ext4: truncate block allocated on a failed ext4_write_begin
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 #define MPAGE_DA_EXTENT_TAIL 0x01
45
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47                                               loff_t new_size)
48 {
49         return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50                                                    new_size);
51 }
52
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
54
55 /*
56  * Test whether an inode is a fast symlink.
57  */
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
59 {
60         int ea_blocks = EXT4_I(inode)->i_file_acl ?
61                 (inode->i_sb->s_blocksize >> 9) : 0;
62
63         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64 }
65
66 /*
67  * The ext4 forget function must perform a revoke if we are freeing data
68  * which has been journaled.  Metadata (eg. indirect blocks) must be
69  * revoked in all cases.
70  *
71  * "bh" may be NULL: a metadata block may have been freed from memory
72  * but there may still be a record of it in the journal, and that record
73  * still needs to be revoked.
74  */
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76                         struct buffer_head *bh, ext4_fsblk_t blocknr)
77 {
78         int err;
79
80         might_sleep();
81
82         BUFFER_TRACE(bh, "enter");
83
84         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85                   "data mode %lx\n",
86                   bh, is_metadata, inode->i_mode,
87                   test_opt(inode->i_sb, DATA_FLAGS));
88
89         /* Never use the revoke function if we are doing full data
90          * journaling: there is no need to, and a V1 superblock won't
91          * support it.  Otherwise, only skip the revoke on un-journaled
92          * data blocks. */
93
94         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95             (!is_metadata && !ext4_should_journal_data(inode))) {
96                 if (bh) {
97                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
98                         return ext4_journal_forget(handle, bh);
99                 }
100                 return 0;
101         }
102
103         /*
104          * data!=journal && (is_metadata || should_journal_data(inode))
105          */
106         BUFFER_TRACE(bh, "call ext4_journal_revoke");
107         err = ext4_journal_revoke(handle, blocknr, bh);
108         if (err)
109                 ext4_abort(inode->i_sb, __func__,
110                            "error %d when attempting revoke", err);
111         BUFFER_TRACE(bh, "exit");
112         return err;
113 }
114
115 /*
116  * Work out how many blocks we need to proceed with the next chunk of a
117  * truncate transaction.
118  */
119 static unsigned long blocks_for_truncate(struct inode *inode)
120 {
121         ext4_lblk_t needed;
122
123         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124
125         /* Give ourselves just enough room to cope with inodes in which
126          * i_blocks is corrupt: we've seen disk corruptions in the past
127          * which resulted in random data in an inode which looked enough
128          * like a regular file for ext4 to try to delete it.  Things
129          * will go a bit crazy if that happens, but at least we should
130          * try not to panic the whole kernel. */
131         if (needed < 2)
132                 needed = 2;
133
134         /* But we need to bound the transaction so we don't overflow the
135          * journal. */
136         if (needed > EXT4_MAX_TRANS_DATA)
137                 needed = EXT4_MAX_TRANS_DATA;
138
139         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
140 }
141
142 /*
143  * Truncate transactions can be complex and absolutely huge.  So we need to
144  * be able to restart the transaction at a conventient checkpoint to make
145  * sure we don't overflow the journal.
146  *
147  * start_transaction gets us a new handle for a truncate transaction,
148  * and extend_transaction tries to extend the existing one a bit.  If
149  * extend fails, we need to propagate the failure up and restart the
150  * transaction in the top-level truncate loop. --sct
151  */
152 static handle_t *start_transaction(struct inode *inode)
153 {
154         handle_t *result;
155
156         result = ext4_journal_start(inode, blocks_for_truncate(inode));
157         if (!IS_ERR(result))
158                 return result;
159
160         ext4_std_error(inode->i_sb, PTR_ERR(result));
161         return result;
162 }
163
164 /*
165  * Try to extend this transaction for the purposes of truncation.
166  *
167  * Returns 0 if we managed to create more room.  If we can't create more
168  * room, and the transaction must be restarted we return 1.
169  */
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171 {
172         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173                 return 0;
174         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175                 return 0;
176         return 1;
177 }
178
179 /*
180  * Restart the transaction associated with *handle.  This does a commit,
181  * so before we call here everything must be consistently dirtied against
182  * this transaction.
183  */
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
185 {
186         jbd_debug(2, "restarting handle %p\n", handle);
187         return ext4_journal_restart(handle, blocks_for_truncate(inode));
188 }
189
190 /*
191  * Called at the last iput() if i_nlink is zero.
192  */
193 void ext4_delete_inode(struct inode *inode)
194 {
195         handle_t *handle;
196         int err;
197
198         if (ext4_should_order_data(inode))
199                 ext4_begin_ordered_truncate(inode, 0);
200         truncate_inode_pages(&inode->i_data, 0);
201
202         if (is_bad_inode(inode))
203                 goto no_delete;
204
205         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206         if (IS_ERR(handle)) {
207                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
208                 /*
209                  * If we're going to skip the normal cleanup, we still need to
210                  * make sure that the in-core orphan linked list is properly
211                  * cleaned up.
212                  */
213                 ext4_orphan_del(NULL, inode);
214                 goto no_delete;
215         }
216
217         if (IS_SYNC(inode))
218                 handle->h_sync = 1;
219         inode->i_size = 0;
220         err = ext4_mark_inode_dirty(handle, inode);
221         if (err) {
222                 ext4_warning(inode->i_sb, __func__,
223                              "couldn't mark inode dirty (err %d)", err);
224                 goto stop_handle;
225         }
226         if (inode->i_blocks)
227                 ext4_truncate(inode);
228
229         /*
230          * ext4_ext_truncate() doesn't reserve any slop when it
231          * restarts journal transactions; therefore there may not be
232          * enough credits left in the handle to remove the inode from
233          * the orphan list and set the dtime field.
234          */
235         if (handle->h_buffer_credits < 3) {
236                 err = ext4_journal_extend(handle, 3);
237                 if (err > 0)
238                         err = ext4_journal_restart(handle, 3);
239                 if (err != 0) {
240                         ext4_warning(inode->i_sb, __func__,
241                                      "couldn't extend journal (err %d)", err);
242                 stop_handle:
243                         ext4_journal_stop(handle);
244                         goto no_delete;
245                 }
246         }
247
248         /*
249          * Kill off the orphan record which ext4_truncate created.
250          * AKPM: I think this can be inside the above `if'.
251          * Note that ext4_orphan_del() has to be able to cope with the
252          * deletion of a non-existent orphan - this is because we don't
253          * know if ext4_truncate() actually created an orphan record.
254          * (Well, we could do this if we need to, but heck - it works)
255          */
256         ext4_orphan_del(handle, inode);
257         EXT4_I(inode)->i_dtime  = get_seconds();
258
259         /*
260          * One subtle ordering requirement: if anything has gone wrong
261          * (transaction abort, IO errors, whatever), then we can still
262          * do these next steps (the fs will already have been marked as
263          * having errors), but we can't free the inode if the mark_dirty
264          * fails.
265          */
266         if (ext4_mark_inode_dirty(handle, inode))
267                 /* If that failed, just do the required in-core inode clear. */
268                 clear_inode(inode);
269         else
270                 ext4_free_inode(handle, inode);
271         ext4_journal_stop(handle);
272         return;
273 no_delete:
274         clear_inode(inode);     /* We must guarantee clearing of inode... */
275 }
276
277 typedef struct {
278         __le32  *p;
279         __le32  key;
280         struct buffer_head *bh;
281 } Indirect;
282
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284 {
285         p->key = *(p->p = v);
286         p->bh = bh;
287 }
288
289 /**
290  *      ext4_block_to_path - parse the block number into array of offsets
291  *      @inode: inode in question (we are only interested in its superblock)
292  *      @i_block: block number to be parsed
293  *      @offsets: array to store the offsets in
294  *      @boundary: set this non-zero if the referred-to block is likely to be
295  *             followed (on disk) by an indirect block.
296  *
297  *      To store the locations of file's data ext4 uses a data structure common
298  *      for UNIX filesystems - tree of pointers anchored in the inode, with
299  *      data blocks at leaves and indirect blocks in intermediate nodes.
300  *      This function translates the block number into path in that tree -
301  *      return value is the path length and @offsets[n] is the offset of
302  *      pointer to (n+1)th node in the nth one. If @block is out of range
303  *      (negative or too large) warning is printed and zero returned.
304  *
305  *      Note: function doesn't find node addresses, so no IO is needed. All
306  *      we need to know is the capacity of indirect blocks (taken from the
307  *      inode->i_sb).
308  */
309
310 /*
311  * Portability note: the last comparison (check that we fit into triple
312  * indirect block) is spelled differently, because otherwise on an
313  * architecture with 32-bit longs and 8Kb pages we might get into trouble
314  * if our filesystem had 8Kb blocks. We might use long long, but that would
315  * kill us on x86. Oh, well, at least the sign propagation does not matter -
316  * i_block would have to be negative in the very beginning, so we would not
317  * get there at all.
318  */
319
320 static int ext4_block_to_path(struct inode *inode,
321                         ext4_lblk_t i_block,
322                         ext4_lblk_t offsets[4], int *boundary)
323 {
324         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326         const long direct_blocks = EXT4_NDIR_BLOCKS,
327                 indirect_blocks = ptrs,
328                 double_blocks = (1 << (ptrs_bits * 2));
329         int n = 0;
330         int final = 0;
331
332         if (i_block < 0) {
333                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
334         } else if (i_block < direct_blocks) {
335                 offsets[n++] = i_block;
336                 final = direct_blocks;
337         } else if ((i_block -= direct_blocks) < indirect_blocks) {
338                 offsets[n++] = EXT4_IND_BLOCK;
339                 offsets[n++] = i_block;
340                 final = ptrs;
341         } else if ((i_block -= indirect_blocks) < double_blocks) {
342                 offsets[n++] = EXT4_DIND_BLOCK;
343                 offsets[n++] = i_block >> ptrs_bits;
344                 offsets[n++] = i_block & (ptrs - 1);
345                 final = ptrs;
346         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347                 offsets[n++] = EXT4_TIND_BLOCK;
348                 offsets[n++] = i_block >> (ptrs_bits * 2);
349                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350                 offsets[n++] = i_block & (ptrs - 1);
351                 final = ptrs;
352         } else {
353                 ext4_warning(inode->i_sb, "ext4_block_to_path",
354                                 "block %lu > max",
355                                 i_block + direct_blocks +
356                                 indirect_blocks + double_blocks);
357         }
358         if (boundary)
359                 *boundary = final - 1 - (i_block & (ptrs - 1));
360         return n;
361 }
362
363 /**
364  *      ext4_get_branch - read the chain of indirect blocks leading to data
365  *      @inode: inode in question
366  *      @depth: depth of the chain (1 - direct pointer, etc.)
367  *      @offsets: offsets of pointers in inode/indirect blocks
368  *      @chain: place to store the result
369  *      @err: here we store the error value
370  *
371  *      Function fills the array of triples <key, p, bh> and returns %NULL
372  *      if everything went OK or the pointer to the last filled triple
373  *      (incomplete one) otherwise. Upon the return chain[i].key contains
374  *      the number of (i+1)-th block in the chain (as it is stored in memory,
375  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
376  *      number (it points into struct inode for i==0 and into the bh->b_data
377  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378  *      block for i>0 and NULL for i==0. In other words, it holds the block
379  *      numbers of the chain, addresses they were taken from (and where we can
380  *      verify that chain did not change) and buffer_heads hosting these
381  *      numbers.
382  *
383  *      Function stops when it stumbles upon zero pointer (absent block)
384  *              (pointer to last triple returned, *@err == 0)
385  *      or when it gets an IO error reading an indirect block
386  *              (ditto, *@err == -EIO)
387  *      or when it reads all @depth-1 indirect blocks successfully and finds
388  *      the whole chain, all way to the data (returns %NULL, *err == 0).
389  *
390  *      Need to be called with
391  *      down_read(&EXT4_I(inode)->i_data_sem)
392  */
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394                                  ext4_lblk_t  *offsets,
395                                  Indirect chain[4], int *err)
396 {
397         struct super_block *sb = inode->i_sb;
398         Indirect *p = chain;
399         struct buffer_head *bh;
400
401         *err = 0;
402         /* i_data is not going away, no lock needed */
403         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404         if (!p->key)
405                 goto no_block;
406         while (--depth) {
407                 bh = sb_bread(sb, le32_to_cpu(p->key));
408                 if (!bh)
409                         goto failure;
410                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
411                 /* Reader: end */
412                 if (!p->key)
413                         goto no_block;
414         }
415         return NULL;
416
417 failure:
418         *err = -EIO;
419 no_block:
420         return p;
421 }
422
423 /**
424  *      ext4_find_near - find a place for allocation with sufficient locality
425  *      @inode: owner
426  *      @ind: descriptor of indirect block.
427  *
428  *      This function returns the preferred place for block allocation.
429  *      It is used when heuristic for sequential allocation fails.
430  *      Rules are:
431  *        + if there is a block to the left of our position - allocate near it.
432  *        + if pointer will live in indirect block - allocate near that block.
433  *        + if pointer will live in inode - allocate in the same
434  *          cylinder group.
435  *
436  * In the latter case we colour the starting block by the callers PID to
437  * prevent it from clashing with concurrent allocations for a different inode
438  * in the same block group.   The PID is used here so that functionally related
439  * files will be close-by on-disk.
440  *
441  *      Caller must make sure that @ind is valid and will stay that way.
442  */
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
444 {
445         struct ext4_inode_info *ei = EXT4_I(inode);
446         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
447         __le32 *p;
448         ext4_fsblk_t bg_start;
449         ext4_fsblk_t last_block;
450         ext4_grpblk_t colour;
451
452         /* Try to find previous block */
453         for (p = ind->p - 1; p >= start; p--) {
454                 if (*p)
455                         return le32_to_cpu(*p);
456         }
457
458         /* No such thing, so let's try location of indirect block */
459         if (ind->bh)
460                 return ind->bh->b_blocknr;
461
462         /*
463          * It is going to be referred to from the inode itself? OK, just put it
464          * into the same cylinder group then.
465          */
466         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468
469         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470                 colour = (current->pid % 16) *
471                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472         else
473                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474         return bg_start + colour;
475 }
476
477 /**
478  *      ext4_find_goal - find a preferred place for allocation.
479  *      @inode: owner
480  *      @block:  block we want
481  *      @partial: pointer to the last triple within a chain
482  *
483  *      Normally this function find the preferred place for block allocation,
484  *      returns it.
485  */
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487                 Indirect *partial)
488 {
489         struct ext4_block_alloc_info *block_i;
490
491         block_i =  EXT4_I(inode)->i_block_alloc_info;
492
493         /*
494          * try the heuristic for sequential allocation,
495          * failing that at least try to get decent locality.
496          */
497         if (block_i && (block == block_i->last_alloc_logical_block + 1)
498                 && (block_i->last_alloc_physical_block != 0)) {
499                 return block_i->last_alloc_physical_block + 1;
500         }
501
502         return ext4_find_near(inode, partial);
503 }
504
505 /**
506  *      ext4_blks_to_allocate: Look up the block map and count the number
507  *      of direct blocks need to be allocated for the given branch.
508  *
509  *      @branch: chain of indirect blocks
510  *      @k: number of blocks need for indirect blocks
511  *      @blks: number of data blocks to be mapped.
512  *      @blocks_to_boundary:  the offset in the indirect block
513  *
514  *      return the total number of blocks to be allocate, including the
515  *      direct and indirect blocks.
516  */
517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
518                 int blocks_to_boundary)
519 {
520         unsigned long count = 0;
521
522         /*
523          * Simple case, [t,d]Indirect block(s) has not allocated yet
524          * then it's clear blocks on that path have not allocated
525          */
526         if (k > 0) {
527                 /* right now we don't handle cross boundary allocation */
528                 if (blks < blocks_to_boundary + 1)
529                         count += blks;
530                 else
531                         count += blocks_to_boundary + 1;
532                 return count;
533         }
534
535         count++;
536         while (count < blks && count <= blocks_to_boundary &&
537                 le32_to_cpu(*(branch[0].p + count)) == 0) {
538                 count++;
539         }
540         return count;
541 }
542
543 /**
544  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
545  *      @indirect_blks: the number of blocks need to allocate for indirect
546  *                      blocks
547  *
548  *      @new_blocks: on return it will store the new block numbers for
549  *      the indirect blocks(if needed) and the first direct block,
550  *      @blks:  on return it will store the total number of allocated
551  *              direct blocks
552  */
553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
554                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
555                                 int indirect_blks, int blks,
556                                 ext4_fsblk_t new_blocks[4], int *err)
557 {
558         int target, i;
559         unsigned long count = 0, blk_allocated = 0;
560         int index = 0;
561         ext4_fsblk_t current_block = 0;
562         int ret = 0;
563
564         /*
565          * Here we try to allocate the requested multiple blocks at once,
566          * on a best-effort basis.
567          * To build a branch, we should allocate blocks for
568          * the indirect blocks(if not allocated yet), and at least
569          * the first direct block of this branch.  That's the
570          * minimum number of blocks need to allocate(required)
571          */
572         /* first we try to allocate the indirect blocks */
573         target = indirect_blks;
574         while (target > 0) {
575                 count = target;
576                 /* allocating blocks for indirect blocks and direct blocks */
577                 current_block = ext4_new_meta_blocks(handle, inode,
578                                                         goal, &count, err);
579                 if (*err)
580                         goto failed_out;
581
582                 target -= count;
583                 /* allocate blocks for indirect blocks */
584                 while (index < indirect_blks && count) {
585                         new_blocks[index++] = current_block++;
586                         count--;
587                 }
588                 if (count > 0) {
589                         /*
590                          * save the new block number
591                          * for the first direct block
592                          */
593                         new_blocks[index] = current_block;
594                         printk(KERN_INFO "%s returned more blocks than "
595                                                 "requested\n", __func__);
596                         WARN_ON(1);
597                         break;
598                 }
599         }
600
601         target = blks - count ;
602         blk_allocated = count;
603         if (!target)
604                 goto allocated;
605         /* Now allocate data blocks */
606         count = target;
607         /* allocating blocks for data blocks */
608         current_block = ext4_new_blocks(handle, inode, iblock,
609                                                 goal, &count, err);
610         if (*err && (target == blks)) {
611                 /*
612                  * if the allocation failed and we didn't allocate
613                  * any blocks before
614                  */
615                 goto failed_out;
616         }
617         if (!*err) {
618                 if (target == blks) {
619                 /*
620                  * save the new block number
621                  * for the first direct block
622                  */
623                         new_blocks[index] = current_block;
624                 }
625                 blk_allocated += count;
626         }
627 allocated:
628         /* total number of blocks allocated for direct blocks */
629         ret = blk_allocated;
630         *err = 0;
631         return ret;
632 failed_out:
633         for (i = 0; i < index; i++)
634                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
635         return ret;
636 }
637
638 /**
639  *      ext4_alloc_branch - allocate and set up a chain of blocks.
640  *      @inode: owner
641  *      @indirect_blks: number of allocated indirect blocks
642  *      @blks: number of allocated direct blocks
643  *      @offsets: offsets (in the blocks) to store the pointers to next.
644  *      @branch: place to store the chain in.
645  *
646  *      This function allocates blocks, zeroes out all but the last one,
647  *      links them into chain and (if we are synchronous) writes them to disk.
648  *      In other words, it prepares a branch that can be spliced onto the
649  *      inode. It stores the information about that chain in the branch[], in
650  *      the same format as ext4_get_branch() would do. We are calling it after
651  *      we had read the existing part of chain and partial points to the last
652  *      triple of that (one with zero ->key). Upon the exit we have the same
653  *      picture as after the successful ext4_get_block(), except that in one
654  *      place chain is disconnected - *branch->p is still zero (we did not
655  *      set the last link), but branch->key contains the number that should
656  *      be placed into *branch->p to fill that gap.
657  *
658  *      If allocation fails we free all blocks we've allocated (and forget
659  *      their buffer_heads) and return the error value the from failed
660  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
661  *      as described above and return 0.
