detached each block from the file, so
3387          * bforget() in jbd2_journal_forget() should be safe.
3388          *
3389          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3390          */
3391         for (p = first; p < last; p++) {
3392                 u32 nr = le32_to_cpu(*p);
3393                 if (nr) {
3394                         struct buffer_head *tbh;
3395
3396                         *p = 0;
3397                         tbh = sb_find_get_block(inode->i_sb, nr);
3398                         ext4_forget(handle, 0, inode, tbh, nr);
3399                 }
3400         }
3401
3402         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3403 }
3404
3405 /**
3406  * ext4_free_data - free a list of data blocks
3407  * @handle:     handle for this transaction
3408  * @inode:      inode we are dealing with
3409  * @this_bh:    indirect buffer_head which contains *@first and *@last
3410  * @first:      array of block numbers
3411  * @last:       points immediately past the end of array
3412  *
3413  * We are freeing all blocks refered from that array (numbers are stored as
3414  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3415  *
3416  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3417  * blocks are contiguous then releasing them at one time will only affect one
3418  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3419  * actually use a lot of journal space.
3420  *
3421  * @this_bh will be %NULL if @first and @last point into the inode's direct
3422  * block pointers.
3423  */
3424 static void ext4_free_data(handle_t *handle, struct inode *inode,
3425                            struct buffer_head *this_bh,
3426                            __le32 *first, __le32 *last)
3427 {
3428         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3429         unsigned long count = 0;            /* Number of blocks in the run */
3430         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3431                                                corresponding to
3432                                                block_to_free */
3433         ext4_fsblk_t nr;                    /* Current block # */
3434         __le32 *p;                          /* Pointer into inode/ind
3435                                                for current block */
3436         int err;
3437
3438         if (this_bh) {                          /* For indirect block */
3439                 BUFFER_TRACE(this_bh, "get_write_access");
3440                 err = ext4_journal_get_write_access(handle, this_bh);
3441                 /* Important: if we can't update the indirect pointers
3442                  * to the blocks, we can't free them. */
3443                 if (err)
3444                         return;
3445         }
3446
3447         for (p = first; p < last; p++) {
3448                 nr = le32_to_cpu(*p);
3449                 if (nr) {
3450                         /* accumulate blocks to free if they're contiguous */
3451                         if (count == 0) {
3452                                 block_to_free = nr;
3453                                 block_to_free_p = p;
3454                                 count = 1;
3455                         } else if (nr == block_to_free + count) {
3456                                 count++;
3457                         } else {
3458                                 ext4_clear_blocks(handle, inode, this_bh,
3459                                                   block_to_free,
3460                                                   count, block_to_free_p, p);
3461                                 block_to_free = nr;
3462                                 block_to_free_p = p;
3463                                 count = 1;
3464                         }
3465                 }
3466         }
3467
3468         if (count > 0)
3469                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3470                                   count, block_to_free_p, p);
3471
3472         if (this_bh) {
3473                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3474
3475                 /*
3476                  * The buffer head should have an attached journal head at this
3477                  * point. However, if the data is corrupted and an indirect
3478                  * block pointed to itself, it would have been detached when
3479                  * the block was cleared. Check for this instead of OOPSing.
3480                  */
3481                 if (bh2jh(this_bh))
3482                         ext4_journal_dirty_metadata(handle, this_bh);
3483                 else
3484                         ext4_error(inode->i_sb, __func__,
3485                                    "circular indirect block detected, "
3486                                    "inode=%lu, block=%llu",
3487                                    inode->i_ino,
3488                                    (unsigned long long) this_bh->b_blocknr);
3489         }
3490 }
3491
3492 /**
3493  *      ext4_free_branches - free an array of branches
3494  *      @handle: JBD handle for this transaction
3495  *      @inode: inode we are dealing with
3496  *      @parent_bh: the buffer_head which contains *@first and *@last
3497  *      @first: array of block numbers
3498  *      @last:  pointer immediately past the end of array
3499  *      @depth: depth of the branches to free
3500  *
3501  *      We are freeing all blocks refered from these branches (numbers are
3502  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3503  *      appropriately.
3504  */
3505 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3506                                struct buffer_head *parent_bh,
3507                                __le32 *first, __le32 *last, int depth)
3508 {
3509         ext4_fsblk_t nr;
3510         __le32 *p;
3511
3512         if (is_handle_aborted(handle))
3513                 return;
3514
3515         if (depth--) {
3516                 struct buffer_head *bh;
3517                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3518                 p = last;
3519                 while (--p >= first) {
3520                         nr = le32_to_cpu(*p);
3521                         if (!nr)
3522                                 continue;               /* A hole */
3523
3524                         /* Go read the buffer for the next level down */
3525                         bh = sb_bread(inode->i_sb, nr);
3526
3527                         /*
3528                          * A read failure? Report error and clear slot
3529                          * (should be rare).
3530                          */
3531                         if (!bh) {
3532                                 ext4_error(inode->i_sb, "ext4_free_branches",
3533                                            "Read failure, inode=%lu, block=%llu",
3534                                            inode->i_ino, nr);
3535                                 continue;
3536                         }
3537
3538                         /* This zaps the entire block.  Bottom up. */
3539                         BUFFER_TRACE(bh, "free child branches");
3540                         ext4_free_branches(handle, inode, bh,
3541                                         (__le32 *) bh->b_data,
3542                                         (__le32 *) bh->b_data + addr_per_block,
3543                                         depth);
3544
3545                         /*
3546                          * We've probably journalled the indirect block several
3547                          * times during the truncate.  But it's no longer
3548                          * needed and we now drop it from the transaction via
3549                          * jbd2_journal_revoke().
3550                          *
3551                          * That's easy if it's exclusively part of this
3552                          * transaction.  But if it's part of the committing
3553                          * transaction then jbd2_journal_forget() will simply
3554                          * brelse() it.  That means that if the underlying
3555                          * block is reallocated in ext4_get_block(),
3556                          * unmap_underlying_metadata() will find this block
3557                          * and will try to get rid of it.  damn, damn.
3558                          *
3559                          * If this block has already been committed to the
3560                          * journal, a revoke record will be written.  And
3561                          * revoke records must be emitted *before* clearing
3562                          * this block's bit in the bitmaps.
3563                          */
3564                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3565
3566                         /*
3567                          * Everything below this this pointer has been
3568                          * released.  Now let this top-of-subtree go.
3569                          *
3570                          * We want the freeing of this indirect block to be
3571                          * atomic in the journal with the updating of the
3572                          * bitmap block which owns it.  So make some room in
3573                          * the journal.
