ext4: Make sure all the block allocation paths reserve blocks
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 #define MPAGE_DA_EXTENT_TAIL 0x01
45
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47                                               loff_t new_size)
48 {
49         return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50                                                    new_size);
51 }
52
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
54
55 /*
56  * Test whether an inode is a fast symlink.
57  */
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
59 {
60         int ea_blocks = EXT4_I(inode)->i_file_acl ?
61                 (inode->i_sb->s_blocksize >> 9) : 0;
62
63         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64 }
65
66 /*
67  * The ext4 forget function must perform a revoke if we are freeing data
68  * which has been journaled.  Metadata (eg. indirect blocks) must be
69  * revoked in all cases.
70  *
71  * "bh" may be NULL: a metadata block may have been freed from memory
72  * but there may still be a record of it in the journal, and that record
73  * still needs to be revoked.
74  */
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76                         struct buffer_head *bh, ext4_fsblk_t blocknr)
77 {
78         int err;
79
80         might_sleep();
81
82         BUFFER_TRACE(bh, "enter");
83
84         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85                   "data mode %lx\n",
86                   bh, is_metadata, inode->i_mode,
87                   test_opt(inode->i_sb, DATA_FLAGS));
88
89         /* Never use the revoke function if we are doing full data
90          * journaling: there is no need to, and a V1 superblock won't
91          * support it.  Otherwise, only skip the revoke on un-journaled
92          * data blocks. */
93
94         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95             (!is_metadata && !ext4_should_journal_data(inode))) {
96                 if (bh) {
97                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
98                         return ext4_journal_forget(handle, bh);
99                 }
100                 return 0;
101         }
102
103         /*
104          * data!=journal && (is_metadata || should_journal_data(inode))
105          */
106         BUFFER_TRACE(bh, "call ext4_journal_revoke");
107         err = ext4_journal_revoke(handle, blocknr, bh);
108         if (err)
109                 ext4_abort(inode->i_sb, __func__,
110                            "error %d when attempting revoke", err);
111         BUFFER_TRACE(bh, "exit");
112         return err;
113 }
114
115 /*
116  * Work out how many blocks we need to proceed with the next chunk of a
117  * truncate transaction.
118  */
119 static unsigned long blocks_for_truncate(struct inode *inode)
120 {
121         ext4_lblk_t needed;
122
123         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124
125         /* Give ourselves just enough room to cope with inodes in which
126          * i_blocks is corrupt: we've seen disk corruptions in the past
127          * which resulted in random data in an inode which looked enough
128          * like a regular file for ext4 to try to delete it.  Things
129          * will go a bit crazy if that happens, but at least we should
130          * try not to panic the whole kernel. */
131         if (needed < 2)
132                 needed = 2;
133
134         /* But we need to bound the transaction so we don't overflow the
135          * journal. */
136         if (needed > EXT4_MAX_TRANS_DATA)
137                 needed = EXT4_MAX_TRANS_DATA;
138
139         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
140 }
141
142 /*
143  * Truncate transactions can be complex and absolutely huge.  So we need to
144  * be able to restart the transaction at a conventient checkpoint to make
145  * sure we don't overflow the journal.
146  *
147  * start_transaction gets us a new handle for a truncate transaction,
148  * and extend_transaction tries to extend the existing one a bit.  If
149  * extend fails, we need to propagate the failure up and restart the
150  * transaction in the top-level truncate loop. --sct
151  */
152 static handle_t *start_transaction(struct inode *inode)
153 {
154         handle_t *result;
155
156         result = ext4_journal_start(inode, blocks_for_truncate(inode));
157         if (!IS_ERR(result))
158                 return result;
159
160         ext4_std_error(inode->i_sb, PTR_ERR(result));
161         return result;
162 }
163
164 /*
165  * Try to extend this transaction for the purposes of truncation.
166  *
167  * Returns 0 if we managed to create more room.  If we can't create more
168  * room, and the transaction must be restarted we return 1.
169  */
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171 {
172         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173                 return 0;
174         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175                 return 0;
176         return 1;
177 }
178
179 /*
180  * Restart the transaction associated with *handle.  This does a commit,
181  * so before we call here everything must be consistently dirtied against
182  * this transaction.
183  */
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
185 {
186         jbd_debug(2, "restarting handle %p\n", handle);
187         return ext4_journal_restart(handle, blocks_for_truncate(inode));
188 }
189
190 /*
191  * Called at the last iput() if i_nlink is zero.
192  */
193 void ext4_delete_inode(struct inode *inode)
194 {
195         handle_t *handle;
196         int err;
197
198         if (ext4_should_order_data(inode))
199                 ext4_begin_ordered_truncate(inode, 0);
200         truncate_inode_pages(&inode->i_data, 0);
201
202         if (is_bad_inode(inode))
203                 goto no_delete;
204
205         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206         if (IS_ERR(handle)) {
207                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
208                 /*
209                  * If we're going to skip the normal cleanup, we still need to
210                  * make sure that the in-core orphan linked list is properly
211                  * cleaned up.
212                  */
213                 ext4_orphan_del(NULL, inode);
214                 goto no_delete;
215         }
216
217         if (IS_SYNC(inode))
218                 handle->h_sync = 1;
219         inode->i_size = 0;
220         err = ext4_mark_inode_dirty(handle, inode);
221         if (err) {
222                 ext4_warning(inode->i_sb, __func__,
223                              "couldn't mark inode dirty (err %d)", err);
224                 goto stop_handle;
225         }
226         if (inode->i_blocks)
227                 ext4_truncate(inode);
228
229         /*
230          * ext4_ext_truncate() doesn't reserve any slop when it
231          * restarts journal transactions; therefore there may not be
232          * enough credits left in the handle to remove the inode from
233          * the orphan list and set the dtime field.
234          */
235         if (handle->h_buffer_credits < 3) {
236                 err = ext4_journal_extend(handle, 3);
237                 if (err > 0)
238                         err = ext4_journal_restart(handle, 3);
239                 if (err != 0) {
240                         ext4_warning(inode->i_sb, __func__,
241                                      "couldn't extend journal (err %d)", err);
242                 stop_handle:
243                         ext4_journal_stop(handle);
244                         goto no_delete;
245                 }
246         }
247
248         /*
249          * Kill off the orphan record which ext4_truncate created.
250          * AKPM: I think this can be inside the above `if'.
251          * Note that ext4_orphan_del() has to be able to cope with the
252          * deletion of a non-existent orphan - this is because we don't
253          * know if ext4_truncate() actually created an orphan record.
254          * (Well, we could do this if we need to, but heck - it works)
255          */
256         ext4_orphan_del(handle, inode);
257         EXT4_I(inode)->i_dtime  = get_seconds();
258
259         /*
260          * One subtle ordering requirement: if anything has gone wrong
261          * (transaction abort, IO errors, whatever), then we can still
262          * do these next steps (the fs will already have been marked as
263          * having errors), but we can't free the inode if the mark_dirty
264          * fails.
265          */
266         if (ext4_mark_inode_dirty(handle, inode))
267                 /* If that failed, just do the required in-core inode clear. */
268                 clear_inode(inode);
269         else
270                 ext4_free_inode(handle, inode);
271         ext4_journal_stop(handle);
272         return;
273 no_delete:
274         clear_inode(inode);     /* We must guarantee clearing of inode... */
275 }
276
277 typedef struct {
278         __le32  *p;
279         __le32  key;
280         struct buffer_head *bh;
281 } Indirect;
282
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284 {
285         p->key = *(p->p = v);
286         p->bh = bh;
287 }
288
289 /**
290  *      ext4_block_to_path - parse the block number into array of offsets
291  *      @inode: inode in question (we are only interested in its superblock)
292  *      @i_block: block number to be parsed
293  *      @offsets: array to store the offsets in
294  *      @boundary: set this non-zero if the referred-to block is likely to be
295  *             followed (on disk) by an indirect block.
296  *
297  *      To store the locations of file's data ext4 uses a data structure common
298  *      for UNIX filesystems - tree of pointers anchored in the inode, with
299  *      data blocks at leaves and indirect blocks in intermediate nodes.
300  *      This function translates the block number into path in that tree -
301  *      return value is the path length and @offsets[n] is the offset of
302  *      pointer to (n+1)th node in the nth one. If @block is out of range
303  *      (negative or too large) warning is printed and zero returned.
304  *
305  *      Note: function doesn't find node addresses, so no IO is needed. All
306  *      we need to know is the capacity of indirect blocks (taken from the
307  *      inode->i_sb).
308  */
309
310 /*
311  * Portability note: the last comparison (check that we fit into triple
312  * indirect block) is spelled differently, because otherwise on an
313  * architecture with 32-bit longs and 8Kb pages we might get into trouble
314  * if our filesystem had 8Kb blocks. We might use long long, but that would
315  * kill us on x86. Oh, well, at least the sign propagation does not matter -
316  * i_block would have to be negative in the very beginning, so we would not
317  * get there at all.
318  */
319
320 static int ext4_block_to_path(struct inode *inode,
321                         ext4_lblk_t i_block,
322                         ext4_lblk_t offsets[4], int *boundary)
323 {
324         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326         const long direct_blocks = EXT4_NDIR_BLOCKS,
327                 indirect_blocks = ptrs,
328                 double_blocks = (1 << (ptrs_bits * 2));
329         int n = 0;
330         int final = 0;
331
332         if (i_block < 0) {
333                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
334         } else if (i_block < direct_blocks) {
335                 offsets[n++] = i_block;
336                 final = direct_blocks;
337         } else if ((i_block -= direct_blocks) < indirect_blocks) {
338                 offsets[n++] = EXT4_IND_BLOCK;
339                 offsets[n++] = i_block;
340                 final = ptrs;
341         } else if ((i_block -= indirect_blocks) < double_blocks) {
342                 offsets[n++] = EXT4_DIND_BLOCK;
343                 offsets[n++] = i_block >> ptrs_bits;
344                 offsets[n++] = i_block & (ptrs - 1);
345                 final = ptrs;
346         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347                 offsets[n++] = EXT4_TIND_BLOCK;
348                 offsets[n++] = i_block >> (ptrs_bits * 2);
349                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350                 offsets[n++] = i_block & (ptrs - 1);
351                 final = ptrs;
352         } else {
353                 ext4_warning(inode->i_sb, "ext4_block_to_path",
354                                 "block %lu > max",
355                                 i_block + direct_blocks +
356                                 indirect_blocks + double_blocks);
357         }
358         if (boundary)
359                 *boundary = final - 1 - (i_block & (ptrs - 1));
360         return n;
361 }
362
363 /**
364  *      ext4_get_branch - read the chain of indirect blocks leading to data
365  *      @inode: inode in question
366  *      @depth: depth of the chain (1 - direct pointer, etc.)
367  *      @offsets: offsets of pointers in inode/indirect blocks
368  *      @chain: place to store the result
369  *      @err: here we store the error value
370  *
371  *      Function fills the array of triples <key, p, bh> and returns %NULL
372  *      if everything went OK or the pointer to the last filled triple
373  *      (incomplete one) otherwise. Upon the return chain[i].key contains
374  *      the number of (i+1)-th block in the chain (as it is stored in memory,
375  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
376  *      number (it points into struct inode for i==0 and into the bh->b_data
377  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378  *      block for i>0 and NULL for i==0. In other words, it holds the block
379  *      numbers of the chain, addresses they were taken from (and where we can
380  *      verify that chain did not change) and buffer_heads hosting these
381  *      numbers.
382  *
383  *      Function stops when it stumbles upon zero pointer (absent block)
384  *              (pointer to last triple returned, *@err == 0)
385  *      or when it gets an IO error reading an indirect block
386  *              (ditto, *@err == -EIO)
387  *      or when it reads all @depth-1 indirect blocks successfully and finds
388  *      the whole chain, all way to the data (returns %NULL, *err == 0).
389  *
390  *      Need to be called with
391  *      down_read(&EXT4_I(inode)->i_data_sem)
392  */
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394                                  ext4_lblk_t  *offsets,
395                                  Indirect chain[4], int *err)
396 {
397         struct super_block *sb = inode->i_sb;
398         Indirect *p = chain;
399         struct buffer_head *bh;
400
401         *err = 0;
402         /* i_data is not going away, no lock needed */
403         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404         if (!p->key)
405                 goto no_block;
406         while (--depth) {
407                 bh = sb_bread(sb, le32_to_cpu(p->key));
408                 if (!bh)
409                         goto failure;
410                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
411                 /* Reader: end */
412                 if (!p->key)
413                         goto no_block;
414         }
415         return NULL;
416
417 failure:
418         *err = -EIO;
419 no_block:
420         return p;
421 }
422
423 /**
424  *      ext4_find_near - find a place for allocation with sufficient locality
425  *      @inode: owner
426  *      @ind: descriptor of indirect block.
427  *
428  *      This function returns the preferred place for block allocation.
429  *      It is used when heuristic for sequential allocation fails.
430  *      Rules are:
431  *        + if there is a block to the left of our position - allocate near it.
432  *        + if pointer will live in indirect block - allocate near that block.
433  *        + if pointer will live in inode - allocate in the same
434  *          cylinder group.
435  *
436  * In the latter case we colour the starting block by the callers PID to
437  * prevent it from clashing with concurrent allocations for a different inode
438  * in the same block group.   The PID is used here so that functionally related
439  * files will be close-by on-disk.
440  *
441  *      Caller must make sure that @ind is valid and will stay that way.
442  */
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
444 {
445         struct ext4_inode_info *ei = EXT4_I(inode);
446         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
447         __le32 *p;
448         ext4_fsblk_t bg_start;
449         ext4_fsblk_t last_block;
450         ext4_grpblk_t colour;
451
452         /* Try to find previous block */
453         for (p = ind->p - 1; p >= start; p--) {
454                 if (*p)
455                         return le32_to_cpu(*p);
456         }
457
458         /* No such thing, so let's try location of indirect block */
459         if (ind->bh)
460                 return ind->bh->b_blocknr;
461
462         /*
463          * It is going to be referred to from the inode itself? OK, just put it
464          * into the same cylinder group then.
465          */
466         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468
469         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470                 colour = (current->pid % 16) *
471                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472         else
473                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474         return bg_start + colour;
475 }
476
477 /**
478  *      ext4_find_goal - find a preferred place for allocation.
479  *      @inode: owner
480  *      @block:  block we want
481  *      @partial: pointer to the last triple within a chain
482  *
483  *      Normally this function find the preferred place for block allocation,
484  *      returns it.
485  */
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487                 Indirect *partial)
488 {
489         struct ext4_block_alloc_info *block_i;
490
491         block_i =  EXT4_I(inode)->i_block_alloc_info;
492
493         /*
494          * try the heuristic for sequential allocation,
495          * failing that at least try to get decent locality.
496          */
497         if (block_i && (block == block_i->last_alloc_logical_block + 1)
498                 && (block_i->last_alloc_physical_block != 0)) {
499                 return block_i->last_alloc_physical_block + 1;
500         }
501
502         return ext4_find_near(inode, partial);
503 }
504
505 /**
506  *      ext4_blks_to_allocate: Look up the block map and count the number
507  *      of direct blocks need to be allocated for the given branch.
508  *
509  *      @branch: chain of indirect blocks
510  *      @k: number of blocks need for indirect blocks
511  *      @blks: number of data blocks to be mapped.
512  *      @blocks_to_boundary:  the offset in the indirect block
513  *
514  *      return the total number of blocks to be allocate, including the
515  *      direct and indirect blocks.
516  */
517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
518                 int blocks_to_boundary)
519 {
520         unsigned long count = 0;
521
522         /*
523          * Simple case, [t,d]Indirect block(s) has not allocated yet
524          * then it's clear blocks on that path have not allocated
525          */
526         if (k > 0) {
527                 /* right now we don't handle cross boundary allocation */
528                 if (blks < blocks_to_boundary + 1)
529                         count += blks;
530                 else
531                         count += blocks_to_boundary + 1;
532                 return count;
533         }
534
535         count++;
536         while (count < blks && count <= blocks_to_boundary &&
537                 le32_to_cpu(*(branch[0].p + count)) == 0) {
538                 count++;
539         }
540         return count;
541 }
542
543 /**
544  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
545  *      @indirect_blks: the number of blocks need to allocate for indirect
546  *                      blocks
547  *
548  *      @new_blocks: on return it will store the new block numbers for
549  *      the indirect blocks(if needed) and the first direct block,
550  *      @blks:  on return it will store the total number of allocated
551  *              direct blocks
552  */
553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
554                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
555                                 int indirect_blks, int blks,
556                                 ext4_fsblk_t new_blocks[4], int *err)
557 {
558         int target, i;
559         unsigned long count = 0, blk_allocated = 0;
560         int index = 0;
561         ext4_fsblk_t current_block = 0;
562         int ret = 0;
563
564         /*
565          * Here we try to allocate the requested multiple blocks at once,
566          * on a best-effort basis.
567          * To build a branch, we should allocate blocks for
568          * the indirect blocks(if not allocated yet), and at least
569          * the first direct block of this branch.  That's the
570          * minimum number of blocks need to allocate(required)
571          */
572         /* first we try to allocate the indirect blocks */
573         target = indirect_blks;
574         while (target > 0) {
575                 count = target;
576                 /* allocating blocks for indirect blocks and direct blocks */
577                 current_block = ext4_new_meta_blocks(handle, inode,
578                                                         goal, &count, err);
579                 if (*err)
580                         goto failed_out;
581
582                 target -= count;
583                 /* allocate blocks for indirect blocks */
584                 while (index < indirect_blks && count) {
585                         new_blocks[index++] = current_block++;
586                         count--;
587                 }
588                 if (count > 0) {
589                         /*
590                          * save the new block number
591                          * for the first direct block
592                          */
593                         new_blocks[index] = current_block;
594                         printk(KERN_INFO "%s returned more blocks than "
595                                                 "requested\n", __func__);
596                         WARN_ON(1);
597                         break;
598                 }
599         }
600
601         target = blks - count ;
602         blk_allocated = count;
603         if (!target)
604                 goto allocated;
605         /* Now allocate data blocks */
606         count = target;
607         /* allocating blocks for data blocks */
608         current_block = ext4_new_blocks(handle, inode, iblock,
609                                                 goal, &count, err);
610         if (*err && (target == blks)) {
611                 /*
612                  * if the allocation failed and we didn't allocate
613                  * any blocks before
614                  */
615                 goto failed_out;
616         }
617         if (!*err) {
618                 if (target == blks) {
619                 /*
620                  * save the new block number
621                  * for the first direct block
622                  */
623                         new_blocks[index] = current_block;
624                 }
625                 blk_allocated += count;
626         }
627 allocated:
628         /* total number of blocks allocated for direct blocks */
629         ret = blk_allocated;
630         *err = 0;
631         return ret;
632 failed_out:
633         for (i = 0; i < index; i++)
634                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
635         return ret;
636 }
637
638 /**
639  *      ext4_alloc_branch - allocate and set up a chain of blocks.
640  *      @inode: owner
641  *      @indirect_blks: number of allocated indirect blocks
642  *      @blks: number of allocated direct blocks
643  *      @offsets: offsets (in the blocks) to store the pointers to next.
644  *      @branch: place to store the chain in.
645  *
646  *      This function allocates blocks, zeroes out all but the last one,
647  *      links them into chain and (if we are synchronous) writes them to disk.
648  *      In other words, it prepares a branch that can be spliced onto the
649  *      inode. It stores the information about that chain in the branch[], in
650  *      the same format as ext4_get_branch() would do. We are calling it after
651  *      we had read the existing part of chain and partial points to the last
652  *      triple of that (one with zero ->key). Upon the exit we have the same
653  *      picture as after the successful ext4_get_block(), except that in one
654  *      place chain is disconnected - *branch->p is still zero (we did not
655  *      set the last link), but branch->key contains the number that should
656  *      be placed into *branch->p to fill that gap.
