ext4: journal credits calulation cleanup and fix for non-extent writepage
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 static inline int ext4_begin_ordered_truncate(struct inode *inode,
45                                               loff_t new_size)
46 {
47         return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
48                                                    new_size);
49 }
50
51 static void ext4_invalidatepage(struct page *page, unsigned long offset);
52
53 /*
54  * Test whether an inode is a fast symlink.
55  */
56 static int ext4_inode_is_fast_symlink(struct inode *inode)
57 {
58         int ea_blocks = EXT4_I(inode)->i_file_acl ?
59                 (inode->i_sb->s_blocksize >> 9) : 0;
60
61         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
62 }
63
64 /*
65  * The ext4 forget function must perform a revoke if we are freeing data
66  * which has been journaled.  Metadata (eg. indirect blocks) must be
67  * revoked in all cases.
68  *
69  * "bh" may be NULL: a metadata block may have been freed from memory
70  * but there may still be a record of it in the journal, and that record
71  * still needs to be revoked.
72  */
73 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
74                         struct buffer_head *bh, ext4_fsblk_t blocknr)
75 {
76         int err;
77
78         might_sleep();
79
80         BUFFER_TRACE(bh, "enter");
81
82         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
83                   "data mode %lx\n",
84                   bh, is_metadata, inode->i_mode,
85                   test_opt(inode->i_sb, DATA_FLAGS));
86
87         /* Never use the revoke function if we are doing full data
88          * journaling: there is no need to, and a V1 superblock won't
89          * support it.  Otherwise, only skip the revoke on un-journaled
90          * data blocks. */
91
92         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
93             (!is_metadata && !ext4_should_journal_data(inode))) {
94                 if (bh) {
95                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
96                         return ext4_journal_forget(handle, bh);
97                 }
98                 return 0;
99         }
100
101         /*
102          * data!=journal && (is_metadata || should_journal_data(inode))
103          */
104         BUFFER_TRACE(bh, "call ext4_journal_revoke");
105         err = ext4_journal_revoke(handle, blocknr, bh);
106         if (err)
107                 ext4_abort(inode->i_sb, __func__,
108                            "error %d when attempting revoke", err);
109         BUFFER_TRACE(bh, "exit");
110         return err;
111 }
112
113 /*
114  * Work out how many blocks we need to proceed with the next chunk of a
115  * truncate transaction.
116  */
117 static unsigned long blocks_for_truncate(struct inode *inode)
118 {
119         ext4_lblk_t needed;
120
121         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
122
123         /* Give ourselves just enough room to cope with inodes in which
124          * i_blocks is corrupt: we've seen disk corruptions in the past
125          * which resulted in random data in an inode which looked enough
126          * like a regular file for ext4 to try to delete it.  Things
127          * will go a bit crazy if that happens, but at least we should
128          * try not to panic the whole kernel. */
129         if (needed < 2)
130                 needed = 2;
131
132         /* But we need to bound the transaction so we don't overflow the
133          * journal. */
134         if (needed > EXT4_MAX_TRANS_DATA)
135                 needed = EXT4_MAX_TRANS_DATA;
136
137         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
138 }
139
140 /*
141  * Truncate transactions can be complex and absolutely huge.  So we need to
142  * be able to restart the transaction at a conventient checkpoint to make
143  * sure we don't overflow the journal.
144  *
145  * start_transaction gets us a new handle for a truncate transaction,
146  * and extend_transaction tries to extend the existing one a bit.  If
147  * extend fails, we need to propagate the failure up and restart the
148  * transaction in the top-level truncate loop. --sct
149  */
150 static handle_t *start_transaction(struct inode *inode)
151 {
152         handle_t *result;
153
154         result = ext4_journal_start(inode, blocks_for_truncate(inode));
155         if (!IS_ERR(result))
156                 return result;
157
158         ext4_std_error(inode->i_sb, PTR_ERR(result));
159         return result;
160 }
161
162 /*
163  * Try to extend this transaction for the purposes of truncation.
164  *
165  * Returns 0 if we managed to create more room.  If we can't create more
166  * room, and the transaction must be restarted we return 1.
167  */
168 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
169 {
170         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
171                 return 0;
172         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
173                 return 0;
174         return 1;
175 }
176
177 /*
178  * Restart the transaction associated with *handle.  This does a commit,
179  * so before we call here everything must be consistently dirtied against
180  * this transaction.
181  */
182 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
183 {
184         jbd_debug(2, "restarting handle %p\n", handle);
185         return ext4_journal_restart(handle, blocks_for_truncate(inode));
186 }
187
188 /*
189  * Called at the last iput() if i_nlink is zero.
190  */
191 void ext4_delete_inode (struct inode * inode)
192 {
193         handle_t *handle;
194         int err;
195
196         if (ext4_should_order_data(inode))
197                 ext4_begin_ordered_truncate(inode, 0);
198         truncate_inode_pages(&inode->i_data, 0);
199
200         if (is_bad_inode(inode))
201                 goto no_delete;
202
203         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
204         if (IS_ERR(handle)) {
205                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
206                 /*
207                  * If we're going to skip the normal cleanup, we still need to
208                  * make sure that the in-core orphan linked list is properly
209                  * cleaned up.
210                  */
211                 ext4_orphan_del(NULL, inode);
212                 goto no_delete;
213         }
214
215         if (IS_SYNC(inode))
216                 handle->h_sync = 1;
217         inode->i_size = 0;
218         err = ext4_mark_inode_dirty(handle, inode);
219         if (err) {
220                 ext4_warning(inode->i_sb, __func__,
221                              "couldn't mark inode dirty (err %d)", err);
222                 goto stop_handle;
223         }
224         if (inode->i_blocks)
225                 ext4_truncate(inode);
226
227         /*
228          * ext4_ext_truncate() doesn't reserve any slop when it
229          * restarts journal transactions; therefore there may not be
230          * enough credits left in the handle to remove the inode from
231          * the orphan list and set the dtime field.
232          */
233         if (handle->h_buffer_credits < 3) {
234                 err = ext4_journal_extend(handle, 3);
235                 if (err > 0)
236                         err = ext4_journal_restart(handle, 3);
237                 if (err != 0) {
238                         ext4_warning(inode->i_sb, __func__,
239                                      "couldn't extend journal (err %d)", err);
240                 stop_handle:
241                         ext4_journal_stop(handle);
242                         goto no_delete;
243                 }
244         }
245
246         /*
247          * Kill off the orphan record which ext4_truncate created.
248          * AKPM: I think this can be inside the above `if'.
249          * Note that ext4_orphan_del() has to be able to cope with the
250          * deletion of a non-existent orphan - this is because we don't
251          * know if ext4_truncate() actually created an orphan record.
252          * (Well, we could do this if we need to, but heck - it works)
253          */
254         ext4_orphan_del(handle, inode);
255         EXT4_I(inode)->i_dtime  = get_seconds();
256
257         /*
258          * One subtle ordering requirement: if anything has gone wrong
259          * (transaction abort, IO errors, whatever), then we can still
260          * do these next steps (the fs will already have been marked as
261          * having errors), but we can't free the inode if the mark_dirty
262          * fails.
263          */
264         if (ext4_mark_inode_dirty(handle, inode))
265                 /* If that failed, just do the required in-core inode clear. */
266                 clear_inode(inode);
267         else
268                 ext4_free_inode(handle, inode);
269         ext4_journal_stop(handle);
270         return;
271 no_delete:
272         clear_inode(inode);     /* We must guarantee clearing of inode... */
273 }
274
275 typedef struct {
276         __le32  *p;
277         __le32  key;
278         struct buffer_head *bh;
279 } Indirect;
280
281 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
282 {
283         p->key = *(p->p = v);
284         p->bh = bh;
285 }
286
287 /**
288  *      ext4_block_to_path - parse the block number into array of offsets
289  *      @inode: inode in question (we are only interested in its superblock)
290  *      @i_block: block number to be parsed
291  *      @offsets: array to store the offsets in
292  *      @boundary: set this non-zero if the referred-to block is likely to be
293  *             followed (on disk) by an indirect block.
294  *
295  *      To store the locations of file's data ext4 uses a data structure common
296  *      for UNIX filesystems - tree of pointers anchored in the inode, with
297  *      data blocks at leaves and indirect blocks in intermediate nodes.
298  *      This function translates the block number into path in that tree -
299  *      return value is the path length and @offsets[n] is the offset of
300  *      pointer to (n+1)th node in the nth one. If @block is out of range
301  *      (negative or too large) warning is printed and zero returned.
302  *
303  *      Note: function doesn't find node addresses, so no IO is needed. All
304  *      we need to know is the capacity of indirect blocks (taken from the
305  *      inode->i_sb).
306  */
307
308 /*
309  * Portability note: the last comparison (check that we fit into triple
310  * indirect block) is spelled differently, because otherwise on an
311  * architecture with 32-bit longs and 8Kb pages we might get into trouble
312  * if our filesystem had 8Kb blocks. We might use long long, but that would
313  * kill us on x86. Oh, well, at least the sign propagation does not matter -
314  * i_block would have to be negative in the very beginning, so we would not
315  * get there at all.
316  */
317
318 static int ext4_block_to_path(struct inode *inode,
319                         ext4_lblk_t i_block,
320                         ext4_lblk_t offsets[4], int *boundary)
321 {
322         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
323         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
324         const long direct_blocks = EXT4_NDIR_BLOCKS,
325                 indirect_blocks = ptrs,
326                 double_blocks = (1 << (ptrs_bits * 2));
327         int n = 0;
328         int final = 0;
329
330         if (i_block < 0) {
331                 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
332         } else if (i_block < direct_blocks) {
333                 offsets[n++] = i_block;
334                 final = direct_blocks;
335         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
336                 offsets[n++] = EXT4_IND_BLOCK;
337                 offsets[n++] = i_block;
338                 final = ptrs;
339         } else if ((i_block -= indirect_blocks) < double_blocks) {
340                 offsets[n++] = EXT4_DIND_BLOCK;
341                 offsets[n++] = i_block >> ptrs_bits;
342                 offsets[n++] = i_block & (ptrs - 1);
343                 final = ptrs;
344         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
345                 offsets[n++] = EXT4_TIND_BLOCK;
346                 offsets[n++] = i_block >> (ptrs_bits * 2);
347                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
348                 offsets[n++] = i_block & (ptrs - 1);
349                 final = ptrs;
350         } else {
351                 ext4_warning(inode->i_sb, "ext4_block_to_path",
352                                 "block %lu > max",
353                                 i_block + direct_blocks +
354                                 indirect_blocks + double_blocks);
355         }
356         if (boundary)
357                 *boundary = final - 1 - (i_block & (ptrs - 1));
358         return n;
359 }
360
361 /**
362  *      ext4_get_branch - read the chain of indirect blocks leading to data
363  *      @inode: inode in question
364  *      @depth: depth of the chain (1 - direct pointer, etc.)
365  *      @offsets: offsets of pointers in inode/indirect blocks
366  *      @chain: place to store the result
367  *      @err: here we store the error value
368  *
369  *      Function fills the array of triples <key, p, bh> and returns %NULL
370  *      if everything went OK or the pointer to the last filled triple
371  *      (incomplete one) otherwise. Upon the return chain[i].key contains
372  *      the number of (i+1)-th block in the chain (as it is stored in memory,
373  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
374  *      number (it points into struct inode for i==0 and into the bh->b_data
375  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
376  *      block for i>0 and NULL for i==0. In other words, it holds the block
377  *      numbers of the chain, addresses they were taken from (and where we can
378  *      verify that chain did not change) and buffer_heads hosting these
379  *      numbers.
380  *
381  *      Function stops when it stumbles upon zero pointer (absent block)
382  *              (pointer to last triple returned, *@err == 0)
383  *      or when it gets an IO error reading an indirect block
384  *              (ditto, *@err == -EIO)
385  *      or when it reads all @depth-1 indirect blocks successfully and finds
386  *      the whole chain, all way to the data (returns %NULL, *err == 0).
387  *
388  *      Need to be called with
389  *      down_read(&EXT4_I(inode)->i_data_sem)
390  */
391 static Indirect *ext4_get_branch(struct inode *inode, int depth,
392                                  ext4_lblk_t  *offsets,
393                                  Indirect chain[4], int *err)
394 {
395         struct super_block *sb = inode->i_sb;
396         Indirect *p = chain;
397         struct buffer_head *bh;
398
399         *err = 0;
400         /* i_data is not going away, no lock needed */
401         add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
402         if (!p->key)
403                 goto no_block;
404         while (--depth) {
405                 bh = sb_bread(sb, le32_to_cpu(p->key));
406                 if (!bh)
407                         goto failure;
408                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
409                 /* Reader: end */
410                 if (!p->key)
411                         goto no_block;
412         }
413         return NULL;
414
415 failure:
416         *err = -EIO;
417 no_block:
418         return p;
419 }
420
421 /**
422  *      ext4_find_near - find a place for allocation with sufficient locality
423  *      @inode: owner
424  *      @ind: descriptor of indirect block.
425  *
426  *      This function returns the preferred place for block allocation.
427  *      It is used when heuristic for sequential allocation fails.
428  *      Rules are:
429  *        + if there is a block to the left of our position - allocate near it.
430  *        + if pointer will live in indirect block - allocate near that block.
431  *        + if pointer will live in inode - allocate in the same
432  *          cylinder group.
433  *
434  * In the latter case we colour the starting block by the callers PID to
435  * prevent it from clashing with concurrent allocations for a different inode
436  * in the same block group.   The PID is used here so that functionally related
437  * files will be close-by on-disk.
438  *
439  *      Caller must make sure that @ind is valid and will stay that way.
440  */
441 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
442 {
443         struct ext4_inode_info *ei = EXT4_I(inode);
444         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
445         __le32 *p;
446         ext4_fsblk_t bg_start;
447         ext4_fsblk_t last_block;
448         ext4_grpblk_t colour;
449
450         /* Try to find previous block */
451         for (p = ind->p - 1; p >= start; p--) {
452                 if (*p)
453                         return le32_to_cpu(*p);
454         }
455
456         /* No such thing, so let's try location of indirect block */
457         if (ind->bh)
458                 return ind->bh->b_blocknr;
459
460         /*
461          * It is going to be referred to from the inode itself? OK, just put it
462          * into the same cylinder group then.
463          */
464         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
465         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
466
467         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
468                 colour = (current->pid % 16) *
469                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
470         else
471                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
472         return bg_start + colour;
473 }
474
475 /**
476  *      ext4_find_goal - find a preferred place for allocation.
477  *      @inode: owner
478  *      @block:  block we want
479  *      @partial: pointer to the last triple within a chain
480  *
481  *      Normally this function find the preferred place for block allocation,
482  *      returns it.
483  */
484 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
485                 Indirect *partial)
486 {
487         struct ext4_block_alloc_info *block_i;
488
489         block_i =  EXT4_I(inode)->i_block_alloc_info;
490
491         /*
492          * try the heuristic for sequential allocation,
493          * failing that at least try to get decent locality.
494          */
495         if (block_i && (block == block_i->last_alloc_logical_block + 1)
496                 && (block_i->last_alloc_physical_block != 0)) {
497                 return block_i->last_alloc_physical_block + 1;
498         }
499
500         return ext4_find_near(inode, partial);
501 }
502
503 /**
504  *      ext4_blks_to_allocate: Look up the block map and count the number
505  *      of direct blocks need to be allocated for the given branch.
506  *
507  *      @branch: chain of indirect blocks
508  *      @k: number of blocks need for indirect blocks
509  *      @blks: number of data blocks to be mapped.
510  *      @blocks_to_boundary:  the offset in the indirect block
511  *
512  *      return the total number of blocks to be allocate, including the
513  *      direct and indirect blocks.
514  */
515 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
516                 int blocks_to_boundary)
517 {
518         unsigned long count = 0;
519
520         /*
521          * Simple case, [t,d]Indirect block(s) has not allocated yet
522          * then it's clear blocks on that path have not allocated
523          */
524         if (k > 0) {
525                 /* right now we don't handle cross boundary allocation */
526                 if (blks < blocks_to_boundary + 1)
527                         count += blks;
528                 else
529                         count += blocks_to_boundary + 1;
530                 return count;
531         }
532
533         count++;
534         while (count < blks && count <= blocks_to_boundary &&
535                 le32_to_cpu(*(branch[0].p + count)) == 0) {
536                 count++;
537         }
538         return count;
539 }
540
541 /**
542  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
543  *      @indirect_blks: the number of blocks need to allocate for indirect
544  *                      blocks
545  *
546  *      @new_blocks: on return it will store the new block numbers for
547  *      the indirect blocks(if needed) and the first direct block,
548  *      @blks:  on return it will store the total number of allocated
549  *              direct blocks
550  */
551 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
552                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
553                                 int indirect_blks, int blks,
554                                 ext4_fsblk_t new_blocks[4], int *err)
555 {
556         int target, i;
557         unsigned long count = 0, blk_allocated = 0;
558         int index = 0;
559         ext4_fsblk_t current_block = 0;
560         int ret = 0;
561
562         /*
563          * Here we try to allocate the requested multiple blocks at once,
564          * on a best-effort basis.
565          * To build a branch, we should allocate blocks for
566          * the indirect blocks(if not allocated yet), and at least
567          * the first direct block of this branch.  That's the
568          * minimum number of blocks need to allocate(required)
569          */
570         /* first we try to allocate the indirect blocks */
571         target = indirect_blks;
572         while (target > 0) {
573                 count = target;
574                 /* allocating blocks for indirect blocks and direct blocks */
575                 current_block = ext4_new_meta_blocks(handle, inode,
576                                                         goal, &count, err);
577                 if (*err)
578                         goto failed_out;
579
580                 target -= count;
581                 /* allocate blocks for indirect blocks */
582                 while (index < indirect_blks && count) {
583                         new_blocks[index++] = current_block++;
584                         count--;
585                 }
586                 if (count > 0) {
587                         /*
588                          * save the new block number
589                          * for the first direct block
590                          */
591                         new_blocks[index] = current_block;
592                         printk(KERN_INFO "%s returned more blocks than "
593                                                 "requested\n", __func__);
594                         WARN_ON(1);
595                         break;
596                 }
597         }
598
599         target = blks - count ;
600         blk_allocated = count;
601         if (!target)
602                 goto allocated;
603         /* Now allocate data blocks */
604         count = target;
605         /* allocating blocks for data blocks */
606         current_block = ext4_new_blocks(handle, inode, iblock,
607                                                 goal, &count, err);
608         if (*err && (target == blks)) {
609                 /*
610                  * if the allocation failed and we didn't allocate
611                  * any blocks before
612                  */
613                 goto failed_out;
614         }
615         if (!*err) {
616                 if (target == blks) {
617                 /*
618                  * save the new block number
619                  * for the first direct block
620                  */
621                         new_blocks[index] = current_block;
622                 }
623                 blk_allocated += count;
624         }
625 allocated:
626         /* total number of blocks allocated for direct blocks */
627         ret = blk_allocated;
628         *err = 0;
629         return ret;
630 failed_out:
631         for (i = 0; i <index; i++)
632                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
633         return ret;
634 }
635
636 /**
637  *      ext4_alloc_branch - allocate and set up a chain of blocks.
638  *      @inode: owner
639  *      @indirect_blks: number of allocated indirect blocks
640  *      @blks: number of allocated direct blocks
641  *      @offsets: offsets (in the blocks) to store the pointers to next.
642  *      @branch: place to store the chain in.
