ext4: Convert BUG_ON checks to use ext4_error() instead
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "ext4_extents.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static inline int ext4_begin_ordered_truncate(struct inode *inode,
53                                               loff_t new_size)
54 {
55         return jbd2_journal_begin_ordered_truncate(
56                                         EXT4_SB(inode->i_sb)->s_journal,
57                                         &EXT4_I(inode)->jinode,
58                                         new_size);
59 }
60
61 static void ext4_invalidatepage(struct page *page, unsigned long offset);
62
63 /*
64  * Test whether an inode is a fast symlink.
65  */
66 static int ext4_inode_is_fast_symlink(struct inode *inode)
67 {
68         int ea_blocks = EXT4_I(inode)->i_file_acl ?
69                 (inode->i_sb->s_blocksize >> 9) : 0;
70
71         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
72 }
73
74 /*
75  * Work out how many blocks we need to proceed with the next chunk of a
76  * truncate transaction.
77  */
78 static unsigned long blocks_for_truncate(struct inode *inode)
79 {
80         ext4_lblk_t needed;
81
82         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
83
84         /* Give ourselves just enough room to cope with inodes in which
85          * i_blocks is corrupt: we've seen disk corruptions in the past
86          * which resulted in random data in an inode which looked enough
87          * like a regular file for ext4 to try to delete it.  Things
88          * will go a bit crazy if that happens, but at least we should
89          * try not to panic the whole kernel. */
90         if (needed < 2)
91                 needed = 2;
92
93         /* But we need to bound the transaction so we don't overflow the
94          * journal. */
95         if (needed > EXT4_MAX_TRANS_DATA)
96                 needed = EXT4_MAX_TRANS_DATA;
97
98         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
99 }
100
101 /*
102  * Truncate transactions can be complex and absolutely huge.  So we need to
103  * be able to restart the transaction at a conventient checkpoint to make
104  * sure we don't overflow the journal.
105  *
106  * start_transaction gets us a new handle for a truncate transaction,
107  * and extend_transaction tries to extend the existing one a bit.  If
108  * extend fails, we need to propagate the failure up and restart the
109  * transaction in the top-level truncate loop. --sct
110  */
111 static handle_t *start_transaction(struct inode *inode)
112 {
113         handle_t *result;
114
115         result = ext4_journal_start(inode, blocks_for_truncate(inode));
116         if (!IS_ERR(result))
117                 return result;
118
119         ext4_std_error(inode->i_sb, PTR_ERR(result));
120         return result;
121 }
122
123 /*
124  * Try to extend this transaction for the purposes of truncation.
125  *
126  * Returns 0 if we managed to create more room.  If we can't create more
127  * room, and the transaction must be restarted we return 1.
128  */
129 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
130 {
131         if (!ext4_handle_valid(handle))
132                 return 0;
133         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
134                 return 0;
135         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
136                 return 0;
137         return 1;
138 }
139
140 /*
141  * Restart the transaction associated with *handle.  This does a commit,
142  * so before we call here everything must be consistently dirtied against
143  * this transaction.
144  */
145 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
146                                  int nblocks)
147 {
148         int ret;
149
150         /*
151          * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
152          * moment, get_block can be called only for blocks inside i_size since
153          * page cache has been already dropped and writes are blocked by
154          * i_mutex. So we can safely drop the i_data_sem here.
155          */
156         BUG_ON(EXT4_JOURNAL(inode) == NULL);
157         jbd_debug(2, "restarting handle %p\n", handle);
158         up_write(&EXT4_I(inode)->i_data_sem);
159         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
160         down_write(&EXT4_I(inode)->i_data_sem);
161         ext4_discard_preallocations(inode);
162
163         return ret;
164 }
165
166 /*
167  * Called at the last iput() if i_nlink is zero.
168  */
169 void ext4_delete_inode(struct inode *inode)
170 {
171         handle_t *handle;
172         int err;
173
174         if (ext4_should_order_data(inode))
175                 ext4_begin_ordered_truncate(inode, 0);
176         truncate_inode_pages(&inode->i_data, 0);
177
178         if (is_bad_inode(inode))
179                 goto no_delete;
180
181         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
182         if (IS_ERR(handle)) {
183                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
184                 /*
185                  * If we're going to skip the normal cleanup, we still need to
186                  * make sure that the in-core orphan linked list is properly
187                  * cleaned up.
188                  */
189                 ext4_orphan_del(NULL, inode);
190                 goto no_delete;
191         }
192
193         if (IS_SYNC(inode))
194                 ext4_handle_sync(handle);
195         inode->i_size = 0;
196         err = ext4_mark_inode_dirty(handle, inode);
197         if (err) {
198                 ext4_warning(inode->i_sb,
199                              "couldn't mark inode dirty (err %d)", err);
200                 goto stop_handle;
201         }
202         if (inode->i_blocks)
203                 ext4_truncate(inode);
204
205         /*
206          * ext4_ext_truncate() doesn't reserve any slop when it
207          * restarts journal transactions; therefore there may not be
208          * enough credits left in the handle to remove the inode from
209          * the orphan list and set the dtime field.
210          */
211         if (!ext4_handle_has_enough_credits(handle, 3)) {
212                 err = ext4_journal_extend(handle, 3);
213                 if (err > 0)
214                         err = ext4_journal_restart(handle, 3);
215                 if (err != 0) {
216                         ext4_warning(inode->i_sb,
217                                      "couldn't extend journal (err %d)", err);
218                 stop_handle:
219                         ext4_journal_stop(handle);
220                         goto no_delete;
221                 }
222         }
223
224         /*
225          * Kill off the orphan record which ext4_truncate created.
226          * AKPM: I think this can be inside the above `if'.
227          * Note that ext4_orphan_del() has to be able to cope with the
228          * deletion of a non-existent orphan - this is because we don't
229          * know if ext4_truncate() actually created an orphan record.
230          * (Well, we could do this if we need to, but heck - it works)
231          */
232         ext4_orphan_del(handle, inode);
233         EXT4_I(inode)->i_dtime  = get_seconds();
234
235         /*
236          * One subtle ordering requirement: if anything has gone wrong
237          * (transaction abort, IO errors, whatever), then we can still
238          * do these next steps (the fs will already have been marked as
239          * having errors), but we can't free the inode if the mark_dirty
240          * fails.
241          */
242         if (ext4_mark_inode_dirty(handle, inode))
243                 /* If that failed, just do the required in-core inode clear. */
244                 clear_inode(inode);
245         else
246                 ext4_free_inode(handle, inode);
247         ext4_journal_stop(handle);
248         return;
249 no_delete:
250         clear_inode(inode);     /* We must guarantee clearing of inode... */
251 }
252
253 typedef struct {
254         __le32  *p;
255         __le32  key;
256         struct buffer_head *bh;
257 } Indirect;
258
259 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
260 {
261         p->key = *(p->p = v);
262         p->bh = bh;
263 }
264
265 /**
266  *      ext4_block_to_path - parse the block number into array of offsets
267  *      @inode: inode in question (we are only interested in its superblock)
268  *      @i_block: block number to be parsed
269  *      @offsets: array to store the offsets in
270  *      @boundary: set this non-zero if the referred-to block is likely to be
271  *             followed (on disk) by an indirect block.
272  *
273  *      To store the locations of file's data ext4 uses a data structure common
274  *      for UNIX filesystems - tree of pointers anchored in the inode, with
275  *      data blocks at leaves and indirect blocks in intermediate nodes.
276  *      This function translates the block number into path in that tree -
277  *      return value is the path length and @offsets[n] is the offset of
278  *      pointer to (n+1)th node in the nth one. If @block is out of range
279  *      (negative or too large) warning is printed and zero returned.
280  *
281  *      Note: function doesn't find node addresses, so no IO is needed. All
282  *      we need to know is the capacity of indirect blocks (taken from the
283  *      inode->i_sb).
284  */
285
286 /*
287  * Portability note: the last comparison (check that we fit into triple
288  * indirect block) is spelled differently, because otherwise on an
289  * architecture with 32-bit longs and 8Kb pages we might get into trouble
290  * if our filesystem had 8Kb blocks. We might use long long, but that would
291  * kill us on x86. Oh, well, at least the sign propagation does not matter -
292  * i_block would have to be negative in the very beginning, so we would not
293  * get there at all.
294  */
295
296 static int ext4_block_to_path(struct inode *inode,
297                               ext4_lblk_t i_block,
298                               ext4_lblk_t offsets[4], int *boundary)
299 {
300         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
301         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
302         const long direct_blocks = EXT4_NDIR_BLOCKS,
303                 indirect_blocks = ptrs,
304                 double_blocks = (1 << (ptrs_bits * 2));
305         int n = 0;
306         int final = 0;
307
308         if (i_block < direct_blocks) {
309                 offsets[n++] = i_block;
310                 final = direct_blocks;
311         } else if ((i_block -= direct_blocks) < indirect_blocks) {
312                 offsets[n++] = EXT4_IND_BLOCK;
313                 offsets[n++] = i_block;
314                 final = ptrs;
315         } else if ((i_block -= indirect_blocks) < double_blocks) {
316                 offsets[n++] = EXT4_DIND_BLOCK;
317                 offsets[n++] = i_block >> ptrs_bits;
318                 offsets[n++] = i_block & (ptrs - 1);
319                 final = ptrs;
320         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
321                 offsets[n++] = EXT4_TIND_BLOCK;
322                 offsets[n++] = i_block >> (ptrs_bits * 2);
323                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
324                 offsets[n++] = i_block & (ptrs - 1);
325                 final = ptrs;
326         } else {
327                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
328                              i_block + direct_blocks +
329                              indirect_blocks + double_blocks, inode->i_ino);
330         }
331         if (boundary)
332                 *boundary = final - 1 - (i_block & (ptrs - 1));
333         return n;
334 }
335
336 static int __ext4_check_blockref(const char *function, struct inode *inode,
337                                  __le32 *p, unsigned int max)
338 {
339         __le32 *bref = p;
340         unsigned int blk;
341
342         while (bref < p+max) {
343                 blk = le32_to_cpu(*bref++);
344                 if (blk &&
345                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
346                                                     blk, 1))) {
347                         __ext4_error(inode->i_sb, function,
348                                    "invalid block reference %u "
349                                    "in inode #%lu", blk, inode->i_ino);
350                         return -EIO;
351                 }
352         }
353         return 0;
354 }
355
356
357 #define ext4_check_indirect_blockref(inode, bh)                         \
358         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
359                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
360
361 #define ext4_check_inode_blockref(inode)                                \
362         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
363                               EXT4_NDIR_BLOCKS)
364
365 /**
366  *      ext4_get_branch - read the chain of indirect blocks leading to data
367  *      @inode: inode in question
368  *      @depth: depth of the chain (1 - direct pointer, etc.)
369  *      @offsets: offsets of pointers in inode/indirect blocks
370  *      @chain: place to store the result
371  *      @err: here we store the error value
372  *
373  *      Function fills the array of triples <key, p, bh> and returns %NULL
374  *      if everything went OK or the pointer to the last filled triple
375  *      (incomplete one) otherwise. Upon the return chain[i].key contains
376  *      the number of (i+1)-th block in the chain (as it is stored in memory,
377  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
378  *      number (it points into struct inode for i==0 and into the bh->b_data
379  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380  *      block for i>0 and NULL for i==0. In other words, it holds the block
381  *      numbers of the chain, addresses they were taken from (and where we can
382  *      verify that chain did not change) and buffer_heads hosting these
383  *      numbers.
384  *
385  *      Function stops when it stumbles upon zero pointer (absent block)
386  *              (pointer to last triple returned, *@err == 0)
387  *      or when it gets an IO error reading an indirect block
388  *              (ditto, *@err == -EIO)
389  *      or when it reads all @depth-1 indirect blocks successfully and finds
390  *      the whole chain, all way to the data (returns %NULL, *err == 0).
391  *
392  *      Need to be called with
393  *      down_read(&EXT4_I(inode)->i_data_sem)
394  */
395 static Indirect *ext4_get_branch(struct inode *inode, int depth,
396                                  ext4_lblk_t  *offsets,
397                                  Indirect chain[4], int *err)
398 {
399         struct super_block *sb = inode->i_sb;
400         Indirect *p = chain;
401         struct buffer_head *bh;
402
403         *err = 0;
404         /* i_data is not going away, no lock needed */
405         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
406         if (!p->key)
407                 goto no_block;
408         while (--depth) {
409                 bh = sb_getblk(sb, le32_to_cpu(p->key));
410                 if (unlikely(!bh))
411                         goto failure;
412
413                 if (!bh_uptodate_or_lock(bh)) {
414                         if (bh_submit_read(bh) < 0) {
415                                 put_bh(bh);
416                                 goto failure;
417                         }
418                         /* validate block references */
419                         if (ext4_check_indirect_blockref(inode, bh)) {
420                                 put_bh(bh);
421                                 goto failure;
422                         }
423                 }
424
425                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
426                 /* Reader: end */
427                 if (!p->key)
428                         goto no_block;
429         }
430         return NULL;
431
432 failure:
433         *err = -EIO;
434 no_block:
435         return p;
436 }
437
438 /**
439  *      ext4_find_near - find a place for allocation with sufficient locality
440  *      @inode: owner
441  *      @ind: descriptor of indirect block.
442  *
443  *      This function returns the preferred place for block allocation.
444  *      It is used when heuristic for sequential allocation fails.
445  *      Rules are:
446  *        + if there is a block to the left of our position - allocate near it.
447  *        + if pointer will live in indirect block - allocate near that block.
448  *        + if pointer will live in inode - allocate in the same
449  *          cylinder group.
450  *
451  * In the latter case we colour the starting block by the callers PID to
452  * prevent it from clashing with concurrent allocations for a different inode
453  * in the same block group.   The PID is used here so that functionally related
454  * files will be close-by on-disk.
455  *
456  *      Caller must make sure that @ind is valid and will stay that way.
457  */
458 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
459 {
460         struct ext4_inode_info *ei = EXT4_I(inode);
461         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
462         __le32 *p;
463         ext4_fsblk_t bg_start;
464         ext4_fsblk_t last_block;
465         ext4_grpblk_t colour;
466         ext4_group_t block_group;
467         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
468
469         /* Try to find previous block */
470         for (p = ind->p - 1; p >= start; p--) {
471                 if (*p)
472                         return le32_to_cpu(*p);
473         }
474
475         /* No such thing, so let's try location of indirect block */
476         if (ind->bh)
477                 return ind->bh->b_blocknr;
478
479         /*
480          * It is going to be referred to from the inode itself? OK, just put it
481          * into the same cylinder group then.
482          */
483         block_group = ei->i_block_group;
484         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
485                 block_group &= ~(flex_size-1);
486                 if (S_ISREG(inode->i_mode))
487                         block_group++;
488         }
489         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
490         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
491
492         /*
493          * If we are doing delayed allocation, we don't need take
494          * colour into account.
495          */
496         if (test_opt(inode->i_sb, DELALLOC))
497                 return bg_start;
498
499         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
500                 colour = (current->pid % 16) *
501                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
502         else
503                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
504         return bg_start + colour;
505 }
506
507 /**
508  *      ext4_find_goal - find a preferred place for allocation.
509  *      @inode: owner
510  *      @block:  block we want
511  *      @partial: pointer to the last triple within a chain
512  *
513  *      Normally this function find the preferred place for block allocation,
514  *      returns it.
515  *      Because this is only used for non-extent files, we limit the block nr
516  *      to 32 bits.
517  */
518 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
519                                    Indirect *partial)
520 {
521         ext4_fsblk_t goal;
522
523         /*
524          * XXX need to get goal block from mballoc's data structures
525          */
526
527         goal = ext4_find_near(inode, partial);
528         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
529         return goal;
530 }
531
532 /**
533  *      ext4_blks_to_allocate: Look up the block map and count the number
534  *      of direct blocks need to be allocated for the given branch.
535  *
536  *      @branch: chain of indirect blocks
537  *      @k: number of blocks need for indirect blocks
538  *      @blks: number of data blocks to be mapped.
539  *      @blocks_to_boundary:  the offset in the indirect block
540  *
541  *      return the total number of blocks to be allocate, including the
542  *      direct and indirect blocks.
543  */
544 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
545                                  int blocks_to_boundary)
546 {
547         unsigned int count = 0;
548
549         /*
550          * Simple case, [t,d]Indirect block(s) has not allocated yet
551          * then it's clear blocks on that path have not allocated
552          */
553         if (k > 0) {
554                 /* right now we don't handle cross boundary allocation */
555                 if (blks < blocks_to_boundary + 1)
556                         count += blks;
557                 else
558                         count += blocks_to_boundary + 1;
559                 return count;
560         }
561
562         count++;
563         while (count < blks && count <= blocks_to_boundary &&
564                 le32_to_cpu(*(branch[0].p + count)) == 0) {
565                 count++;
566         }
567         return count;
568 }
569
570 /**
571  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
572  *      @indirect_blks: the number of blocks need to allocate for indirect
573  *                      blocks
574  *
575  *      @new_blocks: on return it will store the new block numbers for
576  *      the indirect blocks(if needed) and the first direct block,
577  *      @blks:  on return it will store the total number of allocated
578  *              direct blocks
579  */
580 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
581                              ext4_lblk_t iblock, ext4_fsblk_t goal,
582                              int indirect_blks, int blks,
583                              ext4_fsblk_t new_blocks[4], int *err)
584 {
585         struct ext4_allocation_request ar;
586         int target, i;
587         unsigned long count = 0, blk_allocated = 0;
588         int index = 0;
589         ext4_fsblk_t current_block = 0;
590         int ret = 0;
591
592         /*
593          * Here we try to allocate the requested multiple blocks at once,
594          * on a best-effort basis.
595          * To build a branch, we should allocate blocks for
596          * the indirect blocks(if not allocated yet), and at least
597          * the first direct block of this branch.  That's the
598          * minimum number of blocks need to allocate(required)
599          */
600         /* first we try to allocate the indirect blocks */
601         target = indirect_blks;
602         while (target > 0) {
603                 count = target;
604                 /* allocating blocks for indirect blocks and direct blocks */
605                 current_block = ext4_new_meta_blocks(handle, inode,
606                                                         goal, &count, err);
607                 if (*err)
608                         goto failed_out;
609
610                 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
611                         EXT4_ERROR_INODE(inode,
612                                          "current_block %llu + count %lu > %d!",
613                                          current_block, count,
614                                          EXT4_MAX_BLOCK_FILE_PHYS);
615                         *err = -EIO;
616                         goto failed_out;
617                 }
618
619                 target -= count;
620                 /* allocate blocks for indirect blocks */
621                 while (index < indirect_blks && count) {
622                         new_blocks[index++] = current_block++;
623                         count--;
624                 }
625                 if (count > 0) {
626                         /*
627                          * save the new block number
628                          * for the first direct block
629                          */
630                         new_blocks[index] = current_block;
631                         printk(KERN_INFO "%s returned more blocks than "
632                                                 "requested\n", __func__);
633                         WARN_ON(1);
634                         break;
635                 }
636         }
637
638         target = blks - count ;
639         blk_allocated = count;
640         if (!target)
641                 goto allocated;
642         /* Now allocate data blocks */
643         memset(&ar, 0, sizeof(ar));
644         ar.inode = inode;
645         ar.goal = goal;
646         ar.len = target;
647         ar.logical = iblock;
648         if (S_ISREG(inode->i_mode))
649                 /* enable in-core preallocation only for regular files */
650                 ar.flags = EXT4_MB_HINT_DATA;
651
652         current_block = ext4_mb_new_blocks(handle, &ar, err);
653         if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
654                 EXT4_ERROR_INODE(inode,
655                                  "current_block %llu + ar.len %d > %d!",
656                                  current_block, ar.len,
657                                  EXT4_MAX_BLOCK_FILE_PHYS);
658                 *err = -EIO;
659                 goto failed_out;
660         }
661
662         if (*err && (target == blks)) {
663                 /*
664                  * if the allocation failed and we didn't allocate
665                  * any blocks before
666                  */
667                 goto failed_out;
668         }
669         if (!*err) {
670                 if (target == blks) {
671                         /*
672                          * save the new block number
673                          * for the first direct block
674                          */
675                         new_blocks[index] = current_block;
676                 }
677                 blk_allocated += ar.len;
678         }
679 allocated:
680         /* total number of blocks allocated for direct blocks */
681         ret = blk_allocated;
682         *err = 0;
683         return ret;
684 failed_out:
685         for (i = 0; i < index; i++)
686                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
687         return ret;
688 }
689
690 /**
691  *      ext4_alloc_branch - allocate and set up a chain of blocks.
692  *      @inode: owner
693  *      @indirect_blks: number of allocated indirect blocks
694  *      @blks: number of allocated direct blocks
695  *      @offsets: offsets (in the blocks) to store the pointers to next.
696  *      @branch: place to store the chain in.
697  *
698  *      This function allocates blocks, zeroes out all but the last one,
699  *      links them into chain and (if we are synchronous) writes them to disk.
700  *      In other words, it prepares a branch that can be spliced onto the
701  *      inode. It stores the information about that chain in the branch[], in
702  *      the same format as ext4_get_branch() would do. We are calling it after
703  *      we had read the existing part of chain and partial points to the last
704  *      triple of that (one with zero ->key). Upon the exit we have the same
705  *      picture as after the successful ext4_get_block(), except that in one
706  *      place chain is disconnected - *branch->p is still zero (we did not
707  *      set the last link), but branch->key contains the number that should
708  *      be placed into *branch->p to fill that gap.
709  *
710  *      If allocation fails we free all blocks we've allocated (and forget
711  *      their buffer_heads) and return the error value the from failed
712  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
713  *      as described above and return 0.
714  */
715 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
716                              ext4_lblk_t iblock, int indirect_blks,
717                              int *blks, ext4_fsblk_t goal,
718                              ext4_lblk_t *offsets, Indirect *branch)
719 {
720         int blocksize = inode->i_sb->s_blocksize;
721         int i, n = 0;
722         int err = 0;
723         struct buffer_head *bh;
724         int num;
725         ext4_fsblk_t new_blocks[4];
726         ext4_fsblk_t current_block;
727
728         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
729                                 *blks, new_blocks, &err);
730         if (err)
731                 return err;
732
733         branch[0].key = cpu_to_le32(new_blocks[0]);
734         /*
735          * metadata blocks and data blocks are allocated.
736          */
737         for (n = 1; n <= indirect_blks;  n++) {
738                 /*
739                  * Get buffer_head for parent block, zero it out
740                  * and set the pointer to new one, then send
741                  * parent to disk.
742                  */
743                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
744                 branch[n].bh = bh;
745                 lock_buffer(bh);
746                 BUFFER_TRACE(bh, "call get_create_access");
747                 err = ext4_journal_get_create_access(handle, bh);
748                 if (err) {
749                         /* Don't brelse(bh) here; it's done in
750                          * ext4_journal_forget() below */
751                         unlock_buffer(bh);
752                         goto failed;
753                 }
754
755                 memset(bh->b_data, 0, blocksize);
756                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
757                 branch[n].key = cpu_to_le32(new_blocks[n]);
758                 *branch[n].p = branch[n].key;
759                 if (n == indirect_blks) {
760                         current_block = new_blocks[n];
761                         /*
762                          * End of chain, update the last new metablock of
763                          * the chain to point to the new allocated
764                          * data blocks numbers
765                          */
766                         for (i = 1; i < num; i++)
767                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
768                 }
769                 BUFFER_TRACE(bh, "marking uptodate");
770                 set_buffer_uptodate(bh);
771                 unlock_buffer(bh);
772
773                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
774                 err = ext4_handle_dirty_metadata(handle, inode, bh);
775                 if (err)
776                         goto failed;
777         }
778         *blks = num;
779         return err;
780 failed:
781         /* Allocation failed, free what we already allocated */
782         ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
783         for (i = 1; i <= n ; i++) {
784                 /* 
785                  * branch[i].bh is newly allocated, so there is no
786                  * need to revoke the block, which is why we don't
787                  * need to set EXT4_FREE_BLOCKS_METADATA.
788                  */
789                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
790                                  EXT4_FREE_BLOCKS_FORGET);
791         }
792         for (i = n+1; i < indirect_blks; i++)
793                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
794
795         ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
796
797         return err;
798 }
799
800 /**
801  * ext4_splice_branch - splice the allocated branch onto inode.