657  *
658  *      If allocation fails we free all blocks we've allocated (and forget
659  *      their buffer_heads) and return the error value the from failed
660  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
661  *      as described above and return 0.
662  */
663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
664                                 ext4_lblk_t iblock, int indirect_blks,
665                                 int *blks, ext4_fsblk_t goal,
666                                 ext4_lblk_t *offsets, Indirect *branch)
667 {
668         int blocksize = inode->i_sb->s_blocksize;
669         int i, n = 0;
670         int err = 0;
671         struct buffer_head *bh;
672         int num;
673         ext4_fsblk_t new_blocks[4];
674         ext4_fsblk_t current_block;
675
676         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
677                                 *blks, new_blocks, &err);
678         if (err)
679                 return err;
680
681         branch[0].key = cpu_to_le32(new_blocks[0]);
682         /*
683          * metadata blocks and data blocks are allocated.
684          */
685         for (n = 1; n <= indirect_blks;  n++) {
686                 /*
687                  * Get buffer_head for parent block, zero it out
688                  * and set the pointer to new one, then send
689                  * parent to disk.
690                  */
691                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692                 branch[n].bh = bh;
693                 lock_buffer(bh);
694                 BUFFER_TRACE(bh, "call get_create_access");
695                 err = ext4_journal_get_create_access(handle, bh);
696                 if (err) {
697                         unlock_buffer(bh);
698                         brelse(bh);
699                         goto failed;
700                 }
701
702                 memset(bh->b_data, 0, blocksize);
703                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
704                 branch[n].key = cpu_to_le32(new_blocks[n]);
705                 *branch[n].p = branch[n].key;
706                 if (n == indirect_blks) {
707                         current_block = new_blocks[n];
708                         /*
709                          * End of chain, update the last new metablock of
710                          * the chain to point to the new allocated
711                          * data blocks numbers
712                          */
713                         for (i=1; i < num; i++)
714                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
715                 }
716                 BUFFER_TRACE(bh, "marking uptodate");
717                 set_buffer_uptodate(bh);
718                 unlock_buffer(bh);
719
720                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721                 err = ext4_journal_dirty_metadata(handle, bh);
722                 if (err)
723                         goto failed;
724         }
725         *blks = num;
726         return err;
727 failed:
728         /* Allocation failed, free what we already allocated */
729         for (i = 1; i <= n ; i++) {
730                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
731                 ext4_journal_forget(handle, branch[i].bh);
732         }
733         for (i = 0; i < indirect_blks; i++)
734                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
735
736         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
737
738         return err;
739 }
740
741 /**
742  * ext4_splice_branch - splice the allocated branch onto inode.
743  * @inode: owner
744  * @block: (logical) number of block we are adding
745  * @chain: chain of indirect blocks (with a missing link - see
746  *      ext4_alloc_branch)
747  * @where: location of missing link
748  * @num:   number of indirect blocks we are adding
749  * @blks:  number of direct blocks we are adding
750  *
751  * This function fills the missing link and does all housekeeping needed in
752  * inode (->i_blocks, etc.). In case of success we end up with the full
753  * chain to new block and return 0.
754  */
755 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
756                         ext4_lblk_t block, Indirect *where, int num, int blks)
757 {
758         int i;
759         int err = 0;
760         struct ext4_block_alloc_info *block_i;
761         ext4_fsblk_t current_block;
762
763         block_i = EXT4_I(inode)->i_block_alloc_info;
764         /*
765          * If we're splicing into a [td]indirect block (as opposed to the
766          * inode) then we need to get write access to the [td]indirect block
767          * before the splice.
768          */
769         if (where->bh) {
770                 BUFFER_TRACE(where->bh, "get_write_access");
771                 err = ext4_journal_get_write_access(handle, where->bh);
772                 if (err)
773                         goto err_out;
774         }
775         /* That's it */
776
777         *where->p = where->key;
778
779         /*
780          * Update the host buffer_head or inode to point to more just allocated
781          * direct blocks blocks
782          */
783         if (num == 0 && blks > 1) {
784                 current_block = le32_to_cpu(where->key) + 1;
785                 for (i = 1; i < blks; i++)
786                         *(where->p + i) = cpu_to_le32(current_block++);
787         }
788
789         /*
790          * update the most recently allocated logical & physical block
791          * in i_block_alloc_info, to assist find the proper goal block for next
792          * allocation
793          */
794         if (block_i) {
795                 block_i->last_alloc_logical_block = block + blks - 1;
796                 block_i->last_alloc_physical_block =
797                                 le32_to_cpu(where[num].key) + blks - 1;
798         }
799
800         /* We are done with atomic stuff, now do the rest of housekeeping */
801
802         inode->i_ctime = ext4_current_time(inode);
803         ext4_mark_inode_dirty(handle, inode);
804
805         /* had we spliced it onto indirect block? */
806         if (where->bh) {
807                 /*
808                  * If we spliced it onto an indirect block, we haven't
809                  * altered the inode.  Note however that if it is being spliced
810                  * onto an indirect block at the very end of the file (the
811                  * file is growing) then we *will* alter the inode to reflect
812                  * the new i_size.  But that is not done here - it is done in
813                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
814                  */
815                 jbd_debug(5, "splicing indirect only\n");
816                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
817                 err = ext4_journal_dirty_metadata(handle, where->bh);
818                 if (err)
819                         goto err_out;
820         } else {
821                 /*
822                  * OK, we spliced it into the inode itself on a direct block.
823                  * Inode was dirtied above.
824                  */
825                 jbd_debug(5, "splicing direct\n");
826         }
827         return err;
828
829 err_out:
830         for (i = 1; i <= num; i++) {
831                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
832                 ext4_journal_forget(handle, where[i].bh);
833                 ext4_free_blocks(handle, inode,
834                                         le32_to_cpu(where[i-1].key), 1, 0);
835         }
836         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
837
838         return err;
839 }
840
841 /*
842  * Allocation strategy is simple: if we have to allocate something, we will
843  * have to go the whole way to leaf. So let's do it before attaching anything
844  * to tree, set linkage between the newborn blocks, write them if sync is
845  * required, recheck the path, free and repeat if check fails, otherwise
846  * set the last missing link (that will protect us from any truncate-generated
847  * removals - all blocks on the path are immune now) and possibly force the
848  * write on the parent block.
849  * That has a nice additional property: no special recovery from the failed
850  * allocations is needed - we simply release blocks and do not touch anything
851  * reachable from inode.
852  *
853  * `handle' can be NULL if create == 0.
854  *
855  * return > 0, # of blocks mapped or allocated.
856  * return = 0, if plain lookup failed.
857  * return < 0, error case.
858  *
859  *
860  * Need to be called with
861  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
862  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
863  */
864 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
865                 ext4_lblk_t iblock, unsigned long maxblocks,
866                 struct buffer_head *bh_result,
867                 int create, int extend_disksize)
868 {
869         int err = -EIO;
870         ext4_lblk_t offsets[4];
871         Indirect chain[4];
872         Indirect *partial;
873         ext4_fsblk_t goal;
874         int indirect_blks;
875         int blocks_to_boundary = 0;
876         int depth;
877         struct ext4_inode_info *ei = EXT4_I(inode);
878         int count = 0;
879         ext4_fsblk_t first_block = 0;
880         loff_t disksize;
881
882
883         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
884         J_ASSERT(handle != NULL || create == 0);
885         depth = ext4_block_to_path(inode, iblock, offsets,
886                                         &blocks_to_boundary);
887
888         if (depth == 0)
889                 goto out;
890
891         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
892
893         /* Simplest case - block found, no allocation needed */
894         if (!partial) {
895                 first_block = le32_to_cpu(chain[depth - 1].key);
896                 clear_buffer_new(bh_result);
897                 count++;
898                 /*map more blocks*/
899                 while (count < maxblocks && count <= blocks_to_boundary) {
900                         ext4_fsblk_t blk;
901
902                         blk = le32_to_cpu(*(chain[depth-1].p + count));
903
904                         if (blk == first_block + count)
905                                 count++;
906                         else
907                                 break;
908                 }
909                 goto got_it;
910         }
911
912         /* Next simple case - plain lookup or failed read of indirect block */
913         if (!create || err == -EIO)
914                 goto cleanup;
915
916         /*
917          * Okay, we need to do block allocation.  Lazily initialize the block
918          * allocation info here if necessary
919         */
920         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
921                 ext4_init_block_alloc_info(inode);
922
923         goal = ext4_find_goal(inode, iblock, partial);
924
925         /* the number of blocks need to allocate for [d,t]indirect blocks */
926         indirect_blks = (chain + depth) - partial - 1;
927
928         /*
929          * Next look up the indirect map to count the totoal number of
930          * direct blocks to allocate for this branch.
931          */
932         count = ext4_blks_to_allocate(partial, indirect_blks,
933                                         maxblocks, blocks_to_boundary);
934         /*
935          * Block out ext4_truncate while we alter the tree
936          */
937         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
938                                         &count, goal,
939                                         offsets + (partial - chain), partial);
940
941         /*
942          * The ext4_splice_branch call will free and forget any buffers
943          * on the new chain if there is a failure, but that risks using
944          * up transaction credits, especially for bitmaps where the
945          * credits cannot be returned.  Can we handle this somehow?  We
946          * may need to return -EAGAIN upwards in the worst case.  --sct
947          */
948         if (!err)
949                 err = ext4_splice_branch(handle, inode, iblock,
950                                         partial, indirect_blks, count);
951         /*
952          * i_disksize growing is protected by i_data_sem.  Don't forget to
953          * protect it if you're about to implement concurrent
954          * ext4_get_block() -bzzz
955         */
956         if (!err && extend_disksize) {
957                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
958                 if (disksize > i_size_read(inode))
959                         disksize = i_size_read(inode);
960                 if (disksize > ei->i_disksize)
961                         ei->i_disksize = disksize;
962         }
963         if (err)
964                 goto cleanup;
965
966         set_buffer_new(bh_result);
967 got_it:
968         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
969         if (count > blocks_to_boundary)
970                 set_buffer_boundary(bh_result);
971         err = count;
972         /* Clean up and exit */
973         partial = chain + depth - 1;    /* the whole chain */
974 cleanup:
975         while (partial > chain) {
976                 BUFFER_TRACE(partial->bh, "call brelse");
977                 brelse(partial->bh);
978                 partial--;
979         }
980         BUFFER_TRACE(bh_result, "returned");
981 out:
982         return err;
983 }
984
985 /*
986  * Calculate the number of metadata blocks need to reserve
987  * to allocate @blocks for non extent file based file
988  */
989 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
990 {
991         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
992         int ind_blks, dind_blks, tind_blks;
993
994         /* number of new indirect blocks needed */
995         ind_blks = (blocks + icap - 1) / icap;
996
997         dind_blks = (ind_blks + icap - 1) / icap;
998
999         tind_blks = 1;
1000
1001         return ind_blks + dind_blks + tind_blks;
1002 }
1003
1004 /*
1005  * Calculate the number of metadata blocks need to reserve
1006  * to allocate given number of blocks
1007  */
1008 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1009 {
1010         if (!blocks)
1011                 return 0;
1012
1013         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1014                 return ext4_ext_calc_metadata_amount(inode, blocks);
1015
1016         return ext4_indirect_calc_metadata_amount(inode, blocks);
1017 }
1018
1019 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1020 {
1021         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1022         int total, mdb, mdb_free;
1023
1024         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1025         /* recalculate the number of metablocks still need to be reserved */
1026         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1027         mdb = ext4_calc_metadata_amount(inode, total);
1028
1029         /* figure out how many metablocks to release */
1030         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1031         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1032
1033         /* Account for allocated meta_blocks */
1034         mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1035
1036         /* update fs free blocks counter for truncate case */
1037         percpu_counter_add(&sbi->s_freeblocks_counter, mdb_free);
1038
1039         /* update per-inode reservations */
1040         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1041         EXT4_I(inode)->i_reserved_data_blocks -= used;
1042
1043         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1044         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1045         EXT4_I(inode)->i_allocated_meta_blocks = 0;
1046         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1047 }
1048
1049 /*
1050  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1051  * and returns if the blocks are already mapped.
1052  *
1053  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1054  * and store the allocated blocks in the result buffer head and mark it
1055  * mapped.
1056  *
1057  * If file type is extents based, it will call ext4_ext_get_blocks(),
1058  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1059  * based files
1060  *
1061  * On success, it returns the number of blocks being mapped or allocate.
1062  * if create==0 and the blocks are pre-allocated and uninitialized block,
1063  * the result buffer head is unmapped. If the create ==1, it will make sure
1064  * the buffer head is mapped.
1065  *
1066  * It returns 0 if plain look up failed (blocks have not been allocated), in
1067  * that casem, buffer head is unmapped
1068  *
1069  * It returns the error in case of allocation failure.
1070  */
1071 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1072                         unsigned long max_blocks, struct buffer_head *bh,
1073                         int create, int extend_disksize, int flag)
1074 {
1075         int retval;
1076
1077         clear_buffer_mapped(bh);
1078
1079         /*
1080          * Try to see if we can get  the block without requesting
1081          * for new file system block.
1082          */
1083         down_read((&EXT4_I(inode)->i_data_sem));
1084         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1085                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1086                                 bh, 0, 0);
1087         } else {
1088                 retval = ext4_get_blocks_handle(handle,
1089                                 inode, block, max_blocks, bh, 0, 0);
1090         }
1091         up_read((&EXT4_I(inode)->i_data_sem));
1092
1093         /* If it is only a block(s) look up */
1094         if (!create)
1095                 return retval;
1096
1097         /*
1098          * Returns if the blocks have already allocated
1099          *
1100          * Note that if blocks have been preallocated
1101          * ext4_ext_get_block() returns th create = 0
1102          * with buffer head unmapped.
1103          */
1104         if (retval > 0 && buffer_mapped(bh))
1105                 return retval;
1106
1107         /*
1108          * New blocks allocate and/or writing to uninitialized extent
1109          * will possibly result in updating i_data, so we take
1110          * the write lock of i_data_sem, and call get_blocks()
1111          * with create == 1 flag.
1112          */
1113         down_write((&EXT4_I(inode)->i_data_sem));
1114
1115         /*
1116          * if the caller is from delayed allocation writeout path
1117          * we have already reserved fs blocks for allocation
1118          * let the underlying get_block() function know to
1119          * avoid double accounting
1120          */
1121         if (flag)
1122                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1123         /*
1124          * We need to check for EXT4 here because migrate
1125          * could have changed the inode type in between
1126          */
1127         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1128                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1129                                 bh, create, extend_disksize);
1130         } else {
1131                 retval = ext4_get_blocks_handle(handle, inode, block,
1132                                 max_blocks, bh, create, extend_disksize);
1133
1134                 if (retval > 0 && buffer_new(bh)) {
1135                         /*
1136                          * We allocated new blocks which will result in
1137                          * i_data's format changing.  Force the migrate
1138                          * to fail by clearing migrate flags
1139                          */
1140                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1141                                                         ~EXT4_EXT_MIGRATE;
1142                 }
1143         }
1144
1145         if (flag) {
1146                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1147                 /*
1148                  * Update reserved blocks/metadata blocks
1149                  * after successful block allocation
1150                  * which were deferred till now
1151                  */
1152                 if ((retval > 0) && buffer_delay(bh))
1153                         ext4_da_update_reserve_space(inode, retval);
1154         }
1155
1156         up_write((&EXT4_I(inode)->i_data_sem));
1157         return retval;
1158 }
1159
1160 /* Maximum number of blocks we map for direct IO at once. */
1161 #define DIO_MAX_BLOCKS 4096
1162
1163 static int ext4_get_block(struct inode *inode, sector_t iblock,
1164                         struct buffer_head *bh_result, int create)
1165 {
1166         handle_t *handle = ext4_journal_current_handle();
1167         int ret = 0, started = 0;
1168         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1169         int dio_credits;
1170
1171         if (create && !handle) {
1172                 /* Direct IO write... */
1173                 if (max_blocks > DIO_MAX_BLOCKS)
1174                         max_blocks = DIO_MAX_BLOCKS;
1175                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1176                 handle = ext4_journal_start(inode, dio_credits);
1177                 if (IS_ERR(handle)) {
1178                         ret = PTR_ERR(handle);
1179                         goto out;
1180                 }
1181                 started = 1;
1182         }
1183
1184         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1185                                         max_blocks, bh_result, create, 0, 0);
1186         if (ret > 0) {
1187                 bh_result->b_size = (ret << inode->i_blkbits);
1188                 ret = 0;
1189         }
1190         if (started)
1191                 ext4_journal_stop(handle);
1192 out:
1193         return ret;
1194 }
1195
1196 /*
1197  * `handle' can be NULL if create is zero
1198  */
1199 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1200                                 ext4_lblk_t block, int create, int *errp)
1201 {
1202         struct buffer_head dummy;
1203         int fatal = 0, err;
1204
1205         J_ASSERT(handle != NULL || create == 0);
1206
1207         dummy.b_state = 0;
1208         dummy.b_blocknr = -1000;
1209         buffer_trace_init(&dummy.b_history);
1210         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1211                                         &dummy, create, 1, 0);
1212         /*
1213          * ext4_get_blocks_handle() returns number of blocks
1214          * mapped. 0 in case of a HOLE.
1215          */
1216         if (err > 0) {
1217                 if (err > 1)
1218                         WARN_ON(1);
1219                 err = 0;
1220         }
1221         *errp = err;
1222         if (!err && buffer_mapped(&dummy)) {
1223                 struct buffer_head *bh;
1224                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1225                 if (!bh) {
1226                         *errp = -EIO;
1227                         goto err;
1228                 }
1229                 if (buffer_new(&dummy)) {
1230                         J_ASSERT(create != 0);
1231                         J_ASSERT(handle != NULL);
1232
1233                         /*
1234                          * Now that we do not always journal data, we should
1235                          * keep in mind whether this should always journal the
1236                          * new buffer as metadata.  For now, regular file
1237                          * writes use ext4_get_block instead, so it's not a
1238                          * problem.
1239                          */
1240                         lock_buffer(bh);
1241                         BUFFER_TRACE(bh, "call get_create_access");
1242                         fatal = ext4_journal_get_create_access(handle, bh);
1243                         if (!fatal && !buffer_uptodate(bh)) {
1244                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1245                                 set_buffer_uptodate(bh);
1246                         }
1247                         unlock_buffer(bh);
1248                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1249                         err = ext4_journal_dirty_metadata(handle, bh);
1250                         if (!fatal)
1251                                 fatal = err;
1252                 } else {
1253                         BUFFER_TRACE(bh, "not a new buffer");
1254                 }
1255                 if (fatal) {
1256                         *errp = fatal;
1257                         brelse(bh);
1258                         bh = NULL;
1259                 }
1260                 return bh;
1261         }
1262 err:
1263         return NULL;
1264 }
1265
1266 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1267                                ext4_lblk_t block, int create, int *err)
1268 {
1269         struct buffer_head *bh;
1270
1271         bh = ext4_getblk(handle, inode, block, create, err);
1272         if (!bh)
1273                 return bh;
1274         if (buffer_uptodate(bh))
1275                 return bh;
1276         ll_rw_block(READ_META, 1, &bh);
1277         wait_on_buffer(bh);
1278         if (buffer_uptodate(bh))
1279                 return bh;
1280         put_bh(bh);
1281         *err = -EIO;
1282         return NULL;
1283 }
1284
1285 static int walk_page_buffers(handle_t *handle,
1286                              struct buffer_head *head,
1287                              unsigned from,
1288                              unsigned to,
1289                              int *partial,
1290                              int (*fn)(handle_t *handle,
1291                                        struct buffer_head *bh))
1292 {
1293         struct buffer_head *bh;
1294         unsigned block_start, block_end;
1295         unsigned blocksize = head->b_size;
1296         int err, ret = 0;
1297         struct buffer_head *next;
1298
1299         for (bh = head, block_start = 0;
1300              ret == 0 && (bh != head || !block_start);
1301              block_start = block_end, bh = next)
1302         {
1303                 next = bh->b_this_page;
1304                 block_end = block_start + blocksize;
1305                 if (block_end <= from || block_start >= to) {
1306                         if (partial && !buffer_uptodate(bh))
1307                                 *partial = 1;
1308                         continue;
1309                 }
1310                 err = (*fn)(handle, bh);
1311                 if (!ret)
1312                         ret = err;
1313         }
1314         return ret;
1315 }
1316
1317 /*
1318  * To preserve ordering, it is essential that the hole instantiation and
1319  * the data write be encapsulated in a single transaction.  We cannot
1320  * close off a transaction and start a new one between the ext4_get_block()
1321  * and the commit_write().  So doing the jbd2_journal_start at the start of
1322  * prepare_write() is the right place.