3574                          *
3575                          * We zero the parent pointer *after* freeing its
3576                          * pointee in the bitmaps, so if extend_transaction()
3577                          * for some reason fails to put the bitmap changes and
3578                          * the release into the same transaction, recovery
3579                          * will merely complain about releasing a free block,
3580                          * rather than leaking blocks.
3581                          */
3582                         if (is_handle_aborted(handle))
3583                                 return;
3584                         if (try_to_extend_transaction(handle, inode)) {
3585                                 ext4_mark_inode_dirty(handle, inode);
3586                                 ext4_journal_test_restart(handle, inode);
3587                         }
3588
3589                         ext4_free_blocks(handle, inode, nr, 1, 1);
3590
3591                         if (parent_bh) {
3592                                 /*
3593                                  * The block which we have just freed is
3594                                  * pointed to by an indirect block: journal it
3595                                  */
3596                                 BUFFER_TRACE(parent_bh, "get_write_access");
3597                                 if (!ext4_journal_get_write_access(handle,
3598                                                                    parent_bh)){
3599                                         *p = 0;
3600                                         BUFFER_TRACE(parent_bh,
3601                                         "call ext4_journal_dirty_metadata");
3602                                         ext4_journal_dirty_metadata(handle,
3603                                                                     parent_bh);
3604                                 }
3605                         }
3606                 }
3607         } else {
3608                 /* We have reached the bottom of the tree. */
3609                 BUFFER_TRACE(parent_bh, "free data blocks");
3610                 ext4_free_data(handle, inode, parent_bh, first, last);
3611         }
3612 }
3613
3614 int ext4_can_truncate(struct inode *inode)
3615 {
3616         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3617                 return 0;
3618         if (S_ISREG(inode->i_mode))
3619                 return 1;
3620         if (S_ISDIR(inode->i_mode))
3621                 return 1;
3622         if (S_ISLNK(inode->i_mode))
3623                 return !ext4_inode_is_fast_symlink(inode);
3624         return 0;
3625 }
3626
3627 /*
3628  * ext4_truncate()
3629  *
3630  * We block out ext4_get_block() block instantiations across the entire
3631  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3632  * simultaneously on behalf of the same inode.
3633  *
3634  * As we work through the truncate and commmit bits of it to the journal there
3635  * is one core, guiding principle: the file's tree must always be consistent on
3636  * disk.  We must be able to restart the truncate after a crash.
3637  *
3638  * The file's tree may be transiently inconsistent in memory (although it
3639  * probably isn't), but whenever we close off and commit a journal transaction,
3640  * the contents of (the filesystem + the journal) must be consistent and
3641  * restartable.  It's pretty simple, really: bottom up, right to left (although
3642  * left-to-right works OK too).
3643  *
3644  * Note that at recovery time, journal replay occurs *before* the restart of
3645  * truncate against the orphan inode list.
3646  *
3647  * The committed inode has the new, desired i_size (which is the same as
3648  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3649  * that this inode's truncate did not complete and it will again call
3650  * ext4_truncate() to have another go.  So there will be instantiated blocks
3651  * to the right of the truncation point in a crashed ext4 filesystem.  But
3652  * that's fine - as long as they are linked from the inode, the post-crash
3653  * ext4_truncate() run will find them and release them.
3654  */
3655 void ext4_truncate(struct inode *inode)
3656 {
3657         handle_t *handle;
3658         struct ext4_inode_info *ei = EXT4_I(inode);
3659         __le32 *i_data = ei->i_data;
3660         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3661         struct address_space *mapping = inode->i_mapping;
3662         ext4_lblk_t offsets[4];
3663         Indirect chain[4];
3664         Indirect *partial;
3665         __le32 nr = 0;
3666         int n;
3667         ext4_lblk_t last_block;
3668         unsigned blocksize = inode->i_sb->s_blocksize;
3669
3670         if (!ext4_can_truncate(inode))
3671                 return;
3672
3673         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3674                 ext4_ext_truncate(inode);
3675                 return;
3676         }
3677
3678         handle = start_transaction(inode);
3679         if (IS_ERR(handle))
3680                 return;         /* AKPM: return what? */
3681
3682         last_block = (inode->i_size + blocksize-1)
3683                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3684
3685         if (inode->i_size & (blocksize - 1))
3686                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3687                         goto out_stop;
3688
3689         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3690         if (n == 0)
3691                 goto out_stop;  /* error */
3692
3693         /*
3694          * OK.  This truncate is going to happen.  We add the inode to the
3695          * orphan list, so that if this truncate spans multiple transactions,
3696          * and we crash, we will resume the truncate when the filesystem
3697          * recovers.  It also marks the inode dirty, to catch the new size.
3698          *
3699          * Implication: the file must always be in a sane, consistent
3700          * truncatable state while each transaction commits.
3701          */
3702         if (ext4_orphan_add(handle, inode))
3703                 goto out_stop;
3704
3705         /*
3706          * From here we block out all ext4_get_block() callers who want to
3707          * modify the block allocation tree.
3708          */
3709         down_write(&ei->i_data_sem);
3710
3711         ext4_discard_preallocations(inode);
3712
3713         /*
3714          * The orphan list entry will now protect us from any crash which
3715          * occurs before the truncate completes, so it is now safe to propagate
3716          * the new, shorter inode size (held for now in i_size) into the
3717          * on-disk inode. We do this via i_disksize, which is the value which
3718          * ext4 *really* writes onto the disk inode.
3719          */
3720         ei->i_disksize = inode->i_size;
3721
3722         if (n == 1) {           /* direct blocks */
3723                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3724                                i_data + EXT4_NDIR_BLOCKS);
3725                 goto do_indirects;
3726         }
3727
3728         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3729         /* Kill the top of shared branch (not detached) */
3730         if (nr) {
3731                 if (partial == chain) {
3732                         /* Shared branch grows from the inode */
3733                         ext4_free_branches(handle, inode, NULL,
3734                                            &nr, &nr+1, (chain+n-1) - partial);
3735                         *partial->p = 0;
3736                         /*
3737                          * We mark the inode dirty prior to restart,
3738                          * and prior to stop.  No need for it here.
