Remove incorrect BKL comments in ext4
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "xattr.h"
40 #include "acl.h"
41
42 /*
43  * Test whether an inode is a fast symlink.
44  */
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
46 {
47         int ea_blocks = EXT4_I(inode)->i_file_acl ?
48                 (inode->i_sb->s_blocksize >> 9) : 0;
49
50         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51 }
52
53 /*
54  * The ext4 forget function must perform a revoke if we are freeing data
55  * which has been journaled.  Metadata (eg. indirect blocks) must be
56  * revoked in all cases.
57  *
58  * "bh" may be NULL: a metadata block may have been freed from memory
59  * but there may still be a record of it in the journal, and that record
60  * still needs to be revoked.
61  */
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63                         struct buffer_head *bh, ext4_fsblk_t blocknr)
64 {
65         int err;
66
67         might_sleep();
68
69         BUFFER_TRACE(bh, "enter");
70
71         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72                   "data mode %lx\n",
73                   bh, is_metadata, inode->i_mode,
74                   test_opt(inode->i_sb, DATA_FLAGS));
75
76         /* Never use the revoke function if we are doing full data
77          * journaling: there is no need to, and a V1 superblock won't
78          * support it.  Otherwise, only skip the revoke on un-journaled
79          * data blocks. */
80
81         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82             (!is_metadata && !ext4_should_journal_data(inode))) {
83                 if (bh) {
84                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
85                         return ext4_journal_forget(handle, bh);
86                 }
87                 return 0;
88         }
89
90         /*
91          * data!=journal && (is_metadata || should_journal_data(inode))
92          */
93         BUFFER_TRACE(bh, "call ext4_journal_revoke");
94         err = ext4_journal_revoke(handle, blocknr, bh);
95         if (err)
96                 ext4_abort(inode->i_sb, __FUNCTION__,
97                            "error %d when attempting revoke", err);
98         BUFFER_TRACE(bh, "exit");
99         return err;
100 }
101
102 /*
103  * Work out how many blocks we need to proceed with the next chunk of a
104  * truncate transaction.
105  */
106 static unsigned long blocks_for_truncate(struct inode *inode)
107 {
108         ext4_lblk_t needed;
109
110         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111
112         /* Give ourselves just enough room to cope with inodes in which
113          * i_blocks is corrupt: we've seen disk corruptions in the past
114          * which resulted in random data in an inode which looked enough
115          * like a regular file for ext4 to try to delete it.  Things
116          * will go a bit crazy if that happens, but at least we should
117          * try not to panic the whole kernel. */
118         if (needed < 2)
119                 needed = 2;
120
121         /* But we need to bound the transaction so we don't overflow the
122          * journal. */
123         if (needed > EXT4_MAX_TRANS_DATA)
124                 needed = EXT4_MAX_TRANS_DATA;
125
126         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 }
128
129 /*
130  * Truncate transactions can be complex and absolutely huge.  So we need to
131  * be able to restart the transaction at a conventient checkpoint to make
132  * sure we don't overflow the journal.
133  *
134  * start_transaction gets us a new handle for a truncate transaction,
135  * and extend_transaction tries to extend the existing one a bit.  If
136  * extend fails, we need to propagate the failure up and restart the
137  * transaction in the top-level truncate loop. --sct
138  */
139 static handle_t *start_transaction(struct inode *inode)
140 {
141         handle_t *result;
142
143         result = ext4_journal_start(inode, blocks_for_truncate(inode));
144         if (!IS_ERR(result))
145                 return result;
146
147         ext4_std_error(inode->i_sb, PTR_ERR(result));
148         return result;
149 }
150
151 /*
152  * Try to extend this transaction for the purposes of truncation.
153  *
154  * Returns 0 if we managed to create more room.  If we can't create more
155  * room, and the transaction must be restarted we return 1.
156  */
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158 {
159         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160                 return 0;
161         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162                 return 0;
163         return 1;
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 {
173         jbd_debug(2, "restarting handle %p\n", handle);
174         return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 }
176
177 /*
178  * Called at the last iput() if i_nlink is zero.
179  */
180 void ext4_delete_inode (struct inode * inode)
181 {
182         handle_t *handle;
183
184         truncate_inode_pages(&inode->i_data, 0);
185
186         if (is_bad_inode(inode))
187                 goto no_delete;
188
189         handle = start_transaction(inode);
190         if (IS_ERR(handle)) {
191                 /*
192                  * If we're going to skip the normal cleanup, we still need to
193                  * make sure that the in-core orphan linked list is properly
194                  * cleaned up.
195                  */
196                 ext4_orphan_del(NULL, inode);
197                 goto no_delete;
198         }
199
200         if (IS_SYNC(inode))
201                 handle->h_sync = 1;
202         inode->i_size = 0;
203         if (inode->i_blocks)
204                 ext4_truncate(inode);
205         /*
206          * Kill off the orphan record which ext4_truncate created.
207          * AKPM: I think this can be inside the above `if'.
208          * Note that ext4_orphan_del() has to be able to cope with the
209          * deletion of a non-existent orphan - this is because we don't
210          * know if ext4_truncate() actually created an orphan record.
211          * (Well, we could do this if we need to, but heck - it works)
212          */
213         ext4_orphan_del(handle, inode);
214         EXT4_I(inode)->i_dtime  = get_seconds();
215
216         /*
217          * One subtle ordering requirement: if anything has gone wrong
218          * (transaction abort, IO errors, whatever), then we can still
219          * do these next steps (the fs will already have been marked as
220          * having errors), but we can't free the inode if the mark_dirty
221          * fails.
222          */
223         if (ext4_mark_inode_dirty(handle, inode))
224                 /* If that failed, just do the required in-core inode clear. */
225                 clear_inode(inode);
226         else
227                 ext4_free_inode(handle, inode);
228         ext4_journal_stop(handle);
229         return;
230 no_delete:
231         clear_inode(inode);     /* We must guarantee clearing of inode... */
232 }
233
234 typedef struct {
235         __le32  *p;
236         __le32  key;
237         struct buffer_head *bh;
238 } Indirect;
239
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241 {
242         p->key = *(p->p = v);
243         p->bh = bh;
244 }
245
246 /**
247  *      ext4_block_to_path - parse the block number into array of offsets
248  *      @inode: inode in question (we are only interested in its superblock)
249  *      @i_block: block number to be parsed
250  *      @offsets: array to store the offsets in
251  *      @boundary: set this non-zero if the referred-to block is likely to be
252  *             followed (on disk) by an indirect block.
253  *
254  *      To store the locations of file's data ext4 uses a data structure common
255  *      for UNIX filesystems - tree of pointers anchored in the inode, with
256  *      data blocks at leaves and indirect blocks in intermediate nodes.
257  *      This function translates the block number into path in that tree -
258  *      return value is the path length and @offsets[n] is the offset of
259  *      pointer to (n+1)th node in the nth one. If @block is out of range
260  *      (negative or too large) warning is printed and zero returned.
261  *
262  *      Note: function doesn't find node addresses, so no IO is needed. All
263  *      we need to know is the capacity of indirect blocks (taken from the
264  *      inode->i_sb).
265  */
266
267 /*
268  * Portability note: the last comparison (check that we fit into triple
269  * indirect block) is spelled differently, because otherwise on an
270  * architecture with 32-bit longs and 8Kb pages we might get into trouble
271  * if our filesystem had 8Kb blocks. We might use long long, but that would
272  * kill us on x86. Oh, well, at least the sign propagation does not matter -
273  * i_block would have to be negative in the very beginning, so we would not
274  * get there at all.
275  */
276
277 static int ext4_block_to_path(struct inode *inode,
278                         ext4_lblk_t i_block,
279                         ext4_lblk_t offsets[4], int *boundary)
280 {
281         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283         const long direct_blocks = EXT4_NDIR_BLOCKS,
284                 indirect_blocks = ptrs,
285                 double_blocks = (1 << (ptrs_bits * 2));
286         int n = 0;
287         int final = 0;
288
289         if (i_block < 0) {
290                 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291         } else if (i_block < direct_blocks) {
292                 offsets[n++] = i_block;
293                 final = direct_blocks;
294         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
295                 offsets[n++] = EXT4_IND_BLOCK;
296                 offsets[n++] = i_block;
297                 final = ptrs;
298         } else if ((i_block -= indirect_blocks) < double_blocks) {
299                 offsets[n++] = EXT4_DIND_BLOCK;
300                 offsets[n++] = i_block >> ptrs_bits;
301                 offsets[n++] = i_block & (ptrs - 1);
302                 final = ptrs;
303         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304                 offsets[n++] = EXT4_TIND_BLOCK;
305                 offsets[n++] = i_block >> (ptrs_bits * 2);
306                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307                 offsets[n++] = i_block & (ptrs - 1);
308                 final = ptrs;
309         } else {
310                 ext4_warning(inode->i_sb, "ext4_block_to_path",
311                                 "block %lu > max",
312                                 i_block + direct_blocks +
313                                 indirect_blocks + double_blocks);
314         }
315         if (boundary)
316                 *boundary = final - 1 - (i_block & (ptrs - 1));
317         return n;
318 }
319
320 /**
321  *      ext4_get_branch - read the chain of indirect blocks leading to data
322  *      @inode: inode in question
323  *      @depth: depth of the chain (1 - direct pointer, etc.)
324  *      @offsets: offsets of pointers in inode/indirect blocks
325  *      @chain: place to store the result
326  *      @err: here we store the error value
327  *
328  *      Function fills the array of triples <key, p, bh> and returns %NULL
329  *      if everything went OK or the pointer to the last filled triple
330  *      (incomplete one) otherwise. Upon the return chain[i].key contains
331  *      the number of (i+1)-th block in the chain (as it is stored in memory,
332  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
333  *      number (it points into struct inode for i==0 and into the bh->b_data
334  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335  *      block for i>0 and NULL for i==0. In other words, it holds the block
336  *      numbers of the chain, addresses they were taken from (and where we can
337  *      verify that chain did not change) and buffer_heads hosting these
338  *      numbers.
339  *
340  *      Function stops when it stumbles upon zero pointer (absent block)
341  *              (pointer to last triple returned, *@err == 0)
342  *      or when it gets an IO error reading an indirect block
343  *              (ditto, *@err == -EIO)
344  *      or when it reads all @depth-1 indirect blocks successfully and finds
345  *      the whole chain, all way to the data (returns %NULL, *err == 0).
346  *
347  *      Need to be called with
348  *      down_read(&EXT4_I(inode)->i_data_sem)
349  */
350 static Indirect *ext4_get_branch(struct inode *inode, int depth,
351                                  ext4_lblk_t  *offsets,
352                                  Indirect chain[4], int *err)
353 {
354         struct super_block *sb = inode->i_sb;
355         Indirect *p = chain;
356         struct buffer_head *bh;
357
358         *err = 0;
359         /* i_data is not going away, no lock needed */
360         add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361         if (!p->key)
362                 goto no_block;
363         while (--depth) {
364                 bh = sb_bread(sb, le32_to_cpu(p->key));
365                 if (!bh)
366                         goto failure;
367                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368                 /* Reader: end */
369                 if (!p->key)
370                         goto no_block;
371         }
372         return NULL;
373
374 failure:
375         *err = -EIO;
376 no_block:
377         return p;
378 }
379
380 /**
381  *      ext4_find_near - find a place for allocation with sufficient locality
382  *      @inode: owner
383  *      @ind: descriptor of indirect block.
384  *
385  *      This function returns the prefered place for block allocation.
386  *      It is used when heuristic for sequential allocation fails.
387  *      Rules are:
388  *        + if there is a block to the left of our position - allocate near it.
389  *        + if pointer will live in indirect block - allocate near that block.
390  *        + if pointer will live in inode - allocate in the same
391  *          cylinder group.
392  *
393  * In the latter case we colour the starting block by the callers PID to
394  * prevent it from clashing with concurrent allocations for a different inode
395  * in the same block group.   The PID is used here so that functionally related
396  * files will be close-by on-disk.
397  *
398  *      Caller must make sure that @ind is valid and will stay that way.
399  */
400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
401 {
402         struct ext4_inode_info *ei = EXT4_I(inode);
403         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404         __le32 *p;
405         ext4_fsblk_t bg_start;
406         ext4_grpblk_t colour;
407
408         /* Try to find previous block */
409         for (p = ind->p - 1; p >= start; p--) {
410                 if (*p)
411                         return le32_to_cpu(*p);
412         }
413
414         /* No such thing, so let's try location of indirect block */
415         if (ind->bh)
416                 return ind->bh->b_blocknr;
417
418         /*
419          * It is going to be referred to from the inode itself? OK, just put it
420          * into the same cylinder group then.
421          */
422         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
423         colour = (current->pid % 16) *
424                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
425         return bg_start + colour;
426 }
427
428 /**
429  *      ext4_find_goal - find a prefered place for allocation.
430  *      @inode: owner
431  *      @block:  block we want
432  *      @partial: pointer to the last triple within a chain
433  *
434  *      Normally this function find the prefered place for block allocation,
435  *      returns it.
436  */
437 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
438                 Indirect *partial)
439 {
440         struct ext4_block_alloc_info *block_i;
441
442         block_i =  EXT4_I(inode)->i_block_alloc_info;
443
444         /*
445          * try the heuristic for sequential allocation,
446          * failing that at least try to get decent locality.
447          */
448         if (block_i && (block == block_i->last_alloc_logical_block + 1)
449                 && (block_i->last_alloc_physical_block != 0)) {
450                 return block_i->last_alloc_physical_block + 1;
451         }
452
453         return ext4_find_near(inode, partial);
454 }
455
456 /**
457  *      ext4_blks_to_allocate: Look up the block map and count the number
458  *      of direct blocks need to be allocated for the given branch.
459  *
460  *      @branch: chain of indirect blocks
461  *      @k: number of blocks need for indirect blocks
462  *      @blks: number of data blocks to be mapped.
463  *      @blocks_to_boundary:  the offset in the indirect block
464  *
465  *      return the total number of blocks to be allocate, including the
466  *      direct and indirect blocks.