1323  *
1324  * Also, this function can nest inside ext4_writepage() ->
1325  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1326  * has generated enough buffer credits to do the whole page.  So we won't
1327  * block on the journal in that case, which is good, because the caller may
1328  * be PF_MEMALLOC.
1329  *
1330  * By accident, ext4 can be reentered when a transaction is open via
1331  * quota file writes.  If we were to commit the transaction while thus
1332  * reentered, there can be a deadlock - we would be holding a quota
1333  * lock, and the commit would never complete if another thread had a
1334  * transaction open and was blocking on the quota lock - a ranking
1335  * violation.
1336  *
1337  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1338  * will _not_ run commit under these circumstances because handle->h_ref
1339  * is elevated.  We'll still have enough credits for the tiny quotafile
1340  * write.
1341  */
1342 static int do_journal_get_write_access(handle_t *handle,
1343                                         struct buffer_head *bh)
1344 {
1345         if (!buffer_mapped(bh) || buffer_freed(bh))
1346                 return 0;
1347         return ext4_journal_get_write_access(handle, bh);
1348 }
1349
1350 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1351                                 loff_t pos, unsigned len, unsigned flags,
1352                                 struct page **pagep, void **fsdata)
1353 {
1354         struct inode *inode = mapping->host;
1355         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1356         handle_t *handle;
1357         int retries = 0;
1358         struct page *page;
1359         pgoff_t index;
1360         unsigned from, to;
1361
1362         index = pos >> PAGE_CACHE_SHIFT;
1363         from = pos & (PAGE_CACHE_SIZE - 1);
1364         to = from + len;
1365
1366 retry:
1367         handle = ext4_journal_start(inode, needed_blocks);
1368         if (IS_ERR(handle)) {
1369                 ret = PTR_ERR(handle);
1370                 goto out;
1371         }
1372
1373         page = __grab_cache_page(mapping, index);
1374         if (!page) {
1375                 ext4_journal_stop(handle);
1376                 ret = -ENOMEM;
1377                 goto out;
1378         }
1379         *pagep = page;
1380
1381         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1382                                                         ext4_get_block);
1383
1384         if (!ret && ext4_should_journal_data(inode)) {
1385                 ret = walk_page_buffers(handle, page_buffers(page),
1386                                 from, to, NULL, do_journal_get_write_access);
1387         }
1388
1389         if (ret) {
1390                 unlock_page(page);
1391                 ext4_journal_stop(handle);
1392                 page_cache_release(page);
1393         }
1394
1395         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1396                 goto retry;
1397 out:
1398         return ret;
1399 }
1400
1401 /* For write_end() in data=journal mode */
1402 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1403 {
1404         if (!buffer_mapped(bh) || buffer_freed(bh))
1405                 return 0;
1406         set_buffer_uptodate(bh);
1407         return ext4_journal_dirty_metadata(handle, bh);
1408 }
1409
1410 /*
1411  * We need to pick up the new inode size which generic_commit_write gave us
1412  * `file' can be NULL - eg, when called from page_symlink().
1413  *
1414  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1415  * buffers are managed internally.
1416  */
1417 static int ext4_ordered_write_end(struct file *file,
1418                                 struct address_space *mapping,
1419                                 loff_t pos, unsigned len, unsigned copied,
1420                                 struct page *page, void *fsdata)
1421 {
1422         handle_t *handle = ext4_journal_current_handle();
1423         struct inode *inode = mapping->host;
1424         int ret = 0, ret2;
1425
1426         ret = ext4_jbd2_file_inode(handle, inode);
1427
1428         if (ret == 0) {
1429                 /*
1430                  * generic_write_end() will run mark_inode_dirty() if i_size
1431                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1432                  * into that.
1433                  */
1434                 loff_t new_i_size;
1435
1436                 new_i_size = pos + copied;
1437                 if (new_i_size > EXT4_I(inode)->i_disksize)
1438                         EXT4_I(inode)->i_disksize = new_i_size;
1439                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1440                                                         page, fsdata);
1441                 copied = ret2;
1442                 if (ret2 < 0)
1443                         ret = ret2;
1444         }
1445         ret2 = ext4_journal_stop(handle);
1446         if (!ret)
1447                 ret = ret2;
1448
1449         return ret ? ret : copied;
1450 }
1451
1452 static int ext4_writeback_write_end(struct file *file,
1453                                 struct address_space *mapping,
1454                                 loff_t pos, unsigned len, unsigned copied,
1455                                 struct page *page, void *fsdata)
1456 {
1457         handle_t *handle = ext4_journal_current_handle();
1458         struct inode *inode = mapping->host;
1459         int ret = 0, ret2;
1460         loff_t new_i_size;
1461
1462         new_i_size = pos + copied;
1463         if (new_i_size > EXT4_I(inode)->i_disksize)
1464                 EXT4_I(inode)->i_disksize = new_i_size;
1465
1466         ret2 = generic_write_end(file, mapping, pos, len, copied,
1467                                                         page, fsdata);
1468         copied = ret2;
1469         if (ret2 < 0)
1470                 ret = ret2;
1471
1472         ret2 = ext4_journal_stop(handle);
1473         if (!ret)
1474                 ret = ret2;
1475
1476         return ret ? ret : copied;
1477 }
1478
1479 static int ext4_journalled_write_end(struct file *file,
1480                                 struct address_space *mapping,
1481                                 loff_t pos, unsigned len, unsigned copied,
1482                                 struct page *page, void *fsdata)
1483 {
1484         handle_t *handle = ext4_journal_current_handle();
1485         struct inode *inode = mapping->host;
1486         int ret = 0, ret2;
1487         int partial = 0;
1488         unsigned from, to;
1489
1490         from = pos & (PAGE_CACHE_SIZE - 1);
1491         to = from + len;
1492
1493         if (copied < len) {
1494                 if (!PageUptodate(page))
1495                         copied = 0;
1496                 page_zero_new_buffers(page, from+copied, to);
1497         }
1498
1499         ret = walk_page_buffers(handle, page_buffers(page), from,
1500                                 to, &partial, write_end_fn);
1501         if (!partial)
1502                 SetPageUptodate(page);
1503         if (pos+copied > inode->i_size)
1504                 i_size_write(inode, pos+copied);
1505         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1506         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1507                 EXT4_I(inode)->i_disksize = inode->i_size;
1508                 ret2 = ext4_mark_inode_dirty(handle, inode);
1509                 if (!ret)
1510                         ret = ret2;
1511         }
1512
1513         unlock_page(page);
1514         ret2 = ext4_journal_stop(handle);
1515         if (!ret)
1516                 ret = ret2;
1517         page_cache_release(page);
1518
1519         return ret ? ret : copied;
1520 }
1521
1522 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1523 {
1524        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1525        unsigned long md_needed, mdblocks, total = 0;
1526
1527         /*
1528          * recalculate the amount of metadata blocks to reserve
1529          * in order to allocate nrblocks
1530          * worse case is one extent per block
1531          */
1532         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1533         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1534         mdblocks = ext4_calc_metadata_amount(inode, total);
1535         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1536
1537         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1538         total = md_needed + nrblocks;
1539
1540         if (ext4_claim_free_blocks(sbi, total)) {
1541                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1542                 return -ENOSPC;
1543         }
1544         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1545         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1546
1547         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1548         return 0;       /* success */
1549 }
1550
1551 static void ext4_da_release_space(struct inode *inode, int to_free)
1552 {
1553         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1554         int total, mdb, mdb_free, release;
1555
1556         if (!to_free)
1557                 return;         /* Nothing to release, exit */
1558
1559         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1560
1561         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1562                 /*
1563                  * if there is no reserved blocks, but we try to free some
1564                  * then the counter is messed up somewhere.
1565                  * but since this function is called from invalidate
1566                  * page, it's harmless to return without any action
1567                  */
1568                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1569                             "blocks for inode %lu, but there is no reserved "
1570                             "data blocks\n", to_free, inode->i_ino);
1571                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1572                 return;
1573         }
1574
1575         /* recalculate the number of metablocks still need to be reserved */
1576         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1577         mdb = ext4_calc_metadata_amount(inode, total);
1578
1579         /* figure out how many metablocks to release */
1580         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1581         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1582
1583         release = to_free + mdb_free;
1584
1585         /* update fs free blocks counter for truncate case */
1586         percpu_counter_add(&sbi->s_freeblocks_counter, release);
1587
1588         /* update per-inode reservations */
1589         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1590         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1591
1592         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1593         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1594         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1595 }
1596
1597 static void ext4_da_page_release_reservation(struct page *page,
1598                                                 unsigned long offset)
1599 {
1600         int to_release = 0;
1601         struct buffer_head *head, *bh;
1602         unsigned int curr_off = 0;
1603
1604         head = page_buffers(page);
1605         bh = head;
1606         do {
1607                 unsigned int next_off = curr_off + bh->b_size;
1608
1609                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1610                         to_release++;
1611                         clear_buffer_delay(bh);
1612                 }
1613                 curr_off = next_off;
1614         } while ((bh = bh->b_this_page) != head);
1615         ext4_da_release_space(page->mapping->host, to_release);
1616 }
1617
1618 /*
1619  * Delayed allocation stuff
1620  */
1621
1622 struct mpage_da_data {
1623         struct inode *inode;
1624         struct buffer_head lbh;                 /* extent of blocks */
1625         unsigned long first_page, next_page;    /* extent of pages */
1626         get_block_t *get_block;
1627         struct writeback_control *wbc;
1628         int io_done;
1629         long pages_written;
1630 };
1631
1632 /*
1633  * mpage_da_submit_io - walks through extent of pages and try to write
1634  * them with writepage() call back
1635  *
1636  * @mpd->inode: inode
1637  * @mpd->first_page: first page of the extent
1638  * @mpd->next_page: page after the last page of the extent
1639  * @mpd->get_block: the filesystem's block mapper function
1640  *
1641  * By the time mpage_da_submit_io() is called we expect all blocks
1642  * to be allocated. this may be wrong if allocation failed.
1643  *
1644  * As pages are already locked by write_cache_pages(), we can't use it
1645  */
1646 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1647 {
1648         struct address_space *mapping = mpd->inode->i_mapping;
1649         int ret = 0, err, nr_pages, i;
1650         unsigned long index, end;
1651         struct pagevec pvec;
1652
1653         BUG_ON(mpd->next_page <= mpd->first_page);
1654         pagevec_init(&pvec, 0);
1655         index = mpd->first_page;
1656         end = mpd->next_page - 1;
1657
1658         while (index <= end) {
1659                 /* XXX: optimize tail */
1660                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1661                 if (nr_pages == 0)
1662                         break;
1663                 for (i = 0; i < nr_pages; i++) {
1664                         struct page *page = pvec.pages[i];
1665
1666                         index = page->index;
1667                         if (index > end)
1668                                 break;
1669                         index++;
1670
1671                         err = mapping->a_ops->writepage(page, mpd->wbc);
1672                         if (!err)
1673                                 mpd->pages_written++;
1674                         /*
1675                          * In error case, we have to continue because
1676                          * remaining pages are still locked
1677                          * XXX: unlock and re-dirty them?
1678                          */
1679                         if (ret == 0)
1680                                 ret = err;
1681                 }
1682                 pagevec_release(&pvec);
1683         }
1684         return ret;
1685 }
1686
1687 /*
1688  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1689  *
1690  * @mpd->inode - inode to walk through
1691  * @exbh->b_blocknr - first block on a disk
1692  * @exbh->b_size - amount of space in bytes
1693  * @logical - first logical block to start assignment with
1694  *
1695  * the function goes through all passed space and put actual disk
1696  * block numbers into buffer heads, dropping BH_Delay
1697  */
1698 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1699                                  struct buffer_head *exbh)
1700 {
1701         struct inode *inode = mpd->inode;
1702         struct address_space *mapping = inode->i_mapping;
1703         int blocks = exbh->b_size >> inode->i_blkbits;
1704         sector_t pblock = exbh->b_blocknr, cur_logical;
1705         struct buffer_head *head, *bh;
1706         pgoff_t index, end;
1707         struct pagevec pvec;
1708         int nr_pages, i;
1709
1710         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1711         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1712         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1713
1714         pagevec_init(&pvec, 0);
1715
1716         while (index <= end) {
1717                 /* XXX: optimize tail */
1718                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1719                 if (nr_pages == 0)
1720                         break;
1721                 for (i = 0; i < nr_pages; i++) {
1722                         struct page *page = pvec.pages[i];
1723
1724                         index = page->index;
1725                         if (index > end)
1726                                 break;
1727                         index++;
1728
1729                         BUG_ON(!PageLocked(page));
1730                         BUG_ON(PageWriteback(page));
1731                         BUG_ON(!page_has_buffers(page));
1732
1733                         bh = page_buffers(page);
1734                         head = bh;
1735
1736                         /* skip blocks out of the range */
1737                         do {
1738                                 if (cur_logical >= logical)
1739                                         break;
1740                                 cur_logical++;
1741                         } while ((bh = bh->b_this_page) != head);
1742
1743                         do {
1744                                 if (cur_logical >= logical + blocks)
1745                                         break;
1746                                 if (buffer_delay(bh)) {
1747                                         bh->b_blocknr = pblock;
1748                                         clear_buffer_delay(bh);
1749                                         bh->b_bdev = inode->i_sb->s_bdev;
1750                                 } else if (buffer_unwritten(bh)) {
1751                                         bh->b_blocknr = pblock;
1752                                         clear_buffer_unwritten(bh);
1753                                         set_buffer_mapped(bh);
1754                                         set_buffer_new(bh);
1755                                         bh->b_bdev = inode->i_sb->s_bdev;
1756                                 } else if (buffer_mapped(bh))
1757                                         BUG_ON(bh->b_blocknr != pblock);
1758
1759                                 cur_logical++;
1760                                 pblock++;
1761                         } while ((bh = bh->b_this_page) != head);
1762                 }
1763                 pagevec_release(&pvec);
1764         }
1765 }
1766
1767
1768 /*
1769  * __unmap_underlying_blocks - just a helper function to unmap
1770  * set of blocks described by @bh
1771  */
1772 static inline void __unmap_underlying_blocks(struct inode *inode,
1773                                              struct buffer_head *bh)
1774 {
1775         struct block_device *bdev = inode->i_sb->s_bdev;
1776         int blocks, i;
1777
1778         blocks = bh->b_size >> inode->i_blkbits;
1779         for (i = 0; i < blocks; i++)
1780                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1781 }
1782
1783 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1784                                         sector_t logical, long blk_cnt)
1785 {
1786         int nr_pages, i;
1787         pgoff_t index, end;
1788         struct pagevec pvec;
1789         struct inode *inode = mpd->inode;
1790         struct address_space *mapping = inode->i_mapping;
1791
1792         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1793         end   = (logical + blk_cnt - 1) >>
1794                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1795         while (index <= end) {
1796                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1797                 if (nr_pages == 0)
1798                         break;
1799                 for (i = 0; i < nr_pages; i++) {
1800                         struct page *page = pvec.pages[i];
1801                         index = page->index;
1802                         if (index > end)
1803                                 break;
1804                         index++;
1805
1806                         BUG_ON(!PageLocked(page));
1807                         BUG_ON(PageWriteback(page));
1808                         block_invalidatepage(page, 0);
1809                         ClearPageUptodate(page);
1810                         unlock_page(page);
1811                 }
1812         }
1813         return;
1814 }
1815
1816 /*
1817  * mpage_da_map_blocks - go through given space
1818  *
1819  * @mpd->lbh - bh describing space
1820  * @mpd->get_block - the filesystem's block mapper function
1821  *
1822  * The function skips space we know is already mapped to disk blocks.
1823  *
1824  */
1825 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1826 {
1827         int err = 0;
1828         struct buffer_head *lbh = &mpd->lbh;
1829         sector_t next = lbh->b_blocknr;
1830         struct buffer_head new;
1831
1832         /*
1833          * We consider only non-mapped and non-allocated blocks
1834          */
1835         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1836                 return 0;
1837
1838         new.b_state = lbh->b_state;
1839         new.b_blocknr = 0;
1840         new.b_size = lbh->b_size;
1841
1842         /*
1843          * If we didn't accumulate anything
1844          * to write simply return
1845          */
1846         if (!new.b_size)
1847                 return 0;
1848         err = mpd->get_block(mpd->inode, next, &new, 1);
1849         if (err) {
1850
1851                 /* If get block returns with error
1852                  * we simply return. Later writepage
1853                  * will redirty the page and writepages
1854                  * will find the dirty page again
1855                  */
1856                 if (err == -EAGAIN)
1857                         return 0;
1858                 /*
1859                  * get block failure will cause us
1860                  * to loop in writepages. Because
1861                  * a_ops->writepage won't be able to
1862                  * make progress. The page will be redirtied
1863                  * by writepage and writepages will again
1864                  * try to write the same.
1865                  */
1866                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1867                                   "at logical offset %llu with max blocks "
1868                                   "%zd with error %d\n",
1869                                   __func__, mpd->inode->i_ino,
1870                                   (unsigned long long)next,
1871                                   lbh->b_size >> mpd->inode->i_blkbits, err);
1872                 printk(KERN_EMERG "This should not happen.!! "
1873                                         "Data will be lost\n");
1874                 /* invlaidate all the pages */
1875                 ext4_da_block_invalidatepages(mpd, next,
1876                                 lbh->b_size >> mpd->inode->i_blkbits);
1877                 return err;
1878         }
1879         BUG_ON(new.b_size == 0);
1880
1881         if (buffer_new(&new))
1882                 __unmap_underlying_blocks(mpd->inode, &new);
1883
1884         /*
1885          * If blocks are delayed marked, we need to
1886          * put actual blocknr and drop delayed bit
1887          */
1888         if (buffer_delay(lbh) || buffer_unwritten(lbh))
1889                 mpage_put_bnr_to_bhs(mpd, next, &new);
1890
1891         return 0;
1892 }
1893
1894 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1895                 (1 << BH_Delay) | (1 << BH_Unwritten))
1896
1897 /*
1898  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1899  *
1900  * @mpd->lbh - extent of blocks
1901  * @logical - logical number of the block in the file
1902  * @bh - bh of the block (used to access block's state)
1903  *
1904  * the function is used to collect contig. blocks in same state
1905  */
1906 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1907                                    sector_t logical, struct buffer_head *bh)
1908 {
1909         sector_t next;
1910         size_t b_size = bh->b_size;
1911         struct buffer_head *lbh = &mpd->lbh;
1912         int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1913
1914         /* check if thereserved journal credits might overflow */
1915         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1916                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1917                         /*
1918                          * With non-extent format we are limited by the journal
1919                          * credit available.  Total credit needed to insert
1920                          * nrblocks contiguous blocks is dependent on the
1921                          * nrblocks.  So limit nrblocks.
