ext4: Rename ext4_get_blocks_wrap() to be ext4_get_blocks()
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48                                               loff_t new_size)
49 {
50         return jbd2_journal_begin_ordered_truncate(
51                                         EXT4_SB(inode->i_sb)->s_journal,
52                                         &EXT4_I(inode)->jinode,
53                                         new_size);
54 }
55
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
58 /*
59  * Test whether an inode is a fast symlink.
60  */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63         int ea_blocks = EXT4_I(inode)->i_file_acl ?
64                 (inode->i_sb->s_blocksize >> 9) : 0;
65
66         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68
69 /*
70  * The ext4 forget function must perform a revoke if we are freeing data
71  * which has been journaled.  Metadata (eg. indirect blocks) must be
72  * revoked in all cases.
73  *
74  * "bh" may be NULL: a metadata block may have been freed from memory
75  * but there may still be a record of it in the journal, and that record
76  * still needs to be revoked.
77  *
78  * If the handle isn't valid we're not journaling so there's nothing to do.
79  */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81                         struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83         int err;
84
85         if (!ext4_handle_valid(handle))
86                 return 0;
87
88         might_sleep();
89
90         BUFFER_TRACE(bh, "enter");
91
92         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93                   "data mode %lx\n",
94                   bh, is_metadata, inode->i_mode,
95                   test_opt(inode->i_sb, DATA_FLAGS));
96
97         /* Never use the revoke function if we are doing full data
98          * journaling: there is no need to, and a V1 superblock won't
99          * support it.  Otherwise, only skip the revoke on un-journaled
100          * data blocks. */
101
102         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103             (!is_metadata && !ext4_should_journal_data(inode))) {
104                 if (bh) {
105                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
106                         return ext4_journal_forget(handle, bh);
107                 }
108                 return 0;
109         }
110
111         /*
112          * data!=journal && (is_metadata || should_journal_data(inode))
113          */
114         BUFFER_TRACE(bh, "call ext4_journal_revoke");
115         err = ext4_journal_revoke(handle, blocknr, bh);
116         if (err)
117                 ext4_abort(inode->i_sb, __func__,
118                            "error %d when attempting revoke", err);
119         BUFFER_TRACE(bh, "exit");
120         return err;
121 }
122
123 /*
124  * Work out how many blocks we need to proceed with the next chunk of a
125  * truncate transaction.
126  */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129         ext4_lblk_t needed;
130
131         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133         /* Give ourselves just enough room to cope with inodes in which
134          * i_blocks is corrupt: we've seen disk corruptions in the past
135          * which resulted in random data in an inode which looked enough
136          * like a regular file for ext4 to try to delete it.  Things
137          * will go a bit crazy if that happens, but at least we should
138          * try not to panic the whole kernel. */
139         if (needed < 2)
140                 needed = 2;
141
142         /* But we need to bound the transaction so we don't overflow the
143          * journal. */
144         if (needed > EXT4_MAX_TRANS_DATA)
145                 needed = EXT4_MAX_TRANS_DATA;
146
147         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149
150 /*
151  * Truncate transactions can be complex and absolutely huge.  So we need to
152  * be able to restart the transaction at a conventient checkpoint to make
153  * sure we don't overflow the journal.
154  *
155  * start_transaction gets us a new handle for a truncate transaction,
156  * and extend_transaction tries to extend the existing one a bit.  If
157  * extend fails, we need to propagate the failure up and restart the
158  * transaction in the top-level truncate loop. --sct
159  */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162         handle_t *result;
163
164         result = ext4_journal_start(inode, blocks_for_truncate(inode));
165         if (!IS_ERR(result))
166                 return result;
167
168         ext4_std_error(inode->i_sb, PTR_ERR(result));
169         return result;
170 }
171
172 /*
173  * Try to extend this transaction for the purposes of truncation.
174  *
175  * Returns 0 if we managed to create more room.  If we can't create more
176  * room, and the transaction must be restarted we return 1.
177  */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180         if (!ext4_handle_valid(handle))
181                 return 0;
182         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183                 return 0;
184         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185                 return 0;
186         return 1;
187 }
188
189 /*
190  * Restart the transaction associated with *handle.  This does a commit,
191  * so before we call here everything must be consistently dirtied against
192  * this transaction.
193  */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196         BUG_ON(EXT4_JOURNAL(inode) == NULL);
197         jbd_debug(2, "restarting handle %p\n", handle);
198         return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200
201 /*
202  * Called at the last iput() if i_nlink is zero.
203  */
204 void ext4_delete_inode(struct inode *inode)
205 {
206         handle_t *handle;
207         int err;
208
209         if (ext4_should_order_data(inode))
210                 ext4_begin_ordered_truncate(inode, 0);
211         truncate_inode_pages(&inode->i_data, 0);
212
213         if (is_bad_inode(inode))
214                 goto no_delete;
215
216         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217         if (IS_ERR(handle)) {
218                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
219                 /*
220                  * If we're going to skip the normal cleanup, we still need to
221                  * make sure that the in-core orphan linked list is properly
222                  * cleaned up.
223                  */
224                 ext4_orphan_del(NULL, inode);
225                 goto no_delete;
226         }
227
228         if (IS_SYNC(inode))
229                 ext4_handle_sync(handle);
230         inode->i_size = 0;
231         err = ext4_mark_inode_dirty(handle, inode);
232         if (err) {
233                 ext4_warning(inode->i_sb, __func__,
234                              "couldn't mark inode dirty (err %d)", err);
235                 goto stop_handle;
236         }
237         if (inode->i_blocks)
238                 ext4_truncate(inode);
239
240         /*
241          * ext4_ext_truncate() doesn't reserve any slop when it
242          * restarts journal transactions; therefore there may not be
243          * enough credits left in the handle to remove the inode from
244          * the orphan list and set the dtime field.
245          */
246         if (!ext4_handle_has_enough_credits(handle, 3)) {
247                 err = ext4_journal_extend(handle, 3);
248                 if (err > 0)
249                         err = ext4_journal_restart(handle, 3);
250                 if (err != 0) {
251                         ext4_warning(inode->i_sb, __func__,
252                                      "couldn't extend journal (err %d)", err);
253                 stop_handle:
254                         ext4_journal_stop(handle);
255                         goto no_delete;
256                 }
257         }
258
259         /*
260          * Kill off the orphan record which ext4_truncate created.
261          * AKPM: I think this can be inside the above `if'.
262          * Note that ext4_orphan_del() has to be able to cope with the
263          * deletion of a non-existent orphan - this is because we don't
264          * know if ext4_truncate() actually created an orphan record.
265          * (Well, we could do this if we need to, but heck - it works)
266          */
267         ext4_orphan_del(handle, inode);
268         EXT4_I(inode)->i_dtime  = get_seconds();
269
270         /*
271          * One subtle ordering requirement: if anything has gone wrong
272          * (transaction abort, IO errors, whatever), then we can still
273          * do these next steps (the fs will already have been marked as
274          * having errors), but we can't free the inode if the mark_dirty
275          * fails.
276          */
277         if (ext4_mark_inode_dirty(handle, inode))
278                 /* If that failed, just do the required in-core inode clear. */
279                 clear_inode(inode);
280         else
281                 ext4_free_inode(handle, inode);
282         ext4_journal_stop(handle);
283         return;
284 no_delete:
285         clear_inode(inode);     /* We must guarantee clearing of inode... */
286 }
287
288 typedef struct {
289         __le32  *p;
290         __le32  key;
291         struct buffer_head *bh;
292 } Indirect;
293
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296         p->key = *(p->p = v);
297         p->bh = bh;
298 }
299
300 /**
301  *      ext4_block_to_path - parse the block number into array of offsets
302  *      @inode: inode in question (we are only interested in its superblock)
303  *      @i_block: block number to be parsed
304  *      @offsets: array to store the offsets in
305  *      @boundary: set this non-zero if the referred-to block is likely to be
306  *             followed (on disk) by an indirect block.
307  *
308  *      To store the locations of file's data ext4 uses a data structure common
309  *      for UNIX filesystems - tree of pointers anchored in the inode, with
310  *      data blocks at leaves and indirect blocks in intermediate nodes.
311  *      This function translates the block number into path in that tree -
312  *      return value is the path length and @offsets[n] is the offset of
313  *      pointer to (n+1)th node in the nth one. If @block is out of range
314  *      (negative or too large) warning is printed and zero returned.
315  *
316  *      Note: function doesn't find node addresses, so no IO is needed. All
317  *      we need to know is the capacity of indirect blocks (taken from the
318  *      inode->i_sb).
319  */
320
321 /*
322  * Portability note: the last comparison (check that we fit into triple
323  * indirect block) is spelled differently, because otherwise on an
324  * architecture with 32-bit longs and 8Kb pages we might get into trouble
325  * if our filesystem had 8Kb blocks. We might use long long, but that would
326  * kill us on x86. Oh, well, at least the sign propagation does not matter -
327  * i_block would have to be negative in the very beginning, so we would not
328  * get there at all.
329  */
330
331 static int ext4_block_to_path(struct inode *inode,
332                         ext4_lblk_t i_block,
333                         ext4_lblk_t offsets[4], int *boundary)
334 {
335         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337         const long direct_blocks = EXT4_NDIR_BLOCKS,
338                 indirect_blocks = ptrs,
339                 double_blocks = (1 << (ptrs_bits * 2));
340         int n = 0;
341         int final = 0;
342
343         if (i_block < 0) {
344                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345         } else if (i_block < direct_blocks) {
346                 offsets[n++] = i_block;
347                 final = direct_blocks;
348         } else if ((i_block -= direct_blocks) < indirect_blocks) {
349                 offsets[n++] = EXT4_IND_BLOCK;
350                 offsets[n++] = i_block;
351                 final = ptrs;
352         } else if ((i_block -= indirect_blocks) < double_blocks) {
353                 offsets[n++] = EXT4_DIND_BLOCK;
354                 offsets[n++] = i_block >> ptrs_bits;
355                 offsets[n++] = i_block & (ptrs - 1);
356                 final = ptrs;
357         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358                 offsets[n++] = EXT4_TIND_BLOCK;
359                 offsets[n++] = i_block >> (ptrs_bits * 2);
360                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361                 offsets[n++] = i_block & (ptrs - 1);
362                 final = ptrs;
363         } else {
364                 ext4_warning(inode->i_sb, "ext4_block_to_path",
365                                 "block %lu > max in inode %lu",
366                                 i_block + direct_blocks +
367                                 indirect_blocks + double_blocks, inode->i_ino);
368         }
369         if (boundary)
370                 *boundary = final - 1 - (i_block & (ptrs - 1));
371         return n;
372 }
373
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375                                  __le32 *p, unsigned int max) {
376
377         unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
378         __le32 *bref = p;
379         while (bref < p+max) {
380                 if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
381                         ext4_error(inode->i_sb, function,
382                                    "block reference %u >= max (%u) "
383                                    "in inode #%lu, offset=%d",
384                                    le32_to_cpu(*bref), maxblocks,
385                                    inode->i_ino, (int)(bref-p));
386                         return -EIO;
387                 }
388                 bref++;
389         }
390         return 0;
391 }
392
393
394 #define ext4_check_indirect_blockref(inode, bh)                         \
395         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
396                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398 #define ext4_check_inode_blockref(inode)                                \
399         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
400                               EXT4_NDIR_BLOCKS)
401
402 /**
403  *      ext4_get_branch - read the chain of indirect blocks leading to data
404  *      @inode: inode in question
405  *      @depth: depth of the chain (1 - direct pointer, etc.)
406  *      @offsets: offsets of pointers in inode/indirect blocks
407  *      @chain: place to store the result
408  *      @err: here we store the error value
409  *
410  *      Function fills the array of triples <key, p, bh> and returns %NULL
411  *      if everything went OK or the pointer to the last filled triple
412  *      (incomplete one) otherwise. Upon the return chain[i].key contains
413  *      the number of (i+1)-th block in the chain (as it is stored in memory,
414  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
415  *      number (it points into struct inode for i==0 and into the bh->b_data
416  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417  *      block for i>0 and NULL for i==0. In other words, it holds the block
418  *      numbers of the chain, addresses they were taken from (and where we can
419  *      verify that chain did not change) and buffer_heads hosting these
420  *      numbers.
421  *
422  *      Function stops when it stumbles upon zero pointer (absent block)
423  *              (pointer to last triple returned, *@err == 0)
424  *      or when it gets an IO error reading an indirect block
425  *              (ditto, *@err == -EIO)
426  *      or when it reads all @depth-1 indirect blocks successfully and finds
427  *      the whole chain, all way to the data (returns %NULL, *err == 0).
428  *
429  *      Need to be called with
430  *      down_read(&EXT4_I(inode)->i_data_sem)
431  */
432 static Indirect *ext4_get_branch(struct inode *inode, int depth,
433                                  ext4_lblk_t  *offsets,
434                                  Indirect chain[4], int *err)
435 {
436         struct super_block *sb = inode->i_sb;
437         Indirect *p = chain;
438         struct buffer_head *bh;
439
440         *err = 0;
441         /* i_data is not going away, no lock needed */
442         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443         if (!p->key)
444                 goto no_block;
445         while (--depth) {
446                 bh = sb_getblk(sb, le32_to_cpu(p->key));
447                 if (unlikely(!bh))
448                         goto failure;
449                   
450                 if (!bh_uptodate_or_lock(bh)) {
451                         if (bh_submit_read(bh) < 0) {
452                                 put_bh(bh);
453                                 goto failure;
454                         }
455                         /* validate block references */
456                         if (ext4_check_indirect_blockref(inode, bh)) {
457                                 put_bh(bh);
458                                 goto failure;
459                         }
460                 }
461                 
462                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463                 /* Reader: end */
464                 if (!p->key)
465                         goto no_block;
466         }
467         return NULL;
468
469 failure:
470         *err = -EIO;
471 no_block:
472         return p;
473 }
474
475 /**
476  *      ext4_find_near - find a place for allocation with sufficient locality
477  *      @inode: owner
478  *      @ind: descriptor of indirect block.
479  *
480  *      This function returns the preferred place for block allocation.
481  *      It is used when heuristic for sequential allocation fails.
482  *      Rules are:
483  *        + if there is a block to the left of our position - allocate near it.
484  *        + if pointer will live in indirect block - allocate near that block.
485  *        + if pointer will live in inode - allocate in the same
486  *          cylinder group.
487  *
488  * In the latter case we colour the starting block by the callers PID to
489  * prevent it from clashing with concurrent allocations for a different inode
490  * in the same block group.   The PID is used here so that functionally related
491  * files will be close-by on-disk.
492  *
493  *      Caller must make sure that @ind is valid and will stay that way.
494  */
495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496 {
497         struct ext4_inode_info *ei = EXT4_I(inode);
498         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499         __le32 *p;
500         ext4_fsblk_t bg_start;
501         ext4_fsblk_t last_block;
502         ext4_grpblk_t colour;
503         ext4_group_t block_group;
504         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505
506         /* Try to find previous block */
507         for (p = ind->p - 1; p >= start; p--) {
508                 if (*p)
509                         return le32_to_cpu(*p);
510         }
511
512         /* No such thing, so let's try location of indirect block */
513         if (ind->bh)
514                 return ind->bh->b_blocknr;
515
516         /*
517          * It is going to be referred to from the inode itself? OK, just put it
518          * into the same cylinder group then.
519          */
520         block_group = ei->i_block_group;
521         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522                 block_group &= ~(flex_size-1);
523                 if (S_ISREG(inode->i_mode))
524                         block_group++;
525         }
526         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
529         /*
530          * If we are doing delayed allocation, we don't need take
531          * colour into account.
532          */
533         if (test_opt(inode->i_sb, DELALLOC))
534                 return bg_start;
535
536         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537                 colour = (current->pid % 16) *
538                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539         else
540                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541         return bg_start + colour;
542 }
543
544 /**
545  *      ext4_find_goal - find a preferred place for allocation.
546  *      @inode: owner
547  *      @block:  block we want
548  *      @partial: pointer to the last triple within a chain
549  *
550  *      Normally this function find the preferred place for block allocation,
551  *      returns it.
