ext4: Cleanup whitespace and other miscellaneous style issues
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 static inline int ext4_begin_ordered_truncate(struct inode *inode,
45                                               loff_t new_size)
46 {
47         return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
48                                                    new_size);
49 }
50
51 static void ext4_invalidatepage(struct page *page, unsigned long offset);
52
53 /*
54  * Test whether an inode is a fast symlink.
55  */
56 static int ext4_inode_is_fast_symlink(struct inode *inode)
57 {
58         int ea_blocks = EXT4_I(inode)->i_file_acl ?
59                 (inode->i_sb->s_blocksize >> 9) : 0;
60
61         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
62 }
63
64 /*
65  * The ext4 forget function must perform a revoke if we are freeing data
66  * which has been journaled.  Metadata (eg. indirect blocks) must be
67  * revoked in all cases.
68  *
69  * "bh" may be NULL: a metadata block may have been freed from memory
70  * but there may still be a record of it in the journal, and that record
71  * still needs to be revoked.
72  */
73 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
74                         struct buffer_head *bh, ext4_fsblk_t blocknr)
75 {
76         int err;
77
78         might_sleep();
79
80         BUFFER_TRACE(bh, "enter");
81
82         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
83                   "data mode %lx\n",
84                   bh, is_metadata, inode->i_mode,
85                   test_opt(inode->i_sb, DATA_FLAGS));
86
87         /* Never use the revoke function if we are doing full data
88          * journaling: there is no need to, and a V1 superblock won't
89          * support it.  Otherwise, only skip the revoke on un-journaled
90          * data blocks. */
91
92         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
93             (!is_metadata && !ext4_should_journal_data(inode))) {
94                 if (bh) {
95                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
96                         return ext4_journal_forget(handle, bh);
97                 }
98                 return 0;
99         }
100
101         /*
102          * data!=journal && (is_metadata || should_journal_data(inode))
103          */
104         BUFFER_TRACE(bh, "call ext4_journal_revoke");
105         err = ext4_journal_revoke(handle, blocknr, bh);
106         if (err)
107                 ext4_abort(inode->i_sb, __func__,
108                            "error %d when attempting revoke", err);
109         BUFFER_TRACE(bh, "exit");
110         return err;
111 }
112
113 /*
114  * Work out how many blocks we need to proceed with the next chunk of a
115  * truncate transaction.
116  */
117 static unsigned long blocks_for_truncate(struct inode *inode)
118 {
119         ext4_lblk_t needed;
120
121         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
122
123         /* Give ourselves just enough room to cope with inodes in which
124          * i_blocks is corrupt: we've seen disk corruptions in the past
125          * which resulted in random data in an inode which looked enough
126          * like a regular file for ext4 to try to delete it.  Things
127          * will go a bit crazy if that happens, but at least we should
128          * try not to panic the whole kernel. */
129         if (needed < 2)
130                 needed = 2;
131
132         /* But we need to bound the transaction so we don't overflow the
133          * journal. */
134         if (needed > EXT4_MAX_TRANS_DATA)
135                 needed = EXT4_MAX_TRANS_DATA;
136
137         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
138 }
139
140 /*
141  * Truncate transactions can be complex and absolutely huge.  So we need to
142  * be able to restart the transaction at a conventient checkpoint to make
143  * sure we don't overflow the journal.
144  *
145  * start_transaction gets us a new handle for a truncate transaction,
146  * and extend_transaction tries to extend the existing one a bit.  If
147  * extend fails, we need to propagate the failure up and restart the
148  * transaction in the top-level truncate loop. --sct
149  */
150 static handle_t *start_transaction(struct inode *inode)
151 {
152         handle_t *result;
153
154         result = ext4_journal_start(inode, blocks_for_truncate(inode));
155         if (!IS_ERR(result))
156                 return result;
157
158         ext4_std_error(inode->i_sb, PTR_ERR(result));
159         return result;
160 }
161
162 /*
163  * Try to extend this transaction for the purposes of truncation.
164  *
165  * Returns 0 if we managed to create more room.  If we can't create more
166  * room, and the transaction must be restarted we return 1.
167  */
168 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
169 {
170         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
171                 return 0;
172         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
173                 return 0;
174         return 1;
175 }
176
177 /*
178  * Restart the transaction associated with *handle.  This does a commit,
179  * so before we call here everything must be consistently dirtied against
180  * this transaction.
181  */
182 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
183 {
184         jbd_debug(2, "restarting handle %p\n", handle);
185         return ext4_journal_restart(handle, blocks_for_truncate(inode));
186 }
187
188 /*
189  * Called at the last iput() if i_nlink is zero.
190  */
191 void ext4_delete_inode (struct inode * inode)
192 {
193         handle_t *handle;
194         int err;
195
196         if (ext4_should_order_data(inode))
197                 ext4_begin_ordered_truncate(inode, 0);
198         truncate_inode_pages(&inode->i_data, 0);
199
200         if (is_bad_inode(inode))
201                 goto no_delete;
202
203         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
204         if (IS_ERR(handle)) {
205                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
206                 /*
207                  * If we're going to skip the normal cleanup, we still need to
208                  * make sure that the in-core orphan linked list is properly
209                  * cleaned up.
210                  */
211                 ext4_orphan_del(NULL, inode);
212                 goto no_delete;
213         }
214
215         if (IS_SYNC(inode))
216                 handle->h_sync = 1;
217         inode->i_size = 0;
218         err = ext4_mark_inode_dirty(handle, inode);
219         if (err) {
220                 ext4_warning(inode->i_sb, __func__,
221                              "couldn't mark inode dirty (err %d)", err);
222                 goto stop_handle;
223         }
224         if (inode->i_blocks)
225                 ext4_truncate(inode);
226
227         /*
228          * ext4_ext_truncate() doesn't reserve any slop when it
229          * restarts journal transactions; therefore there may not be
230          * enough credits left in the handle to remove the inode from
231          * the orphan list and set the dtime field.
232          */
233         if (handle->h_buffer_credits < 3) {
234                 err = ext4_journal_extend(handle, 3);
235                 if (err > 0)
236                         err = ext4_journal_restart(handle, 3);
237                 if (err != 0) {
238                         ext4_warning(inode->i_sb, __func__,
239                                      "couldn't extend journal (err %d)", err);
240                 stop_handle:
241                         ext4_journal_stop(handle);
242                         goto no_delete;
243                 }
244         }
245
246         /*
247          * Kill off the orphan record which ext4_truncate created.
248          * AKPM: I think this can be inside the above `if'.
249          * Note that ext4_orphan_del() has to be able to cope with the
250          * deletion of a non-existent orphan - this is because we don't
251          * know if ext4_truncate() actually created an orphan record.
252          * (Well, we could do this if we need to, but heck - it works)
253          */
254         ext4_orphan_del(handle, inode);
255         EXT4_I(inode)->i_dtime  = get_seconds();
256
257         /*
258          * One subtle ordering requirement: if anything has gone wrong
259          * (transaction abort, IO errors, whatever), then we can still
260          * do these next steps (the fs will already have been marked as
261          * having errors), but we can't free the inode if the mark_dirty
262          * fails.
263          */
264         if (ext4_mark_inode_dirty(handle, inode))
265                 /* If that failed, just do the required in-core inode clear. */
266                 clear_inode(inode);
267         else
268                 ext4_free_inode(handle, inode);
269         ext4_journal_stop(handle);
270         return;
271 no_delete:
272         clear_inode(inode);     /* We must guarantee clearing of inode... */
273 }
274
275 typedef struct {
276         __le32  *p;
277         __le32  key;
278         struct buffer_head *bh;
279 } Indirect;
280
281 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
282 {
283         p->key = *(p->p = v);
284         p->bh = bh;
285 }
286
287 /**
288  *      ext4_block_to_path - parse the block number into array of offsets
289  *      @inode: inode in question (we are only interested in its superblock)
290  *      @i_block: block number to be parsed
291  *      @offsets: array to store the offsets in
292  *      @boundary: set this non-zero if the referred-to block is likely to be
293  *             followed (on disk) by an indirect block.
294  *
295  *      To store the locations of file's data ext4 uses a data structure common
296  *      for UNIX filesystems - tree of pointers anchored in the inode, with
297  *      data blocks at leaves and indirect blocks in intermediate nodes.
298  *      This function translates the block number into path in that tree -
299  *      return value is the path length and @offsets[n] is the offset of
300  *      pointer to (n+1)th node in the nth one. If @block is out of range
301  *      (negative or too large) warning is printed and zero returned.
302  *
303  *      Note: function doesn't find node addresses, so no IO is needed. All
304  *      we need to know is the capacity of indirect blocks (taken from the
305  *      inode->i_sb).
306  */
307
308 /*
309  * Portability note: the last comparison (check that we fit into triple
310  * indirect block) is spelled differently, because otherwise on an
311  * architecture with 32-bit longs and 8Kb pages we might get into trouble
312  * if our filesystem had 8Kb blocks. We might use long long, but that would
313  * kill us on x86. Oh, well, at least the sign propagation does not matter -
314  * i_block would have to be negative in the very beginning, so we would not
315  * get there at all.
316  */
317
318 static int ext4_block_to_path(struct inode *inode,
319                         ext4_lblk_t i_block,
320                         ext4_lblk_t offsets[4], int *boundary)
321 {
322         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
323         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
324         const long direct_blocks = EXT4_NDIR_BLOCKS,
325                 indirect_blocks = ptrs,
326                 double_blocks = (1 << (ptrs_bits * 2));
327         int n = 0;
328         int final = 0;
329
330         if (i_block < 0) {
331                 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
332         } else if (i_block < direct_blocks) {
333                 offsets[n++] = i_block;
334                 final = direct_blocks;
335         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
336                 offsets[n++] = EXT4_IND_BLOCK;
337                 offsets[n++] = i_block;
338                 final = ptrs;
339         } else if ((i_block -= indirect_blocks) < double_blocks) {
340                 offsets[n++] = EXT4_DIND_BLOCK;
341                 offsets[n++] = i_block >> ptrs_bits;
342                 offsets[n++] = i_block & (ptrs - 1);
343                 final = ptrs;
344         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
345                 offsets[n++] = EXT4_TIND_BLOCK;
346                 offsets[n++] = i_block >> (ptrs_bits * 2);
347                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
348                 offsets[n++] = i_block & (ptrs - 1);
349                 final = ptrs;
350         } else {
351                 ext4_warning(inode->i_sb, "ext4_block_to_path",
352                                 "block %lu > max",
353                                 i_block + direct_blocks +
354                                 indirect_blocks + double_blocks);
355         }
356         if (boundary)
357                 *boundary = final - 1 - (i_block & (ptrs - 1));
358         return n;
359 }
360
361 /**
362  *      ext4_get_branch - read the chain of indirect blocks leading to data
363  *      @inode: inode in question
364  *      @depth: depth of the chain (1 - direct pointer, etc.)
365  *      @offsets: offsets of pointers in inode/indirect blocks
366  *      @chain: place to store the result
367  *      @err: here we store the error value
368  *
369  *      Function fills the array of triples <key, p, bh> and returns %NULL
370  *      if everything went OK or the pointer to the last filled triple
371  *      (incomplete one) otherwise. Upon the return chain[i].key contains
372  *      the number of (i+1)-th block in the chain (as it is stored in memory,
373  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
374  *      number (it points into struct inode for i==0 and into the bh->b_data
375  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
376  *      block for i>0 and NULL for i==0. In other words, it holds the block
377  *      numbers of the chain, addresses they were taken from (and where we can
378  *      verify that chain did not change) and buffer_heads hosting these
379  *      numbers.
380  *
381  *      Function stops when it stumbles upon zero pointer (absent block)
382  *              (pointer to last triple returned, *@err == 0)
383  *      or when it gets an IO error reading an indirect block
384  *              (ditto, *@err == -EIO)
385  *      or when it reads all @depth-1 indirect blocks successfully and finds
386  *      the whole chain, all way to the data (returns %NULL, *err == 0).
387  *
388  *      Need to be called with
389  *      down_read(&EXT4_I(inode)->i_data_sem)
390  */
391 static Indirect *ext4_get_branch(struct inode *inode, int depth,
392                                  ext4_lblk_t  *offsets,
393                                  Indirect chain[4], int *err)
394 {
395         struct super_block *sb = inode->i_sb;
396         Indirect *p = chain;
397         struct buffer_head *bh;
398
399         *err = 0;
400         /* i_data is not going away, no lock needed */
401         add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
402         if (!p->key)
403                 goto no_block;
404         while (--depth) {
405                 bh = sb_bread(sb, le32_to_cpu(p->key));
406                 if (!bh)
407                         goto failure;
408                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
409                 /* Reader: end */
410                 if (!p->key)
411                         goto no_block;
412         }
413         return NULL;
414
415 failure:
416         *err = -EIO;
417 no_block:
418         return p;
419 }
420
421 /**
422  *      ext4_find_near - find a place for allocation with sufficient locality
423  *      @inode: owner
424  *      @ind: descriptor of indirect block.
425  *
426  *      This function returns the preferred place for block allocation.
427  *      It is used when heuristic for sequential allocation fails.
428  *      Rules are:
429  *        + if there is a block to the left of our position - allocate near it.
430  *        + if pointer will live in indirect block - allocate near that block.
431  *        + if pointer will live in inode - allocate in the same
432  *          cylinder group.
433  *
434  * In the latter case we colour the starting block by the callers PID to
435  * prevent it from clashing with concurrent allocations for a different inode
436  * in the same block group.   The PID is used here so that functionally related
437  * files will be close-by on-disk.
438  *
439  *      Caller must make sure that @ind is valid and will stay that way.
440  */
441 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
442 {
443         struct ext4_inode_info *ei = EXT4_I(inode);
444         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
445         __le32 *p;
446         ext4_fsblk_t bg_start;
447         ext4_fsblk_t last_block;
448         ext4_grpblk_t colour;
449
450         /* Try to find previous block */
451         for (p = ind->p - 1; p >= start; p--) {
452                 if (*p)
453                         return le32_to_cpu(*p);
454         }
455
456         /* No such thing, so let's try location of indirect block */
457         if (ind->bh)
458                 return ind->bh->b_blocknr;
459
460         /*
461          * It is going to be referred to from the inode itself? OK, just put it
462          * into the same cylinder group then.
463          */
464         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
465         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
466
467         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
468                 colour = (current->pid % 16) *
469                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
470         else
471                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
472         return bg_start + colour;
473 }
474
475 /**
476  *      ext4_find_goal - find a preferred place for allocation.
477  *      @inode: owner
478  *      @block:  block we want
479  *      @partial: pointer to the last triple within a chain
480  *
481  *      Normally this function find the preferred place for block allocation,
482  *      returns it.
483  */
484 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
485                 Indirect *partial)
486 {
487         struct ext4_block_alloc_info *block_i;
488
489         block_i =  EXT4_I(inode)->i_block_alloc_info;
490
491         /*
492          * try the heuristic for sequential allocation,
493          * failing that at least try to get decent locality.
494          */
495         if (block_i && (block == block_i->last_alloc_logical_block + 1)
496                 && (block_i->last_alloc_physical_block != 0)) {
497                 return block_i->last_alloc_physical_block + 1;
498         }
499
500         return ext4_find_near(inode, partial);
501 }
502
503 /**
504  *      ext4_blks_to_allocate: Look up the block map and count the number
505  *      of direct blocks need to be allocated for the given branch.
506  *
507  *      @branch: chain of indirect blocks
508  *      @k: number of blocks need for indirect blocks
509  *      @blks: number of data blocks to be mapped.
510  *      @blocks_to_boundary:  the offset in the indirect block
511  *
512  *      return the total number of blocks to be allocate, including the
513  *      direct and indirect blocks.
514  */
515 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
516                 int blocks_to_boundary)
517 {
518         unsigned long count = 0;
519
520         /*
521          * Simple case, [t,d]Indirect block(s) has not allocated yet
522          * then it's clear blocks on that path have not allocated
523          */
524         if (k > 0) {
525                 /* right now we don't handle cross boundary allocation */
526                 if (blks < blocks_to_boundary + 1)
527                         count += blks;
528                 else
529                         count += blocks_to_boundary + 1;
530                 return count;
531         }
532
533         count++;
534         while (count < blks && count <= blocks_to_boundary &&
535                 le32_to_cpu(*(branch[0].p + count)) == 0) {
536                 count++;
537         }
538         return count;
539 }
540
541 /**
542  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
543  *      @indirect_blks: the number of blocks need to allocate for indirect
544  *                      blocks
545  *
546  *      @new_blocks: on return it will store the new block numbers for
547  *      the indirect blocks(if needed) and the first direct block,
548  *      @blks:  on return it will store the total number of allocated
549  *              direct blocks
550  */
551 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
552                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
553                                 int indirect_blks, int blks,
554                                 ext4_fsblk_t new_blocks[4], int *err)
555 {
556         int target, i;
557         unsigned long count = 0, blk_allocated = 0;
558         int index = 0;
559         ext4_fsblk_t current_block = 0;
560         int ret = 0;
561
562         /*
563          * Here we try to allocate the requested multiple blocks at once,
564          * on a best-effort basis.
565          * To build a branch, we should allocate blocks for
566          * the indirect blocks(if not allocated yet), and at least
567          * the first direct block of this branch.  That's the
568          * minimum number of blocks need to allocate(required)
569          */
570         /* first we try to allocate the indirect blocks */
571         target = indirect_blks;
572         while (target > 0) {
573                 count = target;
574                 /* allocating blocks for indirect blocks and direct blocks */
575                 current_block = ext4_new_meta_blocks(handle, inode,
576                                                         goal, &count, err);
577                 if (*err)
578                         goto failed_out;
579
580                 target -= count;
581                 /* allocate blocks for indirect blocks */
582                 while (index < indirect_blks && count) {
583                         new_blocks[index++] = current_block++;
584                         count--;
585                 }
586                 if (count > 0) {
587                         /*
588                          * save the new block number
589                          * for the first direct block
590                          */
591                         new_blocks[index] = current_block;
592                         printk(KERN_INFO "%s returned more blocks than "
593                                                 "requested\n", __func__);
594                         WARN_ON(1);
595                         break;
596                 }
597         }
598
599         target = blks - count ;
600         blk_allocated = count;
601         if (!target)
602                 goto allocated;
603         /* Now allocate data blocks */
604         count = target;
605         /* allocating blocks for data blocks */
606         current_block = ext4_new_blocks(handle, inode, iblock,
607                                                 goal, &count, err);
608         if (*err && (target == blks)) {
609                 /*
610                  * if the allocation failed and we didn't allocate
611                  * any blocks before
612                  */
613                 goto failed_out;
614         }
615         if (!*err) {
616                 if (target == blks) {
617                 /*
618                  * save the new block number
619                  * for the first direct block
620                  */
621                         new_blocks[index] = current_block;
622                 }
623                 blk_allocated += count;
624         }
625 allocated:
626         /* total number of blocks allocated for direct blocks */
627         ret = blk_allocated;
628         *err = 0;
629         return ret;
630 failed_out:
631         for (i = 0; i <index; i++)
632                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
633         return ret;
634 }
635
636 /**
637  *      ext4_alloc_branch - allocate and set up a chain of blocks.