662  */
663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
664                                 ext4_lblk_t iblock, int indirect_blks,
665                                 int *blks, ext4_fsblk_t goal,
666                                 ext4_lblk_t *offsets, Indirect *branch)
667 {
668         int blocksize = inode->i_sb->s_blocksize;
669         int i, n = 0;
670         int err = 0;
671         struct buffer_head *bh;
672         int num;
673         ext4_fsblk_t new_blocks[4];
674         ext4_fsblk_t current_block;
675
676         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
677                                 *blks, new_blocks, &err);
678         if (err)
679                 return err;
680
681         branch[0].key = cpu_to_le32(new_blocks[0]);
682         /*
683          * metadata blocks and data blocks are allocated.
684          */
685         for (n = 1; n <= indirect_blks;  n++) {
686                 /*
687                  * Get buffer_head for parent block, zero it out
688                  * and set the pointer to new one, then send
689                  * parent to disk.
690                  */
691                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692                 branch[n].bh = bh;
693                 lock_buffer(bh);
694                 BUFFER_TRACE(bh, "call get_create_access");
695                 err = ext4_journal_get_create_access(handle, bh);
696                 if (err) {
697                         unlock_buffer(bh);
698                         brelse(bh);
699                         goto failed;
700                 }
701
702                 memset(bh->b_data, 0, blocksize);
703                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
704                 branch[n].key = cpu_to_le32(new_blocks[n]);
705                 *branch[n].p = branch[n].key;
706                 if (n == indirect_blks) {
707                         current_block = new_blocks[n];
708                         /*
709                          * End of chain, update the last new metablock of
710                          * the chain to point to the new allocated
711                          * data blocks numbers
712                          */
713                         for (i=1; i < num; i++)
714                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
715                 }
716                 BUFFER_TRACE(bh, "marking uptodate");
717                 set_buffer_uptodate(bh);
718                 unlock_buffer(bh);
719
720                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721                 err = ext4_journal_dirty_metadata(handle, bh);
722                 if (err)
723                         goto failed;
724         }
725         *blks = num;
726         return err;
727 failed:
728         /* Allocation failed, free what we already allocated */
729         for (i = 1; i <= n ; i++) {
730                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
731                 ext4_journal_forget(handle, branch[i].bh);
732         }
733         for (i = 0; i < indirect_blks; i++)
734                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
735
736         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
737
738         return err;
739 }
740
741 /**
742  * ext4_splice_branch - splice the allocated branch onto inode.
743  * @inode: owner
744  * @block: (logical) number of block we are adding
745  * @chain: chain of indirect blocks (with a missing link - see
746  *      ext4_alloc_branch)
747  * @where: location of missing link
748  * @num:   number of indirect blocks we are adding
749  * @blks:  number of direct blocks we are adding
750  *
751  * This function fills the missing link and does all housekeeping needed in
752  * inode (->i_blocks, etc.). In case of success we end up with the full
753  * chain to new block and return 0.
754  */
755 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
756                         ext4_lblk_t block, Indirect *where, int num, int blks)
757 {
758         int i;
759         int err = 0;
760         struct ext4_block_alloc_info *block_i;
761         ext4_fsblk_t current_block;
762
763         block_i = EXT4_I(inode)->i_block_alloc_info;
764         /*
765          * If we're splicing into a [td]indirect block (as opposed to the
766          * inode) then we need to get write access to the [td]indirect block
767          * before the splice.
768          */
769         if (where->bh) {
770                 BUFFER_TRACE(where->bh, "get_write_access");
771                 err = ext4_journal_get_write_access(handle, where->bh);
772                 if (err)
773                         goto err_out;
774         }
775         /* That's it */
776
777         *where->p = where->key;
778
779         /*
780          * Update the host buffer_head or inode to point to more just allocated
781          * direct blocks blocks
782          */
783         if (num == 0 && blks > 1) {
784                 current_block = le32_to_cpu(where->key) + 1;
785                 for (i = 1; i < blks; i++)
786                         *(where->p + i) = cpu_to_le32(current_block++);
787         }
788
789         /*
790          * update the most recently allocated logical & physical block
791          * in i_block_alloc_info, to assist find the proper goal block for next
792          * allocation
793          */
794         if (block_i) {
795                 block_i->last_alloc_logical_block = block + blks - 1;
796                 block_i->last_alloc_physical_block =
797                                 le32_to_cpu(where[num].key) + blks - 1;
798         }
799
800         /* We are done with atomic stuff, now do the rest of housekeeping */
801
802         inode->i_ctime = ext4_current_time(inode);
803         ext4_mark_inode_dirty(handle, inode);
804
805         /* had we spliced it onto indirect block? */
806         if (where->bh) {
807                 /*
808                  * If we spliced it onto an indirect block, we haven't
809                  * altered the inode.  Note however that if it is being spliced
810                  * onto an indirect block at the very end of the file (the
811                  * file is growing) then we *will* alter the inode to reflect
812                  * the new i_size.  But that is not done here - it is done in
813                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
814                  */
815                 jbd_debug(5, "splicing indirect only\n");
816                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
817                 err = ext4_journal_dirty_metadata(handle, where->bh);
818                 if (err)
819                         goto err_out;
820         } else {
821                 /*
822                  * OK, we spliced it into the inode itself on a direct block.
823                  * Inode was dirtied above.
824                  */
825                 jbd_debug(5, "splicing direct\n");
826         }
827         return err;
828
829 err_out:
830         for (i = 1; i <= num; i++) {
831                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
832                 ext4_journal_forget(handle, where[i].bh);
833                 ext4_free_blocks(handle, inode,
834                                         le32_to_cpu(where[i-1].key), 1, 0);
835         }
836         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
837
838         return err;
839 }
840
841 /*
842  * Allocation strategy is simple: if we have to allocate something, we will
843  * have to go the whole way to leaf. So let's do it before attaching anything
844  * to tree, set linkage between the newborn blocks, write them if sync is
845  * required, recheck the path, free and repeat if check fails, otherwise
846  * set the last missing link (that will protect us from any truncate-generated
847  * removals - all blocks on the path are immune now) and possibly force the
848  * write on the parent block.
849  * That has a nice additional property: no special recovery from the failed
850  * allocations is needed - we simply release blocks and do not touch anything
851  * reachable from inode.
852  *
853  * `handle' can be NULL if create == 0.
854  *
855  * return > 0, # of blocks mapped or allocated.
856  * return = 0, if plain lookup failed.
857  * return < 0, error case.
858  *
859  *
860  * Need to be called with
861  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
862  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
863  */
864 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
865                 ext4_lblk_t iblock, unsigned long maxblocks,
866                 struct buffer_head *bh_result,
867                 int create, int extend_disksize)
868 {
869         int err = -EIO;
870         ext4_lblk_t offsets[4];
871         Indirect chain[4];
872         Indirect *partial;
873         ext4_fsblk_t goal;
874         int indirect_blks;
875         int blocks_to_boundary = 0;
876         int depth;
877         struct ext4_inode_info *ei = EXT4_I(inode);
878         int count = 0;
879         ext4_fsblk_t first_block = 0;
880         loff_t disksize;
881
882
883         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
884         J_ASSERT(handle != NULL || create == 0);
885         depth = ext4_block_to_path(inode, iblock, offsets,
886                                         &blocks_to_boundary);
887
888         if (depth == 0)
889                 goto out;
890
891         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
892
893         /* Simplest case - block found, no allocation needed */
894         if (!partial) {
895                 first_block = le32_to_cpu(chain[depth - 1].key);
896                 clear_buffer_new(bh_result);
897                 count++;
898                 /*map more blocks*/
899                 while (count < maxblocks && count <= blocks_to_boundary) {
900                         ext4_fsblk_t blk;
901
902                         blk = le32_to_cpu(*(chain[depth-1].p + count));
903
904                         if (blk == first_block + count)
905                                 count++;
906                         else
907                                 break;
908                 }
909                 goto got_it;
910         }
911
912         /* Next simple case - plain lookup or failed read of indirect block */
913         if (!create || err == -EIO)
914                 goto cleanup;
915
916         /*
917          * Okay, we need to do block allocation.  Lazily initialize the block
918          * allocation info here if necessary
919         */
920         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
921                 ext4_init_block_alloc_info(inode);
922
923         goal = ext4_find_goal(inode, iblock, partial);
924
925         /* the number of blocks need to allocate for [d,t]indirect blocks */
926         indirect_blks = (chain + depth) - partial - 1;
927
928         /*
929          * Next look up the indirect map to count the totoal number of
930          * direct blocks to allocate for this branch.
931          */
932         count = ext4_blks_to_allocate(partial, indirect_blks,
933                                         maxblocks, blocks_to_boundary);
934         /*
935          * Block out ext4_truncate while we alter the tree
936          */
937         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
938                                         &count, goal,
939                                         offsets + (partial - chain), partial);
940
941         /*
942          * The ext4_splice_branch call will free and forget any buffers
943          * on the new chain if there is a failure, but that risks using
944          * up transaction credits, especially for bitmaps where the
945          * credits cannot be returned.  Can we handle this somehow?  We
946          * may need to return -EAGAIN upwards in the worst case.  --sct
947          */
948         if (!err)
949                 err = ext4_splice_branch(handle, inode, iblock,
950                                         partial, indirect_blks, count);
951         /*
952          * i_disksize growing is protected by i_data_sem.  Don't forget to
953          * protect it if you're about to implement concurrent
954          * ext4_get_block() -bzzz
955         */
956         if (!err && extend_disksize) {
957                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
958                 if (disksize > i_size_read(inode))
959                         disksize = i_size_read(inode);
960                 if (disksize > ei->i_disksize)
961                         ei->i_disksize = disksize;
962         }
963         if (err)
964                 goto cleanup;
965
966         set_buffer_new(bh_result);
967 got_it:
968         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
969         if (count > blocks_to_boundary)
970                 set_buffer_boundary(bh_result);
971         err = count;
972         /* Clean up and exit */
973         partial = chain + depth - 1;    /* the whole chain */
974 cleanup:
975         while (partial > chain) {
976                 BUFFER_TRACE(partial->bh, "call brelse");
977                 brelse(partial->bh);
978                 partial--;
979         }
980         BUFFER_TRACE(bh_result, "returned");
981 out:
982         return err;
983 }
984
985 /*
986  * Calculate the number of metadata blocks need to reserve
987  * to allocate @blocks for non extent file based file
988  */
989 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
990 {
991         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
992         int ind_blks, dind_blks, tind_blks;
993
994         /* number of new indirect blocks needed */
995         ind_blks = (blocks + icap - 1) / icap;
996
997         dind_blks = (ind_blks + icap - 1) / icap;
998
999         tind_blks = 1;
1000
1001         return ind_blks + dind_blks + tind_blks;
1002 }
1003
1004 /*
1005  * Calculate the number of metadata blocks need to reserve
1006  * to allocate given number of blocks
1007  */
1008 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1009 {
1010         if (!blocks)
1011                 return 0;
1012
1013         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1014                 return ext4_ext_calc_metadata_amount(inode, blocks);
1015
1016         return ext4_indirect_calc_metadata_amount(inode, blocks);
1017 }
1018
1019 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1020 {
1021         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1022         int total, mdb, mdb_free;
1023
1024         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1025         /* recalculate the number of metablocks still need to be reserved */
1026         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1027         mdb = ext4_calc_metadata_amount(inode, total);
1028
1029         /* figure out how many metablocks to release */
1030         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1031         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1032
1033         if (mdb_free) {
1034                 /* Account for allocated meta_blocks */
1035                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1036
1037                 /* update fs dirty blocks counter */
1038                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1039                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1040                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1041         }
1042
1043         /* update per-inode reservations */
1044         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1045         EXT4_I(inode)->i_reserved_data_blocks -= used;
1046
1047         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1048 }
1049
1050 /*
1051  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1052  * and returns if the blocks are already mapped.
1053  *
1054  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1055  * and store the allocated blocks in the result buffer head and mark it
1056  * mapped.
1057  *
1058  * If file type is extents based, it will call ext4_ext_get_blocks(),
1059  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1060  * based files
1061  *
1062  * On success, it returns the number of blocks being mapped or allocate.
1063  * if create==0 and the blocks are pre-allocated and uninitialized block,
1064  * the result buffer head is unmapped. If the create ==1, it will make sure
1065  * the buffer head is mapped.
1066  *
1067  * It returns 0 if plain look up failed (blocks have not been allocated), in
1068  * that casem, buffer head is unmapped
1069  *
1070  * It returns the error in case of allocation failure.
1071  */
1072 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1073                         unsigned long max_blocks, struct buffer_head *bh,
1074                         int create, int extend_disksize, int flag)
1075 {
1076         int retval;
1077
1078         clear_buffer_mapped(bh);
1079
1080         /*
1081          * Try to see if we can get  the block without requesting
1082          * for new file system block.
1083          */
1084         down_read((&EXT4_I(inode)->i_data_sem));
1085         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1086                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1087                                 bh, 0, 0);
1088         } else {
1089                 retval = ext4_get_blocks_handle(handle,
1090                                 inode, block, max_blocks, bh, 0, 0);
1091         }
1092         up_read((&EXT4_I(inode)->i_data_sem));
1093
1094         /* If it is only a block(s) look up */
1095         if (!create)
1096                 return retval;
1097
1098         /*
1099          * Returns if the blocks have already allocated
1100          *
1101          * Note that if blocks have been preallocated
1102          * ext4_ext_get_block() returns th create = 0
1103          * with buffer head unmapped.
1104          */
1105         if (retval > 0 && buffer_mapped(bh))
1106                 return retval;
1107
1108         /*
1109          * New blocks allocate and/or writing to uninitialized extent
1110          * will possibly result in updating i_data, so we take
1111          * the write lock of i_data_sem, and call get_blocks()
1112          * with create == 1 flag.
1113          */
1114         down_write((&EXT4_I(inode)->i_data_sem));
1115
1116         /*
1117          * if the caller is from delayed allocation writeout path
1118          * we have already reserved fs blocks for allocation
1119          * let the underlying get_block() function know to
1120          * avoid double accounting
1121          */
1122         if (flag)
1123                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1124         /*
1125          * We need to check for EXT4 here because migrate
1126          * could have changed the inode type in between
1127          */
1128         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1129                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1130                                 bh, create, extend_disksize);
1131         } else {
1132                 retval = ext4_get_blocks_handle(handle, inode, block,
1133                                 max_blocks, bh, create, extend_disksize);
1134
1135                 if (retval > 0 && buffer_new(bh)) {
1136                         /*
1137                          * We allocated new blocks which will result in
1138                          * i_data's format changing.  Force the migrate
1139                          * to fail by clearing migrate flags
1140                          */
1141                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1142                                                         ~EXT4_EXT_MIGRATE;
1143                 }
1144         }
1145
1146         if (flag) {
1147                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1148                 /*
1149                  * Update reserved blocks/metadata blocks
1150                  * after successful block allocation
1151                  * which were deferred till now
1152                  */
1153                 if ((retval > 0) && buffer_delay(bh))
1154                         ext4_da_update_reserve_space(inode, retval);
1155         }
1156
1157         up_write((&EXT4_I(inode)->i_data_sem));
1158         return retval;
1159 }
1160
1161 /* Maximum number of blocks we map for direct IO at once. */
1162 #define DIO_MAX_BLOCKS 4096
1163
1164 static int ext4_get_block(struct inode *inode, sector_t iblock,
1165                         struct buffer_head *bh_result, int create)
1166 {
1167         handle_t *handle = ext4_journal_current_handle();
1168         int ret = 0, started = 0;
1169         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1170         int dio_credits;
1171
1172         if (create && !handle) {
1173                 /* Direct IO write... */
1174                 if (max_blocks > DIO_MAX_BLOCKS)
1175                         max_blocks = DIO_MAX_BLOCKS;
1176                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1177                 handle = ext4_journal_start(inode, dio_credits);
1178                 if (IS_ERR(handle)) {
1179                         ret = PTR_ERR(handle);
1180                         goto out;
1181                 }
1182                 started = 1;
1183         }
1184
1185         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1186                                         max_blocks, bh_result, create, 0, 0);
1187         if (ret > 0) {
1188                 bh_result->b_size = (ret << inode->i_blkbits);
1189                 ret = 0;
1190         }
1191         if (started)
1192                 ext4_journal_stop(handle);
1193 out:
1194         return ret;
1195 }
1196
1197 /*
1198  * `handle' can be NULL if create is zero
1199  */
1200 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1201                                 ext4_lblk_t block, int create, int *errp)
1202 {
1203         struct buffer_head dummy;
1204         int fatal = 0, err;
1205
1206         J_ASSERT(handle != NULL || create == 0);
1207
1208         dummy.b_state = 0;
1209         dummy.b_blocknr = -1000;
1210         buffer_trace_init(&dummy.b_history);
1211         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1212                                         &dummy, create, 1, 0);
1213         /*
1214          * ext4_get_blocks_handle() returns number of blocks
1215          * mapped. 0 in case of a HOLE.
1216          */
1217         if (err > 0) {
1218                 if (err > 1)
1219                         WARN_ON(1);
1220                 err = 0;
1221         }
1222         *errp = err;
1223         if (!err && buffer_mapped(&dummy)) {
1224                 struct buffer_head *bh;
1225                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1226                 if (!bh) {
1227                         *errp = -EIO;
1228                         goto err;
1229                 }
1230                 if (buffer_new(&dummy)) {
1231                         J_ASSERT(create != 0);
1232                         J_ASSERT(handle != NULL);
1233
1234                         /*
1235                          * Now that we do not always journal data, we should
1236                          * keep in mind whether this should always journal the
1237                          * new buffer as metadata.  For now, regular file
1238                          * writes use ext4_get_block instead, so it's not a
1239                          * problem.
1240                          */
1241                         lock_buffer(bh);
1242                         BUFFER_TRACE(bh, "call get_create_access");
1243                         fatal = ext4_journal_get_create_access(handle, bh);
1244                         if (!fatal && !buffer_uptodate(bh)) {
1245                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1246                                 set_buffer_uptodate(bh);
1247                         }
1248                         unlock_buffer(bh);
1249                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1250                         err = ext4_journal_dirty_metadata(handle, bh);
1251                         if (!fatal)
1252                                 fatal = err;
1253                 } else {
1254                         BUFFER_TRACE(bh, "not a new buffer");
1255                 }
1256                 if (fatal) {
1257                         *errp = fatal;
1258                         brelse(bh);
1259                         bh = NULL;
1260                 }
1261                 return bh;
1262         }
1263 err:
1264         return NULL;
1265 }
1266
1267 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1268                                ext4_lblk_t block, int create, int *err)
1269 {
1270         struct buffer_head *bh;
1271
1272         bh = ext4_getblk(handle, inode, block, create, err);
1273         if (!bh)
1274                 return bh;
1275         if (buffer_uptodate(bh))
1276                 return bh;
1277         ll_rw_block(READ_META, 1, &bh);
1278         wait_on_buffer(bh);
1279         if (buffer_uptodate(bh))
1280                 return bh;
1281         put_bh(bh);
1282         *err = -EIO;
1283         return NULL;
1284 }
1285
1286 static int walk_page_buffers(handle_t *handle,
1287                              struct buffer_head *head,
1288                              unsigned from,
1289                              unsigned to,
1290                              int *partial,
1291                              int (*fn)(handle_t *handle,
1292                                        struct buffer_head *bh))
1293 {
1294         struct buffer_head *bh;
1295         unsigned block_start, block_end;
1296         unsigned blocksize = head->b_size;
1297         int err, ret = 0;
1298         struct buffer_head *next;
1299
1300         for (bh = head, block_start = 0;
1301              ret == 0 && (bh != head || !block_start);
1302              block_start = block_end, bh = next)
1303         {
1304                 next = bh->b_this_page;
1305                 block_end = block_start + blocksize;
1306                 if (block_end <= from || block_start >= to) {
1307                         if (partial && !buffer_uptodate(bh))
1308                                 *partial = 1;
1309                         continue;
1310                 }
1311                 err = (*fn)(handle, bh);
1312                 if (!ret)
1313                         ret = err;
1314         }
1315         return ret;
1316 }
1317
1318 /*
1319  * To preserve ordering, it is essential that the hole instantiation and
1320  * the data write be encapsulated in a single transaction.  We cannot
1321  * close off a transaction and start a new one between the ext4_get_block()
1322  * and the commit_write().  So doing the jbd2_journal_start at the start of
1323  * prepare_write() is the right place.