643  *
644  *      This function allocates blocks, zeroes out all but the last one,
645  *      links them into chain and (if we are synchronous) writes them to disk.
646  *      In other words, it prepares a branch that can be spliced onto the
647  *      inode. It stores the information about that chain in the branch[], in
648  *      the same format as ext4_get_branch() would do. We are calling it after
649  *      we had read the existing part of chain and partial points to the last
650  *      triple of that (one with zero ->key). Upon the exit we have the same
651  *      picture as after the successful ext4_get_block(), except that in one
652  *      place chain is disconnected - *branch->p is still zero (we did not
653  *      set the last link), but branch->key contains the number that should
654  *      be placed into *branch->p to fill that gap.
655  *
656  *      If allocation fails we free all blocks we've allocated (and forget
657  *      their buffer_heads) and return the error value the from failed
658  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
659  *      as described above and return 0.
660  */
661 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
662                                 ext4_lblk_t iblock, int indirect_blks,
663                                 int *blks, ext4_fsblk_t goal,
664                                 ext4_lblk_t *offsets, Indirect *branch)
665 {
666         int blocksize = inode->i_sb->s_blocksize;
667         int i, n = 0;
668         int err = 0;
669         struct buffer_head *bh;
670         int num;
671         ext4_fsblk_t new_blocks[4];
672         ext4_fsblk_t current_block;
673
674         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
675                                 *blks, new_blocks, &err);
676         if (err)
677                 return err;
678
679         branch[0].key = cpu_to_le32(new_blocks[0]);
680         /*
681          * metadata blocks and data blocks are allocated.
682          */
683         for (n = 1; n <= indirect_blks;  n++) {
684                 /*
685                  * Get buffer_head for parent block, zero it out
686                  * and set the pointer to new one, then send
687                  * parent to disk.
688                  */
689                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
690                 branch[n].bh = bh;
691                 lock_buffer(bh);
692                 BUFFER_TRACE(bh, "call get_create_access");
693                 err = ext4_journal_get_create_access(handle, bh);
694                 if (err) {
695                         unlock_buffer(bh);
696                         brelse(bh);
697                         goto failed;
698                 }
699
700                 memset(bh->b_data, 0, blocksize);
701                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
702                 branch[n].key = cpu_to_le32(new_blocks[n]);
703                 *branch[n].p = branch[n].key;
704                 if ( n == indirect_blks) {
705                         current_block = new_blocks[n];
706                         /*
707                          * End of chain, update the last new metablock of
708                          * the chain to point to the new allocated
709                          * data blocks numbers
710                          */
711                         for (i=1; i < num; i++)
712                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
713                 }
714                 BUFFER_TRACE(bh, "marking uptodate");
715                 set_buffer_uptodate(bh);
716                 unlock_buffer(bh);
717
718                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
719                 err = ext4_journal_dirty_metadata(handle, bh);
720                 if (err)
721                         goto failed;
722         }
723         *blks = num;
724         return err;
725 failed:
726         /* Allocation failed, free what we already allocated */
727         for (i = 1; i <= n ; i++) {
728                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
729                 ext4_journal_forget(handle, branch[i].bh);
730         }
731         for (i = 0; i <indirect_blks; i++)
732                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
733
734         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
735
736         return err;
737 }
738
739 /**
740  * ext4_splice_branch - splice the allocated branch onto inode.
741  * @inode: owner
742  * @block: (logical) number of block we are adding
743  * @chain: chain of indirect blocks (with a missing link - see
744  *      ext4_alloc_branch)
745  * @where: location of missing link
746  * @num:   number of indirect blocks we are adding
747  * @blks:  number of direct blocks we are adding
748  *
749  * This function fills the missing link and does all housekeeping needed in
750  * inode (->i_blocks, etc.). In case of success we end up with the full
751  * chain to new block and return 0.
752  */
753 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
754                         ext4_lblk_t block, Indirect *where, int num, int blks)
755 {
756         int i;
757         int err = 0;
758         struct ext4_block_alloc_info *block_i;
759         ext4_fsblk_t current_block;
760
761         block_i = EXT4_I(inode)->i_block_alloc_info;
762         /*
763          * If we're splicing into a [td]indirect block (as opposed to the
764          * inode) then we need to get write access to the [td]indirect block
765          * before the splice.
766          */
767         if (where->bh) {
768                 BUFFER_TRACE(where->bh, "get_write_access");
769                 err = ext4_journal_get_write_access(handle, where->bh);
770                 if (err)
771                         goto err_out;
772         }
773         /* That's it */
774
775         *where->p = where->key;
776
777         /*
778          * Update the host buffer_head or inode to point to more just allocated
779          * direct blocks blocks
780          */
781         if (num == 0 && blks > 1) {
782                 current_block = le32_to_cpu(where->key) + 1;
783                 for (i = 1; i < blks; i++)
784                         *(where->p + i ) = cpu_to_le32(current_block++);
785         }
786
787         /*
788          * update the most recently allocated logical & physical block
789          * in i_block_alloc_info, to assist find the proper goal block for next
790          * allocation
791          */
792         if (block_i) {
793                 block_i->last_alloc_logical_block = block + blks - 1;
794                 block_i->last_alloc_physical_block =
795                                 le32_to_cpu(where[num].key) + blks - 1;
796         }
797
798         /* We are done with atomic stuff, now do the rest of housekeeping */
799
800         inode->i_ctime = ext4_current_time(inode);
801         ext4_mark_inode_dirty(handle, inode);
802
803         /* had we spliced it onto indirect block? */
804         if (where->bh) {
805                 /*
806                  * If we spliced it onto an indirect block, we haven't
807                  * altered the inode.  Note however that if it is being spliced
808                  * onto an indirect block at the very end of the file (the
809                  * file is growing) then we *will* alter the inode to reflect
810                  * the new i_size.  But that is not done here - it is done in
811                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
812                  */
813                 jbd_debug(5, "splicing indirect only\n");
814                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
815                 err = ext4_journal_dirty_metadata(handle, where->bh);
816                 if (err)
817                         goto err_out;
818         } else {
819                 /*
820                  * OK, we spliced it into the inode itself on a direct block.
821                  * Inode was dirtied above.
822                  */
823                 jbd_debug(5, "splicing direct\n");
824         }
825         return err;
826
827 err_out:
828         for (i = 1; i <= num; i++) {
829                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
830                 ext4_journal_forget(handle, where[i].bh);
831                 ext4_free_blocks(handle, inode,
832                                         le32_to_cpu(where[i-1].key), 1, 0);
833         }
834         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
835
836         return err;
837 }
838
839 /*
840  * Allocation strategy is simple: if we have to allocate something, we will
841  * have to go the whole way to leaf. So let's do it before attaching anything
842  * to tree, set linkage between the newborn blocks, write them if sync is
843  * required, recheck the path, free and repeat if check fails, otherwise
844  * set the last missing link (that will protect us from any truncate-generated
845  * removals - all blocks on the path are immune now) and possibly force the
846  * write on the parent block.
847  * That has a nice additional property: no special recovery from the failed
848  * allocations is needed - we simply release blocks and do not touch anything
849  * reachable from inode.
850  *
851  * `handle' can be NULL if create == 0.
852  *
853  * return > 0, # of blocks mapped or allocated.
854  * return = 0, if plain lookup failed.
855  * return < 0, error case.
856  *
857  *
858  * Need to be called with
859  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
860  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
861  */
862 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
863                 ext4_lblk_t iblock, unsigned long maxblocks,
864                 struct buffer_head *bh_result,
865                 int create, int extend_disksize)
866 {
867         int err = -EIO;
868         ext4_lblk_t offsets[4];
869         Indirect chain[4];
870         Indirect *partial;
871         ext4_fsblk_t goal;
872         int indirect_blks;
873         int blocks_to_boundary = 0;
874         int depth;
875         struct ext4_inode_info *ei = EXT4_I(inode);
876         int count = 0;
877         ext4_fsblk_t first_block = 0;
878         loff_t disksize;
879
880
881         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
882         J_ASSERT(handle != NULL || create == 0);
883         depth = ext4_block_to_path(inode, iblock, offsets,
884                                         &blocks_to_boundary);
885
886         if (depth == 0)
887                 goto out;
888
889         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
890
891         /* Simplest case - block found, no allocation needed */
892         if (!partial) {
893                 first_block = le32_to_cpu(chain[depth - 1].key);
894                 clear_buffer_new(bh_result);
895                 count++;
896                 /*map more blocks*/
897                 while (count < maxblocks && count <= blocks_to_boundary) {
898                         ext4_fsblk_t blk;
899
900                         blk = le32_to_cpu(*(chain[depth-1].p + count));
901
902                         if (blk == first_block + count)
903                                 count++;
904                         else
905                                 break;
906                 }
907                 goto got_it;
908         }
909
910         /* Next simple case - plain lookup or failed read of indirect block */
911         if (!create || err == -EIO)
912                 goto cleanup;
913
914         /*
915          * Okay, we need to do block allocation.  Lazily initialize the block
916          * allocation info here if necessary
917         */
918         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
919                 ext4_init_block_alloc_info(inode);
920
921         goal = ext4_find_goal(inode, iblock, partial);
922
923         /* the number of blocks need to allocate for [d,t]indirect blocks */
924         indirect_blks = (chain + depth) - partial - 1;
925
926         /*
927          * Next look up the indirect map to count the totoal number of
928          * direct blocks to allocate for this branch.
929          */
930         count = ext4_blks_to_allocate(partial, indirect_blks,
931                                         maxblocks, blocks_to_boundary);
932         /*
933          * Block out ext4_truncate while we alter the tree
934          */
935         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
936                                         &count, goal,
937                                         offsets + (partial - chain), partial);
938
939         /*
940          * The ext4_splice_branch call will free and forget any buffers
941          * on the new chain if there is a failure, but that risks using
942          * up transaction credits, especially for bitmaps where the
943          * credits cannot be returned.  Can we handle this somehow?  We
944          * may need to return -EAGAIN upwards in the worst case.  --sct
945          */
946         if (!err)
947                 err = ext4_splice_branch(handle, inode, iblock,
948                                         partial, indirect_blks, count);
949         /*
950          * i_disksize growing is protected by i_data_sem.  Don't forget to
951          * protect it if you're about to implement concurrent
952          * ext4_get_block() -bzzz
953         */
954         if (!err && extend_disksize) {
955                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
956                 if (disksize > i_size_read(inode))
957                         disksize = i_size_read(inode);
958                 if (disksize > ei->i_disksize)
959                         ei->i_disksize = disksize;
960         }
961         if (err)
962                 goto cleanup;
963
964         set_buffer_new(bh_result);
965 got_it:
966         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
967         if (count > blocks_to_boundary)
968                 set_buffer_boundary(bh_result);
969         err = count;
970         /* Clean up and exit */
971         partial = chain + depth - 1;    /* the whole chain */
972 cleanup:
973         while (partial > chain) {
974                 BUFFER_TRACE(partial->bh, "call brelse");
975                 brelse(partial->bh);
976                 partial--;
977         }
978         BUFFER_TRACE(bh_result, "returned");
979 out:
980         return err;
981 }
982
983 /*
984  * Calculate the number of metadata blocks need to reserve
985  * to allocate @blocks for non extent file based file
986  */
987 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
988 {
989         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
990         int ind_blks, dind_blks, tind_blks;
991
992         /* number of new indirect blocks needed */
993         ind_blks = (blocks + icap - 1) / icap;
994
995         dind_blks = (ind_blks + icap - 1) / icap;
996
997         tind_blks = 1;
998
999         return ind_blks + dind_blks + tind_blks;
1000 }
1001
1002 /*
1003  * Calculate the number of metadata blocks need to reserve
1004  * to allocate given number of blocks
1005  */
1006 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1007 {
1008         if (!blocks)
1009                 return 0;
1010
1011         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1012                 return ext4_ext_calc_metadata_amount(inode, blocks);
1013
1014         return ext4_indirect_calc_metadata_amount(inode, blocks);
1015 }
1016
1017 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1018 {
1019         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1020         int total, mdb, mdb_free;
1021
1022         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1023         /* recalculate the number of metablocks still need to be reserved */
1024         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1025         mdb = ext4_calc_metadata_amount(inode, total);
1026
1027         /* figure out how many metablocks to release */
1028         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1029         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1030
1031         /* Account for allocated meta_blocks */
1032         mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1033
1034         /* update fs free blocks counter for truncate case */
1035         percpu_counter_add(&sbi->s_freeblocks_counter, mdb_free);
1036
1037         /* update per-inode reservations */
1038         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1039         EXT4_I(inode)->i_reserved_data_blocks -= used;
1040
1041         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1042         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1043         EXT4_I(inode)->i_allocated_meta_blocks = 0;
1044         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1045 }
1046
1047 /* Maximum number of blocks we map for direct IO at once. */
1048 #define DIO_MAX_BLOCKS 4096
1049 /*
1050  * Number of credits we need for writing DIO_MAX_BLOCKS:
1051  * We need sb + group descriptor + bitmap + inode -> 4
1052  * For B blocks with A block pointers per block we need:
1053  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1054  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1055  */
1056 #define DIO_CREDITS 25
1057
1058
1059 /*
1060  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1061  * and returns if the blocks are already mapped.
1062  *
1063  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1064  * and store the allocated blocks in the result buffer head and mark it
1065  * mapped.
1066  *
1067  * If file type is extents based, it will call ext4_ext_get_blocks(),
1068  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1069  * based files
1070  *
1071  * On success, it returns the number of blocks being mapped or allocate.
1072  * if create==0 and the blocks are pre-allocated and uninitialized block,
1073  * the result buffer head is unmapped. If the create ==1, it will make sure
1074  * the buffer head is mapped.
1075  *
1076  * It returns 0 if plain look up failed (blocks have not been allocated), in
1077  * that casem, buffer head is unmapped
1078  *
1079  * It returns the error in case of allocation failure.
1080  */
1081 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1082                         unsigned long max_blocks, struct buffer_head *bh,
1083                         int create, int extend_disksize, int flag)
1084 {
1085         int retval;
1086
1087         clear_buffer_mapped(bh);
1088
1089         /*
1090          * Try to see if we can get  the block without requesting
1091          * for new file system block.
1092          */
1093         down_read((&EXT4_I(inode)->i_data_sem));
1094         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1095                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1096                                 bh, 0, 0);
1097         } else {
1098                 retval = ext4_get_blocks_handle(handle,
1099                                 inode, block, max_blocks, bh, 0, 0);
1100         }
1101         up_read((&EXT4_I(inode)->i_data_sem));
1102
1103         /* If it is only a block(s) look up */
1104         if (!create)
1105                 return retval;
1106
1107         /*
1108          * Returns if the blocks have already allocated
1109          *
1110          * Note that if blocks have been preallocated
1111          * ext4_ext_get_block() returns th create = 0
1112          * with buffer head unmapped.
1113          */
1114         if (retval > 0 && buffer_mapped(bh))
1115                 return retval;
1116
1117         /*
1118          * New blocks allocate and/or writing to uninitialized extent
1119          * will possibly result in updating i_data, so we take
1120          * the write lock of i_data_sem, and call get_blocks()
1121          * with create == 1 flag.
1122          */
1123         down_write((&EXT4_I(inode)->i_data_sem));
1124
1125         /*
1126          * if the caller is from delayed allocation writeout path
1127          * we have already reserved fs blocks for allocation
1128          * let the underlying get_block() function know to
1129          * avoid double accounting
1130          */
1131         if (flag)
1132                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1133         /*
1134          * We need to check for EXT4 here because migrate
1135          * could have changed the inode type in between
1136          */
1137         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1138                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1139                                 bh, create, extend_disksize);
1140         } else {
1141                 retval = ext4_get_blocks_handle(handle, inode, block,
1142                                 max_blocks, bh, create, extend_disksize);
1143
1144                 if (retval > 0 && buffer_new(bh)) {
1145                         /*
1146                          * We allocated new blocks which will result in
1147                          * i_data's format changing.  Force the migrate
1148                          * to fail by clearing migrate flags
1149                          */
1150                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1151                                                         ~EXT4_EXT_MIGRATE;
1152                 }
1153         }
1154
1155         if (flag) {
1156                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1157                 /*
1158                  * Update reserved blocks/metadata blocks
1159                  * after successful block allocation
1160                  * which were deferred till now
1161                  */
1162                 if ((retval > 0) && buffer_delay(bh))
1163                         ext4_da_update_reserve_space(inode, retval);
1164         }
1165
1166         up_write((&EXT4_I(inode)->i_data_sem));
1167         return retval;
1168 }
1169
1170 static int ext4_get_block(struct inode *inode, sector_t iblock,
1171                         struct buffer_head *bh_result, int create)
1172 {
1173         handle_t *handle = ext4_journal_current_handle();
1174         int ret = 0, started = 0;
1175         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1176
1177         if (create && !handle) {
1178                 /* Direct IO write... */
1179                 if (max_blocks > DIO_MAX_BLOCKS)
1180                         max_blocks = DIO_MAX_BLOCKS;
1181                 handle = ext4_journal_start(inode, DIO_CREDITS +
1182                               2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
1183                 if (IS_ERR(handle)) {
1184                         ret = PTR_ERR(handle);
1185                         goto out;
1186                 }
1187                 started = 1;
1188         }
1189
1190         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1191                                         max_blocks, bh_result, create, 0, 0);
1192         if (ret > 0) {
1193                 bh_result->b_size = (ret << inode->i_blkbits);
1194                 ret = 0;
1195         }
1196         if (started)
1197                 ext4_journal_stop(handle);
1198 out:
1199         return ret;
1200 }
1201
1202 /*
1203  * `handle' can be NULL if create is zero
1204  */
1205 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1206                                 ext4_lblk_t block, int create, int *errp)
1207 {
1208         struct buffer_head dummy;
1209         int fatal = 0, err;
1210
1211         J_ASSERT(handle != NULL || create == 0);
1212
1213         dummy.b_state = 0;
1214         dummy.b_blocknr = -1000;
1215         buffer_trace_init(&dummy.b_history);
1216         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1217                                         &dummy, create, 1, 0);
1218         /*
1219          * ext4_get_blocks_handle() returns number of blocks
1220          * mapped. 0 in case of a HOLE.
1221          */
1222         if (err > 0) {
1223                 if (err > 1)
1224                         WARN_ON(1);
1225                 err = 0;
1226         }
1227         *errp = err;
1228         if (!err && buffer_mapped(&dummy)) {
1229                 struct buffer_head *bh;
1230                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1231                 if (!bh) {
1232                         *errp = -EIO;
1233                         goto err;
1234                 }
1235                 if (buffer_new(&dummy)) {
1236                         J_ASSERT(create != 0);
1237                         J_ASSERT(handle != NULL);
1238
1239                         /*
1240                          * Now that we do not always journal data, we should
1241                          * keep in mind whether this should always journal the
1242                          * new buffer as metadata.  For now, regular file
1243                          * writes use ext4_get_block instead, so it's not a
1244                          * problem.