1922                          */
1923                         goto flush_it;
1924                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1925                                 EXT4_MAX_TRANS_DATA) {
1926                         /*
1927                          * Adding the new buffer_head would make it cross the
1928                          * allowed limit for which we have journal credit
1929                          * reserved. So limit the new bh->b_size
1930                          */
1931                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1932                                                 mpd->inode->i_blkbits;
1933                         /* we will do mpage_da_submit_io in the next loop */
1934                 }
1935         }
1936         /*
1937          * First block in the extent
1938          */
1939         if (lbh->b_size == 0) {
1940                 lbh->b_blocknr = logical;
1941                 lbh->b_size = b_size;
1942                 lbh->b_state = bh->b_state & BH_FLAGS;
1943                 return;
1944         }
1945
1946         next = lbh->b_blocknr + nrblocks;
1947         /*
1948          * Can we merge the block to our big extent?
1949          */
1950         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1951                 lbh->b_size += b_size;
1952                 return;
1953         }
1954
1955 flush_it:
1956         /*
1957          * We couldn't merge the block to our extent, so we
1958          * need to flush current  extent and start new one
1959          */
1960         if (mpage_da_map_blocks(mpd) == 0)
1961                 mpage_da_submit_io(mpd);
1962         mpd->io_done = 1;
1963         return;
1964 }
1965
1966 /*
1967  * __mpage_da_writepage - finds extent of pages and blocks
1968  *
1969  * @page: page to consider
1970  * @wbc: not used, we just follow rules
1971  * @data: context
1972  *
1973  * The function finds extents of pages and scan them for all blocks.
1974  */
1975 static int __mpage_da_writepage(struct page *page,
1976                                 struct writeback_control *wbc, void *data)
1977 {
1978         struct mpage_da_data *mpd = data;
1979         struct inode *inode = mpd->inode;
1980         struct buffer_head *bh, *head, fake;
1981         sector_t logical;
1982
1983         if (mpd->io_done) {
1984                 /*
1985                  * Rest of the page in the page_vec
1986                  * redirty then and skip then. We will
1987                  * try to to write them again after
1988                  * starting a new transaction
1989                  */
1990                 redirty_page_for_writepage(wbc, page);
1991                 unlock_page(page);
1992                 return MPAGE_DA_EXTENT_TAIL;
1993         }
1994         /*
1995          * Can we merge this page to current extent?
1996          */
1997         if (mpd->next_page != page->index) {
1998                 /*
1999                  * Nope, we can't. So, we map non-allocated blocks
2000                  * and start IO on them using writepage()
2001                  */
2002                 if (mpd->next_page != mpd->first_page) {
2003                         if (mpage_da_map_blocks(mpd) == 0)
2004                                 mpage_da_submit_io(mpd);
2005                         /*
2006                          * skip rest of the page in the page_vec
2007                          */
2008                         mpd->io_done = 1;
2009                         redirty_page_for_writepage(wbc, page);
2010                         unlock_page(page);
2011                         return MPAGE_DA_EXTENT_TAIL;
2012                 }
2013
2014                 /*
2015                  * Start next extent of pages ...
2016                  */
2017                 mpd->first_page = page->index;
2018
2019                 /*
2020                  * ... and blocks
2021                  */
2022                 mpd->lbh.b_size = 0;
2023                 mpd->lbh.b_state = 0;
2024                 mpd->lbh.b_blocknr = 0;
2025         }
2026
2027         mpd->next_page = page->index + 1;
2028         logical = (sector_t) page->index <<
2029                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2030
2031         if (!page_has_buffers(page)) {
2032                 /*
2033                  * There is no attached buffer heads yet (mmap?)
2034                  * we treat the page asfull of dirty blocks
2035                  */
2036                 bh = &fake;
2037                 bh->b_size = PAGE_CACHE_SIZE;
2038                 bh->b_state = 0;
2039                 set_buffer_dirty(bh);
2040                 set_buffer_uptodate(bh);
2041                 mpage_add_bh_to_extent(mpd, logical, bh);
2042                 if (mpd->io_done)
2043                         return MPAGE_DA_EXTENT_TAIL;
2044         } else {
2045                 /*
2046                  * Page with regular buffer heads, just add all dirty ones
2047                  */
2048                 head = page_buffers(page);
2049                 bh = head;
2050                 do {
2051                         BUG_ON(buffer_locked(bh));
2052                         if (buffer_dirty(bh) &&
2053                                 (!buffer_mapped(bh) || buffer_delay(bh))) {
2054                                 mpage_add_bh_to_extent(mpd, logical, bh);
2055                                 if (mpd->io_done)
2056                                         return MPAGE_DA_EXTENT_TAIL;
2057                         }
2058                         logical++;
2059                 } while ((bh = bh->b_this_page) != head);
2060         }
2061
2062         return 0;
2063 }
2064
2065 /*
2066  * mpage_da_writepages - walk the list of dirty pages of the given
2067  * address space, allocates non-allocated blocks, maps newly-allocated
2068  * blocks to existing bhs and issue IO them
2069  *
2070  * @mapping: address space structure to write
2071  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2072  * @get_block: the filesystem's block mapper function.
2073  *
2074  * This is a library function, which implements the writepages()
2075  * address_space_operation.
2076  */
2077 static int mpage_da_writepages(struct address_space *mapping,
2078                                struct writeback_control *wbc,
2079                                get_block_t get_block)
2080 {
2081         struct mpage_da_data mpd;
2082         long to_write;
2083         int ret;
2084
2085         if (!get_block)
2086                 return generic_writepages(mapping, wbc);
2087
2088         mpd.wbc = wbc;
2089         mpd.inode = mapping->host;
2090         mpd.lbh.b_size = 0;
2091         mpd.lbh.b_state = 0;
2092         mpd.lbh.b_blocknr = 0;
2093         mpd.first_page = 0;
2094         mpd.next_page = 0;
2095         mpd.get_block = get_block;
2096         mpd.io_done = 0;
2097         mpd.pages_written = 0;
2098
2099         to_write = wbc->nr_to_write;
2100
2101         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
2102
2103         /*
2104          * Handle last extent of pages
2105          */
2106         if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2107                 if (mpage_da_map_blocks(&mpd) == 0)
2108                         mpage_da_submit_io(&mpd);
2109         }
2110
2111         wbc->nr_to_write = to_write - mpd.pages_written;
2112         return ret;
2113 }
2114
2115 /*
2116  * this is a special callback for ->write_begin() only
2117  * it's intention is to return mapped block or reserve space
2118  */
2119 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2120                                   struct buffer_head *bh_result, int create)
2121 {
2122         int ret = 0;
2123
2124         BUG_ON(create == 0);
2125         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2126
2127         /*
2128          * first, we need to know whether the block is allocated already
2129          * preallocated blocks are unmapped but should treated
2130          * the same as allocated blocks.
2131          */
2132         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2133         if ((ret == 0) && !buffer_delay(bh_result)) {
2134                 /* the block isn't (pre)allocated yet, let's reserve space */
2135                 /*
2136                  * XXX: __block_prepare_write() unmaps passed block,
2137                  * is it OK?
2138                  */
2139                 ret = ext4_da_reserve_space(inode, 1);
2140                 if (ret)
2141                         /* not enough space to reserve */
2142                         return ret;
2143
2144                 map_bh(bh_result, inode->i_sb, 0);
2145                 set_buffer_new(bh_result);
2146                 set_buffer_delay(bh_result);
2147         } else if (ret > 0) {
2148                 bh_result->b_size = (ret << inode->i_blkbits);
2149                 ret = 0;
2150         }
2151
2152         return ret;
2153 }
2154 #define         EXT4_DELALLOC_RSVED     1
2155 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2156                                    struct buffer_head *bh_result, int create)
2157 {
2158         int ret;
2159         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2160         loff_t disksize = EXT4_I(inode)->i_disksize;
2161         handle_t *handle = NULL;
2162
2163         handle = ext4_journal_current_handle();
2164         if (!handle) {
2165                 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2166                                    bh_result, 0, 0, 0);
2167                 BUG_ON(!ret);
2168         } else {
2169                 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2170                                    bh_result, create, 0, EXT4_DELALLOC_RSVED);
2171         }
2172
2173         if (ret > 0) {
2174                 bh_result->b_size = (ret << inode->i_blkbits);
2175
2176                 /*
2177                  * Update on-disk size along with block allocation
2178                  * we don't use 'extend_disksize' as size may change
2179                  * within already allocated block -bzzz
2180                  */
2181                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2182                 if (disksize > i_size_read(inode))
2183                         disksize = i_size_read(inode);
2184                 if (disksize > EXT4_I(inode)->i_disksize) {
2185                         /*
2186                          * XXX: replace with spinlock if seen contended -bzzz
2187                          */
2188                         down_write(&EXT4_I(inode)->i_data_sem);
2189                         if (disksize > EXT4_I(inode)->i_disksize)
2190                                 EXT4_I(inode)->i_disksize = disksize;
2191                         up_write(&EXT4_I(inode)->i_data_sem);
2192
2193                         if (EXT4_I(inode)->i_disksize == disksize) {
2194                                 ret = ext4_mark_inode_dirty(handle, inode);
2195                                 return ret;
2196                         }
2197                 }
2198                 ret = 0;
2199         }
2200         return ret;
2201 }
2202
2203 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2204 {
2205         /*
2206          * unmapped buffer is possible for holes.
2207          * delay buffer is possible with delayed allocation
2208          */
2209         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2210 }
2211
2212 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2213                                    struct buffer_head *bh_result, int create)
2214 {
2215         int ret = 0;
2216         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2217
2218         /*
2219          * we don't want to do block allocation in writepage
2220          * so call get_block_wrap with create = 0
2221          */
2222         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2223                                    bh_result, 0, 0, 0);
2224         if (ret > 0) {
2225                 bh_result->b_size = (ret << inode->i_blkbits);
2226                 ret = 0;
2227         }
2228         return ret;
2229 }
2230
2231 /*
2232  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2233  * get called via journal_submit_inode_data_buffers (no journal handle)
2234  * get called via shrink_page_list via pdflush (no journal handle)
2235  * or grab_page_cache when doing write_begin (have journal handle)
2236  */
2237 static int ext4_da_writepage(struct page *page,
2238                                 struct writeback_control *wbc)
2239 {
2240         int ret = 0;
2241         loff_t size;
2242         unsigned long len;
2243         struct buffer_head *page_bufs;
2244         struct inode *inode = page->mapping->host;
2245
2246         size = i_size_read(inode);
2247         if (page->index == size >> PAGE_CACHE_SHIFT)
2248                 len = size & ~PAGE_CACHE_MASK;
2249         else
2250                 len = PAGE_CACHE_SIZE;
2251
2252         if (page_has_buffers(page)) {
2253                 page_bufs = page_buffers(page);
2254                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2255                                         ext4_bh_unmapped_or_delay)) {
2256                         /*
2257                          * We don't want to do  block allocation
2258                          * So redirty the page and return
2259                          * We may reach here when we do a journal commit
2260                          * via journal_submit_inode_data_buffers.
2261                          * If we don't have mapping block we just ignore
2262                          * them. We can also reach here via shrink_page_list
2263                          */
2264                         redirty_page_for_writepage(wbc, page);
2265                         unlock_page(page);
2266                         return 0;
2267                 }
2268         } else {
2269                 /*
2270                  * The test for page_has_buffers() is subtle:
2271                  * We know the page is dirty but it lost buffers. That means
2272                  * that at some moment in time after write_begin()/write_end()
2273                  * has been called all buffers have been clean and thus they
2274                  * must have been written at least once. So they are all
2275                  * mapped and we can happily proceed with mapping them
2276                  * and writing the page.
2277                  *
2278                  * Try to initialize the buffer_heads and check whether
2279                  * all are mapped and non delay. We don't want to
2280                  * do block allocation here.
2281                  */
2282                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2283                                                 ext4_normal_get_block_write);
2284                 if (!ret) {
2285                         page_bufs = page_buffers(page);
2286                         /* check whether all are mapped and non delay */
2287                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2288                                                 ext4_bh_unmapped_or_delay)) {
2289                                 redirty_page_for_writepage(wbc, page);
2290                                 unlock_page(page);
2291                                 return 0;
2292                         }
2293                 } else {
2294                         /*
2295                          * We can't do block allocation here
2296                          * so just redity the page and unlock
2297                          * and return
2298                          */
2299                         redirty_page_for_writepage(wbc, page);
2300                         unlock_page(page);
2301                         return 0;
2302                 }
2303         }
2304
2305         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2306                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2307         else
2308                 ret = block_write_full_page(page,
2309                                                 ext4_normal_get_block_write,
2310                                                 wbc);
2311
2312         return ret;
2313 }
2314
2315 /*
2316  * This is called via ext4_da_writepages() to
2317  * calulate the total number of credits to reserve to fit
2318  * a single extent allocation into a single transaction,
2319  * ext4_da_writpeages() will loop calling this before
2320  * the block allocation.
2321  */
2322
2323 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2324 {
2325         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2326
2327         /*
2328          * With non-extent format the journal credit needed to
2329          * insert nrblocks contiguous block is dependent on
2330          * number of contiguous block. So we will limit
2331          * number of contiguous block to a sane value
2332          */
2333         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2334             (max_blocks > EXT4_MAX_TRANS_DATA))
2335                 max_blocks = EXT4_MAX_TRANS_DATA;
2336
2337         return ext4_chunk_trans_blocks(inode, max_blocks);
2338 }
2339
2340 static int ext4_da_writepages(struct address_space *mapping,
2341                               struct writeback_control *wbc)
2342 {
2343         handle_t *handle = NULL;
2344         loff_t range_start = 0;
2345         struct inode *inode = mapping->host;
2346         int needed_blocks, ret = 0, nr_to_writebump = 0;
2347         long to_write, pages_skipped = 0;
2348         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2349
2350         /*
2351          * No pages to write? This is mainly a kludge to avoid starting
2352          * a transaction for special inodes like journal inode on last iput()
2353          * because that could violate lock ordering on umount
2354          */
2355         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2356                 return 0;
2357         /*
2358          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2359          * This make sure small files blocks are allocated in
2360          * single attempt. This ensure that small files
2361          * get less fragmented.
2362          */
2363         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2364                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2365                 wbc->nr_to_write = sbi->s_mb_stream_request;
2366         }
2367
2368         if (!wbc->range_cyclic)
2369                 /*
2370                  * If range_cyclic is not set force range_cont
2371                  * and save the old writeback_index
2372                  */
2373                 wbc->range_cont = 1;
2374
2375         range_start =  wbc->range_start;
2376         pages_skipped = wbc->pages_skipped;
2377
2378 restart_loop:
2379         to_write = wbc->nr_to_write;
2380         while (!ret && to_write > 0) {
2381
2382                 /*
2383                  * we  insert one extent at a time. So we need
2384                  * credit needed for single extent allocation.
2385                  * journalled mode is currently not supported
2386                  * by delalloc
2387                  */
2388                 BUG_ON(ext4_should_journal_data(inode));
2389                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2390
2391                 /* start a new transaction*/
2392                 handle = ext4_journal_start(inode, needed_blocks);
2393                 if (IS_ERR(handle)) {
2394                         ret = PTR_ERR(handle);
2395                         printk(KERN_EMERG "%s: jbd2_start: "
2396                                "%ld pages, ino %lu; err %d\n", __func__,
2397                                 wbc->nr_to_write, inode->i_ino, ret);
2398                         dump_stack();
2399                         goto out_writepages;
2400                 }
2401                 if (ext4_should_order_data(inode)) {
2402                         /*
2403                          * With ordered mode we need to add
2404                          * the inode to the journal handl
2405                          * when we do block allocation.
2406                          */
2407                         ret = ext4_jbd2_file_inode(handle, inode);
2408                         if (ret) {
2409                                 ext4_journal_stop(handle);
2410                                 goto out_writepages;
2411                         }
2412                 }
2413
2414                 to_write -= wbc->nr_to_write;
2415                 ret = mpage_da_writepages(mapping, wbc,
2416                                           ext4_da_get_block_write);
2417                 ext4_journal_stop(handle);
2418                 if (ret == MPAGE_DA_EXTENT_TAIL) {
2419                         /*
2420                          * got one extent now try with
2421                          * rest of the pages
2422                          */
2423                         to_write += wbc->nr_to_write;
2424                         ret = 0;
2425                 } else if (wbc->nr_to_write) {
2426                         /*
2427                          * There is no more writeout needed
2428                          * or we requested for a noblocking writeout
2429                          * and we found the device congested
2430                          */
2431                         to_write += wbc->nr_to_write;
2432                         break;
2433                 }
2434                 wbc->nr_to_write = to_write;
2435         }
2436
2437         if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2438                 /* We skipped pages in this loop */
2439                 wbc->range_start = range_start;
2440                 wbc->nr_to_write = to_write +
2441                                 wbc->pages_skipped - pages_skipped;
2442                 wbc->pages_skipped = pages_skipped;
2443                 goto restart_loop;
2444         }
2445
2446 out_writepages:
2447         wbc->nr_to_write = to_write - nr_to_writebump;
2448         wbc->range_start = range_start;
2449         return ret;
2450 }
2451
2452 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2453                                 loff_t pos, unsigned len, unsigned flags,
2454                                 struct page **pagep, void **fsdata)
2455 {
2456         int ret, retries = 0;
2457         struct page *page;
2458         pgoff_t index;
2459         unsigned from, to;
2460         struct inode *inode = mapping->host;
2461         handle_t *handle;
2462
2463         index = pos >> PAGE_CACHE_SHIFT;
2464         from = pos & (PAGE_CACHE_SIZE - 1);
2465         to = from + len;
2466
2467 retry:
2468         /*
2469          * With delayed allocation, we don't log the i_disksize update
2470          * if there is delayed block allocation. But we still need
2471          * to journalling the i_disksize update if writes to the end
2472          * of file which has an already mapped buffer.
2473          */
2474         handle = ext4_journal_start(inode, 1);
2475         if (IS_ERR(handle)) {
2476                 ret = PTR_ERR(handle);
2477                 goto out;
2478         }
2479
2480         page = __grab_cache_page(mapping, index);
2481         if (!page) {
2482                 ext4_journal_stop(handle);
2483                 ret = -ENOMEM;
2484                 goto out;
2485         }
2486         *pagep = page;
2487
2488         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2489                                                         ext4_da_get_block_prep);
2490         if (ret < 0) {
2491                 unlock_page(page);
2492                 ext4_journal_stop(handle);
2493                 page_cache_release(page);
2494         }
2495
2496         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2497                 goto retry;
2498 out:
2499         return ret;
2500 }
2501
2502 /*
2503  * Check if we should update i_disksize
2504  * when write to the end of file but not require block allocation
2505  */
2506 static int ext4_da_should_update_i_disksize(struct page *page,
2507                                          unsigned long offset)
2508 {
2509         struct buffer_head *bh;
2510         struct inode *inode = page->mapping->host;
2511         unsigned int idx;
2512         int i;
2513
2514         bh = page_buffers(page);
2515         idx = offset >> inode->i_blkbits;
2516
2517         for (i = 0; i < idx; i++)
2518                 bh = bh->b_this_page;
2519
2520         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2521                 return 0;
2522         return 1;
2523 }
2524
2525 static int ext4_da_write_end(struct file *file,
2526                                 struct address_space *mapping,
2527                                 loff_t pos, unsigned len, unsigned copied,
2528                                 struct page *page, void *fsdata)
2529 {
2530         struct inode *inode = mapping->host;
2531         int ret = 0, ret2;
2532         handle_t *handle = ext4_journal_current_handle();
2533         loff_t new_i_size;
2534         unsigned long start, end;
2535
2536         start = pos & (PAGE_CACHE_SIZE - 1);
2537         end = start + copied - 1;
2538
2539         /*
2540          * generic_write_end() will run mark_inode_dirty() if i_size
2541          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2542          * into that.