638  *      @inode: owner
639  *      @indirect_blks: number of allocated indirect blocks
640  *      @blks: number of allocated direct blocks
641  *      @offsets: offsets (in the blocks) to store the pointers to next.
642  *      @branch: place to store the chain in.
643  *
644  *      This function allocates blocks, zeroes out all but the last one,
645  *      links them into chain and (if we are synchronous) writes them to disk.
646  *      In other words, it prepares a branch that can be spliced onto the
647  *      inode. It stores the information about that chain in the branch[], in
648  *      the same format as ext4_get_branch() would do. We are calling it after
649  *      we had read the existing part of chain and partial points to the last
650  *      triple of that (one with zero ->key). Upon the exit we have the same
651  *      picture as after the successful ext4_get_block(), except that in one
652  *      place chain is disconnected - *branch->p is still zero (we did not
653  *      set the last link), but branch->key contains the number that should
654  *      be placed into *branch->p to fill that gap.
655  *
656  *      If allocation fails we free all blocks we've allocated (and forget
657  *      their buffer_heads) and return the error value the from failed
658  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
659  *      as described above and return 0.
660  */
661 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
662                                 ext4_lblk_t iblock, int indirect_blks,
663                                 int *blks, ext4_fsblk_t goal,
664                                 ext4_lblk_t *offsets, Indirect *branch)
665 {
666         int blocksize = inode->i_sb->s_blocksize;
667         int i, n = 0;
668         int err = 0;
669         struct buffer_head *bh;
670         int num;
671         ext4_fsblk_t new_blocks[4];
672         ext4_fsblk_t current_block;
673
674         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
675                                 *blks, new_blocks, &err);
676         if (err)
677                 return err;
678
679         branch[0].key = cpu_to_le32(new_blocks[0]);
680         /*
681          * metadata blocks and data blocks are allocated.
682          */
683         for (n = 1; n <= indirect_blks;  n++) {
684                 /*
685                  * Get buffer_head for parent block, zero it out
686                  * and set the pointer to new one, then send
687                  * parent to disk.
688                  */
689                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
690                 branch[n].bh = bh;
691                 lock_buffer(bh);
692                 BUFFER_TRACE(bh, "call get_create_access");
693                 err = ext4_journal_get_create_access(handle, bh);
694                 if (err) {
695                         unlock_buffer(bh);
696                         brelse(bh);
697                         goto failed;
698                 }
699
700                 memset(bh->b_data, 0, blocksize);
701                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
702                 branch[n].key = cpu_to_le32(new_blocks[n]);
703                 *branch[n].p = branch[n].key;
704                 if ( n == indirect_blks) {
705                         current_block = new_blocks[n];
706                         /*
707                          * End of chain, update the last new metablock of
708                          * the chain to point to the new allocated
709                          * data blocks numbers
710                          */
711                         for (i=1; i < num; i++)
712                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
713                 }
714                 BUFFER_TRACE(bh, "marking uptodate");
715                 set_buffer_uptodate(bh);
716                 unlock_buffer(bh);
717
718                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
719                 err = ext4_journal_dirty_metadata(handle, bh);
720                 if (err)
721                         goto failed;
722         }
723         *blks = num;
724         return err;
725 failed:
726         /* Allocation failed, free what we already allocated */
727         for (i = 1; i <= n ; i++) {
728                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
729                 ext4_journal_forget(handle, branch[i].bh);
730         }
731         for (i = 0; i <indirect_blks; i++)
732                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
733
734         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
735
736         return err;
737 }
738
739 /**
740  * ext4_splice_branch - splice the allocated branch onto inode.
741  * @inode: owner
742  * @block: (logical) number of block we are adding
743  * @chain: chain of indirect blocks (with a missing link - see
744  *      ext4_alloc_branch)
745  * @where: location of missing link
746  * @num:   number of indirect blocks we are adding
747  * @blks:  number of direct blocks we are adding
748  *
749  * This function fills the missing link and does all housekeeping needed in
750  * inode (->i_blocks, etc.). In case of success we end up with the full
751  * chain to new block and return 0.
752  */
753 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
754                         ext4_lblk_t block, Indirect *where, int num, int blks)
755 {
756         int i;
757         int err = 0;
758         struct ext4_block_alloc_info *block_i;
759         ext4_fsblk_t current_block;
760
761         block_i = EXT4_I(inode)->i_block_alloc_info;
762         /*
763          * If we're splicing into a [td]indirect block (as opposed to the
764          * inode) then we need to get write access to the [td]indirect block
765          * before the splice.
766          */
767         if (where->bh) {
768                 BUFFER_TRACE(where->bh, "get_write_access");
769                 err = ext4_journal_get_write_access(handle, where->bh);
770                 if (err)
771                         goto err_out;
772         }
773         /* That's it */
774
775         *where->p = where->key;
776
777         /*
778          * Update the host buffer_head or inode to point to more just allocated
779          * direct blocks blocks
780          */
781         if (num == 0 && blks > 1) {
782                 current_block = le32_to_cpu(where->key) + 1;
783                 for (i = 1; i < blks; i++)
784                         *(where->p + i ) = cpu_to_le32(current_block++);
785         }
786
787         /*
788          * update the most recently allocated logical & physical block
789          * in i_block_alloc_info, to assist find the proper goal block for next
790          * allocation
791          */
792         if (block_i) {
793                 block_i->last_alloc_logical_block = block + blks - 1;
794                 block_i->last_alloc_physical_block =
795                                 le32_to_cpu(where[num].key) + blks - 1;
796         }
797
798         /* We are done with atomic stuff, now do the rest of housekeeping */
799
800         inode->i_ctime = ext4_current_time(inode);
801         ext4_mark_inode_dirty(handle, inode);
802
803         /* had we spliced it onto indirect block? */
804         if (where->bh) {
805                 /*
806                  * If we spliced it onto an indirect block, we haven't
807                  * altered the inode.  Note however that if it is being spliced
808                  * onto an indirect block at the very end of the file (the
809                  * file is growing) then we *will* alter the inode to reflect
810                  * the new i_size.  But that is not done here - it is done in
811                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
812                  */
813                 jbd_debug(5, "splicing indirect only\n");
814                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
815                 err = ext4_journal_dirty_metadata(handle, where->bh);
816                 if (err)
817                         goto err_out;
818         } else {
819                 /*
820                  * OK, we spliced it into the inode itself on a direct block.
821                  * Inode was dirtied above.
822                  */
823                 jbd_debug(5, "splicing direct\n");
824         }
825         return err;
826
827 err_out:
828         for (i = 1; i <= num; i++) {
829                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
830                 ext4_journal_forget(handle, where[i].bh);
831                 ext4_free_blocks(handle, inode,
832                                         le32_to_cpu(where[i-1].key), 1, 0);
833         }
834         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
835
836         return err;
837 }
838
839 /*
840  * Allocation strategy is simple: if we have to allocate something, we will
841  * have to go the whole way to leaf. So let's do it before attaching anything
842  * to tree, set linkage between the newborn blocks, write them if sync is
843  * required, recheck the path, free and repeat if check fails, otherwise
844  * set the last missing link (that will protect us from any truncate-generated
845  * removals - all blocks on the path are immune now) and possibly force the
846  * write on the parent block.
847  * That has a nice additional property: no special recovery from the failed
848  * allocations is needed - we simply release blocks and do not touch anything
849  * reachable from inode.
850  *
851  * `handle' can be NULL if create == 0.
852  *
853  * return > 0, # of blocks mapped or allocated.
854  * return = 0, if plain lookup failed.
855  * return < 0, error case.
856  *
857  *
858  * Need to be called with
859  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
860  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
861  */
862 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
863                 ext4_lblk_t iblock, unsigned long maxblocks,
864                 struct buffer_head *bh_result,
865                 int create, int extend_disksize)
866 {
867         int err = -EIO;
868         ext4_lblk_t offsets[4];
869         Indirect chain[4];
870         Indirect *partial;
871         ext4_fsblk_t goal;
872         int indirect_blks;
873         int blocks_to_boundary = 0;
874         int depth;
875         struct ext4_inode_info *ei = EXT4_I(inode);
876         int count = 0;
877         ext4_fsblk_t first_block = 0;
878         loff_t disksize;
879
880
881         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
882         J_ASSERT(handle != NULL || create == 0);
883         depth = ext4_block_to_path(inode, iblock, offsets,
884                                         &blocks_to_boundary);
885
886         if (depth == 0)
887                 goto out;
888
889         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
890
891         /* Simplest case - block found, no allocation needed */
892         if (!partial) {
893                 first_block = le32_to_cpu(chain[depth - 1].key);
894                 clear_buffer_new(bh_result);
895                 count++;
896                 /*map more blocks*/
897                 while (count < maxblocks && count <= blocks_to_boundary) {
898                         ext4_fsblk_t blk;
899
900                         blk = le32_to_cpu(*(chain[depth-1].p + count));
901
902                         if (blk == first_block + count)
903                                 count++;
904                         else
905                                 break;
906                 }
907                 goto got_it;
908         }
909
910         /* Next simple case - plain lookup or failed read of indirect block */
911         if (!create || err == -EIO)
912                 goto cleanup;
913
914         /*
915          * Okay, we need to do block allocation.  Lazily initialize the block
916          * allocation info here if necessary
917         */
918         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
919                 ext4_init_block_alloc_info(inode);
920
921         goal = ext4_find_goal(inode, iblock, partial);
922
923         /* the number of blocks need to allocate for [d,t]indirect blocks */
924         indirect_blks = (chain + depth) - partial - 1;
925
926         /*
927          * Next look up the indirect map to count the totoal number of
928          * direct blocks to allocate for this branch.
929          */
930         count = ext4_blks_to_allocate(partial, indirect_blks,
931                                         maxblocks, blocks_to_boundary);
932         /*
933          * Block out ext4_truncate while we alter the tree
934          */
935         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
936                                         &count, goal,
937                                         offsets + (partial - chain), partial);
938
939         /*
940          * The ext4_splice_branch call will free and forget any buffers
941          * on the new chain if there is a failure, but that risks using
942          * up transaction credits, especially for bitmaps where the
943          * credits cannot be returned.  Can we handle this somehow?  We
944          * may need to return -EAGAIN upwards in the worst case.  --sct
945          */
946         if (!err)
947                 err = ext4_splice_branch(handle, inode, iblock,
948                                         partial, indirect_blks, count);
949         /*
950          * i_disksize growing is protected by i_data_sem.  Don't forget to
951          * protect it if you're about to implement concurrent
952          * ext4_get_block() -bzzz
953         */
954         if (!err && extend_disksize) {
955                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
956                 if (disksize > i_size_read(inode))
957                         disksize = i_size_read(inode);
958                 if (disksize > ei->i_disksize)
959                         ei->i_disksize = disksize;
960         }
961         if (err)
962                 goto cleanup;
963
964         set_buffer_new(bh_result);
965 got_it:
966         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
967         if (count > blocks_to_boundary)
968                 set_buffer_boundary(bh_result);
969         err = count;
970         /* Clean up and exit */
971         partial = chain + depth - 1;    /* the whole chain */
972 cleanup:
973         while (partial > chain) {
974                 BUFFER_TRACE(partial->bh, "call brelse");
975                 brelse(partial->bh);
976                 partial--;
977         }
978         BUFFER_TRACE(bh_result, "returned");
979 out:
980         return err;
981 }
982
983 /*
984  * Calculate the number of metadata blocks need to reserve
985  * to allocate @blocks for non extent file based file
986  */
987 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
988 {
989         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
990         int ind_blks, dind_blks, tind_blks;
991
992         /* number of new indirect blocks needed */
993         ind_blks = (blocks + icap - 1) / icap;
994
995         dind_blks = (ind_blks + icap - 1) / icap;
996
997         tind_blks = 1;
998
999         return ind_blks + dind_blks + tind_blks;
1000 }
1001
1002 /*
1003  * Calculate the number of metadata blocks need to reserve
1004  * to allocate given number of blocks
1005  */
1006 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1007 {
1008         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1009                 return ext4_ext_calc_metadata_amount(inode, blocks);
1010
1011         return ext4_indirect_calc_metadata_amount(inode, blocks);
1012 }
1013
1014 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1015 {
1016         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1017         int total, mdb, mdb_free;
1018
1019         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1020         /* recalculate the number of metablocks still need to be reserved */
1021         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1022         mdb = ext4_calc_metadata_amount(inode, total);
1023
1024         /* figure out how many metablocks to release */
1025         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1026         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1027
1028         /* Account for allocated meta_blocks */
1029         mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1030
1031         /* update fs free blocks counter for truncate case */
1032         percpu_counter_add(&sbi->s_freeblocks_counter, mdb_free);
1033
1034         /* update per-inode reservations */
1035         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1036         EXT4_I(inode)->i_reserved_data_blocks -= used;
1037
1038         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1039         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1040         EXT4_I(inode)->i_allocated_meta_blocks = 0;
1041         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1042 }
1043
1044 /* Maximum number of blocks we map for direct IO at once. */
1045 #define DIO_MAX_BLOCKS 4096
1046 /*
1047  * Number of credits we need for writing DIO_MAX_BLOCKS:
1048  * We need sb + group descriptor + bitmap + inode -> 4
1049  * For B blocks with A block pointers per block we need:
1050  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1051  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1052  */
1053 #define DIO_CREDITS 25
1054
1055
1056 /*
1057  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1058  * and returns if the blocks are already mapped.
1059  *
1060  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1061  * and store the allocated blocks in the result buffer head and mark it
1062  * mapped.
1063  *
1064  * If file type is extents based, it will call ext4_ext_get_blocks(),
1065  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1066  * based files
1067  *
1068  * On success, it returns the number of blocks being mapped or allocate.
1069  * if create==0 and the blocks are pre-allocated and uninitialized block,
1070  * the result buffer head is unmapped. If the create ==1, it will make sure
1071  * the buffer head is mapped.
1072  *
1073  * It returns 0 if plain look up failed (blocks have not been allocated), in
1074  * that casem, buffer head is unmapped
1075  *
1076  * It returns the error in case of allocation failure.
1077  */
1078 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1079                         unsigned long max_blocks, struct buffer_head *bh,
1080                         int create, int extend_disksize, int flag)
1081 {
1082         int retval;
1083
1084         clear_buffer_mapped(bh);
1085
1086         /*
1087          * Try to see if we can get  the block without requesting
1088          * for new file system block.
1089          */
1090         down_read((&EXT4_I(inode)->i_data_sem));
1091         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1092                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1093                                 bh, 0, 0);
1094         } else {
1095                 retval = ext4_get_blocks_handle(handle,
1096                                 inode, block, max_blocks, bh, 0, 0);
1097         }
1098         up_read((&EXT4_I(inode)->i_data_sem));
1099
1100         /* If it is only a block(s) look up */
1101         if (!create)
1102                 return retval;
1103
1104         /*
1105          * Returns if the blocks have already allocated
1106          *
1107          * Note that if blocks have been preallocated
1108          * ext4_ext_get_block() returns th create = 0
1109          * with buffer head unmapped.
1110          */
1111         if (retval > 0 && buffer_mapped(bh))
1112                 return retval;
1113
1114         /*
1115          * New blocks allocate and/or writing to uninitialized extent
1116          * will possibly result in updating i_data, so we take
1117          * the write lock of i_data_sem, and call get_blocks()
1118          * with create == 1 flag.
1119          */
1120         down_write((&EXT4_I(inode)->i_data_sem));
1121
1122         /*
1123          * if the caller is from delayed allocation writeout path
1124          * we have already reserved fs blocks for allocation
1125          * let the underlying get_block() function know to
1126          * avoid double accounting
1127          */
1128         if (flag)
1129                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1130         /*
1131          * We need to check for EXT4 here because migrate
1132          * could have changed the inode type in between
1133          */
1134         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1135                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1136                                 bh, create, extend_disksize);
1137         } else {
1138                 retval = ext4_get_blocks_handle(handle, inode, block,
1139                                 max_blocks, bh, create, extend_disksize);
1140
1141                 if (retval > 0 && buffer_new(bh)) {
1142                         /*
1143                          * We allocated new blocks which will result in
1144                          * i_data's format changing.  Force the migrate
1145                          * to fail by clearing migrate flags
1146                          */
1147                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1148                                                         ~EXT4_EXT_MIGRATE;
1149                 }
1150         }
1151
1152         if (flag) {
1153                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1154                 /*
1155                  * Update reserved blocks/metadata blocks
1156                  * after successful block allocation
1157                  * which were deferred till now
1158                  */
1159                 if ((retval > 0) && buffer_delay(bh))
1160                         ext4_da_update_reserve_space(inode, retval);
1161         }
1162
1163         up_write((&EXT4_I(inode)->i_data_sem));
1164         return retval;
1165 }
1166
1167 static int ext4_get_block(struct inode *inode, sector_t iblock,
1168                         struct buffer_head *bh_result, int create)
1169 {
1170         handle_t *handle = ext4_journal_current_handle();
1171         int ret = 0, started = 0;
1172         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1173
1174         if (create && !handle) {
1175                 /* Direct IO write... */
1176                 if (max_blocks > DIO_MAX_BLOCKS)
1177                         max_blocks = DIO_MAX_BLOCKS;
1178                 handle = ext4_journal_start(inode, DIO_CREDITS +
1179                               2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
1180                 if (IS_ERR(handle)) {
1181                         ret = PTR_ERR(handle);
1182                         goto out;
1183                 }
1184                 started = 1;
1185         }
1186
1187         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1188                                         max_blocks, bh_result, create, 0, 0);
1189         if (ret > 0) {
1190                 bh_result->b_size = (ret << inode->i_blkbits);
1191                 ret = 0;
1192         }
1193         if (started)
1194                 ext4_journal_stop(handle);
1195 out:
1196         return ret;
1197 }
1198
1199 /*
1200  * `handle' can be NULL if create is zero
1201  */
1202 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1203                                 ext4_lblk_t block, int create, int *errp)
1204 {
1205         struct buffer_head dummy;
1206         int fatal = 0, err;
1207
1208         J_ASSERT(handle != NULL || create == 0);
1209
1210         dummy.b_state = 0;
1211         dummy.b_blocknr = -1000;
1212         buffer_trace_init(&dummy.b_history);
1213         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1214                                         &dummy, create, 1, 0);
1215         /*
1216          * ext4_get_blocks_handle() returns number of blocks
1217          * mapped. 0 in case of a HOLE.
1218          */
1219         if (err > 0) {
1220                 if (err > 1)
1221                         WARN_ON(1);
1222                 err = 0;
1223         }
1224         *errp = err;
1225         if (!err && buffer_mapped(&dummy)) {
1226                 struct buffer_head *bh;
1227                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1228                 if (!bh) {
1229                         *errp = -EIO;
1230                         goto err;
1231                 }
1232                 if (buffer_new(&dummy)) {
1233                         J_ASSERT(create != 0);
1234                         J_ASSERT(handle != NULL);
1235
1236                         /*
1237                          * Now that we do not always journal data, we should
1238                          * keep in mind whether this should always journal the
1239                          * new buffer as metadata.  For now, regular file
1240                          * writes use ext4_get_block instead, so it's not a
1241                          * problem.