1324  *
1325  * Also, this function can nest inside ext4_writepage() ->
1326  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1327  * has generated enough buffer credits to do the whole page.  So we won't
1328  * block on the journal in that case, which is good, because the caller may
1329  * be PF_MEMALLOC.
1330  *
1331  * By accident, ext4 can be reentered when a transaction is open via
1332  * quota file writes.  If we were to commit the transaction while thus
1333  * reentered, there can be a deadlock - we would be holding a quota
1334  * lock, and the commit would never complete if another thread had a
1335  * transaction open and was blocking on the quota lock - a ranking
1336  * violation.
1337  *
1338  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1339  * will _not_ run commit under these circumstances because handle->h_ref
1340  * is elevated.  We'll still have enough credits for the tiny quotafile
1341  * write.
1342  */
1343 static int do_journal_get_write_access(handle_t *handle,
1344                                         struct buffer_head *bh)
1345 {
1346         if (!buffer_mapped(bh) || buffer_freed(bh))
1347                 return 0;
1348         return ext4_journal_get_write_access(handle, bh);
1349 }
1350
1351 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1352                                 loff_t pos, unsigned len, unsigned flags,
1353                                 struct page **pagep, void **fsdata)
1354 {
1355         struct inode *inode = mapping->host;
1356         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1357         handle_t *handle;
1358         int retries = 0;
1359         struct page *page;
1360         pgoff_t index;
1361         unsigned from, to;
1362
1363         index = pos >> PAGE_CACHE_SHIFT;
1364         from = pos & (PAGE_CACHE_SIZE - 1);
1365         to = from + len;
1366
1367 retry:
1368         handle = ext4_journal_start(inode, needed_blocks);
1369         if (IS_ERR(handle)) {
1370                 ret = PTR_ERR(handle);
1371                 goto out;
1372         }
1373
1374         page = __grab_cache_page(mapping, index);
1375         if (!page) {
1376                 ext4_journal_stop(handle);
1377                 ret = -ENOMEM;
1378                 goto out;
1379         }
1380         *pagep = page;
1381
1382         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1383                                                         ext4_get_block);
1384
1385         if (!ret && ext4_should_journal_data(inode)) {
1386                 ret = walk_page_buffers(handle, page_buffers(page),
1387                                 from, to, NULL, do_journal_get_write_access);
1388         }
1389
1390         if (ret) {
1391                 unlock_page(page);
1392                 ext4_journal_stop(handle);
1393                 page_cache_release(page);
1394                 /*
1395                  * block_write_begin may have instantiated a few blocks
1396                  * outside i_size.  Trim these off again. Don't need
1397                  * i_size_read because we hold i_mutex.
1398                  */
1399                 if (pos + len > inode->i_size)
1400                         vmtruncate(inode, inode->i_size);
1401         }
1402
1403         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1404                 goto retry;
1405 out:
1406         return ret;
1407 }
1408
1409 /* For write_end() in data=journal mode */
1410 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1411 {
1412         if (!buffer_mapped(bh) || buffer_freed(bh))
1413                 return 0;
1414         set_buffer_uptodate(bh);
1415         return ext4_journal_dirty_metadata(handle, bh);
1416 }
1417
1418 /*
1419  * We need to pick up the new inode size which generic_commit_write gave us
1420  * `file' can be NULL - eg, when called from page_symlink().
1421  *
1422  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1423  * buffers are managed internally.
1424  */
1425 static int ext4_ordered_write_end(struct file *file,
1426                                 struct address_space *mapping,
1427                                 loff_t pos, unsigned len, unsigned copied,
1428                                 struct page *page, void *fsdata)
1429 {
1430         handle_t *handle = ext4_journal_current_handle();
1431         struct inode *inode = mapping->host;
1432         int ret = 0, ret2;
1433
1434         ret = ext4_jbd2_file_inode(handle, inode);
1435
1436         if (ret == 0) {
1437                 /*
1438                  * generic_write_end() will run mark_inode_dirty() if i_size
1439                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1440                  * into that.
1441                  */
1442                 loff_t new_i_size;
1443
1444                 new_i_size = pos + copied;
1445                 if (new_i_size > EXT4_I(inode)->i_disksize)
1446                         EXT4_I(inode)->i_disksize = new_i_size;
1447                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1448                                                         page, fsdata);
1449                 copied = ret2;
1450                 if (ret2 < 0)
1451                         ret = ret2;
1452         }
1453         ret2 = ext4_journal_stop(handle);
1454         if (!ret)
1455                 ret = ret2;
1456
1457         return ret ? ret : copied;
1458 }
1459
1460 static int ext4_writeback_write_end(struct file *file,
1461                                 struct address_space *mapping,
1462                                 loff_t pos, unsigned len, unsigned copied,
1463                                 struct page *page, void *fsdata)
1464 {
1465         handle_t *handle = ext4_journal_current_handle();
1466         struct inode *inode = mapping->host;
1467         int ret = 0, ret2;
1468         loff_t new_i_size;
1469
1470         new_i_size = pos + copied;
1471         if (new_i_size > EXT4_I(inode)->i_disksize)
1472                 EXT4_I(inode)->i_disksize = new_i_size;
1473
1474         ret2 = generic_write_end(file, mapping, pos, len, copied,
1475                                                         page, fsdata);
1476         copied = ret2;
1477         if (ret2 < 0)
1478                 ret = ret2;
1479
1480         ret2 = ext4_journal_stop(handle);
1481         if (!ret)
1482                 ret = ret2;
1483
1484         return ret ? ret : copied;
1485 }
1486
1487 static int ext4_journalled_write_end(struct file *file,
1488                                 struct address_space *mapping,
1489                                 loff_t pos, unsigned len, unsigned copied,
1490                                 struct page *page, void *fsdata)
1491 {
1492         handle_t *handle = ext4_journal_current_handle();
1493         struct inode *inode = mapping->host;
1494         int ret = 0, ret2;
1495         int partial = 0;
1496         unsigned from, to;
1497
1498         from = pos & (PAGE_CACHE_SIZE - 1);
1499         to = from + len;
1500
1501         if (copied < len) {
1502                 if (!PageUptodate(page))
1503                         copied = 0;
1504                 page_zero_new_buffers(page, from+copied, to);
1505         }
1506
1507         ret = walk_page_buffers(handle, page_buffers(page), from,
1508                                 to, &partial, write_end_fn);
1509         if (!partial)
1510                 SetPageUptodate(page);
1511         if (pos+copied > inode->i_size)
1512                 i_size_write(inode, pos+copied);
1513         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1514         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1515                 EXT4_I(inode)->i_disksize = inode->i_size;
1516                 ret2 = ext4_mark_inode_dirty(handle, inode);
1517                 if (!ret)
1518                         ret = ret2;
1519         }
1520
1521         unlock_page(page);
1522         ret2 = ext4_journal_stop(handle);
1523         if (!ret)
1524                 ret = ret2;
1525         page_cache_release(page);
1526
1527         return ret ? ret : copied;
1528 }
1529
1530 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1531 {
1532         int retries = 0;
1533        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1534        unsigned long md_needed, mdblocks, total = 0;
1535
1536         /*
1537          * recalculate the amount of metadata blocks to reserve
1538          * in order to allocate nrblocks
1539          * worse case is one extent per block
1540          */
1541 repeat:
1542         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1543         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1544         mdblocks = ext4_calc_metadata_amount(inode, total);
1545         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1546
1547         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1548         total = md_needed + nrblocks;
1549
1550         if (ext4_claim_free_blocks(sbi, total)) {
1551                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1552                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1553                         yield();
1554                         goto repeat;
1555                 }
1556                 return -ENOSPC;
1557         }
1558         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1559         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1560
1561         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1562         return 0;       /* success */
1563 }
1564
1565 static void ext4_da_release_space(struct inode *inode, int to_free)
1566 {
1567         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1568         int total, mdb, mdb_free, release;
1569
1570         if (!to_free)
1571                 return;         /* Nothing to release, exit */
1572
1573         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1574
1575         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1576                 /*
1577                  * if there is no reserved blocks, but we try to free some
1578                  * then the counter is messed up somewhere.
1579                  * but since this function is called from invalidate
1580                  * page, it's harmless to return without any action
1581                  */
1582                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1583                             "blocks for inode %lu, but there is no reserved "
1584                             "data blocks\n", to_free, inode->i_ino);
1585                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1586                 return;
1587         }
1588
1589         /* recalculate the number of metablocks still need to be reserved */
1590         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1591         mdb = ext4_calc_metadata_amount(inode, total);
1592
1593         /* figure out how many metablocks to release */
1594         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1595         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1596
1597         release = to_free + mdb_free;
1598
1599         /* update fs dirty blocks counter for truncate case */
1600         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1601
1602         /* update per-inode reservations */
1603         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1604         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1605
1606         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1607         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1608         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1609 }
1610
1611 static void ext4_da_page_release_reservation(struct page *page,
1612                                                 unsigned long offset)
1613 {
1614         int to_release = 0;
1615         struct buffer_head *head, *bh;
1616         unsigned int curr_off = 0;
1617
1618         head = page_buffers(page);
1619         bh = head;
1620         do {
1621                 unsigned int next_off = curr_off + bh->b_size;
1622
1623                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1624                         to_release++;
1625                         clear_buffer_delay(bh);
1626                 }
1627                 curr_off = next_off;
1628         } while ((bh = bh->b_this_page) != head);
1629         ext4_da_release_space(page->mapping->host, to_release);
1630 }
1631
1632 /*
1633  * Delayed allocation stuff
1634  */
1635
1636 struct mpage_da_data {
1637         struct inode *inode;
1638         struct buffer_head lbh;                 /* extent of blocks */
1639         unsigned long first_page, next_page;    /* extent of pages */
1640         get_block_t *get_block;
1641         struct writeback_control *wbc;
1642         int io_done;
1643         long pages_written;
1644         int retval;
1645 };
1646
1647 /*
1648  * mpage_da_submit_io - walks through extent of pages and try to write
1649  * them with writepage() call back
1650  *
1651  * @mpd->inode: inode
1652  * @mpd->first_page: first page of the extent
1653  * @mpd->next_page: page after the last page of the extent
1654  * @mpd->get_block: the filesystem's block mapper function
1655  *
1656  * By the time mpage_da_submit_io() is called we expect all blocks
1657  * to be allocated. this may be wrong if allocation failed.
1658  *
1659  * As pages are already locked by write_cache_pages(), we can't use it
1660  */
1661 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1662 {
1663         struct address_space *mapping = mpd->inode->i_mapping;
1664         int ret = 0, err, nr_pages, i;
1665         unsigned long index, end;
1666         struct pagevec pvec;
1667
1668         BUG_ON(mpd->next_page <= mpd->first_page);
1669         pagevec_init(&pvec, 0);
1670         index = mpd->first_page;
1671         end = mpd->next_page - 1;
1672
1673         while (index <= end) {
1674                 /* XXX: optimize tail */
1675                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1676                 if (nr_pages == 0)
1677                         break;
1678                 for (i = 0; i < nr_pages; i++) {
1679                         struct page *page = pvec.pages[i];
1680
1681                         index = page->index;
1682                         if (index > end)
1683                                 break;
1684                         index++;
1685
1686                         err = mapping->a_ops->writepage(page, mpd->wbc);
1687                         if (!err)
1688                                 mpd->pages_written++;
1689                         /*
1690                          * In error case, we have to continue because
1691                          * remaining pages are still locked
1692                          * XXX: unlock and re-dirty them?
1693                          */
1694                         if (ret == 0)
1695                                 ret = err;
1696                 }
1697                 pagevec_release(&pvec);
1698         }
1699         return ret;
1700 }
1701
1702 /*
1703  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1704  *
1705  * @mpd->inode - inode to walk through
1706  * @exbh->b_blocknr - first block on a disk
1707  * @exbh->b_size - amount of space in bytes
1708  * @logical - first logical block to start assignment with
1709  *
1710  * the function goes through all passed space and put actual disk
1711  * block numbers into buffer heads, dropping BH_Delay
1712  */
1713 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1714                                  struct buffer_head *exbh)
1715 {
1716         struct inode *inode = mpd->inode;
1717         struct address_space *mapping = inode->i_mapping;
1718         int blocks = exbh->b_size >> inode->i_blkbits;
1719         sector_t pblock = exbh->b_blocknr, cur_logical;
1720         struct buffer_head *head, *bh;
1721         pgoff_t index, end;
1722         struct pagevec pvec;
1723         int nr_pages, i;
1724
1725         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1726         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1727         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1728
1729         pagevec_init(&pvec, 0);
1730
1731         while (index <= end) {
1732                 /* XXX: optimize tail */
1733                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1734                 if (nr_pages == 0)
1735                         break;
1736                 for (i = 0; i < nr_pages; i++) {
1737                         struct page *page = pvec.pages[i];
1738
1739                         index = page->index;
1740                         if (index > end)
1741                                 break;
1742                         index++;
1743
1744                         BUG_ON(!PageLocked(page));
1745                         BUG_ON(PageWriteback(page));
1746                         BUG_ON(!page_has_buffers(page));
1747
1748                         bh = page_buffers(page);
1749                         head = bh;
1750
1751                         /* skip blocks out of the range */
1752                         do {
1753                                 if (cur_logical >= logical)
1754                                         break;
1755                                 cur_logical++;
1756                         } while ((bh = bh->b_this_page) != head);
1757
1758                         do {
1759                                 if (cur_logical >= logical + blocks)
1760                                         break;
1761                                 if (buffer_delay(bh)) {
1762                                         bh->b_blocknr = pblock;
1763                                         clear_buffer_delay(bh);
1764                                         bh->b_bdev = inode->i_sb->s_bdev;
1765                                 } else if (buffer_unwritten(bh)) {
1766                                         bh->b_blocknr = pblock;
1767                                         clear_buffer_unwritten(bh);
1768                                         set_buffer_mapped(bh);
1769                                         set_buffer_new(bh);
1770                                         bh->b_bdev = inode->i_sb->s_bdev;
1771                                 } else if (buffer_mapped(bh))
1772                                         BUG_ON(bh->b_blocknr != pblock);
1773
1774                                 cur_logical++;
1775                                 pblock++;
1776                         } while ((bh = bh->b_this_page) != head);
1777                 }
1778                 pagevec_release(&pvec);
1779         }
1780 }
1781
1782
1783 /*
1784  * __unmap_underlying_blocks - just a helper function to unmap
1785  * set of blocks described by @bh
1786  */
1787 static inline void __unmap_underlying_blocks(struct inode *inode,
1788                                              struct buffer_head *bh)
1789 {
1790         struct block_device *bdev = inode->i_sb->s_bdev;
1791         int blocks, i;
1792
1793         blocks = bh->b_size >> inode->i_blkbits;
1794         for (i = 0; i < blocks; i++)
1795                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1796 }
1797
1798 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1799                                         sector_t logical, long blk_cnt)
1800 {
1801         int nr_pages, i;
1802         pgoff_t index, end;
1803         struct pagevec pvec;
1804         struct inode *inode = mpd->inode;
1805         struct address_space *mapping = inode->i_mapping;
1806
1807         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1808         end   = (logical + blk_cnt - 1) >>
1809                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1810         while (index <= end) {
1811                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1812                 if (nr_pages == 0)
1813                         break;
1814                 for (i = 0; i < nr_pages; i++) {
1815                         struct page *page = pvec.pages[i];
1816                         index = page->index;
1817                         if (index > end)
1818                                 break;
1819                         index++;
1820
1821                         BUG_ON(!PageLocked(page));
1822                         BUG_ON(PageWriteback(page));
1823                         block_invalidatepage(page, 0);
1824                         ClearPageUptodate(page);
1825                         unlock_page(page);
1826                 }
1827         }
1828         return;
1829 }
1830
1831 static void ext4_print_free_blocks(struct inode *inode)
1832 {
1833         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1834         printk(KERN_EMERG "Total free blocks count %lld\n",
1835                         ext4_count_free_blocks(inode->i_sb));
1836         printk(KERN_EMERG "Free/Dirty block details\n");
1837         printk(KERN_EMERG "free_blocks=%lld\n",
1838                         percpu_counter_sum(&sbi->s_freeblocks_counter));
1839         printk(KERN_EMERG "dirty_blocks=%lld\n",
1840                         percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1841         printk(KERN_EMERG "Block reservation details\n");
1842         printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1843                         EXT4_I(inode)->i_reserved_data_blocks);
1844         printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1845                         EXT4_I(inode)->i_reserved_meta_blocks);
1846         return;
1847 }
1848
1849 /*
1850  * mpage_da_map_blocks - go through given space
1851  *
1852  * @mpd->lbh - bh describing space
1853  * @mpd->get_block - the filesystem's block mapper function
1854  *
1855  * The function skips space we know is already mapped to disk blocks.
1856  *
1857  */
1858 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1859 {
1860         int err = 0;
1861         struct buffer_head new;
1862         struct buffer_head *lbh = &mpd->lbh;
1863         sector_t next;
1864
1865         /*
1866          * We consider only non-mapped and non-allocated blocks
1867          */
1868         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1869                 return 0;
1870         new.b_state = lbh->b_state;
1871         new.b_blocknr = 0;
1872         new.b_size = lbh->b_size;
1873         next = lbh->b_blocknr;
1874         /*
1875          * If we didn't accumulate anything
1876          * to write simply return
1877          */
1878         if (!new.b_size)
1879                 return 0;
1880         err = mpd->get_block(mpd->inode, next, &new, 1);
1881         if (err) {
1882
1883                 /* If get block returns with error
1884                  * we simply return. Later writepage
1885                  * will redirty the page and writepages
1886                  * will find the dirty page again
1887                  */
1888                 if (err == -EAGAIN)
1889                         return 0;
1890
1891                 if (err == -ENOSPC &&
1892                                 ext4_count_free_blocks(mpd->inode->i_sb)) {
1893                         mpd->retval = err;
1894                         return 0;
1895                 }
1896
1897                 /*
1898                  * get block failure will cause us
1899                  * to loop in writepages. Because
1900                  * a_ops->writepage won't be able to
1901                  * make progress. The page will be redirtied
1902                  * by writepage and writepages will again
1903                  * try to write the same.
1904                  */
1905                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1906                                   "at logical offset %llu with max blocks "
1907                                   "%zd with error %d\n",
1908                                   __func__, mpd->inode->i_ino,
1909                                   (unsigned long long)next,
1910                                   lbh->b_size >> mpd->inode->i_blkbits, err);
1911                 printk(KERN_EMERG "This should not happen.!! "
1912                                         "Data will be lost\n");
1913                 if (err == -ENOSPC) {
1914                         ext4_print_free_blocks(mpd->inode);
1915                 }
1916                 /* invlaidate all the pages */
1917                 ext4_da_block_invalidatepages(mpd, next,
1918                                 lbh->b_size >> mpd->inode->i_blkbits);
1919                 return err;
1920         }
1921         BUG_ON(new.b_size == 0);
1922
1923         if (buffer_new(&new))
1924                 __unmap_underlying_blocks(mpd->inode, &new);
1925
1926         /*
1927          * If blocks are delayed marked, we need to
1928          * put actual blocknr and drop delayed bit
1929          */
1930         if (buffer_delay(lbh) || buffer_unwritten(lbh))
1931                 mpage_put_bnr_to_bhs(mpd, next, &new);
1932
1933         return 0;
1934 }
1935
1936 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1937                 (1 << BH_Delay) | (1 << BH_Unwritten))
1938
1939 /*
1940  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1941  *
1942  * @mpd->lbh - extent of blocks
1943  * @logical - logical number of the block in the file
1944  * @bh - bh of the block (used to access block's state)
1945  *
1946  * the function is used to collect contig. blocks in same state
1947  */
1948 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1949                                    sector_t logical, struct buffer_head *bh)
1950 {
1951         sector_t next;
1952         size_t b_size = bh->b_size;
1953         struct buffer_head *lbh = &mpd->lbh;
1954         int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1955
1956         /* check if thereserved journal credits might overflow */
1957         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1958                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1959                         /*
1960                          * With non-extent format we are limited by the journal
1961                          * credit available.  Total credit needed to insert
1962                          * nrblocks contiguous blocks is dependent on the
1963                          * nrblocks.  So limit nrblocks.