802  * @inode: owner
803  * @block: (logical) number of block we are adding
804  * @chain: chain of indirect blocks (with a missing link - see
805  *      ext4_alloc_branch)
806  * @where: location of missing link
807  * @num:   number of indirect blocks we are adding
808  * @blks:  number of direct blocks we are adding
809  *
810  * This function fills the missing link and does all housekeeping needed in
811  * inode (->i_blocks, etc.). In case of success we end up with the full
812  * chain to new block and return 0.
813  */
814 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
815                               ext4_lblk_t block, Indirect *where, int num,
816                               int blks)
817 {
818         int i;
819         int err = 0;
820         ext4_fsblk_t current_block;
821
822         /*
823          * If we're splicing into a [td]indirect block (as opposed to the
824          * inode) then we need to get write access to the [td]indirect block
825          * before the splice.
826          */
827         if (where->bh) {
828                 BUFFER_TRACE(where->bh, "get_write_access");
829                 err = ext4_journal_get_write_access(handle, where->bh);
830                 if (err)
831                         goto err_out;
832         }
833         /* That's it */
834
835         *where->p = where->key;
836
837         /*
838          * Update the host buffer_head or inode to point to more just allocated
839          * direct blocks blocks
840          */
841         if (num == 0 && blks > 1) {
842                 current_block = le32_to_cpu(where->key) + 1;
843                 for (i = 1; i < blks; i++)
844                         *(where->p + i) = cpu_to_le32(current_block++);
845         }
846
847         /* We are done with atomic stuff, now do the rest of housekeeping */
848         /* had we spliced it onto indirect block? */
849         if (where->bh) {
850                 /*
851                  * If we spliced it onto an indirect block, we haven't
852                  * altered the inode.  Note however that if it is being spliced
853                  * onto an indirect block at the very end of the file (the
854                  * file is growing) then we *will* alter the inode to reflect
855                  * the new i_size.  But that is not done here - it is done in
856                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
857                  */
858                 jbd_debug(5, "splicing indirect only\n");
859                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
860                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
861                 if (err)
862                         goto err_out;
863         } else {
864                 /*
865                  * OK, we spliced it into the inode itself on a direct block.
866                  */
867                 ext4_mark_inode_dirty(handle, inode);
868                 jbd_debug(5, "splicing direct\n");
869         }
870         return err;
871
872 err_out:
873         for (i = 1; i <= num; i++) {
874                 /* 
875                  * branch[i].bh is newly allocated, so there is no
876                  * need to revoke the block, which is why we don't
877                  * need to set EXT4_FREE_BLOCKS_METADATA.
878                  */
879                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
880                                  EXT4_FREE_BLOCKS_FORGET);
881         }
882         ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
883                          blks, 0);
884
885         return err;
886 }
887
888 /*
889  * The ext4_ind_get_blocks() function handles non-extents inodes
890  * (i.e., using the traditional indirect/double-indirect i_blocks
891  * scheme) for ext4_get_blocks().
892  *
893  * Allocation strategy is simple: if we have to allocate something, we will
894  * have to go the whole way to leaf. So let's do it before attaching anything
895  * to tree, set linkage between the newborn blocks, write them if sync is
896  * required, recheck the path, free and repeat if check fails, otherwise
897  * set the last missing link (that will protect us from any truncate-generated
898  * removals - all blocks on the path are immune now) and possibly force the
899  * write on the parent block.
900  * That has a nice additional property: no special recovery from the failed
901  * allocations is needed - we simply release blocks and do not touch anything
902  * reachable from inode.
903  *
904  * `handle' can be NULL if create == 0.
905  *
906  * return > 0, # of blocks mapped or allocated.
907  * return = 0, if plain lookup failed.
908  * return < 0, error case.
909  *
910  * The ext4_ind_get_blocks() function should be called with
911  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
912  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
913  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
914  * blocks.
915  */
916 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
917                                ext4_lblk_t iblock, unsigned int maxblocks,
918                                struct buffer_head *bh_result,
919                                int flags)
920 {
921         int err = -EIO;
922         ext4_lblk_t offsets[4];
923         Indirect chain[4];
924         Indirect *partial;
925         ext4_fsblk_t goal;
926         int indirect_blks;
927         int blocks_to_boundary = 0;
928         int depth;
929         int count = 0;
930         ext4_fsblk_t first_block = 0;
931
932         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
933         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
934         depth = ext4_block_to_path(inode, iblock, offsets,
935                                    &blocks_to_boundary);
936
937         if (depth == 0)
938                 goto out;
939
940         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
941
942         /* Simplest case - block found, no allocation needed */
943         if (!partial) {
944                 first_block = le32_to_cpu(chain[depth - 1].key);
945                 clear_buffer_new(bh_result);
946                 count++;
947                 /*map more blocks*/
948                 while (count < maxblocks && count <= blocks_to_boundary) {
949                         ext4_fsblk_t blk;
950
951                         blk = le32_to_cpu(*(chain[depth-1].p + count));
952
953                         if (blk == first_block + count)
954                                 count++;
955                         else
956                                 break;
957                 }
958                 goto got_it;
959         }
960
961         /* Next simple case - plain lookup or failed read of indirect block */
962         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
963                 goto cleanup;
964
965         /*
966          * Okay, we need to do block allocation.
967         */
968         goal = ext4_find_goal(inode, iblock, partial);
969
970         /* the number of blocks need to allocate for [d,t]indirect blocks */
971         indirect_blks = (chain + depth) - partial - 1;
972
973         /*
974          * Next look up the indirect map to count the totoal number of
975          * direct blocks to allocate for this branch.
976          */
977         count = ext4_blks_to_allocate(partial, indirect_blks,
978                                         maxblocks, blocks_to_boundary);
979         /*
980          * Block out ext4_truncate while we alter the tree
981          */
982         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
983                                 &count, goal,
984                                 offsets + (partial - chain), partial);
985
986         /*
987          * The ext4_splice_branch call will free and forget any buffers
988          * on the new chain if there is a failure, but that risks using
989          * up transaction credits, especially for bitmaps where the
990          * credits cannot be returned.  Can we handle this somehow?  We
991          * may need to return -EAGAIN upwards in the worst case.  --sct
992          */
993         if (!err)
994                 err = ext4_splice_branch(handle, inode, iblock,
995                                          partial, indirect_blks, count);
996         if (err)
997                 goto cleanup;
998
999         set_buffer_new(bh_result);
1000
1001         ext4_update_inode_fsync_trans(handle, inode, 1);
1002 got_it:
1003         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1004         if (count > blocks_to_boundary)
1005                 set_buffer_boundary(bh_result);
1006         err = count;
1007         /* Clean up and exit */
1008         partial = chain + depth - 1;    /* the whole chain */
1009 cleanup:
1010         while (partial > chain) {
1011                 BUFFER_TRACE(partial->bh, "call brelse");
1012                 brelse(partial->bh);
1013                 partial--;
1014         }
1015         BUFFER_TRACE(bh_result, "returned");
1016 out:
1017         return err;
1018 }
1019
1020 #ifdef CONFIG_QUOTA
1021 qsize_t *ext4_get_reserved_space(struct inode *inode)
1022 {
1023         return &EXT4_I(inode)->i_reserved_quota;
1024 }
1025 #endif
1026
1027 /*
1028  * Calculate the number of metadata blocks need to reserve
1029  * to allocate a new block at @lblocks for non extent file based file
1030  */
1031 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1032                                               sector_t lblock)
1033 {
1034         struct ext4_inode_info *ei = EXT4_I(inode);
1035         int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1;
1036         int blk_bits;
1037
1038         if (lblock < EXT4_NDIR_BLOCKS)
1039                 return 0;
1040
1041         lblock -= EXT4_NDIR_BLOCKS;
1042
1043         if (ei->i_da_metadata_calc_len &&
1044             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1045                 ei->i_da_metadata_calc_len++;
1046                 return 0;
1047         }
1048         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1049         ei->i_da_metadata_calc_len = 1;
1050         blk_bits = roundup_pow_of_two(lblock + 1);
1051         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1052 }
1053
1054 /*
1055  * Calculate the number of metadata blocks need to reserve
1056  * to allocate a block located at @lblock
1057  */
1058 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1059 {
1060         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1061                 return ext4_ext_calc_metadata_amount(inode, lblock);
1062
1063         return ext4_indirect_calc_metadata_amount(inode, lblock);
1064 }
1065
1066 /*
1067  * Called with i_data_sem down, which is important since we can call
1068  * ext4_discard_preallocations() from here.
1069  */
1070 void ext4_da_update_reserve_space(struct inode *inode,
1071                                         int used, int quota_claim)
1072 {
1073         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1074         struct ext4_inode_info *ei = EXT4_I(inode);
1075         int mdb_free = 0, allocated_meta_blocks = 0;
1076
1077         spin_lock(&ei->i_block_reservation_lock);
1078         trace_ext4_da_update_reserve_space(inode, used);
1079         if (unlikely(used > ei->i_reserved_data_blocks)) {
1080                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1081                          "with only %d reserved data blocks\n",
1082                          __func__, inode->i_ino, used,
1083                          ei->i_reserved_data_blocks);
1084                 WARN_ON(1);
1085                 used = ei->i_reserved_data_blocks;
1086         }
1087
1088         /* Update per-inode reservations */
1089         ei->i_reserved_data_blocks -= used;
1090         used += ei->i_allocated_meta_blocks;
1091         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1092         allocated_meta_blocks = ei->i_allocated_meta_blocks;
1093         ei->i_allocated_meta_blocks = 0;
1094         percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1095
1096         if (ei->i_reserved_data_blocks == 0) {
1097                 /*
1098                  * We can release all of the reserved metadata blocks
1099                  * only when we have written all of the delayed
1100                  * allocation blocks.
1101                  */
1102                 mdb_free = ei->i_reserved_meta_blocks;
1103                 ei->i_reserved_meta_blocks = 0;
1104                 ei->i_da_metadata_calc_len = 0;
1105                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1106         }
1107         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1108
1109         /* Update quota subsystem */
1110         if (quota_claim) {
1111                 vfs_dq_claim_block(inode, used);
1112                 if (mdb_free)
1113                         vfs_dq_release_reservation_block(inode, mdb_free);
1114         } else {
1115                 /*
1116                  * We did fallocate with an offset that is already delayed
1117                  * allocated. So on delayed allocated writeback we should
1118                  * not update the quota for allocated blocks. But then
1119                  * converting an fallocate region to initialized region would
1120                  * have caused a metadata allocation. So claim quota for
1121                  * that
1122                  */
1123                 if (allocated_meta_blocks)
1124                         vfs_dq_claim_block(inode, allocated_meta_blocks);
1125                 vfs_dq_release_reservation_block(inode, mdb_free + used);
1126         }
1127
1128         /*
1129          * If we have done all the pending block allocations and if
1130          * there aren't any writers on the inode, we can discard the
1131          * inode's preallocations.
1132          */
1133         if ((ei->i_reserved_data_blocks == 0) &&
1134             (atomic_read(&inode->i_writecount) == 0))
1135                 ext4_discard_preallocations(inode);
1136 }
1137
1138 static int check_block_validity(struct inode *inode, const char *msg,
1139                                 sector_t logical, sector_t phys, int len)
1140 {
1141         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1142                 __ext4_error(inode->i_sb, msg,
1143                            "inode #%lu logical block %llu mapped to %llu "
1144                            "(size %d)", inode->i_ino,
1145                            (unsigned long long) logical,
1146                            (unsigned long long) phys, len);
1147                 return -EIO;
1148         }
1149         return 0;
1150 }
1151
1152 /*
1153  * Return the number of contiguous dirty pages in a given inode
1154  * starting at page frame idx.
1155  */
1156 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1157                                     unsigned int max_pages)
1158 {
1159         struct address_space *mapping = inode->i_mapping;
1160         pgoff_t index;
1161         struct pagevec pvec;
1162         pgoff_t num = 0;
1163         int i, nr_pages, done = 0;
1164
1165         if (max_pages == 0)
1166                 return 0;
1167         pagevec_init(&pvec, 0);
1168         while (!done) {
1169                 index = idx;
1170                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1171                                               PAGECACHE_TAG_DIRTY,
1172                                               (pgoff_t)PAGEVEC_SIZE);
1173                 if (nr_pages == 0)
1174                         break;
1175                 for (i = 0; i < nr_pages; i++) {
1176                         struct page *page = pvec.pages[i];
1177                         struct buffer_head *bh, *head;
1178
1179                         lock_page(page);
1180                         if (unlikely(page->mapping != mapping) ||
1181                             !PageDirty(page) ||
1182                             PageWriteback(page) ||
1183                             page->index != idx) {
1184                                 done = 1;
1185                                 unlock_page(page);
1186                                 break;
1187                         }
1188                         if (page_has_buffers(page)) {
1189                                 bh = head = page_buffers(page);
1190                                 do {
1191                                         if (!buffer_delay(bh) &&
1192                                             !buffer_unwritten(bh))
1193                                                 done = 1;
1194                                         bh = bh->b_this_page;
1195                                 } while (!done && (bh != head));
1196                         }
1197                         unlock_page(page);
1198                         if (done)
1199                                 break;
1200                         idx++;
1201                         num++;
1202                         if (num >= max_pages)
1203                                 break;
1204                 }
1205                 pagevec_release(&pvec);
1206         }
1207         return num;
1208 }
1209
1210 /*
1211  * The ext4_get_blocks() function tries to look up the requested blocks,
1212  * and returns if the blocks are already mapped.
1213  *
1214  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1215  * and store the allocated blocks in the result buffer head and mark it
1216  * mapped.
1217  *
1218  * If file type is extents based, it will call ext4_ext_get_blocks(),
1219  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1220  * based files
1221  *
1222  * On success, it returns the number of blocks being mapped or allocate.
1223  * if create==0 and the blocks are pre-allocated and uninitialized block,
1224  * the result buffer head is unmapped. If the create ==1, it will make sure
1225  * the buffer head is mapped.
1226  *
1227  * It returns 0 if plain look up failed (blocks have not been allocated), in
1228  * that casem, buffer head is unmapped
1229  *
1230  * It returns the error in case of allocation failure.
1231  */
1232 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1233                     unsigned int max_blocks, struct buffer_head *bh,
1234                     int flags)
1235 {
1236         int retval;
1237
1238         clear_buffer_mapped(bh);
1239         clear_buffer_unwritten(bh);
1240
1241         ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1242                   "logical block %lu\n", inode->i_ino, flags, max_blocks,
1243                   (unsigned long)block);
1244         /*
1245          * Try to see if we can get the block without requesting a new
1246          * file system block.
1247          */
1248         down_read((&EXT4_I(inode)->i_data_sem));
1249         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1250                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1251                                 bh, 0);
1252         } else {
1253                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1254                                              bh, 0);
1255         }
1256         up_read((&EXT4_I(inode)->i_data_sem));
1257
1258         if (retval > 0 && buffer_mapped(bh)) {
1259                 int ret = check_block_validity(inode, "file system corruption",
1260                                                block, bh->b_blocknr, retval);
1261                 if (ret != 0)
1262                         return ret;
1263         }
1264
1265         /* If it is only a block(s) look up */
1266         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1267                 return retval;
1268
1269         /*
1270          * Returns if the blocks have already allocated
1271          *
1272          * Note that if blocks have been preallocated
1273          * ext4_ext_get_block() returns th create = 0
1274          * with buffer head unmapped.
1275          */
1276         if (retval > 0 && buffer_mapped(bh))
1277                 return retval;
1278
1279         /*
1280          * When we call get_blocks without the create flag, the
1281          * BH_Unwritten flag could have gotten set if the blocks
1282          * requested were part of a uninitialized extent.  We need to
1283          * clear this flag now that we are committed to convert all or
1284          * part of the uninitialized extent to be an initialized
1285          * extent.  This is because we need to avoid the combination
1286          * of BH_Unwritten and BH_Mapped flags being simultaneously
1287          * set on the buffer_head.
1288          */
1289         clear_buffer_unwritten(bh);
1290
1291         /*
1292          * New blocks allocate and/or writing to uninitialized extent
1293          * will possibly result in updating i_data, so we take
1294          * the write lock of i_data_sem, and call get_blocks()
1295          * with create == 1 flag.
1296          */
1297         down_write((&EXT4_I(inode)->i_data_sem));
1298
1299         /*
1300          * if the caller is from delayed allocation writeout path
1301          * we have already reserved fs blocks for allocation
1302          * let the underlying get_block() function know to
1303          * avoid double accounting
1304          */
1305         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1306                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1307         /*
1308          * We need to check for EXT4 here because migrate
1309          * could have changed the inode type in between
1310          */
1311         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1312                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1313                                               bh, flags);
1314         } else {
1315                 retval = ext4_ind_get_blocks(handle, inode, block,
1316                                              max_blocks, bh, flags);
1317
1318                 if (retval > 0 && buffer_new(bh)) {
1319                         /*
1320                          * We allocated new blocks which will result in
1321                          * i_data's format changing.  Force the migrate
1322                          * to fail by clearing migrate flags
1323                          */
1324                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1325                 }
1326
1327                 /*
1328                  * Update reserved blocks/metadata blocks after successful
1329                  * block allocation which had been deferred till now. We don't
1330                  * support fallocate for non extent files. So we can update
1331                  * reserve space here.
1332                  */
1333                 if ((retval > 0) &&
1334                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1335                         ext4_da_update_reserve_space(inode, retval, 1);
1336         }
1337         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1338                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1339
1340         up_write((&EXT4_I(inode)->i_data_sem));
1341         if (retval > 0 && buffer_mapped(bh)) {
1342                 int ret = check_block_validity(inode, "file system "
1343                                                "corruption after allocation",
1344                                                block, bh->b_blocknr, retval);
1345                 if (ret != 0)
1346                         return ret;
1347         }
1348         return retval;
1349 }
1350
1351 /* Maximum number of blocks we map for direct IO at once. */
1352 #define DIO_MAX_BLOCKS 4096
1353
1354 int ext4_get_block(struct inode *inode, sector_t iblock,
1355                    struct buffer_head *bh_result, int create)
1356 {
1357         handle_t *handle = ext4_journal_current_handle();
1358         int ret = 0, started = 0;
1359         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1360         int dio_credits;
1361
1362         if (create && !handle) {
1363                 /* Direct IO write... */
1364                 if (max_blocks > DIO_MAX_BLOCKS)
1365                         max_blocks = DIO_MAX_BLOCKS;
1366                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1367                 handle = ext4_journal_start(inode, dio_credits);
1368                 if (IS_ERR(handle)) {
1369                         ret = PTR_ERR(handle);
1370                         goto out;
1371                 }
1372                 started = 1;
1373         }
1374
1375         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1376                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1377         if (ret > 0) {
1378                 bh_result->b_size = (ret << inode->i_blkbits);
1379                 ret = 0;
1380         }
1381         if (started)
1382                 ext4_journal_stop(handle);
1383 out:
1384         return ret;
1385 }
1386
1387 /*
1388  * `handle' can be NULL if create is zero
1389  */
1390 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1391                                 ext4_lblk_t block, int create, int *errp)
1392 {
1393         struct buffer_head dummy;
1394         int fatal = 0, err;
1395         int flags = 0;
1396
1397         J_ASSERT(handle != NULL || create == 0);
1398
1399         dummy.b_state = 0;
1400         dummy.b_blocknr = -1000;
1401         buffer_trace_init(&dummy.b_history);
1402         if (create)
1403                 flags |= EXT4_GET_BLOCKS_CREATE;
1404         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1405         /*
1406          * ext4_get_blocks() returns number of blocks mapped. 0 in
1407          * case of a HOLE.
1408          */
1409         if (err > 0) {
1410                 if (err > 1)
1411                         WARN_ON(1);
1412                 err = 0;
1413         }
1414         *errp = err;
1415         if (!err && buffer_mapped(&dummy)) {
1416                 struct buffer_head *bh;
1417                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1418                 if (!bh) {
1419                         *errp = -EIO;
1420                         goto err;
1421                 }
1422                 if (buffer_new(&dummy)) {
1423                         J_ASSERT(create != 0);
1424                         J_ASSERT(handle != NULL);
1425
1426                         /*
1427                          * Now that we do not always journal data, we should
1428                          * keep in mind whether this should always journal the
1429                          * new buffer as metadata.  For now, regular file
1430                          * writes use ext4_get_block instead, so it's not a
1431                          * problem.
1432                          */
1433                         lock_buffer(bh);
1434                         BUFFER_TRACE(bh, "call get_create_access");
1435                         fatal = ext4_journal_get_create_access(handle, bh);
1436                         if (!fatal && !buffer_uptodate(bh)) {
1437                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1438                                 set_buffer_uptodate(bh);
1439                         }
1440                         unlock_buffer(bh);
1441                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1442                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1443                         if (!fatal)
1444                                 fatal = err;
1445                 } else {
1446                         BUFFER_TRACE(bh, "not a new buffer");
1447                 }
1448                 if (fatal) {
1449                         *errp = fatal;
1450                         brelse(bh);
1451                         bh = NULL;
1452                 }
1453                 return bh;
1454         }
1455 err:
1456         return NULL;
1457 }
1458
1459 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1460                                ext4_lblk_t block, int create, int *err)
1461 {
1462         struct buffer_head *bh;
1463
1464         bh = ext4_getblk(handle, inode, block, create, err);
1465         if (!bh)
1466                 return bh;
1467         if (buffer_uptodate(bh))
1468                 return bh;
1469         ll_rw_block(READ_META, 1, &bh);
1470         wait_on_buffer(bh);
1471         if (buffer_uptodate(bh))
1472                 return bh;
1473         put_bh(bh);
1474         *err = -EIO;
1475         return NULL;
1476 }
1477
1478 static int walk_page_buffers(handle_t *handle,
1479                              struct buffer_head *head,
1480                              unsigned from,
1481                              unsigned to,
1482                              int *partial,
1483                              int (*fn)(handle_t *handle,
1484                                        struct buffer_head *bh))
1485 {
1486         struct buffer_head *bh;
1487         unsigned block_start, block_end;
1488         unsigned blocksize = head->b_size;
1489         int err, ret = 0;
1490         struct buffer_head *next;
1491
1492         for (bh = head, block_start = 0;
1493              ret == 0 && (bh != head || !block_start);
1494              block_start = block_end, bh = next) {
1495                 next = bh->b_this_page;
1496                 block_end = block_start + blocksize;
1497                 if (block_end <= from || block_start >= to) {
1498                         if (partial && !buffer_uptodate(bh))
1499                                 *partial = 1;
1500                         continue;
1501                 }
1502                 err = (*fn)(handle, bh);
1503                 if (!ret)
1504                         ret = err;
1505         }
1506         return ret;
1507 }
1508
1509 /*
1510  * To preserve ordering, it is essential that the hole instantiation and
1511  * the data write be encapsulated in a single transaction.  We cannot
1512  * close off a transaction and start a new one between the ext4_get_block()
1513  * and the commit_write().  So doing the jbd2_journal_start at the start of
1514  * prepare_write() is the right place.
1515  *
1516  * Also, this function can nest inside ext4_writepage() ->
1517  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1518  * has generated enough buffer credits to do the whole page.  So we won't
1519  * block on the journal in that case, which is good, because the caller may
1520  * be PF_MEMALLOC.
1521  *
1522  * By accident, ext4 can be reentered when a transaction is open via
1523  * quota file writes.  If we were to commit the transaction while thus
1524  * reentered, there can be a deadlock - we would be holding a quota
1525  * lock, and the commit would never complete if another thread had a
1526  * transaction open and was blocking on the quota lock - a ranking
1527  * violation.
1528  *
1529  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1530  * will _not_ run commit under these circumstances because handle->h_ref
1531  * is elevated.  We'll still have enough credits for the tiny quotafile
1532  * write.
1533  */
1534 static int do_journal_get_write_access(handle_t *handle,
1535                                        struct buffer_head *bh)
1536 {
1537         if (!buffer_mapped(bh) || buffer_freed(bh))
1538                 return 0;
1539         return ext4_journal_get_write_access(handle, bh);
1540 }
1541
1542 /*
1543  * Truncate blocks that were not used by write. We have to truncate the
1544  * pagecache as well so that corresponding buffers get properly unmapped.