1242                          */
1243                         lock_buffer(bh);
1244                         BUFFER_TRACE(bh, "call get_create_access");
1245                         fatal = ext4_journal_get_create_access(handle, bh);
1246                         if (!fatal && !buffer_uptodate(bh)) {
1247                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1248                                 set_buffer_uptodate(bh);
1249                         }
1250                         unlock_buffer(bh);
1251                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1252                         err = ext4_journal_dirty_metadata(handle, bh);
1253                         if (!fatal)
1254                                 fatal = err;
1255                 } else {
1256                         BUFFER_TRACE(bh, "not a new buffer");
1257                 }
1258                 if (fatal) {
1259                         *errp = fatal;
1260                         brelse(bh);
1261                         bh = NULL;
1262                 }
1263                 return bh;
1264         }
1265 err:
1266         return NULL;
1267 }
1268
1269 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1270                                ext4_lblk_t block, int create, int *err)
1271 {
1272         struct buffer_head * bh;
1273
1274         bh = ext4_getblk(handle, inode, block, create, err);
1275         if (!bh)
1276                 return bh;
1277         if (buffer_uptodate(bh))
1278                 return bh;
1279         ll_rw_block(READ_META, 1, &bh);
1280         wait_on_buffer(bh);
1281         if (buffer_uptodate(bh))
1282                 return bh;
1283         put_bh(bh);
1284         *err = -EIO;
1285         return NULL;
1286 }
1287
1288 static int walk_page_buffers(   handle_t *handle,
1289                                 struct buffer_head *head,
1290                                 unsigned from,
1291                                 unsigned to,
1292                                 int *partial,
1293                                 int (*fn)(      handle_t *handle,
1294                                                 struct buffer_head *bh))
1295 {
1296         struct buffer_head *bh;
1297         unsigned block_start, block_end;
1298         unsigned blocksize = head->b_size;
1299         int err, ret = 0;
1300         struct buffer_head *next;
1301
1302         for (   bh = head, block_start = 0;
1303                 ret == 0 && (bh != head || !block_start);
1304                 block_start = block_end, bh = next)
1305         {
1306                 next = bh->b_this_page;
1307                 block_end = block_start + blocksize;
1308                 if (block_end <= from || block_start >= to) {
1309                         if (partial && !buffer_uptodate(bh))
1310                                 *partial = 1;
1311                         continue;
1312                 }
1313                 err = (*fn)(handle, bh);
1314                 if (!ret)
1315                         ret = err;
1316         }
1317         return ret;
1318 }
1319
1320 /*
1321  * To preserve ordering, it is essential that the hole instantiation and
1322  * the data write be encapsulated in a single transaction.  We cannot
1323  * close off a transaction and start a new one between the ext4_get_block()
1324  * and the commit_write().  So doing the jbd2_journal_start at the start of
1325  * prepare_write() is the right place.
1326  *
1327  * Also, this function can nest inside ext4_writepage() ->
1328  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1329  * has generated enough buffer credits to do the whole page.  So we won't
1330  * block on the journal in that case, which is good, because the caller may
1331  * be PF_MEMALLOC.
1332  *
1333  * By accident, ext4 can be reentered when a transaction is open via
1334  * quota file writes.  If we were to commit the transaction while thus
1335  * reentered, there can be a deadlock - we would be holding a quota
1336  * lock, and the commit would never complete if another thread had a
1337  * transaction open and was blocking on the quota lock - a ranking
1338  * violation.
1339  *
1340  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1341  * will _not_ run commit under these circumstances because handle->h_ref
1342  * is elevated.  We'll still have enough credits for the tiny quotafile
1343  * write.
1344  */
1345 static int do_journal_get_write_access(handle_t *handle,
1346                                         struct buffer_head *bh)
1347 {
1348         if (!buffer_mapped(bh) || buffer_freed(bh))
1349                 return 0;
1350         return ext4_journal_get_write_access(handle, bh);
1351 }
1352
1353 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1354                                 loff_t pos, unsigned len, unsigned flags,
1355                                 struct page **pagep, void **fsdata)
1356 {
1357         struct inode *inode = mapping->host;
1358         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1359         handle_t *handle;
1360         int retries = 0;
1361         struct page *page;
1362         pgoff_t index;
1363         unsigned from, to;
1364
1365         index = pos >> PAGE_CACHE_SHIFT;
1366         from = pos & (PAGE_CACHE_SIZE - 1);
1367         to = from + len;
1368
1369 retry:
1370         handle = ext4_journal_start(inode, needed_blocks);
1371         if (IS_ERR(handle)) {
1372                 ret = PTR_ERR(handle);
1373                 goto out;
1374         }
1375
1376         page = __grab_cache_page(mapping, index);
1377         if (!page) {
1378                 ext4_journal_stop(handle);
1379                 ret = -ENOMEM;
1380                 goto out;
1381         }
1382         *pagep = page;
1383
1384         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1385                                                         ext4_get_block);
1386
1387         if (!ret && ext4_should_journal_data(inode)) {
1388                 ret = walk_page_buffers(handle, page_buffers(page),
1389                                 from, to, NULL, do_journal_get_write_access);
1390         }
1391
1392         if (ret) {
1393                 unlock_page(page);
1394                 ext4_journal_stop(handle);
1395                 page_cache_release(page);
1396         }
1397
1398         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1399                 goto retry;
1400 out:
1401         return ret;
1402 }
1403
1404 /* For write_end() in data=journal mode */
1405 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1406 {
1407         if (!buffer_mapped(bh) || buffer_freed(bh))
1408                 return 0;
1409         set_buffer_uptodate(bh);
1410         return ext4_journal_dirty_metadata(handle, bh);
1411 }
1412
1413 /*
1414  * We need to pick up the new inode size which generic_commit_write gave us
1415  * `file' can be NULL - eg, when called from page_symlink().
1416  *
1417  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1418  * buffers are managed internally.
1419  */
1420 static int ext4_ordered_write_end(struct file *file,
1421                                 struct address_space *mapping,
1422                                 loff_t pos, unsigned len, unsigned copied,
1423                                 struct page *page, void *fsdata)
1424 {
1425         handle_t *handle = ext4_journal_current_handle();
1426         struct inode *inode = mapping->host;
1427         unsigned from, to;
1428         int ret = 0, ret2;
1429
1430         from = pos & (PAGE_CACHE_SIZE - 1);
1431         to = from + len;
1432
1433         ret = ext4_jbd2_file_inode(handle, inode);
1434
1435         if (ret == 0) {
1436                 /*
1437                  * generic_write_end() will run mark_inode_dirty() if i_size
1438                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1439                  * into that.
1440                  */
1441                 loff_t new_i_size;
1442
1443                 new_i_size = pos + copied;
1444                 if (new_i_size > EXT4_I(inode)->i_disksize)
1445                         EXT4_I(inode)->i_disksize = new_i_size;
1446                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1447                                                         page, fsdata);
1448                 copied = ret2;
1449                 if (ret2 < 0)
1450                         ret = ret2;
1451         }
1452         ret2 = ext4_journal_stop(handle);
1453         if (!ret)
1454                 ret = ret2;
1455
1456         return ret ? ret : copied;
1457 }
1458
1459 static int ext4_writeback_write_end(struct file *file,
1460                                 struct address_space *mapping,
1461                                 loff_t pos, unsigned len, unsigned copied,
1462                                 struct page *page, void *fsdata)
1463 {
1464         handle_t *handle = ext4_journal_current_handle();
1465         struct inode *inode = mapping->host;
1466         int ret = 0, ret2;
1467         loff_t new_i_size;
1468
1469         new_i_size = pos + copied;
1470         if (new_i_size > EXT4_I(inode)->i_disksize)
1471                 EXT4_I(inode)->i_disksize = new_i_size;
1472
1473         ret2 = generic_write_end(file, mapping, pos, len, copied,
1474                                                         page, fsdata);
1475         copied = ret2;
1476         if (ret2 < 0)
1477                 ret = ret2;
1478
1479         ret2 = ext4_journal_stop(handle);
1480         if (!ret)
1481                 ret = ret2;
1482
1483         return ret ? ret : copied;
1484 }
1485
1486 static int ext4_journalled_write_end(struct file *file,
1487                                 struct address_space *mapping,
1488                                 loff_t pos, unsigned len, unsigned copied,
1489                                 struct page *page, void *fsdata)
1490 {
1491         handle_t *handle = ext4_journal_current_handle();
1492         struct inode *inode = mapping->host;
1493         int ret = 0, ret2;
1494         int partial = 0;
1495         unsigned from, to;
1496
1497         from = pos & (PAGE_CACHE_SIZE - 1);
1498         to = from + len;
1499
1500         if (copied < len) {
1501                 if (!PageUptodate(page))
1502                         copied = 0;
1503                 page_zero_new_buffers(page, from+copied, to);
1504         }
1505
1506         ret = walk_page_buffers(handle, page_buffers(page), from,
1507                                 to, &partial, write_end_fn);
1508         if (!partial)
1509                 SetPageUptodate(page);
1510         if (pos+copied > inode->i_size)
1511                 i_size_write(inode, pos+copied);
1512         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1513         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1514                 EXT4_I(inode)->i_disksize = inode->i_size;
1515                 ret2 = ext4_mark_inode_dirty(handle, inode);
1516                 if (!ret)
1517                         ret = ret2;
1518         }
1519
1520         unlock_page(page);
1521         ret2 = ext4_journal_stop(handle);
1522         if (!ret)
1523                 ret = ret2;
1524         page_cache_release(page);
1525
1526         return ret ? ret : copied;
1527 }
1528
1529 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1530 {
1531        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1532        unsigned long md_needed, mdblocks, total = 0;
1533
1534         /*
1535          * recalculate the amount of metadata blocks to reserve
1536          * in order to allocate nrblocks
1537          * worse case is one extent per block
1538          */
1539         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1540         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1541         mdblocks = ext4_calc_metadata_amount(inode, total);
1542         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1543
1544         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1545         total = md_needed + nrblocks;
1546
1547         if (ext4_has_free_blocks(sbi, total) < total) {
1548                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1549                 return -ENOSPC;
1550         }
1551         /* reduce fs free blocks counter */
1552         percpu_counter_sub(&sbi->s_freeblocks_counter, total);
1553
1554         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1555         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1556
1557         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1558         return 0;       /* success */
1559 }
1560
1561 static void ext4_da_release_space(struct inode *inode, int to_free)
1562 {
1563         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1564         int total, mdb, mdb_free, release;
1565
1566         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1567         /* recalculate the number of metablocks still need to be reserved */
1568         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1569         mdb = ext4_calc_metadata_amount(inode, total);
1570
1571         /* figure out how many metablocks to release */
1572         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1573         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1574
1575         release = to_free + mdb_free;
1576
1577         /* update fs free blocks counter for truncate case */
1578         percpu_counter_add(&sbi->s_freeblocks_counter, release);
1579
1580         /* update per-inode reservations */
1581         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1582         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1583
1584         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1585         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1586         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1587 }
1588
1589 static void ext4_da_page_release_reservation(struct page *page,
1590                                                 unsigned long offset)
1591 {
1592         int to_release = 0;
1593         struct buffer_head *head, *bh;
1594         unsigned int curr_off = 0;
1595
1596         head = page_buffers(page);
1597         bh = head;
1598         do {
1599                 unsigned int next_off = curr_off + bh->b_size;
1600
1601                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1602                         to_release++;
1603                         clear_buffer_delay(bh);
1604                 }
1605                 curr_off = next_off;
1606         } while ((bh = bh->b_this_page) != head);
1607         ext4_da_release_space(page->mapping->host, to_release);
1608 }
1609
1610 /*
1611  * Delayed allocation stuff
1612  */
1613
1614 struct mpage_da_data {
1615         struct inode *inode;
1616         struct buffer_head lbh;                 /* extent of blocks */
1617         unsigned long first_page, next_page;    /* extent of pages */
1618         get_block_t *get_block;
1619         struct writeback_control *wbc;
1620 };
1621
1622 /*
1623  * mpage_da_submit_io - walks through extent of pages and try to write
1624  * them with __mpage_writepage()
1625  *
1626  * @mpd->inode: inode
1627  * @mpd->first_page: first page of the extent
1628  * @mpd->next_page: page after the last page of the extent
1629  * @mpd->get_block: the filesystem's block mapper function
1630  *
1631  * By the time mpage_da_submit_io() is called we expect all blocks
1632  * to be allocated. this may be wrong if allocation failed.
1633  *
1634  * As pages are already locked by write_cache_pages(), we can't use it
1635  */
1636 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1637 {
1638         struct address_space *mapping = mpd->inode->i_mapping;
1639         struct mpage_data mpd_pp = {
1640                 .bio = NULL,
1641                 .last_block_in_bio = 0,
1642                 .get_block = mpd->get_block,
1643                 .use_writepage = 1,
1644         };
1645         int ret = 0, err, nr_pages, i;
1646         unsigned long index, end;
1647         struct pagevec pvec;
1648
1649         BUG_ON(mpd->next_page <= mpd->first_page);
1650
1651         pagevec_init(&pvec, 0);
1652         index = mpd->first_page;
1653         end = mpd->next_page - 1;
1654
1655         while (index <= end) {
1656                 /* XXX: optimize tail */
1657                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1658                 if (nr_pages == 0)
1659                         break;
1660                 for (i = 0; i < nr_pages; i++) {
1661                         struct page *page = pvec.pages[i];
1662
1663                         index = page->index;
1664                         if (index > end)
1665                                 break;
1666                         index++;
1667
1668                         err = __mpage_writepage(page, mpd->wbc, &mpd_pp);
1669
1670                         /*
1671                          * In error case, we have to continue because
1672                          * remaining pages are still locked
1673                          * XXX: unlock and re-dirty them?
1674                          */
1675                         if (ret == 0)
1676                                 ret = err;
1677                 }
1678                 pagevec_release(&pvec);
1679         }
1680         if (mpd_pp.bio)
1681                 mpage_bio_submit(WRITE, mpd_pp.bio);
1682
1683         return ret;
1684 }
1685
1686 /*
1687  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1688  *
1689  * @mpd->inode - inode to walk through
1690  * @exbh->b_blocknr - first block on a disk
1691  * @exbh->b_size - amount of space in bytes
1692  * @logical - first logical block to start assignment with
1693  *
1694  * the function goes through all passed space and put actual disk
1695  * block numbers into buffer heads, dropping BH_Delay
1696  */
1697 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1698                                  struct buffer_head *exbh)
1699 {
1700         struct inode *inode = mpd->inode;
1701         struct address_space *mapping = inode->i_mapping;
1702         int blocks = exbh->b_size >> inode->i_blkbits;
1703         sector_t pblock = exbh->b_blocknr, cur_logical;
1704         struct buffer_head *head, *bh;
1705         unsigned long index, end;
1706         struct pagevec pvec;
1707         int nr_pages, i;
1708
1709         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1710         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1711         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1712
1713         pagevec_init(&pvec, 0);
1714
1715         while (index <= end) {
1716                 /* XXX: optimize tail */
1717                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1718                 if (nr_pages == 0)
1719                         break;
1720                 for (i = 0; i < nr_pages; i++) {
1721                         struct page *page = pvec.pages[i];
1722
1723                         index = page->index;
1724                         if (index > end)
1725                                 break;
1726                         index++;
1727
1728                         BUG_ON(!PageLocked(page));
1729                         BUG_ON(PageWriteback(page));
1730                         BUG_ON(!page_has_buffers(page));
1731
1732                         bh = page_buffers(page);
1733                         head = bh;
1734
1735                         /* skip blocks out of the range */
1736                         do {
1737                                 if (cur_logical >= logical)
1738                                         break;
1739                                 cur_logical++;
1740                         } while ((bh = bh->b_this_page) != head);
1741
1742                         do {
1743                                 if (cur_logical >= logical + blocks)
1744                                         break;
1745                                 if (buffer_delay(bh)) {
1746                                         bh->b_blocknr = pblock;
1747                                         clear_buffer_delay(bh);
1748                                 } else if (buffer_mapped(bh))
1749                                         BUG_ON(bh->b_blocknr != pblock);
1750
1751                                 cur_logical++;
1752                                 pblock++;
1753                         } while ((bh = bh->b_this_page) != head);
1754                 }
1755                 pagevec_release(&pvec);
1756         }
1757 }
1758
1759
1760 /*
1761  * __unmap_underlying_blocks - just a helper function to unmap
1762  * set of blocks described by @bh
1763  */
1764 static inline void __unmap_underlying_blocks(struct inode *inode,
1765                                              struct buffer_head *bh)
1766 {
1767         struct block_device *bdev = inode->i_sb->s_bdev;
1768         int blocks, i;
1769
1770         blocks = bh->b_size >> inode->i_blkbits;
1771         for (i = 0; i < blocks; i++)
1772                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1773 }
1774
1775 /*
1776  * mpage_da_map_blocks - go through given space
1777  *
1778  * @mpd->lbh - bh describing space
1779  * @mpd->get_block - the filesystem's block mapper function
1780  *
1781  * The function skips space we know is already mapped to disk blocks.
1782  *
1783  * The function ignores errors ->get_block() returns, thus real
1784  * error handling is postponed to __mpage_writepage()
1785  */
1786 static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1787 {
1788         struct buffer_head *lbh = &mpd->lbh;
1789         int err = 0, remain = lbh->b_size;
1790         sector_t next = lbh->b_blocknr;
1791         struct buffer_head new;
1792
1793         /*
1794          * We consider only non-mapped and non-allocated blocks
1795          */
1796         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1797                 return;
1798
1799         while (remain) {
1800                 new.b_state = lbh->b_state;
1801                 new.b_blocknr = 0;
1802                 new.b_size = remain;
1803                 err = mpd->get_block(mpd->inode, next, &new, 1);
1804                 if (err) {
1805                         /*
1806                          * Rather than implement own error handling
1807                          * here, we just leave remaining blocks
1808                          * unallocated and try again with ->writepage()
1809                          */
1810                         break;
1811                 }
1812                 BUG_ON(new.b_size == 0);
1813
1814                 if (buffer_new(&new))
1815                         __unmap_underlying_blocks(mpd->inode, &new);
1816
1817                 /*
1818                  * If blocks are delayed marked, we need to
1819                  * put actual blocknr and drop delayed bit
1820                  */
1821                 if (buffer_delay(lbh))
1822                         mpage_put_bnr_to_bhs(mpd, next, &new);
1823
1824                 /* go for the remaining blocks */
1825                 next += new.b_size >> mpd->inode->i_blkbits;
1826                 remain -= new.b_size;
1827         }
1828 }
1829
1830 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | (1 << BH_Delay))
1831
1832 /*
1833  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1834  *
1835  * @mpd->lbh - extent of blocks
1836  * @logical - logical number of the block in the file
1837  * @bh - bh of the block (used to access block's state)
1838  *
1839  * the function is used to collect contig. blocks in same state
1840  */
1841 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1842                                    sector_t logical, struct buffer_head *bh)
1843 {
1844         struct buffer_head *lbh = &mpd->lbh;
1845         sector_t next;
1846
1847         next = lbh->b_blocknr + (lbh->b_size >> mpd->inode->i_blkbits);
1848
1849         /*
1850          * First block in the extent
1851          */
1852         if (lbh->b_size == 0) {
1853                 lbh->b_blocknr = logical;
1854                 lbh->b_size = bh->b_size;
1855                 lbh->b_state = bh->b_state & BH_FLAGS;
1856                 return;
1857         }
1858
1859         /*
1860          * Can we merge the block to our big extent?