2543          */
2544
2545         new_i_size = pos + copied;
2546         if (new_i_size > EXT4_I(inode)->i_disksize) {
2547                 if (ext4_da_should_update_i_disksize(page, end)) {
2548                         down_write(&EXT4_I(inode)->i_data_sem);
2549                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2550                                 /*
2551                                  * Updating i_disksize when extending file
2552                                  * without needing block allocation
2553                                  */
2554                                 if (ext4_should_order_data(inode))
2555                                         ret = ext4_jbd2_file_inode(handle,
2556                                                                    inode);
2557
2558                                 EXT4_I(inode)->i_disksize = new_i_size;
2559                         }
2560                         up_write(&EXT4_I(inode)->i_data_sem);
2561                 }
2562         }
2563         ret2 = generic_write_end(file, mapping, pos, len, copied,
2564                                                         page, fsdata);
2565         copied = ret2;
2566         if (ret2 < 0)
2567                 ret = ret2;
2568         ret2 = ext4_journal_stop(handle);
2569         if (!ret)
2570                 ret = ret2;
2571
2572         return ret ? ret : copied;
2573 }
2574
2575 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2576 {
2577         /*
2578          * Drop reserved blocks
2579          */
2580         BUG_ON(!PageLocked(page));
2581         if (!page_has_buffers(page))
2582                 goto out;
2583
2584         ext4_da_page_release_reservation(page, offset);
2585
2586 out:
2587         ext4_invalidatepage(page, offset);
2588
2589         return;
2590 }
2591
2592
2593 /*
2594  * bmap() is special.  It gets used by applications such as lilo and by
2595  * the swapper to find the on-disk block of a specific piece of data.
2596  *
2597  * Naturally, this is dangerous if the block concerned is still in the
2598  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2599  * filesystem and enables swap, then they may get a nasty shock when the
2600  * data getting swapped to that swapfile suddenly gets overwritten by
2601  * the original zero's written out previously to the journal and
2602  * awaiting writeback in the kernel's buffer cache.
2603  *
2604  * So, if we see any bmap calls here on a modified, data-journaled file,
2605  * take extra steps to flush any blocks which might be in the cache.
2606  */
2607 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2608 {
2609         struct inode *inode = mapping->host;
2610         journal_t *journal;
2611         int err;
2612
2613         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2614                         test_opt(inode->i_sb, DELALLOC)) {
2615                 /*
2616                  * With delalloc we want to sync the file
2617                  * so that we can make sure we allocate
2618                  * blocks for file
2619                  */
2620                 filemap_write_and_wait(mapping);
2621         }
2622
2623         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2624                 /*
2625                  * This is a REALLY heavyweight approach, but the use of
2626                  * bmap on dirty files is expected to be extremely rare:
2627                  * only if we run lilo or swapon on a freshly made file
2628                  * do we expect this to happen.
2629                  *
2630                  * (bmap requires CAP_SYS_RAWIO so this does not
2631                  * represent an unprivileged user DOS attack --- we'd be
2632                  * in trouble if mortal users could trigger this path at
2633                  * will.)
2634                  *
2635                  * NB. EXT4_STATE_JDATA is not set on files other than
2636                  * regular files.  If somebody wants to bmap a directory
2637                  * or symlink and gets confused because the buffer
2638                  * hasn't yet been flushed to disk, they deserve
2639                  * everything they get.
2640                  */
2641
2642                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2643                 journal = EXT4_JOURNAL(inode);
2644                 jbd2_journal_lock_updates(journal);
2645                 err = jbd2_journal_flush(journal);
2646                 jbd2_journal_unlock_updates(journal);
2647
2648                 if (err)
2649                         return 0;
2650         }
2651
2652         return generic_block_bmap(mapping, block, ext4_get_block);
2653 }
2654
2655 static int bget_one(handle_t *handle, struct buffer_head *bh)
2656 {
2657         get_bh(bh);
2658         return 0;
2659 }
2660
2661 static int bput_one(handle_t *handle, struct buffer_head *bh)
2662 {
2663         put_bh(bh);
2664         return 0;
2665 }
2666
2667 /*
2668  * Note that we don't need to start a transaction unless we're journaling data
2669  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2670  * need to file the inode to the transaction's list in ordered mode because if
2671  * we are writing back data added by write(), the inode is already there and if
2672  * we are writing back data modified via mmap(), noone guarantees in which
2673  * transaction the data will hit the disk. In case we are journaling data, we
2674  * cannot start transaction directly because transaction start ranks above page
2675  * lock so we have to do some magic.
2676  *
2677  * In all journaling modes block_write_full_page() will start the I/O.
2678  *
2679  * Problem:
2680  *
2681  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2682  *              ext4_writepage()
2683  *
2684  * Similar for:
2685  *
2686  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2687  *
2688  * Same applies to ext4_get_block().  We will deadlock on various things like
2689  * lock_journal and i_data_sem
2690  *
2691  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2692  * allocations fail.
2693  *
2694  * 16May01: If we're reentered then journal_current_handle() will be
2695  *          non-zero. We simply *return*.
2696  *
2697  * 1 July 2001: @@@ FIXME:
2698  *   In journalled data mode, a data buffer may be metadata against the
2699  *   current transaction.  But the same file is part of a shared mapping
2700  *   and someone does a writepage() on it.
2701  *
2702  *   We will move the buffer onto the async_data list, but *after* it has
2703  *   been dirtied. So there's a small window where we have dirty data on
2704  *   BJ_Metadata.
2705  *
2706  *   Note that this only applies to the last partial page in the file.  The
2707  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2708  *   broken code anyway: it's wrong for msync()).
2709  *
2710  *   It's a rare case: affects the final partial page, for journalled data
2711  *   where the file is subject to bith write() and writepage() in the same
2712  *   transction.  To fix it we'll need a custom block_write_full_page().
2713  *   We'll probably need that anyway for journalling writepage() output.
2714  *
2715  * We don't honour synchronous mounts for writepage().  That would be
2716  * disastrous.  Any write() or metadata operation will sync the fs for
2717  * us.
2718  *
2719  */
2720 static int __ext4_normal_writepage(struct page *page,
2721                                 struct writeback_control *wbc)
2722 {
2723         struct inode *inode = page->mapping->host;
2724
2725         if (test_opt(inode->i_sb, NOBH))
2726                 return nobh_writepage(page,
2727                                         ext4_normal_get_block_write, wbc);
2728         else
2729                 return block_write_full_page(page,
2730                                                 ext4_normal_get_block_write,
2731                                                 wbc);
2732 }
2733
2734 static int ext4_normal_writepage(struct page *page,
2735                                 struct writeback_control *wbc)
2736 {
2737         struct inode *inode = page->mapping->host;
2738         loff_t size = i_size_read(inode);
2739         loff_t len;
2740
2741         J_ASSERT(PageLocked(page));
2742         if (page->index == size >> PAGE_CACHE_SHIFT)
2743                 len = size & ~PAGE_CACHE_MASK;
2744         else
2745                 len = PAGE_CACHE_SIZE;
2746
2747         if (page_has_buffers(page)) {
2748                 /* if page has buffers it should all be mapped
2749                  * and allocated. If there are not buffers attached
2750                  * to the page we know the page is dirty but it lost
2751                  * buffers. That means that at some moment in time
2752                  * after write_begin() / write_end() has been called
2753                  * all buffers have been clean and thus they must have been
2754                  * written at least once. So they are all mapped and we can
2755                  * happily proceed with mapping them and writing the page.
2756                  */
2757                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2758                                         ext4_bh_unmapped_or_delay));
2759         }
2760
2761         if (!ext4_journal_current_handle())
2762                 return __ext4_normal_writepage(page, wbc);
2763
2764         redirty_page_for_writepage(wbc, page);
2765         unlock_page(page);
2766         return 0;
2767 }
2768
2769 static int __ext4_journalled_writepage(struct page *page,
2770                                 struct writeback_control *wbc)
2771 {
2772         struct address_space *mapping = page->mapping;
2773         struct inode *inode = mapping->host;
2774         struct buffer_head *page_bufs;
2775         handle_t *handle = NULL;
2776         int ret = 0;
2777         int err;
2778
2779         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2780                                         ext4_normal_get_block_write);
2781         if (ret != 0)
2782                 goto out_unlock;
2783
2784         page_bufs = page_buffers(page);
2785         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2786                                                                 bget_one);
2787         /* As soon as we unlock the page, it can go away, but we have
2788          * references to buffers so we are safe */
2789         unlock_page(page);
2790
2791         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2792         if (IS_ERR(handle)) {
2793                 ret = PTR_ERR(handle);
2794                 goto out;
2795         }
2796
2797         ret = walk_page_buffers(handle, page_bufs, 0,
2798                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2799
2800         err = walk_page_buffers(handle, page_bufs, 0,
2801                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2802         if (ret == 0)
2803                 ret = err;
2804         err = ext4_journal_stop(handle);
2805         if (!ret)
2806                 ret = err;
2807
2808         walk_page_buffers(handle, page_bufs, 0,
2809                                 PAGE_CACHE_SIZE, NULL, bput_one);
2810         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2811         goto out;
2812
2813 out_unlock:
2814         unlock_page(page);
2815 out:
2816         return ret;
2817 }
2818
2819 static int ext4_journalled_writepage(struct page *page,
2820                                 struct writeback_control *wbc)
2821 {
2822         struct inode *inode = page->mapping->host;
2823         loff_t size = i_size_read(inode);
2824         loff_t len;
2825
2826         J_ASSERT(PageLocked(page));
2827         if (page->index == size >> PAGE_CACHE_SHIFT)
2828                 len = size & ~PAGE_CACHE_MASK;
2829         else
2830                 len = PAGE_CACHE_SIZE;
2831
2832         if (page_has_buffers(page)) {
2833                 /* if page has buffers it should all be mapped
2834                  * and allocated. If there are not buffers attached
2835                  * to the page we know the page is dirty but it lost
2836                  * buffers. That means that at some moment in time
2837                  * after write_begin() / write_end() has been called
2838                  * all buffers have been clean and thus they must have been
2839                  * written at least once. So they are all mapped and we can
2840                  * happily proceed with mapping them and writing the page.
2841                  */
2842                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2843                                         ext4_bh_unmapped_or_delay));
2844         }
2845
2846         if (ext4_journal_current_handle())
2847                 goto no_write;
2848
2849         if (PageChecked(page)) {
2850                 /*
2851                  * It's mmapped pagecache.  Add buffers and journal it.  There
2852                  * doesn't seem much point in redirtying the page here.
2853                  */
2854                 ClearPageChecked(page);
2855                 return __ext4_journalled_writepage(page, wbc);
2856         } else {
2857                 /*
2858                  * It may be a page full of checkpoint-mode buffers.  We don't
2859                  * really know unless we go poke around in the buffer_heads.
2860                  * But block_write_full_page will do the right thing.
2861                  */
2862                 return block_write_full_page(page,
2863                                                 ext4_normal_get_block_write,
2864                                                 wbc);
2865         }
2866 no_write:
2867         redirty_page_for_writepage(wbc, page);
2868         unlock_page(page);
2869         return 0;
2870 }
2871
2872 static int ext4_readpage(struct file *file, struct page *page)
2873 {
2874         return mpage_readpage(page, ext4_get_block);
2875 }
2876
2877 static int
2878 ext4_readpages(struct file *file, struct address_space *mapping,
2879                 struct list_head *pages, unsigned nr_pages)
2880 {
2881         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2882 }
2883
2884 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2885 {
2886         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2887
2888         /*
2889          * If it's a full truncate we just forget about the pending dirtying
2890          */
2891         if (offset == 0)
2892                 ClearPageChecked(page);
2893
2894         jbd2_journal_invalidatepage(journal, page, offset);
2895 }
2896
2897 static int ext4_releasepage(struct page *page, gfp_t wait)
2898 {
2899         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2900
2901         WARN_ON(PageChecked(page));
2902         if (!page_has_buffers(page))
2903                 return 0;
2904         return jbd2_journal_try_to_free_buffers(journal, page, wait);
2905 }
2906
2907 /*
2908  * If the O_DIRECT write will extend the file then add this inode to the
2909  * orphan list.  So recovery will truncate it back to the original size
2910  * if the machine crashes during the write.
2911  *
2912  * If the O_DIRECT write is intantiating holes inside i_size and the machine
2913  * crashes then stale disk data _may_ be exposed inside the file. But current
2914  * VFS code falls back into buffered path in that case so we are safe.
2915  */
2916 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2917                         const struct iovec *iov, loff_t offset,
2918                         unsigned long nr_segs)
2919 {
2920         struct file *file = iocb->ki_filp;
2921         struct inode *inode = file->f_mapping->host;
2922         struct ext4_inode_info *ei = EXT4_I(inode);
2923         handle_t *handle;
2924         ssize_t ret;
2925         int orphan = 0;
2926         size_t count = iov_length(iov, nr_segs);
2927
2928         if (rw == WRITE) {
2929                 loff_t final_size = offset + count;
2930
2931                 if (final_size > inode->i_size) {
2932                         /* Credits for sb + inode write */
2933                         handle = ext4_journal_start(inode, 2);
2934                         if (IS_ERR(handle)) {
2935                                 ret = PTR_ERR(handle);
2936                                 goto out;
2937                         }
2938                         ret = ext4_orphan_add(handle, inode);
2939                         if (ret) {
2940                                 ext4_journal_stop(handle);
2941                                 goto out;
2942                         }
2943                         orphan = 1;
2944                         ei->i_disksize = inode->i_size;
2945                         ext4_journal_stop(handle);
2946                 }
2947         }
2948
2949         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2950                                  offset, nr_segs,
2951                                  ext4_get_block, NULL);
2952
2953         if (orphan) {
2954                 int err;
2955
2956                 /* Credits for sb + inode write */
2957                 handle = ext4_journal_start(inode, 2);
2958                 if (IS_ERR(handle)) {
2959                         /* This is really bad luck. We've written the data
2960                          * but cannot extend i_size. Bail out and pretend
2961                          * the write failed... */
2962                         ret = PTR_ERR(handle);
2963                         goto out;
2964                 }
2965                 if (inode->i_nlink)
2966                         ext4_orphan_del(handle, inode);
2967                 if (ret > 0) {
2968                         loff_t end = offset + ret;
2969                         if (end > inode->i_size) {
2970                                 ei->i_disksize = end;
2971                                 i_size_write(inode, end);
2972                                 /*
2973                                  * We're going to return a positive `ret'
2974                                  * here due to non-zero-length I/O, so there's
2975                                  * no way of reporting error returns from
2976                                  * ext4_mark_inode_dirty() to userspace.  So
2977                                  * ignore it.
2978                                  */
2979                                 ext4_mark_inode_dirty(handle, inode);
2980                         }
2981                 }
2982                 err = ext4_journal_stop(handle);
2983                 if (ret == 0)
2984                         ret = err;
2985         }
2986 out:
2987         return ret;
2988 }
2989
2990 /*
2991  * Pages can be marked dirty completely asynchronously from ext4's journalling
2992  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
2993  * much here because ->set_page_dirty is called under VFS locks.  The page is
2994  * not necessarily locked.
2995  *
2996  * We cannot just dirty the page and leave attached buffers clean, because the
2997  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
2998  * or jbddirty because all the journalling code will explode.
2999  *
3000  * So what we do is to mark the page "pending dirty" and next time writepage
3001  * is called, propagate that into the buffers appropriately.
3002  */
3003 static int ext4_journalled_set_page_dirty(struct page *page)
3004 {
3005         SetPageChecked(page);
3006         return __set_page_dirty_nobuffers(page);
3007 }
3008
3009 static const struct address_space_operations ext4_ordered_aops = {
3010         .readpage               = ext4_readpage,
3011         .readpages              = ext4_readpages,
3012         .writepage              = ext4_normal_writepage,
3013         .sync_page              = block_sync_page,
3014         .write_begin            = ext4_write_begin,
3015         .write_end              = ext4_ordered_write_end,
3016         .bmap                   = ext4_bmap,
3017         .invalidatepage         = ext4_invalidatepage,
3018         .releasepage            = ext4_releasepage,
3019         .direct_IO              = ext4_direct_IO,
3020         .migratepage            = buffer_migrate_page,
3021         .is_partially_uptodate  = block_is_partially_uptodate,
3022 };
3023
3024 static const struct address_space_operations ext4_writeback_aops = {
3025         .readpage               = ext4_readpage,
3026         .readpages              = ext4_readpages,
3027         .writepage              = ext4_normal_writepage,
3028         .sync_page              = block_sync_page,
3029         .write_begin            = ext4_write_begin,
3030         .write_end              = ext4_writeback_write_end,
3031         .bmap                   = ext4_bmap,
3032         .invalidatepage         = ext4_invalidatepage,
3033         .releasepage            = ext4_releasepage,
3034         .direct_IO              = ext4_direct_IO,
3035         .migratepage            = buffer_migrate_page,
3036         .is_partially_uptodate  = block_is_partially_uptodate,
3037 };
3038
3039 static const struct address_space_operations ext4_journalled_aops = {
3040         .readpage               = ext4_readpage,
3041         .readpages              = ext4_readpages,
3042         .writepage              = ext4_journalled_writepage,
3043         .sync_page              = block_sync_page,
3044         .write_begin            = ext4_write_begin,
3045         .write_end              = ext4_journalled_write_end,
3046         .set_page_dirty         = ext4_journalled_set_page_dirty,
3047         .bmap                   = ext4_bmap,
3048         .invalidatepage         = ext4_invalidatepage,
3049         .releasepage            = ext4_releasepage,
3050         .is_partially_uptodate  = block_is_partially_uptodate,
3051 };
3052
3053 static const struct address_space_operations ext4_da_aops = {
3054         .readpage               = ext4_readpage,
3055         .readpages              = ext4_readpages,
3056         .writepage              = ext4_da_writepage,
3057         .writepages             = ext4_da_writepages,
3058         .sync_page              = block_sync_page,
3059         .write_begin            = ext4_da_write_begin,
3060         .write_end              = ext4_da_write_end,
3061         .bmap                   = ext4_bmap,
3062         .invalidatepage         = ext4_da_invalidatepage,
3063         .releasepage            = ext4_releasepage,
3064         .direct_IO              = ext4_direct_IO,
3065         .migratepage            = buffer_migrate_page,
3066         .is_partially_uptodate  = block_is_partially_uptodate,
3067 };
3068
3069 void ext4_set_aops(struct inode *inode)
3070 {
3071         if (ext4_should_order_data(inode) &&
3072                 test_opt(inode->i_sb, DELALLOC))
3073                 inode->i_mapping->a_ops = &ext4_da_aops;
3074         else if (ext4_should_order_data(inode))
3075                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3076         else if (ext4_should_writeback_data(inode) &&
3077                  test_opt(inode->i_sb, DELALLOC))
3078                 inode->i_mapping->a_ops = &ext4_da_aops;
3079         else if (ext4_should_writeback_data(inode))
3080                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3081         else
3082                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3083 }
3084
3085 /*
3086  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3087  * up to the end of the block which corresponds to `from'.
3088  * This required during truncate. We need to physically zero the tail end
3089  * of that block so it doesn't yield old data if the file is later grown.
3090  */
3091 int ext4_block_truncate_page(handle_t *handle,
3092                 struct address_space *mapping, loff_t from)
3093 {
3094         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3095         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3096         unsigned blocksize, length, pos;
3097         ext4_lblk_t iblock;
3098         struct inode *inode = mapping->host;
3099         struct buffer_head *bh;
3100         struct page *page;
3101         int err = 0;
3102
3103         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3104         if (!page)
3105                 return -EINVAL;
3106
3107         blocksize = inode->i_sb->s_blocksize;
3108         length = blocksize - (offset & (blocksize - 1));
3109         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3110
3111         /*
3112          * For "nobh" option,  we can only work if we don't need to
3113          * read-in the page - otherwise we create buffers to do the IO.