1245                          */
1246                         lock_buffer(bh);
1247                         BUFFER_TRACE(bh, "call get_create_access");
1248                         fatal = ext4_journal_get_create_access(handle, bh);
1249                         if (!fatal && !buffer_uptodate(bh)) {
1250                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1251                                 set_buffer_uptodate(bh);
1252                         }
1253                         unlock_buffer(bh);
1254                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1255                         err = ext4_journal_dirty_metadata(handle, bh);
1256                         if (!fatal)
1257                                 fatal = err;
1258                 } else {
1259                         BUFFER_TRACE(bh, "not a new buffer");
1260                 }
1261                 if (fatal) {
1262                         *errp = fatal;
1263                         brelse(bh);
1264                         bh = NULL;
1265                 }
1266                 return bh;
1267         }
1268 err:
1269         return NULL;
1270 }
1271
1272 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1273                                ext4_lblk_t block, int create, int *err)
1274 {
1275         struct buffer_head * bh;
1276
1277         bh = ext4_getblk(handle, inode, block, create, err);
1278         if (!bh)
1279                 return bh;
1280         if (buffer_uptodate(bh))
1281                 return bh;
1282         ll_rw_block(READ_META, 1, &bh);
1283         wait_on_buffer(bh);
1284         if (buffer_uptodate(bh))
1285                 return bh;
1286         put_bh(bh);
1287         *err = -EIO;
1288         return NULL;
1289 }
1290
1291 static int walk_page_buffers(   handle_t *handle,
1292                                 struct buffer_head *head,
1293                                 unsigned from,
1294                                 unsigned to,
1295                                 int *partial,
1296                                 int (*fn)(      handle_t *handle,
1297                                                 struct buffer_head *bh))
1298 {
1299         struct buffer_head *bh;
1300         unsigned block_start, block_end;
1301         unsigned blocksize = head->b_size;
1302         int err, ret = 0;
1303         struct buffer_head *next;
1304
1305         for (   bh = head, block_start = 0;
1306                 ret == 0 && (bh != head || !block_start);
1307                 block_start = block_end, bh = next)
1308         {
1309                 next = bh->b_this_page;
1310                 block_end = block_start + blocksize;
1311                 if (block_end <= from || block_start >= to) {
1312                         if (partial && !buffer_uptodate(bh))
1313                                 *partial = 1;
1314                         continue;
1315                 }
1316                 err = (*fn)(handle, bh);
1317                 if (!ret)
1318                         ret = err;
1319         }
1320         return ret;
1321 }
1322
1323 /*
1324  * To preserve ordering, it is essential that the hole instantiation and
1325  * the data write be encapsulated in a single transaction.  We cannot
1326  * close off a transaction and start a new one between the ext4_get_block()
1327  * and the commit_write().  So doing the jbd2_journal_start at the start of
1328  * prepare_write() is the right place.
1329  *
1330  * Also, this function can nest inside ext4_writepage() ->
1331  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1332  * has generated enough buffer credits to do the whole page.  So we won't
1333  * block on the journal in that case, which is good, because the caller may
1334  * be PF_MEMALLOC.
1335  *
1336  * By accident, ext4 can be reentered when a transaction is open via
1337  * quota file writes.  If we were to commit the transaction while thus
1338  * reentered, there can be a deadlock - we would be holding a quota
1339  * lock, and the commit would never complete if another thread had a
1340  * transaction open and was blocking on the quota lock - a ranking
1341  * violation.
1342  *
1343  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1344  * will _not_ run commit under these circumstances because handle->h_ref
1345  * is elevated.  We'll still have enough credits for the tiny quotafile
1346  * write.
1347  */
1348 static int do_journal_get_write_access(handle_t *handle,
1349                                         struct buffer_head *bh)
1350 {
1351         if (!buffer_mapped(bh) || buffer_freed(bh))
1352                 return 0;
1353         return ext4_journal_get_write_access(handle, bh);
1354 }
1355
1356 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1357                                 loff_t pos, unsigned len, unsigned flags,
1358                                 struct page **pagep, void **fsdata)
1359 {
1360         struct inode *inode = mapping->host;
1361         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1362         handle_t *handle;
1363         int retries = 0;
1364         struct page *page;
1365         pgoff_t index;
1366         unsigned from, to;
1367
1368         index = pos >> PAGE_CACHE_SHIFT;
1369         from = pos & (PAGE_CACHE_SIZE - 1);
1370         to = from + len;
1371
1372 retry:
1373         handle = ext4_journal_start(inode, needed_blocks);
1374         if (IS_ERR(handle)) {
1375                 ret = PTR_ERR(handle);
1376                 goto out;
1377         }
1378
1379         page = __grab_cache_page(mapping, index);
1380         if (!page) {
1381                 ext4_journal_stop(handle);
1382                 ret = -ENOMEM;
1383                 goto out;
1384         }
1385         *pagep = page;
1386
1387         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1388                                                         ext4_get_block);
1389
1390         if (!ret && ext4_should_journal_data(inode)) {
1391                 ret = walk_page_buffers(handle, page_buffers(page),
1392                                 from, to, NULL, do_journal_get_write_access);
1393         }
1394
1395         if (ret) {
1396                 unlock_page(page);
1397                 ext4_journal_stop(handle);
1398                 page_cache_release(page);
1399         }
1400
1401         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1402                 goto retry;
1403 out:
1404         return ret;
1405 }
1406
1407 /* For write_end() in data=journal mode */
1408 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1409 {
1410         if (!buffer_mapped(bh) || buffer_freed(bh))
1411                 return 0;
1412         set_buffer_uptodate(bh);
1413         return ext4_journal_dirty_metadata(handle, bh);
1414 }
1415
1416 /*
1417  * We need to pick up the new inode size which generic_commit_write gave us
1418  * `file' can be NULL - eg, when called from page_symlink().
1419  *
1420  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1421  * buffers are managed internally.
1422  */
1423 static int ext4_ordered_write_end(struct file *file,
1424                                 struct address_space *mapping,
1425                                 loff_t pos, unsigned len, unsigned copied,
1426                                 struct page *page, void *fsdata)
1427 {
1428         handle_t *handle = ext4_journal_current_handle();
1429         struct inode *inode = mapping->host;
1430         int ret = 0, ret2;
1431
1432         ret = ext4_jbd2_file_inode(handle, inode);
1433
1434         if (ret == 0) {
1435                 /*
1436                  * generic_write_end() will run mark_inode_dirty() if i_size
1437                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1438                  * into that.
1439                  */
1440                 loff_t new_i_size;
1441
1442                 new_i_size = pos + copied;
1443                 if (new_i_size > EXT4_I(inode)->i_disksize)
1444                         EXT4_I(inode)->i_disksize = new_i_size;
1445                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1446                                                         page, fsdata);
1447                 copied = ret2;
1448                 if (ret2 < 0)
1449                         ret = ret2;
1450         }
1451         ret2 = ext4_journal_stop(handle);
1452         if (!ret)
1453                 ret = ret2;
1454
1455         return ret ? ret : copied;
1456 }
1457
1458 static int ext4_writeback_write_end(struct file *file,
1459                                 struct address_space *mapping,
1460                                 loff_t pos, unsigned len, unsigned copied,
1461                                 struct page *page, void *fsdata)
1462 {
1463         handle_t *handle = ext4_journal_current_handle();
1464         struct inode *inode = mapping->host;
1465         int ret = 0, ret2;
1466         loff_t new_i_size;
1467
1468         new_i_size = pos + copied;
1469         if (new_i_size > EXT4_I(inode)->i_disksize)
1470                 EXT4_I(inode)->i_disksize = new_i_size;
1471
1472         ret2 = generic_write_end(file, mapping, pos, len, copied,
1473                                                         page, fsdata);
1474         copied = ret2;
1475         if (ret2 < 0)
1476                 ret = ret2;
1477
1478         ret2 = ext4_journal_stop(handle);
1479         if (!ret)
1480                 ret = ret2;
1481
1482         return ret ? ret : copied;
1483 }
1484
1485 static int ext4_journalled_write_end(struct file *file,
1486                                 struct address_space *mapping,
1487                                 loff_t pos, unsigned len, unsigned copied,
1488                                 struct page *page, void *fsdata)
1489 {
1490         handle_t *handle = ext4_journal_current_handle();
1491         struct inode *inode = mapping->host;
1492         int ret = 0, ret2;
1493         int partial = 0;
1494         unsigned from, to;
1495
1496         from = pos & (PAGE_CACHE_SIZE - 1);
1497         to = from + len;
1498
1499         if (copied < len) {
1500                 if (!PageUptodate(page))
1501                         copied = 0;
1502                 page_zero_new_buffers(page, from+copied, to);
1503         }
1504
1505         ret = walk_page_buffers(handle, page_buffers(page), from,
1506                                 to, &partial, write_end_fn);
1507         if (!partial)
1508                 SetPageUptodate(page);
1509         if (pos+copied > inode->i_size)
1510                 i_size_write(inode, pos+copied);
1511         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1512         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1513                 EXT4_I(inode)->i_disksize = inode->i_size;
1514                 ret2 = ext4_mark_inode_dirty(handle, inode);
1515                 if (!ret)
1516                         ret = ret2;
1517         }
1518
1519         unlock_page(page);
1520         ret2 = ext4_journal_stop(handle);
1521         if (!ret)
1522                 ret = ret2;
1523         page_cache_release(page);
1524
1525         return ret ? ret : copied;
1526 }
1527
1528 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1529 {
1530        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1531        unsigned long md_needed, mdblocks, total = 0;
1532
1533         /*
1534          * recalculate the amount of metadata blocks to reserve
1535          * in order to allocate nrblocks
1536          * worse case is one extent per block
1537          */
1538         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1539         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1540         mdblocks = ext4_calc_metadata_amount(inode, total);
1541         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1542
1543         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1544         total = md_needed + nrblocks;
1545
1546         if (ext4_has_free_blocks(sbi, total) < total) {
1547                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1548                 return -ENOSPC;
1549         }
1550         /* reduce fs free blocks counter */
1551         percpu_counter_sub(&sbi->s_freeblocks_counter, total);
1552
1553         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1554         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1555
1556         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1557         return 0;       /* success */
1558 }
1559
1560 static void ext4_da_release_space(struct inode *inode, int to_free)
1561 {
1562         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1563         int total, mdb, mdb_free, release;
1564
1565         if (!to_free)
1566                 return;         /* Nothing to release, exit */
1567
1568         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1569
1570         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1571                 /*
1572                  * if there is no reserved blocks, but we try to free some
1573                  * then the counter is messed up somewhere.
1574                  * but since this function is called from invalidate
1575                  * page, it's harmless to return without any action
1576                  */
1577                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1578                             "blocks for inode %lu, but there is no reserved "
1579                             "data blocks\n", to_free, inode->i_ino);
1580                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1581                 return;
1582         }
1583
1584         /* recalculate the number of metablocks still need to be reserved */
1585         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1586         mdb = ext4_calc_metadata_amount(inode, total);
1587
1588         /* figure out how many metablocks to release */
1589         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1590         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1591
1592         release = to_free + mdb_free;
1593
1594         /* update fs free blocks counter for truncate case */
1595         percpu_counter_add(&sbi->s_freeblocks_counter, release);
1596
1597         /* update per-inode reservations */
1598         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1599         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1600
1601         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1602         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1603         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1604 }
1605
1606 static void ext4_da_page_release_reservation(struct page *page,
1607                                                 unsigned long offset)
1608 {
1609         int to_release = 0;
1610         struct buffer_head *head, *bh;
1611         unsigned int curr_off = 0;
1612
1613         head = page_buffers(page);
1614         bh = head;
1615         do {
1616                 unsigned int next_off = curr_off + bh->b_size;
1617
1618                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1619                         to_release++;
1620                         clear_buffer_delay(bh);
1621                 }
1622                 curr_off = next_off;
1623         } while ((bh = bh->b_this_page) != head);
1624         ext4_da_release_space(page->mapping->host, to_release);
1625 }
1626
1627 /*
1628  * Delayed allocation stuff
1629  */
1630
1631 struct mpage_da_data {
1632         struct inode *inode;
1633         struct buffer_head lbh;                 /* extent of blocks */
1634         unsigned long first_page, next_page;    /* extent of pages */
1635         get_block_t *get_block;
1636         struct writeback_control *wbc;
1637 };
1638
1639 /*
1640  * mpage_da_submit_io - walks through extent of pages and try to write
1641  * them with __mpage_writepage()
1642  *
1643  * @mpd->inode: inode
1644  * @mpd->first_page: first page of the extent
1645  * @mpd->next_page: page after the last page of the extent
1646  * @mpd->get_block: the filesystem's block mapper function
1647  *
1648  * By the time mpage_da_submit_io() is called we expect all blocks
1649  * to be allocated. this may be wrong if allocation failed.
1650  *
1651  * As pages are already locked by write_cache_pages(), we can't use it
1652  */
1653 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1654 {
1655         struct address_space *mapping = mpd->inode->i_mapping;
1656         struct mpage_data mpd_pp = {
1657                 .bio = NULL,
1658                 .last_block_in_bio = 0,
1659                 .get_block = mpd->get_block,
1660                 .use_writepage = 1,
1661         };
1662         int ret = 0, err, nr_pages, i;
1663         unsigned long index, end;
1664         struct pagevec pvec;
1665
1666         BUG_ON(mpd->next_page <= mpd->first_page);
1667
1668         pagevec_init(&pvec, 0);
1669         index = mpd->first_page;
1670         end = mpd->next_page - 1;
1671
1672         while (index <= end) {
1673                 /* XXX: optimize tail */
1674                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1675                 if (nr_pages == 0)
1676                         break;
1677                 for (i = 0; i < nr_pages; i++) {
1678                         struct page *page = pvec.pages[i];
1679
1680                         index = page->index;
1681                         if (index > end)
1682                                 break;
1683                         index++;
1684
1685                         err = __mpage_writepage(page, mpd->wbc, &mpd_pp);
1686
1687                         /*
1688                          * In error case, we have to continue because
1689                          * remaining pages are still locked
1690                          * XXX: unlock and re-dirty them?
1691                          */
1692                         if (ret == 0)
1693                                 ret = err;
1694                 }
1695                 pagevec_release(&pvec);
1696         }
1697         if (mpd_pp.bio)
1698                 mpage_bio_submit(WRITE, mpd_pp.bio);
1699
1700         return ret;
1701 }
1702
1703 /*
1704  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1705  *
1706  * @mpd->inode - inode to walk through
1707  * @exbh->b_blocknr - first block on a disk
1708  * @exbh->b_size - amount of space in bytes
1709  * @logical - first logical block to start assignment with
1710  *
1711  * the function goes through all passed space and put actual disk
1712  * block numbers into buffer heads, dropping BH_Delay
1713  */
1714 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1715                                  struct buffer_head *exbh)
1716 {
1717         struct inode *inode = mpd->inode;
1718         struct address_space *mapping = inode->i_mapping;
1719         int blocks = exbh->b_size >> inode->i_blkbits;
1720         sector_t pblock = exbh->b_blocknr, cur_logical;
1721         struct buffer_head *head, *bh;
1722         unsigned long index, end;
1723         struct pagevec pvec;
1724         int nr_pages, i;
1725
1726         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1727         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1728         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1729
1730         pagevec_init(&pvec, 0);
1731
1732         while (index <= end) {
1733                 /* XXX: optimize tail */
1734                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1735                 if (nr_pages == 0)
1736                         break;
1737                 for (i = 0; i < nr_pages; i++) {
1738                         struct page *page = pvec.pages[i];
1739
1740                         index = page->index;
1741                         if (index > end)
1742                                 break;
1743                         index++;
1744
1745                         BUG_ON(!PageLocked(page));
1746                         BUG_ON(PageWriteback(page));
1747                         BUG_ON(!page_has_buffers(page));
1748
1749                         bh = page_buffers(page);
1750                         head = bh;
1751
1752                         /* skip blocks out of the range */
1753                         do {
1754                                 if (cur_logical >= logical)
1755                                         break;
1756                                 cur_logical++;
1757                         } while ((bh = bh->b_this_page) != head);
1758
1759                         do {
1760                                 if (cur_logical >= logical + blocks)
1761                                         break;
1762                                 if (buffer_delay(bh)) {
1763                                         bh->b_blocknr = pblock;
1764                                         clear_buffer_delay(bh);
1765                                         bh->b_bdev = inode->i_sb->s_bdev;
1766                                 } else if (buffer_unwritten(bh)) {
1767                                         bh->b_blocknr = pblock;
1768                                         clear_buffer_unwritten(bh);
1769                                         set_buffer_mapped(bh);
1770                                         set_buffer_new(bh);
1771                                         bh->b_bdev = inode->i_sb->s_bdev;
1772                                 } else if (buffer_mapped(bh))
1773                                         BUG_ON(bh->b_blocknr != pblock);
1774
1775                                 cur_logical++;
1776                                 pblock++;
1777                         } while ((bh = bh->b_this_page) != head);
1778                 }
1779                 pagevec_release(&pvec);
1780         }
1781 }
1782
1783
1784 /*
1785  * __unmap_underlying_blocks - just a helper function to unmap
1786  * set of blocks described by @bh
1787  */
1788 static inline void __unmap_underlying_blocks(struct inode *inode,
1789                                              struct buffer_head *bh)
1790 {
1791         struct block_device *bdev = inode->i_sb->s_bdev;
1792         int blocks, i;
1793
1794         blocks = bh->b_size >> inode->i_blkbits;
1795         for (i = 0; i < blocks; i++)
1796                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1797 }
1798
1799 /*
1800  * mpage_da_map_blocks - go through given space
1801  *
1802  * @mpd->lbh - bh describing space
1803  * @mpd->get_block - the filesystem's block mapper function
1804  *
1805  * The function skips space we know is already mapped to disk blocks.
1806  *
1807  * The function ignores errors ->get_block() returns, thus real
1808  * error handling is postponed to __mpage_writepage()
1809  */
1810 static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1811 {
1812         struct buffer_head *lbh = &mpd->lbh;
1813         int err = 0, remain = lbh->b_size;
1814         sector_t next = lbh->b_blocknr;
1815         struct buffer_head new;
1816
1817         /*
1818          * We consider only non-mapped and non-allocated blocks
1819          */
1820         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1821                 return;
1822
1823         while (remain) {
1824                 new.b_state = lbh->b_state;
1825                 new.b_blocknr = 0;
1826                 new.b_size = remain;
1827                 err = mpd->get_block(mpd->inode, next, &new, 1);
1828                 if (err) {
1829                         /*
1830                          * Rather than implement own error handling
1831                          * here, we just leave remaining blocks
1832                          * unallocated and try again with ->writepage()
1833                          */
1834                         break;
1835                 }
1836                 BUG_ON(new.b_size == 0);
1837
1838                 if (buffer_new(&new))
1839                         __unmap_underlying_blocks(mpd->inode, &new);
1840
1841                 /*
1842                  * If blocks are delayed marked, we need to
1843                  * put actual blocknr and drop delayed bit
1844                  */
1845                 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1846                         mpage_put_bnr_to_bhs(mpd, next, &new);
1847
1848                 /* go for the remaining blocks */
1849                 next += new.b_size >> mpd->inode->i_blkbits;
1850                 remain -= new.b_size;
1851         }
1852 }
1853
1854 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1855                 (1 << BH_Delay) | (1 << BH_Unwritten))
1856
1857 /*
1858  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1859  *
1860  * @mpd->lbh - extent of blocks
1861  * @logical - logical number of the block in the file
1862  * @bh - bh of the block (used to access block's state)
1863  *
1864  * the function is used to collect contig. blocks in same state
1865  */
1866 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1867                                    sector_t logical, struct buffer_head *bh)
1868 {
1869         struct buffer_head *lbh = &mpd->lbh;
1870         sector_t next;
1871
1872         next = lbh->b_blocknr + (lbh->b_size >> mpd->inode->i_blkbits);
1873
1874         /*
1875          * First block in the extent
1876          */
1877         if (lbh->b_size == 0) {
1878                 lbh->b_blocknr = logical;
1879                 lbh->b_size = bh->b_size;
1880                 lbh->b_state = bh->b_state & BH_FLAGS;
1881                 return;
1882         }
1883
1884         /*
1885          * Can we merge the block to our big extent?