1861          */
1862         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1863                 lbh->b_size += bh->b_size;
1864                 return;
1865         }
1866
1867         /*
1868          * We couldn't merge the block to our extent, so we
1869          * need to flush current  extent and start new one
1870          */
1871         mpage_da_map_blocks(mpd);
1872
1873         /*
1874          * Now start a new extent
1875          */
1876         lbh->b_size = bh->b_size;
1877         lbh->b_state = bh->b_state & BH_FLAGS;
1878         lbh->b_blocknr = logical;
1879 }
1880
1881 /*
1882  * __mpage_da_writepage - finds extent of pages and blocks
1883  *
1884  * @page: page to consider
1885  * @wbc: not used, we just follow rules
1886  * @data: context
1887  *
1888  * The function finds extents of pages and scan them for all blocks.
1889  */
1890 static int __mpage_da_writepage(struct page *page,
1891                                 struct writeback_control *wbc, void *data)
1892 {
1893         struct mpage_da_data *mpd = data;
1894         struct inode *inode = mpd->inode;
1895         struct buffer_head *bh, *head, fake;
1896         sector_t logical;
1897
1898         /*
1899          * Can we merge this page to current extent?
1900          */
1901         if (mpd->next_page != page->index) {
1902                 /*
1903                  * Nope, we can't. So, we map non-allocated blocks
1904                  * and start IO on them using __mpage_writepage()
1905                  */
1906                 if (mpd->next_page != mpd->first_page) {
1907                         mpage_da_map_blocks(mpd);
1908                         mpage_da_submit_io(mpd);
1909                 }
1910
1911                 /*
1912                  * Start next extent of pages ...
1913                  */
1914                 mpd->first_page = page->index;
1915
1916                 /*
1917                  * ... and blocks
1918                  */
1919                 mpd->lbh.b_size = 0;
1920                 mpd->lbh.b_state = 0;
1921                 mpd->lbh.b_blocknr = 0;
1922         }
1923
1924         mpd->next_page = page->index + 1;
1925         logical = (sector_t) page->index <<
1926                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
1927
1928         if (!page_has_buffers(page)) {
1929                 /*
1930                  * There is no attached buffer heads yet (mmap?)
1931                  * we treat the page asfull of dirty blocks
1932                  */
1933                 bh = &fake;
1934                 bh->b_size = PAGE_CACHE_SIZE;
1935                 bh->b_state = 0;
1936                 set_buffer_dirty(bh);
1937                 set_buffer_uptodate(bh);
1938                 mpage_add_bh_to_extent(mpd, logical, bh);
1939         } else {
1940                 /*
1941                  * Page with regular buffer heads, just add all dirty ones
1942                  */
1943                 head = page_buffers(page);
1944                 bh = head;
1945                 do {
1946                         BUG_ON(buffer_locked(bh));
1947                         if (buffer_dirty(bh))
1948                                 mpage_add_bh_to_extent(mpd, logical, bh);
1949                         logical++;
1950                 } while ((bh = bh->b_this_page) != head);
1951         }
1952
1953         return 0;
1954 }
1955
1956 /*
1957  * mpage_da_writepages - walk the list of dirty pages of the given
1958  * address space, allocates non-allocated blocks, maps newly-allocated
1959  * blocks to existing bhs and issue IO them
1960  *
1961  * @mapping: address space structure to write
1962  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1963  * @get_block: the filesystem's block mapper function.
1964  *
1965  * This is a library function, which implements the writepages()
1966  * address_space_operation.
1967  *
1968  * In order to avoid duplication of logic that deals with partial pages,
1969  * multiple bio per page, etc, we find non-allocated blocks, allocate
1970  * them with minimal calls to ->get_block() and re-use __mpage_writepage()
1971  *
1972  * It's important that we call __mpage_writepage() only once for each
1973  * involved page, otherwise we'd have to implement more complicated logic
1974  * to deal with pages w/o PG_lock or w/ PG_writeback and so on.
1975  *
1976  * See comments to mpage_writepages()
1977  */
1978 static int mpage_da_writepages(struct address_space *mapping,
1979                                struct writeback_control *wbc,
1980                                get_block_t get_block)
1981 {
1982         struct mpage_da_data mpd;
1983         int ret;
1984
1985         if (!get_block)
1986                 return generic_writepages(mapping, wbc);
1987
1988         mpd.wbc = wbc;
1989         mpd.inode = mapping->host;
1990         mpd.lbh.b_size = 0;
1991         mpd.lbh.b_state = 0;
1992         mpd.lbh.b_blocknr = 0;
1993         mpd.first_page = 0;
1994         mpd.next_page = 0;
1995         mpd.get_block = get_block;
1996
1997         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
1998
1999         /*
2000          * Handle last extent of pages
2001          */
2002         if (mpd.next_page != mpd.first_page) {
2003                 mpage_da_map_blocks(&mpd);
2004                 mpage_da_submit_io(&mpd);
2005         }
2006
2007         return ret;
2008 }
2009
2010 /*
2011  * this is a special callback for ->write_begin() only
2012  * it's intention is to return mapped block or reserve space
2013  */
2014 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2015                                   struct buffer_head *bh_result, int create)
2016 {
2017         int ret = 0;
2018
2019         BUG_ON(create == 0);
2020         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2021
2022         /*
2023          * first, we need to know whether the block is allocated already
2024          * preallocated blocks are unmapped but should treated
2025          * the same as allocated blocks.
2026          */
2027         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2028         if ((ret == 0) && !buffer_delay(bh_result)) {
2029                 /* the block isn't (pre)allocated yet, let's reserve space */
2030                 /*
2031                  * XXX: __block_prepare_write() unmaps passed block,
2032                  * is it OK?
2033                  */
2034                 ret = ext4_da_reserve_space(inode, 1);
2035                 if (ret)
2036                         /* not enough space to reserve */
2037                         return ret;
2038
2039                 map_bh(bh_result, inode->i_sb, 0);
2040                 set_buffer_new(bh_result);
2041                 set_buffer_delay(bh_result);
2042         } else if (ret > 0) {
2043                 bh_result->b_size = (ret << inode->i_blkbits);
2044                 ret = 0;
2045         }
2046
2047         return ret;
2048 }
2049 #define         EXT4_DELALLOC_RSVED     1
2050 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2051                                    struct buffer_head *bh_result, int create)
2052 {
2053         int ret;
2054         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2055         loff_t disksize = EXT4_I(inode)->i_disksize;
2056         handle_t *handle = NULL;
2057
2058         handle = ext4_journal_current_handle();
2059         if (!handle) {
2060                 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2061                                    bh_result, 0, 0, 0);
2062                 BUG_ON(!ret);
2063         } else {
2064                 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2065                                    bh_result, create, 0, EXT4_DELALLOC_RSVED);
2066         }
2067
2068         if (ret > 0) {
2069                 bh_result->b_size = (ret << inode->i_blkbits);
2070
2071                 /*
2072                  * Update on-disk size along with block allocation
2073                  * we don't use 'extend_disksize' as size may change
2074                  * within already allocated block -bzzz
2075                  */
2076                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2077                 if (disksize > i_size_read(inode))
2078                         disksize = i_size_read(inode);
2079                 if (disksize > EXT4_I(inode)->i_disksize) {
2080                         /*
2081                          * XXX: replace with spinlock if seen contended -bzzz
2082                          */
2083                         down_write(&EXT4_I(inode)->i_data_sem);
2084                         if (disksize > EXT4_I(inode)->i_disksize)
2085                                 EXT4_I(inode)->i_disksize = disksize;
2086                         up_write(&EXT4_I(inode)->i_data_sem);
2087
2088                         if (EXT4_I(inode)->i_disksize == disksize) {
2089                                 ret = ext4_mark_inode_dirty(handle, inode);
2090                                 return ret;
2091                         }
2092                 }
2093                 ret = 0;
2094         }
2095         return ret;
2096 }
2097
2098 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2099 {
2100         /*
2101          * unmapped buffer is possible for holes.
2102          * delay buffer is possible with delayed allocation
2103          */
2104         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2105 }
2106
2107 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2108                                    struct buffer_head *bh_result, int create)
2109 {
2110         int ret = 0;
2111         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2112
2113         /*
2114          * we don't want to do block allocation in writepage
2115          * so call get_block_wrap with create = 0
2116          */
2117         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2118                                    bh_result, 0, 0, 0);
2119         if (ret > 0) {
2120                 bh_result->b_size = (ret << inode->i_blkbits);
2121                 ret = 0;
2122         }
2123         return ret;
2124 }
2125
2126 /*
2127  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2128  * get called via journal_submit_inode_data_buffers (no journal handle)
2129  * get called via shrink_page_list via pdflush (no journal handle)
2130  * or grab_page_cache when doing write_begin (have journal handle)
2131  */
2132 static int ext4_da_writepage(struct page *page,
2133                                 struct writeback_control *wbc)
2134 {
2135         int ret = 0;
2136         loff_t size;
2137         unsigned long len;
2138         struct buffer_head *page_bufs;
2139         struct inode *inode = page->mapping->host;
2140
2141         size = i_size_read(inode);
2142         if (page->index == size >> PAGE_CACHE_SHIFT)
2143                 len = size & ~PAGE_CACHE_MASK;
2144         else
2145                 len = PAGE_CACHE_SIZE;
2146
2147         if (page_has_buffers(page)) {
2148                 page_bufs = page_buffers(page);
2149                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2150                                         ext4_bh_unmapped_or_delay)) {
2151                         /*
2152                          * We don't want to do  block allocation
2153                          * So redirty the page and return
2154                          * We may reach here when we do a journal commit
2155                          * via journal_submit_inode_data_buffers.
2156                          * If we don't have mapping block we just ignore
2157                          * them. We can also reach here via shrink_page_list
2158                          */
2159                         redirty_page_for_writepage(wbc, page);
2160                         unlock_page(page);
2161                         return 0;
2162                 }
2163         } else {
2164                 /*
2165                  * The test for page_has_buffers() is subtle:
2166                  * We know the page is dirty but it lost buffers. That means
2167                  * that at some moment in time after write_begin()/write_end()
2168                  * has been called all buffers have been clean and thus they
2169                  * must have been written at least once. So they are all
2170                  * mapped and we can happily proceed with mapping them
2171                  * and writing the page.
2172                  *
2173                  * Try to initialize the buffer_heads and check whether
2174                  * all are mapped and non delay. We don't want to
2175                  * do block allocation here.
2176                  */
2177                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2178                                                 ext4_normal_get_block_write);
2179                 if (!ret) {
2180                         page_bufs = page_buffers(page);
2181                         /* check whether all are mapped and non delay */
2182                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2183                                                 ext4_bh_unmapped_or_delay)) {
2184                                 redirty_page_for_writepage(wbc, page);
2185                                 unlock_page(page);
2186                                 return 0;
2187                         }
2188                 } else {
2189                         /*
2190                          * We can't do block allocation here
2191                          * so just redity the page and unlock
2192                          * and return
2193                          */
2194                         redirty_page_for_writepage(wbc, page);
2195                         unlock_page(page);
2196                         return 0;
2197                 }
2198         }
2199
2200         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2201                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2202         else
2203                 ret = block_write_full_page(page,
2204                                                 ext4_normal_get_block_write,
2205                                                 wbc);
2206
2207         return ret;
2208 }
2209
2210 /*
2211  * For now just follow the DIO way to estimate the max credits
2212  * needed to write out EXT4_MAX_WRITEBACK_PAGES.
2213  * todo: need to calculate the max credits need for
2214  * extent based files, currently the DIO credits is based on
2215  * indirect-blocks mapping way.
2216  *
2217  * Probably should have a generic way to calculate credits
2218  * for DIO, writepages, and truncate
2219  */
2220 #define EXT4_MAX_WRITEBACK_PAGES      DIO_MAX_BLOCKS
2221 #define EXT4_MAX_WRITEBACK_CREDITS    DIO_CREDITS
2222
2223 static int ext4_da_writepages(struct address_space *mapping,
2224                                 struct writeback_control *wbc)
2225 {
2226         struct inode *inode = mapping->host;
2227         handle_t *handle = NULL;
2228         int needed_blocks;
2229         int ret = 0;
2230         long to_write;
2231         loff_t range_start = 0;
2232
2233         /*
2234          * No pages to write? This is mainly a kludge to avoid starting
2235          * a transaction for special inodes like journal inode on last iput()
2236          * because that could violate lock ordering on umount
2237          */
2238         if (!mapping->nrpages)
2239                 return 0;
2240
2241         /*
2242          * Estimate the worse case needed credits to write out
2243          * EXT4_MAX_BUF_BLOCKS pages
2244          */
2245         needed_blocks = EXT4_MAX_WRITEBACK_CREDITS;
2246
2247         to_write = wbc->nr_to_write;
2248         if (!wbc->range_cyclic) {
2249                 /*
2250                  * If range_cyclic is not set force range_cont
2251                  * and save the old writeback_index
2252                  */
2253                 wbc->range_cont = 1;
2254                 range_start =  wbc->range_start;
2255         }
2256
2257         while (!ret && to_write) {
2258                 /* start a new transaction*/
2259                 handle = ext4_journal_start(inode, needed_blocks);
2260                 if (IS_ERR(handle)) {
2261                         ret = PTR_ERR(handle);
2262                         goto out_writepages;
2263                 }
2264                 if (ext4_should_order_data(inode)) {
2265                         /*
2266                          * With ordered mode we need to add
2267                          * the inode to the journal handle
2268                          * when we do block allocation.
2269                          */
2270                         ret = ext4_jbd2_file_inode(handle, inode);
2271                         if (ret) {
2272                                 ext4_journal_stop(handle);
2273                                 goto out_writepages;
2274                         }
2275
2276                 }
2277                 /*
2278                  * set the max dirty pages could be write at a time
2279                  * to fit into the reserved transaction credits
2280                  */
2281                 if (wbc->nr_to_write > EXT4_MAX_WRITEBACK_PAGES)
2282                         wbc->nr_to_write = EXT4_MAX_WRITEBACK_PAGES;
2283
2284                 to_write -= wbc->nr_to_write;
2285                 ret = mpage_da_writepages(mapping, wbc,
2286                                                 ext4_da_get_block_write);
2287                 ext4_journal_stop(handle);
2288                 if (wbc->nr_to_write) {
2289                         /*
2290                          * There is no more writeout needed
2291                          * or we requested for a noblocking writeout
2292                          * and we found the device congested
2293                          */
2294                         to_write += wbc->nr_to_write;
2295                         break;
2296                 }
2297                 wbc->nr_to_write = to_write;
2298         }
2299
2300 out_writepages:
2301         wbc->nr_to_write = to_write;
2302         if (range_start)
2303                 wbc->range_start = range_start;
2304         return ret;
2305 }
2306
2307 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2308                                 loff_t pos, unsigned len, unsigned flags,
2309                                 struct page **pagep, void **fsdata)
2310 {
2311         int ret, retries = 0;
2312         struct page *page;
2313         pgoff_t index;
2314         unsigned from, to;
2315         struct inode *inode = mapping->host;
2316         handle_t *handle;
2317
2318         index = pos >> PAGE_CACHE_SHIFT;
2319         from = pos & (PAGE_CACHE_SIZE - 1);
2320         to = from + len;
2321
2322 retry:
2323         /*
2324          * With delayed allocation, we don't log the i_disksize update
2325          * if there is delayed block allocation. But we still need
2326          * to journalling the i_disksize update if writes to the end
2327          * of file which has an already mapped buffer.
2328          */
2329         handle = ext4_journal_start(inode, 1);
2330         if (IS_ERR(handle)) {
2331                 ret = PTR_ERR(handle);
2332                 goto out;
2333         }
2334
2335         page = __grab_cache_page(mapping, index);
2336         if (!page) {
2337                 ext4_journal_stop(handle);
2338                 ret = -ENOMEM;
2339                 goto out;
2340         }
2341         *pagep = page;
2342
2343         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2344                                                         ext4_da_get_block_prep);
2345         if (ret < 0) {
2346                 unlock_page(page);
2347                 ext4_journal_stop(handle);
2348                 page_cache_release(page);
2349         }
2350
2351         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2352                 goto retry;
2353 out:
2354         return ret;
2355 }
2356
2357 /*
2358  * Check if we should update i_disksize
2359  * when write to the end of file but not require block allocation
2360  */
2361 static int ext4_da_should_update_i_disksize(struct page *page,
2362                                          unsigned long offset)
2363 {
2364         struct buffer_head *bh;
2365         struct inode *inode = page->mapping->host;
2366         unsigned int idx;
2367         int i;
2368
2369         bh = page_buffers(page);
2370         idx = offset >> inode->i_blkbits;
2371
2372         for (i=0; i < idx; i++)
2373                 bh = bh->b_this_page;
2374
2375         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2376                 return 0;
2377         return 1;
2378 }
2379
2380 static int ext4_da_write_end(struct file *file,
2381                                 struct address_space *mapping,
2382                                 loff_t pos, unsigned len, unsigned copied,
2383                                 struct page *page, void *fsdata)
2384 {
2385         struct inode *inode = mapping->host;
2386         int ret = 0, ret2;
2387         handle_t *handle = ext4_journal_current_handle();
2388         loff_t new_i_size;
2389         unsigned long start, end;
2390
2391         start = pos & (PAGE_CACHE_SIZE - 1);
2392         end = start + copied -1;
2393
2394         /*
2395          * generic_write_end() will run mark_inode_dirty() if i_size
2396          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2397          * into that.
2398          */
2399
2400         new_i_size = pos + copied;
2401         if (new_i_size > EXT4_I(inode)->i_disksize) {
2402                 if (ext4_da_should_update_i_disksize(page, end)) {
2403                         down_write(&EXT4_I(inode)->i_data_sem);
2404                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2405                                 /*
2406                                  * Updating i_disksize when extending file
2407                                  * without needing block allocation
2408                                  */
2409                                 if (ext4_should_order_data(inode))
2410                                         ret = ext4_jbd2_file_inode(handle,
2411                                                                    inode);
2412
2413                                 EXT4_I(inode)->i_disksize = new_i_size;
2414                         }
2415                         up_write(&EXT4_I(inode)->i_data_sem);
2416                 }
2417         }
2418         ret2 = generic_write_end(file, mapping, pos, len, copied,
2419                                                         page, fsdata);
2420         copied = ret2;
2421         if (ret2 < 0)
2422                 ret = ret2;
2423         ret2 = ext4_journal_stop(handle);
2424         if (!ret)
2425                 ret = ret2;
2426
2427         return ret ? ret : copied;
2428 }
2429
2430 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2431 {
2432         /*
2433          * Drop reserved blocks
2434          */
2435         BUG_ON(!PageLocked(page));
2436         if (!page_has_buffers(page))
2437                 goto out;
2438
2439         ext4_da_page_release_reservation(page, offset);
2440
2441 out:
2442         ext4_invalidatepage(page, offset);
2443
2444         return;
2445 }
2446
2447
2448 /*
2449  * bmap() is special.  It gets used by applications such as lilo and by
2450  * the swapper to find the on-disk block of a specific piece of data.