1545  */
1546 static void ext4_truncate_failed_write(struct inode *inode)
1547 {
1548         truncate_inode_pages(inode->i_mapping, inode->i_size);
1549         ext4_truncate(inode);
1550 }
1551
1552 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1553                    struct buffer_head *bh_result, int create);
1554 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1555                             loff_t pos, unsigned len, unsigned flags,
1556                             struct page **pagep, void **fsdata)
1557 {
1558         struct inode *inode = mapping->host;
1559         int ret, needed_blocks;
1560         handle_t *handle;
1561         int retries = 0;
1562         struct page *page;
1563         pgoff_t index;
1564         unsigned from, to;
1565
1566         trace_ext4_write_begin(inode, pos, len, flags);
1567         /*
1568          * Reserve one block more for addition to orphan list in case
1569          * we allocate blocks but write fails for some reason
1570          */
1571         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1572         index = pos >> PAGE_CACHE_SHIFT;
1573         from = pos & (PAGE_CACHE_SIZE - 1);
1574         to = from + len;
1575
1576 retry:
1577         handle = ext4_journal_start(inode, needed_blocks);
1578         if (IS_ERR(handle)) {
1579                 ret = PTR_ERR(handle);
1580                 goto out;
1581         }
1582
1583         /* We cannot recurse into the filesystem as the transaction is already
1584          * started */
1585         flags |= AOP_FLAG_NOFS;
1586
1587         page = grab_cache_page_write_begin(mapping, index, flags);
1588         if (!page) {
1589                 ext4_journal_stop(handle);
1590                 ret = -ENOMEM;
1591                 goto out;
1592         }
1593         *pagep = page;
1594
1595         if (ext4_should_dioread_nolock(inode))
1596                 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1597                                 fsdata, ext4_get_block_write);
1598         else
1599                 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1600                                 fsdata, ext4_get_block);
1601
1602         if (!ret && ext4_should_journal_data(inode)) {
1603                 ret = walk_page_buffers(handle, page_buffers(page),
1604                                 from, to, NULL, do_journal_get_write_access);
1605         }
1606
1607         if (ret) {
1608                 unlock_page(page);
1609                 page_cache_release(page);
1610                 /*
1611                  * block_write_begin may have instantiated a few blocks
1612                  * outside i_size.  Trim these off again. Don't need
1613                  * i_size_read because we hold i_mutex.
1614                  *
1615                  * Add inode to orphan list in case we crash before
1616                  * truncate finishes
1617                  */
1618                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1619                         ext4_orphan_add(handle, inode);
1620
1621                 ext4_journal_stop(handle);
1622                 if (pos + len > inode->i_size) {
1623                         ext4_truncate_failed_write(inode);
1624                         /*
1625                          * If truncate failed early the inode might
1626                          * still be on the orphan list; we need to
1627                          * make sure the inode is removed from the
1628                          * orphan list in that case.
1629                          */
1630                         if (inode->i_nlink)
1631                                 ext4_orphan_del(NULL, inode);
1632                 }
1633         }
1634
1635         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1636                 goto retry;
1637 out:
1638         return ret;
1639 }
1640
1641 /* For write_end() in data=journal mode */
1642 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1643 {
1644         if (!buffer_mapped(bh) || buffer_freed(bh))
1645                 return 0;
1646         set_buffer_uptodate(bh);
1647         return ext4_handle_dirty_metadata(handle, NULL, bh);
1648 }
1649
1650 static int ext4_generic_write_end(struct file *file,
1651                                   struct address_space *mapping,
1652                                   loff_t pos, unsigned len, unsigned copied,
1653                                   struct page *page, void *fsdata)
1654 {
1655         int i_size_changed = 0;
1656         struct inode *inode = mapping->host;
1657         handle_t *handle = ext4_journal_current_handle();
1658
1659         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1660
1661         /*
1662          * No need to use i_size_read() here, the i_size
1663          * cannot change under us because we hold i_mutex.
1664          *
1665          * But it's important to update i_size while still holding page lock:
1666          * page writeout could otherwise come in and zero beyond i_size.
1667          */
1668         if (pos + copied > inode->i_size) {
1669                 i_size_write(inode, pos + copied);
1670                 i_size_changed = 1;
1671         }
1672
1673         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1674                 /* We need to mark inode dirty even if
1675                  * new_i_size is less that inode->i_size
1676                  * bu greater than i_disksize.(hint delalloc)
1677                  */
1678                 ext4_update_i_disksize(inode, (pos + copied));
1679                 i_size_changed = 1;
1680         }
1681         unlock_page(page);
1682         page_cache_release(page);
1683
1684         /*
1685          * Don't mark the inode dirty under page lock. First, it unnecessarily
1686          * makes the holding time of page lock longer. Second, it forces lock
1687          * ordering of page lock and transaction start for journaling
1688          * filesystems.
1689          */
1690         if (i_size_changed)
1691                 ext4_mark_inode_dirty(handle, inode);
1692
1693         return copied;
1694 }
1695
1696 /*
1697  * We need to pick up the new inode size which generic_commit_write gave us
1698  * `file' can be NULL - eg, when called from page_symlink().
1699  *
1700  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1701  * buffers are managed internally.
1702  */
1703 static int ext4_ordered_write_end(struct file *file,
1704                                   struct address_space *mapping,
1705                                   loff_t pos, unsigned len, unsigned copied,
1706                                   struct page *page, void *fsdata)
1707 {
1708         handle_t *handle = ext4_journal_current_handle();
1709         struct inode *inode = mapping->host;
1710         int ret = 0, ret2;
1711
1712         trace_ext4_ordered_write_end(inode, pos, len, copied);
1713         ret = ext4_jbd2_file_inode(handle, inode);
1714
1715         if (ret == 0) {
1716                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1717                                                         page, fsdata);
1718                 copied = ret2;
1719                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1720                         /* if we have allocated more blocks and copied
1721                          * less. We will have blocks allocated outside
1722                          * inode->i_size. So truncate them
1723                          */
1724                         ext4_orphan_add(handle, inode);
1725                 if (ret2 < 0)
1726                         ret = ret2;
1727         }
1728         ret2 = ext4_journal_stop(handle);
1729         if (!ret)
1730                 ret = ret2;
1731
1732         if (pos + len > inode->i_size) {
1733                 ext4_truncate_failed_write(inode);
1734                 /*
1735                  * If truncate failed early the inode might still be
1736                  * on the orphan list; we need to make sure the inode
1737                  * is removed from the orphan list in that case.
1738                  */
1739                 if (inode->i_nlink)
1740                         ext4_orphan_del(NULL, inode);
1741         }
1742
1743
1744         return ret ? ret : copied;
1745 }
1746
1747 static int ext4_writeback_write_end(struct file *file,
1748                                     struct address_space *mapping,
1749                                     loff_t pos, unsigned len, unsigned copied,
1750                                     struct page *page, void *fsdata)
1751 {
1752         handle_t *handle = ext4_journal_current_handle();
1753         struct inode *inode = mapping->host;
1754         int ret = 0, ret2;
1755
1756         trace_ext4_writeback_write_end(inode, pos, len, copied);
1757         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1758                                                         page, fsdata);
1759         copied = ret2;
1760         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1761                 /* if we have allocated more blocks and copied
1762                  * less. We will have blocks allocated outside
1763                  * inode->i_size. So truncate them
1764                  */
1765                 ext4_orphan_add(handle, inode);
1766
1767         if (ret2 < 0)
1768                 ret = ret2;
1769
1770         ret2 = ext4_journal_stop(handle);
1771         if (!ret)
1772                 ret = ret2;
1773
1774         if (pos + len > inode->i_size) {
1775                 ext4_truncate_failed_write(inode);
1776                 /*
1777                  * If truncate failed early the inode might still be
1778                  * on the orphan list; we need to make sure the inode
1779                  * is removed from the orphan list in that case.
1780                  */
1781                 if (inode->i_nlink)
1782                         ext4_orphan_del(NULL, inode);
1783         }
1784
1785         return ret ? ret : copied;
1786 }
1787
1788 static int ext4_journalled_write_end(struct file *file,
1789                                      struct address_space *mapping,
1790                                      loff_t pos, unsigned len, unsigned copied,
1791                                      struct page *page, void *fsdata)
1792 {
1793         handle_t *handle = ext4_journal_current_handle();
1794         struct inode *inode = mapping->host;
1795         int ret = 0, ret2;
1796         int partial = 0;
1797         unsigned from, to;
1798         loff_t new_i_size;
1799
1800         trace_ext4_journalled_write_end(inode, pos, len, copied);
1801         from = pos & (PAGE_CACHE_SIZE - 1);
1802         to = from + len;
1803
1804         if (copied < len) {
1805                 if (!PageUptodate(page))
1806                         copied = 0;
1807                 page_zero_new_buffers(page, from+copied, to);
1808         }
1809
1810         ret = walk_page_buffers(handle, page_buffers(page), from,
1811                                 to, &partial, write_end_fn);
1812         if (!partial)
1813                 SetPageUptodate(page);
1814         new_i_size = pos + copied;
1815         if (new_i_size > inode->i_size)
1816                 i_size_write(inode, pos+copied);
1817         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1818         if (new_i_size > EXT4_I(inode)->i_disksize) {
1819                 ext4_update_i_disksize(inode, new_i_size);
1820                 ret2 = ext4_mark_inode_dirty(handle, inode);
1821                 if (!ret)
1822                         ret = ret2;
1823         }
1824
1825         unlock_page(page);
1826         page_cache_release(page);
1827         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1828                 /* if we have allocated more blocks and copied
1829                  * less. We will have blocks allocated outside
1830                  * inode->i_size. So truncate them
1831                  */
1832                 ext4_orphan_add(handle, inode);
1833
1834         ret2 = ext4_journal_stop(handle);
1835         if (!ret)
1836                 ret = ret2;
1837         if (pos + len > inode->i_size) {
1838                 ext4_truncate_failed_write(inode);
1839                 /*
1840                  * If truncate failed early the inode might still be
1841                  * on the orphan list; we need to make sure the inode
1842                  * is removed from the orphan list in that case.
1843                  */
1844                 if (inode->i_nlink)
1845                         ext4_orphan_del(NULL, inode);
1846         }
1847
1848         return ret ? ret : copied;
1849 }
1850
1851 /*
1852  * Reserve a single block located at lblock
1853  */
1854 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1855 {
1856         int retries = 0;
1857         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1858         struct ext4_inode_info *ei = EXT4_I(inode);
1859         unsigned long md_needed, md_reserved;
1860
1861         /*
1862          * recalculate the amount of metadata blocks to reserve
1863          * in order to allocate nrblocks
1864          * worse case is one extent per block
1865          */
1866 repeat:
1867         spin_lock(&ei->i_block_reservation_lock);
1868         md_reserved = ei->i_reserved_meta_blocks;
1869         md_needed = ext4_calc_metadata_amount(inode, lblock);
1870         trace_ext4_da_reserve_space(inode, md_needed);
1871         spin_unlock(&ei->i_block_reservation_lock);
1872
1873         /*
1874          * Make quota reservation here to prevent quota overflow
1875          * later. Real quota accounting is done at pages writeout
1876          * time.
1877          */
1878         if (vfs_dq_reserve_block(inode, md_needed + 1))
1879                 return -EDQUOT;
1880
1881         if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1882                 vfs_dq_release_reservation_block(inode, md_needed + 1);
1883                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1884                         yield();
1885                         goto repeat;
1886                 }
1887                 return -ENOSPC;
1888         }
1889         spin_lock(&ei->i_block_reservation_lock);
1890         ei->i_reserved_data_blocks++;
1891         ei->i_reserved_meta_blocks += md_needed;
1892         spin_unlock(&ei->i_block_reservation_lock);
1893
1894         return 0;       /* success */
1895 }
1896
1897 static void ext4_da_release_space(struct inode *inode, int to_free)
1898 {
1899         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1900         struct ext4_inode_info *ei = EXT4_I(inode);
1901
1902         if (!to_free)
1903                 return;         /* Nothing to release, exit */
1904
1905         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1906
1907         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1908                 /*
1909                  * if there aren't enough reserved blocks, then the
1910                  * counter is messed up somewhere.  Since this
1911                  * function is called from invalidate page, it's
1912                  * harmless to return without any action.
1913                  */
1914                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1915                          "ino %lu, to_free %d with only %d reserved "
1916                          "data blocks\n", inode->i_ino, to_free,
1917                          ei->i_reserved_data_blocks);
1918                 WARN_ON(1);
1919                 to_free = ei->i_reserved_data_blocks;
1920         }
1921         ei->i_reserved_data_blocks -= to_free;
1922
1923         if (ei->i_reserved_data_blocks == 0) {
1924                 /*
1925                  * We can release all of the reserved metadata blocks
1926                  * only when we have written all of the delayed
1927                  * allocation blocks.
1928                  */
1929                 to_free += ei->i_reserved_meta_blocks;
1930                 ei->i_reserved_meta_blocks = 0;
1931                 ei->i_da_metadata_calc_len = 0;
1932         }
1933
1934         /* update fs dirty blocks counter */
1935         percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1936
1937         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1938
1939         vfs_dq_release_reservation_block(inode, to_free);
1940 }
1941
1942 static void ext4_da_page_release_reservation(struct page *page,
1943                                              unsigned long offset)
1944 {
1945         int to_release = 0;
1946         struct buffer_head *head, *bh;
1947         unsigned int curr_off = 0;
1948
1949         head = page_buffers(page);
1950         bh = head;
1951         do {
1952                 unsigned int next_off = curr_off + bh->b_size;
1953
1954                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1955                         to_release++;
1956                         clear_buffer_delay(bh);
1957                 }
1958                 curr_off = next_off;
1959         } while ((bh = bh->b_this_page) != head);
1960         ext4_da_release_space(page->mapping->host, to_release);
1961 }
1962
1963 /*
1964  * Delayed allocation stuff
1965  */
1966
1967 /*
1968  * mpage_da_submit_io - walks through extent of pages and try to write
1969  * them with writepage() call back
1970  *
1971  * @mpd->inode: inode
1972  * @mpd->first_page: first page of the extent
1973  * @mpd->next_page: page after the last page of the extent
1974  *
1975  * By the time mpage_da_submit_io() is called we expect all blocks
1976  * to be allocated. this may be wrong if allocation failed.
1977  *
1978  * As pages are already locked by write_cache_pages(), we can't use it
1979  */
1980 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1981 {
1982         long pages_skipped;
1983         struct pagevec pvec;
1984         unsigned long index, end;
1985         int ret = 0, err, nr_pages, i;
1986         struct inode *inode = mpd->inode;
1987         struct address_space *mapping = inode->i_mapping;
1988
1989         BUG_ON(mpd->next_page <= mpd->first_page);
1990         /*
1991          * We need to start from the first_page to the next_page - 1
1992          * to make sure we also write the mapped dirty buffer_heads.
1993          * If we look at mpd->b_blocknr we would only be looking
1994          * at the currently mapped buffer_heads.
1995          */
1996         index = mpd->first_page;
1997         end = mpd->next_page - 1;
1998
1999         pagevec_init(&pvec, 0);
2000         while (index <= end) {
2001                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2002                 if (nr_pages == 0)
2003                         break;
2004                 for (i = 0; i < nr_pages; i++) {
2005                         struct page *page = pvec.pages[i];
2006
2007                         index = page->index;
2008                         if (index > end)
2009                                 break;
2010                         index++;
2011
2012                         BUG_ON(!PageLocked(page));
2013                         BUG_ON(PageWriteback(page));
2014
2015                         pages_skipped = mpd->wbc->pages_skipped;
2016                         err = mapping->a_ops->writepage(page, mpd->wbc);
2017                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2018                                 /*
2019                                  * have successfully written the page
2020                                  * without skipping the same
2021                                  */
2022                                 mpd->pages_written++;
2023                         /*
2024                          * In error case, we have to continue because
2025                          * remaining pages are still locked
2026                          * XXX: unlock and re-dirty them?
2027                          */
2028                         if (ret == 0)
2029                                 ret = err;
2030                 }
2031                 pagevec_release(&pvec);
2032         }
2033         return ret;
2034 }
2035
2036 /*
2037  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2038  *
2039  * @mpd->inode - inode to walk through
2040  * @exbh->b_blocknr - first block on a disk
2041  * @exbh->b_size - amount of space in bytes
2042  * @logical - first logical block to start assignment with
2043  *
2044  * the function goes through all passed space and put actual disk
2045  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2046  */
2047 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2048                                  struct buffer_head *exbh)
2049 {
2050         struct inode *inode = mpd->inode;
2051         struct address_space *mapping = inode->i_mapping;
2052         int blocks = exbh->b_size >> inode->i_blkbits;
2053         sector_t pblock = exbh->b_blocknr, cur_logical;
2054         struct buffer_head *head, *bh;
2055         pgoff_t index, end;
2056         struct pagevec pvec;
2057         int nr_pages, i;
2058
2059         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2060         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2061         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2062
2063         pagevec_init(&pvec, 0);
2064
2065         while (index <= end) {
2066                 /* XXX: optimize tail */
2067                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2068                 if (nr_pages == 0)
2069                         break;
2070                 for (i = 0; i < nr_pages; i++) {
2071                         struct page *page = pvec.pages[i];
2072
2073                         index = page->index;
2074                         if (index > end)
2075                                 break;
2076                         index++;
2077
2078                         BUG_ON(!PageLocked(page));
2079                         BUG_ON(PageWriteback(page));
2080                         BUG_ON(!page_has_buffers(page));
2081
2082                         bh = page_buffers(page);
2083                         head = bh;
2084
2085                         /* skip blocks out of the range */
2086                         do {
2087                                 if (cur_logical >= logical)
2088                                         break;
2089                                 cur_logical++;
2090                         } while ((bh = bh->b_this_page) != head);
2091
2092                         do {
2093                                 if (cur_logical >= logical + blocks)
2094                                         break;
2095
2096                                 if (buffer_delay(bh) ||
2097                                                 buffer_unwritten(bh)) {
2098
2099                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2100
2101                                         if (buffer_delay(bh)) {
2102                                                 clear_buffer_delay(bh);
2103                                                 bh->b_blocknr = pblock;
2104                                         } else {
2105                                                 /*
2106                                                  * unwritten already should have
2107                                                  * blocknr assigned. Verify that
2108                                                  */
2109                                                 clear_buffer_unwritten(bh);
2110                                                 BUG_ON(bh->b_blocknr != pblock);
2111                                         }
2112
2113                                 } else if (buffer_mapped(bh))
2114                                         BUG_ON(bh->b_blocknr != pblock);
2115
2116                                 if (buffer_uninit(exbh))
2117                                         set_buffer_uninit(bh);
2118                                 cur_logical++;
2119                                 pblock++;
2120                         } while ((bh = bh->b_this_page) != head);
2121                 }
2122                 pagevec_release(&pvec);
2123         }
2124 }
2125
2126
2127 /*
2128  * __unmap_underlying_blocks - just a helper function to unmap
2129  * set of blocks described by @bh
2130  */
2131 static inline void __unmap_underlying_blocks(struct inode *inode,
2132                                              struct buffer_head *bh)
2133 {
2134         struct block_device *bdev = inode->i_sb->s_bdev;
2135         int blocks, i;
2136
2137         blocks = bh->b_size >> inode->i_blkbits;
2138         for (i = 0; i < blocks; i++)
2139                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2140 }
2141
2142 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2143                                         sector_t logical, long blk_cnt)
2144 {
2145         int nr_pages, i;
2146         pgoff_t index, end;
2147         struct pagevec pvec;
2148         struct inode *inode = mpd->inode;
2149         struct address_space *mapping = inode->i_mapping;
2150
2151         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2152         end   = (logical + blk_cnt - 1) >>
2153                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2154         while (index <= end) {
2155                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2156                 if (nr_pages == 0)
2157                         break;
2158                 for (i = 0; i < nr_pages; i++) {
2159                         struct page *page = pvec.pages[i];
2160                         index = page->index;
2161                         if (index > end)
2162                                 break;
2163                         index++;
2164
2165                         BUG_ON(!PageLocked(page));
2166                         BUG_ON(PageWriteback(page));
2167                         block_invalidatepage(page, 0);
2168                         ClearPageUptodate(page);
2169                         unlock_page(page);
2170                 }
2171         }
2172         return;
2173 }
2174
2175 static void ext4_print_free_blocks(struct inode *inode)
2176 {
2177         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2178         printk(KERN_CRIT "Total free blocks count %lld\n",
2179                ext4_count_free_blocks(inode->i_sb));
2180         printk(KERN_CRIT "Free/Dirty block details\n");
2181         printk(KERN_CRIT "free_blocks=%lld\n",
2182                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2183         printk(KERN_CRIT "dirty_blocks=%lld\n",
2184                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2185         printk(KERN_CRIT "Block reservation details\n");
2186         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2187                EXT4_I(inode)->i_reserved_data_blocks);
2188         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2189                EXT4_I(inode)->i_reserved_meta_blocks);
2190         return;
2191 }
2192
2193 /*
2194  * mpage_da_map_blocks - go through given space
2195  *
2196  * @mpd - bh describing space
2197  *
2198  * The function skips space we know is already mapped to disk blocks.
2199  *
2200  */
2201 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2202 {
2203         int err, blks, get_blocks_flags;
2204         struct buffer_head new;
2205         sector_t next = mpd->b_blocknr;
2206         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2207         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2208         handle_t *handle = NULL;
2209
2210         /*
2211          * We consider only non-mapped and non-allocated blocks
2212          */
2213         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2214                 !(mpd->b_state & (1 << BH_Delay)) &&
2215                 !(mpd->b_state & (1 << BH_Unwritten)))
2216                 return 0;
2217
2218         /*
2219          * If we didn't accumulate anything to write simply return
2220          */
2221         if (!mpd->b_size)
2222                 return 0;
2223
2224         handle = ext4_journal_current_handle();
2225         BUG_ON(!handle);
2226
2227         /*
2228          * Call ext4_get_blocks() to allocate any delayed allocation
2229          * blocks, or to convert an uninitialized extent to be
2230          * initialized (in the case where we have written into
2231          * one or more preallocated blocks).
2232          *
2233          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2234          * indicate that we are on the delayed allocation path.  This
2235          * affects functions in many different parts of the allocation
2236          * call path.  This flag exists primarily because we don't
2237          * want to change *many* call functions, so ext4_get_blocks()
2238          * will set the magic i_delalloc_reserved_flag once the
2239          * inode's allocation semaphore is taken.
2240          *
2241          * If the blocks in questions were delalloc blocks, set
2242          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2243          * variables are updated after the blocks have been allocated.
2244          */
2245         new.b_state = 0;
2246         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2247         if (ext4_should_dioread_nolock(mpd->inode))
2248                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2249         if (mpd->b_state & (1 << BH_Delay))
2250                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2251
2252         blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2253                                &new, get_blocks_flags);
2254         if (blks < 0) {
2255                 err = blks;
2256                 /*
2257                  * If get block returns with error we simply
2258                  * return. Later writepage will redirty the page and
2259                  * writepages will find the dirty page again
2260                  */
2261                 if (err == -EAGAIN)
2262                         return 0;
2263
2264                 if (err == -ENOSPC &&
2265                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2266                         mpd->retval = err;
2267                         return 0;
2268                 }
2269
2270                 /*
2271                  * get block failure will cause us to loop in
2272                  * writepages, because a_ops->writepage won't be able
2273                  * to make progress. The page will be redirtied by
2274                  * writepage and writepages will again try to write
2275                  * the same.
2276                  */
2277                 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2278                          "delayed block allocation failed for inode %lu at "
2279                          "logical offset %llu with max blocks %zd with "
2280                          "error %d\n", mpd->inode->i_ino,
2281                          (unsigned long long) next,
2282                          mpd->b_size >> mpd->inode->i_blkbits, err);
2283                 printk(KERN_CRIT "This should not happen!!  "
2284                        "Data will be lost\n");
2285                 if (err == -ENOSPC) {
2286                         ext4_print_free_blocks(mpd->inode);
2287                 }
2288                 /* invalidate all the pages */
2289                 ext4_da_block_invalidatepages(mpd, next,
2290                                 mpd->b_size >> mpd->inode->i_blkbits);
2291                 return err;
2292         }
2293         BUG_ON(blks == 0);
2294
2295         new.b_size = (blks << mpd->inode->i_blkbits);
2296
2297         if (buffer_new(&new))
2298                 __unmap_underlying_blocks(mpd->inode, &new);
2299
2300         /*
2301          * If blocks are delayed marked, we need to
2302          * put actual blocknr and drop delayed bit
2303          */
2304         if ((mpd->b_state & (1 << BH_Delay)) ||
2305             (mpd->b_state & (1 << BH_Unwritten)))
2306                 mpage_put_bnr_to_bhs(mpd, next, &new);
2307
2308         if (ext4_should_order_data(mpd->inode)) {
2309                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2310                 if (err)
2311                         return err;
2312         }
2313
2314         /*
2315          * Update on-disk size along with block allocation.