552  */
553 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554                 Indirect *partial)
555 {
556         /*
557          * XXX need to get goal block from mballoc's data structures
558          */
559
560         return ext4_find_near(inode, partial);
561 }
562
563 /**
564  *      ext4_blks_to_allocate: Look up the block map and count the number
565  *      of direct blocks need to be allocated for the given branch.
566  *
567  *      @branch: chain of indirect blocks
568  *      @k: number of blocks need for indirect blocks
569  *      @blks: number of data blocks to be mapped.
570  *      @blocks_to_boundary:  the offset in the indirect block
571  *
572  *      return the total number of blocks to be allocate, including the
573  *      direct and indirect blocks.
574  */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576                 int blocks_to_boundary)
577 {
578         unsigned int count = 0;
579
580         /*
581          * Simple case, [t,d]Indirect block(s) has not allocated yet
582          * then it's clear blocks on that path have not allocated
583          */
584         if (k > 0) {
585                 /* right now we don't handle cross boundary allocation */
586                 if (blks < blocks_to_boundary + 1)
587                         count += blks;
588                 else
589                         count += blocks_to_boundary + 1;
590                 return count;
591         }
592
593         count++;
594         while (count < blks && count <= blocks_to_boundary &&
595                 le32_to_cpu(*(branch[0].p + count)) == 0) {
596                 count++;
597         }
598         return count;
599 }
600
601 /**
602  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *      @indirect_blks: the number of blocks need to allocate for indirect
604  *                      blocks
605  *
606  *      @new_blocks: on return it will store the new block numbers for
607  *      the indirect blocks(if needed) and the first direct block,
608  *      @blks:  on return it will store the total number of allocated
609  *              direct blocks
610  */
611 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
613                                 int indirect_blks, int blks,
614                                 ext4_fsblk_t new_blocks[4], int *err)
615 {
616         struct ext4_allocation_request ar;
617         int target, i;
618         unsigned long count = 0, blk_allocated = 0;
619         int index = 0;
620         ext4_fsblk_t current_block = 0;
621         int ret = 0;
622
623         /*
624          * Here we try to allocate the requested multiple blocks at once,
625          * on a best-effort basis.
626          * To build a branch, we should allocate blocks for
627          * the indirect blocks(if not allocated yet), and at least
628          * the first direct block of this branch.  That's the
629          * minimum number of blocks need to allocate(required)
630          */
631         /* first we try to allocate the indirect blocks */
632         target = indirect_blks;
633         while (target > 0) {
634                 count = target;
635                 /* allocating blocks for indirect blocks and direct blocks */
636                 current_block = ext4_new_meta_blocks(handle, inode,
637                                                         goal, &count, err);
638                 if (*err)
639                         goto failed_out;
640
641                 target -= count;
642                 /* allocate blocks for indirect blocks */
643                 while (index < indirect_blks && count) {
644                         new_blocks[index++] = current_block++;
645                         count--;
646                 }
647                 if (count > 0) {
648                         /*
649                          * save the new block number
650                          * for the first direct block
651                          */
652                         new_blocks[index] = current_block;
653                         printk(KERN_INFO "%s returned more blocks than "
654                                                 "requested\n", __func__);
655                         WARN_ON(1);
656                         break;
657                 }
658         }
659
660         target = blks - count ;
661         blk_allocated = count;
662         if (!target)
663                 goto allocated;
664         /* Now allocate data blocks */
665         memset(&ar, 0, sizeof(ar));
666         ar.inode = inode;
667         ar.goal = goal;
668         ar.len = target;
669         ar.logical = iblock;
670         if (S_ISREG(inode->i_mode))
671                 /* enable in-core preallocation only for regular files */
672                 ar.flags = EXT4_MB_HINT_DATA;
673
674         current_block = ext4_mb_new_blocks(handle, &ar, err);
675
676         if (*err && (target == blks)) {
677                 /*
678                  * if the allocation failed and we didn't allocate
679                  * any blocks before
680                  */
681                 goto failed_out;
682         }
683         if (!*err) {
684                 if (target == blks) {
685                 /*
686                  * save the new block number
687                  * for the first direct block
688                  */
689                         new_blocks[index] = current_block;
690                 }
691                 blk_allocated += ar.len;
692         }
693 allocated:
694         /* total number of blocks allocated for direct blocks */
695         ret = blk_allocated;
696         *err = 0;
697         return ret;
698 failed_out:
699         for (i = 0; i < index; i++)
700                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701         return ret;
702 }
703
704 /**
705  *      ext4_alloc_branch - allocate and set up a chain of blocks.
706  *      @inode: owner
707  *      @indirect_blks: number of allocated indirect blocks
708  *      @blks: number of allocated direct blocks
709  *      @offsets: offsets (in the blocks) to store the pointers to next.
710  *      @branch: place to store the chain in.
711  *
712  *      This function allocates blocks, zeroes out all but the last one,
713  *      links them into chain and (if we are synchronous) writes them to disk.
714  *      In other words, it prepares a branch that can be spliced onto the
715  *      inode. It stores the information about that chain in the branch[], in
716  *      the same format as ext4_get_branch() would do. We are calling it after
717  *      we had read the existing part of chain and partial points to the last
718  *      triple of that (one with zero ->key). Upon the exit we have the same
719  *      picture as after the successful ext4_get_block(), except that in one
720  *      place chain is disconnected - *branch->p is still zero (we did not
721  *      set the last link), but branch->key contains the number that should
722  *      be placed into *branch->p to fill that gap.
723  *
724  *      If allocation fails we free all blocks we've allocated (and forget
725  *      their buffer_heads) and return the error value the from failed
726  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727  *      as described above and return 0.
728  */
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730                                 ext4_lblk_t iblock, int indirect_blks,
731                                 int *blks, ext4_fsblk_t goal,
732                                 ext4_lblk_t *offsets, Indirect *branch)
733 {
734         int blocksize = inode->i_sb->s_blocksize;
735         int i, n = 0;
736         int err = 0;
737         struct buffer_head *bh;
738         int num;
739         ext4_fsblk_t new_blocks[4];
740         ext4_fsblk_t current_block;
741
742         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743                                 *blks, new_blocks, &err);
744         if (err)
745                 return err;
746
747         branch[0].key = cpu_to_le32(new_blocks[0]);
748         /*
749          * metadata blocks and data blocks are allocated.
750          */
751         for (n = 1; n <= indirect_blks;  n++) {
752                 /*
753                  * Get buffer_head for parent block, zero it out
754                  * and set the pointer to new one, then send
755                  * parent to disk.
756                  */
757                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758                 branch[n].bh = bh;
759                 lock_buffer(bh);
760                 BUFFER_TRACE(bh, "call get_create_access");
761                 err = ext4_journal_get_create_access(handle, bh);
762                 if (err) {
763                         unlock_buffer(bh);
764                         brelse(bh);
765                         goto failed;
766                 }
767
768                 memset(bh->b_data, 0, blocksize);
769                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
770                 branch[n].key = cpu_to_le32(new_blocks[n]);
771                 *branch[n].p = branch[n].key;
772                 if (n == indirect_blks) {
773                         current_block = new_blocks[n];
774                         /*
775                          * End of chain, update the last new metablock of
776                          * the chain to point to the new allocated
777                          * data blocks numbers
778                          */
779                         for (i=1; i < num; i++)
780                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
781                 }
782                 BUFFER_TRACE(bh, "marking uptodate");
783                 set_buffer_uptodate(bh);
784                 unlock_buffer(bh);
785
786                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787                 err = ext4_handle_dirty_metadata(handle, inode, bh);
788                 if (err)
789                         goto failed;
790         }
791         *blks = num;
792         return err;
793 failed:
794         /* Allocation failed, free what we already allocated */
795         for (i = 1; i <= n ; i++) {
796                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
797                 ext4_journal_forget(handle, branch[i].bh);
798         }
799         for (i = 0; i < indirect_blks; i++)
800                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
801
802         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
803
804         return err;
805 }
806
807 /**
808  * ext4_splice_branch - splice the allocated branch onto inode.
809  * @inode: owner
810  * @block: (logical) number of block we are adding
811  * @chain: chain of indirect blocks (with a missing link - see
812  *      ext4_alloc_branch)
813  * @where: location of missing link
814  * @num:   number of indirect blocks we are adding
815  * @blks:  number of direct blocks we are adding
816  *
817  * This function fills the missing link and does all housekeeping needed in
818  * inode (->i_blocks, etc.). In case of success we end up with the full
819  * chain to new block and return 0.
820  */
821 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
822                         ext4_lblk_t block, Indirect *where, int num, int blks)
823 {
824         int i;
825         int err = 0;
826         ext4_fsblk_t current_block;
827
828         /*
829          * If we're splicing into a [td]indirect block (as opposed to the
830          * inode) then we need to get write access to the [td]indirect block
831          * before the splice.
832          */
833         if (where->bh) {
834                 BUFFER_TRACE(where->bh, "get_write_access");
835                 err = ext4_journal_get_write_access(handle, where->bh);
836                 if (err)
837                         goto err_out;
838         }
839         /* That's it */
840
841         *where->p = where->key;
842
843         /*
844          * Update the host buffer_head or inode to point to more just allocated
845          * direct blocks blocks
846          */
847         if (num == 0 && blks > 1) {
848                 current_block = le32_to_cpu(where->key) + 1;
849                 for (i = 1; i < blks; i++)
850                         *(where->p + i) = cpu_to_le32(current_block++);
851         }
852
853         /* We are done with atomic stuff, now do the rest of housekeeping */
854
855         inode->i_ctime = ext4_current_time(inode);
856         ext4_mark_inode_dirty(handle, inode);
857
858         /* had we spliced it onto indirect block? */
859         if (where->bh) {
860                 /*
861                  * If we spliced it onto an indirect block, we haven't
862                  * altered the inode.  Note however that if it is being spliced
863                  * onto an indirect block at the very end of the file (the
864                  * file is growing) then we *will* alter the inode to reflect
865                  * the new i_size.  But that is not done here - it is done in
866                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867                  */
868                 jbd_debug(5, "splicing indirect only\n");
869                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871                 if (err)
872                         goto err_out;
873         } else {
874                 /*
875                  * OK, we spliced it into the inode itself on a direct block.
876                  * Inode was dirtied above.
877                  */
878                 jbd_debug(5, "splicing direct\n");
879         }
880         return err;
881
882 err_out:
883         for (i = 1; i <= num; i++) {
884                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885                 ext4_journal_forget(handle, where[i].bh);
886                 ext4_free_blocks(handle, inode,
887                                         le32_to_cpu(where[i-1].key), 1, 0);
888         }
889         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890
891         return err;
892 }
893
894 /*
895  * Allocation strategy is simple: if we have to allocate something, we will
896  * have to go the whole way to leaf. So let's do it before attaching anything
897  * to tree, set linkage between the newborn blocks, write them if sync is
898  * required, recheck the path, free and repeat if check fails, otherwise
899  * set the last missing link (that will protect us from any truncate-generated
900  * removals - all blocks on the path are immune now) and possibly force the
901  * write on the parent block.
902  * That has a nice additional property: no special recovery from the failed
903  * allocations is needed - we simply release blocks and do not touch anything
904  * reachable from inode.
905  *
906  * `handle' can be NULL if create == 0.
907  *
908  * return > 0, # of blocks mapped or allocated.
909  * return = 0, if plain lookup failed.
910  * return < 0, error case.
911  *
912  *
913  * Need to be called with
914  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
915  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
916  */
917 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
918                                   ext4_lblk_t iblock, unsigned int maxblocks,
919                                   struct buffer_head *bh_result,
920                                   int create, int extend_disksize)
921 {
922         int err = -EIO;
923         ext4_lblk_t offsets[4];
924         Indirect chain[4];
925         Indirect *partial;
926         ext4_fsblk_t goal;
927         int indirect_blks;
928         int blocks_to_boundary = 0;
929         int depth;
930         struct ext4_inode_info *ei = EXT4_I(inode);
931         int count = 0;
932         ext4_fsblk_t first_block = 0;
933         loff_t disksize;
934
935
936         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
937         J_ASSERT(handle != NULL || create == 0);
938         depth = ext4_block_to_path(inode, iblock, offsets,
939                                         &blocks_to_boundary);
940
941         if (depth == 0)
942                 goto out;
943
944         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
945
946         /* Simplest case - block found, no allocation needed */
947         if (!partial) {
948                 first_block = le32_to_cpu(chain[depth - 1].key);
949                 clear_buffer_new(bh_result);
950                 count++;
951                 /*map more blocks*/
952                 while (count < maxblocks && count <= blocks_to_boundary) {
953                         ext4_fsblk_t blk;
954
955                         blk = le32_to_cpu(*(chain[depth-1].p + count));
956
957                         if (blk == first_block + count)
958                                 count++;
959                         else
960                                 break;
961                 }
962                 goto got_it;
963         }
964
965         /* Next simple case - plain lookup or failed read of indirect block */
966         if (!create || err == -EIO)
967                 goto cleanup;
968
969         /*
970          * Okay, we need to do block allocation.
971         */
972         goal = ext4_find_goal(inode, iblock, partial);
973
974         /* the number of blocks need to allocate for [d,t]indirect blocks */
975         indirect_blks = (chain + depth) - partial - 1;
976
977         /*
978          * Next look up the indirect map to count the totoal number of
979          * direct blocks to allocate for this branch.
980          */
981         count = ext4_blks_to_allocate(partial, indirect_blks,
982                                         maxblocks, blocks_to_boundary);
983         /*
984          * Block out ext4_truncate while we alter the tree
985          */
986         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987                                         &count, goal,
988                                         offsets + (partial - chain), partial);
989
990         /*
991          * The ext4_splice_branch call will free and forget any buffers
992          * on the new chain if there is a failure, but that risks using
993          * up transaction credits, especially for bitmaps where the
994          * credits cannot be returned.  Can we handle this somehow?  We
995          * may need to return -EAGAIN upwards in the worst case.  --sct
996          */
997         if (!err)
998                 err = ext4_splice_branch(handle, inode, iblock,
999                                         partial, indirect_blks, count);
1000         /*
1001          * i_disksize growing is protected by i_data_sem.  Don't forget to
1002          * protect it if you're about to implement concurrent
1003          * ext4_get_block() -bzzz
1004         */
1005         if (!err && extend_disksize) {
1006                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1007                 if (disksize > i_size_read(inode))
1008                         disksize = i_size_read(inode);
1009                 if (disksize > ei->i_disksize)
1010                         ei->i_disksize = disksize;
1011         }
1012         if (err)
1013                 goto cleanup;
1014
1015         set_buffer_new(bh_result);
1016 got_it:
1017         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1018         if (count > blocks_to_boundary)
1019                 set_buffer_boundary(bh_result);
1020         err = count;
1021         /* Clean up and exit */
1022         partial = chain + depth - 1;    /* the whole chain */
1023 cleanup:
1024         while (partial > chain) {
1025                 BUFFER_TRACE(partial->bh, "call brelse");
1026                 brelse(partial->bh);
1027                 partial--;
1028         }
1029         BUFFER_TRACE(bh_result, "returned");
1030 out:
1031         return err;
1032 }
1033
1034 qsize_t ext4_get_reserved_space(struct inode *inode)
1035 {
1036         unsigned long long total;
1037
1038         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1039         total = EXT4_I(inode)->i_reserved_data_blocks +
1040                 EXT4_I(inode)->i_reserved_meta_blocks;
1041         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1042
1043         return total;
1044 }
1045 /*
1046  * Calculate the number of metadata blocks need to reserve
1047  * to allocate @blocks for non extent file based file
1048  */
1049 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1050 {
1051         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1052         int ind_blks, dind_blks, tind_blks;
1053
1054         /* number of new indirect blocks needed */
1055         ind_blks = (blocks + icap - 1) / icap;
1056
1057         dind_blks = (ind_blks + icap - 1) / icap;
1058
1059         tind_blks = 1;
1060
1061         return ind_blks + dind_blks + tind_blks;
1062 }
1063
1064 /*
1065  * Calculate the number of metadata blocks need to reserve
1066  * to allocate given number of blocks
1067  */
1068 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1069 {
1070         if (!blocks)
1071                 return 0;
1072
1073         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1074                 return ext4_ext_calc_metadata_amount(inode, blocks);
1075
1076         return ext4_indirect_calc_metadata_amount(inode, blocks);
1077 }
1078
1079 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1080 {
1081         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1082         int total, mdb, mdb_free;
1083
1084         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1085         /* recalculate the number of metablocks still need to be reserved */
1086         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1087         mdb = ext4_calc_metadata_amount(inode, total);
1088
1089         /* figure out how many metablocks to release */
1090         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1091         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1092
1093         if (mdb_free) {
1094                 /* Account for allocated meta_blocks */
1095                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1096
1097                 /* update fs dirty blocks counter */
1098                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1099                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1100                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1101         }
1102
1103         /* update per-inode reservations */
1104         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1105         EXT4_I(inode)->i_reserved_data_blocks -= used;
1106         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1107
1108         /*
1109          * free those over-booking quota for metadata blocks
1110          */
1111         if (mdb_free)
1112                 vfs_dq_release_reservation_block(inode, mdb_free);
1113
1114         /*
1115          * If we have done all the pending block allocations and if
1116          * there aren't any writers on the inode, we can discard the
1117          * inode's preallocations.