2451  *
2452  * Naturally, this is dangerous if the block concerned is still in the
2453  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2454  * filesystem and enables swap, then they may get a nasty shock when the
2455  * data getting swapped to that swapfile suddenly gets overwritten by
2456  * the original zero's written out previously to the journal and
2457  * awaiting writeback in the kernel's buffer cache.
2458  *
2459  * So, if we see any bmap calls here on a modified, data-journaled file,
2460  * take extra steps to flush any blocks which might be in the cache.
2461  */
2462 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2463 {
2464         struct inode *inode = mapping->host;
2465         journal_t *journal;
2466         int err;
2467
2468         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2469                         test_opt(inode->i_sb, DELALLOC)) {
2470                 /*
2471                  * With delalloc we want to sync the file
2472                  * so that we can make sure we allocate
2473                  * blocks for file
2474                  */
2475                 filemap_write_and_wait(mapping);
2476         }
2477
2478         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2479                 /*
2480                  * This is a REALLY heavyweight approach, but the use of
2481                  * bmap on dirty files is expected to be extremely rare:
2482                  * only if we run lilo or swapon on a freshly made file
2483                  * do we expect this to happen.
2484                  *
2485                  * (bmap requires CAP_SYS_RAWIO so this does not
2486                  * represent an unprivileged user DOS attack --- we'd be
2487                  * in trouble if mortal users could trigger this path at
2488                  * will.)
2489                  *
2490                  * NB. EXT4_STATE_JDATA is not set on files other than
2491                  * regular files.  If somebody wants to bmap a directory
2492                  * or symlink and gets confused because the buffer
2493                  * hasn't yet been flushed to disk, they deserve
2494                  * everything they get.
2495                  */
2496
2497                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2498                 journal = EXT4_JOURNAL(inode);
2499                 jbd2_journal_lock_updates(journal);
2500                 err = jbd2_journal_flush(journal);
2501                 jbd2_journal_unlock_updates(journal);
2502
2503                 if (err)
2504                         return 0;
2505         }
2506
2507         return generic_block_bmap(mapping,block,ext4_get_block);
2508 }
2509
2510 static int bget_one(handle_t *handle, struct buffer_head *bh)
2511 {
2512         get_bh(bh);
2513         return 0;
2514 }
2515
2516 static int bput_one(handle_t *handle, struct buffer_head *bh)
2517 {
2518         put_bh(bh);
2519         return 0;
2520 }
2521
2522 /*
2523  * Note that we don't need to start a transaction unless we're journaling data
2524  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2525  * need to file the inode to the transaction's list in ordered mode because if
2526  * we are writing back data added by write(), the inode is already there and if
2527  * we are writing back data modified via mmap(), noone guarantees in which
2528  * transaction the data will hit the disk. In case we are journaling data, we
2529  * cannot start transaction directly because transaction start ranks above page
2530  * lock so we have to do some magic.
2531  *
2532  * In all journaling modes block_write_full_page() will start the I/O.
2533  *
2534  * Problem:
2535  *
2536  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2537  *              ext4_writepage()
2538  *
2539  * Similar for:
2540  *
2541  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2542  *
2543  * Same applies to ext4_get_block().  We will deadlock on various things like
2544  * lock_journal and i_data_sem
2545  *
2546  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2547  * allocations fail.
2548  *
2549  * 16May01: If we're reentered then journal_current_handle() will be
2550  *          non-zero. We simply *return*.
2551  *
2552  * 1 July 2001: @@@ FIXME:
2553  *   In journalled data mode, a data buffer may be metadata against the
2554  *   current transaction.  But the same file is part of a shared mapping
2555  *   and someone does a writepage() on it.
2556  *
2557  *   We will move the buffer onto the async_data list, but *after* it has
2558  *   been dirtied. So there's a small window where we have dirty data on
2559  *   BJ_Metadata.
2560  *
2561  *   Note that this only applies to the last partial page in the file.  The
2562  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2563  *   broken code anyway: it's wrong for msync()).
2564  *
2565  *   It's a rare case: affects the final partial page, for journalled data
2566  *   where the file is subject to bith write() and writepage() in the same
2567  *   transction.  To fix it we'll need a custom block_write_full_page().
2568  *   We'll probably need that anyway for journalling writepage() output.
2569  *
2570  * We don't honour synchronous mounts for writepage().  That would be
2571  * disastrous.  Any write() or metadata operation will sync the fs for
2572  * us.
2573  *
2574  */
2575 static int __ext4_normal_writepage(struct page *page,
2576                                 struct writeback_control *wbc)
2577 {
2578         struct inode *inode = page->mapping->host;
2579
2580         if (test_opt(inode->i_sb, NOBH))
2581                 return nobh_writepage(page,
2582                                         ext4_normal_get_block_write, wbc);
2583         else
2584                 return block_write_full_page(page,
2585                                                 ext4_normal_get_block_write,
2586                                                 wbc);
2587 }
2588
2589 static int ext4_normal_writepage(struct page *page,
2590                                 struct writeback_control *wbc)
2591 {
2592         struct inode *inode = page->mapping->host;
2593         loff_t size = i_size_read(inode);
2594         loff_t len;
2595
2596         J_ASSERT(PageLocked(page));
2597         if (page->index == size >> PAGE_CACHE_SHIFT)
2598                 len = size & ~PAGE_CACHE_MASK;
2599         else
2600                 len = PAGE_CACHE_SIZE;
2601
2602         if (page_has_buffers(page)) {
2603                 /* if page has buffers it should all be mapped
2604                  * and allocated. If there are not buffers attached
2605                  * to the page we know the page is dirty but it lost
2606                  * buffers. That means that at some moment in time
2607                  * after write_begin() / write_end() has been called
2608                  * all buffers have been clean and thus they must have been
2609                  * written at least once. So they are all mapped and we can
2610                  * happily proceed with mapping them and writing the page.
2611                  */
2612                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2613                                         ext4_bh_unmapped_or_delay));
2614         }
2615
2616         if (!ext4_journal_current_handle())
2617                 return __ext4_normal_writepage(page, wbc);
2618
2619         redirty_page_for_writepage(wbc, page);
2620         unlock_page(page);
2621         return 0;
2622 }
2623
2624 static int __ext4_journalled_writepage(struct page *page,
2625                                 struct writeback_control *wbc)
2626 {
2627         struct address_space *mapping = page->mapping;
2628         struct inode *inode = mapping->host;
2629         struct buffer_head *page_bufs;
2630         handle_t *handle = NULL;
2631         int ret = 0;
2632         int err;
2633
2634         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2635                                         ext4_normal_get_block_write);
2636         if (ret != 0)
2637                 goto out_unlock;
2638
2639         page_bufs = page_buffers(page);
2640         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2641                                                                 bget_one);
2642         /* As soon as we unlock the page, it can go away, but we have
2643          * references to buffers so we are safe */
2644         unlock_page(page);
2645
2646         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2647         if (IS_ERR(handle)) {
2648                 ret = PTR_ERR(handle);
2649                 goto out;
2650         }
2651
2652         ret = walk_page_buffers(handle, page_bufs, 0,
2653                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2654
2655         err = walk_page_buffers(handle, page_bufs, 0,
2656                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2657         if (ret == 0)
2658                 ret = err;
2659         err = ext4_journal_stop(handle);
2660         if (!ret)
2661                 ret = err;
2662
2663         walk_page_buffers(handle, page_bufs, 0,
2664                                 PAGE_CACHE_SIZE, NULL, bput_one);
2665         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2666         goto out;
2667
2668 out_unlock:
2669         unlock_page(page);
2670 out:
2671         return ret;
2672 }
2673
2674 static int ext4_journalled_writepage(struct page *page,
2675                                 struct writeback_control *wbc)
2676 {
2677         struct inode *inode = page->mapping->host;
2678         loff_t size = i_size_read(inode);
2679         loff_t len;
2680
2681         J_ASSERT(PageLocked(page));
2682         if (page->index == size >> PAGE_CACHE_SHIFT)
2683                 len = size & ~PAGE_CACHE_MASK;
2684         else
2685                 len = PAGE_CACHE_SIZE;
2686
2687         if (page_has_buffers(page)) {
2688                 /* if page has buffers it should all be mapped
2689                  * and allocated. If there are not buffers attached
2690                  * to the page we know the page is dirty but it lost
2691                  * buffers. That means that at some moment in time
2692                  * after write_begin() / write_end() has been called
2693                  * all buffers have been clean and thus they must have been
2694                  * written at least once. So they are all mapped and we can
2695                  * happily proceed with mapping them and writing the page.
2696                  */
2697                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2698                                         ext4_bh_unmapped_or_delay));
2699         }
2700
2701         if (ext4_journal_current_handle())
2702                 goto no_write;
2703
2704         if (PageChecked(page)) {
2705                 /*
2706                  * It's mmapped pagecache.  Add buffers and journal it.  There
2707                  * doesn't seem much point in redirtying the page here.
2708                  */
2709                 ClearPageChecked(page);
2710                 return __ext4_journalled_writepage(page, wbc);
2711         } else {
2712                 /*
2713                  * It may be a page full of checkpoint-mode buffers.  We don't
2714                  * really know unless we go poke around in the buffer_heads.
2715                  * But block_write_full_page will do the right thing.
2716                  */
2717                 return block_write_full_page(page,
2718                                                 ext4_normal_get_block_write,
2719                                                 wbc);
2720         }
2721 no_write:
2722         redirty_page_for_writepage(wbc, page);
2723         unlock_page(page);
2724         return 0;
2725 }
2726
2727 static int ext4_readpage(struct file *file, struct page *page)
2728 {
2729         return mpage_readpage(page, ext4_get_block);
2730 }
2731
2732 static int
2733 ext4_readpages(struct file *file, struct address_space *mapping,
2734                 struct list_head *pages, unsigned nr_pages)
2735 {
2736         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2737 }
2738
2739 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2740 {
2741         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2742
2743         /*
2744          * If it's a full truncate we just forget about the pending dirtying
2745          */
2746         if (offset == 0)
2747                 ClearPageChecked(page);
2748
2749         jbd2_journal_invalidatepage(journal, page, offset);
2750 }
2751
2752 static int ext4_releasepage(struct page *page, gfp_t wait)
2753 {
2754         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2755
2756         WARN_ON(PageChecked(page));
2757         if (!page_has_buffers(page))
2758                 return 0;
2759         return jbd2_journal_try_to_free_buffers(journal, page, wait);
2760 }
2761
2762 /*
2763  * If the O_DIRECT write will extend the file then add this inode to the
2764  * orphan list.  So recovery will truncate it back to the original size
2765  * if the machine crashes during the write.
2766  *
2767  * If the O_DIRECT write is intantiating holes inside i_size and the machine
2768  * crashes then stale disk data _may_ be exposed inside the file. But current
2769  * VFS code falls back into buffered path in that case so we are safe.
2770  */
2771 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2772                         const struct iovec *iov, loff_t offset,
2773                         unsigned long nr_segs)
2774 {
2775         struct file *file = iocb->ki_filp;
2776         struct inode *inode = file->f_mapping->host;
2777         struct ext4_inode_info *ei = EXT4_I(inode);
2778         handle_t *handle;
2779         ssize_t ret;
2780         int orphan = 0;
2781         size_t count = iov_length(iov, nr_segs);
2782
2783         if (rw == WRITE) {
2784                 loff_t final_size = offset + count;
2785
2786                 if (final_size > inode->i_size) {
2787                         /* Credits for sb + inode write */
2788                         handle = ext4_journal_start(inode, 2);
2789                         if (IS_ERR(handle)) {
2790                                 ret = PTR_ERR(handle);
2791                                 goto out;
2792                         }
2793                         ret = ext4_orphan_add(handle, inode);
2794                         if (ret) {
2795                                 ext4_journal_stop(handle);
2796                                 goto out;
2797                         }
2798                         orphan = 1;
2799                         ei->i_disksize = inode->i_size;
2800                         ext4_journal_stop(handle);
2801                 }
2802         }
2803
2804         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2805                                  offset, nr_segs,
2806                                  ext4_get_block, NULL);
2807
2808         if (orphan) {
2809                 int err;
2810
2811                 /* Credits for sb + inode write */
2812                 handle = ext4_journal_start(inode, 2);
2813                 if (IS_ERR(handle)) {
2814                         /* This is really bad luck. We've written the data
2815                          * but cannot extend i_size. Bail out and pretend
2816                          * the write failed... */
2817                         ret = PTR_ERR(handle);
2818                         goto out;
2819                 }
2820                 if (inode->i_nlink)
2821                         ext4_orphan_del(handle, inode);
2822                 if (ret > 0) {
2823                         loff_t end = offset + ret;
2824                         if (end > inode->i_size) {
2825                                 ei->i_disksize = end;
2826                                 i_size_write(inode, end);
2827                                 /*
2828                                  * We're going to return a positive `ret'
2829                                  * here due to non-zero-length I/O, so there's
2830                                  * no way of reporting error returns from
2831                                  * ext4_mark_inode_dirty() to userspace.  So
2832                                  * ignore it.
2833                                  */
2834                                 ext4_mark_inode_dirty(handle, inode);
2835                         }
2836                 }
2837                 err = ext4_journal_stop(handle);
2838                 if (ret == 0)
2839                         ret = err;
2840         }
2841 out:
2842         return ret;
2843 }
2844
2845 /*
2846  * Pages can be marked dirty completely asynchronously from ext4's journalling
2847  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
2848  * much here because ->set_page_dirty is called under VFS locks.  The page is
2849  * not necessarily locked.
2850  *
2851  * We cannot just dirty the page and leave attached buffers clean, because the
2852  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
2853  * or jbddirty because all the journalling code will explode.
2854  *
2855  * So what we do is to mark the page "pending dirty" and next time writepage
2856  * is called, propagate that into the buffers appropriately.
2857  */
2858 static int ext4_journalled_set_page_dirty(struct page *page)
2859 {
2860         SetPageChecked(page);
2861         return __set_page_dirty_nobuffers(page);
2862 }
2863
2864 static const struct address_space_operations ext4_ordered_aops = {
2865         .readpage               = ext4_readpage,
2866         .readpages              = ext4_readpages,
2867         .writepage              = ext4_normal_writepage,
2868         .sync_page              = block_sync_page,
2869         .write_begin            = ext4_write_begin,
2870         .write_end              = ext4_ordered_write_end,
2871         .bmap                   = ext4_bmap,
2872         .invalidatepage         = ext4_invalidatepage,
2873         .releasepage            = ext4_releasepage,
2874         .direct_IO              = ext4_direct_IO,
2875         .migratepage            = buffer_migrate_page,
2876         .is_partially_uptodate  = block_is_partially_uptodate,
2877 };
2878
2879 static const struct address_space_operations ext4_writeback_aops = {
2880         .readpage               = ext4_readpage,
2881         .readpages              = ext4_readpages,
2882         .writepage              = ext4_normal_writepage,
2883         .sync_page              = block_sync_page,
2884         .write_begin            = ext4_write_begin,
2885         .write_end              = ext4_writeback_write_end,
2886         .bmap                   = ext4_bmap,
2887         .invalidatepage         = ext4_invalidatepage,
2888         .releasepage            = ext4_releasepage,
2889         .direct_IO              = ext4_direct_IO,
2890         .migratepage            = buffer_migrate_page,
2891         .is_partially_uptodate  = block_is_partially_uptodate,
2892 };
2893
2894 static const struct address_space_operations ext4_journalled_aops = {
2895         .readpage               = ext4_readpage,
2896         .readpages              = ext4_readpages,
2897         .writepage              = ext4_journalled_writepage,
2898         .sync_page              = block_sync_page,
2899         .write_begin            = ext4_write_begin,
2900         .write_end              = ext4_journalled_write_end,
2901         .set_page_dirty         = ext4_journalled_set_page_dirty,
2902         .bmap                   = ext4_bmap,
2903         .invalidatepage         = ext4_invalidatepage,
2904         .releasepage            = ext4_releasepage,
2905         .is_partially_uptodate  = block_is_partially_uptodate,
2906 };
2907
2908 static const struct address_space_operations ext4_da_aops = {
2909         .readpage               = ext4_readpage,
2910         .readpages              = ext4_readpages,
2911         .writepage              = ext4_da_writepage,
2912         .writepages             = ext4_da_writepages,
2913         .sync_page              = block_sync_page,
2914         .write_begin            = ext4_da_write_begin,
2915         .write_end              = ext4_da_write_end,
2916         .bmap                   = ext4_bmap,
2917         .invalidatepage         = ext4_da_invalidatepage,
2918         .releasepage            = ext4_releasepage,
2919         .direct_IO              = ext4_direct_IO,
2920         .migratepage            = buffer_migrate_page,
2921         .is_partially_uptodate  = block_is_partially_uptodate,
2922 };
2923
2924 void ext4_set_aops(struct inode *inode)
2925 {
2926         if (ext4_should_order_data(inode) &&
2927                 test_opt(inode->i_sb, DELALLOC))
2928                 inode->i_mapping->a_ops = &ext4_da_aops;
2929         else if (ext4_should_order_data(inode))
2930                 inode->i_mapping->a_ops = &ext4_ordered_aops;
2931         else if (ext4_should_writeback_data(inode) &&
2932                  test_opt(inode->i_sb, DELALLOC))
2933                 inode->i_mapping->a_ops = &ext4_da_aops;
2934         else if (ext4_should_writeback_data(inode))
2935                 inode->i_mapping->a_ops = &ext4_writeback_aops;
2936         else
2937                 inode->i_mapping->a_ops = &ext4_journalled_aops;
2938 }
2939
2940 /*
2941  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2942  * up to the end of the block which corresponds to `from'.
2943  * This required during truncate. We need to physically zero the tail end
2944  * of that block so it doesn't yield old data if the file is later grown.
2945  */
2946 int ext4_block_truncate_page(handle_t *handle,
2947                 struct address_space *mapping, loff_t from)
2948 {
2949         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2950         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2951         unsigned blocksize, length, pos;
2952         ext4_lblk_t iblock;
2953         struct inode *inode = mapping->host;
2954         struct buffer_head *bh;
2955         struct page *page;
2956         int err = 0;
2957
2958         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
2959         if (!page)
2960                 return -EINVAL;
2961
2962         blocksize = inode->i_sb->s_blocksize;
2963         length = blocksize - (offset & (blocksize - 1));
2964         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2965
2966         /*
2967          * For "nobh" option,  we can only work if we don't need to
2968          * read-in the page - otherwise we create buffers to do the IO.