2316          */
2317         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2318         if (disksize > i_size_read(mpd->inode))
2319                 disksize = i_size_read(mpd->inode);
2320         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2321                 ext4_update_i_disksize(mpd->inode, disksize);
2322                 return ext4_mark_inode_dirty(handle, mpd->inode);
2323         }
2324
2325         return 0;
2326 }
2327
2328 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2329                 (1 << BH_Delay) | (1 << BH_Unwritten))
2330
2331 /*
2332  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2333  *
2334  * @mpd->lbh - extent of blocks
2335  * @logical - logical number of the block in the file
2336  * @bh - bh of the block (used to access block's state)
2337  *
2338  * the function is used to collect contig. blocks in same state
2339  */
2340 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2341                                    sector_t logical, size_t b_size,
2342                                    unsigned long b_state)
2343 {
2344         sector_t next;
2345         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2346
2347         /* check if thereserved journal credits might overflow */
2348         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2349                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2350                         /*
2351                          * With non-extent format we are limited by the journal
2352                          * credit available.  Total credit needed to insert
2353                          * nrblocks contiguous blocks is dependent on the
2354                          * nrblocks.  So limit nrblocks.
2355                          */
2356                         goto flush_it;
2357                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2358                                 EXT4_MAX_TRANS_DATA) {
2359                         /*
2360                          * Adding the new buffer_head would make it cross the
2361                          * allowed limit for which we have journal credit
2362                          * reserved. So limit the new bh->b_size
2363                          */
2364                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2365                                                 mpd->inode->i_blkbits;
2366                         /* we will do mpage_da_submit_io in the next loop */
2367                 }
2368         }
2369         /*
2370          * First block in the extent
2371          */
2372         if (mpd->b_size == 0) {
2373                 mpd->b_blocknr = logical;
2374                 mpd->b_size = b_size;
2375                 mpd->b_state = b_state & BH_FLAGS;
2376                 return;
2377         }
2378
2379         next = mpd->b_blocknr + nrblocks;
2380         /*
2381          * Can we merge the block to our big extent?
2382          */
2383         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2384                 mpd->b_size += b_size;
2385                 return;
2386         }
2387
2388 flush_it:
2389         /*
2390          * We couldn't merge the block to our extent, so we
2391          * need to flush current  extent and start new one
2392          */
2393         if (mpage_da_map_blocks(mpd) == 0)
2394                 mpage_da_submit_io(mpd);
2395         mpd->io_done = 1;
2396         return;
2397 }
2398
2399 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2400 {
2401         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2402 }
2403
2404 /*
2405  * __mpage_da_writepage - finds extent of pages and blocks
2406  *
2407  * @page: page to consider
2408  * @wbc: not used, we just follow rules
2409  * @data: context
2410  *
2411  * The function finds extents of pages and scan them for all blocks.
2412  */
2413 static int __mpage_da_writepage(struct page *page,
2414                                 struct writeback_control *wbc, void *data)
2415 {
2416         struct mpage_da_data *mpd = data;
2417         struct inode *inode = mpd->inode;
2418         struct buffer_head *bh, *head;
2419         sector_t logical;
2420
2421         if (mpd->io_done) {
2422                 /*
2423                  * Rest of the page in the page_vec
2424                  * redirty then and skip then. We will
2425                  * try to write them again after
2426                  * starting a new transaction
2427                  */
2428                 redirty_page_for_writepage(wbc, page);
2429                 unlock_page(page);
2430                 return MPAGE_DA_EXTENT_TAIL;
2431         }
2432         /*
2433          * Can we merge this page to current extent?
2434          */
2435         if (mpd->next_page != page->index) {
2436                 /*
2437                  * Nope, we can't. So, we map non-allocated blocks
2438                  * and start IO on them using writepage()
2439                  */
2440                 if (mpd->next_page != mpd->first_page) {
2441                         if (mpage_da_map_blocks(mpd) == 0)
2442                                 mpage_da_submit_io(mpd);
2443                         /*
2444                          * skip rest of the page in the page_vec
2445                          */
2446                         mpd->io_done = 1;
2447                         redirty_page_for_writepage(wbc, page);
2448                         unlock_page(page);
2449                         return MPAGE_DA_EXTENT_TAIL;
2450                 }
2451
2452                 /*
2453                  * Start next extent of pages ...
2454                  */
2455                 mpd->first_page = page->index;
2456
2457                 /*
2458                  * ... and blocks
2459                  */
2460                 mpd->b_size = 0;
2461                 mpd->b_state = 0;
2462                 mpd->b_blocknr = 0;
2463         }
2464
2465         mpd->next_page = page->index + 1;
2466         logical = (sector_t) page->index <<
2467                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2468
2469         if (!page_has_buffers(page)) {
2470                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2471                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2472                 if (mpd->io_done)
2473                         return MPAGE_DA_EXTENT_TAIL;
2474         } else {
2475                 /*
2476                  * Page with regular buffer heads, just add all dirty ones
2477                  */
2478                 head = page_buffers(page);
2479                 bh = head;
2480                 do {
2481                         BUG_ON(buffer_locked(bh));
2482                         /*
2483                          * We need to try to allocate
2484                          * unmapped blocks in the same page.
2485                          * Otherwise we won't make progress
2486                          * with the page in ext4_writepage
2487                          */
2488                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2489                                 mpage_add_bh_to_extent(mpd, logical,
2490                                                        bh->b_size,
2491                                                        bh->b_state);
2492                                 if (mpd->io_done)
2493                                         return MPAGE_DA_EXTENT_TAIL;
2494                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2495                                 /*
2496                                  * mapped dirty buffer. We need to update
2497                                  * the b_state because we look at
2498                                  * b_state in mpage_da_map_blocks. We don't
2499                                  * update b_size because if we find an
2500                                  * unmapped buffer_head later we need to
2501                                  * use the b_state flag of that buffer_head.
2502                                  */
2503                                 if (mpd->b_size == 0)
2504                                         mpd->b_state = bh->b_state & BH_FLAGS;
2505                         }
2506                         logical++;
2507                 } while ((bh = bh->b_this_page) != head);
2508         }
2509
2510         return 0;
2511 }
2512
2513 /*
2514  * This is a special get_blocks_t callback which is used by
2515  * ext4_da_write_begin().  It will either return mapped block or
2516  * reserve space for a single block.
2517  *
2518  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2519  * We also have b_blocknr = -1 and b_bdev initialized properly
2520  *
2521  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2522  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2523  * initialized properly.
2524  */
2525 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2526                                   struct buffer_head *bh_result, int create)
2527 {
2528         int ret = 0;
2529         sector_t invalid_block = ~((sector_t) 0xffff);
2530
2531         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2532                 invalid_block = ~0;
2533
2534         BUG_ON(create == 0);
2535         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2536
2537         /*
2538          * first, we need to know whether the block is allocated already
2539          * preallocated blocks are unmapped but should treated
2540          * the same as allocated blocks.
2541          */
2542         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2543         if ((ret == 0) && !buffer_delay(bh_result)) {
2544                 /* the block isn't (pre)allocated yet, let's reserve space */
2545                 /*
2546                  * XXX: __block_prepare_write() unmaps passed block,
2547                  * is it OK?
2548                  */
2549                 ret = ext4_da_reserve_space(inode, iblock);
2550                 if (ret)
2551                         /* not enough space to reserve */
2552                         return ret;
2553
2554                 map_bh(bh_result, inode->i_sb, invalid_block);
2555                 set_buffer_new(bh_result);
2556                 set_buffer_delay(bh_result);
2557         } else if (ret > 0) {
2558                 bh_result->b_size = (ret << inode->i_blkbits);
2559                 if (buffer_unwritten(bh_result)) {
2560                         /* A delayed write to unwritten bh should
2561                          * be marked new and mapped.  Mapped ensures
2562                          * that we don't do get_block multiple times
2563                          * when we write to the same offset and new
2564                          * ensures that we do proper zero out for
2565                          * partial write.
2566                          */
2567                         set_buffer_new(bh_result);
2568                         set_buffer_mapped(bh_result);
2569                 }
2570                 ret = 0;
2571         }
2572
2573         return ret;
2574 }
2575
2576 /*
2577  * This function is used as a standard get_block_t calback function
2578  * when there is no desire to allocate any blocks.  It is used as a
2579  * callback function for block_prepare_write(), nobh_writepage(), and
2580  * block_write_full_page().  These functions should only try to map a
2581  * single block at a time.
2582  *
2583  * Since this function doesn't do block allocations even if the caller
2584  * requests it by passing in create=1, it is critically important that
2585  * any caller checks to make sure that any buffer heads are returned
2586  * by this function are either all already mapped or marked for
2587  * delayed allocation before calling nobh_writepage() or
2588  * block_write_full_page().  Otherwise, b_blocknr could be left
2589  * unitialized, and the page write functions will be taken by
2590  * surprise.
2591  */
2592 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2593                                    struct buffer_head *bh_result, int create)
2594 {
2595         int ret = 0;
2596         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2597
2598         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2599
2600         /*
2601          * we don't want to do block allocation in writepage
2602          * so call get_block_wrap with create = 0
2603          */
2604         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2605         if (ret > 0) {
2606                 bh_result->b_size = (ret << inode->i_blkbits);
2607                 ret = 0;
2608         }
2609         return ret;
2610 }
2611
2612 static int bget_one(handle_t *handle, struct buffer_head *bh)
2613 {
2614         get_bh(bh);
2615         return 0;
2616 }
2617
2618 static int bput_one(handle_t *handle, struct buffer_head *bh)
2619 {
2620         put_bh(bh);
2621         return 0;
2622 }
2623
2624 static int __ext4_journalled_writepage(struct page *page,
2625                                        unsigned int len)
2626 {
2627         struct address_space *mapping = page->mapping;
2628         struct inode *inode = mapping->host;
2629         struct buffer_head *page_bufs;
2630         handle_t *handle = NULL;
2631         int ret = 0;
2632         int err;
2633
2634         page_bufs = page_buffers(page);
2635         BUG_ON(!page_bufs);
2636         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2637         /* As soon as we unlock the page, it can go away, but we have
2638          * references to buffers so we are safe */
2639         unlock_page(page);
2640
2641         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2642         if (IS_ERR(handle)) {
2643                 ret = PTR_ERR(handle);
2644                 goto out;
2645         }
2646
2647         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2648                                 do_journal_get_write_access);
2649
2650         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2651                                 write_end_fn);
2652         if (ret == 0)
2653                 ret = err;
2654         err = ext4_journal_stop(handle);
2655         if (!ret)
2656                 ret = err;
2657
2658         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2659         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2660 out:
2661         return ret;
2662 }
2663
2664 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2665 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2666
2667 /*
2668  * Note that we don't need to start a transaction unless we're journaling data
2669  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2670  * need to file the inode to the transaction's list in ordered mode because if
2671  * we are writing back data added by write(), the inode is already there and if
2672  * we are writing back data modified via mmap(), noone guarantees in which
2673  * transaction the data will hit the disk. In case we are journaling data, we
2674  * cannot start transaction directly because transaction start ranks above page
2675  * lock so we have to do some magic.
2676  *
2677  * This function can get called via...
2678  *   - ext4_da_writepages after taking page lock (have journal handle)
2679  *   - journal_submit_inode_data_buffers (no journal handle)
2680  *   - shrink_page_list via pdflush (no journal handle)
2681  *   - grab_page_cache when doing write_begin (have journal handle)
2682  *
2683  * We don't do any block allocation in this function. If we have page with
2684  * multiple blocks we need to write those buffer_heads that are mapped. This
2685  * is important for mmaped based write. So if we do with blocksize 1K
2686  * truncate(f, 1024);
2687  * a = mmap(f, 0, 4096);
2688  * a[0] = 'a';
2689  * truncate(f, 4096);
2690  * we have in the page first buffer_head mapped via page_mkwrite call back
2691  * but other bufer_heads would be unmapped but dirty(dirty done via the
2692  * do_wp_page). So writepage should write the first block. If we modify
2693  * the mmap area beyond 1024 we will again get a page_fault and the
2694  * page_mkwrite callback will do the block allocation and mark the
2695  * buffer_heads mapped.
2696  *
2697  * We redirty the page if we have any buffer_heads that is either delay or
2698  * unwritten in the page.
2699  *
2700  * We can get recursively called as show below.
2701  *
2702  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2703  *              ext4_writepage()
2704  *
2705  * But since we don't do any block allocation we should not deadlock.
2706  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2707  */
2708 static int ext4_writepage(struct page *page,
2709                           struct writeback_control *wbc)
2710 {
2711         int ret = 0;
2712         loff_t size;
2713         unsigned int len;
2714         struct buffer_head *page_bufs = NULL;
2715         struct inode *inode = page->mapping->host;
2716
2717         trace_ext4_writepage(inode, page);
2718         size = i_size_read(inode);
2719         if (page->index == size >> PAGE_CACHE_SHIFT)
2720                 len = size & ~PAGE_CACHE_MASK;
2721         else
2722                 len = PAGE_CACHE_SIZE;
2723
2724         if (page_has_buffers(page)) {
2725                 page_bufs = page_buffers(page);
2726                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2727                                         ext4_bh_delay_or_unwritten)) {
2728                         /*
2729                          * We don't want to do  block allocation
2730                          * So redirty the page and return
2731                          * We may reach here when we do a journal commit
2732                          * via journal_submit_inode_data_buffers.
2733                          * If we don't have mapping block we just ignore
2734                          * them. We can also reach here via shrink_page_list
2735                          */
2736                         redirty_page_for_writepage(wbc, page);
2737                         unlock_page(page);
2738                         return 0;
2739                 }
2740         } else {
2741                 /*
2742                  * The test for page_has_buffers() is subtle:
2743                  * We know the page is dirty but it lost buffers. That means
2744                  * that at some moment in time after write_begin()/write_end()
2745                  * has been called all buffers have been clean and thus they
2746                  * must have been written at least once. So they are all
2747                  * mapped and we can happily proceed with mapping them
2748                  * and writing the page.
2749                  *
2750                  * Try to initialize the buffer_heads and check whether
2751                  * all are mapped and non delay. We don't want to
2752                  * do block allocation here.
2753                  */
2754                 ret = block_prepare_write(page, 0, len,
2755                                           noalloc_get_block_write);
2756                 if (!ret) {
2757                         page_bufs = page_buffers(page);
2758                         /* check whether all are mapped and non delay */
2759                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2760                                                 ext4_bh_delay_or_unwritten)) {
2761                                 redirty_page_for_writepage(wbc, page);
2762                                 unlock_page(page);
2763                                 return 0;
2764                         }
2765                 } else {
2766                         /*
2767                          * We can't do block allocation here
2768                          * so just redity the page and unlock
2769                          * and return
2770                          */
2771                         redirty_page_for_writepage(wbc, page);
2772                         unlock_page(page);
2773                         return 0;
2774                 }
2775                 /* now mark the buffer_heads as dirty and uptodate */
2776                 block_commit_write(page, 0, len);
2777         }
2778
2779         if (PageChecked(page) && ext4_should_journal_data(inode)) {
2780                 /*
2781                  * It's mmapped pagecache.  Add buffers and journal it.  There
2782                  * doesn't seem much point in redirtying the page here.
2783                  */
2784                 ClearPageChecked(page);
2785                 return __ext4_journalled_writepage(page, len);
2786         }
2787
2788         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2789                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2790         else if (page_bufs && buffer_uninit(page_bufs)) {
2791                 ext4_set_bh_endio(page_bufs, inode);
2792                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2793                                             wbc, ext4_end_io_buffer_write);
2794         } else
2795                 ret = block_write_full_page(page, noalloc_get_block_write,
2796                                             wbc);
2797
2798         return ret;
2799 }
2800
2801 /*
2802  * This is called via ext4_da_writepages() to
2803  * calulate the total number of credits to reserve to fit
2804  * a single extent allocation into a single transaction,
2805  * ext4_da_writpeages() will loop calling this before
2806  * the block allocation.
2807  */
2808
2809 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2810 {
2811         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2812
2813         /*
2814          * With non-extent format the journal credit needed to
2815          * insert nrblocks contiguous block is dependent on
2816          * number of contiguous block. So we will limit
2817          * number of contiguous block to a sane value
2818          */
2819         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2820             (max_blocks > EXT4_MAX_TRANS_DATA))
2821                 max_blocks = EXT4_MAX_TRANS_DATA;
2822
2823         return ext4_chunk_trans_blocks(inode, max_blocks);
2824 }
2825
2826 static int ext4_da_writepages(struct address_space *mapping,
2827                               struct writeback_control *wbc)
2828 {
2829         pgoff_t index;
2830         int range_whole = 0;
2831         handle_t *handle = NULL;
2832         struct mpage_da_data mpd;
2833         struct inode *inode = mapping->host;
2834         int no_nrwrite_index_update;
2835         int pages_written = 0;
2836         long pages_skipped;
2837         unsigned int max_pages;
2838         int range_cyclic, cycled = 1, io_done = 0;
2839         int needed_blocks, ret = 0;
2840         long desired_nr_to_write, nr_to_writebump = 0;
2841         loff_t range_start = wbc->range_start;
2842         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2843
2844         trace_ext4_da_writepages(inode, wbc);
2845
2846         /*
2847          * No pages to write? This is mainly a kludge to avoid starting
2848          * a transaction for special inodes like journal inode on last iput()
2849          * because that could violate lock ordering on umount
2850          */
2851         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2852                 return 0;
2853
2854         /*
2855          * If the filesystem has aborted, it is read-only, so return
2856          * right away instead of dumping stack traces later on that
2857          * will obscure the real source of the problem.  We test
2858          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2859          * the latter could be true if the filesystem is mounted
2860          * read-only, and in that case, ext4_da_writepages should
2861          * *never* be called, so if that ever happens, we would want
2862          * the stack trace.
2863          */
2864         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2865                 return -EROFS;
2866
2867         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2868                 range_whole = 1;
2869
2870         range_cyclic = wbc->range_cyclic;
2871         if (wbc->range_cyclic) {
2872                 index = mapping->writeback_index;
2873                 if (index)
2874                         cycled = 0;
2875                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2876                 wbc->range_end  = LLONG_MAX;
2877                 wbc->range_cyclic = 0;
2878         } else
2879                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2880
2881         /*
2882          * This works around two forms of stupidity.  The first is in
2883          * the writeback code, which caps the maximum number of pages
2884          * written to be 1024 pages.  This is wrong on multiple
2885          * levels; different architectues have a different page size,
2886          * which changes the maximum amount of data which gets
2887          * written.  Secondly, 4 megabytes is way too small.  XFS
2888          * forces this value to be 16 megabytes by multiplying
2889          * nr_to_write parameter by four, and then relies on its
2890          * allocator to allocate larger extents to make them
2891          * contiguous.  Unfortunately this brings us to the second
2892          * stupidity, which is that ext4's mballoc code only allocates
2893          * at most 2048 blocks.  So we force contiguous writes up to
2894          * the number of dirty blocks in the inode, or
2895          * sbi->max_writeback_mb_bump whichever is smaller.
2896          */
2897         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2898         if (!range_cyclic && range_whole)
2899                 desired_nr_to_write = wbc->nr_to_write * 8;
2900         else
2901                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2902                                                            max_pages);
2903         if (desired_nr_to_write > max_pages)
2904                 desired_nr_to_write = max_pages;
2905
2906         if (wbc->nr_to_write < desired_nr_to_write) {
2907                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2908                 wbc->nr_to_write = desired_nr_to_write;
2909         }
2910
2911         mpd.wbc = wbc;
2912         mpd.inode = mapping->host;
2913
2914         /*
2915          * we don't want write_cache_pages to update
2916          * nr_to_write and writeback_index
2917          */
2918         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2919         wbc->no_nrwrite_index_update = 1;
2920         pages_skipped = wbc->pages_skipped;
2921
2922 retry:
2923         while (!ret && wbc->nr_to_write > 0) {
2924
2925                 /*
2926                  * we  insert one extent at a time. So we need
2927                  * credit needed for single extent allocation.
2928                  * journalled mode is currently not supported
2929                  * by delalloc
2930                  */
2931                 BUG_ON(ext4_should_journal_data(inode));
2932                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2933
2934                 /* start a new transaction*/
2935                 handle = ext4_journal_start(inode, needed_blocks);
2936                 if (IS_ERR(handle)) {
2937                         ret = PTR_ERR(handle);
2938                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2939                                "%ld pages, ino %lu; err %d\n", __func__,
2940                                 wbc->nr_to_write, inode->i_ino, ret);
2941                         goto out_writepages;
2942                 }
2943
2944                 /*
2945                  * Now call __mpage_da_writepage to find the next
2946                  * contiguous region of logical blocks that need
2947                  * blocks to be allocated by ext4.  We don't actually
2948                  * submit the blocks for I/O here, even though
2949                  * write_cache_pages thinks it will, and will set the
2950                  * pages as clean for write before calling
2951                  * __mpage_da_writepage().
2952                  */
2953                 mpd.b_size = 0;
2954                 mpd.b_state = 0;
2955                 mpd.b_blocknr = 0;
2956                 mpd.first_page = 0;
2957                 mpd.next_page = 0;
2958                 mpd.io_done = 0;
2959                 mpd.pages_written = 0;
2960                 mpd.retval = 0;
2961                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2962                                         &mpd);
2963                 /*
2964                  * If we have a contiguous extent of pages and we
2965                  * haven't done the I/O yet, map the blocks and submit
2966                  * them for I/O.
2967                  */
2968                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2969                         if (mpage_da_map_blocks(&mpd) == 0)
2970                                 mpage_da_submit_io(&mpd);
2971                         mpd.io_done = 1;
2972                         ret = MPAGE_DA_EXTENT_TAIL;
2973                 }
2974                 trace_ext4_da_write_pages(inode, &mpd);
2975                 wbc->nr_to_write -= mpd.pages_written;
2976
2977                 ext4_journal_stop(handle);
2978
2979                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2980                         /* commit the transaction which would
2981                          * free blocks released in the transaction
2982                          * and try again
2983                          */
2984                         jbd2_journal_force_commit_nested(sbi->s_journal);
2985                         wbc->pages_skipped = pages_skipped;
2986                         ret = 0;
2987                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2988                         /*
2989                          * got one extent now try with
2990                          * rest of the pages
2991                          */
2992                         pages_written += mpd.pages_written;
2993                         wbc->pages_skipped = pages_skipped;
2994                         ret = 0;
2995                         io_done = 1;
2996                 } else if (wbc->nr_to_write)
2997                         /*
2998                          * There is no more writeout needed
2999                          * or we requested for a noblocking writeout
3000                          * and we found the device congested
3001                          */
3002                         break;
3003         }
3004         if (!io_done && !cycled) {
3005                 cycled = 1;
3006                 index = 0;
3007                 wbc->range_start = index << PAGE_CACHE_SHIFT;
3008                 wbc->range_end  = mapping->writeback_index - 1;
3009                 goto retry;
3010         }
3011         if (pages_skipped != wbc->pages_skipped)
3012                 ext4_msg(inode->i_sb, KERN_CRIT,
3013                          "This should not happen leaving %s "
3014                          "with nr_to_write = %ld ret = %d\n",
3015                          __func__, wbc->nr_to_write, ret);
3016
3017         /* Update index */
3018         index += pages_written;
3019         wbc->range_cyclic = range_cyclic;
3020         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3021                 /*
3022                  * set the writeback_index so that range_cyclic
3023                  * mode will write it back later
3024                  */
3025                 mapping->writeback_index = index;
3026
3027 out_writepages:
3028         if (!no_nrwrite_index_update)
3029                 wbc->no_nrwrite_index_update = 0;
3030         wbc->nr_to_write -= nr_to_writebump;
3031         wbc->range_start = range_start;
3032         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3033         return ret;
3034 }
3035
3036 #define FALL_BACK_TO_NONDELALLOC 1
3037 static int ext4_nonda_switch(struct super_block *sb)
3038 {
3039         s64 free_blocks, dirty_blocks;
3040         struct ext4_sb_info *sbi = EXT4_SB(sb);
3041
3042         /*
3043          * switch to non delalloc mode if we are running low
3044          * on free block. The free block accounting via percpu
3045          * counters can get slightly wrong with percpu_counter_batch getting
3046          * accumulated on each CPU without updating global counters
3047          * Delalloc need an accurate free block accounting. So switch
3048          * to non delalloc when we are near to error range.