467  */
468 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
469                 int blocks_to_boundary)
470 {
471         unsigned long count = 0;
472
473         /*
474          * Simple case, [t,d]Indirect block(s) has not allocated yet
475          * then it's clear blocks on that path have not allocated
476          */
477         if (k > 0) {
478                 /* right now we don't handle cross boundary allocation */
479                 if (blks < blocks_to_boundary + 1)
480                         count += blks;
481                 else
482                         count += blocks_to_boundary + 1;
483                 return count;
484         }
485
486         count++;
487         while (count < blks && count <= blocks_to_boundary &&
488                 le32_to_cpu(*(branch[0].p + count)) == 0) {
489                 count++;
490         }
491         return count;
492 }
493
494 /**
495  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
496  *      @indirect_blks: the number of blocks need to allocate for indirect
497  *                      blocks
498  *
499  *      @new_blocks: on return it will store the new block numbers for
500  *      the indirect blocks(if needed) and the first direct block,
501  *      @blks:  on return it will store the total number of allocated
502  *              direct blocks
503  */
504 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
505                         ext4_fsblk_t goal, int indirect_blks, int blks,
506                         ext4_fsblk_t new_blocks[4], int *err)
507 {
508         int target, i;
509         unsigned long count = 0;
510         int index = 0;
511         ext4_fsblk_t current_block = 0;
512         int ret = 0;
513
514         /*
515          * Here we try to allocate the requested multiple blocks at once,
516          * on a best-effort basis.
517          * To build a branch, we should allocate blocks for
518          * the indirect blocks(if not allocated yet), and at least
519          * the first direct block of this branch.  That's the
520          * minimum number of blocks need to allocate(required)
521          */
522         target = blks + indirect_blks;
523
524         while (1) {
525                 count = target;
526                 /* allocating blocks for indirect blocks and direct blocks */
527                 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
528                 if (*err)
529                         goto failed_out;
530
531                 target -= count;
532                 /* allocate blocks for indirect blocks */
533                 while (index < indirect_blks && count) {
534                         new_blocks[index++] = current_block++;
535                         count--;
536                 }
537
538                 if (count > 0)
539                         break;
540         }
541
542         /* save the new block number for the first direct block */
543         new_blocks[index] = current_block;
544
545         /* total number of blocks allocated for direct blocks */
546         ret = count;
547         *err = 0;
548         return ret;
549 failed_out:
550         for (i = 0; i <index; i++)
551                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
552         return ret;
553 }
554
555 /**
556  *      ext4_alloc_branch - allocate and set up a chain of blocks.
557  *      @inode: owner
558  *      @indirect_blks: number of allocated indirect blocks
559  *      @blks: number of allocated direct blocks
560  *      @offsets: offsets (in the blocks) to store the pointers to next.
561  *      @branch: place to store the chain in.
562  *
563  *      This function allocates blocks, zeroes out all but the last one,
564  *      links them into chain and (if we are synchronous) writes them to disk.
565  *      In other words, it prepares a branch that can be spliced onto the
566  *      inode. It stores the information about that chain in the branch[], in
567  *      the same format as ext4_get_branch() would do. We are calling it after
568  *      we had read the existing part of chain and partial points to the last
569  *      triple of that (one with zero ->key). Upon the exit we have the same
570  *      picture as after the successful ext4_get_block(), except that in one
571  *      place chain is disconnected - *branch->p is still zero (we did not
572  *      set the last link), but branch->key contains the number that should
573  *      be placed into *branch->p to fill that gap.
574  *
575  *      If allocation fails we free all blocks we've allocated (and forget
576  *      their buffer_heads) and return the error value the from failed
577  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
578  *      as described above and return 0.
579  */
580 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
581                         int indirect_blks, int *blks, ext4_fsblk_t goal,
582                         ext4_lblk_t *offsets, Indirect *branch)
583 {
584         int blocksize = inode->i_sb->s_blocksize;
585         int i, n = 0;
586         int err = 0;
587         struct buffer_head *bh;
588         int num;
589         ext4_fsblk_t new_blocks[4];
590         ext4_fsblk_t current_block;
591
592         num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
593                                 *blks, new_blocks, &err);
594         if (err)
595                 return err;
596
597         branch[0].key = cpu_to_le32(new_blocks[0]);
598         /*
599          * metadata blocks and data blocks are allocated.
600          */
601         for (n = 1; n <= indirect_blks;  n++) {
602                 /*
603                  * Get buffer_head for parent block, zero it out
604                  * and set the pointer to new one, then send
605                  * parent to disk.
606                  */
607                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
608                 branch[n].bh = bh;
609                 lock_buffer(bh);
610                 BUFFER_TRACE(bh, "call get_create_access");
611                 err = ext4_journal_get_create_access(handle, bh);
612                 if (err) {
613                         unlock_buffer(bh);
614                         brelse(bh);
615                         goto failed;
616                 }
617
618                 memset(bh->b_data, 0, blocksize);
619                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
620                 branch[n].key = cpu_to_le32(new_blocks[n]);
621                 *branch[n].p = branch[n].key;
622                 if ( n == indirect_blks) {
623                         current_block = new_blocks[n];
624                         /*
625                          * End of chain, update the last new metablock of
626                          * the chain to point to the new allocated
627                          * data blocks numbers
628                          */
629                         for (i=1; i < num; i++)
630                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
631                 }
632                 BUFFER_TRACE(bh, "marking uptodate");
633                 set_buffer_uptodate(bh);
634                 unlock_buffer(bh);
635
636                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
637                 err = ext4_journal_dirty_metadata(handle, bh);
638                 if (err)
639                         goto failed;
640         }
641         *blks = num;
642         return err;
643 failed:
644         /* Allocation failed, free what we already allocated */
645         for (i = 1; i <= n ; i++) {
646                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
647                 ext4_journal_forget(handle, branch[i].bh);
648         }
649         for (i = 0; i <indirect_blks; i++)
650                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
651
652         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
653
654         return err;
655 }
656
657 /**
658  * ext4_splice_branch - splice the allocated branch onto inode.
659  * @inode: owner
660  * @block: (logical) number of block we are adding
661  * @chain: chain of indirect blocks (with a missing link - see
662  *      ext4_alloc_branch)
663  * @where: location of missing link
664  * @num:   number of indirect blocks we are adding
665  * @blks:  number of direct blocks we are adding
666  *
667  * This function fills the missing link and does all housekeeping needed in
668  * inode (->i_blocks, etc.). In case of success we end up with the full
669  * chain to new block and return 0.
670  */
671 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
672                         ext4_lblk_t block, Indirect *where, int num, int blks)
673 {
674         int i;
675         int err = 0;
676         struct ext4_block_alloc_info *block_i;
677         ext4_fsblk_t current_block;
678
679         block_i = EXT4_I(inode)->i_block_alloc_info;
680         /*
681          * If we're splicing into a [td]indirect block (as opposed to the
682          * inode) then we need to get write access to the [td]indirect block
683          * before the splice.
684          */
685         if (where->bh) {
686                 BUFFER_TRACE(where->bh, "get_write_access");
687                 err = ext4_journal_get_write_access(handle, where->bh);
688                 if (err)
689                         goto err_out;
690         }
691         /* That's it */
692
693         *where->p = where->key;
694
695         /*
696          * Update the host buffer_head or inode to point to more just allocated
697          * direct blocks blocks
698          */
699         if (num == 0 && blks > 1) {
700                 current_block = le32_to_cpu(where->key) + 1;
701                 for (i = 1; i < blks; i++)
702                         *(where->p + i ) = cpu_to_le32(current_block++);
703         }
704
705         /*
706          * update the most recently allocated logical & physical block
707          * in i_block_alloc_info, to assist find the proper goal block for next
708          * allocation
709          */
710         if (block_i) {
711                 block_i->last_alloc_logical_block = block + blks - 1;
712                 block_i->last_alloc_physical_block =
713                                 le32_to_cpu(where[num].key) + blks - 1;
714         }
715
716         /* We are done with atomic stuff, now do the rest of housekeeping */
717
718         inode->i_ctime = ext4_current_time(inode);
719         ext4_mark_inode_dirty(handle, inode);
720
721         /* had we spliced it onto indirect block? */
722         if (where->bh) {
723                 /*
724                  * If we spliced it onto an indirect block, we haven't
725                  * altered the inode.  Note however that if it is being spliced
726                  * onto an indirect block at the very end of the file (the
727                  * file is growing) then we *will* alter the inode to reflect
728                  * the new i_size.  But that is not done here - it is done in
729                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
730                  */
731                 jbd_debug(5, "splicing indirect only\n");
732                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
733                 err = ext4_journal_dirty_metadata(handle, where->bh);
734                 if (err)
735                         goto err_out;
736         } else {
737                 /*
738                  * OK, we spliced it into the inode itself on a direct block.
739                  * Inode was dirtied above.
740                  */
741                 jbd_debug(5, "splicing direct\n");
742         }
743         return err;
744
745 err_out:
746         for (i = 1; i <= num; i++) {
747                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
748                 ext4_journal_forget(handle, where[i].bh);
749                 ext4_free_blocks(handle, inode,
750                                         le32_to_cpu(where[i-1].key), 1, 0);
751         }
752         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
753
754         return err;
755 }
756
757 /*
758  * Allocation strategy is simple: if we have to allocate something, we will
759  * have to go the whole way to leaf. So let's do it before attaching anything
760  * to tree, set linkage between the newborn blocks, write them if sync is
761  * required, recheck the path, free and repeat if check fails, otherwise
762  * set the last missing link (that will protect us from any truncate-generated
763  * removals - all blocks on the path are immune now) and possibly force the
764  * write on the parent block.
765  * That has a nice additional property: no special recovery from the failed
766  * allocations is needed - we simply release blocks and do not touch anything
767  * reachable from inode.
768  *
769  * `handle' can be NULL if create == 0.
770  *
771  * return > 0, # of blocks mapped or allocated.
772  * return = 0, if plain lookup failed.
773  * return < 0, error case.
774  *
775  *
776  * Need to be called with
777  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
778  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
779  */
780 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
781                 ext4_lblk_t iblock, unsigned long maxblocks,
782                 struct buffer_head *bh_result,
783                 int create, int extend_disksize)
784 {
785         int err = -EIO;
786         ext4_lblk_t offsets[4];
787         Indirect chain[4];
788         Indirect *partial;
789         ext4_fsblk_t goal;
790         int indirect_blks;
791         int blocks_to_boundary = 0;
792         int depth;
793         struct ext4_inode_info *ei = EXT4_I(inode);
794         int count = 0;
795         ext4_fsblk_t first_block = 0;
796
797
798         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
799         J_ASSERT(handle != NULL || create == 0);
800         depth = ext4_block_to_path(inode, iblock, offsets,
801                                         &blocks_to_boundary);
802
803         if (depth == 0)
804                 goto out;
805
806         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
807
808         /* Simplest case - block found, no allocation needed */
809         if (!partial) {
810                 first_block = le32_to_cpu(chain[depth - 1].key);
811                 clear_buffer_new(bh_result);
812                 count++;
813                 /*map more blocks*/
814                 while (count < maxblocks && count <= blocks_to_boundary) {
815                         ext4_fsblk_t blk;
816
817                         blk = le32_to_cpu(*(chain[depth-1].p + count));
818
819                         if (blk == first_block + count)
820                                 count++;
821                         else
822                                 break;
823                 }
824                 goto got_it;
825         }
826
827         /* Next simple case - plain lookup or failed read of indirect block */
828         if (!create || err == -EIO)
829                 goto cleanup;
830
831         /*
832          * Okay, we need to do block allocation.  Lazily initialize the block
833          * allocation info here if necessary
834         */
835         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
836                 ext4_init_block_alloc_info(inode);
837
838         goal = ext4_find_goal(inode, iblock, partial);
839
840         /* the number of blocks need to allocate for [d,t]indirect blocks */
841         indirect_blks = (chain + depth) - partial - 1;
842
843         /*
844          * Next look up the indirect map to count the totoal number of
845          * direct blocks to allocate for this branch.
846          */
847         count = ext4_blks_to_allocate(partial, indirect_blks,
848                                         maxblocks, blocks_to_boundary);
849         /*
850          * Block out ext4_truncate while we alter the tree
851          */
852         err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
853                                 offsets + (partial - chain), partial);
854
855         /*
856          * The ext4_splice_branch call will free and forget any buffers
857          * on the new chain if there is a failure, but that risks using
858          * up transaction credits, especially for bitmaps where the
859          * credits cannot be returned.  Can we handle this somehow?  We
860          * may need to return -EAGAIN upwards in the worst case.  --sct
861          */
862         if (!err)
863                 err = ext4_splice_branch(handle, inode, iblock,
864                                         partial, indirect_blks, count);
865         /*
866          * i_disksize growing is protected by i_data_sem.  Don't forget to
867          * protect it if you're about to implement concurrent
868          * ext4_get_block() -bzzz
869         */
870         if (!err && extend_disksize && inode->i_size > ei->i_disksize)
871                 ei->i_disksize = inode->i_size;
872         if (err)
873                 goto cleanup;
874
875         set_buffer_new(bh_result);
876 got_it:
877         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
878         if (count > blocks_to_boundary)
879                 set_buffer_boundary(bh_result);
880         err = count;
881         /* Clean up and exit */
882         partial = chain + depth - 1;    /* the whole chain */
883 cleanup:
884         while (partial > chain) {
885                 BUFFER_TRACE(partial->bh, "call brelse");
886                 brelse(partial->bh);
887                 partial--;
888         }
889         BUFFER_TRACE(bh_result, "returned");
890 out:
891         return err;
892 }
893
894 /* Maximum number of blocks we map for direct IO at once. */
895 #define DIO_MAX_BLOCKS 4096
896 /*
897  * Number of credits we need for writing DIO_MAX_BLOCKS:
898  * We need sb + group descriptor + bitmap + inode -> 4
899  * For B blocks with A block pointers per block we need:
900  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
901  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
902  */
903 #define DIO_CREDITS 25
904
905 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
906                         unsigned long max_blocks, struct buffer_head *bh,
907                         int create, int extend_disksize)
908 {
909         int retval;
910         /*
911          * Try to see if we can get  the block without requesting
912          * for new file system block.