2969          */
2970         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
2971              ext4_should_writeback_data(inode) && PageUptodate(page)) {
2972                 zero_user(page, offset, length);
2973                 set_page_dirty(page);
2974                 goto unlock;
2975         }
2976
2977         if (!page_has_buffers(page))
2978                 create_empty_buffers(page, blocksize, 0);
2979
2980         /* Find the buffer that contains "offset" */
2981         bh = page_buffers(page);
2982         pos = blocksize;
2983         while (offset >= pos) {
2984                 bh = bh->b_this_page;
2985                 iblock++;
2986                 pos += blocksize;
2987         }
2988
2989         err = 0;
2990         if (buffer_freed(bh)) {
2991                 BUFFER_TRACE(bh, "freed: skip");
2992                 goto unlock;
2993         }
2994
2995         if (!buffer_mapped(bh)) {
2996                 BUFFER_TRACE(bh, "unmapped");
2997                 ext4_get_block(inode, iblock, bh, 0);
2998                 /* unmapped? It's a hole - nothing to do */
2999                 if (!buffer_mapped(bh)) {
3000                         BUFFER_TRACE(bh, "still unmapped");
3001                         goto unlock;
3002                 }
3003         }
3004
3005         /* Ok, it's mapped. Make sure it's up-to-date */
3006         if (PageUptodate(page))
3007                 set_buffer_uptodate(bh);
3008
3009         if (!buffer_uptodate(bh)) {
3010                 err = -EIO;
3011                 ll_rw_block(READ, 1, &bh);
3012                 wait_on_buffer(bh);
3013                 /* Uhhuh. Read error. Complain and punt. */
3014                 if (!buffer_uptodate(bh))
3015                         goto unlock;
3016         }
3017
3018         if (ext4_should_journal_data(inode)) {
3019                 BUFFER_TRACE(bh, "get write access");
3020                 err = ext4_journal_get_write_access(handle, bh);
3021                 if (err)
3022                         goto unlock;
3023         }
3024
3025         zero_user(page, offset, length);
3026
3027         BUFFER_TRACE(bh, "zeroed end of block");
3028
3029         err = 0;
3030         if (ext4_should_journal_data(inode)) {
3031                 err = ext4_journal_dirty_metadata(handle, bh);
3032         } else {
3033                 if (ext4_should_order_data(inode))
3034                         err = ext4_jbd2_file_inode(handle, inode);
3035                 mark_buffer_dirty(bh);
3036         }
3037
3038 unlock:
3039         unlock_page(page);
3040         page_cache_release(page);
3041         return err;
3042 }
3043
3044 /*
3045  * Probably it should be a library function... search for first non-zero word
3046  * or memcmp with zero_page, whatever is better for particular architecture.
3047  * Linus?
3048  */
3049 static inline int all_zeroes(__le32 *p, __le32 *q)
3050 {
3051         while (p < q)
3052                 if (*p++)
3053                         return 0;
3054         return 1;
3055 }
3056
3057 /**
3058  *      ext4_find_shared - find the indirect blocks for partial truncation.
3059  *      @inode:   inode in question
3060  *      @depth:   depth of the affected branch
3061  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3062  *      @chain:   place to store the pointers to partial indirect blocks
3063  *      @top:     place to the (detached) top of branch
3064  *
3065  *      This is a helper function used by ext4_truncate().
3066  *
3067  *      When we do truncate() we may have to clean the ends of several
3068  *      indirect blocks but leave the blocks themselves alive. Block is
3069  *      partially truncated if some data below the new i_size is refered
3070  *      from it (and it is on the path to the first completely truncated
3071  *      data block, indeed).  We have to free the top of that path along
3072  *      with everything to the right of the path. Since no allocation
3073  *      past the truncation point is possible until ext4_truncate()
3074  *      finishes, we may safely do the latter, but top of branch may
3075  *      require special attention - pageout below the truncation point
3076  *      might try to populate it.
3077  *
3078  *      We atomically detach the top of branch from the tree, store the
3079  *      block number of its root in *@top, pointers to buffer_heads of
3080  *      partially truncated blocks - in @chain[].bh and pointers to
3081  *      their last elements that should not be removed - in
3082  *      @chain[].p. Return value is the pointer to last filled element
3083  *      of @chain.
3084  *
3085  *      The work left to caller to do the actual freeing of subtrees:
3086  *              a) free the subtree starting from *@top
3087  *              b) free the subtrees whose roots are stored in
3088  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3089  *              c) free the subtrees growing from the inode past the @chain[0].
3090  *                      (no partially truncated stuff there).  */
3091
3092 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3093                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3094 {
3095         Indirect *partial, *p;
3096         int k, err;
3097
3098         *top = 0;
3099         /* Make k index the deepest non-null offest + 1 */
3100         for (k = depth; k > 1 && !offsets[k-1]; k--)
3101                 ;
3102         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3103         /* Writer: pointers */
3104         if (!partial)
3105                 partial = chain + k-1;
3106         /*
3107          * If the branch acquired continuation since we've looked at it -
3108          * fine, it should all survive and (new) top doesn't belong to us.
3109          */
3110         if (!partial->key && *partial->p)
3111                 /* Writer: end */
3112                 goto no_top;
3113         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
3114                 ;
3115         /*
3116          * OK, we've found the last block that must survive. The rest of our
3117          * branch should be detached before unlocking. However, if that rest
3118          * of branch is all ours and does not grow immediately from the inode
3119          * it's easier to cheat and just decrement partial->p.
3120          */
3121         if (p == chain + k - 1 && p > chain) {
3122                 p->p--;
3123         } else {
3124                 *top = *p->p;
3125                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3126 #if 0
3127                 *p->p = 0;
3128 #endif
3129         }
3130         /* Writer: end */
3131
3132         while(partial > p) {
3133                 brelse(partial->bh);
3134                 partial--;
3135         }
3136 no_top:
3137         return partial;
3138 }
3139
3140 /*
3141  * Zero a number of block pointers in either an inode or an indirect block.
3142  * If we restart the transaction we must again get write access to the
3143  * indirect block for further modification.
3144  *
3145  * We release `count' blocks on disk, but (last - first) may be greater
3146  * than `count' because there can be holes in there.
3147  */
3148 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3149                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3150                 unsigned long count, __le32 *first, __le32 *last)
3151 {
3152         __le32 *p;
3153         if (try_to_extend_transaction(handle, inode)) {
3154                 if (bh) {
3155                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3156                         ext4_journal_dirty_metadata(handle, bh);
3157                 }
3158                 ext4_mark_inode_dirty(handle, inode);
3159                 ext4_journal_test_restart(handle, inode);
3160                 if (bh) {
3161                         BUFFER_TRACE(bh, "retaking write access");
3162                         ext4_journal_get_write_access(handle, bh);
3163                 }
3164         }
3165
3166         /*
3167          * Any buffers which are on the journal will be in memory. We find
3168          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3169          * on them.  We've already detached each block from the file, so
3170          * bforget() in jbd2_journal_forget() should be safe.
3171          *
3172          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3173          */
3174         for (p = first; p < last; p++) {
3175                 u32 nr = le32_to_cpu(*p);
3176                 if (nr) {
3177                         struct buffer_head *tbh;
3178
3179                         *p = 0;
3180                         tbh = sb_find_get_block(inode->i_sb, nr);
3181                         ext4_forget(handle, 0, inode, tbh, nr);
3182                 }
3183         }
3184
3185         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3186 }
3187
3188 /**
3189  * ext4_free_data - free a list of data blocks
3190  * @handle:     handle for this transaction
3191  * @inode:      inode we are dealing with
3192  * @this_bh:    indirect buffer_head which contains *@first and *@last
3193  * @first:      array of block numbers
3194  * @last:       points immediately past the end of array
3195  *
3196  * We are freeing all blocks refered from that array (numbers are stored as
3197  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3198  *
3199  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3200  * blocks are contiguous then releasing them at one time will only affect one
3201  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3202  * actually use a lot of journal space.
3203  *
3204  * @this_bh will be %NULL if @first and @last point into the inode's direct
3205  * block pointers.
3206  */
3207 static void ext4_free_data(handle_t *handle, struct inode *inode,
3208                            struct buffer_head *this_bh,
3209                            __le32 *first, __le32 *last)
3210 {
3211         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3212         unsigned long count = 0;            /* Number of blocks in the run */
3213         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3214                                                corresponding to
3215                                                block_to_free */
3216         ext4_fsblk_t nr;                    /* Current block # */
3217         __le32 *p;                          /* Pointer into inode/ind
3218                                                for current block */
3219         int err;
3220
3221         if (this_bh) {                          /* For indirect block */
3222                 BUFFER_TRACE(this_bh, "get_write_access");
3223                 err = ext4_journal_get_write_access(handle, this_bh);
3224                 /* Important: if we can't update the indirect pointers
3225                  * to the blocks, we can't free them. */
3226                 if (err)
3227                         return;
3228         }
3229
3230         for (p = first; p < last; p++) {
3231                 nr = le32_to_cpu(*p);
3232                 if (nr) {
3233                         /* accumulate blocks to free if they're contiguous */
3234                         if (count == 0) {
3235                                 block_to_free = nr;
3236                                 block_to_free_p = p;
3237                                 count = 1;
3238                         } else if (nr == block_to_free + count) {
3239                                 count++;
3240                         } else {
3241                                 ext4_clear_blocks(handle, inode, this_bh,
3242                                                   block_to_free,
3243                                                   count, block_to_free_p, p);
3244                                 block_to_free = nr;
3245                                 block_to_free_p = p;
3246                                 count = 1;
3247                         }
3248                 }
3249         }
3250
3251         if (count > 0)
3252                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3253                                   count, block_to_free_p, p);
3254
3255         if (this_bh) {
3256                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3257
3258                 /*
3259                  * The buffer head should have an attached journal head at this
3260                  * point. However, if the data is corrupted and an indirect
3261                  * block pointed to itself, it would have been detached when
3262                  * the block was cleared. Check for this instead of OOPSing.
3263                  */
3264                 if (bh2jh(this_bh))
3265                         ext4_journal_dirty_metadata(handle, this_bh);
3266                 else
3267                         ext4_error(inode->i_sb, __func__,
3268                                    "circular indirect block detected, "
3269                                    "inode=%lu, block=%llu",
3270                                    inode->i_ino,
3271                                    (unsigned long long) this_bh->b_blocknr);
3272         }
3273 }
3274
3275 /**
3276  *      ext4_free_branches - free an array of branches
3277  *      @handle: JBD handle for this transaction
3278  *      @inode: inode we are dealing with
3279  *      @parent_bh: the buffer_head which contains *@first and *@last
3280  *      @first: array of block numbers
3281  *      @last:  pointer immediately past the end of array
3282  *      @depth: depth of the branches to free
3283  *
3284  *      We are freeing all blocks refered from these branches (numbers are
3285  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3286  *      appropriately.
3287  */
3288 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3289                                struct buffer_head *parent_bh,
3290                                __le32 *first, __le32 *last, int depth)
3291 {
3292         ext4_fsblk_t nr;
3293         __le32 *p;
3294
3295         if (is_handle_aborted(handle))
3296                 return;
3297
3298         if (depth--) {
3299                 struct buffer_head *bh;
3300                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3301                 p = last;
3302                 while (--p >= first) {
3303                         nr = le32_to_cpu(*p);
3304                         if (!nr)
3305                                 continue;               /* A hole */
3306
3307                         /* Go read the buffer for the next level down */
3308                         bh = sb_bread(inode->i_sb, nr);
3309
3310                         /*
3311                          * A read failure? Report error and clear slot
3312                          * (should be rare).
3313                          */
3314                         if (!bh) {
3315                                 ext4_error(inode->i_sb, "ext4_free_branches",
3316                                            "Read failure, inode=%lu, block=%llu",
3317                                            inode->i_ino, nr);
3318                                 continue;
3319                         }
3320
3321                         /* This zaps the entire block.  Bottom up. */
3322                         BUFFER_TRACE(bh, "free child branches");
3323                         ext4_free_branches(handle, inode, bh,
3324                                            (__le32*)bh->b_data,
3325                                            (__le32*)bh->b_data + addr_per_block,
3326                                            depth);
3327
3328                         /*
3329                          * We've probably journalled the indirect block several
3330                          * times during the truncate.  But it's no longer
3331                          * needed and we now drop it from the transaction via
3332                          * jbd2_journal_revoke().
3333                          *
3334                          * That's easy if it's exclusively part of this
3335                          * transaction.  But if it's part of the committing
3336                          * transaction then jbd2_journal_forget() will simply
3337                          * brelse() it.  That means that if the underlying
3338                          * block is reallocated in ext4_get_block(),
3339                          * unmap_underlying_metadata() will find this block
3340                          * and will try to get rid of it.  damn, damn.
3341                          *
3342                          * If this block has already been committed to the
3343                          * journal, a revoke record will be written.  And
3344                          * revoke records must be emitted *before* clearing
3345                          * this block's bit in the bitmaps.
3346                          */
3347                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3348
3349                         /*
3350                          * Everything below this this pointer has been
3351                          * released.  Now let this top-of-subtree go.
3352                          *
3353                          * We want the freeing of this indirect block to be
3354                          * atomic in the journal with the updating of the
3355                          * bitmap block which owns it.  So make some room in
3356                          * the journal.
3357                          *
3358                          * We zero the parent pointer *after* freeing its
3359                          * pointee in the bitmaps, so if extend_transaction()
3360                          * for some reason fails to put the bitmap changes and
3361                          * the release into the same transaction, recovery
3362                          * will merely complain about releasing a free block,
3363                          * rather than leaking blocks.
3364                          */
3365                         if (is_handle_aborted(handle))
3366                                 return;
3367                         if (try_to_extend_transaction(handle, inode)) {
3368                                 ext4_mark_inode_dirty(handle, inode);
3369                                 ext4_journal_test_restart(handle, inode);
3370                         }
3371
3372                         ext4_free_blocks(handle, inode, nr, 1, 1);
3373
3374                         if (parent_bh) {
3375                                 /*
3376                                  * The block which we have just freed is
3377                                  * pointed to by an indirect block: journal it
3378                                  */
3379                                 BUFFER_TRACE(parent_bh, "get_write_access");
3380                                 if (!ext4_journal_get_write_access(handle,
3381                                                                    parent_bh)){
3382                                         *p = 0;
3383                                         BUFFER_TRACE(parent_bh,
3384                                         "call ext4_journal_dirty_metadata");
3385                                         ext4_journal_dirty_metadata(handle,
3386                                                                     parent_bh);
3387                                 }
3388                         }
3389                 }
3390         } else {
3391                 /* We have reached the bottom of the tree. */
3392                 BUFFER_TRACE(parent_bh, "free data blocks");
3393                 ext4_free_data(handle, inode, parent_bh, first, last);
3394         }
3395 }
3396
3397 int ext4_can_truncate(struct inode *inode)
3398 {
3399         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3400                 return 0;
3401         if (S_ISREG(inode->i_mode))
3402                 return 1;
3403         if (S_ISDIR(inode->i_mode))
3404                 return 1;
3405         if (S_ISLNK(inode->i_mode))
3406                 return !ext4_inode_is_fast_symlink(inode);
3407         return 0;
3408 }
3409
3410 /*
3411  * ext4_truncate()
3412  *
3413  * We block out ext4_get_block() block instantiations across the entire
3414  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3415  * simultaneously on behalf of the same inode.
3416  *
3417  * As we work through the truncate and commmit bits of it to the journal there
3418  * is one core, guiding principle: the file's tree must always be consistent on
3419  * disk.  We must be able to restart the truncate after a crash.
3420  *
3421  * The file's tree may be transiently inconsistent in memory (although it
3422  * probably isn't), but whenever we close off and commit a journal transaction,
3423  * the contents of (the filesystem + the journal) must be consistent and
3424  * restartable.  It's pretty simple, really: bottom up, right to left (although
3425  * left-to-right works OK too).
3426  *
3427  * Note that at recovery time, journal replay occurs *before* the restart of
3428  * truncate against the orphan inode list.
3429  *
3430  * The committed inode has the new, desired i_size (which is the same as
3431  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3432  * that this inode's truncate did not complete and it will again call
3433  * ext4_truncate() to have another go.  So there will be instantiated blocks
3434  * to the right of the truncation point in a crashed ext4 filesystem.  But
3435  * that's fine - as long as they are linked from the inode, the post-crash
3436  * ext4_truncate() run will find them and release them.
3437  */
3438 void ext4_truncate(struct inode *inode)
3439 {
3440         handle_t *handle;
3441         struct ext4_inode_info *ei = EXT4_I(inode);
3442         __le32 *i_data = ei->i_data;
3443         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3444         struct address_space *mapping = inode->i_mapping;
3445         ext4_lblk_t offsets[4];
3446         Indirect chain[4];
3447         Indirect *partial;
3448         __le32 nr = 0;
3449         int n;
3450         ext4_lblk_t last_block;
3451         unsigned blocksize = inode->i_sb->s_blocksize;
3452
3453         if (!ext4_can_truncate(inode))
3454                 return;
3455
3456         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3457                 ext4_ext_truncate(inode);
3458                 return;
3459         }
3460
3461         handle = start_transaction(inode);
3462         if (IS_ERR(handle))
3463                 return;         /* AKPM: return what? */
3464
3465         last_block = (inode->i_size + blocksize-1)
3466                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3467
3468         if (inode->i_size & (blocksize - 1))
3469                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3470                         goto out_stop;
3471
3472         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3473         if (n == 0)
3474                 goto out_stop;  /* error */
3475
3476         /*
3477          * OK.  This truncate is going to happen.  We add the inode to the
3478          * orphan list, so that if this truncate spans multiple transactions,
3479          * and we crash, we will resume the truncate when the filesystem
3480          * recovers.  It also marks the inode dirty, to catch the new size.
3481          *
3482          * Implication: the file must always be in a sane, consistent
3483          * truncatable state while each transaction commits.
3484          */
3485         if (ext4_orphan_add(handle, inode))
3486                 goto out_stop;
3487
3488         /*
3489          * From here we block out all ext4_get_block() callers who want to
3490          * modify the block allocation tree.
3491          */
3492         down_write(&ei->i_data_sem);
3493         /*
3494          * The orphan list entry will now protect us from any crash which
3495          * occurs before the truncate completes, so it is now safe to propagate
3496          * the new, shorter inode size (held for now in i_size) into the
3497          * on-disk inode. We do this via i_disksize, which is the value which
3498          * ext4 *really* writes onto the disk inode.
3499          */
3500         ei->i_disksize = inode->i_size;
3501
3502         if (n == 1) {           /* direct blocks */
3503                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3504                                i_data + EXT4_NDIR_BLOCKS);
3505                 goto do_indirects;
3506         }
3507
3508         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3509         /* Kill the top of shared branch (not detached) */
3510         if (nr) {
3511                 if (partial == chain) {
3512                         /* Shared branch grows from the inode */
3513                         ext4_free_branches(handle, inode, NULL,
3514                                            &nr, &nr+1, (chain+n-1) - partial);
3515                         *partial->p = 0;
3516                         /*
3517                          * We mark the inode dirty prior to restart,
3518                          * and prior to stop.  No need for it here.