1118          */
1119         if (!total && (atomic_read(&inode->i_writecount) == 0))
1120                 ext4_discard_preallocations(inode);
1121 }
1122
1123 /*
1124  * The ext4_get_blocks() function tries to look up the requested blocks,
1125  * and returns if the blocks are already mapped.
1126  *
1127  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1128  * and store the allocated blocks in the result buffer head and mark it
1129  * mapped.
1130  *
1131  * If file type is extents based, it will call ext4_ext_get_blocks(),
1132  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1133  * based files
1134  *
1135  * On success, it returns the number of blocks being mapped or allocate.
1136  * if create==0 and the blocks are pre-allocated and uninitialized block,
1137  * the result buffer head is unmapped. If the create ==1, it will make sure
1138  * the buffer head is mapped.
1139  *
1140  * It returns 0 if plain look up failed (blocks have not been allocated), in
1141  * that casem, buffer head is unmapped
1142  *
1143  * It returns the error in case of allocation failure.
1144  */
1145 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1146                     unsigned int max_blocks, struct buffer_head *bh,
1147                     int create, int extend_disksize, int flag)
1148 {
1149         int retval;
1150
1151         clear_buffer_mapped(bh);
1152         clear_buffer_unwritten(bh);
1153
1154         /*
1155          * Try to see if we can get  the block without requesting
1156          * for new file system block.
1157          */
1158         down_read((&EXT4_I(inode)->i_data_sem));
1159         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1160                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1161                                 bh, 0, 0);
1162         } else {
1163                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1164                                              bh, 0, 0);
1165         }
1166         up_read((&EXT4_I(inode)->i_data_sem));
1167
1168         /* If it is only a block(s) look up */
1169         if (!create)
1170                 return retval;
1171
1172         /*
1173          * Returns if the blocks have already allocated
1174          *
1175          * Note that if blocks have been preallocated
1176          * ext4_ext_get_block() returns th create = 0
1177          * with buffer head unmapped.
1178          */
1179         if (retval > 0 && buffer_mapped(bh))
1180                 return retval;
1181
1182         /*
1183          * When we call get_blocks without the create flag, the
1184          * BH_Unwritten flag could have gotten set if the blocks
1185          * requested were part of a uninitialized extent.  We need to
1186          * clear this flag now that we are committed to convert all or
1187          * part of the uninitialized extent to be an initialized
1188          * extent.  This is because we need to avoid the combination
1189          * of BH_Unwritten and BH_Mapped flags being simultaneously
1190          * set on the buffer_head.
1191          */
1192         clear_buffer_unwritten(bh);
1193
1194         /*
1195          * New blocks allocate and/or writing to uninitialized extent
1196          * will possibly result in updating i_data, so we take
1197          * the write lock of i_data_sem, and call get_blocks()
1198          * with create == 1 flag.
1199          */
1200         down_write((&EXT4_I(inode)->i_data_sem));
1201
1202         /*
1203          * if the caller is from delayed allocation writeout path
1204          * we have already reserved fs blocks for allocation
1205          * let the underlying get_block() function know to
1206          * avoid double accounting
1207          */
1208         if (flag)
1209                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1210         /*
1211          * We need to check for EXT4 here because migrate
1212          * could have changed the inode type in between
1213          */
1214         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1215                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1216                                 bh, create, extend_disksize);
1217         } else {
1218                 retval = ext4_ind_get_blocks(handle, inode, block,
1219                                 max_blocks, bh, create, extend_disksize);
1220
1221                 if (retval > 0 && buffer_new(bh)) {
1222                         /*
1223                          * We allocated new blocks which will result in
1224                          * i_data's format changing.  Force the migrate
1225                          * to fail by clearing migrate flags
1226                          */
1227                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1228                                                         ~EXT4_EXT_MIGRATE;
1229                 }
1230         }
1231
1232         if (flag) {
1233                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1234                 /*
1235                  * Update reserved blocks/metadata blocks
1236                  * after successful block allocation
1237                  * which were deferred till now
1238                  */
1239                 if ((retval > 0) && buffer_delay(bh))
1240                         ext4_da_update_reserve_space(inode, retval);
1241         }
1242
1243         up_write((&EXT4_I(inode)->i_data_sem));
1244         return retval;
1245 }
1246
1247 /* Maximum number of blocks we map for direct IO at once. */
1248 #define DIO_MAX_BLOCKS 4096
1249
1250 int ext4_get_block(struct inode *inode, sector_t iblock,
1251                    struct buffer_head *bh_result, int create)
1252 {
1253         handle_t *handle = ext4_journal_current_handle();
1254         int ret = 0, started = 0;
1255         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1256         int dio_credits;
1257
1258         if (create && !handle) {
1259                 /* Direct IO write... */
1260                 if (max_blocks > DIO_MAX_BLOCKS)
1261                         max_blocks = DIO_MAX_BLOCKS;
1262                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1263                 handle = ext4_journal_start(inode, dio_credits);
1264                 if (IS_ERR(handle)) {
1265                         ret = PTR_ERR(handle);
1266                         goto out;
1267                 }
1268                 started = 1;
1269         }
1270
1271         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1272                               create, 0, 0);
1273         if (ret > 0) {
1274                 bh_result->b_size = (ret << inode->i_blkbits);
1275                 ret = 0;
1276         }
1277         if (started)
1278                 ext4_journal_stop(handle);
1279 out:
1280         return ret;
1281 }
1282
1283 /*
1284  * `handle' can be NULL if create is zero
1285  */
1286 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1287                                 ext4_lblk_t block, int create, int *errp)
1288 {
1289         struct buffer_head dummy;
1290         int fatal = 0, err;
1291
1292         J_ASSERT(handle != NULL || create == 0);
1293
1294         dummy.b_state = 0;
1295         dummy.b_blocknr = -1000;
1296         buffer_trace_init(&dummy.b_history);
1297         err = ext4_get_blocks(handle, inode, block, 1, &dummy, create, 1, 0);
1298         /*
1299          * ext4_get_blocks() returns number of blocks
1300          * mapped. 0 in case of a HOLE.
1301          */
1302         if (err > 0) {
1303                 if (err > 1)
1304                         WARN_ON(1);
1305                 err = 0;
1306         }
1307         *errp = err;
1308         if (!err && buffer_mapped(&dummy)) {
1309                 struct buffer_head *bh;
1310                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1311                 if (!bh) {
1312                         *errp = -EIO;
1313                         goto err;
1314                 }
1315                 if (buffer_new(&dummy)) {
1316                         J_ASSERT(create != 0);
1317                         J_ASSERT(handle != NULL);
1318
1319                         /*
1320                          * Now that we do not always journal data, we should
1321                          * keep in mind whether this should always journal the
1322                          * new buffer as metadata.  For now, regular file
1323                          * writes use ext4_get_block instead, so it's not a
1324                          * problem.
1325                          */
1326                         lock_buffer(bh);
1327                         BUFFER_TRACE(bh, "call get_create_access");
1328                         fatal = ext4_journal_get_create_access(handle, bh);
1329                         if (!fatal && !buffer_uptodate(bh)) {
1330                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1331                                 set_buffer_uptodate(bh);
1332                         }
1333                         unlock_buffer(bh);
1334                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1335                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1336                         if (!fatal)
1337                                 fatal = err;
1338                 } else {
1339                         BUFFER_TRACE(bh, "not a new buffer");
1340                 }
1341                 if (fatal) {
1342                         *errp = fatal;
1343                         brelse(bh);
1344                         bh = NULL;
1345                 }
1346                 return bh;
1347         }
1348 err:
1349         return NULL;
1350 }
1351
1352 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1353                                ext4_lblk_t block, int create, int *err)
1354 {
1355         struct buffer_head *bh;
1356
1357         bh = ext4_getblk(handle, inode, block, create, err);
1358         if (!bh)
1359                 return bh;
1360         if (buffer_uptodate(bh))
1361                 return bh;
1362         ll_rw_block(READ_META, 1, &bh);
1363         wait_on_buffer(bh);
1364         if (buffer_uptodate(bh))
1365                 return bh;
1366         put_bh(bh);
1367         *err = -EIO;
1368         return NULL;
1369 }
1370
1371 static int walk_page_buffers(handle_t *handle,
1372                              struct buffer_head *head,
1373                              unsigned from,
1374                              unsigned to,
1375                              int *partial,
1376                              int (*fn)(handle_t *handle,
1377                                        struct buffer_head *bh))
1378 {
1379         struct buffer_head *bh;
1380         unsigned block_start, block_end;
1381         unsigned blocksize = head->b_size;
1382         int err, ret = 0;
1383         struct buffer_head *next;
1384
1385         for (bh = head, block_start = 0;
1386              ret == 0 && (bh != head || !block_start);
1387              block_start = block_end, bh = next)
1388         {
1389                 next = bh->b_this_page;
1390                 block_end = block_start + blocksize;
1391                 if (block_end <= from || block_start >= to) {
1392                         if (partial && !buffer_uptodate(bh))
1393                                 *partial = 1;
1394                         continue;
1395                 }
1396                 err = (*fn)(handle, bh);
1397                 if (!ret)
1398                         ret = err;
1399         }
1400         return ret;
1401 }
1402
1403 /*
1404  * To preserve ordering, it is essential that the hole instantiation and
1405  * the data write be encapsulated in a single transaction.  We cannot
1406  * close off a transaction and start a new one between the ext4_get_block()
1407  * and the commit_write().  So doing the jbd2_journal_start at the start of
1408  * prepare_write() is the right place.
1409  *
1410  * Also, this function can nest inside ext4_writepage() ->
1411  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1412  * has generated enough buffer credits to do the whole page.  So we won't
1413  * block on the journal in that case, which is good, because the caller may
1414  * be PF_MEMALLOC.
1415  *
1416  * By accident, ext4 can be reentered when a transaction is open via
1417  * quota file writes.  If we were to commit the transaction while thus
1418  * reentered, there can be a deadlock - we would be holding a quota
1419  * lock, and the commit would never complete if another thread had a
1420  * transaction open and was blocking on the quota lock - a ranking
1421  * violation.
1422  *
1423  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1424  * will _not_ run commit under these circumstances because handle->h_ref
1425  * is elevated.  We'll still have enough credits for the tiny quotafile
1426  * write.
1427  */
1428 static int do_journal_get_write_access(handle_t *handle,
1429                                         struct buffer_head *bh)
1430 {
1431         if (!buffer_mapped(bh) || buffer_freed(bh))
1432                 return 0;
1433         return ext4_journal_get_write_access(handle, bh);
1434 }
1435
1436 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1437                                 loff_t pos, unsigned len, unsigned flags,
1438                                 struct page **pagep, void **fsdata)
1439 {
1440         struct inode *inode = mapping->host;
1441         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1442         handle_t *handle;
1443         int retries = 0;
1444         struct page *page;
1445         pgoff_t index;
1446         unsigned from, to;
1447
1448         trace_mark(ext4_write_begin,
1449                    "dev %s ino %lu pos %llu len %u flags %u",
1450                    inode->i_sb->s_id, inode->i_ino,
1451                    (unsigned long long) pos, len, flags);
1452         index = pos >> PAGE_CACHE_SHIFT;
1453         from = pos & (PAGE_CACHE_SIZE - 1);
1454         to = from + len;
1455
1456 retry:
1457         handle = ext4_journal_start(inode, needed_blocks);
1458         if (IS_ERR(handle)) {
1459                 ret = PTR_ERR(handle);
1460                 goto out;
1461         }
1462
1463         /* We cannot recurse into the filesystem as the transaction is already
1464          * started */
1465         flags |= AOP_FLAG_NOFS;
1466
1467         page = grab_cache_page_write_begin(mapping, index, flags);
1468         if (!page) {
1469                 ext4_journal_stop(handle);
1470                 ret = -ENOMEM;
1471                 goto out;
1472         }
1473         *pagep = page;
1474
1475         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1476                                 ext4_get_block);
1477
1478         if (!ret && ext4_should_journal_data(inode)) {
1479                 ret = walk_page_buffers(handle, page_buffers(page),
1480                                 from, to, NULL, do_journal_get_write_access);
1481         }
1482
1483         if (ret) {
1484                 unlock_page(page);
1485                 ext4_journal_stop(handle);
1486                 page_cache_release(page);
1487                 /*
1488                  * block_write_begin may have instantiated a few blocks
1489                  * outside i_size.  Trim these off again. Don't need
1490                  * i_size_read because we hold i_mutex.
1491                  */
1492                 if (pos + len > inode->i_size)
1493                         vmtruncate(inode, inode->i_size);
1494         }
1495
1496         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1497                 goto retry;
1498 out:
1499         return ret;
1500 }
1501
1502 /* For write_end() in data=journal mode */
1503 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1504 {
1505         if (!buffer_mapped(bh) || buffer_freed(bh))
1506                 return 0;
1507         set_buffer_uptodate(bh);
1508         return ext4_handle_dirty_metadata(handle, NULL, bh);
1509 }
1510
1511 /*
1512  * We need to pick up the new inode size which generic_commit_write gave us
1513  * `file' can be NULL - eg, when called from page_symlink().
1514  *
1515  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1516  * buffers are managed internally.