3049          */
3050         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3051         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3052         if (2 * free_blocks < 3 * dirty_blocks ||
3053                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3054                 /*
3055                  * free block count is less than 150% of dirty blocks
3056                  * or free blocks is less than watermark
3057                  */
3058                 return 1;
3059         }
3060         /*
3061          * Even if we don't switch but are nearing capacity,
3062          * start pushing delalloc when 1/2 of free blocks are dirty.
3063          */
3064         if (free_blocks < 2 * dirty_blocks)
3065                 writeback_inodes_sb_if_idle(sb);
3066
3067         return 0;
3068 }
3069
3070 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3071                                loff_t pos, unsigned len, unsigned flags,
3072                                struct page **pagep, void **fsdata)
3073 {
3074         int ret, retries = 0, quota_retries = 0;
3075         struct page *page;
3076         pgoff_t index;
3077         unsigned from, to;
3078         struct inode *inode = mapping->host;
3079         handle_t *handle;
3080
3081         index = pos >> PAGE_CACHE_SHIFT;
3082         from = pos & (PAGE_CACHE_SIZE - 1);
3083         to = from + len;
3084
3085         if (ext4_nonda_switch(inode->i_sb)) {
3086                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3087                 return ext4_write_begin(file, mapping, pos,
3088                                         len, flags, pagep, fsdata);
3089         }
3090         *fsdata = (void *)0;
3091         trace_ext4_da_write_begin(inode, pos, len, flags);
3092 retry:
3093         /*
3094          * With delayed allocation, we don't log the i_disksize update
3095          * if there is delayed block allocation. But we still need
3096          * to journalling the i_disksize update if writes to the end
3097          * of file which has an already mapped buffer.
3098          */
3099         handle = ext4_journal_start(inode, 1);
3100         if (IS_ERR(handle)) {
3101                 ret = PTR_ERR(handle);
3102                 goto out;
3103         }
3104         /* We cannot recurse into the filesystem as the transaction is already
3105          * started */
3106         flags |= AOP_FLAG_NOFS;
3107
3108         page = grab_cache_page_write_begin(mapping, index, flags);
3109         if (!page) {
3110                 ext4_journal_stop(handle);
3111                 ret = -ENOMEM;
3112                 goto out;
3113         }
3114         *pagep = page;
3115
3116         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3117                                 ext4_da_get_block_prep);
3118         if (ret < 0) {
3119                 unlock_page(page);
3120                 ext4_journal_stop(handle);
3121                 page_cache_release(page);
3122                 /*
3123                  * block_write_begin may have instantiated a few blocks
3124                  * outside i_size.  Trim these off again. Don't need
3125                  * i_size_read because we hold i_mutex.
3126                  */
3127                 if (pos + len > inode->i_size)
3128                         ext4_truncate_failed_write(inode);
3129         }
3130
3131         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3132                 goto retry;
3133
3134         if ((ret == -EDQUOT) &&
3135             EXT4_I(inode)->i_reserved_meta_blocks &&
3136             (quota_retries++ < 3)) {
3137                 /*
3138                  * Since we often over-estimate the number of meta
3139                  * data blocks required, we may sometimes get a
3140                  * spurios out of quota error even though there would
3141                  * be enough space once we write the data blocks and
3142                  * find out how many meta data blocks were _really_
3143                  * required.  So try forcing the inode write to see if
3144                  * that helps.
3145                  */
3146                 write_inode_now(inode, (quota_retries == 3));
3147                 goto retry;
3148         }
3149 out:
3150         return ret;
3151 }
3152
3153 /*
3154  * Check if we should update i_disksize
3155  * when write to the end of file but not require block allocation
3156  */
3157 static int ext4_da_should_update_i_disksize(struct page *page,
3158                                             unsigned long offset)
3159 {
3160         struct buffer_head *bh;
3161         struct inode *inode = page->mapping->host;
3162         unsigned int idx;
3163         int i;
3164
3165         bh = page_buffers(page);
3166         idx = offset >> inode->i_blkbits;
3167
3168         for (i = 0; i < idx; i++)
3169                 bh = bh->b_this_page;
3170
3171         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3172                 return 0;
3173         return 1;
3174 }
3175
3176 static int ext4_da_write_end(struct file *file,
3177                              struct address_space *mapping,
3178                              loff_t pos, unsigned len, unsigned copied,
3179                              struct page *page, void *fsdata)
3180 {
3181         struct inode *inode = mapping->host;
3182         int ret = 0, ret2;
3183         handle_t *handle = ext4_journal_current_handle();
3184         loff_t new_i_size;
3185         unsigned long start, end;
3186         int write_mode = (int)(unsigned long)fsdata;
3187
3188         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3189                 if (ext4_should_order_data(inode)) {
3190                         return ext4_ordered_write_end(file, mapping, pos,
3191                                         len, copied, page, fsdata);
3192                 } else if (ext4_should_writeback_data(inode)) {
3193                         return ext4_writeback_write_end(file, mapping, pos,
3194                                         len, copied, page, fsdata);
3195                 } else {
3196                         BUG();
3197                 }
3198         }
3199
3200         trace_ext4_da_write_end(inode, pos, len, copied);
3201         start = pos & (PAGE_CACHE_SIZE - 1);
3202         end = start + copied - 1;
3203
3204         /*
3205          * generic_write_end() will run mark_inode_dirty() if i_size
3206          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3207          * into that.
3208          */
3209
3210         new_i_size = pos + copied;
3211         if (new_i_size > EXT4_I(inode)->i_disksize) {
3212                 if (ext4_da_should_update_i_disksize(page, end)) {
3213                         down_write(&EXT4_I(inode)->i_data_sem);
3214                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3215                                 /*
3216                                  * Updating i_disksize when extending file
3217                                  * without needing block allocation
3218                                  */
3219                                 if (ext4_should_order_data(inode))
3220                                         ret = ext4_jbd2_file_inode(handle,
3221                                                                    inode);
3222
3223                                 EXT4_I(inode)->i_disksize = new_i_size;
3224                         }
3225                         up_write(&EXT4_I(inode)->i_data_sem);
3226                         /* We need to mark inode dirty even if
3227                          * new_i_size is less that inode->i_size
3228                          * bu greater than i_disksize.(hint delalloc)
3229                          */
3230                         ext4_mark_inode_dirty(handle, inode);
3231                 }
3232         }
3233         ret2 = generic_write_end(file, mapping, pos, len, copied,
3234                                                         page, fsdata);
3235         copied = ret2;
3236         if (ret2 < 0)
3237                 ret = ret2;
3238         ret2 = ext4_journal_stop(handle);
3239         if (!ret)
3240                 ret = ret2;
3241
3242         return ret ? ret : copied;
3243 }
3244
3245 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3246 {
3247         /*
3248          * Drop reserved blocks
3249          */
3250         BUG_ON(!PageLocked(page));
3251         if (!page_has_buffers(page))
3252                 goto out;
3253
3254         ext4_da_page_release_reservation(page, offset);
3255
3256 out:
3257         ext4_invalidatepage(page, offset);
3258
3259         return;
3260 }
3261
3262 /*
3263  * Force all delayed allocation blocks to be allocated for a given inode.
3264  */
3265 int ext4_alloc_da_blocks(struct inode *inode)
3266 {
3267         trace_ext4_alloc_da_blocks(inode);
3268
3269         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3270             !EXT4_I(inode)->i_reserved_meta_blocks)
3271                 return 0;
3272
3273         /*
3274          * We do something simple for now.  The filemap_flush() will
3275          * also start triggering a write of the data blocks, which is
3276          * not strictly speaking necessary (and for users of
3277          * laptop_mode, not even desirable).  However, to do otherwise
3278          * would require replicating code paths in:
3279          *
3280          * ext4_da_writepages() ->
3281          *    write_cache_pages() ---> (via passed in callback function)
3282          *        __mpage_da_writepage() -->
3283          *           mpage_add_bh_to_extent()
3284          *           mpage_da_map_blocks()
3285          *
3286          * The problem is that write_cache_pages(), located in
3287          * mm/page-writeback.c, marks pages clean in preparation for
3288          * doing I/O, which is not desirable if we're not planning on
3289          * doing I/O at all.
3290          *
3291          * We could call write_cache_pages(), and then redirty all of
3292          * the pages by calling redirty_page_for_writeback() but that
3293          * would be ugly in the extreme.  So instead we would need to
3294          * replicate parts of the code in the above functions,
3295          * simplifying them becuase we wouldn't actually intend to
3296          * write out the pages, but rather only collect contiguous
3297          * logical block extents, call the multi-block allocator, and
3298          * then update the buffer heads with the block allocations.
3299          *
3300          * For now, though, we'll cheat by calling filemap_flush(),
3301          * which will map the blocks, and start the I/O, but not
3302          * actually wait for the I/O to complete.
3303          */
3304         return filemap_flush(inode->i_mapping);
3305 }
3306
3307 /*
3308  * bmap() is special.  It gets used by applications such as lilo and by
3309  * the swapper to find the on-disk block of a specific piece of data.
3310  *
3311  * Naturally, this is dangerous if the block concerned is still in the
3312  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3313  * filesystem and enables swap, then they may get a nasty shock when the
3314  * data getting swapped to that swapfile suddenly gets overwritten by
3315  * the original zero's written out previously to the journal and
3316  * awaiting writeback in the kernel's buffer cache.
3317  *
3318  * So, if we see any bmap calls here on a modified, data-journaled file,
3319  * take extra steps to flush any blocks which might be in the cache.
3320  */
3321 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3322 {
3323         struct inode *inode = mapping->host;
3324         journal_t *journal;
3325         int err;
3326
3327         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3328                         test_opt(inode->i_sb, DELALLOC)) {
3329                 /*
3330                  * With delalloc we want to sync the file
3331                  * so that we can make sure we allocate
3332                  * blocks for file
3333                  */
3334                 filemap_write_and_wait(mapping);
3335         }
3336
3337         if (EXT4_JOURNAL(inode) &&
3338             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3339                 /*
3340                  * This is a REALLY heavyweight approach, but the use of
3341                  * bmap on dirty files is expected to be extremely rare:
3342                  * only if we run lilo or swapon on a freshly made file
3343                  * do we expect this to happen.
3344                  *
3345                  * (bmap requires CAP_SYS_RAWIO so this does not
3346                  * represent an unprivileged user DOS attack --- we'd be
3347                  * in trouble if mortal users could trigger this path at
3348                  * will.)
3349                  *
3350                  * NB. EXT4_STATE_JDATA is not set on files other than
3351                  * regular files.  If somebody wants to bmap a directory
3352                  * or symlink and gets confused because the buffer
3353                  * hasn't yet been flushed to disk, they deserve
3354                  * everything they get.
3355                  */
3356
3357                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3358                 journal = EXT4_JOURNAL(inode);
3359                 jbd2_journal_lock_updates(journal);
3360                 err = jbd2_journal_flush(journal);
3361                 jbd2_journal_unlock_updates(journal);
3362
3363                 if (err)
3364                         return 0;
3365         }
3366
3367         return generic_block_bmap(mapping, block, ext4_get_block);
3368 }
3369
3370 static int ext4_readpage(struct file *file, struct page *page)
3371 {
3372         return mpage_readpage(page, ext4_get_block);
3373 }
3374
3375 static int
3376 ext4_readpages(struct file *file, struct address_space *mapping,
3377                 struct list_head *pages, unsigned nr_pages)
3378 {
3379         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3380 }
3381
3382 static void ext4_free_io_end(ext4_io_end_t *io)
3383 {
3384         BUG_ON(!io);
3385         if (io->page)
3386                 put_page(io->page);
3387         iput(io->inode);
3388         kfree(io);
3389 }
3390
3391 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3392 {
3393         struct buffer_head *head, *bh;
3394         unsigned int curr_off = 0;
3395
3396         if (!page_has_buffers(page))
3397                 return;
3398         head = bh = page_buffers(page);
3399         do {
3400                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3401                                         && bh->b_private) {
3402                         ext4_free_io_end(bh->b_private);
3403                         bh->b_private = NULL;
3404                         bh->b_end_io = NULL;
3405                 }
3406                 curr_off = curr_off + bh->b_size;
3407                 bh = bh->b_this_page;
3408         } while (bh != head);
3409 }
3410
3411 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3412 {
3413         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3414
3415         /*
3416          * free any io_end structure allocated for buffers to be discarded
3417          */
3418         if (ext4_should_dioread_nolock(page->mapping->host))
3419                 ext4_invalidatepage_free_endio(page, offset);
3420         /*
3421          * If it's a full truncate we just forget about the pending dirtying
3422          */
3423         if (offset == 0)
3424                 ClearPageChecked(page);
3425
3426         if (journal)
3427                 jbd2_journal_invalidatepage(journal, page, offset);
3428         else
3429                 block_invalidatepage(page, offset);
3430 }
3431
3432 static int ext4_releasepage(struct page *page, gfp_t wait)
3433 {
3434         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3435
3436         WARN_ON(PageChecked(page));
3437         if (!page_has_buffers(page))
3438                 return 0;
3439         if (journal)
3440                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3441         else
3442                 return try_to_free_buffers(page);
3443 }
3444
3445 /*
3446  * O_DIRECT for ext3 (or indirect map) based files
3447  *
3448  * If the O_DIRECT write will extend the file then add this inode to the
3449  * orphan list.  So recovery will truncate it back to the original size
3450  * if the machine crashes during the write.
3451  *
3452  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3453  * crashes then stale disk data _may_ be exposed inside the file. But current
3454  * VFS code falls back into buffered path in that case so we are safe.
3455  */
3456 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3457                               const struct iovec *iov, loff_t offset,
3458                               unsigned long nr_segs)
3459 {
3460         struct file *file = iocb->ki_filp;
3461         struct inode *inode = file->f_mapping->host;
3462         struct ext4_inode_info *ei = EXT4_I(inode);
3463         handle_t *handle;
3464         ssize_t ret;
3465         int orphan = 0;
3466         size_t count = iov_length(iov, nr_segs);
3467         int retries = 0;
3468
3469         if (rw == WRITE) {
3470                 loff_t final_size = offset + count;
3471
3472                 if (final_size > inode->i_size) {
3473                         /* Credits for sb + inode write */
3474                         handle = ext4_journal_start(inode, 2);
3475                         if (IS_ERR(handle)) {
3476                                 ret = PTR_ERR(handle);
3477                                 goto out;
3478                         }
3479                         ret = ext4_orphan_add(handle, inode);
3480                         if (ret) {
3481                                 ext4_journal_stop(handle);
3482                                 goto out;
3483                         }
3484                         orphan = 1;
3485                         ei->i_disksize = inode->i_size;
3486                         ext4_journal_stop(handle);
3487                 }
3488         }
3489
3490 retry:
3491         if (rw == READ && ext4_should_dioread_nolock(inode))
3492                 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3493                                  inode->i_sb->s_bdev, iov,
3494                                  offset, nr_segs,
3495                                  ext4_get_block, NULL);
3496         else
3497                 ret = blockdev_direct_IO(rw, iocb, inode,
3498                                  inode->i_sb->s_bdev, iov,
3499                                  offset, nr_segs,
3500                                  ext4_get_block, NULL);
3501         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3502                 goto retry;
3503
3504         if (orphan) {
3505                 int err;
3506
3507                 /* Credits for sb + inode write */
3508                 handle = ext4_journal_start(inode, 2);
3509                 if (IS_ERR(handle)) {
3510                         /* This is really bad luck. We've written the data
3511                          * but cannot extend i_size. Bail out and pretend
3512                          * the write failed... */
3513                         ret = PTR_ERR(handle);
3514                         if (inode->i_nlink)
3515                                 ext4_orphan_del(NULL, inode);
3516
3517                         goto out;
3518                 }
3519                 if (inode->i_nlink)
3520                         ext4_orphan_del(handle, inode);
3521                 if (ret > 0) {
3522                         loff_t end = offset + ret;
3523                         if (end > inode->i_size) {
3524                                 ei->i_disksize = end;
3525                                 i_size_write(inode, end);
3526                                 /*
3527                                  * We're going to return a positive `ret'
3528                                  * here due to non-zero-length I/O, so there's
3529                                  * no way of reporting error returns from
3530                                  * ext4_mark_inode_dirty() to userspace.  So
3531                                  * ignore it.
3532                                  */
3533                                 ext4_mark_inode_dirty(handle, inode);
3534                         }
3535                 }
3536                 err = ext4_journal_stop(handle);
3537                 if (ret == 0)
3538                         ret = err;
3539         }
3540 out:
3541         return ret;
3542 }
3543
3544 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3545                    struct buffer_head *bh_result, int create)
3546 {
3547         handle_t *handle = ext4_journal_current_handle();
3548         int ret = 0;
3549         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3550         int dio_credits;
3551         int started = 0;
3552
3553         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3554                    inode->i_ino, create);
3555         /*
3556          * ext4_get_block in prepare for a DIO write or buffer write.
3557          * We allocate an uinitialized extent if blocks haven't been allocated.
3558          * The extent will be converted to initialized after IO complete.
3559          */
3560         create = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3561
3562         if (!handle) {
3563                 if (max_blocks > DIO_MAX_BLOCKS)
3564                         max_blocks = DIO_MAX_BLOCKS;
3565                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3566                 handle = ext4_journal_start(inode, dio_credits);
3567                 if (IS_ERR(handle)) {
3568                         ret = PTR_ERR(handle);
3569                         goto out;
3570                 }
3571                 started = 1;
3572         }
3573
3574         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3575                               create);
3576         if (ret > 0) {
3577                 bh_result->b_size = (ret << inode->i_blkbits);
3578                 ret = 0;
3579         }
3580         if (started)
3581                 ext4_journal_stop(handle);
3582 out:
3583         return ret;
3584 }
3585
3586 static void dump_completed_IO(struct inode * inode)
3587 {
3588 #ifdef  EXT4_DEBUG
3589         struct list_head *cur, *before, *after;
3590         ext4_io_end_t *io, *io0, *io1;
3591         unsigned long flags;
3592
3593         if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3594                 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3595                 return;
3596         }
3597
3598         ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3599         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3600         list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3601                 cur = &io->list;
3602                 before = cur->prev;
3603                 io0 = container_of(before, ext4_io_end_t, list);
3604                 after = cur->next;
3605                 io1 = container_of(after, ext4_io_end_t, list);
3606
3607                 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3608                             io, inode->i_ino, io0, io1);
3609         }
3610         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3611 #endif
3612 }
3613
3614 /*
3615  * check a range of space and convert unwritten extents to written.
3616  */
3617 static int ext4_end_io_nolock(ext4_io_end_t *io)
3618 {
3619         struct inode *inode = io->inode;
3620         loff_t offset = io->offset;
3621         ssize_t size = io->size;
3622         int ret = 0;
3623
3624         ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3625                    "list->prev 0x%p\n",
3626                    io, inode->i_ino, io->list.next, io->list.prev);
3627
3628         if (list_empty(&io->list))
3629                 return ret;
3630
3631         if (io->flag != EXT4_IO_UNWRITTEN)
3632                 return ret;
3633
3634         ret = ext4_convert_unwritten_extents(inode, offset, size);
3635         if (ret < 0) {
3636                 printk(KERN_EMERG "%s: failed to convert unwritten"
3637                         "extents to written extents, error is %d"
3638                         " io is still on inode %lu aio dio list\n",
3639                        __func__, ret, inode->i_ino);
3640                 return ret;
3641         }
3642
3643         /* clear the DIO AIO unwritten flag */
3644         io->flag = 0;
3645         return ret;
3646 }
3647
3648 /*
3649  * work on completed aio dio IO, to convert unwritten extents to extents
3650  */
3651 static void ext4_end_io_work(struct work_struct *work)
3652 {
3653         ext4_io_end_t           *io = container_of(work, ext4_io_end_t, work);
3654         struct inode            *inode = io->inode;
3655         struct ext4_inode_info  *ei = EXT4_I(inode);
3656         unsigned long           flags;
3657         int                     ret;
3658
3659         mutex_lock(&inode->i_mutex);
3660         ret = ext4_end_io_nolock(io);
3661         if (ret < 0) {
3662                 mutex_unlock(&inode->i_mutex);
3663                 return;
3664         }
3665
3666         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3667         if (!list_empty(&io->list))
3668                 list_del_init(&io->list);
3669         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3670         mutex_unlock(&inode->i_mutex);
3671         ext4_free_io_end(io);
3672 }
3673
3674 /*
3675  * This function is called from ext4_sync_file().
3676  *
3677  * When IO is completed, the work to convert unwritten extents to
3678  * written is queued on workqueue but may not get immediately
3679  * scheduled. When fsync is called, we need to ensure the
3680  * conversion is complete before fsync returns.
3681  * The inode keeps track of a list of pending/completed IO that
3682  * might needs to do the conversion. This function walks through
3683  * the list and convert the related unwritten extents for completed IO
3684  * to written.
3685  * The function return the number of pending IOs on success.
3686  */
3687 int flush_completed_IO(struct inode *inode)
3688 {
3689         ext4_io_end_t *io;
3690         struct ext4_inode_info *ei = EXT4_I(inode);
3691         unsigned long flags;
3692         int ret = 0;
3693         int ret2 = 0;
3694
3695         if (list_empty(&ei->i_completed_io_list))
3696                 return ret;
3697
3698         dump_completed_IO(inode);
3699         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3700         while (!list_empty(&ei->i_completed_io_list)){
3701                 io = list_entry(ei->i_completed_io_list.next,
3702                                 ext4_io_end_t, list);
3703                 /*
3704                  * Calling ext4_end_io_nolock() to convert completed
3705                  * IO to written.
3706                  *
3707                  * When ext4_sync_file() is called, run_queue() may already
3708                  * about to flush the work corresponding to this io structure.
3709                  * It will be upset if it founds the io structure related
3710                  * to the work-to-be schedule is freed.
3711                  *
3712                  * Thus we need to keep the io structure still valid here after
3713                  * convertion finished. The io structure has a flag to
3714                  * avoid double converting from both fsync and background work
3715                  * queue work.
3716                  */
3717                 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3718                 ret = ext4_end_io_nolock(io);
3719                 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3720                 if (ret < 0)
3721                         ret2 = ret;
3722                 else
3723                         list_del_init(&io->list);
3724         }
3725         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3726         return (ret2 < 0) ? ret2 : 0;
3727 }
3728
3729 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3730 {
3731         ext4_io_end_t *io = NULL;
3732
3733         io = kmalloc(sizeof(*io), flags);
3734
3735         if (io) {
3736                 igrab(inode);
3737                 io->inode = inode;
3738                 io->flag = 0;
3739                 io->offset = 0;
3740                 io->size = 0;
3741                 io->page = NULL;
3742                 INIT_WORK(&io->work, ext4_end_io_work);
3743                 INIT_LIST_HEAD(&io->list);
3744         }
3745
3746         return io;
3747 }
3748
3749 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3750                             ssize_t size, void *private)
3751 {
3752         ext4_io_end_t *io_end = iocb->private;
3753         struct workqueue_struct *wq;
3754         unsigned long flags;
3755         struct ext4_inode_info *ei;
3756
3757         /* if not async direct IO or dio with 0 bytes write, just return */
3758         if (!io_end || !size)
3759                 return;
3760
3761         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3762                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3763                   iocb->private, io_end->inode->i_ino, iocb, offset,
3764                   size);
3765
3766         /* if not aio dio with unwritten extents, just free io and return */
3767         if (io_end->flag != EXT4_IO_UNWRITTEN){
3768                 ext4_free_io_end(io_end);
3769                 iocb->private = NULL;
3770                 return;
3771         }
3772
3773         io_end->offset = offset;
3774         io_end->size = size;
3775         io_end->flag = EXT4_IO_UNWRITTEN;
3776         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3777
3778         /* queue the work to convert unwritten extents to written */
3779         queue_work(wq, &io_end->work);
3780
3781         /* Add the io_end to per-inode completed aio dio list*/
3782         ei = EXT4_I(io_end->inode);
3783         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3784         list_add_tail(&io_end->list, &ei->i_completed_io_list);
3785         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3786         iocb->private = NULL;
3787 }
3788
3789 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3790 {
3791         ext4_io_end_t *io_end = bh->b_private;
3792         struct workqueue_struct *wq;
3793         struct inode *inode;
3794         unsigned long flags;
3795
3796         if (!test_clear_buffer_uninit(bh) || !io_end)
3797                 goto out;
3798
3799         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3800                 printk("sb umounted, discard end_io request for inode %lu\n",
3801                         io_end->inode->i_ino);
3802                 ext4_free_io_end(io_end);
3803                 goto out;
3804         }
3805
3806         io_end->flag = EXT4_IO_UNWRITTEN;
3807         inode = io_end->inode;
3808
3809         /* Add the io_end to per-inode completed io list*/
3810         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3811         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3812         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3813
3814         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3815         /* queue the work to convert unwritten extents to written */
3816         queue_work(wq, &io_end->work);
3817 out:
3818         bh->b_private = NULL;
3819         bh->b_end_io = NULL;
3820         clear_buffer_uninit(bh);
3821         end_buffer_async_write(bh, uptodate);
3822 }
3823
3824 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3825 {
3826         ext4_io_end_t *io_end;
3827         struct page *page = bh->b_page;
3828         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3829         size_t size = bh->b_size;
3830
3831 retry:
3832         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3833         if (!io_end) {
3834                 if (printk_ratelimit())
3835                         printk(KERN_WARNING "%s: allocation fail\n", __func__);
3836                 schedule();
3837                 goto retry;
3838         }
3839         io_end->offset = offset;
3840         io_end->size = size;
3841         /*
3842          * We need to hold a reference to the page to make sure it
3843          * doesn't get evicted before ext4_end_io_work() has a chance
3844          * to convert the extent from written to unwritten.