3739                          */
3740                 } else {
3741                         /* Shared branch grows from an indirect block */
3742                         BUFFER_TRACE(partial->bh, "get_write_access");
3743                         ext4_free_branches(handle, inode, partial->bh,
3744                                         partial->p,
3745                                         partial->p+1, (chain+n-1) - partial);
3746                 }
3747         }
3748         /* Clear the ends of indirect blocks on the shared branch */
3749         while (partial > chain) {
3750                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3751                                    (__le32*)partial->bh->b_data+addr_per_block,
3752                                    (chain+n-1) - partial);
3753                 BUFFER_TRACE(partial->bh, "call brelse");
3754                 brelse (partial->bh);
3755                 partial--;
3756         }
3757 do_indirects:
3758         /* Kill the remaining (whole) subtrees */
3759         switch (offsets[0]) {
3760         default:
3761                 nr = i_data[EXT4_IND_BLOCK];
3762                 if (nr) {
3763                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3764                         i_data[EXT4_IND_BLOCK] = 0;
3765                 }
3766         case EXT4_IND_BLOCK:
3767                 nr = i_data[EXT4_DIND_BLOCK];
3768                 if (nr) {
3769                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3770                         i_data[EXT4_DIND_BLOCK] = 0;
3771                 }
3772         case EXT4_DIND_BLOCK:
3773                 nr = i_data[EXT4_TIND_BLOCK];
3774                 if (nr) {
3775                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3776                         i_data[EXT4_TIND_BLOCK] = 0;
3777                 }
3778         case EXT4_TIND_BLOCK:
3779                 ;
3780         }
3781
3782         up_write(&ei->i_data_sem);
3783         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3784         ext4_mark_inode_dirty(handle, inode);
3785
3786         /*
3787          * In a multi-transaction truncate, we only make the final transaction
3788          * synchronous
3789          */
3790         if (IS_SYNC(inode))
3791                 handle->h_sync = 1;
3792 out_stop:
3793         /*
3794          * If this was a simple ftruncate(), and the file will remain alive
3795          * then we need to clear up the orphan record which we created above.
3796          * However, if this was a real unlink then we were called by
3797          * ext4_delete_inode(), and we allow that function to clean up the
3798          * orphan info for us.
3799          */
3800         if (inode->i_nlink)
3801                 ext4_orphan_del(handle, inode);
3802
3803         ext4_journal_stop(handle);
3804 }
3805
3806 /*
3807  * ext4_get_inode_loc returns with an extra refcount against the inode's
3808  * underlying buffer_head on success. If 'in_mem' is true, we have all
3809  * data in memory that is needed to recreate the on-disk version of this
3810  * inode.
3811  */
3812 static int __ext4_get_inode_loc(struct inode *inode,
3813                                 struct ext4_iloc *iloc, int in_mem)
3814 {
3815         struct ext4_group_desc  *gdp;
3816         struct buffer_head      *bh;
3817         struct super_block      *sb = inode->i_sb;
3818         ext4_fsblk_t            block;
3819         int                     inodes_per_block, inode_offset;
3820
3821         iloc->bh = 0;
3822         if (!ext4_valid_inum(sb, inode->i_ino))
3823                 return -EIO;
3824
3825         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3826         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3827         if (!gdp)
3828                 return -EIO;
3829
3830         /*
3831          * Figure out the offset within the block group inode table
3832          */
3833         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3834         inode_offset = ((inode->i_ino - 1) %
3835                         EXT4_INODES_PER_GROUP(sb));
3836         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3837         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3838
3839         bh = sb_getblk(sb, block);
3840         if (!bh) {
3841                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3842                            "inode block - inode=%lu, block=%llu",
3843                            inode->i_ino, block);
3844                 return -EIO;
3845         }
3846         if (!buffer_uptodate(bh)) {
3847                 lock_buffer(bh);
3848
3849                 /*
3850                  * If the buffer has the write error flag, we have failed
3851                  * to write out another inode in the same block.  In this
3852                  * case, we don't have to read the block because we may
3853                  * read the old inode data successfully.
3854                  */
3855                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3856                         set_buffer_uptodate(bh);
3857
3858                 if (buffer_uptodate(bh)) {
3859                         /* someone brought it uptodate while we waited */
3860                         unlock_buffer(bh);
3861                         goto has_buffer;
3862                 }
3863
3864                 /*
3865                  * If we have all information of the inode in memory and this
3866                  * is the only valid inode in the block, we need not read the
3867                  * block.
3868                  */
3869                 if (in_mem) {
3870                         struct buffer_head *bitmap_bh;
3871                         int i, start;
3872
3873                         start = inode_offset & ~(inodes_per_block - 1);
3874
3875                         /* Is the inode bitmap in cache? */
3876                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3877                         if (!bitmap_bh)
3878                                 goto make_io;
3879
3880                         /*
3881                          * If the inode bitmap isn't in cache then the
3882                          * optimisation may end up performing two reads instead
3883                          * of one, so skip it.
3884                          */
3885                         if (!buffer_uptodate(bitmap_bh)) {
3886                                 brelse(bitmap_bh);
3887                                 goto make_io;
3888                         }
3889                         for (i = start; i < start + inodes_per_block; i++) {
3890                                 if (i == inode_offset)
3891                                         continue;
3892                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3893                                         break;
3894                         }
3895                         brelse(bitmap_bh);
3896                         if (i == start + inodes_per_block) {
3897                                 /* all other inodes are free, so skip I/O */
3898                                 memset(bh->b_data, 0, bh->b_size);
3899                                 set_buffer_uptodate(bh);
3900                                 unlock_buffer(bh);
3901                                 goto has_buffer;
3902                         }
3903                 }
3904
3905 make_io:
3906                 /*
3907                  * If we need to do any I/O, try to pre-readahead extra
3908                  * blocks from the inode table.
3909                  */
3910                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3911                         ext4_fsblk_t b, end, table;
3912                         unsigned num;
3913
3914                         table = ext4_inode_table(sb, gdp);
3915                         /* Make sure s_inode_readahead_blks is a power of 2 */
3916                         while (EXT4_SB(sb)->s_inode_readahead_blks &
3917                                (EXT4_SB(sb)->s_inode_readahead_blks-1))
3918                                 EXT4_SB(sb)->s_inode_readahead_blks = 
3919                                    (EXT4_SB(sb)->s_inode_readahead_blks &
3920                                     (EXT4_SB(sb)->s_inode_readahead_blks-1));
3921                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3922                         if (table > b)
3923                                 b = table;
3924                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3925                         num = EXT4_INODES_PER_GROUP(sb);
3926                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3927                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3928                                 num -= le16_to_cpu(gdp->bg_itable_unused);
3929                         table += num / inodes_per_block;
3930                         if (end > table)
3931                                 end = table;
3932                         while (b <= end)
3933                                 sb_breadahead(sb, b++);
3934                 }
3935
3936                 /*
3937                  * There are other valid inodes in the buffer, this inode
3938                  * has in-inode xattrs, or we don't have this inode in memory.
3939                  * Read the block from disk.