1517  */
1518 static int ext4_ordered_write_end(struct file *file,
1519                                 struct address_space *mapping,
1520                                 loff_t pos, unsigned len, unsigned copied,
1521                                 struct page *page, void *fsdata)
1522 {
1523         handle_t *handle = ext4_journal_current_handle();
1524         struct inode *inode = mapping->host;
1525         int ret = 0, ret2;
1526
1527         trace_mark(ext4_ordered_write_end,
1528                    "dev %s ino %lu pos %llu len %u copied %u",
1529                    inode->i_sb->s_id, inode->i_ino,
1530                    (unsigned long long) pos, len, copied);
1531         ret = ext4_jbd2_file_inode(handle, inode);
1532
1533         if (ret == 0) {
1534                 loff_t new_i_size;
1535
1536                 new_i_size = pos + copied;
1537                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1538                         ext4_update_i_disksize(inode, new_i_size);
1539                         /* We need to mark inode dirty even if
1540                          * new_i_size is less that inode->i_size
1541                          * bu greater than i_disksize.(hint delalloc)
1542                          */
1543                         ext4_mark_inode_dirty(handle, inode);
1544                 }
1545
1546                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1547                                                         page, fsdata);
1548                 copied = ret2;
1549                 if (ret2 < 0)
1550                         ret = ret2;
1551         }
1552         ret2 = ext4_journal_stop(handle);
1553         if (!ret)
1554                 ret = ret2;
1555
1556         return ret ? ret : copied;
1557 }
1558
1559 static int ext4_writeback_write_end(struct file *file,
1560                                 struct address_space *mapping,
1561                                 loff_t pos, unsigned len, unsigned copied,
1562                                 struct page *page, void *fsdata)
1563 {
1564         handle_t *handle = ext4_journal_current_handle();
1565         struct inode *inode = mapping->host;
1566         int ret = 0, ret2;
1567         loff_t new_i_size;
1568
1569         trace_mark(ext4_writeback_write_end,
1570                    "dev %s ino %lu pos %llu len %u copied %u",
1571                    inode->i_sb->s_id, inode->i_ino,
1572                    (unsigned long long) pos, len, copied);
1573         new_i_size = pos + copied;
1574         if (new_i_size > EXT4_I(inode)->i_disksize) {
1575                 ext4_update_i_disksize(inode, new_i_size);
1576                 /* We need to mark inode dirty even if
1577                  * new_i_size is less that inode->i_size
1578                  * bu greater than i_disksize.(hint delalloc)
1579                  */
1580                 ext4_mark_inode_dirty(handle, inode);
1581         }
1582
1583         ret2 = generic_write_end(file, mapping, pos, len, copied,
1584                                                         page, fsdata);
1585         copied = ret2;
1586         if (ret2 < 0)
1587                 ret = ret2;
1588
1589         ret2 = ext4_journal_stop(handle);
1590         if (!ret)
1591                 ret = ret2;
1592
1593         return ret ? ret : copied;
1594 }
1595
1596 static int ext4_journalled_write_end(struct file *file,
1597                                 struct address_space *mapping,
1598                                 loff_t pos, unsigned len, unsigned copied,
1599                                 struct page *page, void *fsdata)
1600 {
1601         handle_t *handle = ext4_journal_current_handle();
1602         struct inode *inode = mapping->host;
1603         int ret = 0, ret2;
1604         int partial = 0;
1605         unsigned from, to;
1606         loff_t new_i_size;
1607
1608         trace_mark(ext4_journalled_write_end,
1609                    "dev %s ino %lu pos %llu len %u copied %u",
1610                    inode->i_sb->s_id, inode->i_ino,
1611                    (unsigned long long) pos, len, copied);
1612         from = pos & (PAGE_CACHE_SIZE - 1);
1613         to = from + len;
1614
1615         if (copied < len) {
1616                 if (!PageUptodate(page))
1617                         copied = 0;
1618                 page_zero_new_buffers(page, from+copied, to);
1619         }
1620
1621         ret = walk_page_buffers(handle, page_buffers(page), from,
1622                                 to, &partial, write_end_fn);
1623         if (!partial)
1624                 SetPageUptodate(page);
1625         new_i_size = pos + copied;
1626         if (new_i_size > inode->i_size)
1627                 i_size_write(inode, pos+copied);
1628         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1629         if (new_i_size > EXT4_I(inode)->i_disksize) {
1630                 ext4_update_i_disksize(inode, new_i_size);
1631                 ret2 = ext4_mark_inode_dirty(handle, inode);
1632                 if (!ret)
1633                         ret = ret2;
1634         }
1635
1636         unlock_page(page);
1637         ret2 = ext4_journal_stop(handle);
1638         if (!ret)
1639                 ret = ret2;
1640         page_cache_release(page);
1641
1642         return ret ? ret : copied;
1643 }
1644
1645 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1646 {
1647         int retries = 0;
1648         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1649         unsigned long md_needed, mdblocks, total = 0;
1650
1651         /*
1652          * recalculate the amount of metadata blocks to reserve
1653          * in order to allocate nrblocks
1654          * worse case is one extent per block
1655          */
1656 repeat:
1657         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1658         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1659         mdblocks = ext4_calc_metadata_amount(inode, total);
1660         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1661
1662         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1663         total = md_needed + nrblocks;
1664
1665         /*
1666          * Make quota reservation here to prevent quota overflow
1667          * later. Real quota accounting is done at pages writeout
1668          * time.
1669          */
1670         if (vfs_dq_reserve_block(inode, total)) {
1671                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1672                 return -EDQUOT;
1673         }
1674
1675         if (ext4_claim_free_blocks(sbi, total)) {
1676                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1677                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1678                         yield();
1679                         goto repeat;
1680                 }
1681                 vfs_dq_release_reservation_block(inode, total);
1682                 return -ENOSPC;
1683         }
1684         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1685         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1686
1687         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1688         return 0;       /* success */
1689 }
1690
1691 static void ext4_da_release_space(struct inode *inode, int to_free)
1692 {
1693         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1694         int total, mdb, mdb_free, release;
1695
1696         if (!to_free)
1697                 return;         /* Nothing to release, exit */
1698
1699         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1700
1701         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1702                 /*
1703                  * if there is no reserved blocks, but we try to free some
1704                  * then the counter is messed up somewhere.
1705                  * but since this function is called from invalidate
1706                  * page, it's harmless to return without any action
1707                  */
1708                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1709                             "blocks for inode %lu, but there is no reserved "
1710                             "data blocks\n", to_free, inode->i_ino);
1711                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1712                 return;
1713         }
1714
1715         /* recalculate the number of metablocks still need to be reserved */
1716         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1717         mdb = ext4_calc_metadata_amount(inode, total);
1718
1719         /* figure out how many metablocks to release */
1720         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1721         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1722
1723         release = to_free + mdb_free;
1724
1725         /* update fs dirty blocks counter for truncate case */
1726         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1727
1728         /* update per-inode reservations */
1729         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1730         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1731
1732         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1733         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1734         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1735
1736         vfs_dq_release_reservation_block(inode, release);
1737 }
1738
1739 static void ext4_da_page_release_reservation(struct page *page,
1740                                                 unsigned long offset)
1741 {
1742         int to_release = 0;
1743         struct buffer_head *head, *bh;
1744         unsigned int curr_off = 0;
1745
1746         head = page_buffers(page);
1747         bh = head;
1748         do {
1749                 unsigned int next_off = curr_off + bh->b_size;
1750
1751                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1752                         to_release++;
1753                         clear_buffer_delay(bh);
1754                 }
1755                 curr_off = next_off;
1756         } while ((bh = bh->b_this_page) != head);
1757         ext4_da_release_space(page->mapping->host, to_release);
1758 }
1759
1760 /*
1761  * Delayed allocation stuff
1762  */
1763
1764 struct mpage_da_data {
1765         struct inode *inode;
1766         sector_t b_blocknr;             /* start block number of extent */
1767         size_t b_size;                  /* size of extent */
1768         unsigned long b_state;          /* state of the extent */
1769         unsigned long first_page, next_page;    /* extent of pages */
1770         struct writeback_control *wbc;
1771         int io_done;
1772         int pages_written;
1773         int retval;
1774 };
1775
1776 /*
1777  * mpage_da_submit_io - walks through extent of pages and try to write
1778  * them with writepage() call back
1779  *
1780  * @mpd->inode: inode
1781  * @mpd->first_page: first page of the extent
1782  * @mpd->next_page: page after the last page of the extent
1783  *
1784  * By the time mpage_da_submit_io() is called we expect all blocks
1785  * to be allocated. this may be wrong if allocation failed.
1786  *
1787  * As pages are already locked by write_cache_pages(), we can't use it
1788  */
1789 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1790 {
1791         long pages_skipped;
1792         struct pagevec pvec;
1793         unsigned long index, end;
1794         int ret = 0, err, nr_pages, i;
1795         struct inode *inode = mpd->inode;
1796         struct address_space *mapping = inode->i_mapping;
1797
1798         BUG_ON(mpd->next_page <= mpd->first_page);
1799         /*
1800          * We need to start from the first_page to the next_page - 1
1801          * to make sure we also write the mapped dirty buffer_heads.
1802          * If we look at mpd->b_blocknr we would only be looking
1803          * at the currently mapped buffer_heads.
1804          */
1805         index = mpd->first_page;
1806         end = mpd->next_page - 1;
1807
1808         pagevec_init(&pvec, 0);
1809         while (index <= end) {
1810                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1811                 if (nr_pages == 0)
1812                         break;
1813                 for (i = 0; i < nr_pages; i++) {
1814                         struct page *page = pvec.pages[i];
1815
1816                         index = page->index;
1817                         if (index > end)
1818                                 break;
1819                         index++;
1820
1821                         BUG_ON(!PageLocked(page));
1822                         BUG_ON(PageWriteback(page));
1823
1824                         pages_skipped = mpd->wbc->pages_skipped;
1825                         err = mapping->a_ops->writepage(page, mpd->wbc);
1826                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1827                                 /*
1828                                  * have successfully written the page
1829                                  * without skipping the same
1830                                  */
1831                                 mpd->pages_written++;
1832                         /*
1833                          * In error case, we have to continue because
1834                          * remaining pages are still locked
1835                          * XXX: unlock and re-dirty them?
1836                          */
1837                         if (ret == 0)
1838                                 ret = err;
1839                 }
1840                 pagevec_release(&pvec);
1841         }
1842         return ret;
1843 }
1844
1845 /*
1846  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1847  *
1848  * @mpd->inode - inode to walk through
1849  * @exbh->b_blocknr - first block on a disk
1850  * @exbh->b_size - amount of space in bytes
1851  * @logical - first logical block to start assignment with
1852  *
1853  * the function goes through all passed space and put actual disk
1854  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1855  */
1856 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1857                                  struct buffer_head *exbh)
1858 {
1859         struct inode *inode = mpd->inode;
1860         struct address_space *mapping = inode->i_mapping;
1861         int blocks = exbh->b_size >> inode->i_blkbits;
1862         sector_t pblock = exbh->b_blocknr, cur_logical;
1863         struct buffer_head *head, *bh;
1864         pgoff_t index, end;
1865         struct pagevec pvec;
1866         int nr_pages, i;
1867
1868         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1869         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1870         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1871
1872         pagevec_init(&pvec, 0);
1873
1874         while (index <= end) {
1875                 /* XXX: optimize tail */
1876                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1877                 if (nr_pages == 0)
1878                         break;
1879                 for (i = 0; i < nr_pages; i++) {
1880                         struct page *page = pvec.pages[i];
1881
1882                         index = page->index;
1883                         if (index > end)
1884                                 break;
1885                         index++;
1886
1887                         BUG_ON(!PageLocked(page));
1888                         BUG_ON(PageWriteback(page));
1889                         BUG_ON(!page_has_buffers(page));
1890
1891                         bh = page_buffers(page);
1892                         head = bh;
1893
1894                         /* skip blocks out of the range */
1895                         do {
1896                                 if (cur_logical >= logical)
1897                                         break;
1898                                 cur_logical++;
1899                         } while ((bh = bh->b_this_page) != head);
1900
1901                         do {
1902                                 if (cur_logical >= logical + blocks)
1903                                         break;
1904
1905                                 if (buffer_delay(bh) ||
1906                                                 buffer_unwritten(bh)) {
1907
1908                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
1909
1910                                         if (buffer_delay(bh)) {
1911                                                 clear_buffer_delay(bh);
1912                                                 bh->b_blocknr = pblock;
1913                                         } else {
1914                                                 /*
1915                                                  * unwritten already should have
1916                                                  * blocknr assigned. Verify that
1917                                                  */
1918                                                 clear_buffer_unwritten(bh);
1919                                                 BUG_ON(bh->b_blocknr != pblock);
1920                                         }
1921
1922                                 } else if (buffer_mapped(bh))
1923                                         BUG_ON(bh->b_blocknr != pblock);
1924
1925                                 cur_logical++;
1926                                 pblock++;
1927                         } while ((bh = bh->b_this_page) != head);
1928                 }
1929                 pagevec_release(&pvec);
1930         }
1931 }
1932
1933
1934 /*
1935  * __unmap_underlying_blocks - just a helper function to unmap
1936  * set of blocks described by @bh
1937  */
1938 static inline void __unmap_underlying_blocks(struct inode *inode,
1939                                              struct buffer_head *bh)
1940 {
1941         struct block_device *bdev = inode->i_sb->s_bdev;
1942         int blocks, i;
1943
1944         blocks = bh->b_size >> inode->i_blkbits;
1945         for (i = 0; i < blocks; i++)
1946                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1947 }
1948
1949 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1950                                         sector_t logical, long blk_cnt)
1951 {
1952         int nr_pages, i;
1953         pgoff_t index, end;
1954         struct pagevec pvec;
1955         struct inode *inode = mpd->inode;
1956         struct address_space *mapping = inode->i_mapping;
1957
1958         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1959         end   = (logical + blk_cnt - 1) >>
1960                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1961         while (index <= end) {
1962                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1963                 if (nr_pages == 0)
1964                         break;
1965                 for (i = 0; i < nr_pages; i++) {
1966                         struct page *page = pvec.pages[i];
1967                         index = page->index;
1968                         if (index > end)
1969                                 break;
1970                         index++;
1971
1972                         BUG_ON(!PageLocked(page));
1973                         BUG_ON(PageWriteback(page));
1974                         block_invalidatepage(page, 0);
1975                         ClearPageUptodate(page);
1976                         unlock_page(page);
1977                 }
1978         }
1979         return;
1980 }
1981
1982 static void ext4_print_free_blocks(struct inode *inode)
1983 {
1984         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1985         printk(KERN_EMERG "Total free blocks count %lld\n",
1986                         ext4_count_free_blocks(inode->i_sb));
1987         printk(KERN_EMERG "Free/Dirty block details\n");
1988         printk(KERN_EMERG "free_blocks=%lld\n",
1989                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1990         printk(KERN_EMERG "dirty_blocks=%lld\n",
1991                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1992         printk(KERN_EMERG "Block reservation details\n");
1993         printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1994                         EXT4_I(inode)->i_reserved_data_blocks);
1995         printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1996                         EXT4_I(inode)->i_reserved_meta_blocks);
1997         return;
1998 }
1999
2000 #define         EXT4_DELALLOC_RSVED     1
2001 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2002                                    struct buffer_head *bh_result)
2003 {
2004         int ret;
2005         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2006         loff_t disksize = EXT4_I(inode)->i_disksize;
2007         handle_t *handle = NULL;
2008
2009         handle = ext4_journal_current_handle();
2010         BUG_ON(!handle);
2011         ret = ext4_get_blocks(handle, inode, iblock, max_blocks,
2012                               bh_result, 1, 0, EXT4_DELALLOC_RSVED);
2013         if (ret <= 0)
2014                 return ret;
2015
2016         bh_result->b_size = (ret << inode->i_blkbits);
2017
2018         if (ext4_should_order_data(inode)) {
2019                 int retval;
2020                 retval = ext4_jbd2_file_inode(handle, inode);
2021                 if (retval)
2022                         /*
2023                          * Failed to add inode for ordered mode. Don't
2024                          * update file size
2025                          */
2026                         return retval;
2027         }
2028
2029         /*
2030          * Update on-disk size along with block allocation we don't
2031          * use 'extend_disksize' as size may change within already
2032          * allocated block -bzzz
2033          */
2034         disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2035         if (disksize > i_size_read(inode))
2036                 disksize = i_size_read(inode);
2037         if (disksize > EXT4_I(inode)->i_disksize) {
2038                 ext4_update_i_disksize(inode, disksize);
2039                 ret = ext4_mark_inode_dirty(handle, inode);
2040                 return ret;
2041         }
2042         return 0;
2043 }
2044
2045 /*
2046  * mpage_da_map_blocks - go through given space
2047  *
2048  * @mpd - bh describing space
2049  *
2050  * The function skips space we know is already mapped to disk blocks.
2051  *
2052  */
2053 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2054 {
2055         int err = 0;
2056         struct buffer_head new;
2057         sector_t next;
2058
2059         /*
2060          * We consider only non-mapped and non-allocated blocks
2061          */
2062         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2063                 !(mpd->b_state & (1 << BH_Delay)) &&
2064                 !(mpd->b_state & (1 << BH_Unwritten)))
2065                 return 0;
2066         /*
2067          * We need to make sure the BH_Delay flag is passed down to
2068          * ext4_da_get_block_write(), since it calls
2069          * ext4_get_blocks() with the EXT4_DELALLOC_RSVED flag.
2070          * This flag causes ext4_get_blocks() to call
2071          * ext4_da_update_reserve_space() if the passed buffer head
2072          * has the BH_Delay flag set.  In the future, once we clean up
2073          * the interfaces to ext4_get_blocks(), we should pass in
2074          * a separate flag which requests that the delayed allocation
2075          * statistics should be updated, instead of depending on the
2076          * state information getting passed down via the map_bh's
2077          * state bitmasks plus the magic EXT4_DELALLOC_RSVED flag.