3845          */
3846         io_end->page = page;
3847         get_page(io_end->page);
3848
3849         bh->b_private = io_end;
3850         bh->b_end_io = ext4_end_io_buffer_write;
3851         return 0;
3852 }
3853
3854 /*
3855  * For ext4 extent files, ext4 will do direct-io write to holes,
3856  * preallocated extents, and those write extend the file, no need to
3857  * fall back to buffered IO.
3858  *
3859  * For holes, we fallocate those blocks, mark them as unintialized
3860  * If those blocks were preallocated, we mark sure they are splited, but
3861  * still keep the range to write as unintialized.
3862  *
3863  * The unwrritten extents will be converted to written when DIO is completed.
3864  * For async direct IO, since the IO may still pending when return, we
3865  * set up an end_io call back function, which will do the convertion
3866  * when async direct IO completed.
3867  *
3868  * If the O_DIRECT write will extend the file then add this inode to the
3869  * orphan list.  So recovery will truncate it back to the original size
3870  * if the machine crashes during the write.
3871  *
3872  */
3873 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3874                               const struct iovec *iov, loff_t offset,
3875                               unsigned long nr_segs)
3876 {
3877         struct file *file = iocb->ki_filp;
3878         struct inode *inode = file->f_mapping->host;
3879         ssize_t ret;
3880         size_t count = iov_length(iov, nr_segs);
3881
3882         loff_t final_size = offset + count;
3883         if (rw == WRITE && final_size <= inode->i_size) {
3884                 /*
3885                  * We could direct write to holes and fallocate.
3886                  *
3887                  * Allocated blocks to fill the hole are marked as uninitialized
3888                  * to prevent paralel buffered read to expose the stale data
3889                  * before DIO complete the data IO.
3890                  *
3891                  * As to previously fallocated extents, ext4 get_block
3892                  * will just simply mark the buffer mapped but still
3893                  * keep the extents uninitialized.
3894                  *
3895                  * for non AIO case, we will convert those unwritten extents
3896                  * to written after return back from blockdev_direct_IO.
3897                  *
3898                  * for async DIO, the conversion needs to be defered when
3899                  * the IO is completed. The ext4 end_io callback function
3900                  * will be called to take care of the conversion work.
3901                  * Here for async case, we allocate an io_end structure to
3902                  * hook to the iocb.
3903                  */
3904                 iocb->private = NULL;
3905                 EXT4_I(inode)->cur_aio_dio = NULL;
3906                 if (!is_sync_kiocb(iocb)) {
3907                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3908                         if (!iocb->private)
3909                                 return -ENOMEM;
3910                         /*
3911                          * we save the io structure for current async
3912                          * direct IO, so that later ext4_get_blocks()
3913                          * could flag the io structure whether there
3914                          * is a unwritten extents needs to be converted
3915                          * when IO is completed.
3916                          */
3917                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3918                 }
3919
3920                 ret = blockdev_direct_IO(rw, iocb, inode,
3921                                          inode->i_sb->s_bdev, iov,
3922                                          offset, nr_segs,
3923                                          ext4_get_block_write,
3924                                          ext4_end_io_dio);
3925                 if (iocb->private)
3926                         EXT4_I(inode)->cur_aio_dio = NULL;
3927                 /*
3928                  * The io_end structure takes a reference to the inode,
3929                  * that structure needs to be destroyed and the
3930                  * reference to the inode need to be dropped, when IO is
3931                  * complete, even with 0 byte write, or failed.
3932                  *
3933                  * In the successful AIO DIO case, the io_end structure will be
3934                  * desctroyed and the reference to the inode will be dropped
3935                  * after the end_io call back function is called.
3936                  *
3937                  * In the case there is 0 byte write, or error case, since
3938                  * VFS direct IO won't invoke the end_io call back function,
3939                  * we need to free the end_io structure here.
3940                  */
3941                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3942                         ext4_free_io_end(iocb->private);
3943                         iocb->private = NULL;
3944                 } else if (ret > 0 && ext4_test_inode_state(inode,
3945                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3946                         int err;
3947                         /*
3948                          * for non AIO case, since the IO is already
3949                          * completed, we could do the convertion right here
3950                          */
3951                         err = ext4_convert_unwritten_extents(inode,
3952                                                              offset, ret);
3953                         if (err < 0)
3954                                 ret = err;
3955                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3956                 }
3957                 return ret;
3958         }
3959
3960         /* for write the the end of file case, we fall back to old way */
3961         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3962 }
3963
3964 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3965                               const struct iovec *iov, loff_t offset,
3966                               unsigned long nr_segs)
3967 {
3968         struct file *file = iocb->ki_filp;
3969         struct inode *inode = file->f_mapping->host;
3970
3971         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3972                 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3973
3974         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3975 }
3976
3977 /*
3978  * Pages can be marked dirty completely asynchronously from ext4's journalling
3979  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3980  * much here because ->set_page_dirty is called under VFS locks.  The page is
3981  * not necessarily locked.
3982  *
3983  * We cannot just dirty the page and leave attached buffers clean, because the
3984  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3985  * or jbddirty because all the journalling code will explode.
3986  *
3987  * So what we do is to mark the page "pending dirty" and next time writepage
3988  * is called, propagate that into the buffers appropriately.
3989  */
3990 static int ext4_journalled_set_page_dirty(struct page *page)
3991 {
3992         SetPageChecked(page);
3993         return __set_page_dirty_nobuffers(page);
3994 }
3995
3996 static const struct address_space_operations ext4_ordered_aops = {
3997         .readpage               = ext4_readpage,
3998         .readpages              = ext4_readpages,
3999         .writepage              = ext4_writepage,
4000         .sync_page              = block_sync_page,
4001         .write_begin            = ext4_write_begin,
4002         .write_end              = ext4_ordered_write_end,
4003         .bmap                   = ext4_bmap,
4004         .invalidatepage         = ext4_invalidatepage,
4005         .releasepage            = ext4_releasepage,
4006         .direct_IO              = ext4_direct_IO,
4007         .migratepage            = buffer_migrate_page,
4008         .is_partially_uptodate  = block_is_partially_uptodate,
4009         .error_remove_page      = generic_error_remove_page,
4010 };
4011
4012 static const struct address_space_operations ext4_writeback_aops = {
4013         .readpage               = ext4_readpage,
4014         .readpages              = ext4_readpages,
4015         .writepage              = ext4_writepage,
4016         .sync_page              = block_sync_page,
4017         .write_begin            = ext4_write_begin,
4018         .write_end              = ext4_writeback_write_end,
4019         .bmap                   = ext4_bmap,
4020         .invalidatepage         = ext4_invalidatepage,
4021         .releasepage            = ext4_releasepage,
4022         .direct_IO              = ext4_direct_IO,
4023         .migratepage            = buffer_migrate_page,
4024         .is_partially_uptodate  = block_is_partially_uptodate,
4025         .error_remove_page      = generic_error_remove_page,
4026 };
4027
4028 static const struct address_space_operations ext4_journalled_aops = {
4029         .readpage               = ext4_readpage,
4030         .readpages              = ext4_readpages,
4031         .writepage              = ext4_writepage,
4032         .sync_page              = block_sync_page,
4033         .write_begin            = ext4_write_begin,
4034         .write_end              = ext4_journalled_write_end,
4035         .set_page_dirty         = ext4_journalled_set_page_dirty,
4036         .bmap                   = ext4_bmap,
4037         .invalidatepage         = ext4_invalidatepage,
4038         .releasepage            = ext4_releasepage,
4039         .is_partially_uptodate  = block_is_partially_uptodate,
4040         .error_remove_page      = generic_error_remove_page,
4041 };
4042
4043 static const struct address_space_operations ext4_da_aops = {
4044         .readpage               = ext4_readpage,
4045         .readpages              = ext4_readpages,
4046         .writepage              = ext4_writepage,
4047         .writepages             = ext4_da_writepages,
4048         .sync_page              = block_sync_page,
4049         .write_begin            = ext4_da_write_begin,
4050         .write_end              = ext4_da_write_end,
4051         .bmap                   = ext4_bmap,
4052         .invalidatepage         = ext4_da_invalidatepage,
4053         .releasepage            = ext4_releasepage,
4054         .direct_IO              = ext4_direct_IO,
4055         .migratepage            = buffer_migrate_page,
4056         .is_partially_uptodate  = block_is_partially_uptodate,
4057         .error_remove_page      = generic_error_remove_page,
4058 };
4059
4060 void ext4_set_aops(struct inode *inode)
4061 {
4062         if (ext4_should_order_data(inode) &&
4063                 test_opt(inode->i_sb, DELALLOC))
4064                 inode->i_mapping->a_ops = &ext4_da_aops;
4065         else if (ext4_should_order_data(inode))
4066                 inode->i_mapping->a_ops = &ext4_ordered_aops;
4067         else if (ext4_should_writeback_data(inode) &&
4068                  test_opt(inode->i_sb, DELALLOC))
4069                 inode->i_mapping->a_ops = &ext4_da_aops;
4070         else if (ext4_should_writeback_data(inode))
4071                 inode->i_mapping->a_ops = &ext4_writeback_aops;
4072         else
4073                 inode->i_mapping->a_ops = &ext4_journalled_aops;
4074 }
4075
4076 /*
4077  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4078  * up to the end of the block which corresponds to `from'.
4079  * This required during truncate. We need to physically zero the tail end
4080  * of that block so it doesn't yield old data if the file is later grown.
4081  */
4082 int ext4_block_truncate_page(handle_t *handle,
4083                 struct address_space *mapping, loff_t from)
4084 {
4085         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4086         unsigned offset = from & (PAGE_CACHE_SIZE-1);
4087         unsigned blocksize, length, pos;
4088         ext4_lblk_t iblock;
4089         struct inode *inode = mapping->host;
4090         struct buffer_head *bh;
4091         struct page *page;
4092         int err = 0;
4093
4094         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4095                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
4096         if (!page)
4097                 return -EINVAL;
4098
4099         blocksize = inode->i_sb->s_blocksize;
4100         length = blocksize - (offset & (blocksize - 1));
4101         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4102
4103         /*
4104          * For "nobh" option,  we can only work if we don't need to
4105          * read-in the page - otherwise we create buffers to do the IO.
4106          */
4107         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
4108              ext4_should_writeback_data(inode) && PageUptodate(page)) {
4109                 zero_user(page, offset, length);
4110                 set_page_dirty(page);
4111                 goto unlock;
4112         }
4113
4114         if (!page_has_buffers(page))
4115                 create_empty_buffers(page, blocksize, 0);
4116
4117         /* Find the buffer that contains "offset" */
4118         bh = page_buffers(page);
4119         pos = blocksize;
4120         while (offset >= pos) {
4121                 bh = bh->b_this_page;
4122                 iblock++;
4123                 pos += blocksize;
4124         }
4125
4126         err = 0;
4127         if (buffer_freed(bh)) {
4128                 BUFFER_TRACE(bh, "freed: skip");
4129                 goto unlock;
4130         }
4131
4132         if (!buffer_mapped(bh)) {
4133                 BUFFER_TRACE(bh, "unmapped");
4134                 ext4_get_block(inode, iblock, bh, 0);
4135                 /* unmapped? It's a hole - nothing to do */
4136                 if (!buffer_mapped(bh)) {
4137                         BUFFER_TRACE(bh, "still unmapped");
4138                         goto unlock;
4139                 }
4140         }
4141
4142         /* Ok, it's mapped. Make sure it's up-to-date */
4143         if (PageUptodate(page))
4144                 set_buffer_uptodate(bh);
4145
4146         if (!buffer_uptodate(bh)) {
4147                 err = -EIO;
4148                 ll_rw_block(READ, 1, &bh);
4149                 wait_on_buffer(bh);
4150                 /* Uhhuh. Read error. Complain and punt. */
4151                 if (!buffer_uptodate(bh))
4152                         goto unlock;
4153         }
4154
4155         if (ext4_should_journal_data(inode)) {
4156                 BUFFER_TRACE(bh, "get write access");
4157                 err = ext4_journal_get_write_access(handle, bh);
4158                 if (err)
4159                         goto unlock;
4160         }
4161
4162         zero_user(page, offset, length);
4163
4164         BUFFER_TRACE(bh, "zeroed end of block");
4165
4166         err = 0;
4167         if (ext4_should_journal_data(inode)) {
4168                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4169         } else {
4170                 if (ext4_should_order_data(inode))
4171                         err = ext4_jbd2_file_inode(handle, inode);
4172                 mark_buffer_dirty(bh);
4173         }
4174
4175 unlock:
4176         unlock_page(page);
4177         page_cache_release(page);
4178         return err;
4179 }
4180
4181 /*
4182  * Probably it should be a library function... search for first non-zero word
4183  * or memcmp with zero_page, whatever is better for particular architecture.
4184  * Linus?
4185  */
4186 static inline int all_zeroes(__le32 *p, __le32 *q)
4187 {
4188         while (p < q)
4189                 if (*p++)
4190                         return 0;
4191         return 1;
4192 }
4193
4194 /**
4195  *      ext4_find_shared - find the indirect blocks for partial truncation.
4196  *      @inode:   inode in question
4197  *      @depth:   depth of the affected branch
4198  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4199  *      @chain:   place to store the pointers to partial indirect blocks
4200  *      @top:     place to the (detached) top of branch
4201  *
4202  *      This is a helper function used by ext4_truncate().
4203  *
4204  *      When we do truncate() we may have to clean the ends of several
4205  *      indirect blocks but leave the blocks themselves alive. Block is
4206  *      partially truncated if some data below the new i_size is refered
4207  *      from it (and it is on the path to the first completely truncated
4208  *      data block, indeed).  We have to free the top of that path along
4209  *      with everything to the right of the path. Since no allocation
4210  *      past the truncation point is possible until ext4_truncate()
4211  *      finishes, we may safely do the latter, but top of branch may
4212  *      require special attention - pageout below the truncation point
4213  *      might try to populate it.
4214  *
4215  *      We atomically detach the top of branch from the tree, store the
4216  *      block number of its root in *@top, pointers to buffer_heads of
4217  *      partially truncated blocks - in @chain[].bh and pointers to
4218  *      their last elements that should not be removed - in
4219  *      @chain[].p. Return value is the pointer to last filled element
4220  *      of @chain.
4221  *
4222  *      The work left to caller to do the actual freeing of subtrees:
4223  *              a) free the subtree starting from *@top
4224  *              b) free the subtrees whose roots are stored in
4225  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4226  *              c) free the subtrees growing from the inode past the @chain[0].
4227  *                      (no partially truncated stuff there).  */
4228
4229 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4230                                   ext4_lblk_t offsets[4], Indirect chain[4],
4231                                   __le32 *top)
4232 {
4233         Indirect *partial, *p;
4234         int k, err;
4235
4236         *top = 0;
4237         /* Make k index the deepest non-null offset + 1 */
4238         for (k = depth; k > 1 && !offsets[k-1]; k--)
4239                 ;
4240         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4241         /* Writer: pointers */
4242         if (!partial)
4243                 partial = chain + k-1;
4244         /*
4245          * If the branch acquired continuation since we've looked at it -
4246          * fine, it should all survive and (new) top doesn't belong to us.
4247          */
4248         if (!partial->key && *partial->p)
4249                 /* Writer: end */
4250                 goto no_top;
4251         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4252                 ;
4253         /*
4254          * OK, we've found the last block that must survive. The rest of our
4255          * branch should be detached before unlocking. However, if that rest
4256          * of branch is all ours and does not grow immediately from the inode
4257          * it's easier to cheat and just decrement partial->p.
4258          */
4259         if (p == chain + k - 1 && p > chain) {
4260                 p->p--;
4261         } else {
4262                 *top = *p->p;
4263                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4264 #if 0
4265                 *p->p = 0;
4266 #endif
4267         }
4268         /* Writer: end */
4269
4270         while (partial > p) {
4271                 brelse(partial->bh);
4272                 partial--;
4273         }
4274 no_top:
4275         return partial;
4276 }
4277
4278 /*
4279  * Zero a number of block pointers in either an inode or an indirect block.
4280  * If we restart the transaction we must again get write access to the
4281  * indirect block for further modification.
4282  *
4283  * We release `count' blocks on disk, but (last - first) may be greater
4284  * than `count' because there can be holes in there.
4285  */
4286 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4287                              struct buffer_head *bh,
4288                              ext4_fsblk_t block_to_free,
4289                              unsigned long count, __le32 *first,
4290                              __le32 *last)
4291 {
4292         __le32 *p;
4293         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4294
4295         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4296                 flags |= EXT4_FREE_BLOCKS_METADATA;
4297
4298         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4299                                    count)) {
4300                 ext4_error(inode->i_sb, "inode #%lu: "
4301                            "attempt to clear blocks %llu len %lu, invalid",
4302                            inode->i_ino, (unsigned long long) block_to_free,
4303                            count);
4304                 return 1;
4305         }
4306
4307         if (try_to_extend_transaction(handle, inode)) {
4308                 if (bh) {
4309                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4310                         ext4_handle_dirty_metadata(handle, inode, bh);
4311                 }
4312                 ext4_mark_inode_dirty(handle, inode);
4313                 ext4_truncate_restart_trans(handle, inode,
4314                                             blocks_for_truncate(inode));
4315                 if (bh) {
4316                         BUFFER_TRACE(bh, "retaking write access");
4317                         ext4_journal_get_write_access(handle, bh);
4318                 }
4319         }
4320
4321         for (p = first; p < last; p++)
4322                 *p = 0;
4323
4324         ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4325         return 0;
4326 }
4327
4328 /**
4329  * ext4_free_data - free a list of data blocks
4330  * @handle:     handle for this transaction
4331  * @inode:      inode we are dealing with
4332  * @this_bh:    indirect buffer_head which contains *@first and *@last
4333  * @first:      array of block numbers
4334  * @last:       points immediately past the end of array
4335  *
4336  * We are freeing all blocks refered from that array (numbers are stored as
4337  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4338  *
4339  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4340  * blocks are contiguous then releasing them at one time will only affect one
4341  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4342  * actually use a lot of journal space.
4343  *
4344  * @this_bh will be %NULL if @first and @last point into the inode's direct
4345  * block pointers.
4346  */
4347 static void ext4_free_data(handle_t *handle, struct inode *inode,
4348                            struct buffer_head *this_bh,
4349                            __le32 *first, __le32 *last)
4350 {
4351         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4352         unsigned long count = 0;            /* Number of blocks in the run */
4353         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4354                                                corresponding to
4355                                                block_to_free */
4356         ext4_fsblk_t nr;                    /* Current block # */
4357         __le32 *p;                          /* Pointer into inode/ind
4358                                                for current block */
4359         int err;
4360
4361         if (this_bh) {                          /* For indirect block */
4362                 BUFFER_TRACE(this_bh, "get_write_access");
4363                 err = ext4_journal_get_write_access(handle, this_bh);
4364                 /* Important: if we can't update the indirect pointers
4365                  * to the blocks, we can't free them. */
4366                 if (err)
4367                         return;
4368         }
4369
4370         for (p = first; p < last; p++) {
4371                 nr = le32_to_cpu(*p);
4372                 if (nr) {
4373                         /* accumulate blocks to free if they're contiguous */
4374                         if (count == 0) {
4375                                 block_to_free = nr;
4376                                 block_to_free_p = p;
4377                                 count = 1;
4378                         } else if (nr == block_to_free + count) {
4379                                 count++;
4380                         } else {
4381                                 if (ext4_clear_blocks(handle, inode, this_bh,
4382                                                       block_to_free, count,
4383                                                       block_to_free_p, p))
4384                                         break;
4385                                 block_to_free = nr;
4386                                 block_to_free_p = p;
4387                                 count = 1;
4388                         }
4389                 }
4390         }
4391
4392         if (count > 0)
4393                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4394                                   count, block_to_free_p, p);
4395
4396         if (this_bh) {
4397                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4398
4399                 /*
4400                  * The buffer head should have an attached journal head at this
4401                  * point. However, if the data is corrupted and an indirect
4402                  * block pointed to itself, it would have been detached when
4403                  * the block was cleared. Check for this instead of OOPSing.
4404                  */
4405                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4406                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4407                 else
4408                         ext4_error(inode->i_sb,
4409                                    "circular indirect block detected, "
4410                                    "inode=%lu, block=%llu",
4411                                    inode->i_ino,
4412                                    (unsigned long long) this_bh->b_blocknr);
4413         }
4414 }
4415
4416 /**
4417  *      ext4_free_branches - free an array of branches
4418  *      @handle: JBD handle for this transaction
4419  *      @inode: inode we are dealing with
4420  *      @parent_bh: the buffer_head which contains *@first and *@last
4421  *      @first: array of block numbers
4422  *      @last:  pointer immediately past the end of array
4423  *      @depth: depth of the branches to free
4424  *
4425  *      We are freeing all blocks refered from these branches (numbers are
4426  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4427  *      appropriately.
4428  */
4429 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4430                                struct buffer_head *parent_bh,
4431                                __le32 *first, __le32 *last, int depth)
4432 {
4433         ext4_fsblk_t nr;
4434         __le32 *p;
4435
4436         if (ext4_handle_is_aborted(handle))
4437                 return;
4438
4439         if (depth--) {
4440                 struct buffer_head *bh;
4441                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4442                 p = last;
4443                 while (--p >= first) {
4444                         nr = le32_to_cpu(*p);
4445                         if (!nr)
4446                                 continue;               /* A hole */
4447
4448                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4449                                                    nr, 1)) {
4450                                 ext4_error(inode->i_sb,
4451                                            "indirect mapped block in inode "
4452                                            "#%lu invalid (level %d, blk #%lu)",
4453                                            inode->i_ino, depth,
4454                                            (unsigned long) nr);
4455                                 break;
4456                         }
4457
4458                         /* Go read the buffer for the next level down */
4459                         bh = sb_bread(inode->i_sb, nr);
4460
4461                         /*
4462                          * A read failure? Report error and clear slot
4463                          * (should be rare).
4464                          */
4465                         if (!bh) {
4466                                 ext4_error(inode->i_sb,
4467                                            "Read failure, inode=%lu, block=%llu",
4468                                            inode->i_ino, nr);
4469                                 continue;
4470                         }
4471
4472                         /* This zaps the entire block.  Bottom up. */
4473                         BUFFER_TRACE(bh, "free child branches");
4474                         ext4_free_branches(handle, inode, bh,
4475                                         (__le32 *) bh->b_data,
4476                                         (__le32 *) bh->b_data + addr_per_block,
4477                                         depth);
4478
4479                         /*
4480                          * We've probably journalled the indirect block several
4481                          * times during the truncate.  But it's no longer
4482                          * needed and we now drop it from the transaction via
4483                          * jbd2_journal_revoke().
4484                          *
4485                          * That's easy if it's exclusively part of this
4486                          * transaction.  But if it's part of the committing
4487                          * transaction then jbd2_journal_forget() will simply
4488                          * brelse() it.  That means that if the underlying
4489                          * block is reallocated in ext4_get_block(),
4490                          * unmap_underlying_metadata() will find this block
4491                          * and will try to get rid of it.  damn, damn.