1886          */
1887         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1888                 lbh->b_size += bh->b_size;
1889                 return;
1890         }
1891
1892         /*
1893          * We couldn't merge the block to our extent, so we
1894          * need to flush current  extent and start new one
1895          */
1896         mpage_da_map_blocks(mpd);
1897
1898         /*
1899          * Now start a new extent
1900          */
1901         lbh->b_size = bh->b_size;
1902         lbh->b_state = bh->b_state & BH_FLAGS;
1903         lbh->b_blocknr = logical;
1904 }
1905
1906 /*
1907  * __mpage_da_writepage - finds extent of pages and blocks
1908  *
1909  * @page: page to consider
1910  * @wbc: not used, we just follow rules
1911  * @data: context
1912  *
1913  * The function finds extents of pages and scan them for all blocks.
1914  */
1915 static int __mpage_da_writepage(struct page *page,
1916                                 struct writeback_control *wbc, void *data)
1917 {
1918         struct mpage_da_data *mpd = data;
1919         struct inode *inode = mpd->inode;
1920         struct buffer_head *bh, *head, fake;
1921         sector_t logical;
1922
1923         /*
1924          * Can we merge this page to current extent?
1925          */
1926         if (mpd->next_page != page->index) {
1927                 /*
1928                  * Nope, we can't. So, we map non-allocated blocks
1929                  * and start IO on them using __mpage_writepage()
1930                  */
1931                 if (mpd->next_page != mpd->first_page) {
1932                         mpage_da_map_blocks(mpd);
1933                         mpage_da_submit_io(mpd);
1934                 }
1935
1936                 /*
1937                  * Start next extent of pages ...
1938                  */
1939                 mpd->first_page = page->index;
1940
1941                 /*
1942                  * ... and blocks
1943                  */
1944                 mpd->lbh.b_size = 0;
1945                 mpd->lbh.b_state = 0;
1946                 mpd->lbh.b_blocknr = 0;
1947         }
1948
1949         mpd->next_page = page->index + 1;
1950         logical = (sector_t) page->index <<
1951                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
1952
1953         if (!page_has_buffers(page)) {
1954                 /*
1955                  * There is no attached buffer heads yet (mmap?)
1956                  * we treat the page asfull of dirty blocks
1957                  */
1958                 bh = &fake;
1959                 bh->b_size = PAGE_CACHE_SIZE;
1960                 bh->b_state = 0;
1961                 set_buffer_dirty(bh);
1962                 set_buffer_uptodate(bh);
1963                 mpage_add_bh_to_extent(mpd, logical, bh);
1964         } else {
1965                 /*
1966                  * Page with regular buffer heads, just add all dirty ones
1967                  */
1968                 head = page_buffers(page);
1969                 bh = head;
1970                 do {
1971                         BUG_ON(buffer_locked(bh));
1972                         if (buffer_dirty(bh))
1973                                 mpage_add_bh_to_extent(mpd, logical, bh);
1974                         logical++;
1975                 } while ((bh = bh->b_this_page) != head);
1976         }
1977
1978         return 0;
1979 }
1980
1981 /*
1982  * mpage_da_writepages - walk the list of dirty pages of the given
1983  * address space, allocates non-allocated blocks, maps newly-allocated
1984  * blocks to existing bhs and issue IO them
1985  *
1986  * @mapping: address space structure to write
1987  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1988  * @get_block: the filesystem's block mapper function.
1989  *
1990  * This is a library function, which implements the writepages()
1991  * address_space_operation.
1992  *
1993  * In order to avoid duplication of logic that deals with partial pages,
1994  * multiple bio per page, etc, we find non-allocated blocks, allocate
1995  * them with minimal calls to ->get_block() and re-use __mpage_writepage()
1996  *
1997  * It's important that we call __mpage_writepage() only once for each
1998  * involved page, otherwise we'd have to implement more complicated logic
1999  * to deal with pages w/o PG_lock or w/ PG_writeback and so on.
2000  *
2001  * See comments to mpage_writepages()
2002  */
2003 static int mpage_da_writepages(struct address_space *mapping,
2004                                struct writeback_control *wbc,
2005                                get_block_t get_block)
2006 {
2007         struct mpage_da_data mpd;
2008         int ret;
2009
2010         if (!get_block)
2011                 return generic_writepages(mapping, wbc);
2012
2013         mpd.wbc = wbc;
2014         mpd.inode = mapping->host;
2015         mpd.lbh.b_size = 0;
2016         mpd.lbh.b_state = 0;
2017         mpd.lbh.b_blocknr = 0;
2018         mpd.first_page = 0;
2019         mpd.next_page = 0;
2020         mpd.get_block = get_block;
2021
2022         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
2023
2024         /*
2025          * Handle last extent of pages
2026          */
2027         if (mpd.next_page != mpd.first_page) {
2028                 mpage_da_map_blocks(&mpd);
2029                 mpage_da_submit_io(&mpd);
2030         }
2031
2032         return ret;
2033 }
2034
2035 /*
2036  * this is a special callback for ->write_begin() only
2037  * it's intention is to return mapped block or reserve space
2038  */
2039 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2040                                   struct buffer_head *bh_result, int create)
2041 {
2042         int ret = 0;
2043
2044         BUG_ON(create == 0);
2045         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2046
2047         /*
2048          * first, we need to know whether the block is allocated already
2049          * preallocated blocks are unmapped but should treated
2050          * the same as allocated blocks.
2051          */
2052         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2053         if ((ret == 0) && !buffer_delay(bh_result)) {
2054                 /* the block isn't (pre)allocated yet, let's reserve space */
2055                 /*
2056                  * XXX: __block_prepare_write() unmaps passed block,
2057                  * is it OK?
2058                  */
2059                 ret = ext4_da_reserve_space(inode, 1);
2060                 if (ret)
2061                         /* not enough space to reserve */
2062                         return ret;
2063
2064                 map_bh(bh_result, inode->i_sb, 0);
2065                 set_buffer_new(bh_result);
2066                 set_buffer_delay(bh_result);
2067         } else if (ret > 0) {
2068                 bh_result->b_size = (ret << inode->i_blkbits);
2069                 ret = 0;
2070         }
2071
2072         return ret;
2073 }
2074 #define         EXT4_DELALLOC_RSVED     1
2075 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2076                                    struct buffer_head *bh_result, int create)
2077 {
2078         int ret;
2079         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2080         loff_t disksize = EXT4_I(inode)->i_disksize;
2081         handle_t *handle = NULL;
2082
2083         handle = ext4_journal_current_handle();
2084         if (!handle) {
2085                 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2086                                    bh_result, 0, 0, 0);
2087                 BUG_ON(!ret);
2088         } else {
2089                 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2090                                    bh_result, create, 0, EXT4_DELALLOC_RSVED);
2091         }
2092
2093         if (ret > 0) {
2094                 bh_result->b_size = (ret << inode->i_blkbits);
2095
2096                 /*
2097                  * Update on-disk size along with block allocation
2098                  * we don't use 'extend_disksize' as size may change
2099                  * within already allocated block -bzzz
2100                  */
2101                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2102                 if (disksize > i_size_read(inode))
2103                         disksize = i_size_read(inode);
2104                 if (disksize > EXT4_I(inode)->i_disksize) {
2105                         /*
2106                          * XXX: replace with spinlock if seen contended -bzzz
2107                          */
2108                         down_write(&EXT4_I(inode)->i_data_sem);
2109                         if (disksize > EXT4_I(inode)->i_disksize)
2110                                 EXT4_I(inode)->i_disksize = disksize;
2111                         up_write(&EXT4_I(inode)->i_data_sem);
2112
2113                         if (EXT4_I(inode)->i_disksize == disksize) {
2114                                 ret = ext4_mark_inode_dirty(handle, inode);
2115                                 return ret;
2116                         }
2117                 }
2118                 ret = 0;
2119         }
2120         return ret;
2121 }
2122
2123 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2124 {
2125         /*
2126          * unmapped buffer is possible for holes.
2127          * delay buffer is possible with delayed allocation
2128          */
2129         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2130 }
2131
2132 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2133                                    struct buffer_head *bh_result, int create)
2134 {
2135         int ret = 0;
2136         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2137
2138         /*
2139          * we don't want to do block allocation in writepage
2140          * so call get_block_wrap with create = 0
2141          */
2142         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2143                                    bh_result, 0, 0, 0);
2144         if (ret > 0) {
2145                 bh_result->b_size = (ret << inode->i_blkbits);
2146                 ret = 0;
2147         }
2148         return ret;
2149 }
2150
2151 /*
2152  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2153  * get called via journal_submit_inode_data_buffers (no journal handle)
2154  * get called via shrink_page_list via pdflush (no journal handle)
2155  * or grab_page_cache when doing write_begin (have journal handle)
2156  */
2157 static int ext4_da_writepage(struct page *page,
2158                                 struct writeback_control *wbc)
2159 {
2160         int ret = 0;
2161         loff_t size;
2162         unsigned long len;
2163         struct buffer_head *page_bufs;
2164         struct inode *inode = page->mapping->host;
2165
2166         size = i_size_read(inode);
2167         if (page->index == size >> PAGE_CACHE_SHIFT)
2168                 len = size & ~PAGE_CACHE_MASK;
2169         else
2170                 len = PAGE_CACHE_SIZE;
2171
2172         if (page_has_buffers(page)) {
2173                 page_bufs = page_buffers(page);
2174                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2175                                         ext4_bh_unmapped_or_delay)) {
2176                         /*
2177                          * We don't want to do  block allocation
2178                          * So redirty the page and return
2179                          * We may reach here when we do a journal commit
2180                          * via journal_submit_inode_data_buffers.
2181                          * If we don't have mapping block we just ignore
2182                          * them. We can also reach here via shrink_page_list
2183                          */
2184                         redirty_page_for_writepage(wbc, page);
2185                         unlock_page(page);
2186                         return 0;
2187                 }
2188         } else {
2189                 /*
2190                  * The test for page_has_buffers() is subtle:
2191                  * We know the page is dirty but it lost buffers. That means
2192                  * that at some moment in time after write_begin()/write_end()
2193                  * has been called all buffers have been clean and thus they
2194                  * must have been written at least once. So they are all
2195                  * mapped and we can happily proceed with mapping them
2196                  * and writing the page.
2197                  *
2198                  * Try to initialize the buffer_heads and check whether
2199                  * all are mapped and non delay. We don't want to
2200                  * do block allocation here.
2201                  */
2202                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2203                                                 ext4_normal_get_block_write);
2204                 if (!ret) {
2205                         page_bufs = page_buffers(page);
2206                         /* check whether all are mapped and non delay */
2207                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2208                                                 ext4_bh_unmapped_or_delay)) {
2209                                 redirty_page_for_writepage(wbc, page);
2210                                 unlock_page(page);
2211                                 return 0;
2212                         }
2213                 } else {
2214                         /*
2215                          * We can't do block allocation here
2216                          * so just redity the page and unlock
2217                          * and return
2218                          */
2219                         redirty_page_for_writepage(wbc, page);
2220                         unlock_page(page);
2221                         return 0;
2222                 }
2223         }
2224
2225         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2226                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2227         else
2228                 ret = block_write_full_page(page,
2229                                                 ext4_normal_get_block_write,
2230                                                 wbc);
2231
2232         return ret;
2233 }
2234
2235 /*
2236  * For now just follow the DIO way to estimate the max credits
2237  * needed to write out EXT4_MAX_WRITEBACK_PAGES.
2238  * todo: need to calculate the max credits need for
2239  * extent based files, currently the DIO credits is based on
2240  * indirect-blocks mapping way.
2241  *
2242  * Probably should have a generic way to calculate credits
2243  * for DIO, writepages, and truncate
2244  */
2245 #define EXT4_MAX_WRITEBACK_PAGES      DIO_MAX_BLOCKS
2246 #define EXT4_MAX_WRITEBACK_CREDITS    DIO_CREDITS
2247
2248 static int ext4_da_writepages(struct address_space *mapping,
2249                                 struct writeback_control *wbc)
2250 {
2251         struct inode *inode = mapping->host;
2252         handle_t *handle = NULL;
2253         int needed_blocks;
2254         int ret = 0;
2255         long to_write;
2256         loff_t range_start = 0;
2257
2258         /*
2259          * No pages to write? This is mainly a kludge to avoid starting
2260          * a transaction for special inodes like journal inode on last iput()
2261          * because that could violate lock ordering on umount
2262          */
2263         if (!mapping->nrpages)
2264                 return 0;
2265
2266         /*
2267          * Estimate the worse case needed credits to write out
2268          * EXT4_MAX_BUF_BLOCKS pages
2269          */
2270         needed_blocks = EXT4_MAX_WRITEBACK_CREDITS;
2271
2272         to_write = wbc->nr_to_write;
2273         if (!wbc->range_cyclic) {
2274                 /*
2275                  * If range_cyclic is not set force range_cont
2276                  * and save the old writeback_index
2277                  */
2278                 wbc->range_cont = 1;
2279                 range_start =  wbc->range_start;
2280         }
2281
2282         while (!ret && to_write) {
2283                 /* start a new transaction*/
2284                 handle = ext4_journal_start(inode, needed_blocks);
2285                 if (IS_ERR(handle)) {
2286                         ret = PTR_ERR(handle);
2287                         goto out_writepages;
2288                 }
2289                 if (ext4_should_order_data(inode)) {
2290                         /*
2291                          * With ordered mode we need to add
2292                          * the inode to the journal handle
2293                          * when we do block allocation.
2294                          */
2295                         ret = ext4_jbd2_file_inode(handle, inode);
2296                         if (ret) {
2297                                 ext4_journal_stop(handle);
2298                                 goto out_writepages;
2299                         }
2300
2301                 }
2302                 /*
2303                  * set the max dirty pages could be write at a time
2304                  * to fit into the reserved transaction credits
2305                  */
2306                 if (wbc->nr_to_write > EXT4_MAX_WRITEBACK_PAGES)
2307                         wbc->nr_to_write = EXT4_MAX_WRITEBACK_PAGES;
2308
2309                 to_write -= wbc->nr_to_write;
2310                 ret = mpage_da_writepages(mapping, wbc,
2311                                                 ext4_da_get_block_write);
2312                 ext4_journal_stop(handle);
2313                 if (wbc->nr_to_write) {
2314                         /*
2315                          * There is no more writeout needed
2316                          * or we requested for a noblocking writeout
2317                          * and we found the device congested
2318                          */
2319                         to_write += wbc->nr_to_write;
2320                         break;
2321                 }
2322                 wbc->nr_to_write = to_write;
2323         }
2324
2325 out_writepages:
2326         wbc->nr_to_write = to_write;
2327         if (range_start)
2328                 wbc->range_start = range_start;
2329         return ret;
2330 }
2331
2332 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2333                                 loff_t pos, unsigned len, unsigned flags,
2334                                 struct page **pagep, void **fsdata)
2335 {
2336         int ret, retries = 0;
2337         struct page *page;
2338         pgoff_t index;
2339         unsigned from, to;
2340         struct inode *inode = mapping->host;
2341         handle_t *handle;
2342
2343         index = pos >> PAGE_CACHE_SHIFT;
2344         from = pos & (PAGE_CACHE_SIZE - 1);
2345         to = from + len;
2346
2347 retry:
2348         /*
2349          * With delayed allocation, we don't log the i_disksize update
2350          * if there is delayed block allocation. But we still need
2351          * to journalling the i_disksize update if writes to the end
2352          * of file which has an already mapped buffer.
2353          */
2354         handle = ext4_journal_start(inode, 1);
2355         if (IS_ERR(handle)) {
2356                 ret = PTR_ERR(handle);
2357                 goto out;
2358         }
2359
2360         page = __grab_cache_page(mapping, index);
2361         if (!page) {
2362                 ext4_journal_stop(handle);
2363                 ret = -ENOMEM;
2364                 goto out;
2365         }
2366         *pagep = page;
2367
2368         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2369                                                         ext4_da_get_block_prep);
2370         if (ret < 0) {
2371                 unlock_page(page);
2372                 ext4_journal_stop(handle);
2373                 page_cache_release(page);
2374         }
2375
2376         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2377                 goto retry;
2378 out:
2379         return ret;
2380 }
2381
2382 /*
2383  * Check if we should update i_disksize
2384  * when write to the end of file but not require block allocation
2385  */
2386 static int ext4_da_should_update_i_disksize(struct page *page,
2387                                          unsigned long offset)
2388 {
2389         struct buffer_head *bh;
2390         struct inode *inode = page->mapping->host;
2391         unsigned int idx;
2392         int i;
2393
2394         bh = page_buffers(page);
2395         idx = offset >> inode->i_blkbits;
2396
2397         for (i=0; i < idx; i++)
2398                 bh = bh->b_this_page;
2399
2400         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2401                 return 0;
2402         return 1;
2403 }
2404
2405 static int ext4_da_write_end(struct file *file,
2406                                 struct address_space *mapping,
2407                                 loff_t pos, unsigned len, unsigned copied,
2408                                 struct page *page, void *fsdata)
2409 {
2410         struct inode *inode = mapping->host;
2411         int ret = 0, ret2;
2412         handle_t *handle = ext4_journal_current_handle();
2413         loff_t new_i_size;
2414         unsigned long start, end;
2415
2416         start = pos & (PAGE_CACHE_SIZE - 1);
2417         end = start + copied -1;
2418
2419         /*
2420          * generic_write_end() will run mark_inode_dirty() if i_size
2421          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2422          * into that.
2423          */
2424
2425         new_i_size = pos + copied;
2426         if (new_i_size > EXT4_I(inode)->i_disksize) {
2427                 if (ext4_da_should_update_i_disksize(page, end)) {
2428                         down_write(&EXT4_I(inode)->i_data_sem);
2429                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2430                                 /*
2431                                  * Updating i_disksize when extending file
2432                                  * without needing block allocation
2433                                  */
2434                                 if (ext4_should_order_data(inode))
2435                                         ret = ext4_jbd2_file_inode(handle,
2436                                                                    inode);
2437
2438                                 EXT4_I(inode)->i_disksize = new_i_size;
2439                         }
2440                         up_write(&EXT4_I(inode)->i_data_sem);
2441                 }
2442         }
2443         ret2 = generic_write_end(file, mapping, pos, len, copied,
2444                                                         page, fsdata);
2445         copied = ret2;
2446         if (ret2 < 0)
2447                 ret = ret2;
2448         ret2 = ext4_journal_stop(handle);
2449         if (!ret)
2450                 ret = ret2;
2451
2452         return ret ? ret : copied;
2453 }
2454
2455 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2456 {
2457         /*
2458          * Drop reserved blocks
2459          */
2460         BUG_ON(!PageLocked(page));
2461         if (!page_has_buffers(page))
2462                 goto out;
2463
2464         ext4_da_page_release_reservation(page, offset);
2465
2466 out:
2467         ext4_invalidatepage(page, offset);
2468
2469         return;
2470 }
2471
2472
2473 /*
2474  * bmap() is special.  It gets used by applications such as lilo and by
2475  * the swapper to find the on-disk block of a specific piece of data.