913          */
914         down_read((&EXT4_I(inode)->i_data_sem));
915         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
916                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
917                                 bh, 0, 0);
918         } else {
919                 retval = ext4_get_blocks_handle(handle,
920                                 inode, block, max_blocks, bh, 0, 0);
921         }
922         up_read((&EXT4_I(inode)->i_data_sem));
923         if (!create || (retval > 0))
924                 return retval;
925
926         /*
927          * We need to allocate new blocks which will result
928          * in i_data update
929          */
930         down_write((&EXT4_I(inode)->i_data_sem));
931         /*
932          * We need to check for EXT4 here because migrate
933          * could have changed the inode type in between
934          */
935         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
936                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
937                                 bh, create, extend_disksize);
938         } else {
939                 retval = ext4_get_blocks_handle(handle, inode, block,
940                                 max_blocks, bh, create, extend_disksize);
941         }
942         up_write((&EXT4_I(inode)->i_data_sem));
943         return retval;
944 }
945
946 static int ext4_get_block(struct inode *inode, sector_t iblock,
947                         struct buffer_head *bh_result, int create)
948 {
949         handle_t *handle = ext4_journal_current_handle();
950         int ret = 0, started = 0;
951         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
952
953         if (create && !handle) {
954                 /* Direct IO write... */
955                 if (max_blocks > DIO_MAX_BLOCKS)
956                         max_blocks = DIO_MAX_BLOCKS;
957                 handle = ext4_journal_start(inode, DIO_CREDITS +
958                               2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
959                 if (IS_ERR(handle)) {
960                         ret = PTR_ERR(handle);
961                         goto out;
962                 }
963                 started = 1;
964         }
965
966         ret = ext4_get_blocks_wrap(handle, inode, iblock,
967                                         max_blocks, bh_result, create, 0);
968         if (ret > 0) {
969                 bh_result->b_size = (ret << inode->i_blkbits);
970                 ret = 0;
971         }
972         if (started)
973                 ext4_journal_stop(handle);
974 out:
975         return ret;
976 }
977
978 /*
979  * `handle' can be NULL if create is zero
980  */
981 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
982                                 ext4_lblk_t block, int create, int *errp)
983 {
984         struct buffer_head dummy;
985         int fatal = 0, err;
986
987         J_ASSERT(handle != NULL || create == 0);
988
989         dummy.b_state = 0;
990         dummy.b_blocknr = -1000;
991         buffer_trace_init(&dummy.b_history);
992         err = ext4_get_blocks_wrap(handle, inode, block, 1,
993                                         &dummy, create, 1);
994         /*
995          * ext4_get_blocks_handle() returns number of blocks
996          * mapped. 0 in case of a HOLE.
997          */
998         if (err > 0) {
999                 if (err > 1)
1000                         WARN_ON(1);
1001                 err = 0;
1002         }
1003         *errp = err;
1004         if (!err && buffer_mapped(&dummy)) {
1005                 struct buffer_head *bh;
1006                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1007                 if (!bh) {
1008                         *errp = -EIO;
1009                         goto err;
1010                 }
1011                 if (buffer_new(&dummy)) {
1012                         J_ASSERT(create != 0);
1013                         J_ASSERT(handle != NULL);
1014
1015                         /*
1016                          * Now that we do not always journal data, we should
1017                          * keep in mind whether this should always journal the
1018                          * new buffer as metadata.  For now, regular file
1019                          * writes use ext4_get_block instead, so it's not a
1020                          * problem.
1021                          */
1022                         lock_buffer(bh);
1023                         BUFFER_TRACE(bh, "call get_create_access");
1024                         fatal = ext4_journal_get_create_access(handle, bh);
1025                         if (!fatal && !buffer_uptodate(bh)) {
1026                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1027                                 set_buffer_uptodate(bh);
1028                         }
1029                         unlock_buffer(bh);
1030                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1031                         err = ext4_journal_dirty_metadata(handle, bh);
1032                         if (!fatal)
1033                                 fatal = err;
1034                 } else {
1035                         BUFFER_TRACE(bh, "not a new buffer");
1036                 }
1037                 if (fatal) {
1038                         *errp = fatal;
1039                         brelse(bh);
1040                         bh = NULL;
1041                 }
1042                 return bh;
1043         }
1044 err:
1045         return NULL;
1046 }
1047
1048 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1049                                ext4_lblk_t block, int create, int *err)
1050 {
1051         struct buffer_head * bh;
1052
1053         bh = ext4_getblk(handle, inode, block, create, err);
1054         if (!bh)
1055                 return bh;
1056         if (buffer_uptodate(bh))
1057                 return bh;
1058         ll_rw_block(READ_META, 1, &bh);
1059         wait_on_buffer(bh);
1060         if (buffer_uptodate(bh))
1061                 return bh;
1062         put_bh(bh);
1063         *err = -EIO;
1064         return NULL;
1065 }
1066
1067 static int walk_page_buffers(   handle_t *handle,
1068                                 struct buffer_head *head,
1069                                 unsigned from,
1070                                 unsigned to,
1071                                 int *partial,
1072                                 int (*fn)(      handle_t *handle,
1073                                                 struct buffer_head *bh))
1074 {
1075         struct buffer_head *bh;
1076         unsigned block_start, block_end;
1077         unsigned blocksize = head->b_size;
1078         int err, ret = 0;
1079         struct buffer_head *next;
1080
1081         for (   bh = head, block_start = 0;
1082                 ret == 0 && (bh != head || !block_start);
1083                 block_start = block_end, bh = next)
1084         {
1085                 next = bh->b_this_page;
1086                 block_end = block_start + blocksize;
1087                 if (block_end <= from || block_start >= to) {
1088                         if (partial && !buffer_uptodate(bh))
1089                                 *partial = 1;
1090                         continue;
1091                 }
1092                 err = (*fn)(handle, bh);
1093                 if (!ret)
1094                         ret = err;
1095         }
1096         return ret;
1097 }
1098
1099 /*
1100  * To preserve ordering, it is essential that the hole instantiation and
1101  * the data write be encapsulated in a single transaction.  We cannot
1102  * close off a transaction and start a new one between the ext4_get_block()
1103  * and the commit_write().  So doing the jbd2_journal_start at the start of
1104  * prepare_write() is the right place.
1105  *
1106  * Also, this function can nest inside ext4_writepage() ->
1107  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1108  * has generated enough buffer credits to do the whole page.  So we won't
1109  * block on the journal in that case, which is good, because the caller may
1110  * be PF_MEMALLOC.
1111  *
1112  * By accident, ext4 can be reentered when a transaction is open via
1113  * quota file writes.  If we were to commit the transaction while thus
1114  * reentered, there can be a deadlock - we would be holding a quota
1115  * lock, and the commit would never complete if another thread had a
1116  * transaction open and was blocking on the quota lock - a ranking
1117  * violation.
1118  *
1119  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1120  * will _not_ run commit under these circumstances because handle->h_ref
1121  * is elevated.  We'll still have enough credits for the tiny quotafile
1122  * write.
1123  */
1124 static int do_journal_get_write_access(handle_t *handle,
1125                                         struct buffer_head *bh)
1126 {
1127         if (!buffer_mapped(bh) || buffer_freed(bh))
1128                 return 0;
1129         return ext4_journal_get_write_access(handle, bh);
1130 }
1131
1132 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133                                 loff_t pos, unsigned len, unsigned flags,
1134                                 struct page **pagep, void **fsdata)
1135 {
1136         struct inode *inode = mapping->host;
1137         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1138         handle_t *handle;
1139         int retries = 0;
1140         struct page *page;
1141         pgoff_t index;
1142         unsigned from, to;
1143
1144         index = pos >> PAGE_CACHE_SHIFT;
1145         from = pos & (PAGE_CACHE_SIZE - 1);
1146         to = from + len;
1147
1148 retry:
1149         page = __grab_cache_page(mapping, index);
1150         if (!page)
1151                 return -ENOMEM;
1152         *pagep = page;
1153
1154         handle = ext4_journal_start(inode, needed_blocks);
1155         if (IS_ERR(handle)) {
1156                 unlock_page(page);
1157                 page_cache_release(page);
1158                 ret = PTR_ERR(handle);
1159                 goto out;
1160         }
1161
1162         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1163                                                         ext4_get_block);
1164
1165         if (!ret && ext4_should_journal_data(inode)) {
1166                 ret = walk_page_buffers(handle, page_buffers(page),
1167                                 from, to, NULL, do_journal_get_write_access);
1168         }
1169
1170         if (ret) {
1171                 ext4_journal_stop(handle);
1172                 unlock_page(page);
1173                 page_cache_release(page);
1174         }
1175
1176         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1177                 goto retry;
1178 out:
1179         return ret;
1180 }
1181
1182 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1183 {
1184         int err = jbd2_journal_dirty_data(handle, bh);
1185         if (err)
1186                 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1187                                                 bh, handle, err);
1188         return err;
1189 }
1190
1191 /* For write_end() in data=journal mode */
1192 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1193 {
1194         if (!buffer_mapped(bh) || buffer_freed(bh))
1195                 return 0;
1196         set_buffer_uptodate(bh);
1197         return ext4_journal_dirty_metadata(handle, bh);
1198 }
1199
1200 /*
1201  * Generic write_end handler for ordered and writeback ext4 journal modes.
1202  * We can't use generic_write_end, because that unlocks the page and we need to
1203  * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1204  * after block_write_end.
1205  */
1206 static int ext4_generic_write_end(struct file *file,
1207                                 struct address_space *mapping,
1208                                 loff_t pos, unsigned len, unsigned copied,
1209                                 struct page *page, void *fsdata)
1210 {
1211         struct inode *inode = file->f_mapping->host;
1212
1213         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1214
1215         if (pos+copied > inode->i_size) {
1216                 i_size_write(inode, pos+copied);
1217                 mark_inode_dirty(inode);
1218         }
1219
1220         return copied;
1221 }
1222
1223 /*
1224  * We need to pick up the new inode size which generic_commit_write gave us
1225  * `file' can be NULL - eg, when called from page_symlink().
1226  *
1227  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1228  * buffers are managed internally.
1229  */
1230 static int ext4_ordered_write_end(struct file *file,
1231                                 struct address_space *mapping,
1232                                 loff_t pos, unsigned len, unsigned copied,
1233                                 struct page *page, void *fsdata)
1234 {
1235         handle_t *handle = ext4_journal_current_handle();
1236         struct inode *inode = file->f_mapping->host;
1237         unsigned from, to;
1238         int ret = 0, ret2;
1239
1240         from = pos & (PAGE_CACHE_SIZE - 1);
1241         to = from + len;
1242
1243         ret = walk_page_buffers(handle, page_buffers(page),
1244                 from, to, NULL, ext4_journal_dirty_data);
1245
1246         if (ret == 0) {
1247                 /*
1248                  * generic_write_end() will run mark_inode_dirty() if i_size
1249                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1250                  * into that.
1251                  */
1252                 loff_t new_i_size;
1253
1254                 new_i_size = pos + copied;
1255                 if (new_i_size > EXT4_I(inode)->i_disksize)
1256                         EXT4_I(inode)->i_disksize = new_i_size;
1257                 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1258                                                         page, fsdata);
1259                 if (copied < 0)
1260                         ret = copied;
1261         }
1262         ret2 = ext4_journal_stop(handle);
1263         if (!ret)
1264                 ret = ret2;
1265         unlock_page(page);
1266         page_cache_release(page);
1267
1268         return ret ? ret : copied;
1269 }
1270
1271 static int ext4_writeback_write_end(struct file *file,
1272                                 struct address_space *mapping,
1273                                 loff_t pos, unsigned len, unsigned copied,
1274                                 struct page *page, void *fsdata)
1275 {
1276         handle_t *handle = ext4_journal_current_handle();
1277         struct inode *inode = file->f_mapping->host;
1278         int ret = 0, ret2;
1279         loff_t new_i_size;
1280
1281         new_i_size = pos + copied;
1282         if (new_i_size > EXT4_I(inode)->i_disksize)
1283                 EXT4_I(inode)->i_disksize = new_i_size;
1284
1285         copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1286                                                         page, fsdata);
1287         if (copied < 0)
1288                 ret = copied;
1289
1290         ret2 = ext4_journal_stop(handle);
1291         if (!ret)
1292                 ret = ret2;
1293         unlock_page(page);
1294         page_cache_release(page);
1295
1296         return ret ? ret : copied;
1297 }
1298
1299 static int ext4_journalled_write_end(struct file *file,
1300                                 struct address_space *mapping,
1301                                 loff_t pos, unsigned len, unsigned copied,
1302                                 struct page *page, void *fsdata)
1303 {
1304         handle_t *handle = ext4_journal_current_handle();
1305         struct inode *inode = mapping->host;
1306         int ret = 0, ret2;
1307         int partial = 0;
1308         unsigned from, to;
1309
1310         from = pos & (PAGE_CACHE_SIZE - 1);
1311         to = from + len;
1312
1313         if (copied < len) {
1314                 if (!PageUptodate(page))
1315                         copied = 0;
1316                 page_zero_new_buffers(page, from+copied, to);
1317         }
1318
1319         ret = walk_page_buffers(handle, page_buffers(page), from,
1320                                 to, &partial, write_end_fn);
1321         if (!partial)
1322                 SetPageUptodate(page);
1323         if (pos+copied > inode->i_size)
1324                 i_size_write(inode, pos+copied);
1325         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1326         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1327                 EXT4_I(inode)->i_disksize = inode->i_size;
1328                 ret2 = ext4_mark_inode_dirty(handle, inode);
1329                 if (!ret)
1330                         ret = ret2;
1331         }
1332
1333         ret2 = ext4_journal_stop(handle);
1334         if (!ret)
1335                 ret = ret2;
1336         unlock_page(page);
1337         page_cache_release(page);
1338
1339         return ret ? ret : copied;
1340 }
1341
1342 /*
1343  * bmap() is special.  It gets used by applications such as lilo and by
1344  * the swapper to find the on-disk block of a specific piece of data.
1345  *
1346  * Naturally, this is dangerous if the block concerned is still in the
1347  * journal.  If somebody makes a swapfile on an ext4 data-journaling
1348  * filesystem and enables swap, then they may get a nasty shock when the
1349  * data getting swapped to that swapfile suddenly gets overwritten by
1350  * the original zero's written out previously to the journal and
1351  * awaiting writeback in the kernel's buffer cache.