2078          */
2079         new.b_state = mpd->b_state & (1 << BH_Delay);
2080         new.b_blocknr = 0;
2081         new.b_size = mpd->b_size;
2082         next = mpd->b_blocknr;
2083         /*
2084          * If we didn't accumulate anything
2085          * to write simply return
2086          */
2087         if (!new.b_size)
2088                 return 0;
2089
2090         err = ext4_da_get_block_write(mpd->inode, next, &new);
2091         if (err) {
2092                 /*
2093                  * If get block returns with error we simply
2094                  * return. Later writepage will redirty the page and
2095                  * writepages will find the dirty page again
2096                  */
2097                 if (err == -EAGAIN)
2098                         return 0;
2099
2100                 if (err == -ENOSPC &&
2101                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2102                         mpd->retval = err;
2103                         return 0;
2104                 }
2105
2106                 /*
2107                  * get block failure will cause us to loop in
2108                  * writepages, because a_ops->writepage won't be able
2109                  * to make progress. The page will be redirtied by
2110                  * writepage and writepages will again try to write
2111                  * the same.
2112                  */
2113                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2114                                   "at logical offset %llu with max blocks "
2115                                   "%zd with error %d\n",
2116                                   __func__, mpd->inode->i_ino,
2117                                   (unsigned long long)next,
2118                                   mpd->b_size >> mpd->inode->i_blkbits, err);
2119                 printk(KERN_EMERG "This should not happen.!! "
2120                                         "Data will be lost\n");
2121                 if (err == -ENOSPC) {
2122                         ext4_print_free_blocks(mpd->inode);
2123                 }
2124                 /* invlaidate all the pages */
2125                 ext4_da_block_invalidatepages(mpd, next,
2126                                 mpd->b_size >> mpd->inode->i_blkbits);
2127                 return err;
2128         }
2129         BUG_ON(new.b_size == 0);
2130
2131         if (buffer_new(&new))
2132                 __unmap_underlying_blocks(mpd->inode, &new);
2133
2134         /*
2135          * If blocks are delayed marked, we need to
2136          * put actual blocknr and drop delayed bit
2137          */
2138         if ((mpd->b_state & (1 << BH_Delay)) ||
2139             (mpd->b_state & (1 << BH_Unwritten)))
2140                 mpage_put_bnr_to_bhs(mpd, next, &new);
2141
2142         return 0;
2143 }
2144
2145 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2146                 (1 << BH_Delay) | (1 << BH_Unwritten))
2147
2148 /*
2149  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2150  *
2151  * @mpd->lbh - extent of blocks
2152  * @logical - logical number of the block in the file
2153  * @bh - bh of the block (used to access block's state)
2154  *
2155  * the function is used to collect contig. blocks in same state
2156  */
2157 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2158                                    sector_t logical, size_t b_size,
2159                                    unsigned long b_state)
2160 {
2161         sector_t next;
2162         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2163
2164         /* check if thereserved journal credits might overflow */
2165         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2166                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2167                         /*
2168                          * With non-extent format we are limited by the journal
2169                          * credit available.  Total credit needed to insert
2170                          * nrblocks contiguous blocks is dependent on the
2171                          * nrblocks.  So limit nrblocks.
2172                          */
2173                         goto flush_it;
2174                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2175                                 EXT4_MAX_TRANS_DATA) {
2176                         /*
2177                          * Adding the new buffer_head would make it cross the
2178                          * allowed limit for which we have journal credit
2179                          * reserved. So limit the new bh->b_size
2180                          */
2181                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2182                                                 mpd->inode->i_blkbits;
2183                         /* we will do mpage_da_submit_io in the next loop */
2184                 }
2185         }
2186         /*
2187          * First block in the extent
2188          */
2189         if (mpd->b_size == 0) {
2190                 mpd->b_blocknr = logical;
2191                 mpd->b_size = b_size;
2192                 mpd->b_state = b_state & BH_FLAGS;
2193                 return;
2194         }
2195
2196         next = mpd->b_blocknr + nrblocks;
2197         /*
2198          * Can we merge the block to our big extent?
2199          */
2200         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2201                 mpd->b_size += b_size;
2202                 return;
2203         }
2204
2205 flush_it:
2206         /*
2207          * We couldn't merge the block to our extent, so we
2208          * need to flush current  extent and start new one
2209          */
2210         if (mpage_da_map_blocks(mpd) == 0)
2211                 mpage_da_submit_io(mpd);
2212         mpd->io_done = 1;
2213         return;
2214 }
2215
2216 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2217 {
2218         /*
2219          * unmapped buffer is possible for holes.
2220          * delay buffer is possible with delayed allocation.
2221          * We also need to consider unwritten buffer as unmapped.
2222          */
2223         return (!buffer_mapped(bh) || buffer_delay(bh) ||
2224                                 buffer_unwritten(bh)) && buffer_dirty(bh);
2225 }
2226
2227 /*
2228  * __mpage_da_writepage - finds extent of pages and blocks
2229  *
2230  * @page: page to consider
2231  * @wbc: not used, we just follow rules
2232  * @data: context
2233  *
2234  * The function finds extents of pages and scan them for all blocks.
2235  */
2236 static int __mpage_da_writepage(struct page *page,
2237                                 struct writeback_control *wbc, void *data)
2238 {
2239         struct mpage_da_data *mpd = data;
2240         struct inode *inode = mpd->inode;
2241         struct buffer_head *bh, *head;
2242         sector_t logical;
2243
2244         if (mpd->io_done) {
2245                 /*
2246                  * Rest of the page in the page_vec
2247                  * redirty then and skip then. We will
2248                  * try to to write them again after
2249                  * starting a new transaction
2250                  */
2251                 redirty_page_for_writepage(wbc, page);
2252                 unlock_page(page);
2253                 return MPAGE_DA_EXTENT_TAIL;
2254         }
2255         /*
2256          * Can we merge this page to current extent?
2257          */
2258         if (mpd->next_page != page->index) {
2259                 /*
2260                  * Nope, we can't. So, we map non-allocated blocks
2261                  * and start IO on them using writepage()
2262                  */
2263                 if (mpd->next_page != mpd->first_page) {
2264                         if (mpage_da_map_blocks(mpd) == 0)
2265                                 mpage_da_submit_io(mpd);
2266                         /*
2267                          * skip rest of the page in the page_vec
2268                          */
2269                         mpd->io_done = 1;
2270                         redirty_page_for_writepage(wbc, page);
2271                         unlock_page(page);
2272                         return MPAGE_DA_EXTENT_TAIL;
2273                 }
2274
2275                 /*
2276                  * Start next extent of pages ...
2277                  */
2278                 mpd->first_page = page->index;
2279
2280                 /*
2281                  * ... and blocks
2282                  */
2283                 mpd->b_size = 0;
2284                 mpd->b_state = 0;
2285                 mpd->b_blocknr = 0;
2286         }
2287
2288         mpd->next_page = page->index + 1;
2289         logical = (sector_t) page->index <<
2290                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2291
2292         if (!page_has_buffers(page)) {
2293                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2294                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2295                 if (mpd->io_done)
2296                         return MPAGE_DA_EXTENT_TAIL;
2297         } else {
2298                 /*
2299                  * Page with regular buffer heads, just add all dirty ones
2300                  */
2301                 head = page_buffers(page);
2302                 bh = head;
2303                 do {
2304                         BUG_ON(buffer_locked(bh));
2305                         /*
2306                          * We need to try to allocate
2307                          * unmapped blocks in the same page.
2308                          * Otherwise we won't make progress
2309                          * with the page in ext4_da_writepage
2310                          */
2311                         if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2312                                 mpage_add_bh_to_extent(mpd, logical,
2313                                                        bh->b_size,
2314                                                        bh->b_state);
2315                                 if (mpd->io_done)
2316                                         return MPAGE_DA_EXTENT_TAIL;
2317                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2318                                 /*
2319                                  * mapped dirty buffer. We need to update
2320                                  * the b_state because we look at
2321                                  * b_state in mpage_da_map_blocks. We don't
2322                                  * update b_size because if we find an
2323                                  * unmapped buffer_head later we need to
2324                                  * use the b_state flag of that buffer_head.
2325                                  */
2326                                 if (mpd->b_size == 0)
2327                                         mpd->b_state = bh->b_state & BH_FLAGS;
2328                         }
2329                         logical++;
2330                 } while ((bh = bh->b_this_page) != head);
2331         }
2332
2333         return 0;
2334 }
2335
2336 /*
2337  * this is a special callback for ->write_begin() only
2338  * it's intention is to return mapped block or reserve space
2339  *
2340  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2341  * We also have b_blocknr = -1 and b_bdev initialized properly
2342  *
2343  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2344  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2345  * initialized properly.
2346  *
2347  */
2348 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2349                                   struct buffer_head *bh_result, int create)
2350 {
2351         int ret = 0;
2352         sector_t invalid_block = ~((sector_t) 0xffff);
2353
2354         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2355                 invalid_block = ~0;
2356
2357         BUG_ON(create == 0);
2358         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2359
2360         /*
2361          * first, we need to know whether the block is allocated already
2362          * preallocated blocks are unmapped but should treated
2363          * the same as allocated blocks.
2364          */
2365         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2366         if ((ret == 0) && !buffer_delay(bh_result)) {
2367                 /* the block isn't (pre)allocated yet, let's reserve space */
2368                 /*
2369                  * XXX: __block_prepare_write() unmaps passed block,
2370                  * is it OK?
2371                  */
2372                 ret = ext4_da_reserve_space(inode, 1);
2373                 if (ret)
2374                         /* not enough space to reserve */
2375                         return ret;
2376
2377                 map_bh(bh_result, inode->i_sb, invalid_block);
2378                 set_buffer_new(bh_result);
2379                 set_buffer_delay(bh_result);
2380         } else if (ret > 0) {
2381                 bh_result->b_size = (ret << inode->i_blkbits);
2382                 if (buffer_unwritten(bh_result)) {
2383                         /* A delayed write to unwritten bh should
2384                          * be marked new and mapped.  Mapped ensures
2385                          * that we don't do get_block multiple times
2386                          * when we write to the same offset and new
2387                          * ensures that we do proper zero out for
2388                          * partial write.
2389                          */
2390                         set_buffer_new(bh_result);
2391                         set_buffer_mapped(bh_result);
2392                 }
2393                 ret = 0;
2394         }
2395
2396         return ret;
2397 }
2398
2399 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2400                                    struct buffer_head *bh_result, int create)
2401 {
2402         int ret = 0;
2403         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2404
2405         /*
2406          * we don't want to do block allocation in writepage
2407          * so call get_block_wrap with create = 0
2408          */
2409         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks,
2410                               bh_result, 0, 0, 0);
2411         if (ret > 0) {
2412                 bh_result->b_size = (ret << inode->i_blkbits);
2413                 ret = 0;
2414         }
2415         return ret;
2416 }
2417
2418 /*
2419  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2420  * get called via journal_submit_inode_data_buffers (no journal handle)
2421  * get called via shrink_page_list via pdflush (no journal handle)
2422  * or grab_page_cache when doing write_begin (have journal handle)
2423  */
2424 static int ext4_da_writepage(struct page *page,
2425                                 struct writeback_control *wbc)
2426 {
2427         int ret = 0;
2428         loff_t size;
2429         unsigned int len;
2430         struct buffer_head *page_bufs;
2431         struct inode *inode = page->mapping->host;
2432
2433         trace_mark(ext4_da_writepage,
2434                    "dev %s ino %lu page_index %lu",
2435                    inode->i_sb->s_id, inode->i_ino, page->index);
2436         size = i_size_read(inode);
2437         if (page->index == size >> PAGE_CACHE_SHIFT)
2438                 len = size & ~PAGE_CACHE_MASK;
2439         else
2440                 len = PAGE_CACHE_SIZE;
2441
2442         if (page_has_buffers(page)) {
2443                 page_bufs = page_buffers(page);
2444                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2445                                         ext4_bh_unmapped_or_delay)) {
2446                         /*
2447                          * We don't want to do  block allocation
2448                          * So redirty the page and return
2449                          * We may reach here when we do a journal commit
2450                          * via journal_submit_inode_data_buffers.
2451                          * If we don't have mapping block we just ignore
2452                          * them. We can also reach here via shrink_page_list
2453                          */
2454                         redirty_page_for_writepage(wbc, page);
2455                         unlock_page(page);
2456                         return 0;
2457                 }
2458         } else {
2459                 /*
2460                  * The test for page_has_buffers() is subtle:
2461                  * We know the page is dirty but it lost buffers. That means
2462                  * that at some moment in time after write_begin()/write_end()
2463                  * has been called all buffers have been clean and thus they
2464                  * must have been written at least once. So they are all
2465                  * mapped and we can happily proceed with mapping them
2466                  * and writing the page.
2467                  *
2468                  * Try to initialize the buffer_heads and check whether
2469                  * all are mapped and non delay. We don't want to
2470                  * do block allocation here.
2471                  */
2472                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2473                                                 ext4_normal_get_block_write);
2474                 if (!ret) {
2475                         page_bufs = page_buffers(page);
2476                         /* check whether all are mapped and non delay */
2477                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2478                                                 ext4_bh_unmapped_or_delay)) {
2479                                 redirty_page_for_writepage(wbc, page);
2480                                 unlock_page(page);
2481                                 return 0;
2482                         }
2483                 } else {
2484                         /*
2485                          * We can't do block allocation here
2486                          * so just redity the page and unlock
2487                          * and return
2488                          */
2489                         redirty_page_for_writepage(wbc, page);
2490                         unlock_page(page);
2491                         return 0;
2492                 }
2493                 /* now mark the buffer_heads as dirty and uptodate */
2494                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2495         }
2496
2497         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2498                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2499         else
2500                 ret = block_write_full_page(page,
2501                                                 ext4_normal_get_block_write,
2502                                                 wbc);
2503
2504         return ret;
2505 }
2506
2507 /*
2508  * This is called via ext4_da_writepages() to
2509  * calulate the total number of credits to reserve to fit
2510  * a single extent allocation into a single transaction,
2511  * ext4_da_writpeages() will loop calling this before
2512  * the block allocation.
2513  */
2514
2515 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2516 {
2517         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2518
2519         /*
2520          * With non-extent format the journal credit needed to
2521          * insert nrblocks contiguous block is dependent on
2522          * number of contiguous block. So we will limit
2523          * number of contiguous block to a sane value
2524          */
2525         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2526             (max_blocks > EXT4_MAX_TRANS_DATA))
2527                 max_blocks = EXT4_MAX_TRANS_DATA;
2528
2529         return ext4_chunk_trans_blocks(inode, max_blocks);
2530 }
2531
2532 static int ext4_da_writepages(struct address_space *mapping,
2533                               struct writeback_control *wbc)
2534 {
2535         pgoff_t index;
2536         int range_whole = 0;
2537         handle_t *handle = NULL;
2538         struct mpage_da_data mpd;
2539         struct inode *inode = mapping->host;
2540         int no_nrwrite_index_update;
2541         int pages_written = 0;
2542         long pages_skipped;
2543         int range_cyclic, cycled = 1, io_done = 0;
2544         int needed_blocks, ret = 0, nr_to_writebump = 0;
2545         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2546
2547         trace_mark(ext4_da_writepages,
2548                    "dev %s ino %lu nr_t_write %ld "
2549                    "pages_skipped %ld range_start %llu "
2550                    "range_end %llu nonblocking %d "
2551                    "for_kupdate %d for_reclaim %d "
2552                    "for_writepages %d range_cyclic %d",
2553                    inode->i_sb->s_id, inode->i_ino,
2554                    wbc->nr_to_write, wbc->pages_skipped,
2555                    (unsigned long long) wbc->range_start,
2556                    (unsigned long long) wbc->range_end,
2557                    wbc->nonblocking, wbc->for_kupdate,
2558                    wbc->for_reclaim, wbc->for_writepages,
2559                    wbc->range_cyclic);
2560
2561         /*
2562          * No pages to write? This is mainly a kludge to avoid starting
2563          * a transaction for special inodes like journal inode on last iput()
2564          * because that could violate lock ordering on umount
2565          */
2566         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2567                 return 0;
2568
2569         /*
2570          * If the filesystem has aborted, it is read-only, so return
2571          * right away instead of dumping stack traces later on that
2572          * will obscure the real source of the problem.  We test
2573          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2574          * the latter could be true if the filesystem is mounted
2575          * read-only, and in that case, ext4_da_writepages should
2576          * *never* be called, so if that ever happens, we would want
2577          * the stack trace.