1964                          */
1965                         goto flush_it;
1966                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1967                                 EXT4_MAX_TRANS_DATA) {
1968                         /*
1969                          * Adding the new buffer_head would make it cross the
1970                          * allowed limit for which we have journal credit
1971                          * reserved. So limit the new bh->b_size
1972                          */
1973                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1974                                                 mpd->inode->i_blkbits;
1975                         /* we will do mpage_da_submit_io in the next loop */
1976                 }
1977         }
1978         /*
1979          * First block in the extent
1980          */
1981         if (lbh->b_size == 0) {
1982                 lbh->b_blocknr = logical;
1983                 lbh->b_size = b_size;
1984                 lbh->b_state = bh->b_state & BH_FLAGS;
1985                 return;
1986         }
1987
1988         next = lbh->b_blocknr + nrblocks;
1989         /*
1990          * Can we merge the block to our big extent?
1991          */
1992         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1993                 lbh->b_size += b_size;
1994                 return;
1995         }
1996
1997 flush_it:
1998         /*
1999          * We couldn't merge the block to our extent, so we
2000          * need to flush current  extent and start new one
2001          */
2002         if (mpage_da_map_blocks(mpd) == 0)
2003                 mpage_da_submit_io(mpd);
2004         mpd->io_done = 1;
2005         return;
2006 }
2007
2008 /*
2009  * __mpage_da_writepage - finds extent of pages and blocks
2010  *
2011  * @page: page to consider
2012  * @wbc: not used, we just follow rules
2013  * @data: context
2014  *
2015  * The function finds extents of pages and scan them for all blocks.
2016  */
2017 static int __mpage_da_writepage(struct page *page,
2018                                 struct writeback_control *wbc, void *data)
2019 {
2020         struct mpage_da_data *mpd = data;
2021         struct inode *inode = mpd->inode;
2022         struct buffer_head *bh, *head, fake;
2023         sector_t logical;
2024
2025         if (mpd->io_done) {
2026                 /*
2027                  * Rest of the page in the page_vec
2028                  * redirty then and skip then. We will
2029                  * try to to write them again after
2030                  * starting a new transaction
2031                  */
2032                 redirty_page_for_writepage(wbc, page);
2033                 unlock_page(page);
2034                 return MPAGE_DA_EXTENT_TAIL;
2035         }
2036         /*
2037          * Can we merge this page to current extent?
2038          */
2039         if (mpd->next_page != page->index) {
2040                 /*
2041                  * Nope, we can't. So, we map non-allocated blocks
2042                  * and start IO on them using writepage()
2043                  */
2044                 if (mpd->next_page != mpd->first_page) {
2045                         if (mpage_da_map_blocks(mpd) == 0)
2046                                 mpage_da_submit_io(mpd);
2047                         /*
2048                          * skip rest of the page in the page_vec
2049                          */
2050                         mpd->io_done = 1;
2051                         redirty_page_for_writepage(wbc, page);
2052                         unlock_page(page);
2053                         return MPAGE_DA_EXTENT_TAIL;
2054                 }
2055
2056                 /*
2057                  * Start next extent of pages ...
2058                  */
2059                 mpd->first_page = page->index;
2060
2061                 /*
2062                  * ... and blocks
2063                  */
2064                 mpd->lbh.b_size = 0;
2065                 mpd->lbh.b_state = 0;
2066                 mpd->lbh.b_blocknr = 0;
2067         }
2068
2069         mpd->next_page = page->index + 1;
2070         logical = (sector_t) page->index <<
2071                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2072
2073         if (!page_has_buffers(page)) {
2074                 /*
2075                  * There is no attached buffer heads yet (mmap?)
2076                  * we treat the page asfull of dirty blocks
2077                  */
2078                 bh = &fake;
2079                 bh->b_size = PAGE_CACHE_SIZE;
2080                 bh->b_state = 0;
2081                 set_buffer_dirty(bh);
2082                 set_buffer_uptodate(bh);
2083                 mpage_add_bh_to_extent(mpd, logical, bh);
2084                 if (mpd->io_done)
2085                         return MPAGE_DA_EXTENT_TAIL;
2086         } else {
2087                 /*
2088                  * Page with regular buffer heads, just add all dirty ones
2089                  */
2090                 head = page_buffers(page);
2091                 bh = head;
2092                 do {
2093                         BUG_ON(buffer_locked(bh));
2094                         if (buffer_dirty(bh) &&
2095                                 (!buffer_mapped(bh) || buffer_delay(bh))) {
2096                                 mpage_add_bh_to_extent(mpd, logical, bh);
2097                                 if (mpd->io_done)
2098                                         return MPAGE_DA_EXTENT_TAIL;
2099                         }
2100                         logical++;
2101                 } while ((bh = bh->b_this_page) != head);
2102         }
2103
2104         return 0;
2105 }
2106
2107 /*
2108  * mpage_da_writepages - walk the list of dirty pages of the given
2109  * address space, allocates non-allocated blocks, maps newly-allocated
2110  * blocks to existing bhs and issue IO them
2111  *
2112  * @mapping: address space structure to write
2113  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2114  * @get_block: the filesystem's block mapper function.
2115  *
2116  * This is a library function, which implements the writepages()
2117  * address_space_operation.
2118  */
2119 static int mpage_da_writepages(struct address_space *mapping,
2120                                struct writeback_control *wbc,
2121                                struct mpage_da_data *mpd)
2122 {
2123         long to_write;
2124         int ret;
2125
2126         if (!mpd->get_block)
2127                 return generic_writepages(mapping, wbc);
2128
2129         mpd->lbh.b_size = 0;
2130         mpd->lbh.b_state = 0;
2131         mpd->lbh.b_blocknr = 0;
2132         mpd->first_page = 0;
2133         mpd->next_page = 0;
2134         mpd->io_done = 0;
2135         mpd->pages_written = 0;
2136         mpd->retval = 0;
2137
2138         to_write = wbc->nr_to_write;
2139
2140         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2141
2142         /*
2143          * Handle last extent of pages
2144          */
2145         if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2146                 if (mpage_da_map_blocks(mpd) == 0)
2147                         mpage_da_submit_io(mpd);
2148         }
2149
2150         wbc->nr_to_write = to_write - mpd->pages_written;
2151         return ret;
2152 }
2153
2154 /*
2155  * this is a special callback for ->write_begin() only
2156  * it's intention is to return mapped block or reserve space
2157  */
2158 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2159                                   struct buffer_head *bh_result, int create)
2160 {
2161         int ret = 0;
2162
2163         BUG_ON(create == 0);
2164         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2165
2166         /*
2167          * first, we need to know whether the block is allocated already
2168          * preallocated blocks are unmapped but should treated
2169          * the same as allocated blocks.
2170          */
2171         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2172         if ((ret == 0) && !buffer_delay(bh_result)) {
2173                 /* the block isn't (pre)allocated yet, let's reserve space */
2174                 /*
2175                  * XXX: __block_prepare_write() unmaps passed block,
2176                  * is it OK?
2177                  */
2178                 ret = ext4_da_reserve_space(inode, 1);
2179                 if (ret)
2180                         /* not enough space to reserve */
2181                         return ret;
2182
2183                 map_bh(bh_result, inode->i_sb, 0);
2184                 set_buffer_new(bh_result);
2185                 set_buffer_delay(bh_result);
2186         } else if (ret > 0) {
2187                 bh_result->b_size = (ret << inode->i_blkbits);
2188                 ret = 0;
2189         }
2190
2191         return ret;
2192 }
2193 #define         EXT4_DELALLOC_RSVED     1
2194 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2195                                    struct buffer_head *bh_result, int create)
2196 {
2197         int ret;
2198         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2199         loff_t disksize = EXT4_I(inode)->i_disksize;
2200         handle_t *handle = NULL;
2201
2202         handle = ext4_journal_current_handle();
2203         BUG_ON(!handle);
2204         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2205                         bh_result, create, 0, EXT4_DELALLOC_RSVED);
2206         if (ret > 0) {
2207
2208                 bh_result->b_size = (ret << inode->i_blkbits);
2209
2210                 if (ext4_should_order_data(inode)) {
2211                         int retval;
2212                         retval = ext4_jbd2_file_inode(handle, inode);
2213                         if (retval)
2214                                 /*
2215                                  * Failed to add inode for ordered
2216                                  * mode. Don't update file size
2217                                  */
2218                                 return retval;
2219                 }
2220
2221                 /*
2222                  * Update on-disk size along with block allocation
2223                  * we don't use 'extend_disksize' as size may change
2224                  * within already allocated block -bzzz
2225                  */
2226                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2227                 if (disksize > i_size_read(inode))
2228                         disksize = i_size_read(inode);
2229                 if (disksize > EXT4_I(inode)->i_disksize) {
2230                         /*
2231                          * XXX: replace with spinlock if seen contended -bzzz
2232                          */
2233                         down_write(&EXT4_I(inode)->i_data_sem);
2234                         if (disksize > EXT4_I(inode)->i_disksize)
2235                                 EXT4_I(inode)->i_disksize = disksize;
2236                         up_write(&EXT4_I(inode)->i_data_sem);
2237
2238                         if (EXT4_I(inode)->i_disksize == disksize) {
2239                                 ret = ext4_mark_inode_dirty(handle, inode);
2240                                 return ret;
2241                         }
2242                 }
2243                 ret = 0;
2244         }
2245         return ret;
2246 }
2247
2248 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2249 {
2250         /*
2251          * unmapped buffer is possible for holes.
2252          * delay buffer is possible with delayed allocation
2253          */
2254         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2255 }
2256
2257 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2258                                    struct buffer_head *bh_result, int create)
2259 {
2260         int ret = 0;
2261         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2262
2263         /*
2264          * we don't want to do block allocation in writepage
2265          * so call get_block_wrap with create = 0
2266          */
2267         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2268                                    bh_result, 0, 0, 0);
2269         if (ret > 0) {
2270                 bh_result->b_size = (ret << inode->i_blkbits);
2271                 ret = 0;
2272         }
2273         return ret;
2274 }
2275
2276 /*
2277  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2278  * get called via journal_submit_inode_data_buffers (no journal handle)
2279  * get called via shrink_page_list via pdflush (no journal handle)
2280  * or grab_page_cache when doing write_begin (have journal handle)
2281  */
2282 static int ext4_da_writepage(struct page *page,
2283                                 struct writeback_control *wbc)
2284 {
2285         int ret = 0;
2286         loff_t size;
2287         unsigned long len;
2288         struct buffer_head *page_bufs;
2289         struct inode *inode = page->mapping->host;
2290
2291         size = i_size_read(inode);
2292         if (page->index == size >> PAGE_CACHE_SHIFT)
2293                 len = size & ~PAGE_CACHE_MASK;
2294         else
2295                 len = PAGE_CACHE_SIZE;
2296
2297         if (page_has_buffers(page)) {
2298                 page_bufs = page_buffers(page);
2299                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2300                                         ext4_bh_unmapped_or_delay)) {
2301                         /*
2302                          * We don't want to do  block allocation
2303                          * So redirty the page and return
2304                          * We may reach here when we do a journal commit
2305                          * via journal_submit_inode_data_buffers.
2306                          * If we don't have mapping block we just ignore
2307                          * them. We can also reach here via shrink_page_list
2308                          */
2309                         redirty_page_for_writepage(wbc, page);
2310                         unlock_page(page);
2311                         return 0;
2312                 }
2313         } else {
2314                 /*
2315                  * The test for page_has_buffers() is subtle:
2316                  * We know the page is dirty but it lost buffers. That means
2317                  * that at some moment in time after write_begin()/write_end()
2318                  * has been called all buffers have been clean and thus they
2319                  * must have been written at least once. So they are all
2320                  * mapped and we can happily proceed with mapping them
2321                  * and writing the page.
2322                  *
2323                  * Try to initialize the buffer_heads and check whether
2324                  * all are mapped and non delay. We don't want to
2325                  * do block allocation here.
2326                  */
2327                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2328                                                 ext4_normal_get_block_write);
2329                 if (!ret) {
2330                         page_bufs = page_buffers(page);
2331                         /* check whether all are mapped and non delay */
2332                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2333                                                 ext4_bh_unmapped_or_delay)) {
2334                                 redirty_page_for_writepage(wbc, page);
2335                                 unlock_page(page);
2336                                 return 0;
2337                         }
2338                 } else {
2339                         /*
2340                          * We can't do block allocation here
2341                          * so just redity the page and unlock
2342                          * and return
2343                          */
2344                         redirty_page_for_writepage(wbc, page);
2345                         unlock_page(page);
2346                         return 0;
2347                 }
2348         }
2349
2350         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2351                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2352         else
2353                 ret = block_write_full_page(page,
2354                                                 ext4_normal_get_block_write,
2355                                                 wbc);
2356
2357         return ret;
2358 }
2359
2360 /*
2361  * This is called via ext4_da_writepages() to
2362  * calulate the total number of credits to reserve to fit
2363  * a single extent allocation into a single transaction,
2364  * ext4_da_writpeages() will loop calling this before
2365  * the block allocation.
2366  */
2367
2368 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2369 {
2370         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2371
2372         /*
2373          * With non-extent format the journal credit needed to
2374          * insert nrblocks contiguous block is dependent on
2375          * number of contiguous block. So we will limit
2376          * number of contiguous block to a sane value
2377          */
2378         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2379             (max_blocks > EXT4_MAX_TRANS_DATA))
2380                 max_blocks = EXT4_MAX_TRANS_DATA;
2381
2382         return ext4_chunk_trans_blocks(inode, max_blocks);
2383 }
2384
2385 static int ext4_da_writepages(struct address_space *mapping,
2386                               struct writeback_control *wbc)
2387 {
2388         handle_t *handle = NULL;
2389         loff_t range_start = 0;
2390         struct mpage_da_data mpd;
2391         struct inode *inode = mapping->host;
2392         int needed_blocks, ret = 0, nr_to_writebump = 0;
2393         long to_write, pages_skipped = 0;
2394         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2395
2396         /*
2397          * No pages to write? This is mainly a kludge to avoid starting
2398          * a transaction for special inodes like journal inode on last iput()
2399          * because that could violate lock ordering on umount
2400          */
2401         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2402                 return 0;
2403         /*
2404          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2405          * This make sure small files blocks are allocated in
2406          * single attempt. This ensure that small files
2407          * get less fragmented.
2408          */
2409         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2410                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2411                 wbc->nr_to_write = sbi->s_mb_stream_request;
2412         }
2413
2414         if (!wbc->range_cyclic)
2415                 /*
2416                  * If range_cyclic is not set force range_cont
2417                  * and save the old writeback_index
2418                  */
2419                 wbc->range_cont = 1;
2420
2421         range_start =  wbc->range_start;
2422         pages_skipped = wbc->pages_skipped;
2423
2424         mpd.wbc = wbc;
2425         mpd.inode = mapping->host;
2426
2427 restart_loop:
2428         to_write = wbc->nr_to_write;
2429         while (!ret && to_write > 0) {
2430
2431                 /*
2432                  * we  insert one extent at a time. So we need
2433                  * credit needed for single extent allocation.
2434                  * journalled mode is currently not supported
2435                  * by delalloc
2436                  */
2437                 BUG_ON(ext4_should_journal_data(inode));
2438                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2439
2440                 /* start a new transaction*/
2441                 handle = ext4_journal_start(inode, needed_blocks);
2442                 if (IS_ERR(handle)) {
2443                         ret = PTR_ERR(handle);
2444                         printk(KERN_EMERG "%s: jbd2_start: "
2445                                "%ld pages, ino %lu; err %d\n", __func__,
2446                                 wbc->nr_to_write, inode->i_ino, ret);
2447                         dump_stack();
2448                         goto out_writepages;
2449                 }
2450                 to_write -= wbc->nr_to_write;
2451
2452                 mpd.get_block = ext4_da_get_block_write;
2453                 ret = mpage_da_writepages(mapping, wbc, &mpd);
2454
2455                 ext4_journal_stop(handle);
2456
2457                 if (mpd.retval == -ENOSPC)
2458                         jbd2_journal_force_commit_nested(sbi->s_journal);
2459
2460                 /* reset the retry count */
2461                 if (ret == MPAGE_DA_EXTENT_TAIL) {
2462                         /*
2463                          * got one extent now try with
2464                          * rest of the pages
2465                          */
2466                         to_write += wbc->nr_to_write;
2467                         ret = 0;
2468                 } else if (wbc->nr_to_write) {
2469                         /*
2470                          * There is no more writeout needed
2471                          * or we requested for a noblocking writeout
2472                          * and we found the device congested
2473                          */
2474                         to_write += wbc->nr_to_write;
2475                         break;
2476                 }
2477                 wbc->nr_to_write = to_write;
2478         }
2479
2480         if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2481                 /* We skipped pages in this loop */
2482                 wbc->range_start = range_start;
2483                 wbc->nr_to_write = to_write +
2484                                 wbc->pages_skipped - pages_skipped;
2485                 wbc->pages_skipped = pages_skipped;
2486                 goto restart_loop;
2487         }
2488
2489 out_writepages:
2490         wbc->nr_to_write = to_write - nr_to_writebump;
2491         wbc->range_start = range_start;
2492         return ret;
2493 }
2494
2495 #define FALL_BACK_TO_NONDELALLOC 1
2496 static int ext4_nonda_switch(struct super_block *sb)
2497 {
2498         s64 free_blocks, dirty_blocks;
2499         struct ext4_sb_info *sbi = EXT4_SB(sb);
2500
2501         /*
2502          * switch to non delalloc mode if we are running low
2503          * on free block. The free block accounting via percpu
2504          * counters can get slightly wrong with FBC_BATCH getting
2505          * accumulated on each CPU without updating global counters
2506          * Delalloc need an accurate free block accounting. So switch
2507          * to non delalloc when we are near to error range.
2508          */
2509         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2510         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2511         if (2 * free_blocks < 3 * dirty_blocks ||
2512                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2513                 /*
2514                  * free block count is less that 150% of dirty blocks
2515                  * or free blocks is less that watermark
2516                  */
2517                 return 1;
2518         }
2519         return 0;
2520 }
2521
2522 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2523                                 loff_t pos, unsigned len, unsigned flags,
2524                                 struct page **pagep, void **fsdata)
2525 {
2526         int ret, retries = 0;
2527         struct page *page;
2528         pgoff_t index;
2529         unsigned from, to;
2530         struct inode *inode = mapping->host;
2531         handle_t *handle;
2532
2533         index = pos >> PAGE_CACHE_SHIFT;
2534         from = pos & (PAGE_CACHE_SIZE - 1);
2535         to = from + len;
2536
2537         if (ext4_nonda_switch(inode->i_sb)) {
2538                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2539                 return ext4_write_begin(file, mapping, pos,
2540                                         len, flags, pagep, fsdata);
2541         }
2542         *fsdata = (void *)0;
2543 retry:
2544         /*
2545          * With delayed allocation, we don't log the i_disksize update
2546          * if there is delayed block allocation. But we still need
2547          * to journalling the i_disksize update if writes to the end
2548          * of file which has an already mapped buffer.
2549          */
2550         handle = ext4_journal_start(inode, 1);
2551         if (IS_ERR(handle)) {
2552                 ret = PTR_ERR(handle);
2553                 goto out;
2554         }
2555
2556         page = __grab_cache_page(mapping, index);
2557         if (!page) {
2558                 ext4_journal_stop(handle);
2559                 ret = -ENOMEM;
2560                 goto out;
2561         }
2562         *pagep = page;
2563
2564         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2565                                                         ext4_da_get_block_prep);
2566         if (ret < 0) {
2567                 unlock_page(page);
2568                 ext4_journal_stop(handle);
2569                 page_cache_release(page);
2570                 /*
2571                  * block_write_begin may have instantiated a few blocks
2572                  * outside i_size.  Trim these off again. Don't need
2573                  * i_size_read because we hold i_mutex.