2476  *
2477  * Naturally, this is dangerous if the block concerned is still in the
2478  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2479  * filesystem and enables swap, then they may get a nasty shock when the
2480  * data getting swapped to that swapfile suddenly gets overwritten by
2481  * the original zero's written out previously to the journal and
2482  * awaiting writeback in the kernel's buffer cache.
2483  *
2484  * So, if we see any bmap calls here on a modified, data-journaled file,
2485  * take extra steps to flush any blocks which might be in the cache.
2486  */
2487 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2488 {
2489         struct inode *inode = mapping->host;
2490         journal_t *journal;
2491         int err;
2492
2493         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2494                         test_opt(inode->i_sb, DELALLOC)) {
2495                 /*
2496                  * With delalloc we want to sync the file
2497                  * so that we can make sure we allocate
2498                  * blocks for file
2499                  */
2500                 filemap_write_and_wait(mapping);
2501         }
2502
2503         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2504                 /*
2505                  * This is a REALLY heavyweight approach, but the use of
2506                  * bmap on dirty files is expected to be extremely rare:
2507                  * only if we run lilo or swapon on a freshly made file
2508                  * do we expect this to happen.
2509                  *
2510                  * (bmap requires CAP_SYS_RAWIO so this does not
2511                  * represent an unprivileged user DOS attack --- we'd be
2512                  * in trouble if mortal users could trigger this path at
2513                  * will.)
2514                  *
2515                  * NB. EXT4_STATE_JDATA is not set on files other than
2516                  * regular files.  If somebody wants to bmap a directory
2517                  * or symlink and gets confused because the buffer
2518                  * hasn't yet been flushed to disk, they deserve
2519                  * everything they get.
2520                  */
2521
2522                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2523                 journal = EXT4_JOURNAL(inode);
2524                 jbd2_journal_lock_updates(journal);
2525                 err = jbd2_journal_flush(journal);
2526                 jbd2_journal_unlock_updates(journal);
2527
2528                 if (err)
2529                         return 0;
2530         }
2531
2532         return generic_block_bmap(mapping,block,ext4_get_block);
2533 }
2534
2535 static int bget_one(handle_t *handle, struct buffer_head *bh)
2536 {
2537         get_bh(bh);
2538         return 0;
2539 }
2540
2541 static int bput_one(handle_t *handle, struct buffer_head *bh)
2542 {
2543         put_bh(bh);
2544         return 0;
2545 }
2546
2547 /*
2548  * Note that we don't need to start a transaction unless we're journaling data
2549  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2550  * need to file the inode to the transaction's list in ordered mode because if
2551  * we are writing back data added by write(), the inode is already there and if
2552  * we are writing back data modified via mmap(), noone guarantees in which
2553  * transaction the data will hit the disk. In case we are journaling data, we
2554  * cannot start transaction directly because transaction start ranks above page
2555  * lock so we have to do some magic.
2556  *
2557  * In all journaling modes block_write_full_page() will start the I/O.
2558  *
2559  * Problem:
2560  *
2561  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2562  *              ext4_writepage()
2563  *
2564  * Similar for:
2565  *
2566  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2567  *
2568  * Same applies to ext4_get_block().  We will deadlock on various things like
2569  * lock_journal and i_data_sem
2570  *
2571  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2572  * allocations fail.
2573  *
2574  * 16May01: If we're reentered then journal_current_handle() will be
2575  *          non-zero. We simply *return*.
2576  *
2577  * 1 July 2001: @@@ FIXME:
2578  *   In journalled data mode, a data buffer may be metadata against the
2579  *   current transaction.  But the same file is part of a shared mapping
2580  *   and someone does a writepage() on it.
2581  *
2582  *   We will move the buffer onto the async_data list, but *after* it has
2583  *   been dirtied. So there's a small window where we have dirty data on
2584  *   BJ_Metadata.
2585  *
2586  *   Note that this only applies to the last partial page in the file.  The
2587  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2588  *   broken code anyway: it's wrong for msync()).
2589  *
2590  *   It's a rare case: affects the final partial page, for journalled data
2591  *   where the file is subject to bith write() and writepage() in the same
2592  *   transction.  To fix it we'll need a custom block_write_full_page().
2593  *   We'll probably need that anyway for journalling writepage() output.
2594  *
2595  * We don't honour synchronous mounts for writepage().  That would be
2596  * disastrous.  Any write() or metadata operation will sync the fs for
2597  * us.
2598  *
2599  */
2600 static int __ext4_normal_writepage(struct page *page,
2601                                 struct writeback_control *wbc)
2602 {
2603         struct inode *inode = page->mapping->host;
2604
2605         if (test_opt(inode->i_sb, NOBH))
2606                 return nobh_writepage(page,
2607                                         ext4_normal_get_block_write, wbc);
2608         else
2609                 return block_write_full_page(page,
2610                                                 ext4_normal_get_block_write,
2611                                                 wbc);
2612 }
2613
2614 static int ext4_normal_writepage(struct page *page,
2615                                 struct writeback_control *wbc)
2616 {
2617         struct inode *inode = page->mapping->host;
2618         loff_t size = i_size_read(inode);
2619         loff_t len;
2620
2621         J_ASSERT(PageLocked(page));
2622         if (page->index == size >> PAGE_CACHE_SHIFT)
2623                 len = size & ~PAGE_CACHE_MASK;
2624         else
2625                 len = PAGE_CACHE_SIZE;
2626
2627         if (page_has_buffers(page)) {
2628                 /* if page has buffers it should all be mapped
2629                  * and allocated. If there are not buffers attached
2630                  * to the page we know the page is dirty but it lost
2631                  * buffers. That means that at some moment in time
2632                  * after write_begin() / write_end() has been called
2633                  * all buffers have been clean and thus they must have been
2634                  * written at least once. So they are all mapped and we can
2635                  * happily proceed with mapping them and writing the page.
2636                  */
2637                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2638                                         ext4_bh_unmapped_or_delay));
2639         }
2640
2641         if (!ext4_journal_current_handle())
2642                 return __ext4_normal_writepage(page, wbc);
2643
2644         redirty_page_for_writepage(wbc, page);
2645         unlock_page(page);
2646         return 0;
2647 }
2648
2649 static int __ext4_journalled_writepage(struct page *page,
2650                                 struct writeback_control *wbc)
2651 {
2652         struct address_space *mapping = page->mapping;
2653         struct inode *inode = mapping->host;
2654         struct buffer_head *page_bufs;
2655         handle_t *handle = NULL;
2656         int ret = 0;
2657         int err;
2658
2659         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2660                                         ext4_normal_get_block_write);
2661         if (ret != 0)
2662                 goto out_unlock;
2663
2664         page_bufs = page_buffers(page);
2665         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2666                                                                 bget_one);
2667         /* As soon as we unlock the page, it can go away, but we have
2668          * references to buffers so we are safe */
2669         unlock_page(page);
2670
2671         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2672         if (IS_ERR(handle)) {
2673                 ret = PTR_ERR(handle);
2674                 goto out;
2675         }
2676
2677         ret = walk_page_buffers(handle, page_bufs, 0,
2678                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2679
2680         err = walk_page_buffers(handle, page_bufs, 0,
2681                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2682         if (ret == 0)
2683                 ret = err;
2684         err = ext4_journal_stop(handle);
2685         if (!ret)
2686                 ret = err;
2687
2688         walk_page_buffers(handle, page_bufs, 0,
2689                                 PAGE_CACHE_SIZE, NULL, bput_one);
2690         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2691         goto out;
2692
2693 out_unlock:
2694         unlock_page(page);
2695 out:
2696         return ret;
2697 }
2698
2699 static int ext4_journalled_writepage(struct page *page,
2700                                 struct writeback_control *wbc)
2701 {
2702         struct inode *inode = page->mapping->host;
2703         loff_t size = i_size_read(inode);
2704         loff_t len;
2705
2706         J_ASSERT(PageLocked(page));
2707         if (page->index == size >> PAGE_CACHE_SHIFT)
2708                 len = size & ~PAGE_CACHE_MASK;
2709         else
2710                 len = PAGE_CACHE_SIZE;
2711
2712         if (page_has_buffers(page)) {
2713                 /* if page has buffers it should all be mapped
2714                  * and allocated. If there are not buffers attached
2715                  * to the page we know the page is dirty but it lost
2716                  * buffers. That means that at some moment in time
2717                  * after write_begin() / write_end() has been called
2718                  * all buffers have been clean and thus they must have been
2719                  * written at least once. So they are all mapped and we can
2720                  * happily proceed with mapping them and writing the page.
2721                  */
2722                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2723                                         ext4_bh_unmapped_or_delay));
2724         }
2725
2726         if (ext4_journal_current_handle())
2727                 goto no_write;
2728
2729         if (PageChecked(page)) {
2730                 /*
2731                  * It's mmapped pagecache.  Add buffers and journal it.  There
2732                  * doesn't seem much point in redirtying the page here.
2733                  */
2734                 ClearPageChecked(page);
2735                 return __ext4_journalled_writepage(page, wbc);
2736         } else {
2737                 /*
2738                  * It may be a page full of checkpoint-mode buffers.  We don't
2739                  * really know unless we go poke around in the buffer_heads.
2740                  * But block_write_full_page will do the right thing.
2741                  */
2742                 return block_write_full_page(page,
2743                                                 ext4_normal_get_block_write,
2744                                                 wbc);
2745         }
2746 no_write:
2747         redirty_page_for_writepage(wbc, page);
2748         unlock_page(page);
2749         return 0;
2750 }
2751
2752 static int ext4_readpage(struct file *file, struct page *page)
2753 {
2754         return mpage_readpage(page, ext4_get_block);
2755 }
2756
2757 static int
2758 ext4_readpages(struct file *file, struct address_space *mapping,
2759                 struct list_head *pages, unsigned nr_pages)
2760 {
2761         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2762 }
2763
2764 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2765 {
2766         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2767
2768         /*
2769          * If it's a full truncate we just forget about the pending dirtying
2770          */
2771         if (offset == 0)
2772                 ClearPageChecked(page);
2773
2774         jbd2_journal_invalidatepage(journal, page, offset);
2775 }
2776
2777 static int ext4_releasepage(struct page *page, gfp_t wait)
2778 {
2779         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2780
2781         WARN_ON(PageChecked(page));
2782         if (!page_has_buffers(page))
2783                 return 0;
2784         return jbd2_journal_try_to_free_buffers(journal, page, wait);
2785 }
2786
2787 /*
2788  * If the O_DIRECT write will extend the file then add this inode to the
2789  * orphan list.  So recovery will truncate it back to the original size
2790  * if the machine crashes during the write.
2791  *
2792  * If the O_DIRECT write is intantiating holes inside i_size and the machine
2793  * crashes then stale disk data _may_ be exposed inside the file. But current
2794  * VFS code falls back into buffered path in that case so we are safe.
2795  */
2796 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2797                         const struct iovec *iov, loff_t offset,
2798                         unsigned long nr_segs)
2799 {
2800         struct file *file = iocb->ki_filp;
2801         struct inode *inode = file->f_mapping->host;
2802         struct ext4_inode_info *ei = EXT4_I(inode);
2803         handle_t *handle;
2804         ssize_t ret;
2805         int orphan = 0;
2806         size_t count = iov_length(iov, nr_segs);
2807
2808         if (rw == WRITE) {
2809                 loff_t final_size = offset + count;
2810
2811                 if (final_size > inode->i_size) {
2812                         /* Credits for sb + inode write */
2813                         handle = ext4_journal_start(inode, 2);
2814                         if (IS_ERR(handle)) {
2815                                 ret = PTR_ERR(handle);
2816                                 goto out;
2817                         }
2818                         ret = ext4_orphan_add(handle, inode);
2819                         if (ret) {
2820                                 ext4_journal_stop(handle);
2821                                 goto out;
2822                         }
2823                         orphan = 1;
2824                         ei->i_disksize = inode->i_size;
2825                         ext4_journal_stop(handle);
2826                 }
2827         }
2828
2829         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2830                                  offset, nr_segs,
2831                                  ext4_get_block, NULL);
2832
2833         if (orphan) {
2834                 int err;
2835
2836                 /* Credits for sb + inode write */
2837                 handle = ext4_journal_start(inode, 2);
2838                 if (IS_ERR(handle)) {
2839                         /* This is really bad luck. We've written the data
2840                          * but cannot extend i_size. Bail out and pretend
2841                          * the write failed... */
2842                         ret = PTR_ERR(handle);
2843                         goto out;
2844                 }
2845                 if (inode->i_nlink)
2846                         ext4_orphan_del(handle, inode);
2847                 if (ret > 0) {
2848                         loff_t end = offset + ret;
2849                         if (end > inode->i_size) {
2850                                 ei->i_disksize = end;
2851                                 i_size_write(inode, end);
2852                                 /*
2853                                  * We're going to return a positive `ret'
2854                                  * here due to non-zero-length I/O, so there's
2855                                  * no way of reporting error returns from
2856                                  * ext4_mark_inode_dirty() to userspace.  So
2857                                  * ignore it.
2858                                  */
2859                                 ext4_mark_inode_dirty(handle, inode);
2860                         }
2861                 }
2862                 err = ext4_journal_stop(handle);
2863                 if (ret == 0)
2864                         ret = err;
2865         }
2866 out:
2867         return ret;
2868 }
2869
2870 /*
2871  * Pages can be marked dirty completely asynchronously from ext4's journalling
2872  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
2873  * much here because ->set_page_dirty is called under VFS locks.  The page is
2874  * not necessarily locked.
2875  *
2876  * We cannot just dirty the page and leave attached buffers clean, because the
2877  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
2878  * or jbddirty because all the journalling code will explode.
2879  *
2880  * So what we do is to mark the page "pending dirty" and next time writepage
2881  * is called, propagate that into the buffers appropriately.
2882  */
2883 static int ext4_journalled_set_page_dirty(struct page *page)
2884 {
2885         SetPageChecked(page);
2886         return __set_page_dirty_nobuffers(page);
2887 }
2888
2889 static const struct address_space_operations ext4_ordered_aops = {
2890         .readpage               = ext4_readpage,
2891         .readpages              = ext4_readpages,
2892         .writepage              = ext4_normal_writepage,
2893         .sync_page              = block_sync_page,
2894         .write_begin            = ext4_write_begin,
2895         .write_end              = ext4_ordered_write_end,
2896         .bmap                   = ext4_bmap,
2897         .invalidatepage         = ext4_invalidatepage,
2898         .releasepage            = ext4_releasepage,
2899         .direct_IO              = ext4_direct_IO,
2900         .migratepage            = buffer_migrate_page,
2901         .is_partially_uptodate  = block_is_partially_uptodate,
2902 };
2903
2904 static const struct address_space_operations ext4_writeback_aops = {
2905         .readpage               = ext4_readpage,
2906         .readpages              = ext4_readpages,
2907         .writepage              = ext4_normal_writepage,
2908         .sync_page              = block_sync_page,
2909         .write_begin            = ext4_write_begin,
2910         .write_end              = ext4_writeback_write_end,
2911         .bmap                   = ext4_bmap,
2912         .invalidatepage         = ext4_invalidatepage,
2913         .releasepage            = ext4_releasepage,
2914         .direct_IO              = ext4_direct_IO,
2915         .migratepage            = buffer_migrate_page,
2916         .is_partially_uptodate  = block_is_partially_uptodate,
2917 };
2918
2919 static const struct address_space_operations ext4_journalled_aops = {
2920         .readpage               = ext4_readpage,
2921         .readpages              = ext4_readpages,
2922         .writepage              = ext4_journalled_writepage,
2923         .sync_page              = block_sync_page,
2924         .write_begin            = ext4_write_begin,
2925         .write_end              = ext4_journalled_write_end,
2926         .set_page_dirty         = ext4_journalled_set_page_dirty,
2927         .bmap                   = ext4_bmap,
2928         .invalidatepage         = ext4_invalidatepage,
2929         .releasepage            = ext4_releasepage,
2930         .is_partially_uptodate  = block_is_partially_uptodate,
2931 };
2932
2933 static const struct address_space_operations ext4_da_aops = {
2934         .readpage               = ext4_readpage,
2935         .readpages              = ext4_readpages,
2936         .writepage              = ext4_da_writepage,
2937         .writepages             = ext4_da_writepages,
2938         .sync_page              = block_sync_page,
2939         .write_begin            = ext4_da_write_begin,
2940         .write_end              = ext4_da_write_end,
2941         .bmap                   = ext4_bmap,
2942         .invalidatepage         = ext4_da_invalidatepage,
2943         .releasepage            = ext4_releasepage,
2944         .direct_IO              = ext4_direct_IO,
2945         .migratepage            = buffer_migrate_page,
2946         .is_partially_uptodate  = block_is_partially_uptodate,
2947 };
2948
2949 void ext4_set_aops(struct inode *inode)
2950 {
2951         if (ext4_should_order_data(inode) &&
2952                 test_opt(inode->i_sb, DELALLOC))
2953                 inode->i_mapping->a_ops = &ext4_da_aops;
2954         else if (ext4_should_order_data(inode))
2955                 inode->i_mapping->a_ops = &ext4_ordered_aops;
2956         else if (ext4_should_writeback_data(inode) &&
2957                  test_opt(inode->i_sb, DELALLOC))
2958                 inode->i_mapping->a_ops = &ext4_da_aops;
2959         else if (ext4_should_writeback_data(inode))
2960                 inode->i_mapping->a_ops = &ext4_writeback_aops;
2961         else
2962                 inode->i_mapping->a_ops = &ext4_journalled_aops;
2963 }
2964
2965 /*
2966  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2967  * up to the end of the block which corresponds to `from'.
2968  * This required during truncate. We need to physically zero the tail end
2969  * of that block so it doesn't yield old data if the file is later grown.
2970  */
2971 int ext4_block_truncate_page(handle_t *handle,
2972                 struct address_space *mapping, loff_t from)
2973 {
2974         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2975         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2976         unsigned blocksize, length, pos;
2977         ext4_lblk_t iblock;
2978         struct inode *inode = mapping->host;
2979         struct buffer_head *bh;
2980         struct page *page;
2981         int err = 0;
2982
2983         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
2984         if (!page)
2985                 return -EINVAL;
2986
2987         blocksize = inode->i_sb->s_blocksize;
2988         length = blocksize - (offset & (blocksize - 1));
2989         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2990
2991         /*
2992          * For "nobh" option,  we can only work if we don't need to
2993          * read-in the page - otherwise we create buffers to do the IO.