2578          */
2579         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2580                 return -EROFS;
2581
2582         /*
2583          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2584          * This make sure small files blocks are allocated in
2585          * single attempt. This ensure that small files
2586          * get less fragmented.
2587          */
2588         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2589                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2590                 wbc->nr_to_write = sbi->s_mb_stream_request;
2591         }
2592         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2593                 range_whole = 1;
2594
2595         range_cyclic = wbc->range_cyclic;
2596         if (wbc->range_cyclic) {
2597                 index = mapping->writeback_index;
2598                 if (index)
2599                         cycled = 0;
2600                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2601                 wbc->range_end  = LLONG_MAX;
2602                 wbc->range_cyclic = 0;
2603         } else
2604                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2605
2606         mpd.wbc = wbc;
2607         mpd.inode = mapping->host;
2608
2609         /*
2610          * we don't want write_cache_pages to update
2611          * nr_to_write and writeback_index
2612          */
2613         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2614         wbc->no_nrwrite_index_update = 1;
2615         pages_skipped = wbc->pages_skipped;
2616
2617 retry:
2618         while (!ret && wbc->nr_to_write > 0) {
2619
2620                 /*
2621                  * we  insert one extent at a time. So we need
2622                  * credit needed for single extent allocation.
2623                  * journalled mode is currently not supported
2624                  * by delalloc
2625                  */
2626                 BUG_ON(ext4_should_journal_data(inode));
2627                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2628
2629                 /* start a new transaction*/
2630                 handle = ext4_journal_start(inode, needed_blocks);
2631                 if (IS_ERR(handle)) {
2632                         ret = PTR_ERR(handle);
2633                         printk(KERN_CRIT "%s: jbd2_start: "
2634                                "%ld pages, ino %lu; err %d\n", __func__,
2635                                 wbc->nr_to_write, inode->i_ino, ret);
2636                         dump_stack();
2637                         goto out_writepages;
2638                 }
2639
2640                 /*
2641                  * Now call __mpage_da_writepage to find the next
2642                  * contiguous region of logical blocks that need
2643                  * blocks to be allocated by ext4.  We don't actually
2644                  * submit the blocks for I/O here, even though
2645                  * write_cache_pages thinks it will, and will set the
2646                  * pages as clean for write before calling
2647                  * __mpage_da_writepage().
2648                  */
2649                 mpd.b_size = 0;
2650                 mpd.b_state = 0;
2651                 mpd.b_blocknr = 0;
2652                 mpd.first_page = 0;
2653                 mpd.next_page = 0;
2654                 mpd.io_done = 0;
2655                 mpd.pages_written = 0;
2656                 mpd.retval = 0;
2657                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2658                                         &mpd);
2659                 /*
2660                  * If we have a contigous extent of pages and we
2661                  * haven't done the I/O yet, map the blocks and submit
2662                  * them for I/O.
2663                  */
2664                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2665                         if (mpage_da_map_blocks(&mpd) == 0)
2666                                 mpage_da_submit_io(&mpd);
2667                         mpd.io_done = 1;
2668                         ret = MPAGE_DA_EXTENT_TAIL;
2669                 }
2670                 wbc->nr_to_write -= mpd.pages_written;
2671
2672                 ext4_journal_stop(handle);
2673
2674                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2675                         /* commit the transaction which would
2676                          * free blocks released in the transaction
2677                          * and try again
2678                          */
2679                         jbd2_journal_force_commit_nested(sbi->s_journal);
2680                         wbc->pages_skipped = pages_skipped;
2681                         ret = 0;
2682                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2683                         /*
2684                          * got one extent now try with
2685                          * rest of the pages
2686                          */
2687                         pages_written += mpd.pages_written;
2688                         wbc->pages_skipped = pages_skipped;
2689                         ret = 0;
2690                         io_done = 1;
2691                 } else if (wbc->nr_to_write)
2692                         /*
2693                          * There is no more writeout needed
2694                          * or we requested for a noblocking writeout
2695                          * and we found the device congested
2696                          */
2697                         break;
2698         }
2699         if (!io_done && !cycled) {
2700                 cycled = 1;
2701                 index = 0;
2702                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2703                 wbc->range_end  = mapping->writeback_index - 1;
2704                 goto retry;
2705         }
2706         if (pages_skipped != wbc->pages_skipped)
2707                 printk(KERN_EMERG "This should not happen leaving %s "
2708                                 "with nr_to_write = %ld ret = %d\n",
2709                                 __func__, wbc->nr_to_write, ret);
2710
2711         /* Update index */
2712         index += pages_written;
2713         wbc->range_cyclic = range_cyclic;
2714         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2715                 /*
2716                  * set the writeback_index so that range_cyclic
2717                  * mode will write it back later
2718                  */
2719                 mapping->writeback_index = index;
2720
2721 out_writepages:
2722         if (!no_nrwrite_index_update)
2723                 wbc->no_nrwrite_index_update = 0;
2724         wbc->nr_to_write -= nr_to_writebump;
2725         trace_mark(ext4_da_writepage_result,
2726                    "dev %s ino %lu ret %d pages_written %d "
2727                    "pages_skipped %ld congestion %d "
2728                    "more_io %d no_nrwrite_index_update %d",
2729                    inode->i_sb->s_id, inode->i_ino, ret,
2730                    pages_written, wbc->pages_skipped,
2731                    wbc->encountered_congestion, wbc->more_io,
2732                    wbc->no_nrwrite_index_update);
2733         return ret;
2734 }
2735
2736 #define FALL_BACK_TO_NONDELALLOC 1
2737 static int ext4_nonda_switch(struct super_block *sb)
2738 {
2739         s64 free_blocks, dirty_blocks;
2740         struct ext4_sb_info *sbi = EXT4_SB(sb);
2741
2742         /*
2743          * switch to non delalloc mode if we are running low
2744          * on free block. The free block accounting via percpu
2745          * counters can get slightly wrong with percpu_counter_batch getting
2746          * accumulated on each CPU without updating global counters
2747          * Delalloc need an accurate free block accounting. So switch
2748          * to non delalloc when we are near to error range.
2749          */
2750         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2751         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2752         if (2 * free_blocks < 3 * dirty_blocks ||
2753                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2754                 /*
2755                  * free block count is less that 150% of dirty blocks
2756                  * or free blocks is less that watermark
2757                  */
2758                 return 1;
2759         }
2760         return 0;
2761 }
2762
2763 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2764                                 loff_t pos, unsigned len, unsigned flags,
2765                                 struct page **pagep, void **fsdata)
2766 {
2767         int ret, retries = 0;
2768         struct page *page;
2769         pgoff_t index;
2770         unsigned from, to;
2771         struct inode *inode = mapping->host;
2772         handle_t *handle;
2773
2774         index = pos >> PAGE_CACHE_SHIFT;
2775         from = pos & (PAGE_CACHE_SIZE - 1);
2776         to = from + len;
2777
2778         if (ext4_nonda_switch(inode->i_sb)) {
2779                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2780                 return ext4_write_begin(file, mapping, pos,
2781                                         len, flags, pagep, fsdata);
2782         }
2783         *fsdata = (void *)0;
2784
2785         trace_mark(ext4_da_write_begin,
2786                    "dev %s ino %lu pos %llu len %u flags %u",
2787                    inode->i_sb->s_id, inode->i_ino,
2788                    (unsigned long long) pos, len, flags);
2789 retry:
2790         /*
2791          * With delayed allocation, we don't log the i_disksize update
2792          * if there is delayed block allocation. But we still need
2793          * to journalling the i_disksize update if writes to the end
2794          * of file which has an already mapped buffer.
2795          */
2796         handle = ext4_journal_start(inode, 1);
2797         if (IS_ERR(handle)) {
2798                 ret = PTR_ERR(handle);
2799                 goto out;
2800         }
2801         /* We cannot recurse into the filesystem as the transaction is already
2802          * started */
2803         flags |= AOP_FLAG_NOFS;
2804
2805         page = grab_cache_page_write_begin(mapping, index, flags);
2806         if (!page) {
2807                 ext4_journal_stop(handle);
2808                 ret = -ENOMEM;
2809                 goto out;
2810         }
2811         *pagep = page;
2812
2813         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2814                                                         ext4_da_get_block_prep);
2815         if (ret < 0) {
2816                 unlock_page(page);
2817                 ext4_journal_stop(handle);
2818                 page_cache_release(page);
2819                 /*
2820                  * block_write_begin may have instantiated a few blocks
2821                  * outside i_size.  Trim these off again. Don't need
2822                  * i_size_read because we hold i_mutex.
2823                  */
2824                 if (pos + len > inode->i_size)
2825                         vmtruncate(inode, inode->i_size);
2826         }
2827
2828         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2829                 goto retry;
2830 out:
2831         return ret;
2832 }
2833
2834 /*
2835  * Check if we should update i_disksize
2836  * when write to the end of file but not require block allocation
2837  */
2838 static int ext4_da_should_update_i_disksize(struct page *page,
2839                                          unsigned long offset)
2840 {
2841         struct buffer_head *bh;
2842         struct inode *inode = page->mapping->host;
2843         unsigned int idx;
2844         int i;
2845
2846         bh = page_buffers(page);
2847         idx = offset >> inode->i_blkbits;
2848
2849         for (i = 0; i < idx; i++)
2850                 bh = bh->b_this_page;
2851
2852         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2853                 return 0;
2854         return 1;
2855 }
2856
2857 static int ext4_da_write_end(struct file *file,
2858                                 struct address_space *mapping,
2859                                 loff_t pos, unsigned len, unsigned copied,
2860                                 struct page *page, void *fsdata)
2861 {
2862         struct inode *inode = mapping->host;
2863         int ret = 0, ret2;
2864         handle_t *handle = ext4_journal_current_handle();
2865         loff_t new_i_size;
2866         unsigned long start, end;
2867         int write_mode = (int)(unsigned long)fsdata;
2868
2869         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2870                 if (ext4_should_order_data(inode)) {
2871                         return ext4_ordered_write_end(file, mapping, pos,
2872                                         len, copied, page, fsdata);
2873                 } else if (ext4_should_writeback_data(inode)) {
2874                         return ext4_writeback_write_end(file, mapping, pos,
2875                                         len, copied, page, fsdata);
2876                 } else {
2877                         BUG();
2878                 }
2879         }
2880
2881         trace_mark(ext4_da_write_end,
2882                    "dev %s ino %lu pos %llu len %u copied %u",
2883                    inode->i_sb->s_id, inode->i_ino,
2884                    (unsigned long long) pos, len, copied);
2885         start = pos & (PAGE_CACHE_SIZE - 1);
2886         end = start + copied - 1;
2887
2888         /*
2889          * generic_write_end() will run mark_inode_dirty() if i_size
2890          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2891          * into that.
2892          */
2893
2894         new_i_size = pos + copied;
2895         if (new_i_size > EXT4_I(inode)->i_disksize) {
2896                 if (ext4_da_should_update_i_disksize(page, end)) {
2897                         down_write(&EXT4_I(inode)->i_data_sem);
2898                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2899                                 /*
2900                                  * Updating i_disksize when extending file
2901                                  * without needing block allocation
2902                                  */
2903                                 if (ext4_should_order_data(inode))
2904                                         ret = ext4_jbd2_file_inode(handle,
2905                                                                    inode);
2906
2907                                 EXT4_I(inode)->i_disksize = new_i_size;
2908                         }
2909                         up_write(&EXT4_I(inode)->i_data_sem);
2910                         /* We need to mark inode dirty even if
2911                          * new_i_size is less that inode->i_size
2912                          * bu greater than i_disksize.(hint delalloc)
2913                          */
2914                         ext4_mark_inode_dirty(handle, inode);
2915                 }
2916         }
2917         ret2 = generic_write_end(file, mapping, pos, len, copied,
2918                                                         page, fsdata);
2919         copied = ret2;
2920         if (ret2 < 0)
2921                 ret = ret2;
2922         ret2 = ext4_journal_stop(handle);
2923         if (!ret)
2924                 ret = ret2;
2925
2926         return ret ? ret : copied;
2927 }
2928
2929 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2930 {
2931         /*
2932          * Drop reserved blocks
2933          */
2934         BUG_ON(!PageLocked(page));
2935         if (!page_has_buffers(page))
2936                 goto out;
2937
2938         ext4_da_page_release_reservation(page, offset);
2939
2940 out:
2941         ext4_invalidatepage(page, offset);
2942
2943         return;
2944 }
2945
2946 /*
2947  * Force all delayed allocation blocks to be allocated for a given inode.
2948  */
2949 int ext4_alloc_da_blocks(struct inode *inode)
2950 {
2951         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2952             !EXT4_I(inode)->i_reserved_meta_blocks)
2953                 return 0;
2954
2955         /*
2956          * We do something simple for now.  The filemap_flush() will
2957          * also start triggering a write of the data blocks, which is
2958          * not strictly speaking necessary (and for users of
2959          * laptop_mode, not even desirable).  However, to do otherwise
2960          * would require replicating code paths in:
2961          * 
2962          * ext4_da_writepages() ->
2963          *    write_cache_pages() ---> (via passed in callback function)
2964          *        __mpage_da_writepage() -->
2965          *           mpage_add_bh_to_extent()
2966          *           mpage_da_map_blocks()
2967          *
2968          * The problem is that write_cache_pages(), located in
2969          * mm/page-writeback.c, marks pages clean in preparation for
2970          * doing I/O, which is not desirable if we're not planning on
2971          * doing I/O at all.
2972          *
2973          * We could call write_cache_pages(), and then redirty all of
2974          * the pages by calling redirty_page_for_writeback() but that
2975          * would be ugly in the extreme.  So instead we would need to
2976          * replicate parts of the code in the above functions,
2977          * simplifying them becuase we wouldn't actually intend to
2978          * write out the pages, but rather only collect contiguous
2979          * logical block extents, call the multi-block allocator, and
2980          * then update the buffer heads with the block allocations.
2981          * 
2982          * For now, though, we'll cheat by calling filemap_flush(),
2983          * which will map the blocks, and start the I/O, but not
2984          * actually wait for the I/O to complete.
2985          */
2986         return filemap_flush(inode->i_mapping);
2987 }
2988
2989 /*
2990  * bmap() is special.  It gets used by applications such as lilo and by
2991  * the swapper to find the on-disk block of a specific piece of data.
2992  *
2993  * Naturally, this is dangerous if the block concerned is still in the
2994  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2995  * filesystem and enables swap, then they may get a nasty shock when the
2996  * data getting swapped to that swapfile suddenly gets overwritten by
2997  * the original zero's written out previously to the journal and
2998  * awaiting writeback in the kernel's buffer cache.
2999  *
3000  * So, if we see any bmap calls here on a modified, data-journaled file,
3001  * take extra steps to flush any blocks which might be in the cache.
3002  */
3003 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3004 {
3005         struct inode *inode = mapping->host;
3006         journal_t *journal;
3007         int err;
3008
3009         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3010                         test_opt(inode->i_sb, DELALLOC)) {
3011                 /*
3012                  * With delalloc we want to sync the file
3013                  * so that we can make sure we allocate
3014                  * blocks for file
3015                  */
3016                 filemap_write_and_wait(mapping);
3017         }
3018
3019         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3020                 /*
3021                  * This is a REALLY heavyweight approach, but the use of
3022                  * bmap on dirty files is expected to be extremely rare:
3023                  * only if we run lilo or swapon on a freshly made file
3024                  * do we expect this to happen.
3025                  *
3026                  * (bmap requires CAP_SYS_RAWIO so this does not
3027                  * represent an unprivileged user DOS attack --- we'd be
3028                  * in trouble if mortal users could trigger this path at
3029                  * will.)
3030                  *
3031                  * NB. EXT4_STATE_JDATA is not set on files other than
3032                  * regular files.  If somebody wants to bmap a directory
3033                  * or symlink and gets confused because the buffer
3034                  * hasn't yet been flushed to disk, they deserve
3035                  * everything they get.