2574                  */
2575                 if (pos + len > inode->i_size)
2576                         vmtruncate(inode, inode->i_size);
2577         }
2578
2579         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2580                 goto retry;
2581 out:
2582         return ret;
2583 }
2584
2585 /*
2586  * Check if we should update i_disksize
2587  * when write to the end of file but not require block allocation
2588  */
2589 static int ext4_da_should_update_i_disksize(struct page *page,
2590                                          unsigned long offset)
2591 {
2592         struct buffer_head *bh;
2593         struct inode *inode = page->mapping->host;
2594         unsigned int idx;
2595         int i;
2596
2597         bh = page_buffers(page);
2598         idx = offset >> inode->i_blkbits;
2599
2600         for (i = 0; i < idx; i++)
2601                 bh = bh->b_this_page;
2602
2603         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2604                 return 0;
2605         return 1;
2606 }
2607
2608 static int ext4_da_write_end(struct file *file,
2609                                 struct address_space *mapping,
2610                                 loff_t pos, unsigned len, unsigned copied,
2611                                 struct page *page, void *fsdata)
2612 {
2613         struct inode *inode = mapping->host;
2614         int ret = 0, ret2;
2615         handle_t *handle = ext4_journal_current_handle();
2616         loff_t new_i_size;
2617         unsigned long start, end;
2618         int write_mode = (int)(unsigned long)fsdata;
2619
2620         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2621                 if (ext4_should_order_data(inode)) {
2622                         return ext4_ordered_write_end(file, mapping, pos,
2623                                         len, copied, page, fsdata);
2624                 } else if (ext4_should_writeback_data(inode)) {
2625                         return ext4_writeback_write_end(file, mapping, pos,
2626                                         len, copied, page, fsdata);
2627                 } else {
2628                         BUG();
2629                 }
2630         }
2631
2632         start = pos & (PAGE_CACHE_SIZE - 1);
2633         end = start + copied - 1;
2634
2635         /*
2636          * generic_write_end() will run mark_inode_dirty() if i_size
2637          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2638          * into that.
2639          */
2640
2641         new_i_size = pos + copied;
2642         if (new_i_size > EXT4_I(inode)->i_disksize) {
2643                 if (ext4_da_should_update_i_disksize(page, end)) {
2644                         down_write(&EXT4_I(inode)->i_data_sem);
2645                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2646                                 /*
2647                                  * Updating i_disksize when extending file
2648                                  * without needing block allocation
2649                                  */
2650                                 if (ext4_should_order_data(inode))
2651                                         ret = ext4_jbd2_file_inode(handle,
2652                                                                    inode);
2653
2654                                 EXT4_I(inode)->i_disksize = new_i_size;
2655                         }
2656                         up_write(&EXT4_I(inode)->i_data_sem);
2657                 }
2658         }
2659         ret2 = generic_write_end(file, mapping, pos, len, copied,
2660                                                         page, fsdata);
2661         copied = ret2;
2662         if (ret2 < 0)
2663                 ret = ret2;
2664         ret2 = ext4_journal_stop(handle);
2665         if (!ret)
2666                 ret = ret2;
2667
2668         return ret ? ret : copied;
2669 }
2670
2671 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2672 {
2673         /*
2674          * Drop reserved blocks
2675          */
2676         BUG_ON(!PageLocked(page));
2677         if (!page_has_buffers(page))
2678                 goto out;
2679
2680         ext4_da_page_release_reservation(page, offset);
2681
2682 out:
2683         ext4_invalidatepage(page, offset);
2684
2685         return;
2686 }
2687
2688
2689 /*
2690  * bmap() is special.  It gets used by applications such as lilo and by
2691  * the swapper to find the on-disk block of a specific piece of data.
2692  *
2693  * Naturally, this is dangerous if the block concerned is still in the
2694  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2695  * filesystem and enables swap, then they may get a nasty shock when the
2696  * data getting swapped to that swapfile suddenly gets overwritten by
2697  * the original zero's written out previously to the journal and
2698  * awaiting writeback in the kernel's buffer cache.
2699  *
2700  * So, if we see any bmap calls here on a modified, data-journaled file,
2701  * take extra steps to flush any blocks which might be in the cache.
2702  */
2703 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2704 {
2705         struct inode *inode = mapping->host;
2706         journal_t *journal;
2707         int err;
2708
2709         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2710                         test_opt(inode->i_sb, DELALLOC)) {
2711                 /*
2712                  * With delalloc we want to sync the file
2713                  * so that we can make sure we allocate
2714                  * blocks for file
2715                  */
2716                 filemap_write_and_wait(mapping);
2717         }
2718
2719         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2720                 /*
2721                  * This is a REALLY heavyweight approach, but the use of
2722                  * bmap on dirty files is expected to be extremely rare:
2723                  * only if we run lilo or swapon on a freshly made file
2724                  * do we expect this to happen.
2725                  *
2726                  * (bmap requires CAP_SYS_RAWIO so this does not
2727                  * represent an unprivileged user DOS attack --- we'd be
2728                  * in trouble if mortal users could trigger this path at
2729                  * will.)
2730                  *
2731                  * NB. EXT4_STATE_JDATA is not set on files other than
2732                  * regular files.  If somebody wants to bmap a directory
2733                  * or symlink and gets confused because the buffer
2734                  * hasn't yet been flushed to disk, they deserve
2735                  * everything they get.
2736                  */
2737
2738                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2739                 journal = EXT4_JOURNAL(inode);
2740                 jbd2_journal_lock_updates(journal);
2741                 err = jbd2_journal_flush(journal);
2742                 jbd2_journal_unlock_updates(journal);
2743
2744                 if (err)
2745                         return 0;
2746         }
2747
2748         return generic_block_bmap(mapping, block, ext4_get_block);
2749 }
2750
2751 static int bget_one(handle_t *handle, struct buffer_head *bh)
2752 {
2753         get_bh(bh);
2754         return 0;
2755 }
2756
2757 static int bput_one(handle_t *handle, struct buffer_head *bh)
2758 {
2759         put_bh(bh);
2760         return 0;
2761 }
2762
2763 /*
2764  * Note that we don't need to start a transaction unless we're journaling data
2765  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2766  * need to file the inode to the transaction's list in ordered mode because if
2767  * we are writing back data added by write(), the inode is already there and if
2768  * we are writing back data modified via mmap(), noone guarantees in which
2769  * transaction the data will hit the disk. In case we are journaling data, we
2770  * cannot start transaction directly because transaction start ranks above page
2771  * lock so we have to do some magic.
2772  *
2773  * In all journaling modes block_write_full_page() will start the I/O.
2774  *
2775  * Problem:
2776  *
2777  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2778  *              ext4_writepage()
2779  *
2780  * Similar for:
2781  *
2782  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2783  *
2784  * Same applies to ext4_get_block().  We will deadlock on various things like
2785  * lock_journal and i_data_sem
2786  *
2787  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2788  * allocations fail.
2789  *
2790  * 16May01: If we're reentered then journal_current_handle() will be
2791  *          non-zero. We simply *return*.
2792  *
2793  * 1 July 2001: @@@ FIXME:
2794  *   In journalled data mode, a data buffer may be metadata against the
2795  *   current transaction.  But the same file is part of a shared mapping
2796  *   and someone does a writepage() on it.
2797  *
2798  *   We will move the buffer onto the async_data list, but *after* it has
2799  *   been dirtied. So there's a small window where we have dirty data on
2800  *   BJ_Metadata.
2801  *
2802  *   Note that this only applies to the last partial page in the file.  The
2803  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2804  *   broken code anyway: it's wrong for msync()).
2805  *
2806  *   It's a rare case: affects the final partial page, for journalled data
2807  *   where the file is subject to bith write() and writepage() in the same
2808  *   transction.  To fix it we'll need a custom block_write_full_page().
2809  *   We'll probably need that anyway for journalling writepage() output.
2810  *
2811  * We don't honour synchronous mounts for writepage().  That would be
2812  * disastrous.  Any write() or metadata operation will sync the fs for
2813  * us.
2814  *
2815  */
2816 static int __ext4_normal_writepage(struct page *page,
2817                                 struct writeback_control *wbc)
2818 {
2819         struct inode *inode = page->mapping->host;
2820
2821         if (test_opt(inode->i_sb, NOBH))
2822                 return nobh_writepage(page,
2823                                         ext4_normal_get_block_write, wbc);
2824         else
2825                 return block_write_full_page(page,
2826                                                 ext4_normal_get_block_write,
2827                                                 wbc);
2828 }
2829
2830 static int ext4_normal_writepage(struct page *page,
2831                                 struct writeback_control *wbc)
2832 {
2833         struct inode *inode = page->mapping->host;
2834         loff_t size = i_size_read(inode);
2835         loff_t len;
2836
2837         J_ASSERT(PageLocked(page));
2838         if (page->index == size >> PAGE_CACHE_SHIFT)
2839                 len = size & ~PAGE_CACHE_MASK;
2840         else
2841                 len = PAGE_CACHE_SIZE;
2842
2843         if (page_has_buffers(page)) {
2844                 /* if page has buffers it should all be mapped
2845                  * and allocated. If there are not buffers attached
2846                  * to the page we know the page is dirty but it lost
2847                  * buffers. That means that at some moment in time
2848                  * after write_begin() / write_end() has been called
2849                  * all buffers have been clean and thus they must have been
2850                  * written at least once. So they are all mapped and we can
2851                  * happily proceed with mapping them and writing the page.
2852                  */
2853                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2854                                         ext4_bh_unmapped_or_delay));
2855         }
2856
2857         if (!ext4_journal_current_handle())
2858                 return __ext4_normal_writepage(page, wbc);
2859
2860         redirty_page_for_writepage(wbc, page);
2861         unlock_page(page);
2862         return 0;
2863 }
2864
2865 static int __ext4_journalled_writepage(struct page *page,
2866                                 struct writeback_control *wbc)
2867 {
2868         struct address_space *mapping = page->mapping;
2869         struct inode *inode = mapping->host;
2870         struct buffer_head *page_bufs;
2871         handle_t *handle = NULL;
2872         int ret = 0;
2873         int err;
2874
2875         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2876                                         ext4_normal_get_block_write);
2877         if (ret != 0)
2878                 goto out_unlock;
2879
2880         page_bufs = page_buffers(page);
2881         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2882                                                                 bget_one);
2883         /* As soon as we unlock the page, it can go away, but we have
2884          * references to buffers so we are safe */
2885         unlock_page(page);
2886
2887         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2888         if (IS_ERR(handle)) {
2889                 ret = PTR_ERR(handle);
2890                 goto out;
2891         }
2892
2893         ret = walk_page_buffers(handle, page_bufs, 0,
2894                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2895
2896         err = walk_page_buffers(handle, page_bufs, 0,
2897                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2898         if (ret == 0)
2899                 ret = err;
2900         err = ext4_journal_stop(handle);
2901         if (!ret)
2902                 ret = err;
2903
2904         walk_page_buffers(handle, page_bufs, 0,
2905                                 PAGE_CACHE_SIZE, NULL, bput_one);
2906         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2907         goto out;
2908
2909 out_unlock:
2910         unlock_page(page);
2911 out:
2912         return ret;
2913 }
2914
2915 static int ext4_journalled_writepage(struct page *page,
2916                                 struct writeback_control *wbc)
2917 {
2918         struct inode *inode = page->mapping->host;
2919         loff_t size = i_size_read(inode);
2920         loff_t len;
2921
2922         J_ASSERT(PageLocked(page));
2923         if (page->index == size >> PAGE_CACHE_SHIFT)
2924                 len = size & ~PAGE_CACHE_MASK;
2925         else
2926                 len = PAGE_CACHE_SIZE;
2927
2928         if (page_has_buffers(page)) {
2929                 /* if page has buffers it should all be mapped
2930                  * and allocated. If there are not buffers attached
2931                  * to the page we know the page is dirty but it lost
2932                  * buffers. That means that at some moment in time
2933                  * after write_begin() / write_end() has been called
2934                  * all buffers have been clean and thus they must have been
2935                  * written at least once. So they are all mapped and we can
2936                  * happily proceed with mapping them and writing the page.
2937                  */
2938                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2939                                         ext4_bh_unmapped_or_delay));
2940         }
2941
2942         if (ext4_journal_current_handle())
2943                 goto no_write;
2944
2945         if (PageChecked(page)) {
2946                 /*
2947                  * It's mmapped pagecache.  Add buffers and journal it.  There
2948                  * doesn't seem much point in redirtying the page here.
2949                  */
2950                 ClearPageChecked(page);
2951                 return __ext4_journalled_writepage(page, wbc);
2952         } else {
2953                 /*
2954                  * It may be a page full of checkpoint-mode buffers.  We don't
2955                  * really know unless we go poke around in the buffer_heads.
2956                  * But block_write_full_page will do the right thing.
2957                  */
2958                 return block_write_full_page(page,
2959                                                 ext4_normal_get_block_write,
2960                                                 wbc);
2961         }
2962 no_write:
2963         redirty_page_for_writepage(wbc, page);
2964         unlock_page(page);
2965         return 0;
2966 }
2967
2968 static int ext4_readpage(struct file *file, struct page *page)
2969 {
2970         return mpage_readpage(page, ext4_get_block);
2971 }
2972
2973 static int
2974 ext4_readpages(struct file *file, struct address_space *mapping,
2975                 struct list_head *pages, unsigned nr_pages)
2976 {
2977         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2978 }
2979
2980 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2981 {
2982         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2983
2984         /*
2985          * If it's a full truncate we just forget about the pending dirtying
2986          */
2987         if (offset == 0)
2988                 ClearPageChecked(page);
2989
2990         jbd2_journal_invalidatepage(journal, page, offset);
2991 }
2992
2993 static int ext4_releasepage(struct page *page, gfp_t wait)
2994 {
2995         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2996
2997         WARN_ON(PageChecked(page));
2998         if (!page_has_buffers(page))
2999                 return 0;
3000         return jbd2_journal_try_to_free_buffers(journal, page, wait);
3001 }
3002
3003 /*
3004  * If the O_DIRECT write will extend the file then add this inode to the
3005  * orphan list.  So recovery will truncate it back to the original size
3006  * if the machine crashes during the write.
3007  *
3008  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3009  * crashes then stale disk data _may_ be exposed inside the file. But current
3010  * VFS code falls back into buffered path in that case so we are safe.
3011  */
3012 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3013                         const struct iovec *iov, loff_t offset,
3014                         unsigned long nr_segs)
3015 {
3016         struct file *file = iocb->ki_filp;
3017         struct inode *inode = file->f_mapping->host;
3018         struct ext4_inode_info *ei = EXT4_I(inode);
3019         handle_t *handle;
3020         ssize_t ret;
3021         int orphan = 0;
3022         size_t count = iov_length(iov, nr_segs);
3023
3024         if (rw == WRITE) {
3025                 loff_t final_size = offset + count;
3026
3027                 if (final_size > inode->i_size) {
3028                         /* Credits for sb + inode write */
3029                         handle = ext4_journal_start(inode, 2);
3030                         if (IS_ERR(handle)) {
3031                                 ret = PTR_ERR(handle);
3032                                 goto out;
3033                         }
3034                         ret = ext4_orphan_add(handle, inode);
3035                         if (ret) {
3036                                 ext4_journal_stop(handle);
3037                                 goto out;
3038                         }
3039                         orphan = 1;
3040                         ei->i_disksize = inode->i_size;
3041                         ext4_journal_stop(handle);
3042                 }
3043         }
3044
3045         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3046                                  offset, nr_segs,
3047                                  ext4_get_block, NULL);
3048
3049         if (orphan) {
3050                 int err;
3051
3052                 /* Credits for sb + inode write */
3053                 handle = ext4_journal_start(inode, 2);
3054                 if (IS_ERR(handle)) {
3055                         /* This is really bad luck. We've written the data
3056                          * but cannot extend i_size. Bail out and pretend
3057                          * the write failed... */
3058                         ret = PTR_ERR(handle);
3059                         goto out;
3060                 }
3061                 if (inode->i_nlink)
3062                         ext4_orphan_del(handle, inode);
3063                 if (ret > 0) {
3064                         loff_t end = offset + ret;
3065                         if (end > inode->i_size) {
3066                                 ei->i_disksize = end;
3067                                 i_size_write(inode, end);
3068                                 /*
3069                                  * We're going to return a positive `ret'
3070                                  * here due to non-zero-length I/O, so there's
3071                                  * no way of reporting error returns from
3072                                  * ext4_mark_inode_dirty() to userspace.  So
3073                                  * ignore it.
3074                                  */
3075                                 ext4_mark_inode_dirty(handle, inode);
3076                         }
3077                 }
3078                 err = ext4_journal_stop(handle);
3079                 if (ret == 0)
3080                         ret = err;
3081         }
3082 out:
3083         return ret;
3084 }
3085
3086 /*
3087  * Pages can be marked dirty completely asynchronously from ext4's journalling
3088  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3089  * much here because ->set_page_dirty is called under VFS locks.  The page is
3090  * not necessarily locked.
3091  *
3092  * We cannot just dirty the page and leave attached buffers clean, because the
3093  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3094  * or jbddirty because all the journalling code will explode.
3095  *
3096  * So what we do is to mark the page "pending dirty" and next time writepage
3097  * is called, propagate that into the buffers appropriately.
3098  */
3099 static int ext4_journalled_set_page_dirty(struct page *page)
3100 {
3101         SetPageChecked(page);
3102         return __set_page_dirty_nobuffers(page);
3103 }
3104
3105 static const struct address_space_operations ext4_ordered_aops = {
3106         .readpage               = ext4_readpage,
3107         .readpages              = ext4_readpages,
3108         .writepage              = ext4_normal_writepage,
3109         .sync_page              = block_sync_page,
3110         .write_begin            = ext4_write_begin,
3111         .write_end              = ext4_ordered_write_end,
3112         .bmap                   = ext4_bmap,
3113         .invalidatepage         = ext4_invalidatepage,
3114         .releasepage            = ext4_releasepage,
3115         .direct_IO              = ext4_direct_IO,
3116         .migratepage            = buffer_migrate_page,
3117         .is_partially_uptodate  = block_is_partially_uptodate,
3118 };
3119
3120 static const struct address_space_operations ext4_writeback_aops = {
3121         .readpage               = ext4_readpage,
3122         .readpages              = ext4_readpages,
3123         .writepage              = ext4_normal_writepage,
3124         .sync_page              = block_sync_page,
3125         .write_begin            = ext4_write_begin,
3126         .write_end              = ext4_writeback_write_end,
3127         .bmap                   = ext4_bmap,
3128         .invalidatepage         = ext4_invalidatepage,
3129         .releasepage            = ext4_releasepage,
3130         .direct_IO              = ext4_direct_IO,
3131         .migratepage            = buffer_migrate_page,
3132         .is_partially_uptodate  = block_is_partially_uptodate,
3133 };
3134
3135 static const struct address_space_operations ext4_journalled_aops = {
3136         .readpage               = ext4_readpage,
3137         .readpages              = ext4_readpages,
3138         .writepage              = ext4_journalled_writepage,
3139         .sync_page              = block_sync_page,
3140         .write_begin            = ext4_write_begin,
3141         .write_end              = ext4_journalled_write_end,
3142         .set_page_dirty         = ext4_journalled_set_page_dirty,
3143         .bmap                   = ext4_bmap,
3144         .invalidatepage         = ext4_invalidatepage,
3145         .releasepage            = ext4_releasepage,
3146         .is_partially_uptodate  = block_is_partially_uptodate,
3147 };
3148
3149 static const struct address_space_operations ext4_da_aops = {
3150         .readpage               = ext4_readpage,
3151         .readpages              = ext4_readpages,
3152         .writepage              = ext4_da_writepage,
3153         .writepages             = ext4_da_writepages,
3154         .sync_page              = block_sync_page,
3155         .write_begin            = ext4_da_write_begin,
3156         .write_end              = ext4_da_write_end,
3157         .bmap                   = ext4_bmap,
3158         .invalidatepage         = ext4_da_invalidatepage,
3159         .releasepage            = ext4_releasepage,
3160         .direct_IO              = ext4_direct_IO,
3161         .migratepage            = buffer_migrate_page,
3162         .is_partially_uptodate  = block_is_partially_uptodate,
3163 };
3164
3165 void ext4_set_aops(struct inode *inode)
3166 {
3167         if (ext4_should_order_data(inode) &&
3168                 test_opt(inode->i_sb, DELALLOC))
3169                 inode->i_mapping->a_ops = &ext4_da_aops;
3170         else if (ext4_should_order_data(inode))
3171                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3172         else if (ext4_should_writeback_data(inode) &&
3173                  test_opt(inode->i_sb, DELALLOC))
3174                 inode->i_mapping->a_ops = &ext4_da_aops;
3175         else if (ext4_should_writeback_data(inode))
3176                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3177         else
3178                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3179 }
3180
3181 /*
3182  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3183  * up to the end of the block which corresponds to `from'.