3940                  */
3941                 get_bh(bh);
3942                 bh->b_end_io = end_buffer_read_sync;
3943                 submit_bh(READ_META, bh);
3944                 wait_on_buffer(bh);
3945                 if (!buffer_uptodate(bh)) {
3946                         ext4_error(sb, __func__,
3947                                    "unable to read inode block - inode=%lu, "
3948                                    "block=%llu", inode->i_ino, block);
3949                         brelse(bh);
3950                         return -EIO;
3951                 }
3952         }
3953 has_buffer:
3954         iloc->bh = bh;
3955         return 0;
3956 }
3957
3958 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3959 {
3960         /* We have all inode data except xattrs in memory here. */
3961         return __ext4_get_inode_loc(inode, iloc,
3962                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3963 }
3964
3965 void ext4_set_inode_flags(struct inode *inode)
3966 {
3967         unsigned int flags = EXT4_I(inode)->i_flags;
3968
3969         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3970         if (flags & EXT4_SYNC_FL)
3971                 inode->i_flags |= S_SYNC;
3972         if (flags & EXT4_APPEND_FL)
3973                 inode->i_flags |= S_APPEND;
3974         if (flags & EXT4_IMMUTABLE_FL)
3975                 inode->i_flags |= S_IMMUTABLE;
3976         if (flags & EXT4_NOATIME_FL)
3977                 inode->i_flags |= S_NOATIME;
3978         if (flags & EXT4_DIRSYNC_FL)
3979                 inode->i_flags |= S_DIRSYNC;
3980 }
3981
3982 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3983 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3984 {
3985         unsigned int flags = ei->vfs_inode.i_flags;
3986
3987         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3988                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3989         if (flags & S_SYNC)
3990                 ei->i_flags |= EXT4_SYNC_FL;
3991         if (flags & S_APPEND)
3992                 ei->i_flags |= EXT4_APPEND_FL;
3993         if (flags & S_IMMUTABLE)
3994                 ei->i_flags |= EXT4_IMMUTABLE_FL;
3995         if (flags & S_NOATIME)
3996                 ei->i_flags |= EXT4_NOATIME_FL;
3997         if (flags & S_DIRSYNC)
3998                 ei->i_flags |= EXT4_DIRSYNC_FL;
3999 }
4000 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4001                                         struct ext4_inode_info *ei)
4002 {
4003         blkcnt_t i_blocks ;
4004         struct inode *inode = &(ei->vfs_inode);
4005         struct super_block *sb = inode->i_sb;
4006
4007         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4008                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4009                 /* we are using combined 48 bit field */
4010                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4011                                         le32_to_cpu(raw_inode->i_blocks_lo);
4012                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4013                         /* i_blocks represent file system block size */
4014                         return i_blocks  << (inode->i_blkbits - 9);
4015                 } else {
4016                         return i_blocks;
4017                 }
4018         } else {
4019                 return le32_to_cpu(raw_inode->i_blocks_lo);
4020         }
4021 }
4022
4023 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4024 {
4025         struct ext4_iloc iloc;
4026         struct ext4_inode *raw_inode;
4027         struct ext4_inode_info *ei;
4028         struct buffer_head *bh;
4029         struct inode *inode;
4030         long ret;
4031         int block;
4032
4033         inode = iget_locked(sb, ino);
4034         if (!inode)
4035                 return ERR_PTR(-ENOMEM);
4036         if (!(inode->i_state & I_NEW))
4037                 return inode;
4038
4039         ei = EXT4_I(inode);
4040 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4041         ei->i_acl = EXT4_ACL_NOT_CACHED;
4042         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4043 #endif
4044
4045         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4046         if (ret < 0)
4047                 goto bad_inode;
4048         bh = iloc.bh;
4049         raw_inode = ext4_raw_inode(&iloc);
4050         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4051         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4052         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4053         if (!(test_opt(inode->i_sb, NO_UID32))) {
4054                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4055                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4056         }
4057         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4058
4059         ei->i_state = 0;
4060         ei->i_dir_start_lookup = 0;
4061         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4062         /* We now have enough fields to check if the inode was active or not.
4063          * This is needed because nfsd might try to access dead inodes
4064          * the test is that same one that e2fsck uses
4065          * NeilBrown 1999oct15
4066          */
4067         if (inode->i_nlink == 0) {
4068                 if (inode->i_mode == 0 ||
4069                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4070                         /* this inode is deleted */
4071                         brelse(bh);
4072                         ret = -ESTALE;
4073                         goto bad_inode;
4074                 }
4075                 /* The only unlinked inodes we let through here have
4076                  * valid i_mode and are being read by the orphan
4077                  * recovery code: that's fine, we're about to complete
4078                  * the process of deleting those. */
4079         }
4080         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4081         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4082         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4083         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4084             cpu_to_le32(EXT4_OS_HURD)) {
4085                 ei->i_file_acl |=
4086                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4087         }
4088         inode->i_size = ext4_isize(raw_inode);
4089         ei->i_disksize = inode->i_size;
4090         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4091         ei->i_block_group = iloc.block_group;
4092         /*
4093          * NOTE! The in-memory inode i_data array is in little-endian order
4094          * even on big-endian machines: we do NOT byteswap the block numbers!