1352  *
1353  * So, if we see any bmap calls here on a modified, data-journaled file,
1354  * take extra steps to flush any blocks which might be in the cache.
1355  */
1356 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1357 {
1358         struct inode *inode = mapping->host;
1359         journal_t *journal;
1360         int err;
1361
1362         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1363                 /*
1364                  * This is a REALLY heavyweight approach, but the use of
1365                  * bmap on dirty files is expected to be extremely rare:
1366                  * only if we run lilo or swapon on a freshly made file
1367                  * do we expect this to happen.
1368                  *
1369                  * (bmap requires CAP_SYS_RAWIO so this does not
1370                  * represent an unprivileged user DOS attack --- we'd be
1371                  * in trouble if mortal users could trigger this path at
1372                  * will.)
1373                  *
1374                  * NB. EXT4_STATE_JDATA is not set on files other than
1375                  * regular files.  If somebody wants to bmap a directory
1376                  * or symlink and gets confused because the buffer
1377                  * hasn't yet been flushed to disk, they deserve
1378                  * everything they get.
1379                  */
1380
1381                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1382                 journal = EXT4_JOURNAL(inode);
1383                 jbd2_journal_lock_updates(journal);
1384                 err = jbd2_journal_flush(journal);
1385                 jbd2_journal_unlock_updates(journal);
1386
1387                 if (err)
1388                         return 0;
1389         }
1390
1391         return generic_block_bmap(mapping,block,ext4_get_block);
1392 }
1393
1394 static int bget_one(handle_t *handle, struct buffer_head *bh)
1395 {
1396         get_bh(bh);
1397         return 0;
1398 }
1399
1400 static int bput_one(handle_t *handle, struct buffer_head *bh)
1401 {
1402         put_bh(bh);
1403         return 0;
1404 }
1405
1406 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1407 {
1408         if (buffer_mapped(bh))
1409                 return ext4_journal_dirty_data(handle, bh);
1410         return 0;
1411 }
1412
1413 /*
1414  * Note that we always start a transaction even if we're not journalling
1415  * data.  This is to preserve ordering: any hole instantiation within
1416  * __block_write_full_page -> ext4_get_block() should be journalled
1417  * along with the data so we don't crash and then get metadata which
1418  * refers to old data.
1419  *
1420  * In all journalling modes block_write_full_page() will start the I/O.
1421  *
1422  * Problem:
1423  *
1424  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1425  *              ext4_writepage()
1426  *
1427  * Similar for:
1428  *
1429  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1430  *
1431  * Same applies to ext4_get_block().  We will deadlock on various things like
1432  * lock_journal and i_data_sem
1433  *
1434  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1435  * allocations fail.
1436  *
1437  * 16May01: If we're reentered then journal_current_handle() will be
1438  *          non-zero. We simply *return*.
1439  *
1440  * 1 July 2001: @@@ FIXME:
1441  *   In journalled data mode, a data buffer may be metadata against the
1442  *   current transaction.  But the same file is part of a shared mapping
1443  *   and someone does a writepage() on it.
1444  *
1445  *   We will move the buffer onto the async_data list, but *after* it has
1446  *   been dirtied. So there's a small window where we have dirty data on
1447  *   BJ_Metadata.
1448  *
1449  *   Note that this only applies to the last partial page in the file.  The
1450  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1451  *   broken code anyway: it's wrong for msync()).
1452  *
1453  *   It's a rare case: affects the final partial page, for journalled data
1454  *   where the file is subject to bith write() and writepage() in the same
1455  *   transction.  To fix it we'll need a custom block_write_full_page().
1456  *   We'll probably need that anyway for journalling writepage() output.
1457  *
1458  * We don't honour synchronous mounts for writepage().  That would be
1459  * disastrous.  Any write() or metadata operation will sync the fs for
1460  * us.
1461  *
1462  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1463  * we don't need to open a transaction here.
1464  */
1465 static int ext4_ordered_writepage(struct page *page,
1466                                 struct writeback_control *wbc)
1467 {
1468         struct inode *inode = page->mapping->host;
1469         struct buffer_head *page_bufs;
1470         handle_t *handle = NULL;
1471         int ret = 0;
1472         int err;
1473
1474         J_ASSERT(PageLocked(page));
1475
1476         /*
1477          * We give up here if we're reentered, because it might be for a
1478          * different filesystem.
1479          */
1480         if (ext4_journal_current_handle())
1481                 goto out_fail;
1482
1483         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1484
1485         if (IS_ERR(handle)) {
1486                 ret = PTR_ERR(handle);
1487                 goto out_fail;
1488         }
1489
1490         if (!page_has_buffers(page)) {
1491                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1492                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1493         }
1494         page_bufs = page_buffers(page);
1495         walk_page_buffers(handle, page_bufs, 0,
1496                         PAGE_CACHE_SIZE, NULL, bget_one);
1497
1498         ret = block_write_full_page(page, ext4_get_block, wbc);
1499
1500         /*
1501          * The page can become unlocked at any point now, and
1502          * truncate can then come in and change things.  So we
1503          * can't touch *page from now on.  But *page_bufs is
1504          * safe due to elevated refcount.
1505          */
1506
1507         /*
1508          * And attach them to the current transaction.  But only if
1509          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1510          * and generally junk.
1511          */
1512         if (ret == 0) {
1513                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1514                                         NULL, jbd2_journal_dirty_data_fn);
1515                 if (!ret)
1516                         ret = err;
1517         }
1518         walk_page_buffers(handle, page_bufs, 0,
1519                         PAGE_CACHE_SIZE, NULL, bput_one);
1520         err = ext4_journal_stop(handle);
1521         if (!ret)
1522                 ret = err;
1523         return ret;
1524
1525 out_fail:
1526         redirty_page_for_writepage(wbc, page);
1527         unlock_page(page);
1528         return ret;
1529 }
1530
1531 static int ext4_writeback_writepage(struct page *page,
1532                                 struct writeback_control *wbc)
1533 {
1534         struct inode *inode = page->mapping->host;
1535         handle_t *handle = NULL;
1536         int ret = 0;
1537         int err;
1538
1539         if (ext4_journal_current_handle())
1540                 goto out_fail;
1541
1542         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1543         if (IS_ERR(handle)) {
1544                 ret = PTR_ERR(handle);
1545                 goto out_fail;
1546         }
1547
1548         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1549                 ret = nobh_writepage(page, ext4_get_block, wbc);
1550         else
1551                 ret = block_write_full_page(page, ext4_get_block, wbc);
1552
1553         err = ext4_journal_stop(handle);
1554         if (!ret)
1555                 ret = err;
1556         return ret;
1557
1558 out_fail:
1559         redirty_page_for_writepage(wbc, page);
1560         unlock_page(page);
1561         return ret;
1562 }
1563
1564 static int ext4_journalled_writepage(struct page *page,
1565                                 struct writeback_control *wbc)
1566 {
1567         struct inode *inode = page->mapping->host;
1568         handle_t *handle = NULL;
1569         int ret = 0;
1570         int err;
1571
1572         if (ext4_journal_current_handle())
1573                 goto no_write;
1574
1575         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1576         if (IS_ERR(handle)) {
1577                 ret = PTR_ERR(handle);
1578                 goto no_write;
1579         }
1580
1581         if (!page_has_buffers(page) || PageChecked(page)) {
1582                 /*
1583                  * It's mmapped pagecache.  Add buffers and journal it.  There
1584                  * doesn't seem much point in redirtying the page here.
1585                  */
1586                 ClearPageChecked(page);
1587                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1588                                         ext4_get_block);
1589                 if (ret != 0) {
1590                         ext4_journal_stop(handle);
1591                         goto out_unlock;
1592                 }
1593                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1594                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1595
1596                 err = walk_page_buffers(handle, page_buffers(page), 0,
1597                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1598                 if (ret == 0)
1599                         ret = err;
1600                 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1601                 unlock_page(page);
1602         } else {
1603                 /*
1604                  * It may be a page full of checkpoint-mode buffers.  We don't
1605                  * really know unless we go poke around in the buffer_heads.
1606                  * But block_write_full_page will do the right thing.
1607                  */
1608                 ret = block_write_full_page(page, ext4_get_block, wbc);
1609         }
1610         err = ext4_journal_stop(handle);
1611         if (!ret)
1612                 ret = err;
1613 out:
1614         return ret;
1615
1616 no_write:
1617         redirty_page_for_writepage(wbc, page);
1618 out_unlock:
1619         unlock_page(page);
1620         goto out;
1621 }
1622
1623 static int ext4_readpage(struct file *file, struct page *page)
1624 {
1625         return mpage_readpage(page, ext4_get_block);
1626 }
1627
1628 static int
1629 ext4_readpages(struct file *file, struct address_space *mapping,
1630                 struct list_head *pages, unsigned nr_pages)
1631 {
1632         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1633 }
1634
1635 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1636 {
1637         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1638
1639         /*
1640          * If it's a full truncate we just forget about the pending dirtying
1641          */
1642         if (offset == 0)
1643                 ClearPageChecked(page);
1644
1645         jbd2_journal_invalidatepage(journal, page, offset);
1646 }
1647
1648 static int ext4_releasepage(struct page *page, gfp_t wait)
1649 {
1650         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1651
1652         WARN_ON(PageChecked(page));
1653         if (!page_has_buffers(page))
1654                 return 0;
1655         return jbd2_journal_try_to_free_buffers(journal, page, wait);
1656 }
1657
1658 /*
1659  * If the O_DIRECT write will extend the file then add this inode to the
1660  * orphan list.  So recovery will truncate it back to the original size
1661  * if the machine crashes during the write.
1662  *
1663  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1664  * crashes then stale disk data _may_ be exposed inside the file. But current
1665  * VFS code falls back into buffered path in that case so we are safe.
1666  */
1667 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1668                         const struct iovec *iov, loff_t offset,
1669                         unsigned long nr_segs)
1670 {
1671         struct file *file = iocb->ki_filp;
1672         struct inode *inode = file->f_mapping->host;
1673         struct ext4_inode_info *ei = EXT4_I(inode);
1674         handle_t *handle;
1675         ssize_t ret;
1676         int orphan = 0;
1677         size_t count = iov_length(iov, nr_segs);
1678
1679         if (rw == WRITE) {
1680                 loff_t final_size = offset + count;
1681
1682                 if (final_size > inode->i_size) {
1683                         /* Credits for sb + inode write */
1684                         handle = ext4_journal_start(inode, 2);
1685                         if (IS_ERR(handle)) {
1686                                 ret = PTR_ERR(handle);
1687                                 goto out;
1688                         }
1689                         ret = ext4_orphan_add(handle, inode);
1690                         if (ret) {
1691                                 ext4_journal_stop(handle);
1692                                 goto out;
1693                         }
1694                         orphan = 1;
1695                         ei->i_disksize = inode->i_size;
1696                         ext4_journal_stop(handle);
1697                 }
1698         }
1699
1700         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1701                                  offset, nr_segs,
1702                                  ext4_get_block, NULL);
1703
1704         if (orphan) {
1705                 int err;
1706
1707                 /* Credits for sb + inode write */
1708                 handle = ext4_journal_start(inode, 2);
1709                 if (IS_ERR(handle)) {
1710                         /* This is really bad luck. We've written the data
1711                          * but cannot extend i_size. Bail out and pretend
1712                          * the write failed... */
1713                         ret = PTR_ERR(handle);
1714                         goto out;
1715                 }
1716                 if (inode->i_nlink)
1717                         ext4_orphan_del(handle, inode);
1718                 if (ret > 0) {
1719                         loff_t end = offset + ret;
1720                         if (end > inode->i_size) {
1721                                 ei->i_disksize = end;
1722                                 i_size_write(inode, end);
1723                                 /*
1724                                  * We're going to return a positive `ret'
1725                                  * here due to non-zero-length I/O, so there's
1726                                  * no way of reporting error returns from
1727                                  * ext4_mark_inode_dirty() to userspace.  So
1728                                  * ignore it.
1729                                  */
1730                                 ext4_mark_inode_dirty(handle, inode);
1731                         }
1732                 }
1733                 err = ext4_journal_stop(handle);
1734                 if (ret == 0)
1735                         ret = err;
1736         }
1737 out:
1738         return ret;
1739 }
1740
1741 /*
1742  * Pages can be marked dirty completely asynchronously from ext4's journalling
1743  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1744  * much here because ->set_page_dirty is called under VFS locks.  The page is
1745  * not necessarily locked.
1746  *
1747  * We cannot just dirty the page and leave attached buffers clean, because the
1748  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1749  * or jbddirty because all the journalling code will explode.
1750  *
1751  * So what we do is to mark the page "pending dirty" and next time writepage
1752  * is called, propagate that into the buffers appropriately.
1753  */
1754 static int ext4_journalled_set_page_dirty(struct page *page)
1755 {
1756         SetPageChecked(page);
1757         return __set_page_dirty_nobuffers(page);
1758 }
1759
1760 static const struct address_space_operations ext4_ordered_aops = {
1761         .readpage       = ext4_readpage,
1762         .readpages      = ext4_readpages,
1763         .writepage      = ext4_ordered_writepage,
1764         .sync_page      = block_sync_page,
1765         .write_begin    = ext4_write_begin,
1766         .write_end      = ext4_ordered_write_end,
1767         .bmap           = ext4_bmap,
1768         .invalidatepage = ext4_invalidatepage,
1769         .releasepage    = ext4_releasepage,
1770         .direct_IO      = ext4_direct_IO,
1771         .migratepage    = buffer_migrate_page,
1772 };
1773
1774 static const struct address_space_operations ext4_writeback_aops = {
1775         .readpage       = ext4_readpage,
1776         .readpages      = ext4_readpages,
1777         .writepage      = ext4_writeback_writepage,
1778         .sync_page      = block_sync_page,
1779         .write_begin    = ext4_write_begin,
1780         .write_end      = ext4_writeback_write_end,
1781         .bmap           = ext4_bmap,
1782         .invalidatepage = ext4_invalidatepage,
1783         .releasepage    = ext4_releasepage,
1784         .direct_IO      = ext4_direct_IO,
1785         .migratepage    = buffer_migrate_page,
1786 };
1787
1788 static const struct address_space_operations ext4_journalled_aops = {
1789         .readpage       = ext4_readpage,
1790         .readpages      = ext4_readpages,
1791         .writepage      = ext4_journalled_writepage,
1792         .sync_page      = block_sync_page,
1793         .write_begin    = ext4_write_begin,
1794         .write_end      = ext4_journalled_write_end,
1795         .set_page_dirty = ext4_journalled_set_page_dirty,
1796         .bmap           = ext4_bmap,
1797         .invalidatepage = ext4_invalidatepage,
1798         .releasepage    = ext4_releasepage,
1799 };
1800
1801 void ext4_set_aops(struct inode *inode)
1802 {
1803         if (ext4_should_order_data(inode))
1804                 inode->i_mapping->a_ops = &ext4_ordered_aops;
1805         else if (ext4_should_writeback_data(inode))
1806                 inode->i_mapping->a_ops = &ext4_writeback_aops;
1807         else
1808                 inode->i_mapping->a_ops = &ext4_journalled_aops;
1809 }
1810
1811 /*
1812  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1813  * up to the end of the block which corresponds to `from'.