3184  * This required during truncate. We need to physically zero the tail end
3185  * of that block so it doesn't yield old data if the file is later grown.
3186  */
3187 int ext4_block_truncate_page(handle_t *handle,
3188                 struct address_space *mapping, loff_t from)
3189 {
3190         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3191         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3192         unsigned blocksize, length, pos;
3193         ext4_lblk_t iblock;
3194         struct inode *inode = mapping->host;
3195         struct buffer_head *bh;
3196         struct page *page;
3197         int err = 0;
3198
3199         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3200         if (!page)
3201                 return -EINVAL;
3202
3203         blocksize = inode->i_sb->s_blocksize;
3204         length = blocksize - (offset & (blocksize - 1));
3205         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3206
3207         /*
3208          * For "nobh" option,  we can only work if we don't need to
3209          * read-in the page - otherwise we create buffers to do the IO.
3210          */
3211         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3212              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3213                 zero_user(page, offset, length);
3214                 set_page_dirty(page);
3215                 goto unlock;
3216         }
3217
3218         if (!page_has_buffers(page))
3219                 create_empty_buffers(page, blocksize, 0);
3220
3221         /* Find the buffer that contains "offset" */
3222         bh = page_buffers(page);
3223         pos = blocksize;
3224         while (offset >= pos) {
3225                 bh = bh->b_this_page;
3226                 iblock++;
3227                 pos += blocksize;
3228         }
3229
3230         err = 0;
3231         if (buffer_freed(bh)) {
3232                 BUFFER_TRACE(bh, "freed: skip");
3233                 goto unlock;
3234         }
3235
3236         if (!buffer_mapped(bh)) {
3237                 BUFFER_TRACE(bh, "unmapped");
3238                 ext4_get_block(inode, iblock, bh, 0);
3239                 /* unmapped? It's a hole - nothing to do */
3240                 if (!buffer_mapped(bh)) {
3241                         BUFFER_TRACE(bh, "still unmapped");
3242                         goto unlock;
3243                 }
3244         }
3245
3246         /* Ok, it's mapped. Make sure it's up-to-date */
3247         if (PageUptodate(page))
3248                 set_buffer_uptodate(bh);
3249
3250         if (!buffer_uptodate(bh)) {
3251                 err = -EIO;
3252                 ll_rw_block(READ, 1, &bh);
3253                 wait_on_buffer(bh);
3254                 /* Uhhuh. Read error. Complain and punt. */
3255                 if (!buffer_uptodate(bh))
3256                         goto unlock;
3257         }
3258
3259         if (ext4_should_journal_data(inode)) {
3260                 BUFFER_TRACE(bh, "get write access");
3261                 err = ext4_journal_get_write_access(handle, bh);
3262                 if (err)
3263                         goto unlock;
3264         }
3265
3266         zero_user(page, offset, length);
3267
3268         BUFFER_TRACE(bh, "zeroed end of block");
3269
3270         err = 0;
3271         if (ext4_should_journal_data(inode)) {
3272                 err = ext4_journal_dirty_metadata(handle, bh);
3273         } else {
3274                 if (ext4_should_order_data(inode))
3275                         err = ext4_jbd2_file_inode(handle, inode);
3276                 mark_buffer_dirty(bh);
3277         }
3278
3279 unlock:
3280         unlock_page(page);
3281         page_cache_release(page);
3282         return err;
3283 }
3284
3285 /*
3286  * Probably it should be a library function... search for first non-zero word
3287  * or memcmp with zero_page, whatever is better for particular architecture.
3288  * Linus?
3289  */
3290 static inline int all_zeroes(__le32 *p, __le32 *q)
3291 {
3292         while (p < q)
3293                 if (*p++)
3294                         return 0;
3295         return 1;
3296 }
3297
3298 /**
3299  *      ext4_find_shared - find the indirect blocks for partial truncation.
3300  *      @inode:   inode in question
3301  *      @depth:   depth of the affected branch
3302  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3303  *      @chain:   place to store the pointers to partial indirect blocks
3304  *      @top:     place to the (detached) top of branch
3305  *
3306  *      This is a helper function used by ext4_truncate().
3307  *
3308  *      When we do truncate() we may have to clean the ends of several
3309  *      indirect blocks but leave the blocks themselves alive. Block is
3310  *      partially truncated if some data below the new i_size is refered
3311  *      from it (and it is on the path to the first completely truncated
3312  *      data block, indeed).  We have to free the top of that path along
3313  *      with everything to the right of the path. Since no allocation
3314  *      past the truncation point is possible until ext4_truncate()
3315  *      finishes, we may safely do the latter, but top of branch may
3316  *      require special attention - pageout below the truncation point
3317  *      might try to populate it.
3318  *
3319  *      We atomically detach the top of branch from the tree, store the
3320  *      block number of its root in *@top, pointers to buffer_heads of
3321  *      partially truncated blocks - in @chain[].bh and pointers to
3322  *      their last elements that should not be removed - in
3323  *      @chain[].p. Return value is the pointer to last filled element
3324  *      of @chain.
3325  *
3326  *      The work left to caller to do the actual freeing of subtrees:
3327  *              a) free the subtree starting from *@top
3328  *              b) free the subtrees whose roots are stored in
3329  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3330  *              c) free the subtrees growing from the inode past the @chain[0].
3331  *                      (no partially truncated stuff there).  */
3332
3333 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3334                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3335 {
3336         Indirect *partial, *p;
3337         int k, err;
3338
3339         *top = 0;
3340         /* Make k index the deepest non-null offest + 1 */
3341         for (k = depth; k > 1 && !offsets[k-1]; k--)
3342                 ;
3343         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3344         /* Writer: pointers */
3345         if (!partial)
3346                 partial = chain + k-1;
3347         /*
3348          * If the branch acquired continuation since we've looked at it -
3349          * fine, it should all survive and (new) top doesn't belong to us.
3350          */
3351         if (!partial->key && *partial->p)
3352                 /* Writer: end */
3353                 goto no_top;
3354         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3355                 ;
3356         /*
3357          * OK, we've found the last block that must survive. The rest of our
3358          * branch should be detached before unlocking. However, if that rest
3359          * of branch is all ours and does not grow immediately from the inode
3360          * it's easier to cheat and just decrement partial->p.
3361          */
3362         if (p == chain + k - 1 && p > chain) {
3363                 p->p--;
3364         } else {
3365                 *top = *p->p;
3366                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3367 #if 0
3368                 *p->p = 0;
3369 #endif
3370         }
3371         /* Writer: end */
3372
3373         while (partial > p) {
3374                 brelse(partial->bh);
3375                 partial--;
3376         }
3377 no_top:
3378         return partial;
3379 }
3380
3381 /*
3382  * Zero a number of block pointers in either an inode or an indirect block.
3383  * If we restart the transaction we must again get write access to the
3384  * indirect block for further modification.
3385  *
3386  * We release `count' blocks on disk, but (last - first) may be greater
3387  * than `count' because there can be holes in there.
3388  */
3389 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3390                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3391                 unsigned long count, __le32 *first, __le32 *last)
3392 {
3393         __le32 *p;
3394         if (try_to_extend_transaction(handle, inode)) {
3395                 if (bh) {
3396                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3397                         ext4_journal_dirty_metadata(handle, bh);
3398                 }
3399                 ext4_mark_inode_dirty(handle, inode);
3400                 ext4_journal_test_restart(handle, inode);
3401                 if (bh) {
3402                         BUFFER_TRACE(bh, "retaking write access");
3403                         ext4_journal_get_write_access(handle, bh);
3404                 }
3405         }
3406
3407         /*
3408          * Any buffers which are on the journal will be in memory. We find
3409          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3410          * on them.  We've already detached each block from the file, so
3411          * bforget() in jbd2_journal_forget() should be safe.
3412          *
3413          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3414          */
3415         for (p = first; p < last; p++) {
3416                 u32 nr = le32_to_cpu(*p);
3417                 if (nr) {
3418                         struct buffer_head *tbh;
3419
3420                         *p = 0;
3421                         tbh = sb_find_get_block(inode->i_sb, nr);
3422                         ext4_forget(handle, 0, inode, tbh, nr);
3423                 }
3424         }
3425
3426         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3427 }
3428
3429 /**
3430  * ext4_free_data - free a list of data blocks
3431  * @handle:     handle for this transaction
3432  * @inode:      inode we are dealing with
3433  * @this_bh:    indirect buffer_head which contains *@first and *@last
3434  * @first:      array of block numbers
3435  * @last:       points immediately past the end of array
3436  *
3437  * We are freeing all blocks refered from that array (numbers are stored as
3438  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3439  *
3440  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3441  * blocks are contiguous then releasing them at one time will only affect one
3442  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3443  * actually use a lot of journal space.
3444  *
3445  * @this_bh will be %NULL if @first and @last point into the inode's direct
3446  * block pointers.
3447  */
3448 static void ext4_free_data(handle_t *handle, struct inode *inode,
3449                            struct buffer_head *this_bh,
3450                            __le32 *first, __le32 *last)
3451 {
3452         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3453         unsigned long count = 0;            /* Number of blocks in the run */
3454         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3455                                                corresponding to
3456                                                block_to_free */
3457         ext4_fsblk_t nr;                    /* Current block # */
3458         __le32 *p;                          /* Pointer into inode/ind
3459                                                for current block */
3460         int err;
3461
3462         if (this_bh) {                          /* For indirect block */
3463                 BUFFER_TRACE(this_bh, "get_write_access");
3464                 err = ext4_journal_get_write_access(handle, this_bh);
3465                 /* Important: if we can't update the indirect pointers
3466                  * to the blocks, we can't free them. */
3467                 if (err)
3468                         return;
3469         }
3470
3471         for (p = first; p < last; p++) {
3472                 nr = le32_to_cpu(*p);
3473                 if (nr) {
3474                         /* accumulate blocks to free if they're contiguous */
3475                         if (count == 0) {
3476                                 block_to_free = nr;
3477                                 block_to_free_p = p;
3478                                 count = 1;
3479                         } else if (nr == block_to_free + count) {
3480                                 count++;
3481                         } else {
3482                                 ext4_clear_blocks(handle, inode, this_bh,
3483                                                   block_to_free,
3484                                                   count, block_to_free_p, p);
3485                                 block_to_free = nr;
3486                                 block_to_free_p = p;
3487                                 count = 1;
3488                         }
3489                 }
3490         }
3491
3492         if (count > 0)
3493                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3494                                   count, block_to_free_p, p);
3495
3496         if (this_bh) {
3497                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3498
3499                 /*
3500                  * The buffer head should have an attached journal head at this
3501                  * point. However, if the data is corrupted and an indirect
3502                  * block pointed to itself, it would have been detached when
3503                  * the block was cleared. Check for this instead of OOPSing.
3504                  */
3505                 if (bh2jh(this_bh))
3506                         ext4_journal_dirty_metadata(handle, this_bh);
3507                 else
3508                         ext4_error(inode->i_sb, __func__,
3509                                    "circular indirect block detected, "
3510                                    "inode=%lu, block=%llu",
3511                                    inode->i_ino,
3512                                    (unsigned long long) this_bh->b_blocknr);
3513         }
3514 }
3515
3516 /**
3517  *      ext4_free_branches - free an array of branches
3518  *      @handle: JBD handle for this transaction
3519  *      @inode: inode we are dealing with
3520  *      @parent_bh: the buffer_head which contains *@first and *@last
3521  *      @first: array of block numbers
3522  *      @last:  pointer immediately past the end of array
3523  *      @depth: depth of the branches to free
3524  *
3525  *      We are freeing all blocks refered from these branches (numbers are
3526  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3527  *      appropriately.
3528  */
3529 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3530                                struct buffer_head *parent_bh,
3531                                __le32 *first, __le32 *last, int depth)
3532 {
3533         ext4_fsblk_t nr;
3534         __le32 *p;
3535
3536         if (is_handle_aborted(handle))
3537                 return;
3538
3539         if (depth--) {
3540                 struct buffer_head *bh;
3541                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3542                 p = last;
3543                 while (--p >= first) {
3544                         nr = le32_to_cpu(*p);
3545                         if (!nr)
3546                                 continue;               /* A hole */
3547
3548                         /* Go read the buffer for the next level down */
3549                         bh = sb_bread(inode->i_sb, nr);
3550
3551                         /*
3552                          * A read failure? Report error and clear slot
3553                          * (should be rare).
3554                          */
3555                         if (!bh) {
3556                                 ext4_error(inode->i_sb, "ext4_free_branches",
3557                                            "Read failure, inode=%lu, block=%llu",
3558                                            inode->i_ino, nr);
3559                                 continue;
3560                         }
3561
3562                         /* This zaps the entire block.  Bottom up. */
3563                         BUFFER_TRACE(bh, "free child branches");
3564                         ext4_free_branches(handle, inode, bh,
3565                                         (__le32 *) bh->b_data,
3566                                         (__le32 *) bh->b_data + addr_per_block,
3567                                         depth);
3568
3569                         /*
3570                          * We've probably journalled the indirect block several
3571                          * times during the truncate.  But it's no longer
3572                          * needed and we now drop it from the transaction via
3573                          * jbd2_journal_revoke().
3574                          *
3575                          * That's easy if it's exclusively part of this
3576                          * transaction.  But if it's part of the committing
3577                          * transaction then jbd2_journal_forget() will simply
3578                          * brelse() it.  That means that if the underlying
3579                          * block is reallocated in ext4_get_block(),
3580                          * unmap_underlying_metadata() will find this block
3581                          * and will try to get rid of it.  damn, damn.
3582                          *
3583                          * If this block has already been committed to the
3584                          * journal, a revoke record will be written.  And
3585                          * revoke records must be emitted *before* clearing
3586                          * this block's bit in the bitmaps.
3587                          */
3588                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3589
3590                         /*
3591                          * Everything below this this pointer has been
3592                          * released.  Now let this top-of-subtree go.
3593                          *
3594                          * We want the freeing of this indirect block to be
3595                          * atomic in the journal with the updating of the
3596                          * bitmap block which owns it.  So make some room in
3597                          * the journal.
3598                          *
3599                          * We zero the parent pointer *after* freeing its
3600                          * pointee in the bitmaps, so if extend_transaction()
3601                          * for some reason fails to put the bitmap changes and
3602                          * the release into the same transaction, recovery
3603                          * will merely complain about releasing a free block,
3604                          * rather than leaking blocks.
3605                          */
3606                         if (is_handle_aborted(handle))
3607                                 return;
3608                         if (try_to_extend_transaction(handle, inode)) {
3609                                 ext4_mark_inode_dirty(handle, inode);
3610                                 ext4_journal_test_restart(handle, inode);
3611                         }
3612
3613                         ext4_free_blocks(handle, inode, nr, 1, 1);
3614
3615                         if (parent_bh) {
3616                                 /*
3617                                  * The block which we have just freed is
3618                                  * pointed to by an indirect block: journal it
3619                                  */
3620                                 BUFFER_TRACE(parent_bh, "get_write_access");
3621                                 if (!ext4_journal_get_write_access(handle,
3622                                                                    parent_bh)){
3623                                         *p = 0;
3624                                         BUFFER_TRACE(parent_bh,
3625                                         "call ext4_journal_dirty_metadata");
3626                                         ext4_journal_dirty_metadata(handle,
3627                                                                     parent_bh);
3628                                 }
3629                         }
3630                 }
3631         } else {
3632                 /* We have reached the bottom of the tree. */
3633                 BUFFER_TRACE(parent_bh, "free data blocks");
3634                 ext4_free_data(handle, inode, parent_bh, first, last);
3635         }
3636 }
3637
3638 int ext4_can_truncate(struct inode *inode)
3639 {
3640         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3641                 return 0;
3642         if (S_ISREG(inode->i_mode))
3643                 return 1;
3644         if (S_ISDIR(inode->i_mode))
3645                 return 1;
3646         if (S_ISLNK(inode->i_mode))
3647                 return !ext4_inode_is_fast_symlink(inode);
3648         return 0;
3649 }
3650
3651 /*
3652  * ext4_truncate()
3653  *
3654  * We block out ext4_get_block() block instantiations across the entire
3655  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3656  * simultaneously on behalf of the same inode.
3657  *
3658  * As we work through the truncate and commmit bits of it to the journal there
3659  * is one core, guiding principle: the file's tree must always be consistent on
3660  * disk.  We must be able to restart the truncate after a crash.
3661  *
3662  * The file's tree may be transiently inconsistent in memory (although it
3663  * probably isn't), but whenever we close off and commit a journal transaction,
3664  * the contents of (the filesystem + the journal) must be consistent and
3665  * restartable.  It's pretty simple, really: bottom up, right to left (although
3666  * left-to-right works OK too).
3667  *
3668  * Note that at recovery time, journal replay occurs *before* the restart of
3669  * truncate against the orphan inode list.
3670  *
3671  * The committed inode has the new, desired i_size (which is the same as
3672  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3673  * that this inode's truncate did not complete and it will again call
3674  * ext4_truncate() to have another go.  So there will be instantiated blocks
3675  * to the right of the truncation point in a crashed ext4 filesystem.  But
3676  * that's fine - as long as they are linked from the inode, the post-crash
3677  * ext4_truncate() run will find them and release them.
3678  */
3679 void ext4_truncate(struct inode *inode)
3680 {
3681         handle_t *handle;
3682         struct ext4_inode_info *ei = EXT4_I(inode);
3683         __le32 *i_data = ei->i_data;
3684         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3685         struct address_space *mapping = inode->i_mapping;
3686         ext4_lblk_t offsets[4];
3687         Indirect chain[4];
3688         Indirect *partial;
3689         __le32 nr = 0;
3690         int n;
3691         ext4_lblk_t last_block;
3692         unsigned blocksize = inode->i_sb->s_blocksize;
3693
3694         if (!ext4_can_truncate(inode))
3695                 return;
3696
3697         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3698                 ext4_ext_truncate(inode);
3699                 return;
3700         }
3701
3702         handle = start_transaction(inode);
3703         if (IS_ERR(handle))
3704                 return;         /* AKPM: return what? */
3705
3706         last_block = (inode->i_size + blocksize-1)
3707                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3708
3709         if (inode->i_size & (blocksize - 1))
3710                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3711                         goto out_stop;
3712
3713         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3714         if (n == 0)
3715                 goto out_stop;  /* error */
3716
3717         /*
3718          * OK.  This truncate is going to happen.  We add the inode to the
3719          * orphan list, so that if this truncate spans multiple transactions,
3720          * and we crash, we will resume the truncate when the filesystem
3721          * recovers.  It also marks the inode dirty, to catch the new size.
3722          *
3723          * Implication: the file must always be in a sane, consistent
3724          * truncatable state while each transaction commits.
3725          */
3726         if (ext4_orphan_add(handle, inode))
3727                 goto out_stop;
3728
3729         /*
3730          * From here we block out all ext4_get_block() callers who want to
3731          * modify the block allocation tree.
3732          */
3733         down_write(&ei->i_data_sem);
3734
3735         ext4_discard_reservation(inode);
3736
3737         /*
3738          * The orphan list entry will now protect us from any crash which
3739          * occurs before the truncate completes, so it is now safe to propagate
3740          * the new, shorter inode size (held for now in i_size) into the
3741          * on-disk inode. We do this via i_disksize, which is the value which
3742          * ext4 *really* writes onto the disk inode.
3743          */
3744         ei->i_disksize = inode->i_size;
3745
3746         if (n == 1) {           /* direct blocks */
3747                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3748                                i_data + EXT4_NDIR_BLOCKS);
3749                 goto do_indirects;
3750         }
3751
3752         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3753         /* Kill the top of shared branch (not detached) */
3754         if (nr) {
3755                 if (partial == chain) {
3756                         /* Shared branch grows from the inode */
3757                         ext4_free_branches(handle, inode, NULL,
3758                                            &nr, &nr+1, (chain+n-1) - partial);
3759                         *partial->p = 0;
3760                         /*
3761                          * We mark the inode dirty prior to restart,
3762                          * and prior to stop.  No need for it here.