2994          */
2995         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
2996              ext4_should_writeback_data(inode) && PageUptodate(page)) {
2997                 zero_user(page, offset, length);
2998                 set_page_dirty(page);
2999                 goto unlock;
3000         }
3001
3002         if (!page_has_buffers(page))
3003                 create_empty_buffers(page, blocksize, 0);
3004
3005         /* Find the buffer that contains "offset" */
3006         bh = page_buffers(page);
3007         pos = blocksize;
3008         while (offset >= pos) {
3009                 bh = bh->b_this_page;
3010                 iblock++;
3011                 pos += blocksize;
3012         }
3013
3014         err = 0;
3015         if (buffer_freed(bh)) {
3016                 BUFFER_TRACE(bh, "freed: skip");
3017                 goto unlock;
3018         }
3019
3020         if (!buffer_mapped(bh)) {
3021                 BUFFER_TRACE(bh, "unmapped");
3022                 ext4_get_block(inode, iblock, bh, 0);
3023                 /* unmapped? It's a hole - nothing to do */
3024                 if (!buffer_mapped(bh)) {
3025                         BUFFER_TRACE(bh, "still unmapped");
3026                         goto unlock;
3027                 }
3028         }
3029
3030         /* Ok, it's mapped. Make sure it's up-to-date */
3031         if (PageUptodate(page))
3032                 set_buffer_uptodate(bh);
3033
3034         if (!buffer_uptodate(bh)) {
3035                 err = -EIO;
3036                 ll_rw_block(READ, 1, &bh);
3037                 wait_on_buffer(bh);
3038                 /* Uhhuh. Read error. Complain and punt. */
3039                 if (!buffer_uptodate(bh))
3040                         goto unlock;
3041         }
3042
3043         if (ext4_should_journal_data(inode)) {
3044                 BUFFER_TRACE(bh, "get write access");
3045                 err = ext4_journal_get_write_access(handle, bh);
3046                 if (err)
3047                         goto unlock;
3048         }
3049
3050         zero_user(page, offset, length);
3051
3052         BUFFER_TRACE(bh, "zeroed end of block");
3053
3054         err = 0;
3055         if (ext4_should_journal_data(inode)) {
3056                 err = ext4_journal_dirty_metadata(handle, bh);
3057         } else {
3058                 if (ext4_should_order_data(inode))
3059                         err = ext4_jbd2_file_inode(handle, inode);
3060                 mark_buffer_dirty(bh);
3061         }
3062
3063 unlock:
3064         unlock_page(page);
3065         page_cache_release(page);
3066         return err;
3067 }
3068
3069 /*
3070  * Probably it should be a library function... search for first non-zero word
3071  * or memcmp with zero_page, whatever is better for particular architecture.
3072  * Linus?
3073  */
3074 static inline int all_zeroes(__le32 *p, __le32 *q)
3075 {
3076         while (p < q)
3077                 if (*p++)
3078                         return 0;
3079         return 1;
3080 }
3081
3082 /**
3083  *      ext4_find_shared - find the indirect blocks for partial truncation.
3084  *      @inode:   inode in question
3085  *      @depth:   depth of the affected branch
3086  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3087  *      @chain:   place to store the pointers to partial indirect blocks
3088  *      @top:     place to the (detached) top of branch
3089  *
3090  *      This is a helper function used by ext4_truncate().
3091  *
3092  *      When we do truncate() we may have to clean the ends of several
3093  *      indirect blocks but leave the blocks themselves alive. Block is
3094  *      partially truncated if some data below the new i_size is refered
3095  *      from it (and it is on the path to the first completely truncated
3096  *      data block, indeed).  We have to free the top of that path along
3097  *      with everything to the right of the path. Since no allocation
3098  *      past the truncation point is possible until ext4_truncate()
3099  *      finishes, we may safely do the latter, but top of branch may
3100  *      require special attention - pageout below the truncation point
3101  *      might try to populate it.
3102  *
3103  *      We atomically detach the top of branch from the tree, store the
3104  *      block number of its root in *@top, pointers to buffer_heads of
3105  *      partially truncated blocks - in @chain[].bh and pointers to
3106  *      their last elements that should not be removed - in
3107  *      @chain[].p. Return value is the pointer to last filled element
3108  *      of @chain.
3109  *
3110  *      The work left to caller to do the actual freeing of subtrees:
3111  *              a) free the subtree starting from *@top
3112  *              b) free the subtrees whose roots are stored in
3113  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3114  *              c) free the subtrees growing from the inode past the @chain[0].
3115  *                      (no partially truncated stuff there).  */
3116
3117 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3118                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3119 {
3120         Indirect *partial, *p;
3121         int k, err;
3122
3123         *top = 0;
3124         /* Make k index the deepest non-null offest + 1 */
3125         for (k = depth; k > 1 && !offsets[k-1]; k--)
3126                 ;
3127         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3128         /* Writer: pointers */
3129         if (!partial)
3130                 partial = chain + k-1;
3131         /*
3132          * If the branch acquired continuation since we've looked at it -
3133          * fine, it should all survive and (new) top doesn't belong to us.
3134          */
3135         if (!partial->key && *partial->p)
3136                 /* Writer: end */
3137                 goto no_top;
3138         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
3139                 ;
3140         /*
3141          * OK, we've found the last block that must survive. The rest of our
3142          * branch should be detached before unlocking. However, if that rest
3143          * of branch is all ours and does not grow immediately from the inode
3144          * it's easier to cheat and just decrement partial->p.
3145          */
3146         if (p == chain + k - 1 && p > chain) {
3147                 p->p--;
3148         } else {
3149                 *top = *p->p;
3150                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3151 #if 0
3152                 *p->p = 0;
3153 #endif
3154         }
3155         /* Writer: end */
3156
3157         while(partial > p) {
3158                 brelse(partial->bh);
3159                 partial--;
3160         }
3161 no_top:
3162         return partial;
3163 }
3164
3165 /*
3166  * Zero a number of block pointers in either an inode or an indirect block.
3167  * If we restart the transaction we must again get write access to the
3168  * indirect block for further modification.
3169  *
3170  * We release `count' blocks on disk, but (last - first) may be greater
3171  * than `count' because there can be holes in there.
3172  */
3173 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3174                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3175                 unsigned long count, __le32 *first, __le32 *last)
3176 {
3177         __le32 *p;
3178         if (try_to_extend_transaction(handle, inode)) {
3179                 if (bh) {
3180                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3181                         ext4_journal_dirty_metadata(handle, bh);
3182                 }
3183                 ext4_mark_inode_dirty(handle, inode);
3184                 ext4_journal_test_restart(handle, inode);
3185                 if (bh) {
3186                         BUFFER_TRACE(bh, "retaking write access");
3187                         ext4_journal_get_write_access(handle, bh);
3188                 }
3189         }
3190
3191         /*
3192          * Any buffers which are on the journal will be in memory. We find
3193          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3194          * on them.  We've already detached each block from the file, so
3195          * bforget() in jbd2_journal_forget() should be safe.
3196          *
3197          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3198          */
3199         for (p = first; p < last; p++) {
3200                 u32 nr = le32_to_cpu(*p);
3201                 if (nr) {
3202                         struct buffer_head *tbh;
3203
3204                         *p = 0;
3205                         tbh = sb_find_get_block(inode->i_sb, nr);
3206                         ext4_forget(handle, 0, inode, tbh, nr);
3207                 }
3208         }
3209
3210         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3211 }
3212
3213 /**
3214  * ext4_free_data - free a list of data blocks
3215  * @handle:     handle for this transaction
3216  * @inode:      inode we are dealing with
3217  * @this_bh:    indirect buffer_head which contains *@first and *@last
3218  * @first:      array of block numbers
3219  * @last:       points immediately past the end of array
3220  *
3221  * We are freeing all blocks refered from that array (numbers are stored as
3222  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3223  *
3224  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3225  * blocks are contiguous then releasing them at one time will only affect one
3226  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3227  * actually use a lot of journal space.
3228  *
3229  * @this_bh will be %NULL if @first and @last point into the inode's direct
3230  * block pointers.
3231  */
3232 static void ext4_free_data(handle_t *handle, struct inode *inode,
3233                            struct buffer_head *this_bh,
3234                            __le32 *first, __le32 *last)
3235 {
3236         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3237         unsigned long count = 0;            /* Number of blocks in the run */
3238         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3239                                                corresponding to
3240                                                block_to_free */
3241         ext4_fsblk_t nr;                    /* Current block # */
3242         __le32 *p;                          /* Pointer into inode/ind
3243                                                for current block */
3244         int err;
3245
3246         if (this_bh) {                          /* For indirect block */
3247                 BUFFER_TRACE(this_bh, "get_write_access");
3248                 err = ext4_journal_get_write_access(handle, this_bh);
3249                 /* Important: if we can't update the indirect pointers
3250                  * to the blocks, we can't free them. */
3251                 if (err)
3252                         return;
3253         }
3254
3255         for (p = first; p < last; p++) {
3256                 nr = le32_to_cpu(*p);
3257                 if (nr) {
3258                         /* accumulate blocks to free if they're contiguous */
3259                         if (count == 0) {
3260                                 block_to_free = nr;
3261                                 block_to_free_p = p;
3262                                 count = 1;
3263                         } else if (nr == block_to_free + count) {
3264                                 count++;
3265                         } else {
3266                                 ext4_clear_blocks(handle, inode, this_bh,
3267                                                   block_to_free,
3268                                                   count, block_to_free_p, p);
3269                                 block_to_free = nr;
3270                                 block_to_free_p = p;
3271                                 count = 1;
3272                         }
3273                 }
3274         }
3275
3276         if (count > 0)
3277                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3278                                   count, block_to_free_p, p);
3279
3280         if (this_bh) {
3281                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3282
3283                 /*
3284                  * The buffer head should have an attached journal head at this
3285                  * point. However, if the data is corrupted and an indirect
3286                  * block pointed to itself, it would have been detached when
3287                  * the block was cleared. Check for this instead of OOPSing.
3288                  */
3289                 if (bh2jh(this_bh))
3290                         ext4_journal_dirty_metadata(handle, this_bh);
3291                 else
3292                         ext4_error(inode->i_sb, __func__,
3293                                    "circular indirect block detected, "
3294                                    "inode=%lu, block=%llu",
3295                                    inode->i_ino,
3296                                    (unsigned long long) this_bh->b_blocknr);
3297         }
3298 }
3299
3300 /**
3301  *      ext4_free_branches - free an array of branches
3302  *      @handle: JBD handle for this transaction
3303  *      @inode: inode we are dealing with
3304  *      @parent_bh: the buffer_head which contains *@first and *@last
3305  *      @first: array of block numbers
3306  *      @last:  pointer immediately past the end of array
3307  *      @depth: depth of the branches to free
3308  *
3309  *      We are freeing all blocks refered from these branches (numbers are
3310  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3311  *      appropriately.
3312  */
3313 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3314                                struct buffer_head *parent_bh,
3315                                __le32 *first, __le32 *last, int depth)
3316 {
3317         ext4_fsblk_t nr;
3318         __le32 *p;
3319
3320         if (is_handle_aborted(handle))
3321                 return;
3322
3323         if (depth--) {
3324                 struct buffer_head *bh;
3325                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3326                 p = last;
3327                 while (--p >= first) {
3328                         nr = le32_to_cpu(*p);
3329                         if (!nr)
3330                                 continue;               /* A hole */
3331
3332                         /* Go read the buffer for the next level down */
3333                         bh = sb_bread(inode->i_sb, nr);
3334
3335                         /*
3336                          * A read failure? Report error and clear slot
3337                          * (should be rare).
3338                          */
3339                         if (!bh) {
3340                                 ext4_error(inode->i_sb, "ext4_free_branches",
3341                                            "Read failure, inode=%lu, block=%llu",
3342                                            inode->i_ino, nr);
3343                                 continue;
3344                         }
3345
3346                         /* This zaps the entire block.  Bottom up. */
3347                         BUFFER_TRACE(bh, "free child branches");
3348                         ext4_free_branches(handle, inode, bh,
3349                                            (__le32*)bh->b_data,
3350                                            (__le32*)bh->b_data + addr_per_block,
3351                                            depth);
3352
3353                         /*
3354                          * We've probably journalled the indirect block several
3355                          * times during the truncate.  But it's no longer
3356                          * needed and we now drop it from the transaction via
3357                          * jbd2_journal_revoke().
3358                          *
3359                          * That's easy if it's exclusively part of this
3360                          * transaction.  But if it's part of the committing
3361                          * transaction then jbd2_journal_forget() will simply
3362                          * brelse() it.  That means that if the underlying
3363                          * block is reallocated in ext4_get_block(),
3364                          * unmap_underlying_metadata() will find this block
3365                          * and will try to get rid of it.  damn, damn.
3366                          *
3367                          * If this block has already been committed to the
3368                          * journal, a revoke record will be written.  And
3369                          * revoke records must be emitted *before* clearing
3370                          * this block's bit in the bitmaps.
3371                          */
3372                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3373
3374                         /*
3375                          * Everything below this this pointer has been
3376                          * released.  Now let this top-of-subtree go.
3377                          *
3378                          * We want the freeing of this indirect block to be
3379                          * atomic in the journal with the updating of the
3380                          * bitmap block which owns it.  So make some room in
3381                          * the journal.
3382                          *
3383                          * We zero the parent pointer *after* freeing its
3384                          * pointee in the bitmaps, so if extend_transaction()
3385                          * for some reason fails to put the bitmap changes and
3386                          * the release into the same transaction, recovery
3387                          * will merely complain about releasing a free block,
3388                          * rather than leaking blocks.
3389                          */
3390                         if (is_handle_aborted(handle))
3391                                 return;
3392                         if (try_to_extend_transaction(handle, inode)) {
3393                                 ext4_mark_inode_dirty(handle, inode);
3394                                 ext4_journal_test_restart(handle, inode);
3395                         }
3396
3397                         ext4_free_blocks(handle, inode, nr, 1, 1);
3398
3399                         if (parent_bh) {
3400                                 /*
3401                                  * The block which we have just freed is
3402                                  * pointed to by an indirect block: journal it
3403                                  */
3404                                 BUFFER_TRACE(parent_bh, "get_write_access");
3405                                 if (!ext4_journal_get_write_access(handle,
3406                                                                    parent_bh)){
3407                                         *p = 0;
3408                                         BUFFER_TRACE(parent_bh,
3409                                         "call ext4_journal_dirty_metadata");
3410                                         ext4_journal_dirty_metadata(handle,
3411                                                                     parent_bh);
3412                                 }
3413                         }
3414                 }
3415         } else {
3416                 /* We have reached the bottom of the tree. */
3417                 BUFFER_TRACE(parent_bh, "free data blocks");
3418                 ext4_free_data(handle, inode, parent_bh, first, last);
3419         }
3420 }
3421
3422 int ext4_can_truncate(struct inode *inode)
3423 {
3424         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3425                 return 0;
3426         if (S_ISREG(inode->i_mode))
3427                 return 1;
3428         if (S_ISDIR(inode->i_mode))
3429                 return 1;
3430         if (S_ISLNK(inode->i_mode))
3431                 return !ext4_inode_is_fast_symlink(inode);
3432         return 0;
3433 }
3434
3435 /*
3436  * ext4_truncate()
3437  *
3438  * We block out ext4_get_block() block instantiations across the entire
3439  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3440  * simultaneously on behalf of the same inode.
3441  *
3442  * As we work through the truncate and commmit bits of it to the journal there
3443  * is one core, guiding principle: the file's tree must always be consistent on
3444  * disk.  We must be able to restart the truncate after a crash.
3445  *
3446  * The file's tree may be transiently inconsistent in memory (although it
3447  * probably isn't), but whenever we close off and commit a journal transaction,
3448  * the contents of (the filesystem + the journal) must be consistent and
3449  * restartable.  It's pretty simple, really: bottom up, right to left (although
3450  * left-to-right works OK too).
3451  *
3452  * Note that at recovery time, journal replay occurs *before* the restart of
3453  * truncate against the orphan inode list.
3454  *
3455  * The committed inode has the new, desired i_size (which is the same as
3456  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3457  * that this inode's truncate did not complete and it will again call
3458  * ext4_truncate() to have another go.  So there will be instantiated blocks
3459  * to the right of the truncation point in a crashed ext4 filesystem.  But
3460  * that's fine - as long as they are linked from the inode, the post-crash
3461  * ext4_truncate() run will find them and release them.
3462  */
3463 void ext4_truncate(struct inode *inode)
3464 {
3465         handle_t *handle;
3466         struct ext4_inode_info *ei = EXT4_I(inode);
3467         __le32 *i_data = ei->i_data;
3468         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3469         struct address_space *mapping = inode->i_mapping;
3470         ext4_lblk_t offsets[4];
3471         Indirect chain[4];
3472         Indirect *partial;
3473         __le32 nr = 0;
3474         int n;
3475         ext4_lblk_t last_block;
3476         unsigned blocksize = inode->i_sb->s_blocksize;
3477
3478         if (!ext4_can_truncate(inode))
3479                 return;
3480
3481         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3482                 ext4_ext_truncate(inode);
3483                 return;
3484         }
3485
3486         handle = start_transaction(inode);
3487         if (IS_ERR(handle))
3488                 return;         /* AKPM: return what? */
3489
3490         last_block = (inode->i_size + blocksize-1)
3491                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3492
3493         if (inode->i_size & (blocksize - 1))
3494                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3495                         goto out_stop;
3496
3497         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3498         if (n == 0)
3499                 goto out_stop;  /* error */
3500
3501         /*
3502          * OK.  This truncate is going to happen.  We add the inode to the
3503          * orphan list, so that if this truncate spans multiple transactions,
3504          * and we crash, we will resume the truncate when the filesystem
3505          * recovers.  It also marks the inode dirty, to catch the new size.
3506          *
3507          * Implication: the file must always be in a sane, consistent
3508          * truncatable state while each transaction commits.
3509          */
3510         if (ext4_orphan_add(handle, inode))
3511                 goto out_stop;
3512
3513         /*
3514          * From here we block out all ext4_get_block() callers who want to
3515          * modify the block allocation tree.
3516          */
3517         down_write(&ei->i_data_sem);
3518
3519         ext4_discard_reservation(inode);
3520
3521         /*
3522          * The orphan list entry will now protect us from any crash which
3523          * occurs before the truncate completes, so it is now safe to propagate
3524          * the new, shorter inode size (held for now in i_size) into the
3525          * on-disk inode. We do this via i_disksize, which is the value which
3526          * ext4 *really* writes onto the disk inode.
3527          */
3528         ei->i_disksize = inode->i_size;
3529
3530         if (n == 1) {           /* direct blocks */
3531                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3532                                i_data + EXT4_NDIR_BLOCKS);
3533                 goto do_indirects;
3534         }
3535
3536         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3537         /* Kill the top of shared branch (not detached) */
3538         if (nr) {
3539                 if (partial == chain) {
3540                         /* Shared branch grows from the inode */
3541                         ext4_free_branches(handle, inode, NULL,
3542                                            &nr, &nr+1, (chain+n-1) - partial);
3543                         *partial->p = 0;
3544                         /*
3545                          * We mark the inode dirty prior to restart,
3546                          * and prior to stop.  No need for it here.
3547                          */
3548                 } else {
3549                         /* Shared branch grows from an indirect block */
3550                         BUFFER_TRACE(partial->bh, "get_write_access");
3551                         ext4_free_branches(handle, inode, partial->bh,
3552                                         partial->p,
3553                                         partial->p+1, (chain+n-1) - partial);
3554                 }
3555         }
3556         /* Clear the ends of indirect blocks on the shared branch */
3557         while (partial > chain) {
3558                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3559                                    (__le32*)partial->bh->b_data+addr_per_block,
3560                                    (chain+n-1) - partial);
3561                 BUFFER_TRACE(partial->bh, "call brelse");
3562                 brelse (partial->bh);
3563                 partial--;
3564         }
3565 do_indirects:
3566         /* Kill the remaining (whole) subtrees */
3567         switch (offsets[0]) {
3568         default:
3569                 nr = i_data[EXT4_IND_BLOCK];
3570                 if (nr) {
3571                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3572                         i_data[EXT4_IND_BLOCK] = 0;
3573                 }
3574         case EXT4_IND_BLOCK:
3575                 nr = i_data[EXT4_DIND_BLOCK];
3576                 if (nr) {
3577                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3578                         i_data[EXT4_DIND_BLOCK] = 0;
3579                 }
3580         case EXT4_DIND_BLOCK:
3581                 nr = i_data[EXT4_TIND_BLOCK];
3582                 if (nr) {
3583                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3584                         i_data[EXT4_TIND_BLOCK] = 0;
3585                 }
3586         case EXT4_TIND_BLOCK:
3587                 ;
3588         }
3589
3590         up_write(&ei->i_data_sem);
3591         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3592         ext4_mark_inode_dirty(handle, inode);
3593
3594         /*
3595          * In a multi-transaction truncate, we only make the final transaction
3596          * synchronous
3597          */
3598         if (IS_SYNC(inode))
3599                 handle->h_sync = 1;
3600 out_stop:
3601         /*
3602          * If this was a simple ftruncate(), and the file will remain alive
3603          * then we need to clear up the orphan record which we created above.