1814  * This required during truncate. We need to physically zero the tail end
1815  * of that block so it doesn't yield old data if the file is later grown.
1816  */
1817 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1818                 struct address_space *mapping, loff_t from)
1819 {
1820         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1821         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1822         unsigned blocksize, length, pos;
1823         ext4_lblk_t iblock;
1824         struct inode *inode = mapping->host;
1825         struct buffer_head *bh;
1826         int err = 0;
1827
1828         blocksize = inode->i_sb->s_blocksize;
1829         length = blocksize - (offset & (blocksize - 1));
1830         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1831
1832         /*
1833          * For "nobh" option,  we can only work if we don't need to
1834          * read-in the page - otherwise we create buffers to do the IO.
1835          */
1836         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1837              ext4_should_writeback_data(inode) && PageUptodate(page)) {
1838                 zero_user(page, offset, length);
1839                 set_page_dirty(page);
1840                 goto unlock;
1841         }
1842
1843         if (!page_has_buffers(page))
1844                 create_empty_buffers(page, blocksize, 0);
1845
1846         /* Find the buffer that contains "offset" */
1847         bh = page_buffers(page);
1848         pos = blocksize;
1849         while (offset >= pos) {
1850                 bh = bh->b_this_page;
1851                 iblock++;
1852                 pos += blocksize;
1853         }
1854
1855         err = 0;
1856         if (buffer_freed(bh)) {
1857                 BUFFER_TRACE(bh, "freed: skip");
1858                 goto unlock;
1859         }
1860
1861         if (!buffer_mapped(bh)) {
1862                 BUFFER_TRACE(bh, "unmapped");
1863                 ext4_get_block(inode, iblock, bh, 0);
1864                 /* unmapped? It's a hole - nothing to do */
1865                 if (!buffer_mapped(bh)) {
1866                         BUFFER_TRACE(bh, "still unmapped");
1867                         goto unlock;
1868                 }
1869         }
1870
1871         /* Ok, it's mapped. Make sure it's up-to-date */
1872         if (PageUptodate(page))
1873                 set_buffer_uptodate(bh);
1874
1875         if (!buffer_uptodate(bh)) {
1876                 err = -EIO;
1877                 ll_rw_block(READ, 1, &bh);
1878                 wait_on_buffer(bh);
1879                 /* Uhhuh. Read error. Complain and punt. */
1880                 if (!buffer_uptodate(bh))
1881                         goto unlock;
1882         }
1883
1884         if (ext4_should_journal_data(inode)) {
1885                 BUFFER_TRACE(bh, "get write access");
1886                 err = ext4_journal_get_write_access(handle, bh);
1887                 if (err)
1888                         goto unlock;
1889         }
1890
1891         zero_user(page, offset, length);
1892
1893         BUFFER_TRACE(bh, "zeroed end of block");
1894
1895         err = 0;
1896         if (ext4_should_journal_data(inode)) {
1897                 err = ext4_journal_dirty_metadata(handle, bh);
1898         } else {
1899                 if (ext4_should_order_data(inode))
1900                         err = ext4_journal_dirty_data(handle, bh);
1901                 mark_buffer_dirty(bh);
1902         }
1903
1904 unlock:
1905         unlock_page(page);
1906         page_cache_release(page);
1907         return err;
1908 }
1909
1910 /*
1911  * Probably it should be a library function... search for first non-zero word
1912  * or memcmp with zero_page, whatever is better for particular architecture.
1913  * Linus?
1914  */
1915 static inline int all_zeroes(__le32 *p, __le32 *q)
1916 {
1917         while (p < q)
1918                 if (*p++)
1919                         return 0;
1920         return 1;
1921 }
1922
1923 /**
1924  *      ext4_find_shared - find the indirect blocks for partial truncation.
1925  *      @inode:   inode in question
1926  *      @depth:   depth of the affected branch
1927  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1928  *      @chain:   place to store the pointers to partial indirect blocks
1929  *      @top:     place to the (detached) top of branch
1930  *
1931  *      This is a helper function used by ext4_truncate().
1932  *
1933  *      When we do truncate() we may have to clean the ends of several
1934  *      indirect blocks but leave the blocks themselves alive. Block is
1935  *      partially truncated if some data below the new i_size is refered
1936  *      from it (and it is on the path to the first completely truncated
1937  *      data block, indeed).  We have to free the top of that path along
1938  *      with everything to the right of the path. Since no allocation
1939  *      past the truncation point is possible until ext4_truncate()
1940  *      finishes, we may safely do the latter, but top of branch may
1941  *      require special attention - pageout below the truncation point
1942  *      might try to populate it.
1943  *
1944  *      We atomically detach the top of branch from the tree, store the
1945  *      block number of its root in *@top, pointers to buffer_heads of
1946  *      partially truncated blocks - in @chain[].bh and pointers to
1947  *      their last elements that should not be removed - in
1948  *      @chain[].p. Return value is the pointer to last filled element
1949  *      of @chain.
1950  *
1951  *      The work left to caller to do the actual freeing of subtrees:
1952  *              a) free the subtree starting from *@top
1953  *              b) free the subtrees whose roots are stored in
1954  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1955  *              c) free the subtrees growing from the inode past the @chain[0].
1956  *                      (no partially truncated stuff there).  */
1957
1958 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1959                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
1960 {
1961         Indirect *partial, *p;
1962         int k, err;
1963
1964         *top = 0;
1965         /* Make k index the deepest non-null offest + 1 */
1966         for (k = depth; k > 1 && !offsets[k-1]; k--)
1967                 ;
1968         partial = ext4_get_branch(inode, k, offsets, chain, &err);
1969         /* Writer: pointers */
1970         if (!partial)
1971                 partial = chain + k-1;
1972         /*
1973          * If the branch acquired continuation since we've looked at it -
1974          * fine, it should all survive and (new) top doesn't belong to us.
1975          */
1976         if (!partial->key && *partial->p)
1977                 /* Writer: end */
1978                 goto no_top;
1979         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1980                 ;
1981         /*
1982          * OK, we've found the last block that must survive. The rest of our
1983          * branch should be detached before unlocking. However, if that rest
1984          * of branch is all ours and does not grow immediately from the inode
1985          * it's easier to cheat and just decrement partial->p.
1986          */
1987         if (p == chain + k - 1 && p > chain) {
1988                 p->p--;
1989         } else {
1990                 *top = *p->p;
1991                 /* Nope, don't do this in ext4.  Must leave the tree intact */
1992 #if 0
1993                 *p->p = 0;
1994 #endif
1995         }
1996         /* Writer: end */
1997
1998         while(partial > p) {
1999                 brelse(partial->bh);
2000                 partial--;
2001         }
2002 no_top:
2003         return partial;
2004 }
2005
2006 /*
2007  * Zero a number of block pointers in either an inode or an indirect block.
2008  * If we restart the transaction we must again get write access to the
2009  * indirect block for further modification.
2010  *
2011  * We release `count' blocks on disk, but (last - first) may be greater
2012  * than `count' because there can be holes in there.
2013  */
2014 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2015                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2016                 unsigned long count, __le32 *first, __le32 *last)
2017 {
2018         __le32 *p;
2019         if (try_to_extend_transaction(handle, inode)) {
2020                 if (bh) {
2021                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2022                         ext4_journal_dirty_metadata(handle, bh);
2023                 }
2024                 ext4_mark_inode_dirty(handle, inode);
2025                 ext4_journal_test_restart(handle, inode);
2026                 if (bh) {
2027                         BUFFER_TRACE(bh, "retaking write access");
2028                         ext4_journal_get_write_access(handle, bh);
2029                 }
2030         }
2031
2032         /*
2033          * Any buffers which are on the journal will be in memory. We find
2034          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2035          * on them.  We've already detached each block from the file, so
2036          * bforget() in jbd2_journal_forget() should be safe.
2037          *
2038          * AKPM: turn on bforget in jbd2_journal_forget()!!!
2039          */
2040         for (p = first; p < last; p++) {
2041                 u32 nr = le32_to_cpu(*p);
2042                 if (nr) {
2043                         struct buffer_head *tbh;
2044
2045                         *p = 0;
2046                         tbh = sb_find_get_block(inode->i_sb, nr);
2047                         ext4_forget(handle, 0, inode, tbh, nr);
2048                 }
2049         }
2050
2051         ext4_free_blocks(handle, inode, block_to_free, count, 0);
2052 }
2053
2054 /**
2055  * ext4_free_data - free a list of data blocks
2056  * @handle:     handle for this transaction
2057  * @inode:      inode we are dealing with
2058  * @this_bh:    indirect buffer_head which contains *@first and *@last
2059  * @first:      array of block numbers
2060  * @last:       points immediately past the end of array
2061  *
2062  * We are freeing all blocks refered from that array (numbers are stored as
2063  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2064  *
2065  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2066  * blocks are contiguous then releasing them at one time will only affect one
2067  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2068  * actually use a lot of journal space.
2069  *
2070  * @this_bh will be %NULL if @first and @last point into the inode's direct
2071  * block pointers.
2072  */
2073 static void ext4_free_data(handle_t *handle, struct inode *inode,
2074                            struct buffer_head *this_bh,
2075                            __le32 *first, __le32 *last)
2076 {
2077         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2078         unsigned long count = 0;            /* Number of blocks in the run */
2079         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2080                                                corresponding to
2081                                                block_to_free */
2082         ext4_fsblk_t nr;                    /* Current block # */
2083         __le32 *p;                          /* Pointer into inode/ind
2084                                                for current block */
2085         int err;
2086
2087         if (this_bh) {                          /* For indirect block */
2088                 BUFFER_TRACE(this_bh, "get_write_access");
2089                 err = ext4_journal_get_write_access(handle, this_bh);
2090                 /* Important: if we can't update the indirect pointers
2091                  * to the blocks, we can't free them. */
2092                 if (err)
2093                         return;
2094         }
2095
2096         for (p = first; p < last; p++) {
2097                 nr = le32_to_cpu(*p);
2098                 if (nr) {
2099                         /* accumulate blocks to free if they're contiguous */
2100                         if (count == 0) {
2101                                 block_to_free = nr;
2102                                 block_to_free_p = p;
2103                                 count = 1;
2104                         } else if (nr == block_to_free + count) {
2105                                 count++;
2106                         } else {
2107                                 ext4_clear_blocks(handle, inode, this_bh,
2108                                                   block_to_free,
2109                                                   count, block_to_free_p, p);
2110                                 block_to_free = nr;
2111                                 block_to_free_p = p;
2112                                 count = 1;
2113                         }
2114                 }
2115         }
2116
2117         if (count > 0)
2118                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2119                                   count, block_to_free_p, p);
2120
2121         if (this_bh) {
2122                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2123                 ext4_journal_dirty_metadata(handle, this_bh);
2124         }
2125 }
2126
2127 /**
2128  *      ext4_free_branches - free an array of branches
2129  *      @handle: JBD handle for this transaction
2130  *      @inode: inode we are dealing with
2131  *      @parent_bh: the buffer_head which contains *@first and *@last
2132  *      @first: array of block numbers
2133  *      @last:  pointer immediately past the end of array
2134  *      @depth: depth of the branches to free
2135  *
2136  *      We are freeing all blocks refered from these branches (numbers are
2137  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2138  *      appropriately.
2139  */
2140 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2141                                struct buffer_head *parent_bh,
2142                                __le32 *first, __le32 *last, int depth)
2143 {
2144         ext4_fsblk_t nr;
2145         __le32 *p;
2146
2147         if (is_handle_aborted(handle))
2148                 return;
2149
2150         if (depth--) {
2151                 struct buffer_head *bh;
2152                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2153                 p = last;
2154                 while (--p >= first) {
2155                         nr = le32_to_cpu(*p);
2156                         if (!nr)
2157                                 continue;               /* A hole */
2158
2159                         /* Go read the buffer for the next level down */
2160                         bh = sb_bread(inode->i_sb, nr);
2161
2162                         /*
2163                          * A read failure? Report error and clear slot
2164                          * (should be rare).
2165                          */
2166                         if (!bh) {
2167                                 ext4_error(inode->i_sb, "ext4_free_branches",
2168                                            "Read failure, inode=%lu, block=%llu",
2169                                            inode->i_ino, nr);
2170                                 continue;
2171                         }
2172
2173                         /* This zaps the entire block.  Bottom up. */
2174                         BUFFER_TRACE(bh, "free child branches");
2175                         ext4_free_branches(handle, inode, bh,
2176                                            (__le32*)bh->b_data,
2177                                            (__le32*)bh->b_data + addr_per_block,
2178                                            depth);
2179
2180                         /*
2181                          * We've probably journalled the indirect block several
2182                          * times during the truncate.  But it's no longer
2183                          * needed and we now drop it from the transaction via
2184                          * jbd2_journal_revoke().
2185                          *
2186                          * That's easy if it's exclusively part of this
2187                          * transaction.  But if it's part of the committing
2188                          * transaction then jbd2_journal_forget() will simply
2189                          * brelse() it.  That means that if the underlying
2190                          * block is reallocated in ext4_get_block(),
2191                          * unmap_underlying_metadata() will find this block
2192                          * and will try to get rid of it.  damn, damn.
2193                          *
2194                          * If this block has already been committed to the
2195                          * journal, a revoke record will be written.  And
2196                          * revoke records must be emitted *before* clearing
2197                          * this block's bit in the bitmaps.