3114          */
3115         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3116              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3117                 zero_user(page, offset, length);
3118                 set_page_dirty(page);
3119                 goto unlock;
3120         }
3121
3122         if (!page_has_buffers(page))
3123                 create_empty_buffers(page, blocksize, 0);
3124
3125         /* Find the buffer that contains "offset" */
3126         bh = page_buffers(page);
3127         pos = blocksize;
3128         while (offset >= pos) {
3129                 bh = bh->b_this_page;
3130                 iblock++;
3131                 pos += blocksize;
3132         }
3133
3134         err = 0;
3135         if (buffer_freed(bh)) {
3136                 BUFFER_TRACE(bh, "freed: skip");
3137                 goto unlock;
3138         }
3139
3140         if (!buffer_mapped(bh)) {
3141                 BUFFER_TRACE(bh, "unmapped");
3142                 ext4_get_block(inode, iblock, bh, 0);
3143                 /* unmapped? It's a hole - nothing to do */
3144                 if (!buffer_mapped(bh)) {
3145                         BUFFER_TRACE(bh, "still unmapped");
3146                         goto unlock;
3147                 }
3148         }
3149
3150         /* Ok, it's mapped. Make sure it's up-to-date */
3151         if (PageUptodate(page))
3152                 set_buffer_uptodate(bh);
3153
3154         if (!buffer_uptodate(bh)) {
3155                 err = -EIO;
3156                 ll_rw_block(READ, 1, &bh);
3157                 wait_on_buffer(bh);
3158                 /* Uhhuh. Read error. Complain and punt. */
3159                 if (!buffer_uptodate(bh))
3160                         goto unlock;
3161         }
3162
3163         if (ext4_should_journal_data(inode)) {
3164                 BUFFER_TRACE(bh, "get write access");
3165                 err = ext4_journal_get_write_access(handle, bh);
3166                 if (err)
3167                         goto unlock;
3168         }
3169
3170         zero_user(page, offset, length);
3171
3172         BUFFER_TRACE(bh, "zeroed end of block");
3173
3174         err = 0;
3175         if (ext4_should_journal_data(inode)) {
3176                 err = ext4_journal_dirty_metadata(handle, bh);
3177         } else {
3178                 if (ext4_should_order_data(inode))
3179                         err = ext4_jbd2_file_inode(handle, inode);
3180                 mark_buffer_dirty(bh);
3181         }
3182
3183 unlock:
3184         unlock_page(page);
3185         page_cache_release(page);
3186         return err;
3187 }
3188
3189 /*
3190  * Probably it should be a library function... search for first non-zero word
3191  * or memcmp with zero_page, whatever is better for particular architecture.
3192  * Linus?
3193  */
3194 static inline int all_zeroes(__le32 *p, __le32 *q)
3195 {
3196         while (p < q)
3197                 if (*p++)
3198                         return 0;
3199         return 1;
3200 }
3201
3202 /**
3203  *      ext4_find_shared - find the indirect blocks for partial truncation.
3204  *      @inode:   inode in question
3205  *      @depth:   depth of the affected branch
3206  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3207  *      @chain:   place to store the pointers to partial indirect blocks
3208  *      @top:     place to the (detached) top of branch
3209  *
3210  *      This is a helper function used by ext4_truncate().
3211  *
3212  *      When we do truncate() we may have to clean the ends of several
3213  *      indirect blocks but leave the blocks themselves alive. Block is
3214  *      partially truncated if some data below the new i_size is refered
3215  *      from it (and it is on the path to the first completely truncated
3216  *      data block, indeed).  We have to free the top of that path along
3217  *      with everything to the right of the path. Since no allocation
3218  *      past the truncation point is possible until ext4_truncate()
3219  *      finishes, we may safely do the latter, but top of branch may
3220  *      require special attention - pageout below the truncation point
3221  *      might try to populate it.
3222  *
3223  *      We atomically detach the top of branch from the tree, store the
3224  *      block number of its root in *@top, pointers to buffer_heads of
3225  *      partially truncated blocks - in @chain[].bh and pointers to
3226  *      their last elements that should not be removed - in
3227  *      @chain[].p. Return value is the pointer to last filled element
3228  *      of @chain.
3229  *
3230  *      The work left to caller to do the actual freeing of subtrees:
3231  *              a) free the subtree starting from *@top
3232  *              b) free the subtrees whose roots are stored in
3233  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3234  *              c) free the subtrees growing from the inode past the @chain[0].
3235  *                      (no partially truncated stuff there).  */
3236
3237 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3238                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3239 {
3240         Indirect *partial, *p;
3241         int k, err;
3242
3243         *top = 0;
3244         /* Make k index the deepest non-null offest + 1 */
3245         for (k = depth; k > 1 && !offsets[k-1]; k--)
3246                 ;
3247         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3248         /* Writer: pointers */
3249         if (!partial)
3250                 partial = chain + k-1;
3251         /*
3252          * If the branch acquired continuation since we've looked at it -
3253          * fine, it should all survive and (new) top doesn't belong to us.
3254          */
3255         if (!partial->key && *partial->p)
3256                 /* Writer: end */
3257                 goto no_top;
3258         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3259                 ;
3260         /*
3261          * OK, we've found the last block that must survive. The rest of our
3262          * branch should be detached before unlocking. However, if that rest
3263          * of branch is all ours and does not grow immediately from the inode
3264          * it's easier to cheat and just decrement partial->p.
3265          */
3266         if (p == chain + k - 1 && p > chain) {
3267                 p->p--;
3268         } else {
3269                 *top = *p->p;
3270                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3271 #if 0
3272                 *p->p = 0;
3273 #endif
3274         }
3275         /* Writer: end */
3276
3277         while (partial > p) {
3278                 brelse(partial->bh);
3279                 partial--;
3280         }
3281 no_top:
3282         return partial;
3283 }
3284
3285 /*
3286  * Zero a number of block pointers in either an inode or an indirect block.
3287  * If we restart the transaction we must again get write access to the
3288  * indirect block for further modification.
3289  *
3290  * We release `count' blocks on disk, but (last - first) may be greater
3291  * than `count' because there can be holes in there.
3292  */
3293 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3294                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3295                 unsigned long count, __le32 *first, __le32 *last)
3296 {
3297         __le32 *p;
3298         if (try_to_extend_transaction(handle, inode)) {
3299                 if (bh) {
3300                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3301                         ext4_journal_dirty_metadata(handle, bh);
3302                 }
3303                 ext4_mark_inode_dirty(handle, inode);
3304                 ext4_journal_test_restart(handle, inode);
3305                 if (bh) {
3306                         BUFFER_TRACE(bh, "retaking write access");
3307                         ext4_journal_get_write_access(handle, bh);
3308                 }
3309         }
3310
3311         /*
3312          * Any buffers which are on the journal will be in memory. We find
3313          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3314          * on them.  We've already detached each block from the file, so
3315          * bforget() in jbd2_journal_forget() should be safe.
3316          *
3317          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3318          */
3319         for (p = first; p < last; p++) {
3320                 u32 nr = le32_to_cpu(*p);
3321                 if (nr) {
3322                         struct buffer_head *tbh;
3323
3324                         *p = 0;
3325                         tbh = sb_find_get_block(inode->i_sb, nr);
3326                         ext4_forget(handle, 0, inode, tbh, nr);
3327                 }
3328         }
3329
3330         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3331 }
3332
3333 /**
3334  * ext4_free_data - free a list of data blocks
3335  * @handle:     handle for this transaction
3336  * @inode:      inode we are dealing with
3337  * @this_bh:    indirect buffer_head which contains *@first and *@last
3338  * @first:      array of block numbers
3339  * @last:       points immediately past the end of array
3340  *
3341  * We are freeing all blocks refered from that array (numbers are stored as
3342  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3343  *
3344  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3345  * blocks are contiguous then releasing them at one time will only affect one
3346  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3347  * actually use a lot of journal space.
3348  *
3349  * @this_bh will be %NULL if @first and @last point into the inode's direct
3350  * block pointers.
3351  */
3352 static void ext4_free_data(handle_t *handle, struct inode *inode,
3353                            struct buffer_head *this_bh,
3354                            __le32 *first, __le32 *last)
3355 {
3356         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3357         unsigned long count = 0;            /* Number of blocks in the run */
3358         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3359                                                corresponding to
3360                                                block_to_free */
3361         ext4_fsblk_t nr;                    /* Current block # */
3362         __le32 *p;                          /* Pointer into inode/ind
3363                                                for current block */
3364         int err;
3365
3366         if (this_bh) {                          /* For indirect block */
3367                 BUFFER_TRACE(this_bh, "get_write_access");
3368                 err = ext4_journal_get_write_access(handle, this_bh);
3369                 /* Important: if we can't update the indirect pointers
3370                  * to the blocks, we can't free them. */
3371                 if (err)
3372                         return;
3373         }
3374
3375         for (p = first; p < last; p++) {
3376                 nr = le32_to_cpu(*p);
3377                 if (nr) {
3378                         /* accumulate blocks to free if they're contiguous */
3379                         if (count == 0) {
3380                                 block_to_free = nr;
3381                                 block_to_free_p = p;
3382                                 count = 1;
3383                         } else if (nr == block_to_free + count) {
3384                                 count++;
3385                         } else {
3386                                 ext4_clear_blocks(handle, inode, this_bh,
3387                                                   block_to_free,
3388                                                   count, block_to_free_p, p);
3389                                 block_to_free = nr;
3390                                 block_to_free_p = p;
3391                                 count = 1;
3392                         }
3393                 }
3394         }
3395
3396         if (count > 0)
3397                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3398                                   count, block_to_free_p, p);
3399
3400         if (this_bh) {
3401                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3402
3403                 /*
3404                  * The buffer head should have an attached journal head at this
3405                  * point. However, if the data is corrupted and an indirect
3406                  * block pointed to itself, it would have been detached when
3407                  * the block was cleared. Check for this instead of OOPSing.
3408                  */
3409                 if (bh2jh(this_bh))
3410                         ext4_journal_dirty_metadata(handle, this_bh);
3411                 else
3412                         ext4_error(inode->i_sb, __func__,
3413                                    "circular indirect block detected, "
3414                                    "inode=%lu, block=%llu",
3415                                    inode->i_ino,
3416                                    (unsigned long long) this_bh->b_blocknr);
3417         }
3418 }
3419
3420 /**
3421  *      ext4_free_branches - free an array of branches
3422  *      @handle: JBD handle for this transaction
3423  *      @inode: inode we are dealing with
3424  *      @parent_bh: the buffer_head which contains *@first and *@last
3425  *      @first: array of block numbers
3426  *      @last:  pointer immediately past the end of array
3427  *      @depth: depth of the branches to free
3428  *
3429  *      We are freeing all blocks refered from these branches (numbers are
3430  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3431  *      appropriately.
3432  */
3433 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3434                                struct buffer_head *parent_bh,
3435                                __le32 *first, __le32 *last, int depth)
3436 {
3437         ext4_fsblk_t nr;
3438         __le32 *p;
3439
3440         if (is_handle_aborted(handle))
3441                 return;
3442
3443         if (depth--) {
3444                 struct buffer_head *bh;
3445                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3446                 p = last;
3447                 while (--p >= first) {
3448                         nr = le32_to_cpu(*p);
3449                         if (!nr)
3450                                 continue;               /* A hole */
3451
3452                         /* Go read the buffer for the next level down */
3453                         bh = sb_bread(inode->i_sb, nr);
3454
3455                         /*
3456                          * A read failure? Report error and clear slot
3457                          * (should be rare).
3458                          */
3459                         if (!bh) {
3460                                 ext4_error(inode->i_sb, "ext4_free_branches",
3461                                            "Read failure, inode=%lu, block=%llu",
3462                                            inode->i_ino, nr);
3463                                 continue;
3464                         }
3465
3466                         /* This zaps the entire block.  Bottom up. */
3467                         BUFFER_TRACE(bh, "free child branches");
3468                         ext4_free_branches(handle, inode, bh,
3469                                         (__le32 *) bh->b_data,
3470                                         (__le32 *) bh->b_data + addr_per_block,
3471                                         depth);
3472
3473                         /*
3474                          * We've probably journalled the indirect block several
3475                          * times during the truncate.  But it's no longer
3476                          * needed and we now drop it from the transaction via
3477                          * jbd2_journal_revoke().
3478                          *
3479                          * That's easy if it's exclusively part of this
3480                          * transaction.  But if it's part of the committing
3481                          * transaction then jbd2_journal_forget() will simply
3482                          * brelse() it.  That means that if the underlying
3483                          * block is reallocated in ext4_get_block(),
3484                          * unmap_underlying_metadata() will find this block
3485                          * and will try to get rid of it.  damn, damn.
3486                          *
3487                          * If this block has already been committed to the
3488                          * journal, a revoke record will be written.  And
3489                          * revoke records must be emitted *before* clearing
3490                          * this block's bit in the bitmaps.
3491                          */
3492                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3493
3494                         /*
3495                          * Everything below this this pointer has been
3496                          * released.  Now let this top-of-subtree go.
3497                          *
3498                          * We want the freeing of this indirect block to be
3499                          * atomic in the journal with the updating of the
3500                          * bitmap block which owns it.  So make some room in
3501                          * the journal.
3502                          *
3503                          * We zero the parent pointer *after* freeing its
3504                          * pointee in the bitmaps, so if extend_transaction()
3505                          * for some reason fails to put the bitmap changes and
3506                          * the release into the same transaction, recovery
3507                          * will merely complain about releasing a free block,
3508                          * rather than leaking blocks.
3509                          */
3510                         if (is_handle_aborted(handle))
3511                                 return;
3512                         if (try_to_extend_transaction(handle, inode)) {
3513                                 ext4_mark_inode_dirty(handle, inode);
3514                                 ext4_journal_test_restart(handle, inode);
3515                         }
3516
3517                         ext4_free_blocks(handle, inode, nr, 1, 1);
3518
3519                         if (parent_bh) {
3520                                 /*
3521                                  * The block which we have just freed is
3522                                  * pointed to by an indirect block: journal it
3523                                  */
3524                                 BUFFER_TRACE(parent_bh, "get_write_access");
3525                                 if (!ext4_journal_get_write_access(handle,
3526                                                                    parent_bh)){
3527                                         *p = 0;
3528                                         BUFFER_TRACE(parent_bh,
3529                                         "call ext4_journal_dirty_metadata");
3530                                         ext4_journal_dirty_metadata(handle,
3531                                                                     parent_bh);
3532                                 }
3533                         }
3534                 }
3535         } else {
3536                 /* We have reached the bottom of the tree. */
3537                 BUFFER_TRACE(parent_bh, "free data blocks");
3538                 ext4_free_data(handle, inode, parent_bh, first, last);
3539         }
3540 }
3541
3542 int ext4_can_truncate(struct inode *inode)
3543 {
3544         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3545                 return 0;
3546         if (S_ISREG(inode->i_mode))
3547                 return 1;
3548         if (S_ISDIR(inode->i_mode))
3549                 return 1;
3550         if (S_ISLNK(inode->i_mode))
3551                 return !ext4_inode_is_fast_symlink(inode);
3552         return 0;
3553 }
3554
3555 /*
3556  * ext4_truncate()
3557  *
3558  * We block out ext4_get_block() block instantiations across the entire
3559  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3560  * simultaneously on behalf of the same inode.
3561  *
3562  * As we work through the truncate and commmit bits of it to the journal there
3563  * is one core, guiding principle: the file's tree must always be consistent on
3564  * disk.  We must be able to restart the truncate after a crash.
3565  *
3566  * The file's tree may be transiently inconsistent in memory (although it
3567  * probably isn't), but whenever we close off and commit a journal transaction,
3568  * the contents of (the filesystem + the journal) must be consistent and
3569  * restartable.  It's pretty simple, really: bottom up, right to left (although
3570  * left-to-right works OK too).
3571  *
3572  * Note that at recovery time, journal replay occurs *before* the restart of
3573  * truncate against the orphan inode list.
3574  *
3575  * The committed inode has the new, desired i_size (which is the same as
3576  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3577  * that this inode's truncate did not complete and it will again call
3578  * ext4_truncate() to have another go.  So there will be instantiated blocks
3579  * to the right of the truncation point in a crashed ext4 filesystem.  But
3580  * that's fine - as long as they are linked from the inode, the post-crash
3581  * ext4_truncate() run will find them and release them.
3582  */
3583 void ext4_truncate(struct inode *inode)
3584 {
3585         handle_t *handle;
3586         struct ext4_inode_info *ei = EXT4_I(inode);
3587         __le32 *i_data = ei->i_data;
3588         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3589         struct address_space *mapping = inode->i_mapping;
3590         ext4_lblk_t offsets[4];
3591         Indirect chain[4];
3592         Indirect *partial;
3593         __le32 nr = 0;
3594         int n;
3595         ext4_lblk_t last_block;
3596         unsigned blocksize = inode->i_sb->s_blocksize;
3597
3598         if (!ext4_can_truncate(inode))
3599                 return;
3600
3601         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3602                 ext4_ext_truncate(inode);
3603                 return;
3604         }
3605
3606         handle = start_transaction(inode);
3607         if (IS_ERR(handle))
3608                 return;         /* AKPM: return what? */
3609
3610         last_block = (inode->i_size + blocksize-1)
3611                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3612
3613         if (inode->i_size & (blocksize - 1))
3614                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3615                         goto out_stop;
3616
3617         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3618         if (n == 0)
3619                 goto out_stop;  /* error */
3620
3621         /*
3622          * OK.  This truncate is going to happen.  We add the inode to the
3623          * orphan list, so that if this truncate spans multiple transactions,
3624          * and we crash, we will resume the truncate when the filesystem
3625          * recovers.  It also marks the inode dirty, to catch the new size.
3626          *
3627          * Implication: the file must always be in a sane, consistent
3628          * truncatable state while each transaction commits.
3629          */
3630         if (ext4_orphan_add(handle, inode))
3631                 goto out_stop;
3632
3633         /*
3634          * From here we block out all ext4_get_block() callers who want to
3635          * modify the block allocation tree.
3636          */
3637         down_write(&ei->i_data_sem);
3638
3639         ext4_discard_reservation(inode);
3640
3641         /*
3642          * The orphan list entry will now protect us from any crash which
3643          * occurs before the truncate completes, so it is now safe to propagate
3644          * the new, shorter inode size (held for now in i_size) into the
3645          * on-disk inode. We do this via i_disksize, which is the value which
3646          * ext4 *really* writes onto the disk inode.
3647          */
3648         ei->i_disksize = inode->i_size;
3649
3650         if (n == 1) {           /* direct blocks */
3651                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3652                                i_data + EXT4_NDIR_BLOCKS);
3653                 goto do_indirects;
3654         }
3655
3656         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3657         /* Kill the top of shared branch (not detached) */
3658         if (nr) {
3659                 if (partial == chain) {
3660                         /* Shared branch grows from the inode */
3661                         ext4_free_branches(handle, inode, NULL,
3662                                            &nr, &nr+1, (chain+n-1) - partial);
3663                         *partial->p = 0;
3664                         /*
3665                          * We mark the inode dirty prior to restart,
3666                          * and prior to stop.  No need for it here.