3604          * However, if this was a real unlink then we were called by
3605          * ext4_delete_inode(), and we allow that function to clean up the
3606          * orphan info for us.
3607          */
3608         if (inode->i_nlink)
3609                 ext4_orphan_del(handle, inode);
3610
3611         ext4_journal_stop(handle);
3612 }
3613
3614 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3615                 unsigned long ino, struct ext4_iloc *iloc)
3616 {
3617         ext4_group_t block_group;
3618         unsigned long offset;
3619         ext4_fsblk_t block;
3620         struct ext4_group_desc *gdp;
3621
3622         if (!ext4_valid_inum(sb, ino)) {
3623                 /*
3624                  * This error is already checked for in namei.c unless we are
3625                  * looking at an NFS filehandle, in which case no error
3626                  * report is needed
3627                  */
3628                 return 0;
3629         }
3630
3631         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3632         gdp = ext4_get_group_desc(sb, block_group, NULL);
3633         if (!gdp)
3634                 return 0;
3635
3636         /*
3637          * Figure out the offset within the block group inode table
3638          */
3639         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3640                 EXT4_INODE_SIZE(sb);
3641         block = ext4_inode_table(sb, gdp) +
3642                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3643
3644         iloc->block_group = block_group;
3645         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3646         return block;
3647 }
3648
3649 /*
3650  * ext4_get_inode_loc returns with an extra refcount against the inode's
3651  * underlying buffer_head on success. If 'in_mem' is true, we have all
3652  * data in memory that is needed to recreate the on-disk version of this
3653  * inode.
3654  */
3655 static int __ext4_get_inode_loc(struct inode *inode,
3656                                 struct ext4_iloc *iloc, int in_mem)
3657 {
3658         ext4_fsblk_t block;
3659         struct buffer_head *bh;
3660
3661         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3662         if (!block)
3663                 return -EIO;
3664
3665         bh = sb_getblk(inode->i_sb, block);
3666         if (!bh) {
3667                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3668                                 "unable to read inode block - "
3669                                 "inode=%lu, block=%llu",
3670                                  inode->i_ino, block);
3671                 return -EIO;
3672         }
3673         if (!buffer_uptodate(bh)) {
3674                 lock_buffer(bh);
3675
3676                 /*
3677                  * If the buffer has the write error flag, we have failed
3678                  * to write out another inode in the same block.  In this
3679                  * case, we don't have to read the block because we may
3680                  * read the old inode data successfully.
3681                  */
3682                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3683                         set_buffer_uptodate(bh);
3684
3685                 if (buffer_uptodate(bh)) {
3686                         /* someone brought it uptodate while we waited */
3687                         unlock_buffer(bh);
3688                         goto has_buffer;
3689                 }
3690
3691                 /*
3692                  * If we have all information of the inode in memory and this
3693                  * is the only valid inode in the block, we need not read the
3694                  * block.
3695                  */
3696                 if (in_mem) {
3697                         struct buffer_head *bitmap_bh;
3698                         struct ext4_group_desc *desc;
3699                         int inodes_per_buffer;
3700                         int inode_offset, i;
3701                         ext4_group_t block_group;
3702                         int start;
3703
3704                         block_group = (inode->i_ino - 1) /
3705                                         EXT4_INODES_PER_GROUP(inode->i_sb);
3706                         inodes_per_buffer = bh->b_size /
3707                                 EXT4_INODE_SIZE(inode->i_sb);
3708                         inode_offset = ((inode->i_ino - 1) %
3709                                         EXT4_INODES_PER_GROUP(inode->i_sb));
3710                         start = inode_offset & ~(inodes_per_buffer - 1);
3711
3712                         /* Is the inode bitmap in cache? */
3713                         desc = ext4_get_group_desc(inode->i_sb,
3714                                                 block_group, NULL);
3715                         if (!desc)
3716                                 goto make_io;
3717
3718                         bitmap_bh = sb_getblk(inode->i_sb,
3719                                 ext4_inode_bitmap(inode->i_sb, desc));
3720                         if (!bitmap_bh)
3721                                 goto make_io;
3722
3723                         /*
3724                          * If the inode bitmap isn't in cache then the
3725                          * optimisation may end up performing two reads instead
3726                          * of one, so skip it.
3727                          */
3728                         if (!buffer_uptodate(bitmap_bh)) {
3729                                 brelse(bitmap_bh);
3730                                 goto make_io;
3731                         }
3732                         for (i = start; i < start + inodes_per_buffer; i++) {
3733                                 if (i == inode_offset)
3734                                         continue;
3735                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3736                                         break;
3737                         }
3738                         brelse(bitmap_bh);
3739                         if (i == start + inodes_per_buffer) {
3740                                 /* all other inodes are free, so skip I/O */
3741                                 memset(bh->b_data, 0, bh->b_size);
3742                                 set_buffer_uptodate(bh);
3743                                 unlock_buffer(bh);
3744                                 goto has_buffer;
3745                         }
3746                 }
3747
3748 make_io:
3749                 /*
3750                  * There are other valid inodes in the buffer, this inode
3751                  * has in-inode xattrs, or we don't have this inode in memory.
3752                  * Read the block from disk.
3753                  */
3754                 get_bh(bh);
3755                 bh->b_end_io = end_buffer_read_sync;
3756                 submit_bh(READ_META, bh);
3757                 wait_on_buffer(bh);
3758                 if (!buffer_uptodate(bh)) {
3759                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
3760                                         "unable to read inode block - "
3761                                         "inode=%lu, block=%llu",
3762                                         inode->i_ino, block);
3763                         brelse(bh);
3764                         return -EIO;
3765                 }
3766         }
3767 has_buffer:
3768         iloc->bh = bh;
3769         return 0;
3770 }
3771
3772 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3773 {
3774         /* We have all inode data except xattrs in memory here. */
3775         return __ext4_get_inode_loc(inode, iloc,
3776                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3777 }
3778
3779 void ext4_set_inode_flags(struct inode *inode)
3780 {
3781         unsigned int flags = EXT4_I(inode)->i_flags;
3782
3783         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3784         if (flags & EXT4_SYNC_FL)
3785                 inode->i_flags |= S_SYNC;
3786         if (flags & EXT4_APPEND_FL)
3787                 inode->i_flags |= S_APPEND;
3788         if (flags & EXT4_IMMUTABLE_FL)
3789                 inode->i_flags |= S_IMMUTABLE;
3790         if (flags & EXT4_NOATIME_FL)
3791                 inode->i_flags |= S_NOATIME;
3792         if (flags & EXT4_DIRSYNC_FL)
3793                 inode->i_flags |= S_DIRSYNC;
3794 }
3795
3796 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3797 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3798 {
3799         unsigned int flags = ei->vfs_inode.i_flags;
3800
3801         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3802                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3803         if (flags & S_SYNC)
3804                 ei->i_flags |= EXT4_SYNC_FL;
3805         if (flags & S_APPEND)
3806                 ei->i_flags |= EXT4_APPEND_FL;
3807         if (flags & S_IMMUTABLE)
3808                 ei->i_flags |= EXT4_IMMUTABLE_FL;
3809         if (flags & S_NOATIME)
3810                 ei->i_flags |= EXT4_NOATIME_FL;
3811         if (flags & S_DIRSYNC)
3812                 ei->i_flags |= EXT4_DIRSYNC_FL;
3813 }
3814 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3815                                         struct ext4_inode_info *ei)
3816 {
3817         blkcnt_t i_blocks ;
3818         struct inode *inode = &(ei->vfs_inode);
3819         struct super_block *sb = inode->i_sb;
3820
3821         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3822                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3823                 /* we are using combined 48 bit field */
3824                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3825                                         le32_to_cpu(raw_inode->i_blocks_lo);
3826                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3827                         /* i_blocks represent file system block size */
3828                         return i_blocks  << (inode->i_blkbits - 9);
3829                 } else {
3830                         return i_blocks;
3831                 }
3832         } else {
3833                 return le32_to_cpu(raw_inode->i_blocks_lo);
3834         }
3835 }
3836
3837 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3838 {
3839         struct ext4_iloc iloc;
3840         struct ext4_inode *raw_inode;
3841         struct ext4_inode_info *ei;
3842         struct buffer_head *bh;
3843         struct inode *inode;
3844         long ret;
3845         int block;
3846
3847         inode = iget_locked(sb, ino);
3848         if (!inode)
3849                 return ERR_PTR(-ENOMEM);
3850         if (!(inode->i_state & I_NEW))
3851                 return inode;
3852
3853         ei = EXT4_I(inode);
3854 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3855         ei->i_acl = EXT4_ACL_NOT_CACHED;
3856         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
3857 #endif
3858         ei->i_block_alloc_info = NULL;
3859
3860         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3861         if (ret < 0)
3862                 goto bad_inode;
3863         bh = iloc.bh;
3864         raw_inode = ext4_raw_inode(&iloc);
3865         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3866         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3867         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3868         if(!(test_opt (inode->i_sb, NO_UID32))) {
3869                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3870                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3871         }
3872         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3873
3874         ei->i_state = 0;
3875         ei->i_dir_start_lookup = 0;
3876         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3877         /* We now have enough fields to check if the inode was active or not.
3878          * This is needed because nfsd might try to access dead inodes
3879          * the test is that same one that e2fsck uses
3880          * NeilBrown 1999oct15
3881          */
3882         if (inode->i_nlink == 0) {
3883                 if (inode->i_mode == 0 ||
3884                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3885                         /* this inode is deleted */
3886                         brelse (bh);
3887                         ret = -ESTALE;
3888                         goto bad_inode;
3889                 }
3890                 /* The only unlinked inodes we let through here have
3891                  * valid i_mode and are being read by the orphan
3892                  * recovery code: that's fine, we're about to complete
3893                  * the process of deleting those. */
3894         }
3895         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3896         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3897         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3898         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3899             cpu_to_le32(EXT4_OS_HURD)) {
3900                 ei->i_file_acl |=
3901                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3902         }
3903         inode->i_size = ext4_isize(raw_inode);
3904         ei->i_disksize = inode->i_size;
3905         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3906         ei->i_block_group = iloc.block_group;
3907         /*
3908          * NOTE! The in-memory inode i_data array is in little-endian order
3909          * even on big-endian machines: we do NOT byteswap the block numbers!
3910          */
3911         for (block = 0; block < EXT4_N_BLOCKS; block++)
3912                 ei->i_data[block] = raw_inode->i_block[block];
3913         INIT_LIST_HEAD(&ei->i_orphan);
3914
3915         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3916                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3917                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3918                     EXT4_INODE_SIZE(inode->i_sb)) {
3919                         brelse (bh);
3920                         ret = -EIO;
3921                         goto bad_inode;
3922                 }
3923                 if (ei->i_extra_isize == 0) {
3924                         /* The extra space is currently unused. Use it. */
3925                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3926                                             EXT4_GOOD_OLD_INODE_SIZE;
3927                 } else {
3928                         __le32 *magic = (void *)raw_inode +
3929                                         EXT4_GOOD_OLD_INODE_SIZE +
3930                                         ei->i_extra_isize;
3931                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3932                                  ei->i_state |= EXT4_STATE_XATTR;
3933                 }
3934         } else
3935                 ei->i_extra_isize = 0;
3936
3937         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3938         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3939         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3940         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3941
3942         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3943         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3944                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3945                         inode->i_version |=
3946                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3947         }
3948
3949         if (S_ISREG(inode->i_mode)) {
3950                 inode->i_op = &ext4_file_inode_operations;
3951                 inode->i_fop = &ext4_file_operations;
3952                 ext4_set_aops(inode);
3953         } else if (S_ISDIR(inode->i_mode)) {
3954                 inode->i_op = &ext4_dir_inode_operations;
3955                 inode->i_fop = &ext4_dir_operations;
3956         } else if (S_ISLNK(inode->i_mode)) {
3957                 if (ext4_inode_is_fast_symlink(inode))
3958                         inode->i_op = &ext4_fast_symlink_inode_operations;
3959                 else {
3960                         inode->i_op = &ext4_symlink_inode_operations;
3961                         ext4_set_aops(inode);
3962                 }
3963         } else {
3964                 inode->i_op = &ext4_special_inode_operations;
3965                 if (raw_inode->i_block[0])
3966                         init_special_inode(inode, inode->i_mode,
3967                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3968                 else
3969                         init_special_inode(inode, inode->i_mode,
3970                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3971         }
3972         brelse (iloc.bh);
3973         ext4_set_inode_flags(inode);
3974         unlock_new_inode(inode);
3975         return inode;
3976
3977 bad_inode:
3978         iget_failed(inode);
3979         return ERR_PTR(ret);
3980 }
3981
3982 static int ext4_inode_blocks_set(handle_t *handle,
3983                                 struct ext4_inode *raw_inode,
3984                                 struct ext4_inode_info *ei)
3985 {
3986         struct inode *inode = &(ei->vfs_inode);
3987         u64 i_blocks = inode->i_blocks;
3988         struct super_block *sb = inode->i_sb;
3989         int err = 0;
3990
3991         if (i_blocks <= ~0U) {
3992                 /*
3993                  * i_blocks can be represnted in a 32 bit variable
3994                  * as multiple of 512 bytes
3995                  */
3996                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3997                 raw_inode->i_blocks_high = 0;
3998                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3999         } else if (i_blocks <= 0xffffffffffffULL) {
4000                 /*
4001                  * i_blocks can be represented in a 48 bit variable
4002                  * as multiple of 512 bytes
4003                  */
4004                 err = ext4_update_rocompat_feature(handle, sb,
4005                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4006                 if (err)
4007                         goto  err_out;
4008                 /* i_block is stored in the split  48 bit fields */
4009                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4010                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4011                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4012         } else {
4013                 /*
4014                  * i_blocks should be represented in a 48 bit variable
4015                  * as multiple of  file system block size
4016                  */
4017                 err = ext4_update_rocompat_feature(handle, sb,
4018                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4019                 if (err)
4020                         goto  err_out;
4021                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4022                 /* i_block is stored in file system block size */
4023                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4024                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4025                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4026         }
4027 err_out:
4028         return err;
4029 }
4030
4031 /*
4032  * Post the struct inode info into an on-disk inode location in the
4033  * buffer-cache.  This gobbles the caller's reference to the
4034  * buffer_head in the inode location struct.
4035  *
4036  * The caller must have write access to iloc->bh.
4037  */
4038 static int ext4_do_update_inode(handle_t *handle,
4039                                 struct inode *inode,
4040                                 struct ext4_iloc *iloc)
4041 {
4042         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4043         struct ext4_inode_info *ei = EXT4_I(inode);
4044         struct buffer_head *bh = iloc->bh;
4045         int err = 0, rc, block;
4046
4047         /* For fields not not tracking in the in-memory inode,
4048          * initialise them to zero for new inodes. */
4049         if (ei->i_state & EXT4_STATE_NEW)
4050                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4051
4052         ext4_get_inode_flags(ei);
4053         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4054         if(!(test_opt(inode->i_sb, NO_UID32))) {
4055                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4056                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4057 /*
4058  * Fix up interoperability with old kernels. Otherwise, old inodes get
4059  * re-used with the upper 16 bits of the uid/gid intact
4060  */
4061                 if(!ei->i_dtime) {
4062                         raw_inode->i_uid_high =
4063                                 cpu_to_le16(high_16_bits(inode->i_uid));
4064                         raw_inode->i_gid_high =
4065                                 cpu_to_le16(high_16_bits(inode->i_gid));
4066                 } else {
4067                         raw_inode->i_uid_high = 0;
4068                         raw_inode->i_gid_high = 0;
4069                 }
4070         } else {
4071                 raw_inode->i_uid_low =
4072                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4073                 raw_inode->i_gid_low =
4074                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4075                 raw_inode->i_uid_high = 0;
4076                 raw_inode->i_gid_high = 0;
4077         }
4078         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4079
4080         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4081         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4082         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4083         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4084
4085         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4086                 goto out_brelse;
4087         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4088         /* clear the migrate flag in the raw_inode */
4089         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4090         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4091             cpu_to_le32(EXT4_OS_HURD))
4092                 raw_inode->i_file_acl_high =
4093                         cpu_to_le16(ei->i_file_acl >> 32);
4094         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4095         ext4_isize_set(raw_inode, ei->i_disksize);
4096         if (ei->i_disksize > 0x7fffffffULL) {
4097                 struct super_block *sb = inode->i_sb;
4098                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4099                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4100                                 EXT4_SB(sb)->s_es->s_rev_level ==
4101                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4102                         /* If this is the first large file
4103                          * created, add a flag to the superblock.
4104                          */
4105                         err = ext4_journal_get_write_access(handle,
4106                                         EXT4_SB(sb)->s_sbh);
4107                         if (err)
4108                                 goto out_brelse;
4109                         ext4_update_dynamic_rev(sb);
4110                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4111                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4112                         sb->s_dirt = 1;
4113                         handle->h_sync = 1;
4114                         err = ext4_journal_dirty_metadata(handle,
4115                                         EXT4_SB(sb)->s_sbh);
4116                 }
4117         }
4118         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4119         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4120                 if (old_valid_dev(inode->i_rdev)) {
4121                         raw_inode->i_block[0] =
4122                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4123                         raw_inode->i_block[1] = 0;
4124                 } else {
4125                         raw_inode->i_block[0] = 0;
4126                         raw_inode->i_block[1] =
4127                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4128                         raw_inode->i_block[2] = 0;
4129                 }
4130         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4131                 raw_inode->i_block[block] = ei->i_data[block];
4132
4133         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4134         if (ei->i_extra_isize) {
4135                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4136                         raw_inode->i_version_hi =
4137                         cpu_to_le32(inode->i_version >> 32);
4138                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4139         }
4140
4141
4142         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4143         rc = ext4_journal_dirty_metadata(handle, bh);
4144         if (!err)
4145                 err = rc;
4146         ei->i_state &= ~EXT4_STATE_NEW;
4147
4148 out_brelse:
4149         brelse (bh);
4150         ext4_std_error(inode->i_sb, err);
4151         return err;
4152 }
4153
4154 /*
4155  * ext4_write_inode()
4156  *
4157  * We are called from a few places:
4158  *
4159  * - Within generic_file_write() for O_SYNC files.
4160  *   Here, there will be no transaction running. We wait for any running
4161  *   trasnaction to commit.
4162  *
4163  * - Within sys_sync(), kupdate and such.
4164  *   We wait on commit, if tol to.
4165  *
4166  * - Within prune_icache() (PF_MEMALLOC == true)
4167  *   Here we simply return.  We can't afford to block kswapd on the
4168  *   journal commit.