2198                          */
2199                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2200
2201                         /*
2202                          * Everything below this this pointer has been
2203                          * released.  Now let this top-of-subtree go.
2204                          *
2205                          * We want the freeing of this indirect block to be
2206                          * atomic in the journal with the updating of the
2207                          * bitmap block which owns it.  So make some room in
2208                          * the journal.
2209                          *
2210                          * We zero the parent pointer *after* freeing its
2211                          * pointee in the bitmaps, so if extend_transaction()
2212                          * for some reason fails to put the bitmap changes and
2213                          * the release into the same transaction, recovery
2214                          * will merely complain about releasing a free block,
2215                          * rather than leaking blocks.
2216                          */
2217                         if (is_handle_aborted(handle))
2218                                 return;
2219                         if (try_to_extend_transaction(handle, inode)) {
2220                                 ext4_mark_inode_dirty(handle, inode);
2221                                 ext4_journal_test_restart(handle, inode);
2222                         }
2223
2224                         ext4_free_blocks(handle, inode, nr, 1, 1);
2225
2226                         if (parent_bh) {
2227                                 /*
2228                                  * The block which we have just freed is
2229                                  * pointed to by an indirect block: journal it
2230                                  */
2231                                 BUFFER_TRACE(parent_bh, "get_write_access");
2232                                 if (!ext4_journal_get_write_access(handle,
2233                                                                    parent_bh)){
2234                                         *p = 0;
2235                                         BUFFER_TRACE(parent_bh,
2236                                         "call ext4_journal_dirty_metadata");
2237                                         ext4_journal_dirty_metadata(handle,
2238                                                                     parent_bh);
2239                                 }
2240                         }
2241                 }
2242         } else {
2243                 /* We have reached the bottom of the tree. */
2244                 BUFFER_TRACE(parent_bh, "free data blocks");
2245                 ext4_free_data(handle, inode, parent_bh, first, last);
2246         }
2247 }
2248
2249 /*
2250  * ext4_truncate()
2251  *
2252  * We block out ext4_get_block() block instantiations across the entire
2253  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2254  * simultaneously on behalf of the same inode.
2255  *
2256  * As we work through the truncate and commmit bits of it to the journal there
2257  * is one core, guiding principle: the file's tree must always be consistent on
2258  * disk.  We must be able to restart the truncate after a crash.
2259  *
2260  * The file's tree may be transiently inconsistent in memory (although it
2261  * probably isn't), but whenever we close off and commit a journal transaction,
2262  * the contents of (the filesystem + the journal) must be consistent and
2263  * restartable.  It's pretty simple, really: bottom up, right to left (although
2264  * left-to-right works OK too).
2265  *
2266  * Note that at recovery time, journal replay occurs *before* the restart of
2267  * truncate against the orphan inode list.
2268  *
2269  * The committed inode has the new, desired i_size (which is the same as
2270  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2271  * that this inode's truncate did not complete and it will again call
2272  * ext4_truncate() to have another go.  So there will be instantiated blocks
2273  * to the right of the truncation point in a crashed ext4 filesystem.  But
2274  * that's fine - as long as they are linked from the inode, the post-crash
2275  * ext4_truncate() run will find them and release them.
2276  */
2277 void ext4_truncate(struct inode *inode)
2278 {
2279         handle_t *handle;
2280         struct ext4_inode_info *ei = EXT4_I(inode);
2281         __le32 *i_data = ei->i_data;
2282         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2283         struct address_space *mapping = inode->i_mapping;
2284         ext4_lblk_t offsets[4];
2285         Indirect chain[4];
2286         Indirect *partial;
2287         __le32 nr = 0;
2288         int n;
2289         ext4_lblk_t last_block;
2290         unsigned blocksize = inode->i_sb->s_blocksize;
2291         struct page *page;
2292
2293         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2294             S_ISLNK(inode->i_mode)))
2295                 return;
2296         if (ext4_inode_is_fast_symlink(inode))
2297                 return;
2298         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2299                 return;
2300
2301         /*
2302          * We have to lock the EOF page here, because lock_page() nests
2303          * outside jbd2_journal_start().
2304          */
2305         if ((inode->i_size & (blocksize - 1)) == 0) {
2306                 /* Block boundary? Nothing to do */
2307                 page = NULL;
2308         } else {
2309                 page = grab_cache_page(mapping,
2310                                 inode->i_size >> PAGE_CACHE_SHIFT);
2311                 if (!page)
2312                         return;
2313         }
2314
2315         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2316                 ext4_ext_truncate(inode, page);
2317                 return;
2318         }
2319
2320         handle = start_transaction(inode);
2321         if (IS_ERR(handle)) {
2322                 if (page) {
2323                         clear_highpage(page);
2324                         flush_dcache_page(page);
2325                         unlock_page(page);
2326                         page_cache_release(page);
2327                 }
2328                 return;         /* AKPM: return what? */
2329         }
2330
2331         last_block = (inode->i_size + blocksize-1)
2332                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2333
2334         if (page)
2335                 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2336
2337         n = ext4_block_to_path(inode, last_block, offsets, NULL);
2338         if (n == 0)
2339                 goto out_stop;  /* error */
2340
2341         /*
2342          * OK.  This truncate is going to happen.  We add the inode to the
2343          * orphan list, so that if this truncate spans multiple transactions,
2344          * and we crash, we will resume the truncate when the filesystem
2345          * recovers.  It also marks the inode dirty, to catch the new size.
2346          *
2347          * Implication: the file must always be in a sane, consistent
2348          * truncatable state while each transaction commits.
2349          */
2350         if (ext4_orphan_add(handle, inode))
2351                 goto out_stop;
2352
2353         /*
2354          * The orphan list entry will now protect us from any crash which
2355          * occurs before the truncate completes, so it is now safe to propagate
2356          * the new, shorter inode size (held for now in i_size) into the
2357          * on-disk inode. We do this via i_disksize, which is the value which
2358          * ext4 *really* writes onto the disk inode.
2359          */
2360         ei->i_disksize = inode->i_size;
2361
2362         /*
2363          * From here we block out all ext4_get_block() callers who want to
2364          * modify the block allocation tree.
2365          */
2366         down_write(&ei->i_data_sem);
2367
2368         if (n == 1) {           /* direct blocks */
2369                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2370                                i_data + EXT4_NDIR_BLOCKS);
2371                 goto do_indirects;
2372         }
2373
2374         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2375         /* Kill the top of shared branch (not detached) */
2376         if (nr) {
2377                 if (partial == chain) {
2378                         /* Shared branch grows from the inode */
2379                         ext4_free_branches(handle, inode, NULL,
2380                                            &nr, &nr+1, (chain+n-1) - partial);
2381                         *partial->p = 0;
2382                         /*
2383                          * We mark the inode dirty prior to restart,
2384                          * and prior to stop.  No need for it here.
2385                          */
2386                 } else {
2387                         /* Shared branch grows from an indirect block */
2388                         BUFFER_TRACE(partial->bh, "get_write_access");
2389                         ext4_free_branches(handle, inode, partial->bh,
2390                                         partial->p,
2391                                         partial->p+1, (chain+n-1) - partial);
2392                 }
2393         }
2394         /* Clear the ends of indirect blocks on the shared branch */
2395         while (partial > chain) {
2396                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2397                                    (__le32*)partial->bh->b_data+addr_per_block,
2398                                    (chain+n-1) - partial);
2399                 BUFFER_TRACE(partial->bh, "call brelse");
2400                 brelse (partial->bh);
2401                 partial--;
2402         }
2403 do_indirects:
2404         /* Kill the remaining (whole) subtrees */
2405         switch (offsets[0]) {
2406         default:
2407                 nr = i_data[EXT4_IND_BLOCK];
2408                 if (nr) {
2409                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2410                         i_data[EXT4_IND_BLOCK] = 0;
2411                 }
2412         case EXT4_IND_BLOCK:
2413                 nr = i_data[EXT4_DIND_BLOCK];
2414                 if (nr) {
2415                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2416                         i_data[EXT4_DIND_BLOCK] = 0;
2417                 }
2418         case EXT4_DIND_BLOCK:
2419                 nr = i_data[EXT4_TIND_BLOCK];
2420                 if (nr) {
2421                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2422                         i_data[EXT4_TIND_BLOCK] = 0;
2423                 }
2424         case EXT4_TIND_BLOCK:
2425                 ;
2426         }
2427
2428         ext4_discard_reservation(inode);
2429
2430         up_write(&ei->i_data_sem);
2431         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2432         ext4_mark_inode_dirty(handle, inode);
2433
2434         /*
2435          * In a multi-transaction truncate, we only make the final transaction
2436          * synchronous
2437          */
2438         if (IS_SYNC(inode))
2439                 handle->h_sync = 1;
2440 out_stop:
2441         /*
2442          * If this was a simple ftruncate(), and the file will remain alive
2443          * then we need to clear up the orphan record which we created above.
2444          * However, if this was a real unlink then we were called by
2445          * ext4_delete_inode(), and we allow that function to clean up the
2446          * orphan info for us.
2447          */
2448         if (inode->i_nlink)
2449                 ext4_orphan_del(handle, inode);
2450
2451         ext4_journal_stop(handle);
2452 }
2453
2454 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2455                 unsigned long ino, struct ext4_iloc *iloc)
2456 {
2457         unsigned long desc, group_desc;
2458         ext4_group_t block_group;
2459         unsigned long offset;
2460         ext4_fsblk_t block;
2461         struct buffer_head *bh;
2462         struct ext4_group_desc * gdp;
2463
2464         if (!ext4_valid_inum(sb, ino)) {
2465                 /*
2466                  * This error is already checked for in namei.c unless we are
2467                  * looking at an NFS filehandle, in which case no error
2468                  * report is needed
2469                  */
2470                 return 0;
2471         }
2472
2473         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2474         if (block_group >= EXT4_SB(sb)->s_groups_count) {
2475                 ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2476                 return 0;
2477         }
2478         smp_rmb();
2479         group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2480         desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2481         bh = EXT4_SB(sb)->s_group_desc[group_desc];
2482         if (!bh) {
2483                 ext4_error (sb, "ext4_get_inode_block",
2484                             "Descriptor not loaded");
2485                 return 0;
2486         }
2487
2488         gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2489                 desc * EXT4_DESC_SIZE(sb));
2490         /*
2491          * Figure out the offset within the block group inode table
2492          */
2493         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2494                 EXT4_INODE_SIZE(sb);
2495         block = ext4_inode_table(sb, gdp) +
2496                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2497
2498         iloc->block_group = block_group;
2499         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2500         return block;
2501 }
2502
2503 /*
2504  * ext4_get_inode_loc returns with an extra refcount against the inode's
2505  * underlying buffer_head on success. If 'in_mem' is true, we have all
2506  * data in memory that is needed to recreate the on-disk version of this
2507  * inode.
2508  */
2509 static int __ext4_get_inode_loc(struct inode *inode,
2510                                 struct ext4_iloc *iloc, int in_mem)
2511 {
2512         ext4_fsblk_t block;
2513         struct buffer_head *bh;
2514
2515         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2516         if (!block)
2517                 return -EIO;
2518
2519         bh = sb_getblk(inode->i_sb, block);
2520         if (!bh) {
2521                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
2522                                 "unable to read inode block - "
2523                                 "inode=%lu, block=%llu",
2524                                  inode->i_ino, block);
2525                 return -EIO;
2526         }
2527         if (!buffer_uptodate(bh)) {
2528                 lock_buffer(bh);
2529                 if (buffer_uptodate(bh)) {
2530                         /* someone brought it uptodate while we waited */
2531                         unlock_buffer(bh);
2532                         goto has_buffer;
2533                 }
2534
2535                 /*
2536                  * If we have all information of the inode in memory and this
2537                  * is the only valid inode in the block, we need not read the
2538                  * block.
2539                  */
2540                 if (in_mem) {
2541                         struct buffer_head *bitmap_bh;
2542                         struct ext4_group_desc *desc;
2543                         int inodes_per_buffer;
2544                         int inode_offset, i;
2545                         ext4_group_t block_group;
2546                         int start;
2547
2548                         block_group = (inode->i_ino - 1) /
2549                                         EXT4_INODES_PER_GROUP(inode->i_sb);
2550                         inodes_per_buffer = bh->b_size /
2551                                 EXT4_INODE_SIZE(inode->i_sb);
2552                         inode_offset = ((inode->i_ino - 1) %
2553                                         EXT4_INODES_PER_GROUP(inode->i_sb));
2554                         start = inode_offset & ~(inodes_per_buffer - 1);
2555
2556                         /* Is the inode bitmap in cache? */
2557                         desc = ext4_get_group_desc(inode->i_sb,
2558                                                 block_group, NULL);
2559                         if (!desc)
2560                                 goto make_io;
2561
2562                         bitmap_bh = sb_getblk(inode->i_sb,
2563                                 ext4_inode_bitmap(inode->i_sb, desc));
2564                         if (!bitmap_bh)
2565                                 goto make_io;
2566
2567                         /*
2568                          * If the inode bitmap isn't in cache then the
2569                          * optimisation may end up performing two reads instead
2570                          * of one, so skip it.
2571                          */
2572                         if (!buffer_uptodate(bitmap_bh)) {
2573                                 brelse(bitmap_bh);
2574                                 goto make_io;
2575                         }
2576                         for (i = start; i < start + inodes_per_buffer; i++) {
2577                                 if (i == inode_offset)
2578                                         continue;
2579                                 if (ext4_test_bit(i, bitmap_bh->b_data))
2580                                         break;
2581                         }
2582                         brelse(bitmap_bh);
2583                         if (i == start + inodes_per_buffer) {
2584                                 /* all other inodes are free, so skip I/O */
2585                                 memset(bh->b_data, 0, bh->b_size);
2586                                 set_buffer_uptodate(bh);
2587                                 unlock_buffer(bh);
2588                                 goto has_buffer;
2589                         }
2590                 }
2591
2592 make_io:
2593                 /*
2594                  * There are other valid inodes in the buffer, this inode
2595                  * has in-inode xattrs, or we don't have this inode in memory.
2596                  * Read the block from disk.