3667                          */
3668                 } else {
3669                         /* Shared branch grows from an indirect block */
3670                         BUFFER_TRACE(partial->bh, "get_write_access");
3671                         ext4_free_branches(handle, inode, partial->bh,
3672                                         partial->p,
3673                                         partial->p+1, (chain+n-1) - partial);
3674                 }
3675         }
3676         /* Clear the ends of indirect blocks on the shared branch */
3677         while (partial > chain) {
3678                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3679                                    (__le32*)partial->bh->b_data+addr_per_block,
3680                                    (chain+n-1) - partial);
3681                 BUFFER_TRACE(partial->bh, "call brelse");
3682                 brelse (partial->bh);
3683                 partial--;
3684         }
3685 do_indirects:
3686         /* Kill the remaining (whole) subtrees */
3687         switch (offsets[0]) {
3688         default:
3689                 nr = i_data[EXT4_IND_BLOCK];
3690                 if (nr) {
3691                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3692                         i_data[EXT4_IND_BLOCK] = 0;
3693                 }
3694         case EXT4_IND_BLOCK:
3695                 nr = i_data[EXT4_DIND_BLOCK];
3696                 if (nr) {
3697                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3698                         i_data[EXT4_DIND_BLOCK] = 0;
3699                 }
3700         case EXT4_DIND_BLOCK:
3701                 nr = i_data[EXT4_TIND_BLOCK];
3702                 if (nr) {
3703                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3704                         i_data[EXT4_TIND_BLOCK] = 0;
3705                 }
3706         case EXT4_TIND_BLOCK:
3707                 ;
3708         }
3709
3710         up_write(&ei->i_data_sem);
3711         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3712         ext4_mark_inode_dirty(handle, inode);
3713
3714         /*
3715          * In a multi-transaction truncate, we only make the final transaction
3716          * synchronous
3717          */
3718         if (IS_SYNC(inode))
3719                 handle->h_sync = 1;
3720 out_stop:
3721         /*
3722          * If this was a simple ftruncate(), and the file will remain alive
3723          * then we need to clear up the orphan record which we created above.
3724          * However, if this was a real unlink then we were called by
3725          * ext4_delete_inode(), and we allow that function to clean up the
3726          * orphan info for us.
3727          */
3728         if (inode->i_nlink)
3729                 ext4_orphan_del(handle, inode);
3730
3731         ext4_journal_stop(handle);
3732 }
3733
3734 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3735                 unsigned long ino, struct ext4_iloc *iloc)
3736 {
3737         ext4_group_t block_group;
3738         unsigned long offset;
3739         ext4_fsblk_t block;
3740         struct ext4_group_desc *gdp;
3741
3742         if (!ext4_valid_inum(sb, ino)) {
3743                 /*
3744                  * This error is already checked for in namei.c unless we are
3745                  * looking at an NFS filehandle, in which case no error
3746                  * report is needed
3747                  */
3748                 return 0;
3749         }
3750
3751         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3752         gdp = ext4_get_group_desc(sb, block_group, NULL);
3753         if (!gdp)
3754                 return 0;
3755
3756         /*
3757          * Figure out the offset within the block group inode table
3758          */
3759         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3760                 EXT4_INODE_SIZE(sb);
3761         block = ext4_inode_table(sb, gdp) +
3762                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3763
3764         iloc->block_group = block_group;
3765         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3766         return block;
3767 }
3768
3769 /*
3770  * ext4_get_inode_loc returns with an extra refcount against the inode's
3771  * underlying buffer_head on success. If 'in_mem' is true, we have all
3772  * data in memory that is needed to recreate the on-disk version of this
3773  * inode.
3774  */
3775 static int __ext4_get_inode_loc(struct inode *inode,
3776                                 struct ext4_iloc *iloc, int in_mem)
3777 {
3778         ext4_fsblk_t block;
3779         struct buffer_head *bh;
3780
3781         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3782         if (!block)
3783                 return -EIO;
3784
3785         bh = sb_getblk(inode->i_sb, block);
3786         if (!bh) {
3787                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3788                                 "unable to read inode block - "
3789                                 "inode=%lu, block=%llu",
3790                                  inode->i_ino, block);
3791                 return -EIO;
3792         }
3793         if (!buffer_uptodate(bh)) {
3794                 lock_buffer(bh);
3795
3796                 /*
3797                  * If the buffer has the write error flag, we have failed
3798                  * to write out another inode in the same block.  In this
3799                  * case, we don't have to read the block because we may
3800                  * read the old inode data successfully.
3801                  */
3802                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3803                         set_buffer_uptodate(bh);
3804
3805                 if (buffer_uptodate(bh)) {
3806                         /* someone brought it uptodate while we waited */
3807                         unlock_buffer(bh);
3808                         goto has_buffer;
3809                 }
3810
3811                 /*
3812                  * If we have all information of the inode in memory and this
3813                  * is the only valid inode in the block, we need not read the
3814                  * block.
3815                  */
3816                 if (in_mem) {
3817                         struct buffer_head *bitmap_bh;
3818                         struct ext4_group_desc *desc;
3819                         int inodes_per_buffer;
3820                         int inode_offset, i;
3821                         ext4_group_t block_group;
3822                         int start;
3823
3824                         block_group = (inode->i_ino - 1) /
3825                                         EXT4_INODES_PER_GROUP(inode->i_sb);
3826                         inodes_per_buffer = bh->b_size /
3827                                 EXT4_INODE_SIZE(inode->i_sb);
3828                         inode_offset = ((inode->i_ino - 1) %
3829                                         EXT4_INODES_PER_GROUP(inode->i_sb));
3830                         start = inode_offset & ~(inodes_per_buffer - 1);
3831
3832                         /* Is the inode bitmap in cache? */
3833                         desc = ext4_get_group_desc(inode->i_sb,
3834                                                 block_group, NULL);
3835                         if (!desc)
3836                                 goto make_io;
3837
3838                         bitmap_bh = sb_getblk(inode->i_sb,
3839                                 ext4_inode_bitmap(inode->i_sb, desc));
3840                         if (!bitmap_bh)
3841                                 goto make_io;
3842
3843                         /*
3844                          * If the inode bitmap isn't in cache then the
3845                          * optimisation may end up performing two reads instead
3846                          * of one, so skip it.
3847                          */
3848                         if (!buffer_uptodate(bitmap_bh)) {
3849                                 brelse(bitmap_bh);
3850                                 goto make_io;
3851                         }
3852                         for (i = start; i < start + inodes_per_buffer; i++) {
3853                                 if (i == inode_offset)
3854                                         continue;
3855                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3856                                         break;
3857                         }
3858                         brelse(bitmap_bh);
3859                         if (i == start + inodes_per_buffer) {
3860                                 /* all other inodes are free, so skip I/O */
3861                                 memset(bh->b_data, 0, bh->b_size);
3862                                 set_buffer_uptodate(bh);
3863                                 unlock_buffer(bh);
3864                                 goto has_buffer;
3865                         }
3866                 }
3867
3868 make_io:
3869                 /*
3870                  * There are other valid inodes in the buffer, this inode
3871                  * has in-inode xattrs, or we don't have this inode in memory.
3872                  * Read the block from disk.
3873                  */
3874                 get_bh(bh);
3875                 bh->b_end_io = end_buffer_read_sync;
3876                 submit_bh(READ_META, bh);
3877                 wait_on_buffer(bh);
3878                 if (!buffer_uptodate(bh)) {
3879                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
3880                                         "unable to read inode block - "
3881                                         "inode=%lu, block=%llu",
3882                                         inode->i_ino, block);
3883                         brelse(bh);
3884                         return -EIO;
3885                 }
3886         }
3887 has_buffer:
3888         iloc->bh = bh;
3889         return 0;
3890 }
3891
3892 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3893 {
3894         /* We have all inode data except xattrs in memory here. */
3895         return __ext4_get_inode_loc(inode, iloc,
3896                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3897 }
3898
3899 void ext4_set_inode_flags(struct inode *inode)
3900 {
3901         unsigned int flags = EXT4_I(inode)->i_flags;
3902
3903         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3904         if (flags & EXT4_SYNC_FL)
3905                 inode->i_flags |= S_SYNC;
3906         if (flags & EXT4_APPEND_FL)
3907                 inode->i_flags |= S_APPEND;
3908         if (flags & EXT4_IMMUTABLE_FL)
3909                 inode->i_flags |= S_IMMUTABLE;
3910         if (flags & EXT4_NOATIME_FL)
3911                 inode->i_flags |= S_NOATIME;
3912         if (flags & EXT4_DIRSYNC_FL)
3913                 inode->i_flags |= S_DIRSYNC;
3914 }
3915
3916 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3917 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3918 {
3919         unsigned int flags = ei->vfs_inode.i_flags;
3920
3921         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3922                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3923         if (flags & S_SYNC)
3924                 ei->i_flags |= EXT4_SYNC_FL;
3925         if (flags & S_APPEND)
3926                 ei->i_flags |= EXT4_APPEND_FL;
3927         if (flags & S_IMMUTABLE)
3928                 ei->i_flags |= EXT4_IMMUTABLE_FL;
3929         if (flags & S_NOATIME)
3930                 ei->i_flags |= EXT4_NOATIME_FL;
3931         if (flags & S_DIRSYNC)
3932                 ei->i_flags |= EXT4_DIRSYNC_FL;
3933 }
3934 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3935                                         struct ext4_inode_info *ei)
3936 {
3937         blkcnt_t i_blocks ;
3938         struct inode *inode = &(ei->vfs_inode);
3939         struct super_block *sb = inode->i_sb;
3940
3941         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3942                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3943                 /* we are using combined 48 bit field */
3944                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3945                                         le32_to_cpu(raw_inode->i_blocks_lo);
3946                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3947                         /* i_blocks represent file system block size */
3948                         return i_blocks  << (inode->i_blkbits - 9);
3949                 } else {
3950                         return i_blocks;
3951                 }
3952         } else {
3953                 return le32_to_cpu(raw_inode->i_blocks_lo);
3954         }
3955 }
3956
3957 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3958 {
3959         struct ext4_iloc iloc;
3960         struct ext4_inode *raw_inode;
3961         struct ext4_inode_info *ei;
3962         struct buffer_head *bh;
3963         struct inode *inode;
3964         long ret;
3965         int block;
3966
3967         inode = iget_locked(sb, ino);
3968         if (!inode)
3969                 return ERR_PTR(-ENOMEM);
3970         if (!(inode->i_state & I_NEW))
3971                 return inode;
3972
3973         ei = EXT4_I(inode);
3974 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3975         ei->i_acl = EXT4_ACL_NOT_CACHED;
3976         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
3977 #endif
3978         ei->i_block_alloc_info = NULL;
3979
3980         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3981         if (ret < 0)
3982                 goto bad_inode;
3983         bh = iloc.bh;
3984         raw_inode = ext4_raw_inode(&iloc);
3985         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3986         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3987         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3988         if (!(test_opt(inode->i_sb, NO_UID32))) {
3989                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3990                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3991         }
3992         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3993
3994         ei->i_state = 0;
3995         ei->i_dir_start_lookup = 0;
3996         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3997         /* We now have enough fields to check if the inode was active or not.
3998          * This is needed because nfsd might try to access dead inodes
3999          * the test is that same one that e2fsck uses
4000          * NeilBrown 1999oct15
4001          */
4002         if (inode->i_nlink == 0) {
4003                 if (inode->i_mode == 0 ||
4004                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4005                         /* this inode is deleted */
4006                         brelse(bh);
4007                         ret = -ESTALE;
4008                         goto bad_inode;
4009                 }
4010                 /* The only unlinked inodes we let through here have
4011                  * valid i_mode and are being read by the orphan
4012                  * recovery code: that's fine, we're about to complete
4013                  * the process of deleting those. */
4014         }
4015         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4016         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4017         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4018         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4019             cpu_to_le32(EXT4_OS_HURD)) {
4020                 ei->i_file_acl |=
4021                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4022         }
4023         inode->i_size = ext4_isize(raw_inode);
4024         ei->i_disksize = inode->i_size;
4025         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4026         ei->i_block_group = iloc.block_group;
4027         /*
4028          * NOTE! The in-memory inode i_data array is in little-endian order
4029          * even on big-endian machines: we do NOT byteswap the block numbers!
4030          */
4031         for (block = 0; block < EXT4_N_BLOCKS; block++)
4032                 ei->i_data[block] = raw_inode->i_block[block];
4033         INIT_LIST_HEAD(&ei->i_orphan);
4034
4035         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4036                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4037                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4038                     EXT4_INODE_SIZE(inode->i_sb)) {
4039                         brelse(bh);
4040                         ret = -EIO;
4041                         goto bad_inode;
4042                 }
4043                 if (ei->i_extra_isize == 0) {
4044                         /* The extra space is currently unused. Use it. */
4045                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4046                                             EXT4_GOOD_OLD_INODE_SIZE;
4047                 } else {
4048                         __le32 *magic = (void *)raw_inode +
4049                                         EXT4_GOOD_OLD_INODE_SIZE +
4050                                         ei->i_extra_isize;
4051                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4052                                  ei->i_state |= EXT4_STATE_XATTR;
4053                 }
4054         } else
4055                 ei->i_extra_isize = 0;
4056
4057         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4058         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4059         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4060         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4061
4062         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4063         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4064                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4065                         inode->i_version |=
4066                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4067         }
4068
4069         if (S_ISREG(inode->i_mode)) {
4070                 inode->i_op = &ext4_file_inode_operations;
4071                 inode->i_fop = &ext4_file_operations;
4072                 ext4_set_aops(inode);
4073         } else if (S_ISDIR(inode->i_mode)) {
4074                 inode->i_op = &ext4_dir_inode_operations;
4075                 inode->i_fop = &ext4_dir_operations;
4076         } else if (S_ISLNK(inode->i_mode)) {
4077                 if (ext4_inode_is_fast_symlink(inode))
4078                         inode->i_op = &ext4_fast_symlink_inode_operations;
4079                 else {
4080                         inode->i_op = &ext4_symlink_inode_operations;
4081                         ext4_set_aops(inode);
4082                 }
4083         } else {
4084                 inode->i_op = &ext4_special_inode_operations;
4085                 if (raw_inode->i_block[0])
4086                         init_special_inode(inode, inode->i_mode,
4087                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4088                 else
4089                         init_special_inode(inode, inode->i_mode,
4090                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4091         }
4092         brelse(iloc.bh);
4093         ext4_set_inode_flags(inode);
4094         unlock_new_inode(inode);
4095         return inode;
4096
4097 bad_inode:
4098         iget_failed(inode);
4099         return ERR_PTR(ret);
4100 }
4101
4102 static int ext4_inode_blocks_set(handle_t *handle,
4103                                 struct ext4_inode *raw_inode,
4104                                 struct ext4_inode_info *ei)
4105 {
4106         struct inode *inode = &(ei->vfs_inode);
4107         u64 i_blocks = inode->i_blocks;
4108         struct super_block *sb = inode->i_sb;
4109         int err = 0;
4110
4111         if (i_blocks <= ~0U) {
4112                 /*
4113                  * i_blocks can be represnted in a 32 bit variable
4114                  * as multiple of 512 bytes
4115                  */
4116                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4117                 raw_inode->i_blocks_high = 0;
4118                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4119         } else if (i_blocks <= 0xffffffffffffULL) {
4120                 /*
4121                  * i_blocks can be represented in a 48 bit variable
4122                  * as multiple of 512 bytes
4123                  */
4124                 err = ext4_update_rocompat_feature(handle, sb,
4125                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4126                 if (err)
4127                         goto  err_out;
4128                 /* i_block is stored in the split  48 bit fields */
4129                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4130                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4131                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4132         } else {
4133                 /*
4134                  * i_blocks should be represented in a 48 bit variable
4135                  * as multiple of  file system block size
4136                  */
4137                 err = ext4_update_rocompat_feature(handle, sb,
4138                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4139                 if (err)
4140                         goto  err_out;
4141                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4142                 /* i_block is stored in file system block size */
4143                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4144                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4145                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4146         }
4147 err_out:
4148         return err;
4149 }
4150
4151 /*
4152  * Post the struct inode info into an on-disk inode location in the
4153  * buffer-cache.  This gobbles the caller's reference to the
4154  * buffer_head in the inode location struct.
4155  *
4156  * The caller must have write access to iloc->bh.
4157  */
4158 static int ext4_do_update_inode(handle_t *handle,
4159                                 struct inode *inode,
4160                                 struct ext4_iloc *iloc)
4161 {
4162         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4163         struct ext4_inode_info *ei = EXT4_I(inode);
4164         struct buffer_head *bh = iloc->bh;
4165         int err = 0, rc, block;
4166
4167         /* For fields not not tracking in the in-memory inode,
4168          * initialise them to zero for new inodes. */
4169         if (ei->i_state & EXT4_STATE_NEW)
4170                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4171
4172         ext4_get_inode_flags(ei);
4173         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4174         if (!(test_opt(inode->i_sb, NO_UID32))) {
4175                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4176                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4177 /*
4178  * Fix up interoperability with old kernels. Otherwise, old inodes get
4179  * re-used with the upper 16 bits of the uid/gid intact
4180  */
4181                 if (!ei->i_dtime) {
4182                         raw_inode->i_uid_high =
4183                                 cpu_to_le16(high_16_bits(inode->i_uid));
4184                         raw_inode->i_gid_high =
4185                                 cpu_to_le16(high_16_bits(inode->i_gid));
4186                 } else {
4187                         raw_inode->i_uid_high = 0;
4188                         raw_inode->i_gid_high = 0;
4189                 }
4190         } else {
4191                 raw_inode->i_uid_low =
4192                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4193                 raw_inode->i_gid_low =
4194                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4195                 raw_inode->i_uid_high = 0;
4196                 raw_inode->i_gid_high = 0;
4197         }
4198         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4199
4200         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4201         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4202         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4203         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4204
4205         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4206                 goto out_brelse;
4207         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4208         /* clear the migrate flag in the raw_inode */
4209         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4210         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4211             cpu_to_le32(EXT4_OS_HURD))
4212                 raw_inode->i_file_acl_high =
4213                         cpu_to_le16(ei->i_file_acl >> 32);
4214         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4215         ext4_isize_set(raw_inode, ei->i_disksize);
4216         if (ei->i_disksize > 0x7fffffffULL) {
4217                 struct super_block *sb = inode->i_sb;
4218                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4219                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4220                                 EXT4_SB(sb)->s_es->s_rev_level ==
4221                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4222                         /* If this is the first large file
4223                          * created, add a flag to the superblock.
4224                          */
4225                         err = ext4_journal_get_write_access(handle,
4226                                         EXT4_SB(sb)->s_sbh);
4227                         if (err)
4228                                 goto out_brelse;
4229                         ext4_update_dynamic_rev(sb);
4230                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4231                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4232                         sb->s_dirt = 1;
4233                         handle->h_sync = 1;
4234                         err = ext4_journal_dirty_metadata(handle,
4235                                         EXT4_SB(sb)->s_sbh);
4236                 }
4237         }
4238         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4239         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4240                 if (old_valid_dev(inode->i_rdev)) {
4241                         raw_inode->i_block[0] =
4242                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4243                         raw_inode->i_block[1] = 0;
4244                 } else {
4245                         raw_inode->i_block[0] = 0;
4246                         raw_inode->i_block[1] =
4247                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4248                         raw_inode->i_block[2] = 0;
4249                 }
4250         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4251                 raw_inode->i_block[block] = ei->i_data[block];
4252
4253         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4254         if (ei->i_extra_isize) {
4255                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4256                         raw_inode->i_version_hi =
4257                         cpu_to_le32(inode->i_version >> 32);
4258                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4259         }
4260
4261
4262         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4263         rc = ext4_journal_dirty_metadata(handle, bh);
4264         if (!err)
4265                 err = rc;
4266         ei->i_state &= ~EXT4_STATE_NEW;
4267
4268 out_brelse:
4269         brelse(bh);
4270         ext4_std_error(inode->i_sb, err);
4271         return err;
4272 }
4273
4274 /*
4275  * ext4_write_inode()
4276  *
4277  * We are called from a few places:
4278  *
4279  * - Within generic_file_write() for O_SYNC files.
4280  *   Here, there will be no transaction running. We wait for any running
4281  *   trasnaction to commit.