4095          */
4096         for (block = 0; block < EXT4_N_BLOCKS; block++)
4097                 ei->i_data[block] = raw_inode->i_block[block];
4098         INIT_LIST_HEAD(&ei->i_orphan);
4099
4100         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4101                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4102                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4103                     EXT4_INODE_SIZE(inode->i_sb)) {
4104                         brelse(bh);
4105                         ret = -EIO;
4106                         goto bad_inode;
4107                 }
4108                 if (ei->i_extra_isize == 0) {
4109                         /* The extra space is currently unused. Use it. */
4110                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4111                                             EXT4_GOOD_OLD_INODE_SIZE;
4112                 } else {
4113                         __le32 *magic = (void *)raw_inode +
4114                                         EXT4_GOOD_OLD_INODE_SIZE +
4115                                         ei->i_extra_isize;
4116                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4117                                  ei->i_state |= EXT4_STATE_XATTR;
4118                 }
4119         } else
4120                 ei->i_extra_isize = 0;
4121
4122         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4123         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4124         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4125         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4126
4127         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4128         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4129                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4130                         inode->i_version |=
4131                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4132         }
4133
4134         if (S_ISREG(inode->i_mode)) {
4135                 inode->i_op = &ext4_file_inode_operations;
4136                 inode->i_fop = &ext4_file_operations;
4137                 ext4_set_aops(inode);
4138         } else if (S_ISDIR(inode->i_mode)) {
4139                 inode->i_op = &ext4_dir_inode_operations;
4140                 inode->i_fop = &ext4_dir_operations;
4141         } else if (S_ISLNK(inode->i_mode)) {
4142                 if (ext4_inode_is_fast_symlink(inode))
4143                         inode->i_op = &ext4_fast_symlink_inode_operations;
4144                 else {
4145                         inode->i_op = &ext4_symlink_inode_operations;
4146                         ext4_set_aops(inode);
4147                 }
4148         } else {
4149                 inode->i_op = &ext4_special_inode_operations;
4150                 if (raw_inode->i_block[0])
4151                         init_special_inode(inode, inode->i_mode,
4152                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4153                 else
4154                         init_special_inode(inode, inode->i_mode,
4155                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4156         }
4157         brelse(iloc.bh);
4158         ext4_set_inode_flags(inode);
4159         unlock_new_inode(inode);
4160         return inode;
4161
4162 bad_inode:
4163         iget_failed(inode);
4164         return ERR_PTR(ret);
4165 }
4166
4167 static int ext4_inode_blocks_set(handle_t *handle,
4168                                 struct ext4_inode *raw_inode,
4169                                 struct ext4_inode_info *ei)
4170 {
4171         struct inode *inode = &(ei->vfs_inode);
4172         u64 i_blocks = inode->i_blocks;
4173         struct super_block *sb = inode->i_sb;
4174         int err = 0;
4175
4176         if (i_blocks <= ~0U) {
4177                 /*
4178                  * i_blocks can be represnted in a 32 bit variable
4179                  * as multiple of 512 bytes
4180                  */
4181                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4182                 raw_inode->i_blocks_high = 0;
4183                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4184         } else if (i_blocks <= 0xffffffffffffULL) {
4185                 /*
4186                  * i_blocks can be represented in a 48 bit variable
4187                  * as multiple of 512 bytes
4188                  */
4189                 err = ext4_update_rocompat_feature(handle, sb,
4190                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4191                 if (err)
4192                         goto  err_out;
4193                 /* i_block is stored in the split  48 bit fields */
4194                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4195                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4196                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4197         } else {
4198                 /*
4199                  * i_blocks should be represented in a 48 bit variable
4200                  * as multiple of  file system block size
4201                  */
4202                 err = ext4_update_rocompat_feature(handle, sb,
4203                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4204                 if (err)
4205                         goto  err_out;
4206                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4207                 /* i_block is stored in file system block size */
4208                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4209                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4210                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4211         }
4212 err_out:
4213         return err;
4214 }
4215
4216 /*
4217  * Post the struct inode info into an on-disk inode location in the
4218  * buffer-cache.  This gobbles the caller's reference to the
4219  * buffer_head in the inode location struct.
4220  *
4221  * The caller must have write access to iloc->bh.
4222  */
4223 static int ext4_do_update_inode(handle_t *handle,
4224                                 struct inode *inode,
4225                                 struct ext4_iloc *iloc)
4226 {
4227         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4228         struct ext4_inode_info *ei = EXT4_I(inode);
4229         struct buffer_head *bh = iloc->bh;
4230         int err = 0, rc, block;
4231
4232         /* For fields not not tracking in the in-memory inode,
4233          * initialise them to zero for new inodes. */
4234         if (ei->i_state & EXT4_STATE_NEW)
4235                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4236
4237         ext4_get_inode_flags(ei);
4238         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4239         if (!(test_opt(inode->i_sb, NO_UID32))) {
4240                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4241                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4242 /*
4243  * Fix up interoperability with old kernels. Otherwise, old inodes get
4244  * re-used with the upper 16 bits of the uid/gid intact
4245  */
4246                 if (!ei->i_dtime) {
4247                         raw_inode->i_uid_high =
4248                                 cpu_to_le16(high_16_bits(inode->i_uid));
4249                         raw_inode->i_gid_high =
4250                                 cpu_to_le16(high_16_bits(inode->i_gid));
4251                 } else {
4252                         raw_inode->i_uid_high = 0;
4253                         raw_inode->i_gid_high = 0;
4254                 }
4255         } else {
4256                 raw_inode->i_uid_low =
4257                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4258                 raw_inode->i_gid_low =
4259                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4260                 raw_inode->i_uid_high = 0;
4261                 raw_inode->i_gid_high = 0;
4262         }
4263         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4264
4265         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4266         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4267         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4268         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4269
4270         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4271                 goto out_brelse;
4272         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4273         /* clear the migrate flag in the raw_inode */
4274         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4275         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4276             cpu_to_le32(EXT4_OS_HURD))
4277                 raw_inode->i_file_acl_high =
4278                         cpu_to_le16(ei->i_file_acl >> 32);
4279         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4280         ext4_isize_set(raw_inode, ei->i_disksize);
4281         if (ei->i_disksize > 0x7fffffffULL) {
4282                 struct super_block *sb = inode->i_sb;
4283                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4284                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4285                                 EXT4_SB(sb)->s_es->s_rev_level ==
4286                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4287                         /* If this is the first large file
4288                          * created, add a flag to the superblock.
4289                          */
4290                         err = ext4_journal_get_write_access(handle,
4291                                         EXT4_SB(sb)->s_sbh);
4292                         if (err)
4293                                 goto out_brelse;
4294                         ext4_update_dynamic_rev(sb);
4295                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4296                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4297                         sb->s_dirt = 1;
4298                         handle->h_sync = 1;
4299                         err = ext4_journal_dirty_metadata(handle,
4300                                         EXT4_SB(sb)->s_sbh);
4301                 }
4302         }
4303         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4304         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4305                 if (old_valid_dev(inode->i_rdev)) {
4306                         raw_inode->i_block[0] =
4307                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4308                         raw_inode->i_block[1] = 0;
4309                 } else {
4310                         raw_inode->i_block[0] = 0;
4311                         raw_inode->i_block[1] =
4312                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4313                         raw_inode->i_block[2] = 0;
4314                 }
4315         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4316                 raw_inode->i_block[block] = ei->i_data[block];
4317
4318         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4319         if (ei->i_extra_isize) {
4320                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4321                         raw_inode->i_version_hi =
4322                         cpu_to_le32(inode->i_version >> 32);
4323                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4324         }
4325
4326
4327         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4328         rc = ext4_journal_dirty_metadata(handle, bh);
4329         if (!err)
4330                 err = rc;
4331         ei->i_state &= ~EXT4_STATE_NEW;
4332
4333 out_brelse:
4334         brelse(bh);
4335         ext4_std_error(inode->i_sb, err);
4336         return err;
4337 }
4338
4339 /*
4340  * ext4_write_inode()
4341  *
4342  * We are called from a few places:
4343  *
4344  * - Within generic_file_write() for O_SYNC files.
4345  *   Here, there will be no transaction running. We wait for any running
4346  *   trasnaction to commit.
4347  *
4348  * - Within sys_sync(), kupdate and such.
4349  *   We wait on commit, if tol to.