4169  *
4170  * In all cases it is actually safe for us to return without doing anything,
4171  * because the inode has been copied into a raw inode buffer in
4172  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4173  * knfsd.
4174  *
4175  * Note that we are absolutely dependent upon all inode dirtiers doing the
4176  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4177  * which we are interested.
4178  *
4179  * It would be a bug for them to not do this.  The code:
4180  *
4181  *      mark_inode_dirty(inode)
4182  *      stuff();
4183  *      inode->i_size = expr;
4184  *
4185  * is in error because a kswapd-driven write_inode() could occur while
4186  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4187  * will no longer be on the superblock's dirty inode list.
4188  */
4189 int ext4_write_inode(struct inode *inode, int wait)
4190 {
4191         if (current->flags & PF_MEMALLOC)
4192                 return 0;
4193
4194         if (ext4_journal_current_handle()) {
4195                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4196                 dump_stack();
4197                 return -EIO;
4198         }
4199
4200         if (!wait)
4201                 return 0;
4202
4203         return ext4_force_commit(inode->i_sb);
4204 }
4205
4206 /*
4207  * ext4_setattr()
4208  *
4209  * Called from notify_change.
4210  *
4211  * We want to trap VFS attempts to truncate the file as soon as
4212  * possible.  In particular, we want to make sure that when the VFS
4213  * shrinks i_size, we put the inode on the orphan list and modify
4214  * i_disksize immediately, so that during the subsequent flushing of
4215  * dirty pages and freeing of disk blocks, we can guarantee that any
4216  * commit will leave the blocks being flushed in an unused state on
4217  * disk.  (On recovery, the inode will get truncated and the blocks will
4218  * be freed, so we have a strong guarantee that no future commit will
4219  * leave these blocks visible to the user.)
4220  *
4221  * Another thing we have to assure is that if we are in ordered mode
4222  * and inode is still attached to the committing transaction, we must
4223  * we start writeout of all the dirty pages which are being truncated.
4224  * This way we are sure that all the data written in the previous
4225  * transaction are already on disk (truncate waits for pages under
4226  * writeback).
4227  *
4228  * Called with inode->i_mutex down.
4229  */
4230 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4231 {
4232         struct inode *inode = dentry->d_inode;
4233         int error, rc = 0;
4234         const unsigned int ia_valid = attr->ia_valid;
4235
4236         error = inode_change_ok(inode, attr);
4237         if (error)
4238                 return error;
4239
4240         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4241                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4242                 handle_t *handle;
4243
4244                 /* (user+group)*(old+new) structure, inode write (sb,
4245                  * inode block, ? - but truncate inode update has it) */
4246                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4247                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4248                 if (IS_ERR(handle)) {
4249                         error = PTR_ERR(handle);
4250                         goto err_out;
4251                 }
4252                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4253                 if (error) {
4254                         ext4_journal_stop(handle);
4255                         return error;
4256                 }
4257                 /* Update corresponding info in inode so that everything is in
4258                  * one transaction */
4259                 if (attr->ia_valid & ATTR_UID)
4260                         inode->i_uid = attr->ia_uid;
4261                 if (attr->ia_valid & ATTR_GID)
4262                         inode->i_gid = attr->ia_gid;
4263                 error = ext4_mark_inode_dirty(handle, inode);
4264                 ext4_journal_stop(handle);
4265         }
4266
4267         if (attr->ia_valid & ATTR_SIZE) {
4268                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4269                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4270
4271                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4272                                 error = -EFBIG;
4273                                 goto err_out;
4274                         }
4275                 }
4276         }
4277
4278         if (S_ISREG(inode->i_mode) &&
4279             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4280                 handle_t *handle;
4281
4282                 handle = ext4_journal_start(inode, 3);
4283                 if (IS_ERR(handle)) {
4284                         error = PTR_ERR(handle);
4285                         goto err_out;
4286                 }
4287
4288                 error = ext4_orphan_add(handle, inode);
4289                 EXT4_I(inode)->i_disksize = attr->ia_size;
4290                 rc = ext4_mark_inode_dirty(handle, inode);
4291                 if (!error)
4292                         error = rc;
4293                 ext4_journal_stop(handle);
4294
4295                 if (ext4_should_order_data(inode)) {
4296                         error = ext4_begin_ordered_truncate(inode,
4297                                                             attr->ia_size);
4298                         if (error) {
4299                                 /* Do as much error cleanup as possible */
4300                                 handle = ext4_journal_start(inode, 3);
4301                                 if (IS_ERR(handle)) {
4302                                         ext4_orphan_del(NULL, inode);
4303                                         goto err_out;
4304                                 }
4305                                 ext4_orphan_del(handle, inode);
4306                                 ext4_journal_stop(handle);
4307                                 goto err_out;
4308                         }
4309                 }
4310         }
4311
4312         rc = inode_setattr(inode, attr);
4313
4314         /* If inode_setattr's call to ext4_truncate failed to get a
4315          * transaction handle at all, we need to clean up the in-core
4316          * orphan list manually. */
4317         if (inode->i_nlink)
4318                 ext4_orphan_del(NULL, inode);
4319
4320         if (!rc && (ia_valid & ATTR_MODE))
4321                 rc = ext4_acl_chmod(inode);
4322
4323 err_out:
4324         ext4_std_error(inode->i_sb, error);
4325         if (!error)
4326                 error = rc;
4327         return error;
4328 }
4329
4330 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4331                  struct kstat *stat)
4332 {
4333         struct inode *inode;
4334         unsigned long delalloc_blocks;
4335
4336         inode = dentry->d_inode;
4337         generic_fillattr(inode, stat);
4338
4339         /*
4340          * We can't update i_blocks if the block allocation is delayed
4341          * otherwise in the case of system crash before the real block
4342          * allocation is done, we will have i_blocks inconsistent with
4343          * on-disk file blocks.
4344          * We always keep i_blocks updated together with real
4345          * allocation. But to not confuse with user, stat
4346          * will return the blocks that include the delayed allocation
4347          * blocks for this file.
4348          */
4349         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4350         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4351         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4352
4353         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4354         return 0;
4355 }
4356
4357 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4358                                       int chunk)
4359 {
4360         int indirects;
4361
4362         /* if nrblocks are contiguous */
4363         if (chunk) {
4364                 /*
4365                  * With N contiguous data blocks, it need at most
4366                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4367                  * 2 dindirect blocks
4368                  * 1 tindirect block
4369                  */
4370                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4371                 return indirects + 3;
4372         }
4373         /*
4374          * if nrblocks are not contiguous, worse case, each block touch
4375          * a indirect block, and each indirect block touch a double indirect
4376          * block, plus a triple indirect block
4377          */
4378         indirects = nrblocks * 2 + 1;
4379         return indirects;
4380 }
4381
4382 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4383 {
4384         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4385                 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4386         return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4387 }
4388 /*
4389  * Account for index blocks, block groups bitmaps and block group
4390  * descriptor blocks if modify datablocks and index blocks
4391  * worse case, the indexs blocks spread over different block groups
4392  *
4393  * If datablocks are discontiguous, they are possible to spread over
4394  * different block groups too. If they are contiugous, with flexbg,
4395  * they could still across block group boundary.
4396  *
4397  * Also account for superblock, inode, quota and xattr blocks
4398  */
4399 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4400 {
4401         int groups, gdpblocks;
4402         int idxblocks;
4403         int ret = 0;
4404
4405         /*
4406          * How many index blocks need to touch to modify nrblocks?
4407          * The "Chunk" flag indicating whether the nrblocks is
4408          * physically contiguous on disk
4409          *
4410          * For Direct IO and fallocate, they calls get_block to allocate
4411          * one single extent at a time, so they could set the "Chunk" flag
4412          */
4413         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4414
4415         ret = idxblocks;
4416
4417         /*
4418          * Now let's see how many group bitmaps and group descriptors need
4419          * to account
4420          */
4421         groups = idxblocks;
4422         if (chunk)
4423                 groups += 1;
4424         else
4425                 groups += nrblocks;
4426
4427         gdpblocks = groups;
4428         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4429                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4430         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4431                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4432
4433         /* bitmaps and block group descriptor blocks */
4434         ret += groups + gdpblocks;
4435
4436         /* Blocks for super block, inode, quota and xattr blocks */
4437         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4438
4439         return ret;
4440 }
4441
4442 /*
4443  * Calulate the total number of credits to reserve to fit
4444  * the modification of a single pages into a single transaction
4445  *
4446  * This could be called via ext4_write_begin() or later
4447  * ext4_da_writepages() in delalyed allocation case.
4448  *
4449  * In both case it's possible that we could allocating multiple
4450  * chunks of blocks. We need to consider the worse case, when
4451  * one new block per extent.
4452  *
4453  * For Direct IO and fallocate, the journal credits reservation
4454  * is based on one single extent allocation, so they could use
4455  * EXT4_DATA_TRANS_BLOCKS to get the needed credit to log a single
4456  * chunk of allocation needs.
4457  */
4458 int ext4_writepage_trans_blocks(struct inode *inode)
4459 {
4460         int bpp = ext4_journal_blocks_per_page(inode);
4461         int ret;
4462
4463         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4464
4465         /* Account for data blocks for journalled mode */
4466         if (ext4_should_journal_data(inode))
4467                 ret += bpp;
4468         return ret;
4469 }
4470 /*
4471  * The caller must have previously called ext4_reserve_inode_write().
4472  * Give this, we know that the caller already has write access to iloc->bh.
4473  */
4474 int ext4_mark_iloc_dirty(handle_t *handle,
4475                 struct inode *inode, struct ext4_iloc *iloc)
4476 {
4477         int err = 0;
4478
4479         if (test_opt(inode->i_sb, I_VERSION))
4480                 inode_inc_iversion(inode);
4481
4482         /* the do_update_inode consumes one bh->b_count */
4483         get_bh(iloc->bh);
4484
4485         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4486         err = ext4_do_update_inode(handle, inode, iloc);
4487         put_bh(iloc->bh);
4488         return err;
4489 }
4490
4491 /*
4492  * On success, We end up with an outstanding reference count against
4493  * iloc->bh.  This _must_ be cleaned up later.
4494  */
4495
4496 int
4497 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4498                          struct ext4_iloc *iloc)
4499 {
4500         int err = 0;
4501         if (handle) {
4502                 err = ext4_get_inode_loc(inode, iloc);
4503                 if (!err) {
4504                         BUFFER_TRACE(iloc->bh, "get_write_access");
4505                         err = ext4_journal_get_write_access(handle, iloc->bh);
4506                         if (err) {
4507                                 brelse(iloc->bh);
4508                                 iloc->bh = NULL;
4509                         }
4510                 }
4511         }
4512         ext4_std_error(inode->i_sb, err);
4513         return err;
4514 }
4515
4516 /*
4517  * Expand an inode by new_extra_isize bytes.
4518  * Returns 0 on success or negative error number on failure.
4519  */
4520 static int ext4_expand_extra_isize(struct inode *inode,
4521                                    unsigned int new_extra_isize,
4522                                    struct ext4_iloc iloc,
4523                                    handle_t *handle)
4524 {
4525         struct ext4_inode *raw_inode;
4526         struct ext4_xattr_ibody_header *header;
4527         struct ext4_xattr_entry *entry;
4528
4529         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4530                 return 0;
4531
4532         raw_inode = ext4_raw_inode(&iloc);
4533
4534         header = IHDR(inode, raw_inode);
4535         entry = IFIRST(header);
4536
4537         /* No extended attributes present */
4538         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4539                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4540                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4541                         new_extra_isize);
4542                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4543                 return 0;
4544         }
4545
4546         /* try to expand with EAs present */
4547         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4548                                           raw_inode, handle);
4549 }
4550
4551 /*
4552  * What we do here is to mark the in-core inode as clean with respect to inode
4553  * dirtiness (it may still be data-dirty).
4554  * This means that the in-core inode may be reaped by prune_icache
4555  * without having to perform any I/O.  This is a very good thing,
4556  * because *any* task may call prune_icache - even ones which
4557  * have a transaction open against a different journal.
4558  *
4559  * Is this cheating?  Not really.  Sure, we haven't written the
4560  * inode out, but prune_icache isn't a user-visible syncing function.
4561  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4562  * we start and wait on commits.
4563  *
4564  * Is this efficient/effective?  Well, we're being nice to the system
4565  * by cleaning up our inodes proactively so they can be reaped
4566  * without I/O.  But we are potentially leaving up to five seconds'
4567  * worth of inodes floating about which prune_icache wants us to
4568  * write out.  One way to fix that would be to get prune_icache()
4569  * to do a write_super() to free up some memory.  It has the desired
4570  * effect.
4571  */
4572 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4573 {
4574         struct ext4_iloc iloc;
4575         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4576         static unsigned int mnt_count;
4577         int err, ret;
4578
4579         might_sleep();
4580         err = ext4_reserve_inode_write(handle, inode, &iloc);
4581         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4582             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4583                 /*
4584                  * We need extra buffer credits since we may write into EA block
4585                  * with this same handle. If journal_extend fails, then it will
4586                  * only result in a minor loss of functionality for that inode.
4587                  * If this is felt to be critical, then e2fsck should be run to
4588                  * force a large enough s_min_extra_isize.
4589                  */
4590                 if ((jbd2_journal_extend(handle,
4591                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4592                         ret = ext4_expand_extra_isize(inode,
4593                                                       sbi->s_want_extra_isize,
4594                                                       iloc, handle);
4595                         if (ret) {
4596                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4597                                 if (mnt_count !=
4598                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4599                                         ext4_warning(inode->i_sb, __func__,
4600                                         "Unable to expand inode %lu. Delete"
4601                                         " some EAs or run e2fsck.",
4602                                         inode->i_ino);
4603                                         mnt_count =
4604                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4605                                 }
4606                         }
4607                 }
4608         }
4609         if (!err)
4610                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4611         return err;
4612 }
4613
4614 /*
4615  * ext4_dirty_inode() is called from __mark_inode_dirty()
4616  *
4617  * We're really interested in the case where a file is being extended.
4618  * i_size has been changed by generic_commit_write() and we thus need
4619  * to include the updated inode in the current transaction.
4620  *
4621  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4622  * are allocated to the file.
4623  *
4624  * If the inode is marked synchronous, we don't honour that here - doing
4625  * so would cause a commit on atime updates, which we don't bother doing.
4626  * We handle synchronous inodes at the highest possible level.
4627  */
4628 void ext4_dirty_inode(struct inode *inode)
4629 {
4630         handle_t *current_handle = ext4_journal_current_handle();
4631         handle_t *handle;
4632
4633         handle = ext4_journal_start(inode, 2);
4634         if (IS_ERR(handle))
4635                 goto out;
4636         if (current_handle &&
4637                 current_handle->h_transaction != handle->h_transaction) {
4638                 /* This task has a transaction open against a different fs */
4639                 printk(KERN_EMERG "%s: transactions do not match!\n",
4640                        __func__);
4641         } else {
4642                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4643                                 current_handle);
4644                 ext4_mark_inode_dirty(handle, inode);
4645         }
4646         ext4_journal_stop(handle);
4647 out:
4648         return;
4649 }
4650
4651 #if 0
4652 /*
4653  * Bind an inode's backing buffer_head into this transaction, to prevent
4654  * it from being flushed to disk early.  Unlike
4655  * ext4_reserve_inode_write, this leaves behind no bh reference and
4656  * returns no iloc structure, so the caller needs to repeat the iloc
4657  * lookup to mark the inode dirty later.
4658  */
4659 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4660 {
4661         struct ext4_iloc iloc;
4662
4663         int err = 0;
4664         if (handle) {
4665                 err = ext4_get_inode_loc(inode, &iloc);
4666                 if (!err) {
4667                         BUFFER_TRACE(iloc.bh, "get_write_access");
4668                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4669                         if (!err)
4670                                 err = ext4_journal_dirty_metadata(handle,
4671                                                                   iloc.bh);
4672                         brelse(iloc.bh);
4673                 }
4674         }
4675         ext4_std_error(inode->i_sb, err);
4676         return err;
4677 }
4678 #endif
4679
4680 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4681 {
4682         journal_t *journal;
4683         handle_t *handle;
4684         int err;
4685
4686         /*
4687          * We have to be very careful here: changing a data block's
4688          * journaling status dynamically is dangerous.  If we write a
4689          * data block to the journal, change the status and then delete
4690          * that block, we risk forgetting to revoke the old log record
4691          * from the journal and so a subsequent replay can corrupt data.
4692          * So, first we make sure that the journal is empty and that
4693          * nobody is changing anything.
4694          */
4695
4696         journal = EXT4_JOURNAL(inode);
4697         if (is_journal_aborted(journal))
4698                 return -EROFS;
4699
4700         jbd2_journal_lock_updates(journal);
4701         jbd2_journal_flush(journal);
4702
4703         /*
4704          * OK, there are no updates running now, and all cached data is
4705          * synced to disk.  We are now in a completely consistent state
4706          * which doesn't have anything in the journal, and we know that
4707          * no filesystem updates are running, so it is safe to modify
4708          * the inode's in-core data-journaling state flag now.
4709          */
4710
4711         if (val)
4712                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4713         else
4714                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4715         ext4_set_aops(inode);
4716
4717         jbd2_journal_unlock_updates(journal);
4718
4719         /* Finally we can mark the inode as dirty. */
4720
4721         handle = ext4_journal_start(inode, 1);
4722         if (IS_ERR(handle))
4723                 return PTR_ERR(handle);
4724
4725         err = ext4_mark_inode_dirty(handle, inode);
4726         handle->h_sync = 1;
4727         ext4_journal_stop(handle);
4728         ext4_std_error(inode->i_sb, err);
4729
4730         return err;
4731 }
4732
4733 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4734 {
4735         return !buffer_mapped(bh);
4736 }
4737
4738 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4739 {
4740         loff_t size;
4741         unsigned long len;
4742         int ret = -EINVAL;
4743         struct file *file = vma->vm_file;
4744         struct inode *inode = file->f_path.dentry->d_inode;
4745         struct address_space *mapping = inode->i_mapping;
4746
4747         /*
4748          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4749          * get i_mutex because we are already holding mmap_sem.
4750          */
4751         down_read(&inode->i_alloc_sem);
4752         size = i_size_read(inode);
4753         if (page->mapping != mapping || size <= page_offset(page)
4754             || !PageUptodate(page)) {
4755                 /* page got truncated from under us? */
4756                 goto out_unlock;
4757         }
4758         ret = 0;
4759         if (PageMappedToDisk(page))
4760                 goto out_unlock;
4761
4762         if (page->index == size >> PAGE_CACHE_SHIFT)
4763                 len = size & ~PAGE_CACHE_MASK;
4764         else
4765                 len = PAGE_CACHE_SIZE;
4766
4767         if (page_has_buffers(page)) {
4768                 /* return if we have all the buffers mapped */
4769                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4770                                        ext4_bh_unmapped))
4771                         goto out_unlock;
4772         }
4773         /*
4774          * OK, we need to fill the hole... Do write_begin write_end
4775          * to do block allocation/reservation.We are not holding
4776          * inode.i__mutex here. That allow * parallel write_begin,
4777          * write_end call. lock_page prevent this from happening
4778          * on the same page though
4779          */
4780         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4781                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4782         if (ret < 0)
4783                 goto out_unlock;
4784         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4785                         len, len, page, NULL);
4786         if (ret < 0)
4787                 goto out_unlock;
4788         ret = 0;
4789 out_unlock:
4790         up_read(&inode->i_alloc_sem);
4791         return ret;
4792 }