2597                  */
2598                 get_bh(bh);
2599                 bh->b_end_io = end_buffer_read_sync;
2600                 submit_bh(READ_META, bh);
2601                 wait_on_buffer(bh);
2602                 if (!buffer_uptodate(bh)) {
2603                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
2604                                         "unable to read inode block - "
2605                                         "inode=%lu, block=%llu",
2606                                         inode->i_ino, block);
2607                         brelse(bh);
2608                         return -EIO;
2609                 }
2610         }
2611 has_buffer:
2612         iloc->bh = bh;
2613         return 0;
2614 }
2615
2616 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2617 {
2618         /* We have all inode data except xattrs in memory here. */
2619         return __ext4_get_inode_loc(inode, iloc,
2620                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2621 }
2622
2623 void ext4_set_inode_flags(struct inode *inode)
2624 {
2625         unsigned int flags = EXT4_I(inode)->i_flags;
2626
2627         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2628         if (flags & EXT4_SYNC_FL)
2629                 inode->i_flags |= S_SYNC;
2630         if (flags & EXT4_APPEND_FL)
2631                 inode->i_flags |= S_APPEND;
2632         if (flags & EXT4_IMMUTABLE_FL)
2633                 inode->i_flags |= S_IMMUTABLE;
2634         if (flags & EXT4_NOATIME_FL)
2635                 inode->i_flags |= S_NOATIME;
2636         if (flags & EXT4_DIRSYNC_FL)
2637                 inode->i_flags |= S_DIRSYNC;
2638 }
2639
2640 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2641 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2642 {
2643         unsigned int flags = ei->vfs_inode.i_flags;
2644
2645         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2646                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2647         if (flags & S_SYNC)
2648                 ei->i_flags |= EXT4_SYNC_FL;
2649         if (flags & S_APPEND)
2650                 ei->i_flags |= EXT4_APPEND_FL;
2651         if (flags & S_IMMUTABLE)
2652                 ei->i_flags |= EXT4_IMMUTABLE_FL;
2653         if (flags & S_NOATIME)
2654                 ei->i_flags |= EXT4_NOATIME_FL;
2655         if (flags & S_DIRSYNC)
2656                 ei->i_flags |= EXT4_DIRSYNC_FL;
2657 }
2658 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2659                                         struct ext4_inode_info *ei)
2660 {
2661         blkcnt_t i_blocks ;
2662         struct inode *inode = &(ei->vfs_inode);
2663         struct super_block *sb = inode->i_sb;
2664
2665         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2666                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2667                 /* we are using combined 48 bit field */
2668                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2669                                         le32_to_cpu(raw_inode->i_blocks_lo);
2670                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2671                         /* i_blocks represent file system block size */
2672                         return i_blocks  << (inode->i_blkbits - 9);
2673                 } else {
2674                         return i_blocks;
2675                 }
2676         } else {
2677                 return le32_to_cpu(raw_inode->i_blocks_lo);
2678         }
2679 }
2680
2681 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
2682 {
2683         struct ext4_iloc iloc;
2684         struct ext4_inode *raw_inode;
2685         struct ext4_inode_info *ei;
2686         struct buffer_head *bh;
2687         struct inode *inode;
2688         long ret;
2689         int block;
2690
2691         inode = iget_locked(sb, ino);
2692         if (!inode)
2693                 return ERR_PTR(-ENOMEM);
2694         if (!(inode->i_state & I_NEW))
2695                 return inode;
2696
2697         ei = EXT4_I(inode);
2698 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2699         ei->i_acl = EXT4_ACL_NOT_CACHED;
2700         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2701 #endif
2702         ei->i_block_alloc_info = NULL;
2703
2704         ret = __ext4_get_inode_loc(inode, &iloc, 0);
2705         if (ret < 0)
2706                 goto bad_inode;
2707         bh = iloc.bh;
2708         raw_inode = ext4_raw_inode(&iloc);
2709         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2710         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2711         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2712         if(!(test_opt (inode->i_sb, NO_UID32))) {
2713                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2714                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2715         }
2716         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2717
2718         ei->i_state = 0;
2719         ei->i_dir_start_lookup = 0;
2720         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2721         /* We now have enough fields to check if the inode was active or not.
2722          * This is needed because nfsd might try to access dead inodes
2723          * the test is that same one that e2fsck uses
2724          * NeilBrown 1999oct15
2725          */
2726         if (inode->i_nlink == 0) {
2727                 if (inode->i_mode == 0 ||
2728                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2729                         /* this inode is deleted */
2730                         brelse (bh);
2731                         ret = -ESTALE;
2732                         goto bad_inode;
2733                 }
2734                 /* The only unlinked inodes we let through here have
2735                  * valid i_mode and are being read by the orphan
2736                  * recovery code: that's fine, we're about to complete
2737                  * the process of deleting those. */
2738         }
2739         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2740         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2741         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2742         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2743             cpu_to_le32(EXT4_OS_HURD)) {
2744                 ei->i_file_acl |=
2745                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2746         }
2747         inode->i_size = ext4_isize(raw_inode);
2748         ei->i_disksize = inode->i_size;
2749         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2750         ei->i_block_group = iloc.block_group;
2751         /*
2752          * NOTE! The in-memory inode i_data array is in little-endian order
2753          * even on big-endian machines: we do NOT byteswap the block numbers!
2754          */
2755         for (block = 0; block < EXT4_N_BLOCKS; block++)
2756                 ei->i_data[block] = raw_inode->i_block[block];
2757         INIT_LIST_HEAD(&ei->i_orphan);
2758
2759         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2760                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2761                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2762                     EXT4_INODE_SIZE(inode->i_sb)) {
2763                         brelse (bh);
2764                         ret = -EIO;
2765                         goto bad_inode;
2766                 }
2767                 if (ei->i_extra_isize == 0) {
2768                         /* The extra space is currently unused. Use it. */
2769                         ei->i_extra_isize = sizeof(struct ext4_inode) -
2770                                             EXT4_GOOD_OLD_INODE_SIZE;
2771                 } else {
2772                         __le32 *magic = (void *)raw_inode +
2773                                         EXT4_GOOD_OLD_INODE_SIZE +
2774                                         ei->i_extra_isize;
2775                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2776                                  ei->i_state |= EXT4_STATE_XATTR;
2777                 }
2778         } else
2779                 ei->i_extra_isize = 0;
2780
2781         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2782         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2783         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2784         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2785
2786         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
2787         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2788                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2789                         inode->i_version |=
2790                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
2791         }
2792
2793         if (S_ISREG(inode->i_mode)) {
2794                 inode->i_op = &ext4_file_inode_operations;
2795                 inode->i_fop = &ext4_file_operations;
2796                 ext4_set_aops(inode);
2797         } else if (S_ISDIR(inode->i_mode)) {
2798                 inode->i_op = &ext4_dir_inode_operations;
2799                 inode->i_fop = &ext4_dir_operations;
2800         } else if (S_ISLNK(inode->i_mode)) {
2801                 if (ext4_inode_is_fast_symlink(inode))
2802                         inode->i_op = &ext4_fast_symlink_inode_operations;
2803                 else {
2804                         inode->i_op = &ext4_symlink_inode_operations;
2805                         ext4_set_aops(inode);
2806                 }
2807         } else {
2808                 inode->i_op = &ext4_special_inode_operations;
2809                 if (raw_inode->i_block[0])
2810                         init_special_inode(inode, inode->i_mode,
2811                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2812                 else
2813                         init_special_inode(inode, inode->i_mode,
2814                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2815         }
2816         brelse (iloc.bh);
2817         ext4_set_inode_flags(inode);
2818         unlock_new_inode(inode);
2819         return inode;
2820
2821 bad_inode:
2822         iget_failed(inode);
2823         return ERR_PTR(ret);
2824 }
2825
2826 static int ext4_inode_blocks_set(handle_t *handle,
2827                                 struct ext4_inode *raw_inode,
2828                                 struct ext4_inode_info *ei)
2829 {
2830         struct inode *inode = &(ei->vfs_inode);
2831         u64 i_blocks = inode->i_blocks;
2832         struct super_block *sb = inode->i_sb;
2833         int err = 0;
2834
2835         if (i_blocks <= ~0U) {
2836                 /*
2837                  * i_blocks can be represnted in a 32 bit variable
2838                  * as multiple of 512 bytes
2839                  */
2840                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2841                 raw_inode->i_blocks_high = 0;
2842                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2843         } else if (i_blocks <= 0xffffffffffffULL) {
2844                 /*
2845                  * i_blocks can be represented in a 48 bit variable
2846                  * as multiple of 512 bytes
2847                  */
2848                 err = ext4_update_rocompat_feature(handle, sb,
2849                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2850                 if (err)
2851                         goto  err_out;
2852                 /* i_block is stored in the split  48 bit fields */
2853                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2854                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2855                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2856         } else {
2857                 /*
2858                  * i_blocks should be represented in a 48 bit variable
2859                  * as multiple of  file system block size
2860                  */
2861                 err = ext4_update_rocompat_feature(handle, sb,
2862                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2863                 if (err)
2864                         goto  err_out;
2865                 ei->i_flags |= EXT4_HUGE_FILE_FL;
2866                 /* i_block is stored in file system block size */
2867                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2868                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2869                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2870         }
2871 err_out:
2872         return err;
2873 }
2874
2875 /*
2876  * Post the struct inode info into an on-disk inode location in the
2877  * buffer-cache.  This gobbles the caller's reference to the
2878  * buffer_head in the inode location struct.
2879  *
2880  * The caller must have write access to iloc->bh.
2881  */
2882 static int ext4_do_update_inode(handle_t *handle,
2883                                 struct inode *inode,
2884                                 struct ext4_iloc *iloc)
2885 {
2886         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2887         struct ext4_inode_info *ei = EXT4_I(inode);
2888         struct buffer_head *bh = iloc->bh;
2889         int err = 0, rc, block;
2890
2891         /* For fields not not tracking in the in-memory inode,
2892          * initialise them to zero for new inodes. */
2893         if (ei->i_state & EXT4_STATE_NEW)
2894                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2895
2896         ext4_get_inode_flags(ei);
2897         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2898         if(!(test_opt(inode->i_sb, NO_UID32))) {
2899                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2900                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2901 /*
2902  * Fix up interoperability with old kernels. Otherwise, old inodes get
2903  * re-used with the upper 16 bits of the uid/gid intact
2904  */
2905                 if(!ei->i_dtime) {
2906                         raw_inode->i_uid_high =
2907                                 cpu_to_le16(high_16_bits(inode->i_uid));
2908                         raw_inode->i_gid_high =
2909                                 cpu_to_le16(high_16_bits(inode->i_gid));
2910                 } else {
2911                         raw_inode->i_uid_high = 0;
2912                         raw_inode->i_gid_high = 0;
2913                 }
2914         } else {
2915                 raw_inode->i_uid_low =
2916                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
2917                 raw_inode->i_gid_low =
2918                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
2919                 raw_inode->i_uid_high = 0;
2920                 raw_inode->i_gid_high = 0;
2921         }
2922         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2923
2924         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2925         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2926         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2927         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2928
2929         if (ext4_inode_blocks_set(handle, raw_inode, ei))
2930                 goto out_brelse;
2931         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2932         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2933         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2934             cpu_to_le32(EXT4_OS_HURD))
2935                 raw_inode->i_file_acl_high =
2936                         cpu_to_le16(ei->i_file_acl >> 32);
2937         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2938         ext4_isize_set(raw_inode, ei->i_disksize);
2939         if (ei->i_disksize > 0x7fffffffULL) {
2940                 struct super_block *sb = inode->i_sb;
2941                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2942                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2943                                 EXT4_SB(sb)->s_es->s_rev_level ==
2944                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2945                         /* If this is the first large file
2946                          * created, add a flag to the superblock.
2947                          */
2948                         err = ext4_journal_get_write_access(handle,
2949                                         EXT4_SB(sb)->s_sbh);
2950                         if (err)
2951                                 goto out_brelse;
2952                         ext4_update_dynamic_rev(sb);
2953                         EXT4_SET_RO_COMPAT_FEATURE(sb,
2954                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2955                         sb->s_dirt = 1;
2956                         handle->h_sync = 1;
2957                         err = ext4_journal_dirty_metadata(handle,
2958                                         EXT4_SB(sb)->s_sbh);
2959                 }
2960         }
2961         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2962         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2963                 if (old_valid_dev(inode->i_rdev)) {
2964                         raw_inode->i_block[0] =
2965                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
2966                         raw_inode->i_block[1] = 0;
2967                 } else {
2968                         raw_inode->i_block[0] = 0;
2969                         raw_inode->i_block[1] =
2970                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
2971                         raw_inode->i_block[2] = 0;
2972                 }
2973         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
2974                 raw_inode->i_block[block] = ei->i_data[block];
2975
2976         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
2977         if (ei->i_extra_isize) {
2978                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2979                         raw_inode->i_version_hi =
2980                         cpu_to_le32(inode->i_version >> 32);
2981                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2982         }
2983
2984
2985         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2986         rc = ext4_journal_dirty_metadata(handle, bh);
2987         if (!err)
2988                 err = rc;
2989         ei->i_state &= ~EXT4_STATE_NEW;
2990
2991 out_brelse:
2992         brelse (bh);
2993         ext4_std_error(inode->i_sb, err);
2994         return err;
2995 }
2996
2997 /*
2998  * ext4_write_inode()
2999  *
3000  * We are called from a few places:
3001  *
3002  * - Within generic_file_write() for O_SYNC files.
3003  *   Here, there will be no transaction running. We wait for any running
3004  *   trasnaction to commit.
3005  *
3006  * - Within sys_sync(), kupdate and such.
3007  *   We wait on commit, if tol to.
3008  *
3009  * - Within prune_icache() (PF_MEMALLOC == true)
3010  *   Here we simply return.  We can't afford to block kswapd on the
3011  *   journal commit.
3012  *
3013  * In all cases it is actually safe for us to return without doing anything,
3014  * because the inode has been copied into a raw inode buffer in
3015  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3016  * knfsd.
3017  *
3018  * Note that we are absolutely dependent upon all inode dirtiers doing the
3019  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3020  * which we are interested.