3036                  */
3037
3038                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3039                 journal = EXT4_JOURNAL(inode);
3040                 jbd2_journal_lock_updates(journal);
3041                 err = jbd2_journal_flush(journal);
3042                 jbd2_journal_unlock_updates(journal);
3043
3044                 if (err)
3045                         return 0;
3046         }
3047
3048         return generic_block_bmap(mapping, block, ext4_get_block);
3049 }
3050
3051 static int bget_one(handle_t *handle, struct buffer_head *bh)
3052 {
3053         get_bh(bh);
3054         return 0;
3055 }
3056
3057 static int bput_one(handle_t *handle, struct buffer_head *bh)
3058 {
3059         put_bh(bh);
3060         return 0;
3061 }
3062
3063 /*
3064  * Note that we don't need to start a transaction unless we're journaling data
3065  * because we should have holes filled from ext4_page_mkwrite(). We even don't
3066  * need to file the inode to the transaction's list in ordered mode because if
3067  * we are writing back data added by write(), the inode is already there and if
3068  * we are writing back data modified via mmap(), noone guarantees in which
3069  * transaction the data will hit the disk. In case we are journaling data, we
3070  * cannot start transaction directly because transaction start ranks above page
3071  * lock so we have to do some magic.
3072  *
3073  * In all journaling modes block_write_full_page() will start the I/O.
3074  *
3075  * Problem:
3076  *
3077  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3078  *              ext4_writepage()
3079  *
3080  * Similar for:
3081  *
3082  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3083  *
3084  * Same applies to ext4_get_block().  We will deadlock on various things like
3085  * lock_journal and i_data_sem
3086  *
3087  * Setting PF_MEMALLOC here doesn't work - too many internal memory
3088  * allocations fail.
3089  *
3090  * 16May01: If we're reentered then journal_current_handle() will be
3091  *          non-zero. We simply *return*.
3092  *
3093  * 1 July 2001: @@@ FIXME:
3094  *   In journalled data mode, a data buffer may be metadata against the
3095  *   current transaction.  But the same file is part of a shared mapping
3096  *   and someone does a writepage() on it.
3097  *
3098  *   We will move the buffer onto the async_data list, but *after* it has
3099  *   been dirtied. So there's a small window where we have dirty data on
3100  *   BJ_Metadata.
3101  *
3102  *   Note that this only applies to the last partial page in the file.  The
3103  *   bit which block_write_full_page() uses prepare/commit for.  (That's
3104  *   broken code anyway: it's wrong for msync()).
3105  *
3106  *   It's a rare case: affects the final partial page, for journalled data
3107  *   where the file is subject to bith write() and writepage() in the same
3108  *   transction.  To fix it we'll need a custom block_write_full_page().
3109  *   We'll probably need that anyway for journalling writepage() output.
3110  *
3111  * We don't honour synchronous mounts for writepage().  That would be
3112  * disastrous.  Any write() or metadata operation will sync the fs for
3113  * us.
3114  *
3115  */
3116 static int __ext4_normal_writepage(struct page *page,
3117                                 struct writeback_control *wbc)
3118 {
3119         struct inode *inode = page->mapping->host;
3120
3121         if (test_opt(inode->i_sb, NOBH))
3122                 return nobh_writepage(page,
3123                                         ext4_normal_get_block_write, wbc);
3124         else
3125                 return block_write_full_page(page,
3126                                                 ext4_normal_get_block_write,
3127                                                 wbc);
3128 }
3129
3130 static int ext4_normal_writepage(struct page *page,
3131                                 struct writeback_control *wbc)
3132 {
3133         struct inode *inode = page->mapping->host;
3134         loff_t size = i_size_read(inode);
3135         loff_t len;
3136
3137         trace_mark(ext4_normal_writepage,
3138                    "dev %s ino %lu page_index %lu",
3139                    inode->i_sb->s_id, inode->i_ino, page->index);
3140         J_ASSERT(PageLocked(page));
3141         if (page->index == size >> PAGE_CACHE_SHIFT)
3142                 len = size & ~PAGE_CACHE_MASK;
3143         else
3144                 len = PAGE_CACHE_SIZE;
3145
3146         if (page_has_buffers(page)) {
3147                 /* if page has buffers it should all be mapped
3148                  * and allocated. If there are not buffers attached
3149                  * to the page we know the page is dirty but it lost
3150                  * buffers. That means that at some moment in time
3151                  * after write_begin() / write_end() has been called
3152                  * all buffers have been clean and thus they must have been
3153                  * written at least once. So they are all mapped and we can
3154                  * happily proceed with mapping them and writing the page.
3155                  */
3156                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3157                                         ext4_bh_unmapped_or_delay));
3158         }
3159
3160         if (!ext4_journal_current_handle())
3161                 return __ext4_normal_writepage(page, wbc);
3162
3163         redirty_page_for_writepage(wbc, page);
3164         unlock_page(page);
3165         return 0;
3166 }
3167
3168 static int __ext4_journalled_writepage(struct page *page,
3169                                 struct writeback_control *wbc)
3170 {
3171         struct address_space *mapping = page->mapping;
3172         struct inode *inode = mapping->host;
3173         struct buffer_head *page_bufs;
3174         handle_t *handle = NULL;
3175         int ret = 0;
3176         int err;
3177
3178         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3179                                         ext4_normal_get_block_write);
3180         if (ret != 0)
3181                 goto out_unlock;
3182
3183         page_bufs = page_buffers(page);
3184         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3185                                                                 bget_one);
3186         /* As soon as we unlock the page, it can go away, but we have
3187          * references to buffers so we are safe */
3188         unlock_page(page);
3189
3190         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3191         if (IS_ERR(handle)) {
3192                 ret = PTR_ERR(handle);
3193                 goto out;
3194         }
3195
3196         ret = walk_page_buffers(handle, page_bufs, 0,
3197                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3198
3199         err = walk_page_buffers(handle, page_bufs, 0,
3200                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
3201         if (ret == 0)
3202                 ret = err;
3203         err = ext4_journal_stop(handle);
3204         if (!ret)
3205                 ret = err;
3206
3207         walk_page_buffers(handle, page_bufs, 0,
3208                                 PAGE_CACHE_SIZE, NULL, bput_one);
3209         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3210         goto out;
3211
3212 out_unlock:
3213         unlock_page(page);
3214 out:
3215         return ret;
3216 }
3217
3218 static int ext4_journalled_writepage(struct page *page,
3219                                 struct writeback_control *wbc)
3220 {
3221         struct inode *inode = page->mapping->host;
3222         loff_t size = i_size_read(inode);
3223         loff_t len;
3224
3225         trace_mark(ext4_journalled_writepage,
3226                    "dev %s ino %lu page_index %lu",
3227                    inode->i_sb->s_id, inode->i_ino, page->index);
3228         J_ASSERT(PageLocked(page));
3229         if (page->index == size >> PAGE_CACHE_SHIFT)
3230                 len = size & ~PAGE_CACHE_MASK;
3231         else
3232                 len = PAGE_CACHE_SIZE;
3233
3234         if (page_has_buffers(page)) {
3235                 /* if page has buffers it should all be mapped
3236                  * and allocated. If there are not buffers attached
3237                  * to the page we know the page is dirty but it lost
3238                  * buffers. That means that at some moment in time
3239                  * after write_begin() / write_end() has been called
3240                  * all buffers have been clean and thus they must have been
3241                  * written at least once. So they are all mapped and we can
3242                  * happily proceed with mapping them and writing the page.
3243                  */
3244                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3245                                         ext4_bh_unmapped_or_delay));
3246         }
3247
3248         if (ext4_journal_current_handle())
3249                 goto no_write;
3250
3251         if (PageChecked(page)) {
3252                 /*
3253                  * It's mmapped pagecache.  Add buffers and journal it.  There
3254                  * doesn't seem much point in redirtying the page here.
3255                  */
3256                 ClearPageChecked(page);
3257                 return __ext4_journalled_writepage(page, wbc);
3258         } else {
3259                 /*
3260                  * It may be a page full of checkpoint-mode buffers.  We don't
3261                  * really know unless we go poke around in the buffer_heads.
3262                  * But block_write_full_page will do the right thing.
3263                  */
3264                 return block_write_full_page(page,
3265                                                 ext4_normal_get_block_write,
3266                                                 wbc);
3267         }
3268 no_write:
3269         redirty_page_for_writepage(wbc, page);
3270         unlock_page(page);
3271         return 0;
3272 }
3273
3274 static int ext4_readpage(struct file *file, struct page *page)
3275 {
3276         return mpage_readpage(page, ext4_get_block);
3277 }
3278
3279 static int
3280 ext4_readpages(struct file *file, struct address_space *mapping,
3281                 struct list_head *pages, unsigned nr_pages)
3282 {
3283         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3284 }
3285
3286 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3287 {
3288         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3289
3290         /*
3291          * If it's a full truncate we just forget about the pending dirtying
3292          */
3293         if (offset == 0)
3294                 ClearPageChecked(page);
3295
3296         if (journal)
3297                 jbd2_journal_invalidatepage(journal, page, offset);
3298         else
3299                 block_invalidatepage(page, offset);
3300 }
3301
3302 static int ext4_releasepage(struct page *page, gfp_t wait)
3303 {
3304         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3305
3306         WARN_ON(PageChecked(page));
3307         if (!page_has_buffers(page))
3308                 return 0;
3309         if (journal)
3310                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3311         else
3312                 return try_to_free_buffers(page);
3313 }
3314
3315 /*
3316  * If the O_DIRECT write will extend the file then add this inode to the
3317  * orphan list.  So recovery will truncate it back to the original size
3318  * if the machine crashes during the write.
3319  *
3320  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3321  * crashes then stale disk data _may_ be exposed inside the file. But current
3322  * VFS code falls back into buffered path in that case so we are safe.
3323  */
3324 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3325                         const struct iovec *iov, loff_t offset,
3326                         unsigned long nr_segs)
3327 {
3328         struct file *file = iocb->ki_filp;
3329         struct inode *inode = file->f_mapping->host;
3330         struct ext4_inode_info *ei = EXT4_I(inode);
3331         handle_t *handle;
3332         ssize_t ret;
3333         int orphan = 0;
3334         size_t count = iov_length(iov, nr_segs);
3335
3336         if (rw == WRITE) {
3337                 loff_t final_size = offset + count;
3338
3339                 if (final_size > inode->i_size) {
3340                         /* Credits for sb + inode write */
3341                         handle = ext4_journal_start(inode, 2);
3342                         if (IS_ERR(handle)) {
3343                                 ret = PTR_ERR(handle);
3344                                 goto out;
3345                         }
3346                         ret = ext4_orphan_add(handle, inode);
3347                         if (ret) {
3348                                 ext4_journal_stop(handle);
3349                                 goto out;
3350                         }
3351                         orphan = 1;
3352                         ei->i_disksize = inode->i_size;
3353                         ext4_journal_stop(handle);
3354                 }
3355         }
3356
3357         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3358                                  offset, nr_segs,
3359                                  ext4_get_block, NULL);
3360
3361         if (orphan) {
3362                 int err;
3363
3364                 /* Credits for sb + inode write */
3365                 handle = ext4_journal_start(inode, 2);
3366                 if (IS_ERR(handle)) {
3367                         /* This is really bad luck. We've written the data
3368                          * but cannot extend i_size. Bail out and pretend
3369                          * the write failed... */
3370                         ret = PTR_ERR(handle);
3371                         goto out;
3372                 }
3373                 if (inode->i_nlink)
3374                         ext4_orphan_del(handle, inode);
3375                 if (ret > 0) {
3376                         loff_t end = offset + ret;
3377                         if (end > inode->i_size) {
3378                                 ei->i_disksize = end;
3379                                 i_size_write(inode, end);
3380                                 /*
3381                                  * We're going to return a positive `ret'
3382                                  * here due to non-zero-length I/O, so there's
3383                                  * no way of reporting error returns from
3384                                  * ext4_mark_inode_dirty() to userspace.  So
3385                                  * ignore it.
3386                                  */
3387                                 ext4_mark_inode_dirty(handle, inode);
3388                         }
3389                 }
3390                 err = ext4_journal_stop(handle);
3391                 if (ret == 0)
3392                         ret = err;
3393         }
3394 out:
3395         return ret;
3396 }
3397
3398 /*
3399  * Pages can be marked dirty completely asynchronously from ext4's journalling
3400  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3401  * much here because ->set_page_dirty is called under VFS locks.  The page is
3402  * not necessarily locked.
3403  *
3404  * We cannot just dirty the page and leave attached buffers clean, because the
3405  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3406  * or jbddirty because all the journalling code will explode.
3407  *
3408  * So what we do is to mark the page "pending dirty" and next time writepage
3409  * is called, propagate that into the buffers appropriately.
3410  */
3411 static int ext4_journalled_set_page_dirty(struct page *page)
3412 {
3413         SetPageChecked(page);
3414         return __set_page_dirty_nobuffers(page);
3415 }
3416
3417 static const struct address_space_operations ext4_ordered_aops = {
3418         .readpage               = ext4_readpage,
3419         .readpages              = ext4_readpages,
3420         .writepage              = ext4_normal_writepage,
3421         .sync_page              = block_sync_page,
3422         .write_begin            = ext4_write_begin,
3423         .write_end              = ext4_ordered_write_end,
3424         .bmap                   = ext4_bmap,
3425         .invalidatepage         = ext4_invalidatepage,
3426         .releasepage            = ext4_releasepage,
3427         .direct_IO              = ext4_direct_IO,
3428         .migratepage            = buffer_migrate_page,
3429         .is_partially_uptodate  = block_is_partially_uptodate,
3430 };
3431
3432 static const struct address_space_operations ext4_writeback_aops = {
3433         .readpage               = ext4_readpage,
3434         .readpages              = ext4_readpages,
3435         .writepage              = ext4_normal_writepage,
3436         .sync_page              = block_sync_page,
3437         .write_begin            = ext4_write_begin,
3438         .write_end              = ext4_writeback_write_end,
3439         .bmap                   = ext4_bmap,
3440         .invalidatepage         = ext4_invalidatepage,
3441         .releasepage            = ext4_releasepage,
3442         .direct_IO              = ext4_direct_IO,
3443         .migratepage            = buffer_migrate_page,
3444         .is_partially_uptodate  = block_is_partially_uptodate,
3445 };
3446
3447 static const struct address_space_operations ext4_journalled_aops = {
3448         .readpage               = ext4_readpage,
3449         .readpages              = ext4_readpages,
3450         .writepage              = ext4_journalled_writepage,
3451         .sync_page              = block_sync_page,
3452         .write_begin            = ext4_write_begin,
3453         .write_end              = ext4_journalled_write_end,
3454         .set_page_dirty         = ext4_journalled_set_page_dirty,
3455         .bmap                   = ext4_bmap,
3456         .invalidatepage         = ext4_invalidatepage,
3457         .releasepage            = ext4_releasepage,
3458         .is_partially_uptodate  = block_is_partially_uptodate,
3459 };
3460
3461 static const struct address_space_operations ext4_da_aops = {
3462         .readpage               = ext4_readpage,
3463         .readpages              = ext4_readpages,
3464         .writepage              = ext4_da_writepage,
3465         .writepages             = ext4_da_writepages,
3466         .sync_page              = block_sync_page,
3467         .write_begin            = ext4_da_write_begin,
3468         .write_end              = ext4_da_write_end,
3469         .bmap                   = ext4_bmap,
3470         .invalidatepage         = ext4_da_invalidatepage,
3471         .releasepage            = ext4_releasepage,
3472         .direct_IO              = ext4_direct_IO,
3473         .migratepage            = buffer_migrate_page,
3474         .is_partially_uptodate  = block_is_partially_uptodate,
3475 };
3476
3477 void ext4_set_aops(struct inode *inode)
3478 {
3479         if (ext4_should_order_data(inode) &&
3480                 test_opt(inode->i_sb, DELALLOC))
3481                 inode->i_mapping->a_ops = &ext4_da_aops;
3482         else if (ext4_should_order_data(inode))
3483                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3484         else if (ext4_should_writeback_data(inode) &&
3485                  test_opt(inode->i_sb, DELALLOC))
3486                 inode->i_mapping->a_ops = &ext4_da_aops;
3487         else if (ext4_should_writeback_data(inode))
3488                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3489         else
3490                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3491 }
3492
3493 /*
3494  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3495  * up to the end of the block which corresponds to `from'.
3496  * This required during truncate. We need to physically zero the tail end
3497  * of that block so it doesn't yield old data if the file is later grown.