3763                          */
3764                 } else {
3765                         /* Shared branch grows from an indirect block */
3766                         BUFFER_TRACE(partial->bh, "get_write_access");
3767                         ext4_free_branches(handle, inode, partial->bh,
3768                                         partial->p,
3769                                         partial->p+1, (chain+n-1) - partial);
3770                 }
3771         }
3772         /* Clear the ends of indirect blocks on the shared branch */
3773         while (partial > chain) {
3774                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3775                                    (__le32*)partial->bh->b_data+addr_per_block,
3776                                    (chain+n-1) - partial);
3777                 BUFFER_TRACE(partial->bh, "call brelse");
3778                 brelse (partial->bh);
3779                 partial--;
3780         }
3781 do_indirects:
3782         /* Kill the remaining (whole) subtrees */
3783         switch (offsets[0]) {
3784         default:
3785                 nr = i_data[EXT4_IND_BLOCK];
3786                 if (nr) {
3787                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3788                         i_data[EXT4_IND_BLOCK] = 0;
3789                 }
3790         case EXT4_IND_BLOCK:
3791                 nr = i_data[EXT4_DIND_BLOCK];
3792                 if (nr) {
3793                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3794                         i_data[EXT4_DIND_BLOCK] = 0;
3795                 }
3796         case EXT4_DIND_BLOCK:
3797                 nr = i_data[EXT4_TIND_BLOCK];
3798                 if (nr) {
3799                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3800                         i_data[EXT4_TIND_BLOCK] = 0;
3801                 }
3802         case EXT4_TIND_BLOCK:
3803                 ;
3804         }
3805
3806         up_write(&ei->i_data_sem);
3807         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3808         ext4_mark_inode_dirty(handle, inode);
3809
3810         /*
3811          * In a multi-transaction truncate, we only make the final transaction
3812          * synchronous
3813          */
3814         if (IS_SYNC(inode))
3815                 handle->h_sync = 1;
3816 out_stop:
3817         /*
3818          * If this was a simple ftruncate(), and the file will remain alive
3819          * then we need to clear up the orphan record which we created above.
3820          * However, if this was a real unlink then we were called by
3821          * ext4_delete_inode(), and we allow that function to clean up the
3822          * orphan info for us.
3823          */
3824         if (inode->i_nlink)
3825                 ext4_orphan_del(handle, inode);
3826
3827         ext4_journal_stop(handle);
3828 }
3829
3830 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3831                 unsigned long ino, struct ext4_iloc *iloc)
3832 {
3833         ext4_group_t block_group;
3834         unsigned long offset;
3835         ext4_fsblk_t block;
3836         struct ext4_group_desc *gdp;
3837
3838         if (!ext4_valid_inum(sb, ino)) {
3839                 /*
3840                  * This error is already checked for in namei.c unless we are
3841                  * looking at an NFS filehandle, in which case no error
3842                  * report is needed
3843                  */
3844                 return 0;
3845         }
3846
3847         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3848         gdp = ext4_get_group_desc(sb, block_group, NULL);
3849         if (!gdp)
3850                 return 0;
3851
3852         /*
3853          * Figure out the offset within the block group inode table
3854          */
3855         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3856                 EXT4_INODE_SIZE(sb);
3857         block = ext4_inode_table(sb, gdp) +
3858                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3859
3860         iloc->block_group = block_group;
3861         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3862         return block;
3863 }
3864
3865 /*
3866  * ext4_get_inode_loc returns with an extra refcount against the inode's
3867  * underlying buffer_head on success. If 'in_mem' is true, we have all
3868  * data in memory that is needed to recreate the on-disk version of this
3869  * inode.
3870  */
3871 static int __ext4_get_inode_loc(struct inode *inode,
3872                                 struct ext4_iloc *iloc, int in_mem)
3873 {
3874         ext4_fsblk_t block;
3875         struct buffer_head *bh;
3876
3877         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3878         if (!block)
3879                 return -EIO;
3880
3881         bh = sb_getblk(inode->i_sb, block);
3882         if (!bh) {
3883                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3884                                 "unable to read inode block - "
3885                                 "inode=%lu, block=%llu",
3886                                  inode->i_ino, block);
3887                 return -EIO;
3888         }
3889         if (!buffer_uptodate(bh)) {
3890                 lock_buffer(bh);
3891
3892                 /*
3893                  * If the buffer has the write error flag, we have failed
3894                  * to write out another inode in the same block.  In this
3895                  * case, we don't have to read the block because we may
3896                  * read the old inode data successfully.
3897                  */
3898                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3899                         set_buffer_uptodate(bh);
3900
3901                 if (buffer_uptodate(bh)) {
3902                         /* someone brought it uptodate while we waited */
3903                         unlock_buffer(bh);
3904                         goto has_buffer;
3905                 }
3906
3907                 /*
3908                  * If we have all information of the inode in memory and this
3909                  * is the only valid inode in the block, we need not read the
3910                  * block.
3911                  */
3912                 if (in_mem) {
3913                         struct buffer_head *bitmap_bh;
3914                         struct ext4_group_desc *desc;
3915                         int inodes_per_buffer;
3916                         int inode_offset, i;
3917                         ext4_group_t block_group;
3918                         int start;
3919
3920                         block_group = (inode->i_ino - 1) /
3921                                         EXT4_INODES_PER_GROUP(inode->i_sb);
3922                         inodes_per_buffer = bh->b_size /
3923                                 EXT4_INODE_SIZE(inode->i_sb);
3924                         inode_offset = ((inode->i_ino - 1) %
3925                                         EXT4_INODES_PER_GROUP(inode->i_sb));
3926                         start = inode_offset & ~(inodes_per_buffer - 1);
3927
3928                         /* Is the inode bitmap in cache? */
3929                         desc = ext4_get_group_desc(inode->i_sb,
3930                                                 block_group, NULL);
3931                         if (!desc)
3932                                 goto make_io;
3933
3934                         bitmap_bh = sb_getblk(inode->i_sb,
3935                                 ext4_inode_bitmap(inode->i_sb, desc));
3936                         if (!bitmap_bh)
3937                                 goto make_io;
3938
3939                         /*
3940                          * If the inode bitmap isn't in cache then the
3941                          * optimisation may end up performing two reads instead
3942                          * of one, so skip it.
3943                          */
3944                         if (!buffer_uptodate(bitmap_bh)) {
3945                                 brelse(bitmap_bh);
3946                                 goto make_io;
3947                         }
3948                         for (i = start; i < start + inodes_per_buffer; i++) {
3949                                 if (i == inode_offset)
3950                                         continue;
3951                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3952                                         break;
3953                         }
3954                         brelse(bitmap_bh);
3955                         if (i == start + inodes_per_buffer) {
3956                                 /* all other inodes are free, so skip I/O */
3957                                 memset(bh->b_data, 0, bh->b_size);
3958                                 set_buffer_uptodate(bh);
3959                                 unlock_buffer(bh);
3960                                 goto has_buffer;
3961                         }
3962                 }
3963
3964 make_io:
3965                 /*
3966                  * There are other valid inodes in the buffer, this inode
3967                  * has in-inode xattrs, or we don't have this inode in memory.
3968                  * Read the block from disk.
3969                  */
3970                 get_bh(bh);
3971                 bh->b_end_io = end_buffer_read_sync;
3972                 submit_bh(READ_META, bh);
3973                 wait_on_buffer(bh);
3974                 if (!buffer_uptodate(bh)) {
3975                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
3976                                         "unable to read inode block - "
3977                                         "inode=%lu, block=%llu",
3978                                         inode->i_ino, block);
3979                         brelse(bh);
3980                         return -EIO;
3981                 }
3982         }
3983 has_buffer:
3984         iloc->bh = bh;
3985         return 0;
3986 }
3987
3988 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3989 {
3990         /* We have all inode data except xattrs in memory here. */
3991         return __ext4_get_inode_loc(inode, iloc,
3992                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3993 }
3994
3995 void ext4_set_inode_flags(struct inode *inode)
3996 {
3997         unsigned int flags = EXT4_I(inode)->i_flags;
3998
3999         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4000         if (flags & EXT4_SYNC_FL)
4001                 inode->i_flags |= S_SYNC;
4002         if (flags & EXT4_APPEND_FL)
4003                 inode->i_flags |= S_APPEND;
4004         if (flags & EXT4_IMMUTABLE_FL)
4005                 inode->i_flags |= S_IMMUTABLE;
4006         if (flags & EXT4_NOATIME_FL)
4007                 inode->i_flags |= S_NOATIME;
4008         if (flags & EXT4_DIRSYNC_FL)
4009                 inode->i_flags |= S_DIRSYNC;
4010 }
4011
4012 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4013 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4014 {
4015         unsigned int flags = ei->vfs_inode.i_flags;
4016
4017         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4018                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4019         if (flags & S_SYNC)
4020                 ei->i_flags |= EXT4_SYNC_FL;
4021         if (flags & S_APPEND)
4022                 ei->i_flags |= EXT4_APPEND_FL;
4023         if (flags & S_IMMUTABLE)
4024                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4025         if (flags & S_NOATIME)
4026                 ei->i_flags |= EXT4_NOATIME_FL;
4027         if (flags & S_DIRSYNC)
4028                 ei->i_flags |= EXT4_DIRSYNC_FL;
4029 }
4030 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4031                                         struct ext4_inode_info *ei)
4032 {
4033         blkcnt_t i_blocks ;
4034         struct inode *inode = &(ei->vfs_inode);
4035         struct super_block *sb = inode->i_sb;
4036
4037         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4038                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4039                 /* we are using combined 48 bit field */
4040                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4041                                         le32_to_cpu(raw_inode->i_blocks_lo);
4042                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4043                         /* i_blocks represent file system block size */
4044                         return i_blocks  << (inode->i_blkbits - 9);
4045                 } else {
4046                         return i_blocks;
4047                 }
4048         } else {
4049                 return le32_to_cpu(raw_inode->i_blocks_lo);
4050         }
4051 }
4052
4053 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4054 {
4055         struct ext4_iloc iloc;
4056         struct ext4_inode *raw_inode;
4057         struct ext4_inode_info *ei;
4058         struct buffer_head *bh;
4059         struct inode *inode;
4060         long ret;
4061         int block;
4062
4063         inode = iget_locked(sb, ino);
4064         if (!inode)
4065                 return ERR_PTR(-ENOMEM);
4066         if (!(inode->i_state & I_NEW))
4067                 return inode;
4068
4069         ei = EXT4_I(inode);
4070 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
4071         ei->i_acl = EXT4_ACL_NOT_CACHED;
4072         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4073 #endif
4074         ei->i_block_alloc_info = NULL;
4075
4076         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4077         if (ret < 0)
4078                 goto bad_inode;
4079         bh = iloc.bh;
4080         raw_inode = ext4_raw_inode(&iloc);
4081         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4082         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4083         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4084         if (!(test_opt(inode->i_sb, NO_UID32))) {
4085                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4086                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4087         }
4088         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4089
4090         ei->i_state = 0;
4091         ei->i_dir_start_lookup = 0;
4092         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4093         /* We now have enough fields to check if the inode was active or not.
4094          * This is needed because nfsd might try to access dead inodes
4095          * the test is that same one that e2fsck uses
4096          * NeilBrown 1999oct15
4097          */
4098         if (inode->i_nlink == 0) {
4099                 if (inode->i_mode == 0 ||
4100                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4101                         /* this inode is deleted */
4102                         brelse(bh);
4103                         ret = -ESTALE;
4104                         goto bad_inode;
4105                 }
4106                 /* The only unlinked inodes we let through here have
4107                  * valid i_mode and are being read by the orphan
4108                  * recovery code: that's fine, we're about to complete
4109                  * the process of deleting those. */
4110         }
4111         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4112         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4113         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4114         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4115             cpu_to_le32(EXT4_OS_HURD)) {
4116                 ei->i_file_acl |=
4117                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4118         }
4119         inode->i_size = ext4_isize(raw_inode);
4120         ei->i_disksize = inode->i_size;
4121         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4122         ei->i_block_group = iloc.block_group;
4123         /*
4124          * NOTE! The in-memory inode i_data array is in little-endian order
4125          * even on big-endian machines: we do NOT byteswap the block numbers!
4126          */
4127         for (block = 0; block < EXT4_N_BLOCKS; block++)
4128                 ei->i_data[block] = raw_inode->i_block[block];
4129         INIT_LIST_HEAD(&ei->i_orphan);
4130
4131         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4132                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4133                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4134                     EXT4_INODE_SIZE(inode->i_sb)) {
4135                         brelse(bh);
4136                         ret = -EIO;
4137                         goto bad_inode;
4138                 }
4139                 if (ei->i_extra_isize == 0) {
4140                         /* The extra space is currently unused. Use it. */
4141                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4142                                             EXT4_GOOD_OLD_INODE_SIZE;
4143                 } else {
4144                         __le32 *magic = (void *)raw_inode +
4145                                         EXT4_GOOD_OLD_INODE_SIZE +
4146                                         ei->i_extra_isize;
4147                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4148                                  ei->i_state |= EXT4_STATE_XATTR;
4149                 }
4150         } else
4151                 ei->i_extra_isize = 0;
4152
4153         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4154         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4155         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4156         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4157
4158         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4159         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4160                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4161                         inode->i_version |=
4162                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4163         }
4164
4165         if (S_ISREG(inode->i_mode)) {
4166                 inode->i_op = &ext4_file_inode_operations;
4167                 inode->i_fop = &ext4_file_operations;
4168                 ext4_set_aops(inode);
4169         } else if (S_ISDIR(inode->i_mode)) {
4170                 inode->i_op = &ext4_dir_inode_operations;
4171                 inode->i_fop = &ext4_dir_operations;
4172         } else if (S_ISLNK(inode->i_mode)) {
4173                 if (ext4_inode_is_fast_symlink(inode))
4174                         inode->i_op = &ext4_fast_symlink_inode_operations;
4175                 else {
4176                         inode->i_op = &ext4_symlink_inode_operations;
4177                         ext4_set_aops(inode);
4178                 }
4179         } else {
4180                 inode->i_op = &ext4_special_inode_operations;
4181                 if (raw_inode->i_block[0])
4182                         init_special_inode(inode, inode->i_mode,
4183                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4184                 else
4185                         init_special_inode(inode, inode->i_mode,
4186                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4187         }
4188         brelse(iloc.bh);
4189         ext4_set_inode_flags(inode);
4190         unlock_new_inode(inode);
4191         return inode;
4192
4193 bad_inode:
4194         iget_failed(inode);
4195         return ERR_PTR(ret);
4196 }
4197
4198 static int ext4_inode_blocks_set(handle_t *handle,
4199                                 struct ext4_inode *raw_inode,
4200                                 struct ext4_inode_info *ei)
4201 {
4202         struct inode *inode = &(ei->vfs_inode);
4203         u64 i_blocks = inode->i_blocks;
4204         struct super_block *sb = inode->i_sb;
4205         int err = 0;
4206
4207         if (i_blocks <= ~0U) {
4208                 /*
4209                  * i_blocks can be represnted in a 32 bit variable
4210                  * as multiple of 512 bytes
4211                  */
4212                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4213                 raw_inode->i_blocks_high = 0;
4214                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4215         } else if (i_blocks <= 0xffffffffffffULL) {
4216                 /*
4217                  * i_blocks can be represented in a 48 bit variable
4218                  * as multiple of 512 bytes
4219                  */
4220                 err = ext4_update_rocompat_feature(handle, sb,
4221                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4222                 if (err)
4223                         goto  err_out;
4224                 /* i_block is stored in the split  48 bit fields */
4225                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4226                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4227                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4228         } else {
4229                 /*
4230                  * i_blocks should be represented in a 48 bit variable
4231                  * as multiple of  file system block size
4232                  */
4233                 err = ext4_update_rocompat_feature(handle, sb,
4234                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4235                 if (err)
4236                         goto  err_out;
4237                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4238                 /* i_block is stored in file system block size */
4239                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4240                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4241                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4242         }
4243 err_out:
4244         return err;
4245 }
4246
4247 /*
4248  * Post the struct inode info into an on-disk inode location in the
4249  * buffer-cache.  This gobbles the caller's reference to the
4250  * buffer_head in the inode location struct.
4251  *
4252  * The caller must have write access to iloc->bh.
4253  */
4254 static int ext4_do_update_inode(handle_t *handle,
4255                                 struct inode *inode,
4256                                 struct ext4_iloc *iloc)
4257 {
4258         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4259         struct ext4_inode_info *ei = EXT4_I(inode);
4260         struct buffer_head *bh = iloc->bh;
4261         int err = 0, rc, block;
4262
4263         /* For fields not not tracking in the in-memory inode,
4264          * initialise them to zero for new inodes. */
4265         if (ei->i_state & EXT4_STATE_NEW)
4266                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4267
4268         ext4_get_inode_flags(ei);
4269         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4270         if (!(test_opt(inode->i_sb, NO_UID32))) {
4271                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4272                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4273 /*
4274  * Fix up interoperability with old kernels. Otherwise, old inodes get
4275  * re-used with the upper 16 bits of the uid/gid intact
4276  */
4277                 if (!ei->i_dtime) {
4278                         raw_inode->i_uid_high =
4279                                 cpu_to_le16(high_16_bits(inode->i_uid));
4280                         raw_inode->i_gid_high =
4281                                 cpu_to_le16(high_16_bits(inode->i_gid));
4282                 } else {
4283                         raw_inode->i_uid_high = 0;
4284                         raw_inode->i_gid_high = 0;
4285                 }
4286         } else {
4287                 raw_inode->i_uid_low =
4288                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4289                 raw_inode->i_gid_low =
4290                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4291                 raw_inode->i_uid_high = 0;
4292                 raw_inode->i_gid_high = 0;
4293         }
4294         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4295
4296         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4297         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4298         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4299         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4300
4301         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4302                 goto out_brelse;
4303         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4304         /* clear the migrate flag in the raw_inode */
4305         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4306         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4307             cpu_to_le32(EXT4_OS_HURD))
4308                 raw_inode->i_file_acl_high =
4309                         cpu_to_le16(ei->i_file_acl >> 32);
4310         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4311         ext4_isize_set(raw_inode, ei->i_disksize);
4312         if (ei->i_disksize > 0x7fffffffULL) {
4313                 struct super_block *sb = inode->i_sb;
4314                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4315                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4316                                 EXT4_SB(sb)->s_es->s_rev_level ==
4317                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4318                         /* If this is the first large file
4319                          * created, add a flag to the superblock.
4320                          */
4321                         err = ext4_journal_get_write_access(handle,
4322                                         EXT4_SB(sb)->s_sbh);
4323                         if (err)
4324                                 goto out_brelse;
4325                         ext4_update_dynamic_rev(sb);
4326                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4327                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4328                         sb->s_dirt = 1;
4329                         handle->h_sync = 1;
4330                         err = ext4_journal_dirty_metadata(handle,
4331                                         EXT4_SB(sb)->s_sbh);
4332                 }
4333         }
4334         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4335         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4336                 if (old_valid_dev(inode->i_rdev)) {
4337                         raw_inode->i_block[0] =
4338                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4339                         raw_inode->i_block[1] = 0;
4340                 } else {
4341                         raw_inode->i_block[0] = 0;
4342                         raw_inode->i_block[1] =
4343                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4344                         raw_inode->i_block[2] = 0;
4345                 }
4346         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4347                 raw_inode->i_block[block] = ei->i_data[block];
4348
4349         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4350         if (ei->i_extra_isize) {
4351                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4352                         raw_inode->i_version_hi =
4353                         cpu_to_le32(inode->i_version >> 32);
4354                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4355         }
4356
4357
4358         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4359         rc = ext4_journal_dirty_metadata(handle, bh);
4360         if (!err)
4361                 err = rc;
4362         ei->i_state &= ~EXT4_STATE_NEW;
4363
4364 out_brelse:
4365         brelse(bh);
4366         ext4_std_error(inode->i_sb, err);
4367         return err;
4368 }
4369
4370 /*
4371  * ext4_write_inode()
4372  *
4373  * We are called from a few places:
4374  *
4375  * - Within generic_file_write() for O_SYNC files.