3519                          */
3520                 } else {
3521                         /* Shared branch grows from an indirect block */
3522                         BUFFER_TRACE(partial->bh, "get_write_access");
3523                         ext4_free_branches(handle, inode, partial->bh,
3524                                         partial->p,
3525                                         partial->p+1, (chain+n-1) - partial);
3526                 }
3527         }
3528         /* Clear the ends of indirect blocks on the shared branch */
3529         while (partial > chain) {
3530                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3531                                    (__le32*)partial->bh->b_data+addr_per_block,
3532                                    (chain+n-1) - partial);
3533                 BUFFER_TRACE(partial->bh, "call brelse");
3534                 brelse (partial->bh);
3535                 partial--;
3536         }
3537 do_indirects:
3538         /* Kill the remaining (whole) subtrees */
3539         switch (offsets[0]) {
3540         default:
3541                 nr = i_data[EXT4_IND_BLOCK];
3542                 if (nr) {
3543                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3544                         i_data[EXT4_IND_BLOCK] = 0;
3545                 }
3546         case EXT4_IND_BLOCK:
3547                 nr = i_data[EXT4_DIND_BLOCK];
3548                 if (nr) {
3549                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3550                         i_data[EXT4_DIND_BLOCK] = 0;
3551                 }
3552         case EXT4_DIND_BLOCK:
3553                 nr = i_data[EXT4_TIND_BLOCK];
3554                 if (nr) {
3555                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3556                         i_data[EXT4_TIND_BLOCK] = 0;
3557                 }
3558         case EXT4_TIND_BLOCK:
3559                 ;
3560         }
3561
3562         ext4_discard_reservation(inode);
3563
3564         up_write(&ei->i_data_sem);
3565         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3566         ext4_mark_inode_dirty(handle, inode);
3567
3568         /*
3569          * In a multi-transaction truncate, we only make the final transaction
3570          * synchronous
3571          */
3572         if (IS_SYNC(inode))
3573                 handle->h_sync = 1;
3574 out_stop:
3575         /*
3576          * If this was a simple ftruncate(), and the file will remain alive
3577          * then we need to clear up the orphan record which we created above.
3578          * However, if this was a real unlink then we were called by
3579          * ext4_delete_inode(), and we allow that function to clean up the
3580          * orphan info for us.
3581          */
3582         if (inode->i_nlink)
3583                 ext4_orphan_del(handle, inode);
3584
3585         ext4_journal_stop(handle);
3586 }
3587
3588 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3589                 unsigned long ino, struct ext4_iloc *iloc)
3590 {
3591         ext4_group_t block_group;
3592         unsigned long offset;
3593         ext4_fsblk_t block;
3594         struct ext4_group_desc *gdp;
3595
3596         if (!ext4_valid_inum(sb, ino)) {
3597                 /*
3598                  * This error is already checked for in namei.c unless we are
3599                  * looking at an NFS filehandle, in which case no error
3600                  * report is needed
3601                  */
3602                 return 0;
3603         }
3604
3605         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3606         gdp = ext4_get_group_desc(sb, block_group, NULL);
3607         if (!gdp)
3608                 return 0;
3609
3610         /*
3611          * Figure out the offset within the block group inode table
3612          */
3613         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3614                 EXT4_INODE_SIZE(sb);
3615         block = ext4_inode_table(sb, gdp) +
3616                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3617
3618         iloc->block_group = block_group;
3619         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3620         return block;
3621 }
3622
3623 /*
3624  * ext4_get_inode_loc returns with an extra refcount against the inode's
3625  * underlying buffer_head on success. If 'in_mem' is true, we have all
3626  * data in memory that is needed to recreate the on-disk version of this
3627  * inode.
3628  */
3629 static int __ext4_get_inode_loc(struct inode *inode,
3630                                 struct ext4_iloc *iloc, int in_mem)
3631 {
3632         ext4_fsblk_t block;
3633         struct buffer_head *bh;
3634
3635         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3636         if (!block)
3637                 return -EIO;
3638
3639         bh = sb_getblk(inode->i_sb, block);
3640         if (!bh) {
3641                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3642                                 "unable to read inode block - "
3643                                 "inode=%lu, block=%llu",
3644                                  inode->i_ino, block);
3645                 return -EIO;
3646         }
3647         if (!buffer_uptodate(bh)) {
3648                 lock_buffer(bh);
3649
3650                 /*
3651                  * If the buffer has the write error flag, we have failed
3652                  * to write out another inode in the same block.  In this
3653                  * case, we don't have to read the block because we may
3654                  * read the old inode data successfully.
3655                  */
3656                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3657                         set_buffer_uptodate(bh);
3658
3659                 if (buffer_uptodate(bh)) {
3660                         /* someone brought it uptodate while we waited */
3661                         unlock_buffer(bh);
3662                         goto has_buffer;
3663                 }
3664
3665                 /*
3666                  * If we have all information of the inode in memory and this
3667                  * is the only valid inode in the block, we need not read the
3668                  * block.
3669                  */
3670                 if (in_mem) {
3671                         struct buffer_head *bitmap_bh;
3672                         struct ext4_group_desc *desc;
3673                         int inodes_per_buffer;
3674                         int inode_offset, i;
3675                         ext4_group_t block_group;
3676                         int start;
3677
3678                         block_group = (inode->i_ino - 1) /
3679                                         EXT4_INODES_PER_GROUP(inode->i_sb);
3680                         inodes_per_buffer = bh->b_size /
3681                                 EXT4_INODE_SIZE(inode->i_sb);
3682                         inode_offset = ((inode->i_ino - 1) %
3683                                         EXT4_INODES_PER_GROUP(inode->i_sb));
3684                         start = inode_offset & ~(inodes_per_buffer - 1);
3685
3686                         /* Is the inode bitmap in cache? */
3687                         desc = ext4_get_group_desc(inode->i_sb,
3688                                                 block_group, NULL);
3689                         if (!desc)
3690                                 goto make_io;
3691
3692                         bitmap_bh = sb_getblk(inode->i_sb,
3693                                 ext4_inode_bitmap(inode->i_sb, desc));
3694                         if (!bitmap_bh)
3695                                 goto make_io;
3696
3697                         /*
3698                          * If the inode bitmap isn't in cache then the
3699                          * optimisation may end up performing two reads instead
3700                          * of one, so skip it.
3701                          */
3702                         if (!buffer_uptodate(bitmap_bh)) {
3703                                 brelse(bitmap_bh);
3704                                 goto make_io;
3705                         }
3706                         for (i = start; i < start + inodes_per_buffer; i++) {
3707                                 if (i == inode_offset)
3708                                         continue;
3709                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3710                                         break;
3711                         }
3712                         brelse(bitmap_bh);
3713                         if (i == start + inodes_per_buffer) {
3714                                 /* all other inodes are free, so skip I/O */
3715                                 memset(bh->b_data, 0, bh->b_size);
3716                                 set_buffer_uptodate(bh);
3717                                 unlock_buffer(bh);
3718                                 goto has_buffer;
3719                         }
3720                 }
3721
3722 make_io:
3723                 /*
3724                  * There are other valid inodes in the buffer, this inode
3725                  * has in-inode xattrs, or we don't have this inode in memory.
3726                  * Read the block from disk.
3727                  */
3728                 get_bh(bh);
3729                 bh->b_end_io = end_buffer_read_sync;
3730                 submit_bh(READ_META, bh);
3731                 wait_on_buffer(bh);
3732                 if (!buffer_uptodate(bh)) {
3733                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
3734                                         "unable to read inode block - "
3735                                         "inode=%lu, block=%llu",
3736                                         inode->i_ino, block);
3737                         brelse(bh);
3738                         return -EIO;
3739                 }
3740         }
3741 has_buffer:
3742         iloc->bh = bh;
3743         return 0;
3744 }
3745
3746 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3747 {
3748         /* We have all inode data except xattrs in memory here. */
3749         return __ext4_get_inode_loc(inode, iloc,
3750                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3751 }
3752
3753 void ext4_set_inode_flags(struct inode *inode)
3754 {
3755         unsigned int flags = EXT4_I(inode)->i_flags;
3756
3757         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3758         if (flags & EXT4_SYNC_FL)
3759                 inode->i_flags |= S_SYNC;
3760         if (flags & EXT4_APPEND_FL)
3761                 inode->i_flags |= S_APPEND;
3762         if (flags & EXT4_IMMUTABLE_FL)
3763                 inode->i_flags |= S_IMMUTABLE;
3764         if (flags & EXT4_NOATIME_FL)
3765                 inode->i_flags |= S_NOATIME;
3766         if (flags & EXT4_DIRSYNC_FL)
3767                 inode->i_flags |= S_DIRSYNC;
3768 }
3769
3770 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3771 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3772 {
3773         unsigned int flags = ei->vfs_inode.i_flags;
3774
3775         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3776                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3777         if (flags & S_SYNC)
3778                 ei->i_flags |= EXT4_SYNC_FL;
3779         if (flags & S_APPEND)
3780                 ei->i_flags |= EXT4_APPEND_FL;
3781         if (flags & S_IMMUTABLE)
3782                 ei->i_flags |= EXT4_IMMUTABLE_FL;
3783         if (flags & S_NOATIME)
3784                 ei->i_flags |= EXT4_NOATIME_FL;
3785         if (flags & S_DIRSYNC)
3786                 ei->i_flags |= EXT4_DIRSYNC_FL;
3787 }
3788 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3789                                         struct ext4_inode_info *ei)
3790 {
3791         blkcnt_t i_blocks ;
3792         struct inode *inode = &(ei->vfs_inode);
3793         struct super_block *sb = inode->i_sb;
3794
3795         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3796                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3797                 /* we are using combined 48 bit field */
3798                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3799                                         le32_to_cpu(raw_inode->i_blocks_lo);
3800                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3801                         /* i_blocks represent file system block size */
3802                         return i_blocks  << (inode->i_blkbits - 9);
3803                 } else {
3804                         return i_blocks;
3805                 }
3806         } else {
3807                 return le32_to_cpu(raw_inode->i_blocks_lo);
3808         }
3809 }
3810
3811 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3812 {
3813         struct ext4_iloc iloc;
3814         struct ext4_inode *raw_inode;
3815         struct ext4_inode_info *ei;
3816         struct buffer_head *bh;
3817         struct inode *inode;
3818         long ret;
3819         int block;
3820
3821         inode = iget_locked(sb, ino);
3822         if (!inode)
3823                 return ERR_PTR(-ENOMEM);
3824         if (!(inode->i_state & I_NEW))
3825                 return inode;
3826
3827         ei = EXT4_I(inode);
3828 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3829         ei->i_acl = EXT4_ACL_NOT_CACHED;
3830         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
3831 #endif
3832         ei->i_block_alloc_info = NULL;
3833
3834         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3835         if (ret < 0)
3836                 goto bad_inode;
3837         bh = iloc.bh;
3838         raw_inode = ext4_raw_inode(&iloc);
3839         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3840         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3841         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3842         if(!(test_opt (inode->i_sb, NO_UID32))) {
3843                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3844                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3845         }
3846         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3847
3848         ei->i_state = 0;
3849         ei->i_dir_start_lookup = 0;
3850         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3851         /* We now have enough fields to check if the inode was active or not.
3852          * This is needed because nfsd might try to access dead inodes
3853          * the test is that same one that e2fsck uses
3854          * NeilBrown 1999oct15
3855          */
3856         if (inode->i_nlink == 0) {
3857                 if (inode->i_mode == 0 ||
3858                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3859                         /* this inode is deleted */
3860                         brelse (bh);
3861                         ret = -ESTALE;
3862                         goto bad_inode;
3863                 }
3864                 /* The only unlinked inodes we let through here have
3865                  * valid i_mode and are being read by the orphan
3866                  * recovery code: that's fine, we're about to complete
3867                  * the process of deleting those. */
3868         }
3869         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3870         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3871         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3872         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3873             cpu_to_le32(EXT4_OS_HURD)) {
3874                 ei->i_file_acl |=
3875                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3876         }
3877         inode->i_size = ext4_isize(raw_inode);
3878         ei->i_disksize = inode->i_size;
3879         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3880         ei->i_block_group = iloc.block_group;
3881         /*
3882          * NOTE! The in-memory inode i_data array is in little-endian order
3883          * even on big-endian machines: we do NOT byteswap the block numbers!
3884          */
3885         for (block = 0; block < EXT4_N_BLOCKS; block++)
3886                 ei->i_data[block] = raw_inode->i_block[block];
3887         INIT_LIST_HEAD(&ei->i_orphan);
3888
3889         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3890                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3891                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3892                     EXT4_INODE_SIZE(inode->i_sb)) {
3893                         brelse (bh);
3894                         ret = -EIO;
3895                         goto bad_inode;
3896                 }
3897                 if (ei->i_extra_isize == 0) {
3898                         /* The extra space is currently unused. Use it. */
3899                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3900                                             EXT4_GOOD_OLD_INODE_SIZE;
3901                 } else {
3902                         __le32 *magic = (void *)raw_inode +
3903                                         EXT4_GOOD_OLD_INODE_SIZE +
3904                                         ei->i_extra_isize;
3905                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3906                                  ei->i_state |= EXT4_STATE_XATTR;
3907                 }
3908         } else
3909                 ei->i_extra_isize = 0;
3910
3911         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3912         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3913         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3914         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3915
3916         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3917         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3918                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3919                         inode->i_version |=
3920                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3921         }
3922
3923         if (S_ISREG(inode->i_mode)) {
3924                 inode->i_op = &ext4_file_inode_operations;
3925                 inode->i_fop = &ext4_file_operations;
3926                 ext4_set_aops(inode);
3927         } else if (S_ISDIR(inode->i_mode)) {
3928                 inode->i_op = &ext4_dir_inode_operations;
3929                 inode->i_fop = &ext4_dir_operations;
3930         } else if (S_ISLNK(inode->i_mode)) {
3931                 if (ext4_inode_is_fast_symlink(inode))
3932                         inode->i_op = &ext4_fast_symlink_inode_operations;
3933                 else {
3934                         inode->i_op = &ext4_symlink_inode_operations;
3935                         ext4_set_aops(inode);
3936                 }
3937         } else {
3938                 inode->i_op = &ext4_special_inode_operations;
3939                 if (raw_inode->i_block[0])
3940                         init_special_inode(inode, inode->i_mode,
3941                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3942                 else
3943                         init_special_inode(inode, inode->i_mode,
3944                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3945         }
3946         brelse (iloc.bh);
3947         ext4_set_inode_flags(inode);
3948         unlock_new_inode(inode);
3949         return inode;
3950
3951 bad_inode:
3952         iget_failed(inode);
3953         return ERR_PTR(ret);
3954 }
3955
3956 static int ext4_inode_blocks_set(handle_t *handle,
3957                                 struct ext4_inode *raw_inode,
3958                                 struct ext4_inode_info *ei)
3959 {
3960         struct inode *inode = &(ei->vfs_inode);
3961         u64 i_blocks = inode->i_blocks;
3962         struct super_block *sb = inode->i_sb;
3963         int err = 0;
3964
3965         if (i_blocks <= ~0U) {
3966                 /*
3967                  * i_blocks can be represnted in a 32 bit variable
3968                  * as multiple of 512 bytes
3969                  */
3970                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3971                 raw_inode->i_blocks_high = 0;
3972                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3973         } else if (i_blocks <= 0xffffffffffffULL) {
3974                 /*
3975                  * i_blocks can be represented in a 48 bit variable
3976                  * as multiple of 512 bytes
3977                  */
3978                 err = ext4_update_rocompat_feature(handle, sb,
3979                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3980                 if (err)
3981                         goto  err_out;
3982                 /* i_block is stored in the split  48 bit fields */
3983                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3984                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3985                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3986         } else {
3987                 /*
3988                  * i_blocks should be represented in a 48 bit variable
3989                  * as multiple of  file system block size
3990                  */
3991                 err = ext4_update_rocompat_feature(handle, sb,
3992                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3993                 if (err)
3994                         goto  err_out;
3995                 ei->i_flags |= EXT4_HUGE_FILE_FL;
3996                 /* i_block is stored in file system block size */
3997                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3998                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3999                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4000         }
4001 err_out:
4002         return err;
4003 }
4004
4005 /*
4006  * Post the struct inode info into an on-disk inode location in the
4007  * buffer-cache.  This gobbles the caller's reference to the
4008  * buffer_head in the inode location struct.
4009  *
4010  * The caller must have write access to iloc->bh.
4011  */
4012 static int ext4_do_update_inode(handle_t *handle,
4013                                 struct inode *inode,
4014                                 struct ext4_iloc *iloc)
4015 {
4016         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4017         struct ext4_inode_info *ei = EXT4_I(inode);
4018         struct buffer_head *bh = iloc->bh;
4019         int err = 0, rc, block;
4020
4021         /* For fields not not tracking in the in-memory inode,
4022          * initialise them to zero for new inodes. */
4023         if (ei->i_state & EXT4_STATE_NEW)
4024                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4025
4026         ext4_get_inode_flags(ei);
4027         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4028         if(!(test_opt(inode->i_sb, NO_UID32))) {
4029                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4030                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4031 /*
4032  * Fix up interoperability with old kernels. Otherwise, old inodes get
4033  * re-used with the upper 16 bits of the uid/gid intact
4034  */
4035                 if(!ei->i_dtime) {
4036                         raw_inode->i_uid_high =
4037                                 cpu_to_le16(high_16_bits(inode->i_uid));
4038                         raw_inode->i_gid_high =
4039                                 cpu_to_le16(high_16_bits(inode->i_gid));
4040                 } else {
4041                         raw_inode->i_uid_high = 0;
4042                         raw_inode->i_gid_high = 0;
4043                 }
4044         } else {
4045                 raw_inode->i_uid_low =
4046                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4047                 raw_inode->i_gid_low =
4048                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4049                 raw_inode->i_uid_high = 0;
4050                 raw_inode->i_gid_high = 0;
4051         }
4052         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4053
4054         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4055         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4056         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4057         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4058
4059         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4060                 goto out_brelse;
4061         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4062         /* clear the migrate flag in the raw_inode */
4063         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4064         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4065             cpu_to_le32(EXT4_OS_HURD))
4066                 raw_inode->i_file_acl_high =
4067                         cpu_to_le16(ei->i_file_acl >> 32);
4068         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4069         ext4_isize_set(raw_inode, ei->i_disksize);
4070         if (ei->i_disksize > 0x7fffffffULL) {
4071                 struct super_block *sb = inode->i_sb;
4072                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4073                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4074                                 EXT4_SB(sb)->s_es->s_rev_level ==
4075                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4076                         /* If this is the first large file
4077                          * created, add a flag to the superblock.
4078                          */
4079                         err = ext4_journal_get_write_access(handle,
4080                                         EXT4_SB(sb)->s_sbh);
4081                         if (err)
4082                                 goto out_brelse;
4083                         ext4_update_dynamic_rev(sb);
4084                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4085                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4086                         sb->s_dirt = 1;
4087                         handle->h_sync = 1;
4088                         err = ext4_journal_dirty_metadata(handle,
4089                                         EXT4_SB(sb)->s_sbh);
4090                 }
4091         }
4092         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4093         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4094                 if (old_valid_dev(inode->i_rdev)) {
4095                         raw_inode->i_block[0] =
4096                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4097                         raw_inode->i_block[1] = 0;
4098                 } else {
4099                         raw_inode->i_block[0] = 0;
4100                         raw_inode->i_block[1] =
4101                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4102                         raw_inode->i_block[2] = 0;
4103                 }
4104         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4105                 raw_inode->i_block[block] = ei->i_data[block];
4106
4107         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4108         if (ei->i_extra_isize) {
4109                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4110                         raw_inode->i_version_hi =
4111                         cpu_to_le32(inode->i_version >> 32);
4112                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4113         }
4114
4115
4116         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4117         rc = ext4_journal_dirty_metadata(handle, bh);
4118         if (!err)
4119                 err = rc;
4120         ei->i_state &= ~EXT4_STATE_NEW;
4121
4122 out_brelse:
4123         brelse (bh);
4124         ext4_std_error(inode->i_sb, err);
4125         return err;
4126 }
4127
4128 /*
4129  * ext4_write_inode()
4130  *
4131  * We are called from a few places:
4132  *
4133  * - Within generic_file_write() for O_SYNC files.