4492                          *
4493                          * If this block has already been committed to the
4494                          * journal, a revoke record will be written.  And
4495                          * revoke records must be emitted *before* clearing
4496                          * this block's bit in the bitmaps.
4497                          */
4498                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4499
4500                         /*
4501                          * Everything below this this pointer has been
4502                          * released.  Now let this top-of-subtree go.
4503                          *
4504                          * We want the freeing of this indirect block to be
4505                          * atomic in the journal with the updating of the
4506                          * bitmap block which owns it.  So make some room in
4507                          * the journal.
4508                          *
4509                          * We zero the parent pointer *after* freeing its
4510                          * pointee in the bitmaps, so if extend_transaction()
4511                          * for some reason fails to put the bitmap changes and
4512                          * the release into the same transaction, recovery
4513                          * will merely complain about releasing a free block,
4514                          * rather than leaking blocks.
4515                          */
4516                         if (ext4_handle_is_aborted(handle))
4517                                 return;
4518                         if (try_to_extend_transaction(handle, inode)) {
4519                                 ext4_mark_inode_dirty(handle, inode);
4520                                 ext4_truncate_restart_trans(handle, inode,
4521                                             blocks_for_truncate(inode));
4522                         }
4523
4524                         ext4_free_blocks(handle, inode, 0, nr, 1,
4525                                          EXT4_FREE_BLOCKS_METADATA);
4526
4527                         if (parent_bh) {
4528                                 /*
4529                                  * The block which we have just freed is
4530                                  * pointed to by an indirect block: journal it
4531                                  */
4532                                 BUFFER_TRACE(parent_bh, "get_write_access");
4533                                 if (!ext4_journal_get_write_access(handle,
4534                                                                    parent_bh)){
4535                                         *p = 0;
4536                                         BUFFER_TRACE(parent_bh,
4537                                         "call ext4_handle_dirty_metadata");
4538                                         ext4_handle_dirty_metadata(handle,
4539                                                                    inode,
4540                                                                    parent_bh);
4541                                 }
4542                         }
4543                 }
4544         } else {
4545                 /* We have reached the bottom of the tree. */
4546                 BUFFER_TRACE(parent_bh, "free data blocks");
4547                 ext4_free_data(handle, inode, parent_bh, first, last);
4548         }
4549 }
4550
4551 int ext4_can_truncate(struct inode *inode)
4552 {
4553         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4554                 return 0;
4555         if (S_ISREG(inode->i_mode))
4556                 return 1;
4557         if (S_ISDIR(inode->i_mode))
4558                 return 1;
4559         if (S_ISLNK(inode->i_mode))
4560                 return !ext4_inode_is_fast_symlink(inode);
4561         return 0;
4562 }
4563
4564 /*
4565  * ext4_truncate()
4566  *
4567  * We block out ext4_get_block() block instantiations across the entire
4568  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4569  * simultaneously on behalf of the same inode.
4570  *
4571  * As we work through the truncate and commmit bits of it to the journal there
4572  * is one core, guiding principle: the file's tree must always be consistent on
4573  * disk.  We must be able to restart the truncate after a crash.
4574  *
4575  * The file's tree may be transiently inconsistent in memory (although it
4576  * probably isn't), but whenever we close off and commit a journal transaction,
4577  * the contents of (the filesystem + the journal) must be consistent and
4578  * restartable.  It's pretty simple, really: bottom up, right to left (although
4579  * left-to-right works OK too).
4580  *
4581  * Note that at recovery time, journal replay occurs *before* the restart of
4582  * truncate against the orphan inode list.
4583  *
4584  * The committed inode has the new, desired i_size (which is the same as
4585  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4586  * that this inode's truncate did not complete and it will again call
4587  * ext4_truncate() to have another go.  So there will be instantiated blocks
4588  * to the right of the truncation point in a crashed ext4 filesystem.  But
4589  * that's fine - as long as they are linked from the inode, the post-crash
4590  * ext4_truncate() run will find them and release them.
4591  */
4592 void ext4_truncate(struct inode *inode)
4593 {
4594         handle_t *handle;
4595         struct ext4_inode_info *ei = EXT4_I(inode);
4596         __le32 *i_data = ei->i_data;
4597         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4598         struct address_space *mapping = inode->i_mapping;
4599         ext4_lblk_t offsets[4];
4600         Indirect chain[4];
4601         Indirect *partial;
4602         __le32 nr = 0;
4603         int n;
4604         ext4_lblk_t last_block;
4605         unsigned blocksize = inode->i_sb->s_blocksize;
4606
4607         if (!ext4_can_truncate(inode))
4608                 return;
4609
4610         EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL;
4611
4612         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4613                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4614
4615         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4616                 ext4_ext_truncate(inode);
4617                 return;
4618         }
4619
4620         handle = start_transaction(inode);
4621         if (IS_ERR(handle))
4622                 return;         /* AKPM: return what? */
4623
4624         last_block = (inode->i_size + blocksize-1)
4625                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4626
4627         if (inode->i_size & (blocksize - 1))
4628                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4629                         goto out_stop;
4630
4631         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4632         if (n == 0)
4633                 goto out_stop;  /* error */
4634
4635         /*
4636          * OK.  This truncate is going to happen.  We add the inode to the
4637          * orphan list, so that if this truncate spans multiple transactions,
4638          * and we crash, we will resume the truncate when the filesystem
4639          * recovers.  It also marks the inode dirty, to catch the new size.
4640          *
4641          * Implication: the file must always be in a sane, consistent
4642          * truncatable state while each transaction commits.
4643          */
4644         if (ext4_orphan_add(handle, inode))
4645                 goto out_stop;
4646
4647         /*
4648          * From here we block out all ext4_get_block() callers who want to
4649          * modify the block allocation tree.
4650          */
4651         down_write(&ei->i_data_sem);
4652
4653         ext4_discard_preallocations(inode);
4654
4655         /*
4656          * The orphan list entry will now protect us from any crash which
4657          * occurs before the truncate completes, so it is now safe to propagate
4658          * the new, shorter inode size (held for now in i_size) into the
4659          * on-disk inode. We do this via i_disksize, which is the value which
4660          * ext4 *really* writes onto the disk inode.
4661          */
4662         ei->i_disksize = inode->i_size;
4663
4664         if (n == 1) {           /* direct blocks */
4665                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4666                                i_data + EXT4_NDIR_BLOCKS);
4667                 goto do_indirects;
4668         }
4669
4670         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4671         /* Kill the top of shared branch (not detached) */
4672         if (nr) {
4673                 if (partial == chain) {
4674                         /* Shared branch grows from the inode */
4675                         ext4_free_branches(handle, inode, NULL,
4676                                            &nr, &nr+1, (chain+n-1) - partial);
4677                         *partial->p = 0;
4678                         /*
4679                          * We mark the inode dirty prior to restart,
4680                          * and prior to stop.  No need for it here.
4681                          */
4682                 } else {
4683                         /* Shared branch grows from an indirect block */
4684                         BUFFER_TRACE(partial->bh, "get_write_access");
4685                         ext4_free_branches(handle, inode, partial->bh,
4686                                         partial->p,
4687                                         partial->p+1, (chain+n-1) - partial);
4688                 }
4689         }
4690         /* Clear the ends of indirect blocks on the shared branch */
4691         while (partial > chain) {
4692                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4693                                    (__le32*)partial->bh->b_data+addr_per_block,
4694                                    (chain+n-1) - partial);
4695                 BUFFER_TRACE(partial->bh, "call brelse");
4696                 brelse(partial->bh);
4697                 partial--;
4698         }
4699 do_indirects:
4700         /* Kill the remaining (whole) subtrees */
4701         switch (offsets[0]) {
4702         default:
4703                 nr = i_data[EXT4_IND_BLOCK];
4704                 if (nr) {
4705                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4706                         i_data[EXT4_IND_BLOCK] = 0;
4707                 }
4708         case EXT4_IND_BLOCK:
4709                 nr = i_data[EXT4_DIND_BLOCK];
4710                 if (nr) {
4711                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4712                         i_data[EXT4_DIND_BLOCK] = 0;
4713                 }
4714         case EXT4_DIND_BLOCK:
4715                 nr = i_data[EXT4_TIND_BLOCK];
4716                 if (nr) {
4717                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4718                         i_data[EXT4_TIND_BLOCK] = 0;
4719                 }
4720         case EXT4_TIND_BLOCK:
4721                 ;
4722         }
4723
4724         up_write(&ei->i_data_sem);
4725         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4726         ext4_mark_inode_dirty(handle, inode);
4727
4728         /*
4729          * In a multi-transaction truncate, we only make the final transaction
4730          * synchronous
4731          */
4732         if (IS_SYNC(inode))
4733                 ext4_handle_sync(handle);
4734 out_stop:
4735         /*
4736          * If this was a simple ftruncate(), and the file will remain alive
4737          * then we need to clear up the orphan record which we created above.
4738          * However, if this was a real unlink then we were called by
4739          * ext4_delete_inode(), and we allow that function to clean up the
4740          * orphan info for us.
4741          */
4742         if (inode->i_nlink)
4743                 ext4_orphan_del(handle, inode);
4744
4745         ext4_journal_stop(handle);
4746 }
4747
4748 /*
4749  * ext4_get_inode_loc returns with an extra refcount against the inode's
4750  * underlying buffer_head on success. If 'in_mem' is true, we have all
4751  * data in memory that is needed to recreate the on-disk version of this
4752  * inode.
4753  */
4754 static int __ext4_get_inode_loc(struct inode *inode,
4755                                 struct ext4_iloc *iloc, int in_mem)
4756 {
4757         struct ext4_group_desc  *gdp;
4758         struct buffer_head      *bh;
4759         struct super_block      *sb = inode->i_sb;
4760         ext4_fsblk_t            block;
4761         int                     inodes_per_block, inode_offset;
4762
4763         iloc->bh = NULL;
4764         if (!ext4_valid_inum(sb, inode->i_ino))
4765                 return -EIO;
4766
4767         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4768         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4769         if (!gdp)
4770                 return -EIO;
4771
4772         /*
4773          * Figure out the offset within the block group inode table
4774          */
4775         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4776         inode_offset = ((inode->i_ino - 1) %
4777                         EXT4_INODES_PER_GROUP(sb));
4778         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4779         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4780
4781         bh = sb_getblk(sb, block);
4782         if (!bh) {
4783                 ext4_error(sb, "unable to read inode block - "
4784                            "inode=%lu, block=%llu", inode->i_ino, block);
4785                 return -EIO;
4786         }
4787         if (!buffer_uptodate(bh)) {
4788                 lock_buffer(bh);
4789
4790                 /*
4791                  * If the buffer has the write error flag, we have failed
4792                  * to write out another inode in the same block.  In this
4793                  * case, we don't have to read the block because we may
4794                  * read the old inode data successfully.
4795                  */
4796                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4797                         set_buffer_uptodate(bh);
4798
4799                 if (buffer_uptodate(bh)) {
4800                         /* someone brought it uptodate while we waited */
4801                         unlock_buffer(bh);
4802                         goto has_buffer;
4803                 }
4804
4805                 /*
4806                  * If we have all information of the inode in memory and this
4807                  * is the only valid inode in the block, we need not read the
4808                  * block.
4809                  */
4810                 if (in_mem) {
4811                         struct buffer_head *bitmap_bh;
4812                         int i, start;
4813
4814                         start = inode_offset & ~(inodes_per_block - 1);
4815
4816                         /* Is the inode bitmap in cache? */
4817                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4818                         if (!bitmap_bh)
4819                                 goto make_io;
4820
4821                         /*
4822                          * If the inode bitmap isn't in cache then the
4823                          * optimisation may end up performing two reads instead
4824                          * of one, so skip it.
4825                          */
4826                         if (!buffer_uptodate(bitmap_bh)) {
4827                                 brelse(bitmap_bh);
4828                                 goto make_io;
4829                         }
4830                         for (i = start; i < start + inodes_per_block; i++) {
4831                                 if (i == inode_offset)
4832                                         continue;
4833                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4834                                         break;
4835                         }
4836                         brelse(bitmap_bh);
4837                         if (i == start + inodes_per_block) {
4838                                 /* all other inodes are free, so skip I/O */
4839                                 memset(bh->b_data, 0, bh->b_size);
4840                                 set_buffer_uptodate(bh);
4841                                 unlock_buffer(bh);
4842                                 goto has_buffer;
4843                         }
4844                 }
4845
4846 make_io:
4847                 /*
4848                  * If we need to do any I/O, try to pre-readahead extra
4849                  * blocks from the inode table.
4850                  */
4851                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4852                         ext4_fsblk_t b, end, table;
4853                         unsigned num;
4854
4855                         table = ext4_inode_table(sb, gdp);
4856                         /* s_inode_readahead_blks is always a power of 2 */
4857                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4858                         if (table > b)
4859                                 b = table;
4860                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4861                         num = EXT4_INODES_PER_GROUP(sb);
4862                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4863                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4864                                 num -= ext4_itable_unused_count(sb, gdp);
4865                         table += num / inodes_per_block;
4866                         if (end > table)
4867                                 end = table;
4868                         while (b <= end)
4869                                 sb_breadahead(sb, b++);
4870                 }
4871
4872                 /*
4873                  * There are other valid inodes in the buffer, this inode
4874                  * has in-inode xattrs, or we don't have this inode in memory.
4875                  * Read the block from disk.
4876                  */
4877                 get_bh(bh);
4878                 bh->b_end_io = end_buffer_read_sync;
4879                 submit_bh(READ_META, bh);
4880                 wait_on_buffer(bh);
4881                 if (!buffer_uptodate(bh)) {
4882                         ext4_error(sb, "unable to read inode block - inode=%lu,"
4883                                    " block=%llu", inode->i_ino, block);
4884                         brelse(bh);
4885                         return -EIO;
4886                 }
4887         }
4888 has_buffer:
4889         iloc->bh = bh;
4890         return 0;
4891 }
4892
4893 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4894 {
4895         /* We have all inode data except xattrs in memory here. */
4896         return __ext4_get_inode_loc(inode, iloc,
4897                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4898 }
4899
4900 void ext4_set_inode_flags(struct inode *inode)
4901 {
4902         unsigned int flags = EXT4_I(inode)->i_flags;
4903
4904         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4905         if (flags & EXT4_SYNC_FL)
4906                 inode->i_flags |= S_SYNC;
4907         if (flags & EXT4_APPEND_FL)
4908                 inode->i_flags |= S_APPEND;
4909         if (flags & EXT4_IMMUTABLE_FL)
4910                 inode->i_flags |= S_IMMUTABLE;
4911         if (flags & EXT4_NOATIME_FL)
4912                 inode->i_flags |= S_NOATIME;
4913         if (flags & EXT4_DIRSYNC_FL)
4914                 inode->i_flags |= S_DIRSYNC;
4915 }
4916
4917 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4918 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4919 {
4920         unsigned int flags = ei->vfs_inode.i_flags;
4921
4922         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4923                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4924         if (flags & S_SYNC)
4925                 ei->i_flags |= EXT4_SYNC_FL;
4926         if (flags & S_APPEND)
4927                 ei->i_flags |= EXT4_APPEND_FL;
4928         if (flags & S_IMMUTABLE)
4929                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4930         if (flags & S_NOATIME)
4931                 ei->i_flags |= EXT4_NOATIME_FL;
4932         if (flags & S_DIRSYNC)
4933                 ei->i_flags |= EXT4_DIRSYNC_FL;
4934 }
4935
4936 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4937                                   struct ext4_inode_info *ei)
4938 {
4939         blkcnt_t i_blocks ;
4940         struct inode *inode = &(ei->vfs_inode);
4941         struct super_block *sb = inode->i_sb;
4942
4943         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4944                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4945                 /* we are using combined 48 bit field */
4946                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4947                                         le32_to_cpu(raw_inode->i_blocks_lo);
4948                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4949                         /* i_blocks represent file system block size */
4950                         return i_blocks  << (inode->i_blkbits - 9);
4951                 } else {
4952                         return i_blocks;
4953                 }
4954         } else {
4955                 return le32_to_cpu(raw_inode->i_blocks_lo);
4956         }
4957 }
4958
4959 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4960 {
4961         struct ext4_iloc iloc;
4962         struct ext4_inode *raw_inode;
4963         struct ext4_inode_info *ei;
4964         struct inode *inode;
4965         journal_t *journal = EXT4_SB(sb)->s_journal;
4966         long ret;
4967         int block;
4968
4969         inode = iget_locked(sb, ino);
4970         if (!inode)
4971                 return ERR_PTR(-ENOMEM);
4972         if (!(inode->i_state & I_NEW))
4973                 return inode;
4974
4975         ei = EXT4_I(inode);
4976         iloc.bh = 0;
4977
4978         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4979         if (ret < 0)
4980                 goto bad_inode;
4981         raw_inode = ext4_raw_inode(&iloc);
4982         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4983         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4984         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4985         if (!(test_opt(inode->i_sb, NO_UID32))) {
4986                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4987                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4988         }
4989         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4990
4991         ei->i_state_flags = 0;
4992         ei->i_dir_start_lookup = 0;
4993         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4994         /* We now have enough fields to check if the inode was active or not.
4995          * This is needed because nfsd might try to access dead inodes
4996          * the test is that same one that e2fsck uses
4997          * NeilBrown 1999oct15
4998          */
4999         if (inode->i_nlink == 0) {
5000                 if (inode->i_mode == 0 ||
5001                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5002                         /* this inode is deleted */
5003                         ret = -ESTALE;
5004                         goto bad_inode;
5005                 }
5006                 /* The only unlinked inodes we let through here have
5007                  * valid i_mode and are being read by the orphan
5008                  * recovery code: that's fine, we're about to complete
5009                  * the process of deleting those. */
5010         }
5011         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5012         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5013         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5014         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
5015                 ei->i_file_acl |=
5016                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5017         inode->i_size = ext4_isize(raw_inode);
5018         ei->i_disksize = inode->i_size;
5019 #ifdef CONFIG_QUOTA
5020         ei->i_reserved_quota = 0;
5021 #endif
5022         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5023         ei->i_block_group = iloc.block_group;
5024         ei->i_last_alloc_group = ~0;
5025         /*
5026          * NOTE! The in-memory inode i_data array is in little-endian order
5027          * even on big-endian machines: we do NOT byteswap the block numbers!
5028          */
5029         for (block = 0; block < EXT4_N_BLOCKS; block++)
5030                 ei->i_data[block] = raw_inode->i_block[block];
5031         INIT_LIST_HEAD(&ei->i_orphan);
5032
5033         /*
5034          * Set transaction id's of transactions that have to be committed
5035          * to finish f[data]sync. We set them to currently running transaction
5036          * as we cannot be sure that the inode or some of its metadata isn't
5037          * part of the transaction - the inode could have been reclaimed and
5038          * now it is reread from disk.
5039          */
5040         if (journal) {
5041                 transaction_t *transaction;
5042                 tid_t tid;
5043
5044                 spin_lock(&journal->j_state_lock);
5045                 if (journal->j_running_transaction)
5046                         transaction = journal->j_running_transaction;
5047                 else
5048                         transaction = journal->j_committing_transaction;
5049                 if (transaction)
5050                         tid = transaction->t_tid;
5051                 else
5052                         tid = journal->j_commit_sequence;
5053                 spin_unlock(&journal->j_state_lock);
5054                 ei->i_sync_tid = tid;
5055                 ei->i_datasync_tid = tid;
5056         }
5057
5058         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5059                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5060                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5061                     EXT4_INODE_SIZE(inode->i_sb)) {
5062                         ret = -EIO;
5063                         goto bad_inode;
5064                 }
5065                 if (ei->i_extra_isize == 0) {
5066                         /* The extra space is currently unused. Use it. */
5067                         ei->i_extra_isize = sizeof(struct ext4_inode) -
5068                                             EXT4_GOOD_OLD_INODE_SIZE;
5069                 } else {
5070                         __le32 *magic = (void *)raw_inode +
5071                                         EXT4_GOOD_OLD_INODE_SIZE +
5072                                         ei->i_extra_isize;
5073                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5074                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5075                 }
5076         } else
5077                 ei->i_extra_isize = 0;
5078
5079         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5080         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5081         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5082         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5083
5084         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5085         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5086                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5087                         inode->i_version |=
5088                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5089         }
5090
5091         ret = 0;
5092         if (ei->i_file_acl &&
5093             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5094                 ext4_error(sb, "bad extended attribute block %llu inode #%lu",
5095                            ei->i_file_acl, inode->i_ino);
5096                 ret = -EIO;
5097                 goto bad_inode;
5098         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
5099                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5100                     (S_ISLNK(inode->i_mode) &&
5101                      !ext4_inode_is_fast_symlink(inode)))
5102                         /* Validate extent which is part of inode */
5103                         ret = ext4_ext_check_inode(inode);
5104         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5105                    (S_ISLNK(inode->i_mode) &&
5106                     !ext4_inode_is_fast_symlink(inode))) {
5107                 /* Validate block references which are part of inode */
5108                 ret = ext4_check_inode_blockref(inode);
5109         }
5110         if (ret)
5111                 goto bad_inode;
5112
5113         if (S_ISREG(inode->i_mode)) {
5114                 inode->i_op = &ext4_file_inode_operations;
5115                 inode->i_fop = &ext4_file_operations;
5116                 ext4_set_aops(inode);
5117         } else if (S_ISDIR(inode->i_mode)) {
5118                 inode->i_op = &ext4_dir_inode_operations;
5119                 inode->i_fop = &ext4_dir_operations;
5120         } else if (S_ISLNK(inode->i_mode)) {
5121                 if (ext4_inode_is_fast_symlink(inode)) {
5122                         inode->i_op = &ext4_fast_symlink_inode_operations;
5123                         nd_terminate_link(ei->i_data, inode->i_size,
5124                                 sizeof(ei->i_data) - 1);
5125                 } else {
5126                         inode->i_op = &ext4_symlink_inode_operations;
5127                         ext4_set_aops(inode);
5128                 }
5129         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5130               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5131                 inode->i_op = &ext4_special_inode_operations;
5132                 if (raw_inode->i_block[0])
5133                         init_special_inode(inode, inode->i_mode,
5134                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5135                 else
5136                         init_special_inode(inode, inode->i_mode,
5137                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5138         } else {
5139                 ret = -EIO;
5140                 ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu",
5141                            inode->i_mode, inode->i_ino);
5142                 goto bad_inode;
5143         }
5144         brelse(iloc.bh);
5145         ext4_set_inode_flags(inode);
5146         unlock_new_inode(inode);
5147         return inode;
5148
5149 bad_inode:
5150         brelse(iloc.bh);
5151         iget_failed(inode);
5152         return ERR_PTR(ret);
5153 }
5154
5155 static int ext4_inode_blocks_set(handle_t *handle,
5156                                 struct ext4_inode *raw_inode,
5157                                 struct ext4_inode_info *ei)
5158 {
5159         struct inode *inode = &(ei->vfs_inode);
5160         u64 i_blocks = inode->i_blocks;
5161         struct super_block *sb = inode->i_sb;
5162
5163         if (i_blocks <= ~0U) {
5164                 /*
5165                  * i_blocks can be represnted in a 32 bit variable
5166                  * as multiple of 512 bytes
5167                  */
5168                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5169                 raw_inode->i_blocks_high = 0;
5170                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5171                 return 0;
5172         }
5173         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5174                 return -EFBIG;
5175
5176         if (i_blocks <= 0xffffffffffffULL) {
5177                 /*
5178                  * i_blocks can be represented in a 48 bit variable
5179                  * as multiple of 512 bytes
5180                  */
5181                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5182                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5183                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5184         } else {
5185                 ei->i_flags |= EXT4_HUGE_FILE_FL;
5186                 /* i_block is stored in file system block size */
5187                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5188                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5189                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5190         }
5191         return 0;
5192 }
5193
5194 /*
5195  * Post the struct inode info into an on-disk inode location in the
5196  * buffer-cache.  This gobbles the caller's reference to the
5197  * buffer_head in the inode location struct.
5198  *
5199  * The caller must have write access to iloc->bh.