4376  *   Here, there will be no transaction running. We wait for any running
4377  *   trasnaction to commit.
4378  *
4379  * - Within sys_sync(), kupdate and such.
4380  *   We wait on commit, if tol to.
4381  *
4382  * - Within prune_icache() (PF_MEMALLOC == true)
4383  *   Here we simply return.  We can't afford to block kswapd on the
4384  *   journal commit.
4385  *
4386  * In all cases it is actually safe for us to return without doing anything,
4387  * because the inode has been copied into a raw inode buffer in
4388  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4389  * knfsd.
4390  *
4391  * Note that we are absolutely dependent upon all inode dirtiers doing the
4392  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4393  * which we are interested.
4394  *
4395  * It would be a bug for them to not do this.  The code:
4396  *
4397  *      mark_inode_dirty(inode)
4398  *      stuff();
4399  *      inode->i_size = expr;
4400  *
4401  * is in error because a kswapd-driven write_inode() could occur while
4402  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4403  * will no longer be on the superblock's dirty inode list.
4404  */
4405 int ext4_write_inode(struct inode *inode, int wait)
4406 {
4407         if (current->flags & PF_MEMALLOC)
4408                 return 0;
4409
4410         if (ext4_journal_current_handle()) {
4411                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4412                 dump_stack();
4413                 return -EIO;
4414         }
4415
4416         if (!wait)
4417                 return 0;
4418
4419         return ext4_force_commit(inode->i_sb);
4420 }
4421
4422 /*
4423  * ext4_setattr()
4424  *
4425  * Called from notify_change.
4426  *
4427  * We want to trap VFS attempts to truncate the file as soon as
4428  * possible.  In particular, we want to make sure that when the VFS
4429  * shrinks i_size, we put the inode on the orphan list and modify
4430  * i_disksize immediately, so that during the subsequent flushing of
4431  * dirty pages and freeing of disk blocks, we can guarantee that any
4432  * commit will leave the blocks being flushed in an unused state on
4433  * disk.  (On recovery, the inode will get truncated and the blocks will
4434  * be freed, so we have a strong guarantee that no future commit will
4435  * leave these blocks visible to the user.)
4436  *
4437  * Another thing we have to assure is that if we are in ordered mode
4438  * and inode is still attached to the committing transaction, we must
4439  * we start writeout of all the dirty pages which are being truncated.
4440  * This way we are sure that all the data written in the previous
4441  * transaction are already on disk (truncate waits for pages under
4442  * writeback).
4443  *
4444  * Called with inode->i_mutex down.
4445  */
4446 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4447 {
4448         struct inode *inode = dentry->d_inode;
4449         int error, rc = 0;
4450         const unsigned int ia_valid = attr->ia_valid;
4451
4452         error = inode_change_ok(inode, attr);
4453         if (error)
4454                 return error;
4455
4456         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4457                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4458                 handle_t *handle;
4459
4460                 /* (user+group)*(old+new) structure, inode write (sb,
4461                  * inode block, ? - but truncate inode update has it) */
4462                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4463                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4464                 if (IS_ERR(handle)) {
4465                         error = PTR_ERR(handle);
4466                         goto err_out;
4467                 }
4468                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4469                 if (error) {
4470                         ext4_journal_stop(handle);
4471                         return error;
4472                 }
4473                 /* Update corresponding info in inode so that everything is in
4474                  * one transaction */
4475                 if (attr->ia_valid & ATTR_UID)
4476                         inode->i_uid = attr->ia_uid;
4477                 if (attr->ia_valid & ATTR_GID)
4478                         inode->i_gid = attr->ia_gid;
4479                 error = ext4_mark_inode_dirty(handle, inode);
4480                 ext4_journal_stop(handle);
4481         }
4482
4483         if (attr->ia_valid & ATTR_SIZE) {
4484                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4485                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4486
4487                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4488                                 error = -EFBIG;
4489                                 goto err_out;
4490                         }
4491                 }
4492         }
4493
4494         if (S_ISREG(inode->i_mode) &&
4495             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4496                 handle_t *handle;
4497
4498                 handle = ext4_journal_start(inode, 3);
4499                 if (IS_ERR(handle)) {
4500                         error = PTR_ERR(handle);
4501                         goto err_out;
4502                 }
4503
4504                 error = ext4_orphan_add(handle, inode);
4505                 EXT4_I(inode)->i_disksize = attr->ia_size;
4506                 rc = ext4_mark_inode_dirty(handle, inode);
4507                 if (!error)
4508                         error = rc;
4509                 ext4_journal_stop(handle);
4510
4511                 if (ext4_should_order_data(inode)) {
4512                         error = ext4_begin_ordered_truncate(inode,
4513                                                             attr->ia_size);
4514                         if (error) {
4515                                 /* Do as much error cleanup as possible */
4516                                 handle = ext4_journal_start(inode, 3);
4517                                 if (IS_ERR(handle)) {
4518                                         ext4_orphan_del(NULL, inode);
4519                                         goto err_out;
4520                                 }
4521                                 ext4_orphan_del(handle, inode);
4522                                 ext4_journal_stop(handle);
4523                                 goto err_out;
4524                         }
4525                 }
4526         }
4527
4528         rc = inode_setattr(inode, attr);
4529
4530         /* If inode_setattr's call to ext4_truncate failed to get a
4531          * transaction handle at all, we need to clean up the in-core
4532          * orphan list manually. */
4533         if (inode->i_nlink)
4534                 ext4_orphan_del(NULL, inode);
4535
4536         if (!rc && (ia_valid & ATTR_MODE))
4537                 rc = ext4_acl_chmod(inode);
4538
4539 err_out:
4540         ext4_std_error(inode->i_sb, error);
4541         if (!error)
4542                 error = rc;
4543         return error;
4544 }
4545
4546 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4547                  struct kstat *stat)
4548 {
4549         struct inode *inode;
4550         unsigned long delalloc_blocks;
4551
4552         inode = dentry->d_inode;
4553         generic_fillattr(inode, stat);
4554
4555         /*
4556          * We can't update i_blocks if the block allocation is delayed
4557          * otherwise in the case of system crash before the real block
4558          * allocation is done, we will have i_blocks inconsistent with
4559          * on-disk file blocks.
4560          * We always keep i_blocks updated together with real
4561          * allocation. But to not confuse with user, stat
4562          * will return the blocks that include the delayed allocation
4563          * blocks for this file.
4564          */
4565         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4566         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4567         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4568
4569         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4570         return 0;
4571 }
4572
4573 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4574                                       int chunk)
4575 {
4576         int indirects;
4577
4578         /* if nrblocks are contiguous */
4579         if (chunk) {
4580                 /*
4581                  * With N contiguous data blocks, it need at most
4582                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4583                  * 2 dindirect blocks
4584                  * 1 tindirect block
4585                  */
4586                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4587                 return indirects + 3;
4588         }
4589         /*
4590          * if nrblocks are not contiguous, worse case, each block touch
4591          * a indirect block, and each indirect block touch a double indirect
4592          * block, plus a triple indirect block
4593          */
4594         indirects = nrblocks * 2 + 1;
4595         return indirects;
4596 }
4597
4598 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4599 {
4600         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4601                 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4602         return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4603 }
4604 /*
4605  * Account for index blocks, block groups bitmaps and block group
4606  * descriptor blocks if modify datablocks and index blocks
4607  * worse case, the indexs blocks spread over different block groups
4608  *
4609  * If datablocks are discontiguous, they are possible to spread over
4610  * different block groups too. If they are contiugous, with flexbg,
4611  * they could still across block group boundary.
4612  *
4613  * Also account for superblock, inode, quota and xattr blocks
4614  */
4615 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4616 {
4617         int groups, gdpblocks;
4618         int idxblocks;
4619         int ret = 0;
4620
4621         /*
4622          * How many index blocks need to touch to modify nrblocks?
4623          * The "Chunk" flag indicating whether the nrblocks is
4624          * physically contiguous on disk
4625          *
4626          * For Direct IO and fallocate, they calls get_block to allocate
4627          * one single extent at a time, so they could set the "Chunk" flag
4628          */
4629         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4630
4631         ret = idxblocks;
4632
4633         /*
4634          * Now let's see how many group bitmaps and group descriptors need
4635          * to account
4636          */
4637         groups = idxblocks;
4638         if (chunk)
4639                 groups += 1;
4640         else
4641                 groups += nrblocks;
4642
4643         gdpblocks = groups;
4644         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4645                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4646         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4647                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4648
4649         /* bitmaps and block group descriptor blocks */
4650         ret += groups + gdpblocks;
4651
4652         /* Blocks for super block, inode, quota and xattr blocks */
4653         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4654
4655         return ret;
4656 }
4657
4658 /*
4659  * Calulate the total number of credits to reserve to fit
4660  * the modification of a single pages into a single transaction,
4661  * which may include multiple chunks of block allocations.
4662  *
4663  * This could be called via ext4_write_begin()
4664  *
4665  * We need to consider the worse case, when
4666  * one new block per extent.
4667  */
4668 int ext4_writepage_trans_blocks(struct inode *inode)
4669 {
4670         int bpp = ext4_journal_blocks_per_page(inode);
4671         int ret;
4672
4673         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4674
4675         /* Account for data blocks for journalled mode */
4676         if (ext4_should_journal_data(inode))
4677                 ret += bpp;
4678         return ret;
4679 }
4680
4681 /*
4682  * Calculate the journal credits for a chunk of data modification.
4683  *
4684  * This is called from DIO, fallocate or whoever calling
4685  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4686  *
4687  * journal buffers for data blocks are not included here, as DIO
4688  * and fallocate do no need to journal data buffers.
4689  */
4690 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4691 {
4692         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4693 }
4694
4695 /*
4696  * The caller must have previously called ext4_reserve_inode_write().
4697  * Give this, we know that the caller already has write access to iloc->bh.
4698  */
4699 int ext4_mark_iloc_dirty(handle_t *handle,
4700                 struct inode *inode, struct ext4_iloc *iloc)
4701 {
4702         int err = 0;
4703
4704         if (test_opt(inode->i_sb, I_VERSION))
4705                 inode_inc_iversion(inode);
4706
4707         /* the do_update_inode consumes one bh->b_count */
4708         get_bh(iloc->bh);
4709
4710         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4711         err = ext4_do_update_inode(handle, inode, iloc);
4712         put_bh(iloc->bh);
4713         return err;
4714 }
4715
4716 /*
4717  * On success, We end up with an outstanding reference count against
4718  * iloc->bh.  This _must_ be cleaned up later.
4719  */
4720
4721 int
4722 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4723                          struct ext4_iloc *iloc)
4724 {
4725         int err = 0;
4726         if (handle) {
4727                 err = ext4_get_inode_loc(inode, iloc);
4728                 if (!err) {
4729                         BUFFER_TRACE(iloc->bh, "get_write_access");
4730                         err = ext4_journal_get_write_access(handle, iloc->bh);
4731                         if (err) {
4732                                 brelse(iloc->bh);
4733                                 iloc->bh = NULL;
4734                         }
4735                 }
4736         }
4737         ext4_std_error(inode->i_sb, err);
4738         return err;
4739 }
4740
4741 /*
4742  * Expand an inode by new_extra_isize bytes.
4743  * Returns 0 on success or negative error number on failure.
4744  */
4745 static int ext4_expand_extra_isize(struct inode *inode,
4746                                    unsigned int new_extra_isize,
4747                                    struct ext4_iloc iloc,
4748                                    handle_t *handle)
4749 {
4750         struct ext4_inode *raw_inode;
4751         struct ext4_xattr_ibody_header *header;
4752         struct ext4_xattr_entry *entry;
4753
4754         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4755                 return 0;
4756
4757         raw_inode = ext4_raw_inode(&iloc);
4758
4759         header = IHDR(inode, raw_inode);
4760         entry = IFIRST(header);
4761
4762         /* No extended attributes present */
4763         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4764                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4765                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4766                         new_extra_isize);
4767                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4768                 return 0;
4769         }
4770
4771         /* try to expand with EAs present */
4772         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4773                                           raw_inode, handle);
4774 }
4775
4776 /*
4777  * What we do here is to mark the in-core inode as clean with respect to inode
4778  * dirtiness (it may still be data-dirty).
4779  * This means that the in-core inode may be reaped by prune_icache
4780  * without having to perform any I/O.  This is a very good thing,
4781  * because *any* task may call prune_icache - even ones which
4782  * have a transaction open against a different journal.
4783  *
4784  * Is this cheating?  Not really.  Sure, we haven't written the
4785  * inode out, but prune_icache isn't a user-visible syncing function.
4786  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4787  * we start and wait on commits.
4788  *
4789  * Is this efficient/effective?  Well, we're being nice to the system
4790  * by cleaning up our inodes proactively so they can be reaped
4791  * without I/O.  But we are potentially leaving up to five seconds'
4792  * worth of inodes floating about which prune_icache wants us to
4793  * write out.  One way to fix that would be to get prune_icache()
4794  * to do a write_super() to free up some memory.  It has the desired
4795  * effect.
4796  */
4797 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4798 {
4799         struct ext4_iloc iloc;
4800         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4801         static unsigned int mnt_count;
4802         int err, ret;
4803
4804         might_sleep();
4805         err = ext4_reserve_inode_write(handle, inode, &iloc);
4806         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4807             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4808                 /*
4809                  * We need extra buffer credits since we may write into EA block
4810                  * with this same handle. If journal_extend fails, then it will
4811                  * only result in a minor loss of functionality for that inode.
4812                  * If this is felt to be critical, then e2fsck should be run to
4813                  * force a large enough s_min_extra_isize.
4814                  */
4815                 if ((jbd2_journal_extend(handle,
4816                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4817                         ret = ext4_expand_extra_isize(inode,
4818                                                       sbi->s_want_extra_isize,
4819                                                       iloc, handle);
4820                         if (ret) {
4821                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4822                                 if (mnt_count !=
4823                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4824                                         ext4_warning(inode->i_sb, __func__,
4825                                         "Unable to expand inode %lu. Delete"
4826                                         " some EAs or run e2fsck.",
4827                                         inode->i_ino);
4828                                         mnt_count =
4829                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4830                                 }
4831                         }
4832                 }
4833         }
4834         if (!err)
4835                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4836         return err;
4837 }
4838
4839 /*
4840  * ext4_dirty_inode() is called from __mark_inode_dirty()
4841  *
4842  * We're really interested in the case where a file is being extended.
4843  * i_size has been changed by generic_commit_write() and we thus need
4844  * to include the updated inode in the current transaction.
4845  *
4846  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4847  * are allocated to the file.
4848  *
4849  * If the inode is marked synchronous, we don't honour that here - doing
4850  * so would cause a commit on atime updates, which we don't bother doing.
4851  * We handle synchronous inodes at the highest possible level.
4852  */
4853 void ext4_dirty_inode(struct inode *inode)
4854 {
4855         handle_t *current_handle = ext4_journal_current_handle();
4856         handle_t *handle;
4857
4858         handle = ext4_journal_start(inode, 2);
4859         if (IS_ERR(handle))
4860                 goto out;
4861         if (current_handle &&
4862                 current_handle->h_transaction != handle->h_transaction) {
4863                 /* This task has a transaction open against a different fs */
4864                 printk(KERN_EMERG "%s: transactions do not match!\n",
4865                        __func__);
4866         } else {
4867                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4868                                 current_handle);
4869                 ext4_mark_inode_dirty(handle, inode);
4870         }
4871         ext4_journal_stop(handle);
4872 out:
4873         return;
4874 }
4875
4876 #if 0
4877 /*
4878  * Bind an inode's backing buffer_head into this transaction, to prevent
4879  * it from being flushed to disk early.  Unlike
4880  * ext4_reserve_inode_write, this leaves behind no bh reference and
4881  * returns no iloc structure, so the caller needs to repeat the iloc
4882  * lookup to mark the inode dirty later.
4883  */
4884 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4885 {
4886         struct ext4_iloc iloc;
4887
4888         int err = 0;
4889         if (handle) {
4890                 err = ext4_get_inode_loc(inode, &iloc);
4891                 if (!err) {
4892                         BUFFER_TRACE(iloc.bh, "get_write_access");
4893                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4894                         if (!err)
4895                                 err = ext4_journal_dirty_metadata(handle,
4896                                                                   iloc.bh);
4897                         brelse(iloc.bh);
4898                 }
4899         }
4900         ext4_std_error(inode->i_sb, err);
4901         return err;
4902 }
4903 #endif
4904
4905 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4906 {
4907         journal_t *journal;
4908         handle_t *handle;
4909         int err;
4910
4911         /*
4912          * We have to be very careful here: changing a data block's
4913          * journaling status dynamically is dangerous.  If we write a
4914          * data block to the journal, change the status and then delete
4915          * that block, we risk forgetting to revoke the old log record
4916          * from the journal and so a subsequent replay can corrupt data.
4917          * So, first we make sure that the journal is empty and that
4918          * nobody is changing anything.
4919          */
4920
4921         journal = EXT4_JOURNAL(inode);
4922         if (is_journal_aborted(journal))
4923                 return -EROFS;
4924
4925         jbd2_journal_lock_updates(journal);
4926         jbd2_journal_flush(journal);
4927
4928         /*
4929          * OK, there are no updates running now, and all cached data is
4930          * synced to disk.  We are now in a completely consistent state
4931          * which doesn't have anything in the journal, and we know that
4932          * no filesystem updates are running, so it is safe to modify
4933          * the inode's in-core data-journaling state flag now.
4934          */
4935
4936         if (val)
4937                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4938         else
4939                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4940         ext4_set_aops(inode);
4941
4942         jbd2_journal_unlock_updates(journal);
4943
4944         /* Finally we can mark the inode as dirty. */
4945
4946         handle = ext4_journal_start(inode, 1);
4947         if (IS_ERR(handle))
4948                 return PTR_ERR(handle);
4949
4950         err = ext4_mark_inode_dirty(handle, inode);
4951         handle->h_sync = 1;
4952         ext4_journal_stop(handle);
4953         ext4_std_error(inode->i_sb, err);
4954
4955         return err;
4956 }
4957
4958 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4959 {
4960         return !buffer_mapped(bh);
4961 }
4962
4963 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4964 {
4965         loff_t size;
4966         unsigned long len;
4967         int ret = -EINVAL;
4968         void *fsdata;
4969         struct file *file = vma->vm_file;
4970         struct inode *inode = file->f_path.dentry->d_inode;
4971         struct address_space *mapping = inode->i_mapping;
4972
4973         /*
4974          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4975          * get i_mutex because we are already holding mmap_sem.
4976          */
4977         down_read(&inode->i_alloc_sem);
4978         size = i_size_read(inode);
4979         if (page->mapping != mapping || size <= page_offset(page)
4980             || !PageUptodate(page)) {
4981                 /* page got truncated from under us? */
4982                 goto out_unlock;
4983         }
4984         ret = 0;
4985         if (PageMappedToDisk(page))
4986                 goto out_unlock;
4987
4988         if (page->index == size >> PAGE_CACHE_SHIFT)
4989                 len = size & ~PAGE_CACHE_MASK;
4990         else
4991                 len = PAGE_CACHE_SIZE;
4992
4993         if (page_has_buffers(page)) {
4994                 /* return if we have all the buffers mapped */
4995                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4996                                        ext4_bh_unmapped))
4997                         goto out_unlock;
4998         }
4999         /*
5000          * OK, we need to fill the hole... Do write_begin write_end
5001          * to do block allocation/reservation.We are not holding
5002          * inode.i__mutex here. That allow * parallel write_begin,
5003          * write_end call. lock_page prevent this from happening
5004          * on the same page though
5005          */
5006         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5007                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5008         if (ret < 0)
5009                 goto out_unlock;
5010         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5011                         len, len, page, fsdata);
5012         if (ret < 0)
5013                 goto out_unlock;
5014         ret = 0;
5015 out_unlock:
5016         up_read(&inode->i_alloc_sem);
5017         return ret;
5018 }