3021  *
3022  * It would be a bug for them to not do this.  The code:
3023  *
3024  *      mark_inode_dirty(inode)
3025  *      stuff();
3026  *      inode->i_size = expr;
3027  *
3028  * is in error because a kswapd-driven write_inode() could occur while
3029  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3030  * will no longer be on the superblock's dirty inode list.
3031  */
3032 int ext4_write_inode(struct inode *inode, int wait)
3033 {
3034         if (current->flags & PF_MEMALLOC)
3035                 return 0;
3036
3037         if (ext4_journal_current_handle()) {
3038                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3039                 dump_stack();
3040                 return -EIO;
3041         }
3042
3043         if (!wait)
3044                 return 0;
3045
3046         return ext4_force_commit(inode->i_sb);
3047 }
3048
3049 /*
3050  * ext4_setattr()
3051  *
3052  * Called from notify_change.
3053  *
3054  * We want to trap VFS attempts to truncate the file as soon as
3055  * possible.  In particular, we want to make sure that when the VFS
3056  * shrinks i_size, we put the inode on the orphan list and modify
3057  * i_disksize immediately, so that during the subsequent flushing of
3058  * dirty pages and freeing of disk blocks, we can guarantee that any
3059  * commit will leave the blocks being flushed in an unused state on
3060  * disk.  (On recovery, the inode will get truncated and the blocks will
3061  * be freed, so we have a strong guarantee that no future commit will
3062  * leave these blocks visible to the user.)
3063  *
3064  * Called with inode->sem down.
3065  */
3066 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3067 {
3068         struct inode *inode = dentry->d_inode;
3069         int error, rc = 0;
3070         const unsigned int ia_valid = attr->ia_valid;
3071
3072         error = inode_change_ok(inode, attr);
3073         if (error)
3074                 return error;
3075
3076         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3077                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3078                 handle_t *handle;
3079
3080                 /* (user+group)*(old+new) structure, inode write (sb,
3081                  * inode block, ? - but truncate inode update has it) */
3082                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3083                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3084                 if (IS_ERR(handle)) {
3085                         error = PTR_ERR(handle);
3086                         goto err_out;
3087                 }
3088                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3089                 if (error) {
3090                         ext4_journal_stop(handle);
3091                         return error;
3092                 }
3093                 /* Update corresponding info in inode so that everything is in
3094                  * one transaction */
3095                 if (attr->ia_valid & ATTR_UID)
3096                         inode->i_uid = attr->ia_uid;
3097                 if (attr->ia_valid & ATTR_GID)
3098                         inode->i_gid = attr->ia_gid;
3099                 error = ext4_mark_inode_dirty(handle, inode);
3100                 ext4_journal_stop(handle);
3101         }
3102
3103         if (attr->ia_valid & ATTR_SIZE) {
3104                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3105                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3106
3107                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3108                                 error = -EFBIG;
3109                                 goto err_out;
3110                         }
3111                 }
3112         }
3113
3114         if (S_ISREG(inode->i_mode) &&
3115             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3116                 handle_t *handle;
3117
3118                 handle = ext4_journal_start(inode, 3);
3119                 if (IS_ERR(handle)) {
3120                         error = PTR_ERR(handle);
3121                         goto err_out;
3122                 }
3123
3124                 error = ext4_orphan_add(handle, inode);
3125                 EXT4_I(inode)->i_disksize = attr->ia_size;
3126                 rc = ext4_mark_inode_dirty(handle, inode);
3127                 if (!error)
3128                         error = rc;
3129                 ext4_journal_stop(handle);
3130         }
3131
3132         rc = inode_setattr(inode, attr);
3133
3134         /* If inode_setattr's call to ext4_truncate failed to get a
3135          * transaction handle at all, we need to clean up the in-core
3136          * orphan list manually. */
3137         if (inode->i_nlink)
3138                 ext4_orphan_del(NULL, inode);
3139
3140         if (!rc && (ia_valid & ATTR_MODE))
3141                 rc = ext4_acl_chmod(inode);
3142
3143 err_out:
3144         ext4_std_error(inode->i_sb, error);
3145         if (!error)
3146                 error = rc;
3147         return error;
3148 }
3149
3150
3151 /*
3152  * How many blocks doth make a writepage()?
3153  *
3154  * With N blocks per page, it may be:
3155  * N data blocks
3156  * 2 indirect block
3157  * 2 dindirect
3158  * 1 tindirect
3159  * N+5 bitmap blocks (from the above)
3160  * N+5 group descriptor summary blocks
3161  * 1 inode block
3162  * 1 superblock.
3163  * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3164  *
3165  * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3166  *
3167  * With ordered or writeback data it's the same, less the N data blocks.
3168  *
3169  * If the inode's direct blocks can hold an integral number of pages then a
3170  * page cannot straddle two indirect blocks, and we can only touch one indirect
3171  * and dindirect block, and the "5" above becomes "3".
3172  *
3173  * This still overestimates under most circumstances.  If we were to pass the
3174  * start and end offsets in here as well we could do block_to_path() on each
3175  * block and work out the exact number of indirects which are touched.  Pah.
3176  */
3177
3178 int ext4_writepage_trans_blocks(struct inode *inode)
3179 {
3180         int bpp = ext4_journal_blocks_per_page(inode);
3181         int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3182         int ret;
3183
3184         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3185                 return ext4_ext_writepage_trans_blocks(inode, bpp);
3186
3187         if (ext4_should_journal_data(inode))
3188                 ret = 3 * (bpp + indirects) + 2;
3189         else
3190                 ret = 2 * (bpp + indirects) + 2;
3191
3192 #ifdef CONFIG_QUOTA
3193         /* We know that structure was already allocated during DQUOT_INIT so
3194          * we will be updating only the data blocks + inodes */
3195         ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3196 #endif
3197
3198         return ret;
3199 }
3200
3201 /*
3202  * The caller must have previously called ext4_reserve_inode_write().
3203  * Give this, we know that the caller already has write access to iloc->bh.
3204  */
3205 int ext4_mark_iloc_dirty(handle_t *handle,
3206                 struct inode *inode, struct ext4_iloc *iloc)
3207 {
3208         int err = 0;
3209
3210         if (test_opt(inode->i_sb, I_VERSION))
3211                 inode_inc_iversion(inode);
3212
3213         /* the do_update_inode consumes one bh->b_count */
3214         get_bh(iloc->bh);
3215
3216         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3217         err = ext4_do_update_inode(handle, inode, iloc);
3218         put_bh(iloc->bh);
3219         return err;
3220 }
3221
3222 /*
3223  * On success, We end up with an outstanding reference count against
3224  * iloc->bh.  This _must_ be cleaned up later.
3225  */
3226
3227 int
3228 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3229                          struct ext4_iloc *iloc)
3230 {
3231         int err = 0;
3232         if (handle) {
3233                 err = ext4_get_inode_loc(inode, iloc);
3234                 if (!err) {
3235                         BUFFER_TRACE(iloc->bh, "get_write_access");
3236                         err = ext4_journal_get_write_access(handle, iloc->bh);
3237                         if (err) {
3238                                 brelse(iloc->bh);
3239                                 iloc->bh = NULL;
3240                         }
3241                 }
3242         }
3243         ext4_std_error(inode->i_sb, err);
3244         return err;
3245 }
3246
3247 /*
3248  * Expand an inode by new_extra_isize bytes.
3249  * Returns 0 on success or negative error number on failure.
3250  */
3251 static int ext4_expand_extra_isize(struct inode *inode,
3252                                    unsigned int new_extra_isize,
3253                                    struct ext4_iloc iloc,
3254                                    handle_t *handle)
3255 {
3256         struct ext4_inode *raw_inode;
3257         struct ext4_xattr_ibody_header *header;
3258         struct ext4_xattr_entry *entry;
3259
3260         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3261                 return 0;
3262
3263         raw_inode = ext4_raw_inode(&iloc);
3264
3265         header = IHDR(inode, raw_inode);
3266         entry = IFIRST(header);
3267
3268         /* No extended attributes present */
3269         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3270                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3271                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3272                         new_extra_isize);
3273                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3274                 return 0;
3275         }
3276
3277         /* try to expand with EAs present */
3278         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3279                                           raw_inode, handle);
3280 }
3281
3282 /*
3283  * What we do here is to mark the in-core inode as clean with respect to inode
3284  * dirtiness (it may still be data-dirty).
3285  * This means that the in-core inode may be reaped by prune_icache
3286  * without having to perform any I/O.  This is a very good thing,
3287  * because *any* task may call prune_icache - even ones which
3288  * have a transaction open against a different journal.
3289  *
3290  * Is this cheating?  Not really.  Sure, we haven't written the
3291  * inode out, but prune_icache isn't a user-visible syncing function.
3292  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3293  * we start and wait on commits.
3294  *
3295  * Is this efficient/effective?  Well, we're being nice to the system
3296  * by cleaning up our inodes proactively so they can be reaped
3297  * without I/O.  But we are potentially leaving up to five seconds'
3298  * worth of inodes floating about which prune_icache wants us to
3299  * write out.  One way to fix that would be to get prune_icache()
3300  * to do a write_super() to free up some memory.  It has the desired
3301  * effect.
3302  */
3303 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3304 {
3305         struct ext4_iloc iloc;
3306         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3307         static unsigned int mnt_count;
3308         int err, ret;
3309
3310         might_sleep();
3311         err = ext4_reserve_inode_write(handle, inode, &iloc);
3312         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3313             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3314                 /*
3315                  * We need extra buffer credits since we may write into EA block
3316                  * with this same handle. If journal_extend fails, then it will
3317                  * only result in a minor loss of functionality for that inode.
3318                  * If this is felt to be critical, then e2fsck should be run to
3319                  * force a large enough s_min_extra_isize.
3320                  */
3321                 if ((jbd2_journal_extend(handle,
3322                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3323                         ret = ext4_expand_extra_isize(inode,
3324                                                       sbi->s_want_extra_isize,
3325                                                       iloc, handle);
3326                         if (ret) {
3327                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3328                                 if (mnt_count !=
3329                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
3330                                         ext4_warning(inode->i_sb, __FUNCTION__,
3331                                         "Unable to expand inode %lu. Delete"
3332                                         " some EAs or run e2fsck.",
3333                                         inode->i_ino);
3334                                         mnt_count =
3335                                           le16_to_cpu(sbi->s_es->s_mnt_count);
3336                                 }
3337                         }
3338                 }
3339         }
3340         if (!err)
3341                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3342         return err;
3343 }
3344
3345 /*
3346  * ext4_dirty_inode() is called from __mark_inode_dirty()
3347  *
3348  * We're really interested in the case where a file is being extended.
3349  * i_size has been changed by generic_commit_write() and we thus need
3350  * to include the updated inode in the current transaction.
3351  *
3352  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3353  * are allocated to the file.
3354  *
3355  * If the inode is marked synchronous, we don't honour that here - doing
3356  * so would cause a commit on atime updates, which we don't bother doing.
3357  * We handle synchronous inodes at the highest possible level.
3358  */
3359 void ext4_dirty_inode(struct inode *inode)
3360 {
3361         handle_t *current_handle = ext4_journal_current_handle();
3362         handle_t *handle;
3363
3364         handle = ext4_journal_start(inode, 2);
3365         if (IS_ERR(handle))
3366                 goto out;
3367         if (current_handle &&
3368                 current_handle->h_transaction != handle->h_transaction) {
3369                 /* This task has a transaction open against a different fs */
3370                 printk(KERN_EMERG "%s: transactions do not match!\n",
3371                        __FUNCTION__);
3372         } else {
3373                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3374                                 current_handle);
3375                 ext4_mark_inode_dirty(handle, inode);
3376         }
3377         ext4_journal_stop(handle);
3378 out:
3379         return;
3380 }
3381
3382 #if 0
3383 /*
3384  * Bind an inode's backing buffer_head into this transaction, to prevent
3385  * it from being flushed to disk early.  Unlike
3386  * ext4_reserve_inode_write, this leaves behind no bh reference and
3387  * returns no iloc structure, so the caller needs to repeat the iloc
3388  * lookup to mark the inode dirty later.
3389  */
3390 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3391 {
3392         struct ext4_iloc iloc;
3393
3394         int err = 0;
3395         if (handle) {
3396                 err = ext4_get_inode_loc(inode, &iloc);
3397                 if (!err) {
3398                         BUFFER_TRACE(iloc.bh, "get_write_access");
3399                         err = jbd2_journal_get_write_access(handle, iloc.bh);
3400                         if (!err)
3401                                 err = ext4_journal_dirty_metadata(handle,
3402                                                                   iloc.bh);
3403                         brelse(iloc.bh);
3404                 }
3405         }
3406         ext4_std_error(inode->i_sb, err);
3407         return err;
3408 }
3409 #endif
3410
3411 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3412 {
3413         journal_t *journal;
3414         handle_t *handle;
3415         int err;
3416
3417         /*
3418          * We have to be very careful here: changing a data block's
3419          * journaling status dynamically is dangerous.  If we write a
3420          * data block to the journal, change the status and then delete
3421          * that block, we risk forgetting to revoke the old log record
3422          * from the journal and so a subsequent replay can corrupt data.
3423          * So, first we make sure that the journal is empty and that
3424          * nobody is changing anything.
3425          */
3426
3427         journal = EXT4_JOURNAL(inode);
3428         if (is_journal_aborted(journal))
3429                 return -EROFS;
3430
3431         jbd2_journal_lock_updates(journal);
3432         jbd2_journal_flush(journal);
3433
3434         /*
3435          * OK, there are no updates running now, and all cached data is
3436          * synced to disk.  We are now in a completely consistent state
3437          * which doesn't have anything in the journal, and we know that
3438          * no filesystem updates are running, so it is safe to modify
3439          * the inode's in-core data-journaling state flag now.
3440          */
3441
3442         if (val)
3443                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3444         else
3445                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3446         ext4_set_aops(inode);
3447
3448         jbd2_journal_unlock_updates(journal);
3449
3450         /* Finally we can mark the inode as dirty. */
3451
3452         handle = ext4_journal_start(inode, 1);
3453         if (IS_ERR(handle))
3454                 return PTR_ERR(handle);
3455
3456         err = ext4_mark_inode_dirty(handle, inode);
3457         handle->h_sync = 1;
3458         ext4_journal_stop(handle);
3459         ext4_std_error(inode->i_sb, err);
3460
3461         return err;
3462 }