5200  */
5201 static int ext4_do_update_inode(handle_t *handle,
5202                                 struct inode *inode,
5203                                 struct ext4_iloc *iloc)
5204 {
5205         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5206         struct ext4_inode_info *ei = EXT4_I(inode);
5207         struct buffer_head *bh = iloc->bh;
5208         int err = 0, rc, block;
5209
5210         /* For fields not not tracking in the in-memory inode,
5211          * initialise them to zero for new inodes. */
5212         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5213                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5214
5215         ext4_get_inode_flags(ei);
5216         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5217         if (!(test_opt(inode->i_sb, NO_UID32))) {
5218                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5219                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5220 /*
5221  * Fix up interoperability with old kernels. Otherwise, old inodes get
5222  * re-used with the upper 16 bits of the uid/gid intact
5223  */
5224                 if (!ei->i_dtime) {
5225                         raw_inode->i_uid_high =
5226                                 cpu_to_le16(high_16_bits(inode->i_uid));
5227                         raw_inode->i_gid_high =
5228                                 cpu_to_le16(high_16_bits(inode->i_gid));
5229                 } else {
5230                         raw_inode->i_uid_high = 0;
5231                         raw_inode->i_gid_high = 0;
5232                 }
5233         } else {
5234                 raw_inode->i_uid_low =
5235                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
5236                 raw_inode->i_gid_low =
5237                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
5238                 raw_inode->i_uid_high = 0;
5239                 raw_inode->i_gid_high = 0;
5240         }
5241         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5242
5243         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5244         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5245         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5246         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5247
5248         if (ext4_inode_blocks_set(handle, raw_inode, ei))
5249                 goto out_brelse;
5250         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5251         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5252         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5253             cpu_to_le32(EXT4_OS_HURD))
5254                 raw_inode->i_file_acl_high =
5255                         cpu_to_le16(ei->i_file_acl >> 32);
5256         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5257         ext4_isize_set(raw_inode, ei->i_disksize);
5258         if (ei->i_disksize > 0x7fffffffULL) {
5259                 struct super_block *sb = inode->i_sb;
5260                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5261                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5262                                 EXT4_SB(sb)->s_es->s_rev_level ==
5263                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5264                         /* If this is the first large file
5265                          * created, add a flag to the superblock.
5266                          */
5267                         err = ext4_journal_get_write_access(handle,
5268                                         EXT4_SB(sb)->s_sbh);
5269                         if (err)
5270                                 goto out_brelse;
5271                         ext4_update_dynamic_rev(sb);
5272                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5273                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5274                         sb->s_dirt = 1;
5275                         ext4_handle_sync(handle);
5276                         err = ext4_handle_dirty_metadata(handle, NULL,
5277                                         EXT4_SB(sb)->s_sbh);
5278                 }
5279         }
5280         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5281         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5282                 if (old_valid_dev(inode->i_rdev)) {
5283                         raw_inode->i_block[0] =
5284                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5285                         raw_inode->i_block[1] = 0;
5286                 } else {
5287                         raw_inode->i_block[0] = 0;
5288                         raw_inode->i_block[1] =
5289                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5290                         raw_inode->i_block[2] = 0;
5291                 }
5292         } else
5293                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5294                         raw_inode->i_block[block] = ei->i_data[block];
5295
5296         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5297         if (ei->i_extra_isize) {
5298                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5299                         raw_inode->i_version_hi =
5300                         cpu_to_le32(inode->i_version >> 32);
5301                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5302         }
5303
5304         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5305         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5306         if (!err)
5307                 err = rc;
5308         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5309
5310         ext4_update_inode_fsync_trans(handle, inode, 0);
5311 out_brelse:
5312         brelse(bh);
5313         ext4_std_error(inode->i_sb, err);
5314         return err;
5315 }
5316
5317 /*
5318  * ext4_write_inode()
5319  *
5320  * We are called from a few places:
5321  *
5322  * - Within generic_file_write() for O_SYNC files.
5323  *   Here, there will be no transaction running. We wait for any running
5324  *   trasnaction to commit.
5325  *
5326  * - Within sys_sync(), kupdate and such.
5327  *   We wait on commit, if tol to.
5328  *
5329  * - Within prune_icache() (PF_MEMALLOC == true)
5330  *   Here we simply return.  We can't afford to block kswapd on the
5331  *   journal commit.
5332  *
5333  * In all cases it is actually safe for us to return without doing anything,
5334  * because the inode has been copied into a raw inode buffer in
5335  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5336  * knfsd.
5337  *
5338  * Note that we are absolutely dependent upon all inode dirtiers doing the
5339  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5340  * which we are interested.
5341  *
5342  * It would be a bug for them to not do this.  The code:
5343  *
5344  *      mark_inode_dirty(inode)
5345  *      stuff();
5346  *      inode->i_size = expr;
5347  *
5348  * is in error because a kswapd-driven write_inode() could occur while
5349  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5350  * will no longer be on the superblock's dirty inode list.
5351  */
5352 int ext4_write_inode(struct inode *inode, int wait)
5353 {
5354         int err;
5355
5356         if (current->flags & PF_MEMALLOC)
5357                 return 0;
5358
5359         if (EXT4_SB(inode->i_sb)->s_journal) {
5360                 if (ext4_journal_current_handle()) {
5361                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5362                         dump_stack();
5363                         return -EIO;
5364                 }
5365
5366                 if (!wait)
5367                         return 0;
5368
5369                 err = ext4_force_commit(inode->i_sb);
5370         } else {
5371                 struct ext4_iloc iloc;
5372
5373                 err = ext4_get_inode_loc(inode, &iloc);
5374                 if (err)
5375                         return err;
5376                 if (wait)
5377                         sync_dirty_buffer(iloc.bh);
5378                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5379                         ext4_error(inode->i_sb, "IO error syncing inode, "
5380                                    "inode=%lu, block=%llu", inode->i_ino,
5381                                    (unsigned long long)iloc.bh->b_blocknr);
5382                         err = -EIO;
5383                 }
5384         }
5385         return err;
5386 }
5387
5388 /*
5389  * ext4_setattr()
5390  *
5391  * Called from notify_change.
5392  *
5393  * We want to trap VFS attempts to truncate the file as soon as
5394  * possible.  In particular, we want to make sure that when the VFS
5395  * shrinks i_size, we put the inode on the orphan list and modify
5396  * i_disksize immediately, so that during the subsequent flushing of
5397  * dirty pages and freeing of disk blocks, we can guarantee that any
5398  * commit will leave the blocks being flushed in an unused state on
5399  * disk.  (On recovery, the inode will get truncated and the blocks will
5400  * be freed, so we have a strong guarantee that no future commit will
5401  * leave these blocks visible to the user.)
5402  *
5403  * Another thing we have to assure is that if we are in ordered mode
5404  * and inode is still attached to the committing transaction, we must
5405  * we start writeout of all the dirty pages which are being truncated.
5406  * This way we are sure that all the data written in the previous
5407  * transaction are already on disk (truncate waits for pages under
5408  * writeback).
5409  *
5410  * Called with inode->i_mutex down.
5411  */
5412 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5413 {
5414         struct inode *inode = dentry->d_inode;
5415         int error, rc = 0;
5416         const unsigned int ia_valid = attr->ia_valid;
5417
5418         error = inode_change_ok(inode, attr);
5419         if (error)
5420                 return error;
5421
5422         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5423                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5424                 handle_t *handle;
5425
5426                 /* (user+group)*(old+new) structure, inode write (sb,
5427                  * inode block, ? - but truncate inode update has it) */
5428                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5429                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5430                 if (IS_ERR(handle)) {
5431                         error = PTR_ERR(handle);
5432                         goto err_out;
5433                 }
5434                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5435                 if (error) {
5436                         ext4_journal_stop(handle);
5437                         return error;
5438                 }
5439                 /* Update corresponding info in inode so that everything is in
5440                  * one transaction */
5441                 if (attr->ia_valid & ATTR_UID)
5442                         inode->i_uid = attr->ia_uid;
5443                 if (attr->ia_valid & ATTR_GID)
5444                         inode->i_gid = attr->ia_gid;
5445                 error = ext4_mark_inode_dirty(handle, inode);
5446                 ext4_journal_stop(handle);
5447         }
5448
5449         if (attr->ia_valid & ATTR_SIZE) {
5450                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5451                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5452
5453                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5454                                 error = -EFBIG;
5455                                 goto err_out;
5456                         }
5457                 }
5458         }
5459
5460         if (S_ISREG(inode->i_mode) &&
5461             attr->ia_valid & ATTR_SIZE &&
5462             (attr->ia_size < inode->i_size ||
5463              (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) {
5464                 handle_t *handle;
5465
5466                 handle = ext4_journal_start(inode, 3);
5467                 if (IS_ERR(handle)) {
5468                         error = PTR_ERR(handle);
5469                         goto err_out;
5470                 }
5471
5472                 error = ext4_orphan_add(handle, inode);
5473                 EXT4_I(inode)->i_disksize = attr->ia_size;
5474                 rc = ext4_mark_inode_dirty(handle, inode);
5475                 if (!error)
5476                         error = rc;
5477                 ext4_journal_stop(handle);
5478
5479                 if (ext4_should_order_data(inode)) {
5480                         error = ext4_begin_ordered_truncate(inode,
5481                                                             attr->ia_size);
5482                         if (error) {
5483                                 /* Do as much error cleanup as possible */
5484                                 handle = ext4_journal_start(inode, 3);
5485                                 if (IS_ERR(handle)) {
5486                                         ext4_orphan_del(NULL, inode);
5487                                         goto err_out;
5488                                 }
5489                                 ext4_orphan_del(handle, inode);
5490                                 ext4_journal_stop(handle);
5491                                 goto err_out;
5492                         }
5493                 }
5494                 /* ext4_truncate will clear the flag */
5495                 if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))
5496                         ext4_truncate(inode);
5497         }
5498
5499         rc = inode_setattr(inode, attr);
5500
5501         /* If inode_setattr's call to ext4_truncate failed to get a
5502          * transaction handle at all, we need to clean up the in-core
5503          * orphan list manually. */
5504         if (inode->i_nlink)
5505                 ext4_orphan_del(NULL, inode);
5506
5507         if (!rc && (ia_valid & ATTR_MODE))
5508                 rc = ext4_acl_chmod(inode);
5509
5510 err_out:
5511         ext4_std_error(inode->i_sb, error);
5512         if (!error)
5513                 error = rc;
5514         return error;
5515 }
5516
5517 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5518                  struct kstat *stat)
5519 {
5520         struct inode *inode;
5521         unsigned long delalloc_blocks;
5522
5523         inode = dentry->d_inode;
5524         generic_fillattr(inode, stat);
5525
5526         /*
5527          * We can't update i_blocks if the block allocation is delayed
5528          * otherwise in the case of system crash before the real block
5529          * allocation is done, we will have i_blocks inconsistent with
5530          * on-disk file blocks.
5531          * We always keep i_blocks updated together with real
5532          * allocation. But to not confuse with user, stat
5533          * will return the blocks that include the delayed allocation
5534          * blocks for this file.
5535          */
5536         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5537         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5538         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5539
5540         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5541         return 0;
5542 }
5543
5544 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5545                                       int chunk)
5546 {
5547         int indirects;
5548
5549         /* if nrblocks are contiguous */
5550         if (chunk) {
5551                 /*
5552                  * With N contiguous data blocks, it need at most
5553                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5554                  * 2 dindirect blocks
5555                  * 1 tindirect block
5556                  */
5557                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5558                 return indirects + 3;
5559         }
5560         /*
5561          * if nrblocks are not contiguous, worse case, each block touch
5562          * a indirect block, and each indirect block touch a double indirect
5563          * block, plus a triple indirect block
5564          */
5565         indirects = nrblocks * 2 + 1;
5566         return indirects;
5567 }
5568
5569 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5570 {
5571         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5572                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5573         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5574 }
5575
5576 /*
5577  * Account for index blocks, block groups bitmaps and block group
5578  * descriptor blocks if modify datablocks and index blocks
5579  * worse case, the indexs blocks spread over different block groups
5580  *
5581  * If datablocks are discontiguous, they are possible to spread over
5582  * different block groups too. If they are contiuguous, with flexbg,
5583  * they could still across block group boundary.
5584  *
5585  * Also account for superblock, inode, quota and xattr blocks
5586  */
5587 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5588 {
5589         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5590         int gdpblocks;
5591         int idxblocks;
5592         int ret = 0;
5593
5594         /*
5595          * How many index blocks need to touch to modify nrblocks?
5596          * The "Chunk" flag indicating whether the nrblocks is
5597          * physically contiguous on disk
5598          *
5599          * For Direct IO and fallocate, they calls get_block to allocate
5600          * one single extent at a time, so they could set the "Chunk" flag
5601          */
5602         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5603
5604         ret = idxblocks;
5605
5606         /*
5607          * Now let's see how many group bitmaps and group descriptors need
5608          * to account
5609          */
5610         groups = idxblocks;
5611         if (chunk)
5612                 groups += 1;
5613         else
5614                 groups += nrblocks;
5615
5616         gdpblocks = groups;
5617         if (groups > ngroups)
5618                 groups = ngroups;
5619         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5620                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5621
5622         /* bitmaps and block group descriptor blocks */
5623         ret += groups + gdpblocks;
5624
5625         /* Blocks for super block, inode, quota and xattr blocks */
5626         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5627
5628         return ret;
5629 }
5630
5631 /*
5632  * Calulate the total number of credits to reserve to fit
5633  * the modification of a single pages into a single transaction,
5634  * which may include multiple chunks of block allocations.
5635  *
5636  * This could be called via ext4_write_begin()
5637  *
5638  * We need to consider the worse case, when
5639  * one new block per extent.
5640  */
5641 int ext4_writepage_trans_blocks(struct inode *inode)
5642 {
5643         int bpp = ext4_journal_blocks_per_page(inode);
5644         int ret;
5645
5646         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5647
5648         /* Account for data blocks for journalled mode */
5649         if (ext4_should_journal_data(inode))
5650                 ret += bpp;
5651         return ret;
5652 }
5653
5654 /*
5655  * Calculate the journal credits for a chunk of data modification.
5656  *
5657  * This is called from DIO, fallocate or whoever calling
5658  * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5659  *
5660  * journal buffers for data blocks are not included here, as DIO
5661  * and fallocate do no need to journal data buffers.
5662  */
5663 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5664 {
5665         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5666 }
5667
5668 /*
5669  * The caller must have previously called ext4_reserve_inode_write().
5670  * Give this, we know that the caller already has write access to iloc->bh.
5671  */
5672 int ext4_mark_iloc_dirty(handle_t *handle,
5673                          struct inode *inode, struct ext4_iloc *iloc)
5674 {
5675         int err = 0;
5676
5677         if (test_opt(inode->i_sb, I_VERSION))
5678                 inode_inc_iversion(inode);
5679
5680         /* the do_update_inode consumes one bh->b_count */
5681         get_bh(iloc->bh);
5682
5683         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5684         err = ext4_do_update_inode(handle, inode, iloc);
5685         put_bh(iloc->bh);
5686         return err;
5687 }
5688
5689 /*
5690  * On success, We end up with an outstanding reference count against
5691  * iloc->bh.  This _must_ be cleaned up later.
5692  */
5693
5694 int
5695 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5696                          struct ext4_iloc *iloc)
5697 {
5698         int err;
5699
5700         err = ext4_get_inode_loc(inode, iloc);
5701         if (!err) {
5702                 BUFFER_TRACE(iloc->bh, "get_write_access");
5703                 err = ext4_journal_get_write_access(handle, iloc->bh);
5704                 if (err) {
5705                         brelse(iloc->bh);
5706                         iloc->bh = NULL;
5707                 }
5708         }
5709         ext4_std_error(inode->i_sb, err);
5710         return err;
5711 }
5712
5713 /*
5714  * Expand an inode by new_extra_isize bytes.
5715  * Returns 0 on success or negative error number on failure.
5716  */
5717 static int ext4_expand_extra_isize(struct inode *inode,
5718                                    unsigned int new_extra_isize,
5719                                    struct ext4_iloc iloc,
5720                                    handle_t *handle)
5721 {
5722         struct ext4_inode *raw_inode;
5723         struct ext4_xattr_ibody_header *header;
5724         struct ext4_xattr_entry *entry;
5725
5726         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5727                 return 0;
5728
5729         raw_inode = ext4_raw_inode(&iloc);
5730
5731         header = IHDR(inode, raw_inode);
5732         entry = IFIRST(header);
5733
5734         /* No extended attributes present */
5735         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5736             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5737                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5738                         new_extra_isize);
5739                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5740                 return 0;
5741         }
5742
5743         /* try to expand with EAs present */
5744         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5745                                           raw_inode, handle);
5746 }
5747
5748 /*
5749  * What we do here is to mark the in-core inode as clean with respect to inode
5750  * dirtiness (it may still be data-dirty).
5751  * This means that the in-core inode may be reaped by prune_icache
5752  * without having to perform any I/O.  This is a very good thing,
5753  * because *any* task may call prune_icache - even ones which
5754  * have a transaction open against a different journal.
5755  *
5756  * Is this cheating?  Not really.  Sure, we haven't written the
5757  * inode out, but prune_icache isn't a user-visible syncing function.
5758  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5759  * we start and wait on commits.
5760  *
5761  * Is this efficient/effective?  Well, we're being nice to the system
5762  * by cleaning up our inodes proactively so they can be reaped
5763  * without I/O.  But we are potentially leaving up to five seconds'
5764  * worth of inodes floating about which prune_icache wants us to
5765  * write out.  One way to fix that would be to get prune_icache()
5766  * to do a write_super() to free up some memory.  It has the desired
5767  * effect.
5768  */
5769 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5770 {
5771         struct ext4_iloc iloc;
5772         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5773         static unsigned int mnt_count;
5774         int err, ret;
5775
5776         might_sleep();
5777         err = ext4_reserve_inode_write(handle, inode, &iloc);
5778         if (ext4_handle_valid(handle) &&
5779             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5780             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5781                 /*
5782                  * We need extra buffer credits since we may write into EA block
5783                  * with this same handle. If journal_extend fails, then it will
5784                  * only result in a minor loss of functionality for that inode.
5785                  * If this is felt to be critical, then e2fsck should be run to
5786                  * force a large enough s_min_extra_isize.
5787                  */
5788                 if ((jbd2_journal_extend(handle,
5789                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5790                         ret = ext4_expand_extra_isize(inode,
5791                                                       sbi->s_want_extra_isize,
5792                                                       iloc, handle);
5793                         if (ret) {
5794                                 ext4_set_inode_state(inode,
5795                                                      EXT4_STATE_NO_EXPAND);
5796                                 if (mnt_count !=
5797                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5798                                         ext4_warning(inode->i_sb,
5799                                         "Unable to expand inode %lu. Delete"
5800                                         " some EAs or run e2fsck.",
5801                                         inode->i_ino);
5802                                         mnt_count =
5803                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5804                                 }
5805                         }
5806                 }
5807         }
5808         if (!err)
5809                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5810         return err;
5811 }
5812
5813 /*
5814  * ext4_dirty_inode() is called from __mark_inode_dirty()
5815  *
5816  * We're really interested in the case where a file is being extended.
5817  * i_size has been changed by generic_commit_write() and we thus need
5818  * to include the updated inode in the current transaction.
5819  *
5820  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5821  * are allocated to the file.
5822  *
5823  * If the inode is marked synchronous, we don't honour that here - doing
5824  * so would cause a commit on atime updates, which we don't bother doing.
5825  * We handle synchronous inodes at the highest possible level.
5826  */
5827 void ext4_dirty_inode(struct inode *inode)
5828 {
5829         handle_t *handle;
5830
5831         handle = ext4_journal_start(inode, 2);
5832         if (IS_ERR(handle))
5833                 goto out;
5834
5835         ext4_mark_inode_dirty(handle, inode);
5836
5837         ext4_journal_stop(handle);
5838 out:
5839         return;
5840 }
5841
5842 #if 0
5843 /*
5844  * Bind an inode's backing buffer_head into this transaction, to prevent
5845  * it from being flushed to disk early.  Unlike
5846  * ext4_reserve_inode_write, this leaves behind no bh reference and
5847  * returns no iloc structure, so the caller needs to repeat the iloc
5848  * lookup to mark the inode dirty later.
5849  */
5850 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5851 {
5852         struct ext4_iloc iloc;
5853
5854         int err = 0;
5855         if (handle) {
5856                 err = ext4_get_inode_loc(inode, &iloc);
5857                 if (!err) {
5858                         BUFFER_TRACE(iloc.bh, "get_write_access");
5859                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5860                         if (!err)
5861                                 err = ext4_handle_dirty_metadata(handle,
5862                                                                  NULL,
5863                                                                  iloc.bh);
5864                         brelse(iloc.bh);
5865                 }
5866         }
5867         ext4_std_error(inode->i_sb, err);
5868         return err;
5869 }
5870 #endif
5871
5872 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5873 {
5874         journal_t *journal;
5875         handle_t *handle;
5876         int err;
5877
5878         /*
5879          * We have to be very careful here: changing a data block's
5880          * journaling status dynamically is dangerous.  If we write a
5881          * data block to the journal, change the status and then delete
5882          * that block, we risk forgetting to revoke the old log record
5883          * from the journal and so a subsequent replay can corrupt data.
5884          * So, first we make sure that the journal is empty and that
5885          * nobody is changing anything.
5886          */
5887
5888         journal = EXT4_JOURNAL(inode);
5889         if (!journal)
5890                 return 0;
5891         if (is_journal_aborted(journal))
5892                 return -EROFS;
5893
5894         jbd2_journal_lock_updates(journal);
5895         jbd2_journal_flush(journal);
5896
5897         /*
5898          * OK, there are no updates running now, and all cached data is
5899          * synced to disk.  We are now in a completely consistent state
5900          * which doesn't have anything in the journal, and we know that
5901          * no filesystem updates are running, so it is safe to modify
5902          * the inode's in-core data-journaling state flag now.
5903          */
5904
5905         if (val)
5906                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5907         else
5908                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5909         ext4_set_aops(inode);
5910
5911         jbd2_journal_unlock_updates(journal);
5912
5913         /* Finally we can mark the inode as dirty. */
5914
5915         handle = ext4_journal_start(inode, 1);
5916         if (IS_ERR(handle))
5917                 return PTR_ERR(handle);
5918
5919         err = ext4_mark_inode_dirty(handle, inode);
5920         ext4_handle_sync(handle);
5921         ext4_journal_stop(handle);
5922         ext4_std_error(inode->i_sb, err);
5923
5924         return err;
5925 }
5926
5927 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5928 {
5929         return !buffer_mapped(bh);
5930 }
5931
5932 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5933 {
5934         struct page *page = vmf->page;
5935         loff_t size;
5936         unsigned long len;
5937         int ret = -EINVAL;
5938         void *fsdata;
5939         struct file *file = vma->vm_file;
5940         struct inode *inode = file->f_path.dentry->d_inode;
5941         struct address_space *mapping = inode->i_mapping;
5942
5943         /*
5944          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5945          * get i_mutex because we are already holding mmap_sem.
5946          */
5947         down_read(&inode->i_alloc_sem);
5948         size = i_size_read(inode);
5949         if (page->mapping != mapping || size <= page_offset(page)
5950             || !PageUptodate(page)) {
5951                 /* page got truncated from under us? */
5952                 goto out_unlock;
5953         }
5954         ret = 0;
5955         if (PageMappedToDisk(page))
5956                 goto out_unlock;
5957
5958         if (page->index == size >> PAGE_CACHE_SHIFT)
5959                 len = size & ~PAGE_CACHE_MASK;
5960         else
5961                 len = PAGE_CACHE_SIZE;
5962
5963         lock_page(page);
5964         /*
5965          * return if we have all the buffers mapped. This avoid
5966          * the need to call write_begin/write_end which does a
5967          * journal_start/journal_stop which can block and take
5968          * long time
5969          */
5970         if (page_has_buffers(page)) {
5971                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5972                                         ext4_bh_unmapped)) {
5973                         unlock_page(page);
5974                         goto out_unlock;
5975                 }
5976         }
5977         unlock_page(page);
5978         /*
5979          * OK, we need to fill the hole... Do write_begin write_end
5980          * to do block allocation/reservation.We are not holding
5981          * inode.i__mutex here. That allow * parallel write_begin,
5982          * write_end call. lock_page prevent this from happening
5983          * on the same page though
5984          */
5985         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5986                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5987         if (ret < 0)
5988                 goto out_unlock;
5989         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5990                         len, len, page, fsdata);
5991         if (ret < 0)
5992                 goto out_unlock;
5993         ret = 0;
5994 out_unlock:
5995         if (ret)
5996                 ret = VM_FAULT_SIGBUS;
5997         up_read(&inode->i_alloc_sem);
5998         return ret;
5999 }