4350  *
4351  * - Within prune_icache() (PF_MEMALLOC == true)
4352  *   Here we simply return.  We can't afford to block kswapd on the
4353  *   journal commit.
4354  *
4355  * In all cases it is actually safe for us to return without doing anything,
4356  * because the inode has been copied into a raw inode buffer in
4357  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4358  * knfsd.
4359  *
4360  * Note that we are absolutely dependent upon all inode dirtiers doing the
4361  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4362  * which we are interested.
4363  *
4364  * It would be a bug for them to not do this.  The code:
4365  *
4366  *      mark_inode_dirty(inode)
4367  *      stuff();
4368  *      inode->i_size = expr;
4369  *
4370  * is in error because a kswapd-driven write_inode() could occur while
4371  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4372  * will no longer be on the superblock's dirty inode list.
4373  */
4374 int ext4_write_inode(struct inode *inode, int wait)
4375 {
4376         if (current->flags & PF_MEMALLOC)
4377                 return 0;
4378
4379         if (ext4_journal_current_handle()) {
4380                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4381                 dump_stack();
4382                 return -EIO;
4383         }
4384
4385         if (!wait)
4386                 return 0;
4387
4388         return ext4_force_commit(inode->i_sb);
4389 }
4390
4391 /*
4392  * ext4_setattr()
4393  *
4394  * Called from notify_change.
4395  *
4396  * We want to trap VFS attempts to truncate the file as soon as
4397  * possible.  In particular, we want to make sure that when the VFS
4398  * shrinks i_size, we put the inode on the orphan list and modify
4399  * i_disksize immediately, so that during the subsequent flushing of
4400  * dirty pages and freeing of disk blocks, we can guarantee that any
4401  * commit will leave the blocks being flushed in an unused state on
4402  * disk.  (On recovery, the inode will get truncated and the blocks will
4403  * be freed, so we have a strong guarantee that no future commit will
4404  * leave these blocks visible to the user.)
4405  *
4406  * Another thing we have to assure is that if we are in ordered mode
4407  * and inode is still attached to the committing transaction, we must
4408  * we start writeout of all the dirty pages which are being truncated.
4409  * This way we are sure that all the data written in the previous
4410  * transaction are already on disk (truncate waits for pages under
4411  * writeback).
4412  *
4413  * Called with inode->i_mutex down.
4414  */
4415 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4416 {
4417         struct inode *inode = dentry->d_inode;
4418         int error, rc = 0;
4419         const unsigned int ia_valid = attr->ia_valid;
4420
4421         error = inode_change_ok(inode, attr);
4422         if (error)
4423                 return error;
4424
4425         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4426                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4427                 handle_t *handle;
4428
4429                 /* (user+group)*(old+new) structure, inode write (sb,
4430                  * inode block, ? - but truncate inode update has it) */
4431                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4432                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4433                 if (IS_ERR(handle)) {
4434                         error = PTR_ERR(handle);
4435                         goto err_out;
4436                 }
4437                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4438                 if (error) {
4439                         ext4_journal_stop(handle);
4440                         return error;
4441                 }
4442                 /* Update corresponding info in inode so that everything is in
4443                  * one transaction */
4444                 if (attr->ia_valid & ATTR_UID)
4445                         inode->i_uid = attr->ia_uid;
4446                 if (attr->ia_valid & ATTR_GID)
4447                         inode->i_gid = attr->ia_gid;
4448                 error = ext4_mark_inode_dirty(handle, inode);
4449                 ext4_journal_stop(handle);
4450         }
4451
4452         if (attr->ia_valid & ATTR_SIZE) {
4453                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4454                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4455
4456                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4457                                 error = -EFBIG;
4458                                 goto err_out;
4459                         }
4460                 }
4461         }
4462
4463         if (S_ISREG(inode->i_mode) &&
4464             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4465                 handle_t *handle;
4466
4467                 handle = ext4_journal_start(inode, 3);
4468                 if (IS_ERR(handle)) {
4469                         error = PTR_ERR(handle);
4470                         goto err_out;
4471                 }
4472
4473                 error = ext4_orphan_add(handle, inode);
4474                 EXT4_I(inode)->i_disksize = attr->ia_size;
4475                 rc = ext4_mark_inode_dirty(handle, inode);
4476                 if (!error)
4477                         error = rc;
4478                 ext4_journal_stop(handle);
4479
4480                 if (ext4_should_order_data(inode)) {
4481                         error = ext4_begin_ordered_truncate(inode,
4482                                                             attr->ia_size);
4483                         if (error) {
4484                                 /* Do as much error cleanup as possible */
4485                                 handle = ext4_journal_start(inode, 3);
4486                                 if (IS_ERR(handle)) {
4487                                         ext4_orphan_del(NULL, inode);
4488                                         goto err_out;
4489                                 }
4490                                 ext4_orphan_del(handle, inode);
4491                                 ext4_journal_stop(handle);
4492                                 goto err_out;
4493                         }
4494                 }
4495         }
4496
4497         rc = inode_setattr(inode, attr);
4498
4499         /* If inode_setattr's call to ext4_truncate failed to get a
4500          * transaction handle at all, we need to clean up the in-core
4501          * orphan list manually. */
4502         if (inode->i_nlink)
4503                 ext4_orphan_del(NULL, inode);
4504
4505         if (!rc && (ia_valid & ATTR_MODE))
4506                 rc = ext4_acl_chmod(inode);
4507
4508 err_out:
4509         ext4_std_error(inode->i_sb, error);
4510         if (!error)
4511                 error = rc;
4512         return error;
4513 }
4514
4515 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4516                  struct kstat *stat)
4517 {
4518         struct inode *inode;
4519         unsigned long delalloc_blocks;
4520
4521         inode = dentry->d_inode;
4522         generic_fillattr(inode, stat);
4523
4524         /*
4525          * We can't update i_blocks if the block allocation is delayed
4526          * otherwise in the case of system crash before the real block
4527          * allocation is done, we will have i_blocks inconsistent with
4528          * on-disk file blocks.
4529          * We always keep i_blocks updated together with real
4530          * allocation. But to not confuse with user, stat
4531          * will return the blocks that include the delayed allocation
4532          * blocks for this file.