4282  *
4283  * - Within sys_sync(), kupdate and such.
4284  *   We wait on commit, if tol to.
4285  *
4286  * - Within prune_icache() (PF_MEMALLOC == true)
4287  *   Here we simply return.  We can't afford to block kswapd on the
4288  *   journal commit.
4289  *
4290  * In all cases it is actually safe for us to return without doing anything,
4291  * because the inode has been copied into a raw inode buffer in
4292  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4293  * knfsd.
4294  *
4295  * Note that we are absolutely dependent upon all inode dirtiers doing the
4296  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4297  * which we are interested.
4298  *
4299  * It would be a bug for them to not do this.  The code:
4300  *
4301  *      mark_inode_dirty(inode)
4302  *      stuff();
4303  *      inode->i_size = expr;
4304  *
4305  * is in error because a kswapd-driven write_inode() could occur while
4306  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4307  * will no longer be on the superblock's dirty inode list.
4308  */
4309 int ext4_write_inode(struct inode *inode, int wait)
4310 {
4311         if (current->flags & PF_MEMALLOC)
4312                 return 0;
4313
4314         if (ext4_journal_current_handle()) {
4315                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4316                 dump_stack();
4317                 return -EIO;
4318         }
4319
4320         if (!wait)
4321                 return 0;
4322
4323         return ext4_force_commit(inode->i_sb);
4324 }
4325
4326 /*
4327  * ext4_setattr()
4328  *
4329  * Called from notify_change.
4330  *
4331  * We want to trap VFS attempts to truncate the file as soon as
4332  * possible.  In particular, we want to make sure that when the VFS
4333  * shrinks i_size, we put the inode on the orphan list and modify
4334  * i_disksize immediately, so that during the subsequent flushing of
4335  * dirty pages and freeing of disk blocks, we can guarantee that any
4336  * commit will leave the blocks being flushed in an unused state on
4337  * disk.  (On recovery, the inode will get truncated and the blocks will
4338  * be freed, so we have a strong guarantee that no future commit will
4339  * leave these blocks visible to the user.)
4340  *
4341  * Another thing we have to assure is that if we are in ordered mode
4342  * and inode is still attached to the committing transaction, we must
4343  * we start writeout of all the dirty pages which are being truncated.
4344  * This way we are sure that all the data written in the previous
4345  * transaction are already on disk (truncate waits for pages under
4346  * writeback).
4347  *
4348  * Called with inode->i_mutex down.
4349  */
4350 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4351 {
4352         struct inode *inode = dentry->d_inode;
4353         int error, rc = 0;
4354         const unsigned int ia_valid = attr->ia_valid;
4355
4356         error = inode_change_ok(inode, attr);
4357         if (error)
4358                 return error;
4359
4360         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4361                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4362                 handle_t *handle;
4363
4364                 /* (user+group)*(old+new) structure, inode write (sb,
4365                  * inode block, ? - but truncate inode update has it) */
4366                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4367                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4368                 if (IS_ERR(handle)) {
4369                         error = PTR_ERR(handle);
4370                         goto err_out;
4371                 }
4372                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4373                 if (error) {
4374                         ext4_journal_stop(handle);
4375                         return error;
4376                 }
4377                 /* Update corresponding info in inode so that everything is in
4378                  * one transaction */
4379                 if (attr->ia_valid & ATTR_UID)
4380                         inode->i_uid = attr->ia_uid;
4381                 if (attr->ia_valid & ATTR_GID)
4382                         inode->i_gid = attr->ia_gid;
4383                 error = ext4_mark_inode_dirty(handle, inode);
4384                 ext4_journal_stop(handle);
4385         }
4386
4387         if (attr->ia_valid & ATTR_SIZE) {
4388                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4389                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4390
4391                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4392                                 error = -EFBIG;
4393                                 goto err_out;
4394                         }
4395                 }
4396         }
4397
4398         if (S_ISREG(inode->i_mode) &&
4399             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4400                 handle_t *handle;
4401
4402                 handle = ext4_journal_start(inode, 3);
4403                 if (IS_ERR(handle)) {
4404                         error = PTR_ERR(handle);
4405                         goto err_out;
4406                 }
4407
4408                 error = ext4_orphan_add(handle, inode);
4409                 EXT4_I(inode)->i_disksize = attr->ia_size;
4410                 rc = ext4_mark_inode_dirty(handle, inode);
4411                 if (!error)
4412                         error = rc;
4413                 ext4_journal_stop(handle);
4414
4415                 if (ext4_should_order_data(inode)) {
4416                         error = ext4_begin_ordered_truncate(inode,
4417                                                             attr->ia_size);
4418                         if (error) {
4419                                 /* Do as much error cleanup as possible */
4420                                 handle = ext4_journal_start(inode, 3);
4421                                 if (IS_ERR(handle)) {
4422                                         ext4_orphan_del(NULL, inode);
4423                                         goto err_out;
4424                                 }
4425                                 ext4_orphan_del(handle, inode);
4426                                 ext4_journal_stop(handle);
4427                                 goto err_out;
4428                         }
4429                 }
4430         }
4431
4432         rc = inode_setattr(inode, attr);
4433
4434         /* If inode_setattr's call to ext4_truncate failed to get a
4435          * transaction handle at all, we need to clean up the in-core
4436          * orphan list manually. */
4437         if (inode->i_nlink)
4438                 ext4_orphan_del(NULL, inode);
4439
4440         if (!rc && (ia_valid & ATTR_MODE))
4441                 rc = ext4_acl_chmod(inode);
4442
4443 err_out:
4444         ext4_std_error(inode->i_sb, error);
4445         if (!error)
4446                 error = rc;
4447         return error;
4448 }
4449
4450 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4451                  struct kstat *stat)
4452 {
4453         struct inode *inode;
4454         unsigned long delalloc_blocks;
4455
4456         inode = dentry->d_inode;
4457         generic_fillattr(inode, stat);
4458
4459         /*
4460          * We can't update i_blocks if the block allocation is delayed
4461          * otherwise in the case of system crash before the real block
4462          * allocation is done, we will have i_blocks inconsistent with
4463          * on-disk file blocks.
4464          * We always keep i_blocks updated together with real
4465          * allocation. But to not confuse with user, stat
4466          * will return the blocks that include the delayed allocation
4467          * blocks for this file.
4468          */
4469         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4470         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4471         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4472
4473         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4474         return 0;
4475 }
4476
4477 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4478                                       int chunk)
4479 {
4480         int indirects;
4481
4482         /* if nrblocks are contiguous */
4483         if (chunk) {
4484                 /*
4485                  * With N contiguous data blocks, it need at most
4486                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4487                  * 2 dindirect blocks
4488                  * 1 tindirect block
4489                  */
4490                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4491                 return indirects + 3;
4492         }
4493         /*
4494          * if nrblocks are not contiguous, worse case, each block touch
4495          * a indirect block, and each indirect block touch a double indirect
4496          * block, plus a triple indirect block
4497          */
4498         indirects = nrblocks * 2 + 1;
4499         return indirects;
4500 }
4501
4502 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4503 {
4504         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4505                 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4506         return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4507 }
4508 /*
4509  * Account for index blocks, block groups bitmaps and block group
4510  * descriptor blocks if modify datablocks and index blocks
4511  * worse case, the indexs blocks spread over different block groups
4512  *
4513  * If datablocks are discontiguous, they are possible to spread over
4514  * different block groups too. If they are contiugous, with flexbg,
4515  * they could still across block group boundary.
4516  *
4517  * Also account for superblock, inode, quota and xattr blocks
4518  */
4519 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4520 {
4521         int groups, gdpblocks;
4522         int idxblocks;
4523         int ret = 0;
4524
4525         /*
4526          * How many index blocks need to touch to modify nrblocks?
4527          * The "Chunk" flag indicating whether the nrblocks is
4528          * physically contiguous on disk
4529          *
4530          * For Direct IO and fallocate, they calls get_block to allocate
4531          * one single extent at a time, so they could set the "Chunk" flag
4532          */
4533         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4534
4535         ret = idxblocks;
4536
4537         /*
4538          * Now let's see how many group bitmaps and group descriptors need
4539          * to account
4540          */
4541         groups = idxblocks;
4542         if (chunk)
4543                 groups += 1;
4544         else
4545                 groups += nrblocks;
4546
4547         gdpblocks = groups;
4548         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4549                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4550         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4551                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4552
4553         /* bitmaps and block group descriptor blocks */
4554         ret += groups + gdpblocks;
4555
4556         /* Blocks for super block, inode, quota and xattr blocks */
4557         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4558
4559         return ret;
4560 }
4561
4562 /*
4563  * Calulate the total number of credits to reserve to fit
4564  * the modification of a single pages into a single transaction,
4565  * which may include multiple chunks of block allocations.
4566  *
4567  * This could be called via ext4_write_begin()
4568  *
4569  * We need to consider the worse case, when
4570  * one new block per extent.
4571  */
4572 int ext4_writepage_trans_blocks(struct inode *inode)
4573 {
4574         int bpp = ext4_journal_blocks_per_page(inode);
4575         int ret;
4576
4577         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4578
4579         /* Account for data blocks for journalled mode */
4580         if (ext4_should_journal_data(inode))
4581                 ret += bpp;
4582         return ret;
4583 }
4584
4585 /*
4586  * Calculate the journal credits for a chunk of data modification.
4587  *
4588  * This is called from DIO, fallocate or whoever calling
4589  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4590  *
4591  * journal buffers for data blocks are not included here, as DIO
4592  * and fallocate do no need to journal data buffers.
4593  */
4594 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4595 {
4596         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4597 }
4598
4599 /*
4600  * The caller must have previously called ext4_reserve_inode_write().
4601  * Give this, we know that the caller already has write access to iloc->bh.
4602  */
4603 int ext4_mark_iloc_dirty(handle_t *handle,
4604                 struct inode *inode, struct ext4_iloc *iloc)
4605 {
4606         int err = 0;
4607
4608         if (test_opt(inode->i_sb, I_VERSION))
4609                 inode_inc_iversion(inode);
4610
4611         /* the do_update_inode consumes one bh->b_count */
4612         get_bh(iloc->bh);
4613
4614         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4615         err = ext4_do_update_inode(handle, inode, iloc);
4616         put_bh(iloc->bh);
4617         return err;
4618 }
4619
4620 /*
4621  * On success, We end up with an outstanding reference count against
4622  * iloc->bh.  This _must_ be cleaned up later.
4623  */
4624
4625 int
4626 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4627                          struct ext4_iloc *iloc)
4628 {
4629         int err = 0;
4630         if (handle) {
4631                 err = ext4_get_inode_loc(inode, iloc);
4632                 if (!err) {
4633                         BUFFER_TRACE(iloc->bh, "get_write_access");
4634                         err = ext4_journal_get_write_access(handle, iloc->bh);
4635                         if (err) {
4636                                 brelse(iloc->bh);
4637                                 iloc->bh = NULL;
4638                         }
4639                 }
4640         }
4641         ext4_std_error(inode->i_sb, err);
4642         return err;
4643 }
4644
4645 /*
4646  * Expand an inode by new_extra_isize bytes.
4647  * Returns 0 on success or negative error number on failure.
4648  */
4649 static int ext4_expand_extra_isize(struct inode *inode,
4650                                    unsigned int new_extra_isize,
4651                                    struct ext4_iloc iloc,
4652                                    handle_t *handle)
4653 {
4654         struct ext4_inode *raw_inode;
4655         struct ext4_xattr_ibody_header *header;
4656         struct ext4_xattr_entry *entry;
4657
4658         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4659                 return 0;
4660
4661         raw_inode = ext4_raw_inode(&iloc);
4662
4663         header = IHDR(inode, raw_inode);
4664         entry = IFIRST(header);
4665
4666         /* No extended attributes present */
4667         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4668                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4669                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4670                         new_extra_isize);
4671                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4672                 return 0;
4673         }
4674
4675         /* try to expand with EAs present */
4676         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4677                                           raw_inode, handle);
4678 }
4679
4680 /*
4681  * What we do here is to mark the in-core inode as clean with respect to inode
4682  * dirtiness (it may still be data-dirty).
4683  * This means that the in-core inode may be reaped by prune_icache
4684  * without having to perform any I/O.  This is a very good thing,
4685  * because *any* task may call prune_icache - even ones which
4686  * have a transaction open against a different journal.
4687  *
4688  * Is this cheating?  Not really.  Sure, we haven't written the
4689  * inode out, but prune_icache isn't a user-visible syncing function.
4690  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4691  * we start and wait on commits.
4692  *
4693  * Is this efficient/effective?  Well, we're being nice to the system
4694  * by cleaning up our inodes proactively so they can be reaped
4695  * without I/O.  But we are potentially leaving up to five seconds'
4696  * worth of inodes floating about which prune_icache wants us to
4697  * write out.  One way to fix that would be to get prune_icache()
4698  * to do a write_super() to free up some memory.  It has the desired
4699  * effect.
4700  */
4701 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4702 {
4703         struct ext4_iloc iloc;
4704         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4705         static unsigned int mnt_count;
4706         int err, ret;
4707
4708         might_sleep();
4709         err = ext4_reserve_inode_write(handle, inode, &iloc);
4710         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4711             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4712                 /*
4713                  * We need extra buffer credits since we may write into EA block
4714                  * with this same handle. If journal_extend fails, then it will
4715                  * only result in a minor loss of functionality for that inode.
4716                  * If this is felt to be critical, then e2fsck should be run to
4717                  * force a large enough s_min_extra_isize.
4718                  */
4719                 if ((jbd2_journal_extend(handle,
4720                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4721                         ret = ext4_expand_extra_isize(inode,
4722                                                       sbi->s_want_extra_isize,
4723                                                       iloc, handle);
4724                         if (ret) {
4725                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4726                                 if (mnt_count !=
4727                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4728                                         ext4_warning(inode->i_sb, __func__,
4729                                         "Unable to expand inode %lu. Delete"
4730                                         " some EAs or run e2fsck.",
4731                                         inode->i_ino);
4732                                         mnt_count =
4733                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4734                                 }
4735                         }
4736                 }
4737         }
4738         if (!err)
4739                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4740         return err;
4741 }
4742
4743 /*
4744  * ext4_dirty_inode() is called from __mark_inode_dirty()
4745  *
4746  * We're really interested in the case where a file is being extended.
4747  * i_size has been changed by generic_commit_write() and we thus need
4748  * to include the updated inode in the current transaction.
4749  *
4750  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4751  * are allocated to the file.
4752  *
4753  * If the inode is marked synchronous, we don't honour that here - doing
4754  * so would cause a commit on atime updates, which we don't bother doing.
4755  * We handle synchronous inodes at the highest possible level.
4756  */
4757 void ext4_dirty_inode(struct inode *inode)
4758 {
4759         handle_t *current_handle = ext4_journal_current_handle();
4760         handle_t *handle;
4761
4762         handle = ext4_journal_start(inode, 2);
4763         if (IS_ERR(handle))
4764                 goto out;
4765         if (current_handle &&
4766                 current_handle->h_transaction != handle->h_transaction) {
4767                 /* This task has a transaction open against a different fs */
4768                 printk(KERN_EMERG "%s: transactions do not match!\n",
4769                        __func__);
4770         } else {
4771                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4772                                 current_handle);
4773                 ext4_mark_inode_dirty(handle, inode);
4774         }
4775         ext4_journal_stop(handle);
4776 out:
4777         return;
4778 }
4779
4780 #if 0
4781 /*
4782  * Bind an inode's backing buffer_head into this transaction, to prevent
4783  * it from being flushed to disk early.  Unlike
4784  * ext4_reserve_inode_write, this leaves behind no bh reference and
4785  * returns no iloc structure, so the caller needs to repeat the iloc
4786  * lookup to mark the inode dirty later.
4787  */
4788 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4789 {
4790         struct ext4_iloc iloc;
4791
4792         int err = 0;
4793         if (handle) {
4794                 err = ext4_get_inode_loc(inode, &iloc);
4795                 if (!err) {
4796                         BUFFER_TRACE(iloc.bh, "get_write_access");
4797                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4798                         if (!err)
4799                                 err = ext4_journal_dirty_metadata(handle,
4800                                                                   iloc.bh);
4801                         brelse(iloc.bh);
4802                 }
4803         }
4804         ext4_std_error(inode->i_sb, err);
4805         return err;
4806 }
4807 #endif
4808
4809 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4810 {
4811         journal_t *journal;
4812         handle_t *handle;
4813         int err;
4814
4815         /*
4816          * We have to be very careful here: changing a data block's
4817          * journaling status dynamically is dangerous.  If we write a
4818          * data block to the journal, change the status and then delete
4819          * that block, we risk forgetting to revoke the old log record
4820          * from the journal and so a subsequent replay can corrupt data.
4821          * So, first we make sure that the journal is empty and that
4822          * nobody is changing anything.
4823          */
4824
4825         journal = EXT4_JOURNAL(inode);
4826         if (is_journal_aborted(journal))
4827                 return -EROFS;
4828
4829         jbd2_journal_lock_updates(journal);
4830         jbd2_journal_flush(journal);
4831
4832         /*
4833          * OK, there are no updates running now, and all cached data is
4834          * synced to disk.  We are now in a completely consistent state
4835          * which doesn't have anything in the journal, and we know that
4836          * no filesystem updates are running, so it is safe to modify
4837          * the inode's in-core data-journaling state flag now.
4838          */
4839
4840         if (val)
4841                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4842         else
4843                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4844         ext4_set_aops(inode);
4845
4846         jbd2_journal_unlock_updates(journal);
4847
4848         /* Finally we can mark the inode as dirty. */
4849
4850         handle = ext4_journal_start(inode, 1);
4851         if (IS_ERR(handle))
4852                 return PTR_ERR(handle);
4853
4854         err = ext4_mark_inode_dirty(handle, inode);
4855         handle->h_sync = 1;
4856         ext4_journal_stop(handle);
4857         ext4_std_error(inode->i_sb, err);
4858
4859         return err;
4860 }
4861
4862 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4863 {
4864         return !buffer_mapped(bh);
4865 }
4866
4867 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4868 {
4869         loff_t size;
4870         unsigned long len;
4871         int ret = -EINVAL;
4872         struct file *file = vma->vm_file;
4873         struct inode *inode = file->f_path.dentry->d_inode;
4874         struct address_space *mapping = inode->i_mapping;
4875
4876         /*
4877          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4878          * get i_mutex because we are already holding mmap_sem.
4879          */
4880         down_read(&inode->i_alloc_sem);
4881         size = i_size_read(inode);
4882         if (page->mapping != mapping || size <= page_offset(page)
4883             || !PageUptodate(page)) {
4884                 /* page got truncated from under us? */
4885                 goto out_unlock;
4886         }
4887         ret = 0;
4888         if (PageMappedToDisk(page))
4889                 goto out_unlock;
4890
4891         if (page->index == size >> PAGE_CACHE_SHIFT)
4892                 len = size & ~PAGE_CACHE_MASK;
4893         else
4894                 len = PAGE_CACHE_SIZE;
4895
4896         if (page_has_buffers(page)) {
4897                 /* return if we have all the buffers mapped */
4898                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4899                                        ext4_bh_unmapped))
4900                         goto out_unlock;
4901         }
4902         /*
4903          * OK, we need to fill the hole... Do write_begin write_end
4904          * to do block allocation/reservation.We are not holding
4905          * inode.i__mutex here. That allow * parallel write_begin,
4906          * write_end call. lock_page prevent this from happening
4907          * on the same page though
4908          */
4909         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4910                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4911         if (ret < 0)
4912                 goto out_unlock;
4913         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4914                         len, len, page, NULL);
4915         if (ret < 0)
4916                 goto out_unlock;
4917         ret = 0;
4918 out_unlock:
4919         up_read(&inode->i_alloc_sem);
4920         return ret;
4921 }