4134  *   Here, there will be no transaction running. We wait for any running
4135  *   trasnaction to commit.
4136  *
4137  * - Within sys_sync(), kupdate and such.
4138  *   We wait on commit, if tol to.
4139  *
4140  * - Within prune_icache() (PF_MEMALLOC == true)
4141  *   Here we simply return.  We can't afford to block kswapd on the
4142  *   journal commit.
4143  *
4144  * In all cases it is actually safe for us to return without doing anything,
4145  * because the inode has been copied into a raw inode buffer in
4146  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4147  * knfsd.
4148  *
4149  * Note that we are absolutely dependent upon all inode dirtiers doing the
4150  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4151  * which we are interested.
4152  *
4153  * It would be a bug for them to not do this.  The code:
4154  *
4155  *      mark_inode_dirty(inode)
4156  *      stuff();
4157  *      inode->i_size = expr;
4158  *
4159  * is in error because a kswapd-driven write_inode() could occur while
4160  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4161  * will no longer be on the superblock's dirty inode list.
4162  */
4163 int ext4_write_inode(struct inode *inode, int wait)
4164 {
4165         if (current->flags & PF_MEMALLOC)
4166                 return 0;
4167
4168         if (ext4_journal_current_handle()) {
4169                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4170                 dump_stack();
4171                 return -EIO;
4172         }
4173
4174         if (!wait)
4175                 return 0;
4176
4177         return ext4_force_commit(inode->i_sb);
4178 }
4179
4180 /*
4181  * ext4_setattr()
4182  *
4183  * Called from notify_change.
4184  *
4185  * We want to trap VFS attempts to truncate the file as soon as
4186  * possible.  In particular, we want to make sure that when the VFS
4187  * shrinks i_size, we put the inode on the orphan list and modify
4188  * i_disksize immediately, so that during the subsequent flushing of
4189  * dirty pages and freeing of disk blocks, we can guarantee that any
4190  * commit will leave the blocks being flushed in an unused state on
4191  * disk.  (On recovery, the inode will get truncated and the blocks will
4192  * be freed, so we have a strong guarantee that no future commit will
4193  * leave these blocks visible to the user.)
4194  *
4195  * Another thing we have to assure is that if we are in ordered mode
4196  * and inode is still attached to the committing transaction, we must
4197  * we start writeout of all the dirty pages which are being truncated.
4198  * This way we are sure that all the data written in the previous
4199  * transaction are already on disk (truncate waits for pages under
4200  * writeback).
4201  *
4202  * Called with inode->i_mutex down.
4203  */
4204 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4205 {
4206         struct inode *inode = dentry->d_inode;
4207         int error, rc = 0;
4208         const unsigned int ia_valid = attr->ia_valid;
4209
4210         error = inode_change_ok(inode, attr);
4211         if (error)
4212                 return error;
4213
4214         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4215                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4216                 handle_t *handle;
4217
4218                 /* (user+group)*(old+new) structure, inode write (sb,
4219                  * inode block, ? - but truncate inode update has it) */
4220                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4221                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4222                 if (IS_ERR(handle)) {
4223                         error = PTR_ERR(handle);
4224                         goto err_out;
4225                 }
4226                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4227                 if (error) {
4228                         ext4_journal_stop(handle);
4229                         return error;
4230                 }
4231                 /* Update corresponding info in inode so that everything is in
4232                  * one transaction */
4233                 if (attr->ia_valid & ATTR_UID)
4234                         inode->i_uid = attr->ia_uid;
4235                 if (attr->ia_valid & ATTR_GID)
4236                         inode->i_gid = attr->ia_gid;
4237                 error = ext4_mark_inode_dirty(handle, inode);
4238                 ext4_journal_stop(handle);
4239         }
4240
4241         if (attr->ia_valid & ATTR_SIZE) {
4242                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4243                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4244
4245                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4246                                 error = -EFBIG;
4247                                 goto err_out;
4248                         }
4249                 }
4250         }
4251
4252         if (S_ISREG(inode->i_mode) &&
4253             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4254                 handle_t *handle;
4255
4256                 handle = ext4_journal_start(inode, 3);
4257                 if (IS_ERR(handle)) {
4258                         error = PTR_ERR(handle);
4259                         goto err_out;
4260                 }
4261
4262                 error = ext4_orphan_add(handle, inode);
4263                 EXT4_I(inode)->i_disksize = attr->ia_size;
4264                 rc = ext4_mark_inode_dirty(handle, inode);
4265                 if (!error)
4266                         error = rc;
4267                 ext4_journal_stop(handle);
4268
4269                 if (ext4_should_order_data(inode)) {
4270                         error = ext4_begin_ordered_truncate(inode,
4271                                                             attr->ia_size);
4272                         if (error) {
4273                                 /* Do as much error cleanup as possible */
4274                                 handle = ext4_journal_start(inode, 3);
4275                                 if (IS_ERR(handle)) {
4276                                         ext4_orphan_del(NULL, inode);
4277                                         goto err_out;
4278                                 }
4279                                 ext4_orphan_del(handle, inode);
4280                                 ext4_journal_stop(handle);
4281                                 goto err_out;
4282                         }
4283                 }
4284         }
4285
4286         rc = inode_setattr(inode, attr);
4287
4288         /* If inode_setattr's call to ext4_truncate failed to get a
4289          * transaction handle at all, we need to clean up the in-core
4290          * orphan list manually. */
4291         if (inode->i_nlink)
4292                 ext4_orphan_del(NULL, inode);
4293
4294         if (!rc && (ia_valid & ATTR_MODE))
4295                 rc = ext4_acl_chmod(inode);
4296
4297 err_out:
4298         ext4_std_error(inode->i_sb, error);
4299         if (!error)
4300                 error = rc;
4301         return error;
4302 }
4303
4304 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4305                  struct kstat *stat)
4306 {
4307         struct inode *inode;
4308         unsigned long delalloc_blocks;
4309
4310         inode = dentry->d_inode;
4311         generic_fillattr(inode, stat);
4312
4313         /*
4314          * We can't update i_blocks if the block allocation is delayed
4315          * otherwise in the case of system crash before the real block
4316          * allocation is done, we will have i_blocks inconsistent with
4317          * on-disk file blocks.
4318          * We always keep i_blocks updated together with real
4319          * allocation. But to not confuse with user, stat
4320          * will return the blocks that include the delayed allocation
4321          * blocks for this file.
4322          */
4323         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4324         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4325         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4326
4327         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4328         return 0;
4329 }
4330
4331 /*
4332  * How many blocks doth make a writepage()?
4333  *
4334  * With N blocks per page, it may be:
4335  * N data blocks
4336  * 2 indirect block
4337  * 2 dindirect
4338  * 1 tindirect
4339  * N+5 bitmap blocks (from the above)
4340  * N+5 group descriptor summary blocks
4341  * 1 inode block
4342  * 1 superblock.
4343  * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
4344  *
4345  * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
4346  *
4347  * With ordered or writeback data it's the same, less the N data blocks.
4348  *
4349  * If the inode's direct blocks can hold an integral number of pages then a
4350  * page cannot straddle two indirect blocks, and we can only touch one indirect
4351  * and dindirect block, and the "5" above becomes "3".
4352  *
4353  * This still overestimates under most circumstances.  If we were to pass the
4354  * start and end offsets in here as well we could do block_to_path() on each
4355  * block and work out the exact number of indirects which are touched.  Pah.
4356  */
4357
4358 int ext4_writepage_trans_blocks(struct inode *inode)
4359 {
4360         int bpp = ext4_journal_blocks_per_page(inode);
4361         int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
4362         int ret;
4363
4364         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
4365                 return ext4_ext_writepage_trans_blocks(inode, bpp);
4366
4367         if (ext4_should_journal_data(inode))
4368                 ret = 3 * (bpp + indirects) + 2;
4369         else
4370                 ret = 2 * (bpp + indirects) + 2;
4371
4372 #ifdef CONFIG_QUOTA
4373         /* We know that structure was already allocated during DQUOT_INIT so
4374          * we will be updating only the data blocks + inodes */
4375         ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
4376 #endif
4377
4378         return ret;
4379 }
4380
4381 /*
4382  * The caller must have previously called ext4_reserve_inode_write().
4383  * Give this, we know that the caller already has write access to iloc->bh.
4384  */
4385 int ext4_mark_iloc_dirty(handle_t *handle,
4386                 struct inode *inode, struct ext4_iloc *iloc)
4387 {
4388         int err = 0;
4389
4390         if (test_opt(inode->i_sb, I_VERSION))
4391                 inode_inc_iversion(inode);
4392
4393         /* the do_update_inode consumes one bh->b_count */
4394         get_bh(iloc->bh);
4395
4396         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4397         err = ext4_do_update_inode(handle, inode, iloc);
4398         put_bh(iloc->bh);
4399         return err;
4400 }
4401
4402 /*
4403  * On success, We end up with an outstanding reference count against
4404  * iloc->bh.  This _must_ be cleaned up later.
4405  */
4406
4407 int
4408 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4409                          struct ext4_iloc *iloc)
4410 {
4411         int err = 0;
4412         if (handle) {
4413                 err = ext4_get_inode_loc(inode, iloc);
4414                 if (!err) {
4415                         BUFFER_TRACE(iloc->bh, "get_write_access");
4416                         err = ext4_journal_get_write_access(handle, iloc->bh);
4417                         if (err) {
4418                                 brelse(iloc->bh);
4419                                 iloc->bh = NULL;
4420                         }
4421                 }
4422         }
4423         ext4_std_error(inode->i_sb, err);
4424         return err;
4425 }
4426
4427 /*
4428  * Expand an inode by new_extra_isize bytes.
4429  * Returns 0 on success or negative error number on failure.
4430  */
4431 static int ext4_expand_extra_isize(struct inode *inode,
4432                                    unsigned int new_extra_isize,
4433                                    struct ext4_iloc iloc,
4434                                    handle_t *handle)
4435 {
4436         struct ext4_inode *raw_inode;
4437         struct ext4_xattr_ibody_header *header;
4438         struct ext4_xattr_entry *entry;
4439
4440         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4441                 return 0;
4442
4443         raw_inode = ext4_raw_inode(&iloc);
4444
4445         header = IHDR(inode, raw_inode);
4446         entry = IFIRST(header);
4447
4448         /* No extended attributes present */
4449         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4450                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4451                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4452                         new_extra_isize);
4453                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4454                 return 0;
4455         }
4456
4457         /* try to expand with EAs present */
4458         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4459                                           raw_inode, handle);
4460 }
4461
4462 /*
4463  * What we do here is to mark the in-core inode as clean with respect to inode
4464  * dirtiness (it may still be data-dirty).
4465  * This means that the in-core inode may be reaped by prune_icache
4466  * without having to perform any I/O.  This is a very good thing,
4467  * because *any* task may call prune_icache - even ones which
4468  * have a transaction open against a different journal.
4469  *
4470  * Is this cheating?  Not really.  Sure, we haven't written the
4471  * inode out, but prune_icache isn't a user-visible syncing function.
4472  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4473  * we start and wait on commits.
4474  *
4475  * Is this efficient/effective?  Well, we're being nice to the system
4476  * by cleaning up our inodes proactively so they can be reaped
4477  * without I/O.  But we are potentially leaving up to five seconds'
4478  * worth of inodes floating about which prune_icache wants us to
4479  * write out.  One way to fix that would be to get prune_icache()
4480  * to do a write_super() to free up some memory.  It has the desired
4481  * effect.
4482  */
4483 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4484 {
4485         struct ext4_iloc iloc;
4486         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4487         static unsigned int mnt_count;
4488         int err, ret;
4489
4490         might_sleep();
4491         err = ext4_reserve_inode_write(handle, inode, &iloc);
4492         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4493             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4494                 /*
4495                  * We need extra buffer credits since we may write into EA block
4496                  * with this same handle. If journal_extend fails, then it will
4497                  * only result in a minor loss of functionality for that inode.
4498                  * If this is felt to be critical, then e2fsck should be run to
4499                  * force a large enough s_min_extra_isize.
4500                  */
4501                 if ((jbd2_journal_extend(handle,
4502                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4503                         ret = ext4_expand_extra_isize(inode,
4504                                                       sbi->s_want_extra_isize,
4505                                                       iloc, handle);
4506                         if (ret) {
4507                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4508                                 if (mnt_count !=
4509                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4510                                         ext4_warning(inode->i_sb, __func__,
4511                                         "Unable to expand inode %lu. Delete"
4512                                         " some EAs or run e2fsck.",
4513                                         inode->i_ino);
4514                                         mnt_count =
4515                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4516                                 }
4517                         }
4518                 }
4519         }
4520         if (!err)
4521                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4522         return err;
4523 }
4524
4525 /*
4526  * ext4_dirty_inode() is called from __mark_inode_dirty()
4527  *
4528  * We're really interested in the case where a file is being extended.
4529  * i_size has been changed by generic_commit_write() and we thus need
4530  * to include the updated inode in the current transaction.
4531  *
4532  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4533  * are allocated to the file.
4534  *
4535  * If the inode is marked synchronous, we don't honour that here - doing
4536  * so would cause a commit on atime updates, which we don't bother doing.
4537  * We handle synchronous inodes at the highest possible level.
4538  */
4539 void ext4_dirty_inode(struct inode *inode)
4540 {
4541         handle_t *current_handle = ext4_journal_current_handle();
4542         handle_t *handle;
4543
4544         handle = ext4_journal_start(inode, 2);
4545         if (IS_ERR(handle))
4546                 goto out;
4547         if (current_handle &&
4548                 current_handle->h_transaction != handle->h_transaction) {
4549                 /* This task has a transaction open against a different fs */
4550                 printk(KERN_EMERG "%s: transactions do not match!\n",
4551                        __func__);
4552         } else {
4553                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4554                                 current_handle);
4555                 ext4_mark_inode_dirty(handle, inode);
4556         }
4557         ext4_journal_stop(handle);
4558 out:
4559         return;
4560 }
4561
4562 #if 0
4563 /*
4564  * Bind an inode's backing buffer_head into this transaction, to prevent
4565  * it from being flushed to disk early.  Unlike
4566  * ext4_reserve_inode_write, this leaves behind no bh reference and
4567  * returns no iloc structure, so the caller needs to repeat the iloc
4568  * lookup to mark the inode dirty later.
4569  */
4570 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4571 {
4572         struct ext4_iloc iloc;
4573
4574         int err = 0;
4575         if (handle) {
4576                 err = ext4_get_inode_loc(inode, &iloc);
4577                 if (!err) {
4578                         BUFFER_TRACE(iloc.bh, "get_write_access");
4579                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4580                         if (!err)
4581                                 err = ext4_journal_dirty_metadata(handle,
4582                                                                   iloc.bh);
4583                         brelse(iloc.bh);
4584                 }
4585         }
4586         ext4_std_error(inode->i_sb, err);
4587         return err;
4588 }
4589 #endif
4590
4591 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4592 {
4593         journal_t *journal;
4594         handle_t *handle;
4595         int err;
4596
4597         /*
4598          * We have to be very careful here: changing a data block's
4599          * journaling status dynamically is dangerous.  If we write a
4600          * data block to the journal, change the status and then delete
4601          * that block, we risk forgetting to revoke the old log record
4602          * from the journal and so a subsequent replay can corrupt data.
4603          * So, first we make sure that the journal is empty and that
4604          * nobody is changing anything.
4605          */
4606
4607         journal = EXT4_JOURNAL(inode);
4608         if (is_journal_aborted(journal))
4609                 return -EROFS;
4610
4611         jbd2_journal_lock_updates(journal);
4612         jbd2_journal_flush(journal);
4613
4614         /*
4615          * OK, there are no updates running now, and all cached data is
4616          * synced to disk.  We are now in a completely consistent state
4617          * which doesn't have anything in the journal, and we know that
4618          * no filesystem updates are running, so it is safe to modify
4619          * the inode's in-core data-journaling state flag now.
4620          */
4621
4622         if (val)
4623                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4624         else
4625                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4626         ext4_set_aops(inode);
4627
4628         jbd2_journal_unlock_updates(journal);
4629
4630         /* Finally we can mark the inode as dirty. */
4631
4632         handle = ext4_journal_start(inode, 1);
4633         if (IS_ERR(handle))
4634                 return PTR_ERR(handle);
4635
4636         err = ext4_mark_inode_dirty(handle, inode);
4637         handle->h_sync = 1;
4638         ext4_journal_stop(handle);
4639         ext4_std_error(inode->i_sb, err);
4640
4641         return err;
4642 }
4643
4644 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4645 {
4646         return !buffer_mapped(bh);
4647 }
4648
4649 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4650 {
4651         loff_t size;
4652         unsigned long len;
4653         int ret = -EINVAL;
4654         struct file *file = vma->vm_file;
4655         struct inode *inode = file->f_path.dentry->d_inode;
4656         struct address_space *mapping = inode->i_mapping;
4657
4658         /*
4659          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4660          * get i_mutex because we are already holding mmap_sem.
4661          */
4662         down_read(&inode->i_alloc_sem);
4663         size = i_size_read(inode);
4664         if (page->mapping != mapping || size <= page_offset(page)
4665             || !PageUptodate(page)) {
4666                 /* page got truncated from under us? */
4667                 goto out_unlock;
4668         }
4669         ret = 0;
4670         if (PageMappedToDisk(page))
4671                 goto out_unlock;
4672
4673         if (page->index == size >> PAGE_CACHE_SHIFT)
4674                 len = size & ~PAGE_CACHE_MASK;
4675         else
4676                 len = PAGE_CACHE_SIZE;
4677
4678         if (page_has_buffers(page)) {
4679                 /* return if we have all the buffers mapped */
4680                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4681                                        ext4_bh_unmapped))
4682                         goto out_unlock;
4683         }
4684         /*
4685          * OK, we need to fill the hole... Do write_begin write_end
4686          * to do block allocation/reservation.We are not holding
4687          * inode.i__mutex here. That allow * parallel write_begin,
4688          * write_end call. lock_page prevent this from happening
4689          * on the same page though
4690          */
4691         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4692                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4693         if (ret < 0)
4694                 goto out_unlock;
4695         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4696                         len, len, page, NULL);
4697         if (ret < 0)
4698                 goto out_unlock;
4699         ret = 0;
4700 out_unlock:
4701         up_read(&inode->i_alloc_sem);
4702         return ret;
4703 }