4533          */
4534         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4535         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4536         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4537
4538         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4539         return 0;
4540 }
4541
4542 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4543                                       int chunk)
4544 {
4545         int indirects;
4546
4547         /* if nrblocks are contiguous */
4548         if (chunk) {
4549                 /*
4550                  * With N contiguous data blocks, it need at most
4551                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4552                  * 2 dindirect blocks
4553                  * 1 tindirect block
4554                  */
4555                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4556                 return indirects + 3;
4557         }
4558         /*
4559          * if nrblocks are not contiguous, worse case, each block touch
4560          * a indirect block, and each indirect block touch a double indirect
4561          * block, plus a triple indirect block
4562          */
4563         indirects = nrblocks * 2 + 1;
4564         return indirects;
4565 }
4566
4567 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4568 {
4569         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4570                 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4571         return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4572 }
4573 /*
4574  * Account for index blocks, block groups bitmaps and block group
4575  * descriptor blocks if modify datablocks and index blocks
4576  * worse case, the indexs blocks spread over different block groups
4577  *
4578  * If datablocks are discontiguous, they are possible to spread over
4579  * different block groups too. If they are contiugous, with flexbg,
4580  * they could still across block group boundary.
4581  *
4582  * Also account for superblock, inode, quota and xattr blocks
4583  */
4584 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4585 {
4586         int groups, gdpblocks;
4587         int idxblocks;
4588         int ret = 0;
4589
4590         /*
4591          * How many index blocks need to touch to modify nrblocks?
4592          * The "Chunk" flag indicating whether the nrblocks is
4593          * physically contiguous on disk
4594          *
4595          * For Direct IO and fallocate, they calls get_block to allocate
4596          * one single extent at a time, so they could set the "Chunk" flag
4597          */
4598         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4599
4600         ret = idxblocks;
4601
4602         /*
4603          * Now let's see how many group bitmaps and group descriptors need
4604          * to account
4605          */
4606         groups = idxblocks;
4607         if (chunk)
4608                 groups += 1;
4609         else
4610                 groups += nrblocks;
4611
4612         gdpblocks = groups;
4613         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4614                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4615         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4616                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4617
4618         /* bitmaps and block group descriptor blocks */
4619         ret += groups + gdpblocks;
4620
4621         /* Blocks for super block, inode, quota and xattr blocks */
4622         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4623
4624         return ret;
4625 }
4626
4627 /*
4628  * Calulate the total number of credits to reserve to fit
4629  * the modification of a single pages into a single transaction,
4630  * which may include multiple chunks of block allocations.
4631  *
4632  * This could be called via ext4_write_begin()
4633  *
4634  * We need to consider the worse case, when
4635  * one new block per extent.
4636  */
4637 int ext4_writepage_trans_blocks(struct inode *inode)
4638 {
4639         int bpp = ext4_journal_blocks_per_page(inode);
4640         int ret;
4641
4642         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4643
4644         /* Account for data blocks for journalled mode */
4645         if (ext4_should_journal_data(inode))
4646                 ret += bpp;
4647         return ret;
4648 }
4649
4650 /*
4651  * Calculate the journal credits for a chunk of data modification.
4652  *
4653  * This is called from DIO, fallocate or whoever calling
4654  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4655  *
4656  * journal buffers for data blocks are not included here, as DIO
4657  * and fallocate do no need to journal data buffers.
4658  */
4659 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4660 {
4661         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4662 }
4663
4664 /*
4665  * The caller must have previously called ext4_reserve_inode_write().
4666  * Give this, we know that the caller already has write access to iloc->bh.
4667  */
4668 int ext4_mark_iloc_dirty(handle_t *handle,
4669                 struct inode *inode, struct ext4_iloc *iloc)
4670 {
4671         int err = 0;
4672
4673         if (test_opt(inode->i_sb, I_VERSION))
4674                 inode_inc_iversion(inode);
4675
4676         /* the do_update_inode consumes one bh->b_count */
4677         get_bh(iloc->bh);
4678
4679         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4680         err = ext4_do_update_inode(handle, inode, iloc);
4681         put_bh(iloc->bh);
4682         return err;
4683 }
4684
4685 /*
4686  * On success, We end up with an outstanding reference count against
4687  * iloc->bh.  This _must_ be cleaned up later.
4688  */
4689
4690 int
4691 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4692                          struct ext4_iloc *iloc)
4693 {
4694         int err = 0;
4695         if (handle) {
4696                 err = ext4_get_inode_loc(inode, iloc);
4697                 if (!err) {
4698                         BUFFER_TRACE(iloc->bh, "get_write_access");
4699                         err = ext4_journal_get_write_access(handle, iloc->bh);
4700                         if (err) {
4701                                 brelse(iloc->bh);
4702                                 iloc->bh = NULL;
4703                         }
4704                 }
4705         }
4706         ext4_std_error(inode->i_sb, err);
4707         return err;
4708 }
4709
4710 /*
4711  * Expand an inode by new_extra_isize bytes.
4712  * Returns 0 on success or negative error number on failure.
4713  */
4714 static int ext4_expand_extra_isize(struct inode *inode,
4715                                    unsigned int new_extra_isize,
4716                                    struct ext4_iloc iloc,
4717                                    handle_t *handle)
4718 {
4719         struct ext4_inode *raw_inode;
4720         struct ext4_xattr_ibody_header *header;
4721         struct ext4_xattr_entry *entry;
4722
4723         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4724                 return 0;
4725
4726         raw_inode = ext4_raw_inode(&iloc);
4727
4728         header = IHDR(inode, raw_inode);
4729         entry = IFIRST(header);
4730
4731         /* No extended attributes present */
4732         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4733                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4734                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4735                         new_extra_isize);
4736                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4737                 return 0;
4738         }
4739
4740         /* try to expand with EAs present */
4741         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4742                                           raw_inode, handle);
4743 }
4744
4745 /*
4746  * What we do here is to mark the in-core inode as clean with respect to inode
4747  * dirtiness (it may still be data-dirty).
4748  * This means that the in-core inode may be reaped by prune_icache
4749  * without having to perform any I/O.  This is a very good thing,
4750  * because *any* task may call prune_icache - even ones which
4751  * have a transaction open against a different journal.
4752  *
4753  * Is this cheating?  Not really.  Sure, we haven't written the
4754  * inode out, but prune_icache isn't a user-visible syncing function.
4755  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4756  * we start and wait on commits.
4757  *
4758  * Is this efficient/effective?  Well, we're being nice to the system
4759  * by cleaning up our inodes proactively so they can be reaped
4760  * without I/O.  But we are potentially leaving up to five seconds'
4761  * worth of inodes floating about which prune_icache wants us to
4762  * write out.  One way to fix that would be to get prune_icache()
4763  * to do a write_super() to free up some memory.  It has the desired
4764  * effect.
4765  */
4766 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4767 {
4768         struct ext4_iloc iloc;
4769         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4770         static unsigned int mnt_count;
4771         int err, ret;
4772
4773         might_sleep();
4774         err = ext4_reserve_inode_write(handle, inode, &iloc);
4775         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4776             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4777                 /*
4778                  * We need extra buffer credits since we may write into EA block
4779                  * with this same handle. If journal_extend fails, then it will
4780                  * only result in a minor loss of functionality for that inode.
4781                  * If this is felt to be critical, then e2fsck should be run to
4782                  * force a large enough s_min_extra_isize.
4783                  */
4784                 if ((jbd2_journal_extend(handle,
4785                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4786                         ret = ext4_expand_extra_isize(inode,
4787                                                       sbi->s_want_extra_isize,
4788                                                       iloc, handle);
4789                         if (ret) {
4790                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4791                                 if (mnt_count !=
4792                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4793                                         ext4_warning(inode->i_sb, __func__,
4794                                         "Unable to expand inode %lu. Delete"
4795                                         " some EAs or run e2fsck.",
4796                                         inode->i_ino);
4797                                         mnt_count =
4798                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4799                                 }
4800                         }
4801                 }
4802         }
4803         if (!err)
4804                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4805         return err;
4806 }
4807
4808 /*
4809  * ext4_dirty_inode() is called from __mark_inode_dirty()
4810  *
4811  * We're really interested in the case where a file is being extended.
4812  * i_size has been changed by generic_commit_write() and we thus need
4813  * to include the updated inode in the current transaction.
4814  *
4815  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4816  * are allocated to the file.
4817  *
4818  * If the inode is marked synchronous, we don't honour that here - doing
4819  * so would cause a commit on atime updates, which we don't bother doing.
4820  * We handle synchronous inodes at the highest possible level.
4821  */
4822 void ext4_dirty_inode(struct inode *inode)
4823 {
4824         handle_t *current_handle = ext4_journal_current_handle();
4825         handle_t *handle;
4826
4827         handle = ext4_journal_start(inode, 2);
4828         if (IS_ERR(handle))
4829                 goto out;
4830         if (current_handle &&
4831                 current_handle->h_transaction != handle->h_transaction) {
4832                 /* This task has a transaction open against a different fs */
4833                 printk(KERN_EMERG "%s: transactions do not match!\n",
4834                        __func__);
4835         } else {
4836                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4837                                 current_handle);
4838                 ext4_mark_inode_dirty(handle, inode);
4839         }
4840         ext4_journal_stop(handle);
4841 out:
4842         return;
4843 }
4844
4845 #if 0
4846 /*
4847  * Bind an inode's backing buffer_head into this transaction, to prevent
4848  * it from being flushed to disk early.  Unlike
4849  * ext4_reserve_inode_write, this leaves behind no bh reference and
4850  * returns no iloc structure, so the caller needs to repeat the iloc
4851  * lookup to mark the inode dirty later.
4852  */
4853 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4854 {
4855         struct ext4_iloc iloc;
4856
4857         int err = 0;
4858         if (handle) {
4859                 err = ext4_get_inode_loc(inode, &iloc);
4860                 if (!err) {
4861                         BUFFER_TRACE(iloc.bh, "get_write_access");
4862                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4863                         if (!err)
4864                                 err = ext4_journal_dirty_metadata(handle,
4865                                                                   iloc.bh);
4866                         brelse(iloc.bh);
4867                 }
4868         }
4869         ext4_std_error(inode->i_sb, err);
4870         return err;
4871 }
4872 #endif
4873
4874 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4875 {
4876         journal_t *journal;
4877         handle_t *handle;
4878         int err;
4879
4880         /*
4881          * We have to be very careful here: changing a data block's
4882          * journaling status dynamically is dangerous.  If we write a
4883          * data block to the journal, change the status and then delete
4884          * that block, we risk forgetting to revoke the old log record
4885          * from the journal and so a subsequent replay can corrupt data.
4886          * So, first we make sure that the journal is empty and that
4887          * nobody is changing anything.
4888          */
4889
4890         journal = EXT4_JOURNAL(inode);
4891         if (is_journal_aborted(journal))
4892                 return -EROFS;
4893
4894         jbd2_journal_lock_updates(journal);
4895         jbd2_journal_flush(journal);
4896
4897         /*
4898          * OK, there are no updates running now, and all cached data is
4899          * synced to disk.  We are now in a completely consistent state
4900          * which doesn't have anything in the journal, and we know that
4901          * no filesystem updates are running, so it is safe to modify
4902          * the inode's in-core data-journaling state flag now.
4903          */
4904
4905         if (val)
4906                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4907         else
4908                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4909         ext4_set_aops(inode);
4910
4911         jbd2_journal_unlock_updates(journal);
4912
4913         /* Finally we can mark the inode as dirty. */
4914
4915         handle = ext4_journal_start(inode, 1);
4916         if (IS_ERR(handle))
4917                 return PTR_ERR(handle);
4918
4919         err = ext4_mark_inode_dirty(handle, inode);
4920         handle->h_sync = 1;
4921         ext4_journal_stop(handle);
4922         ext4_std_error(inode->i_sb, err);
4923
4924         return err;
4925 }
4926
4927 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4928 {
4929         return !buffer_mapped(bh);
4930 }
4931
4932 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4933 {
4934         loff_t size;
4935         unsigned long len;
4936         int ret = -EINVAL;
4937         void *fsdata;
4938         struct file *file = vma->vm_file;
4939         struct inode *inode = file->f_path.dentry->d_inode;
4940         struct address_space *mapping = inode->i_mapping;
4941
4942         /*
4943          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4944          * get i_mutex because we are already holding mmap_sem.
4945          */
4946         down_read(&inode->i_alloc_sem);
4947         size = i_size_read(inode);
4948         if (page->mapping != mapping || size <= page_offset(page)
4949             || !PageUptodate(page)) {
4950                 /* page got truncated from under us? */
4951                 goto out_unlock;
4952         }
4953         ret = 0;
4954         if (PageMappedToDisk(page))
4955                 goto out_unlock;
4956
4957         if (page->index == size >> PAGE_CACHE_SHIFT)
4958                 len = size & ~PAGE_CACHE_MASK;
4959         else
4960                 len = PAGE_CACHE_SIZE;
4961
4962         if (page_has_buffers(page)) {
4963                 /* return if we have all the buffers mapped */
4964                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4965                                        ext4_bh_unmapped))
4966                         goto out_unlock;
4967         }
4968         /*
4969          * OK, we need to fill the hole... Do write_begin write_end
4970          * to do block allocation/reservation.We are not holding
4971          * inode.i__mutex here. That allow * parallel write_begin,
4972          * write_end call. lock_page prevent this from happening
4973          * on the same page though
4974          */
4975         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4976                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
4977         if (ret < 0)
4978                 goto out_unlock;
4979         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4980                         len, len, page, fsdata);
4981         if (ret < 0)
4982                 goto out_unlock;
4983         ret = 0;
4984 out_unlock:
4985         up_read(&inode->i_alloc_sem);
4986         return ret;
4987 }