3498  */
3499 int ext4_block_truncate_page(handle_t *handle,
3500                 struct address_space *mapping, loff_t from)
3501 {
3502         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3503         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3504         unsigned blocksize, length, pos;
3505         ext4_lblk_t iblock;
3506         struct inode *inode = mapping->host;
3507         struct buffer_head *bh;
3508         struct page *page;
3509         int err = 0;
3510
3511         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3512         if (!page)
3513                 return -EINVAL;
3514
3515         blocksize = inode->i_sb->s_blocksize;
3516         length = blocksize - (offset & (blocksize - 1));
3517         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3518
3519         /*
3520          * For "nobh" option,  we can only work if we don't need to
3521          * read-in the page - otherwise we create buffers to do the IO.
3522          */
3523         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3524              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3525                 zero_user(page, offset, length);
3526                 set_page_dirty(page);
3527                 goto unlock;
3528         }
3529
3530         if (!page_has_buffers(page))
3531                 create_empty_buffers(page, blocksize, 0);
3532
3533         /* Find the buffer that contains "offset" */
3534         bh = page_buffers(page);
3535         pos = blocksize;
3536         while (offset >= pos) {
3537                 bh = bh->b_this_page;
3538                 iblock++;
3539                 pos += blocksize;
3540         }
3541
3542         err = 0;
3543         if (buffer_freed(bh)) {
3544                 BUFFER_TRACE(bh, "freed: skip");
3545                 goto unlock;
3546         }
3547
3548         if (!buffer_mapped(bh)) {
3549                 BUFFER_TRACE(bh, "unmapped");
3550                 ext4_get_block(inode, iblock, bh, 0);
3551                 /* unmapped? It's a hole - nothing to do */
3552                 if (!buffer_mapped(bh)) {
3553                         BUFFER_TRACE(bh, "still unmapped");
3554                         goto unlock;
3555                 }
3556         }
3557
3558         /* Ok, it's mapped. Make sure it's up-to-date */
3559         if (PageUptodate(page))
3560                 set_buffer_uptodate(bh);
3561
3562         if (!buffer_uptodate(bh)) {
3563                 err = -EIO;
3564                 ll_rw_block(READ, 1, &bh);
3565                 wait_on_buffer(bh);
3566                 /* Uhhuh. Read error. Complain and punt. */
3567                 if (!buffer_uptodate(bh))
3568                         goto unlock;
3569         }
3570
3571         if (ext4_should_journal_data(inode)) {
3572                 BUFFER_TRACE(bh, "get write access");
3573                 err = ext4_journal_get_write_access(handle, bh);
3574                 if (err)
3575                         goto unlock;
3576         }
3577
3578         zero_user(page, offset, length);
3579
3580         BUFFER_TRACE(bh, "zeroed end of block");
3581
3582         err = 0;
3583         if (ext4_should_journal_data(inode)) {
3584                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3585         } else {
3586                 if (ext4_should_order_data(inode))
3587                         err = ext4_jbd2_file_inode(handle, inode);
3588                 mark_buffer_dirty(bh);
3589         }
3590
3591 unlock:
3592         unlock_page(page);
3593         page_cache_release(page);
3594         return err;
3595 }
3596
3597 /*
3598  * Probably it should be a library function... search for first non-zero word
3599  * or memcmp with zero_page, whatever is better for particular architecture.
3600  * Linus?
3601  */
3602 static inline int all_zeroes(__le32 *p, __le32 *q)
3603 {
3604         while (p < q)
3605                 if (*p++)
3606                         return 0;
3607         return 1;
3608 }
3609
3610 /**
3611  *      ext4_find_shared - find the indirect blocks for partial truncation.
3612  *      @inode:   inode in question
3613  *      @depth:   depth of the affected branch
3614  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3615  *      @chain:   place to store the pointers to partial indirect blocks
3616  *      @top:     place to the (detached) top of branch
3617  *
3618  *      This is a helper function used by ext4_truncate().
3619  *
3620  *      When we do truncate() we may have to clean the ends of several
3621  *      indirect blocks but leave the blocks themselves alive. Block is
3622  *      partially truncated if some data below the new i_size is refered
3623  *      from it (and it is on the path to the first completely truncated
3624  *      data block, indeed).  We have to free the top of that path along
3625  *      with everything to the right of the path. Since no allocation
3626  *      past the truncation point is possible until ext4_truncate()
3627  *      finishes, we may safely do the latter, but top of branch may
3628  *      require special attention - pageout below the truncation point
3629  *      might try to populate it.
3630  *
3631  *      We atomically detach the top of branch from the tree, store the
3632  *      block number of its root in *@top, pointers to buffer_heads of
3633  *      partially truncated blocks - in @chain[].bh and pointers to
3634  *      their last elements that should not be removed - in
3635  *      @chain[].p. Return value is the pointer to last filled element
3636  *      of @chain.
3637  *
3638  *      The work left to caller to do the actual freeing of subtrees:
3639  *              a) free the subtree starting from *@top
3640  *              b) free the subtrees whose roots are stored in
3641  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3642  *              c) free the subtrees growing from the inode past the @chain[0].
3643  *                      (no partially truncated stuff there).  */
3644
3645 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3646                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3647 {
3648         Indirect *partial, *p;
3649         int k, err;
3650
3651         *top = 0;
3652         /* Make k index the deepest non-null offest + 1 */
3653         for (k = depth; k > 1 && !offsets[k-1]; k--)
3654                 ;
3655         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3656         /* Writer: pointers */
3657         if (!partial)
3658                 partial = chain + k-1;
3659         /*
3660          * If the branch acquired continuation since we've looked at it -
3661          * fine, it should all survive and (new) top doesn't belong to us.
3662          */
3663         if (!partial->key && *partial->p)
3664                 /* Writer: end */
3665                 goto no_top;
3666         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3667                 ;
3668         /*
3669          * OK, we've found the last block that must survive. The rest of our
3670          * branch should be detached before unlocking. However, if that rest
3671          * of branch is all ours and does not grow immediately from the inode
3672          * it's easier to cheat and just decrement partial->p.
3673          */
3674         if (p == chain + k - 1 && p > chain) {
3675                 p->p--;
3676         } else {
3677                 *top = *p->p;
3678                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3679 #if 0
3680                 *p->p = 0;
3681 #endif
3682         }
3683         /* Writer: end */
3684
3685         while (partial > p) {
3686                 brelse(partial->bh);
3687                 partial--;
3688         }
3689 no_top:
3690         return partial;
3691 }
3692
3693 /*
3694  * Zero a number of block pointers in either an inode or an indirect block.
3695  * If we restart the transaction we must again get write access to the
3696  * indirect block for further modification.
3697  *
3698  * We release `count' blocks on disk, but (last - first) may be greater
3699  * than `count' because there can be holes in there.
3700  */
3701 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3702                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3703                 unsigned long count, __le32 *first, __le32 *last)
3704 {
3705         __le32 *p;
3706         if (try_to_extend_transaction(handle, inode)) {
3707                 if (bh) {
3708                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3709                         ext4_handle_dirty_metadata(handle, inode, bh);
3710                 }
3711                 ext4_mark_inode_dirty(handle, inode);
3712                 ext4_journal_test_restart(handle, inode);
3713                 if (bh) {
3714                         BUFFER_TRACE(bh, "retaking write access");
3715                         ext4_journal_get_write_access(handle, bh);
3716                 }
3717         }
3718
3719         /*
3720          * Any buffers which are on the journal will be in memory. We find
3721          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3722          * on them.  We've already detached each block from the file, so
3723          * bforget() in jbd2_journal_forget() should be safe.
3724          *
3725          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3726          */
3727         for (p = first; p < last; p++) {
3728                 u32 nr = le32_to_cpu(*p);
3729                 if (nr) {
3730                         struct buffer_head *tbh;
3731
3732                         *p = 0;
3733                         tbh = sb_find_get_block(inode->i_sb, nr);
3734                         ext4_forget(handle, 0, inode, tbh, nr);
3735                 }
3736         }
3737
3738         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3739 }
3740
3741 /**
3742  * ext4_free_data - free a list of data blocks
3743  * @handle:     handle for this transaction
3744  * @inode:      inode we are dealing with
3745  * @this_bh:    indirect buffer_head which contains *@first and *@last
3746  * @first:      array of block numbers
3747  * @last:       points immediately past the end of array
3748  *
3749  * We are freeing all blocks refered from that array (numbers are stored as
3750  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3751  *
3752  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3753  * blocks are contiguous then releasing them at one time will only affect one
3754  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3755  * actually use a lot of journal space.
3756  *
3757  * @this_bh will be %NULL if @first and @last point into the inode's direct
3758  * block pointers.
3759  */
3760 static void ext4_free_data(handle_t *handle, struct inode *inode,
3761                            struct buffer_head *this_bh,
3762                            __le32 *first, __le32 *last)
3763 {
3764         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3765         unsigned long count = 0;            /* Number of blocks in the run */
3766         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3767                                                corresponding to
3768                                                block_to_free */
3769         ext4_fsblk_t nr;                    /* Current block # */
3770         __le32 *p;                          /* Pointer into inode/ind
3771                                                for current block */
3772         int err;
3773
3774         if (this_bh) {                          /* For indirect block */
3775                 BUFFER_TRACE(this_bh, "get_write_access");
3776                 err = ext4_journal_get_write_access(handle, this_bh);
3777                 /* Important: if we can't update the indirect pointers
3778                  * to the blocks, we can't free them. */
3779                 if (err)
3780                         return;
3781         }
3782
3783         for (p = first; p < last; p++) {
3784                 nr = le32_to_cpu(*p);
3785                 if (nr) {
3786                         /* accumulate blocks to free if they're contiguous */
3787                         if (count == 0) {
3788                                 block_to_free = nr;
3789                                 block_to_free_p = p;
3790                                 count = 1;
3791                         } else if (nr == block_to_free + count) {
3792                                 count++;
3793                         } else {
3794                                 ext4_clear_blocks(handle, inode, this_bh,
3795                                                   block_to_free,
3796                                                   count, block_to_free_p, p);
3797                                 block_to_free = nr;
3798                                 block_to_free_p = p;
3799                                 count = 1;
3800                         }
3801                 }
3802         }
3803
3804         if (count > 0)
3805                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3806                                   count, block_to_free_p, p);
3807
3808         if (this_bh) {
3809                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3810
3811                 /*
3812                  * The buffer head should have an attached journal head at this
3813                  * point. However, if the data is corrupted and an indirect
3814                  * block pointed to itself, it would have been detached when
3815                  * the block was cleared. Check for this instead of OOPSing.
3816                  */
3817                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3818                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3819                 else
3820                         ext4_error(inode->i_sb, __func__,
3821                                    "circular indirect block detected, "
3822                                    "inode=%lu, block=%llu",
3823                                    inode->i_ino,
3824                                    (unsigned long long) this_bh->b_blocknr);
3825         }
3826 }
3827
3828 /**
3829  *      ext4_free_branches - free an array of branches
3830  *      @handle: JBD handle for this transaction
3831  *      @inode: inode we are dealing with
3832  *      @parent_bh: the buffer_head which contains *@first and *@last
3833  *      @first: array of block numbers
3834  *      @last:  pointer immediately past the end of array
3835  *      @depth: depth of the branches to free
3836  *
3837  *      We are freeing all blocks refered from these branches (numbers are
3838  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3839  *      appropriately.
3840  */
3841 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3842                                struct buffer_head *parent_bh,
3843                                __le32 *first, __le32 *last, int depth)
3844 {
3845         ext4_fsblk_t nr;
3846         __le32 *p;
3847
3848         if (ext4_handle_is_aborted(handle))
3849                 return;
3850
3851         if (depth--) {
3852                 struct buffer_head *bh;
3853                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3854                 p = last;
3855                 while (--p >= first) {
3856                         nr = le32_to_cpu(*p);
3857                         if (!nr)
3858                                 continue;               /* A hole */
3859
3860                         /* Go read the buffer for the next level down */
3861                         bh = sb_bread(inode->i_sb, nr);
3862
3863                         /*
3864                          * A read failure? Report error and clear slot
3865                          * (should be rare).
3866                          */
3867                         if (!bh) {
3868                                 ext4_error(inode->i_sb, "ext4_free_branches",
3869                                            "Read failure, inode=%lu, block=%llu",
3870                                            inode->i_ino, nr);
3871                                 continue;
3872                         }
3873
3874                         /* This zaps the entire block.  Bottom up. */
3875                         BUFFER_TRACE(bh, "free child branches");
3876                         ext4_free_branches(handle, inode, bh,
3877                                         (__le32 *) bh->b_data,
3878                                         (__le32 *) bh->b_data + addr_per_block,
3879                                         depth);
3880
3881                         /*
3882                          * We've probably journalled the indirect block several
3883                          * times during the truncate.  But it's no longer
3884                          * needed and we now drop it from the transaction via
3885                          * jbd2_journal_revoke().
3886                          *
3887                          * That's easy if it's exclusively part of this
3888                          * transaction.  But if it's part of the committing
3889                          * transaction then jbd2_journal_forget() will simply
3890                          * brelse() it.  That means that if the underlying
3891                          * block is reallocated in ext4_get_block(),
3892                          * unmap_underlying_metadata() will find this block
3893                          * and will try to get rid of it.  damn, damn.
3894                          *
3895                          * If this block has already been committed to the
3896                          * journal, a revoke record will be written.  And
3897                          * revoke records must be emitted *before* clearing
3898                          * this block's bit in the bitmaps.
3899                          */
3900                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3901
3902                         /*
3903                          * Everything below this this pointer has been
3904                          * released.  Now let this top-of-subtree go.
3905                          *
3906                          * We want the freeing of this indirect block to be
3907                          * atomic in the journal with the updating of the
3908                          * bitmap block which owns it.  So make some room in
3909                          * the journal.
3910                          *
3911                          * We zero the parent pointer *after* freeing its
3912                          * pointee in the bitmaps, so if extend_transaction()
3913                          * for some reason fails to put the bitmap changes and
3914                          * the release into the same transaction, recovery
3915                          * will merely complain about releasing a free block,
3916                          * rather than leaking blocks.
3917                          */
3918                         if (ext4_handle_is_aborted(handle))
3919                                 return;
3920                         if (try_to_extend_transaction(handle, inode)) {
3921                                 ext4_mark_inode_dirty(handle, inode);
3922                                 ext4_journal_test_restart(handle, inode);
3923                         }
3924
3925                         ext4_free_blocks(handle, inode, nr, 1, 1);
3926
3927                         if (parent_bh) {
3928                                 /*
3929                                  * The block which we have just freed is
3930                                  * pointed to by an indirect block: journal it
3931                                  */
3932                                 BUFFER_TRACE(parent_bh, "get_write_access");
3933                                 if (!ext4_journal_get_write_access(handle,
3934                                                                    parent_bh)){
3935                                         *p = 0;
3936                                         BUFFER_TRACE(parent_bh,
3937                                         "call ext4_handle_dirty_metadata");
3938                                         ext4_handle_dirty_metadata(handle,
3939                                                                    inode,
3940                                                                    parent_bh);
3941                                 }
3942                         }
3943                 }
3944         } else {
3945                 /* We have reached the bottom of the tree. */
3946                 BUFFER_TRACE(parent_bh, "free data blocks");
3947                 ext4_free_data(handle, inode, parent_bh, first, last);
3948         }
3949 }
3950
3951 int ext4_can_truncate(struct inode *inode)
3952 {
3953         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3954                 return 0;
3955         if (S_ISREG(inode->i_mode))
3956                 return 1;
3957         if (S_ISDIR(inode->i_mode))
3958                 return 1;
3959         if (S_ISLNK(inode->i_mode))
3960                 return !ext4_inode_is_fast_symlink(inode);
3961         return 0;
3962 }
3963
3964 /*
3965  * ext4_truncate()
3966  *
3967  * We block out ext4_get_block() block instantiations across the entire
3968  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3969  * simultaneously on behalf of the same inode.
3970  *
3971  * As we work through the truncate and commmit bits of it to the journal there
3972  * is one core, guiding principle: the file's tree must always be consistent on
3973  * disk.  We must be able to restart the truncate after a crash.
3974  *
3975  * The file's tree may be transiently inconsistent in memory (although it
3976  * probably isn't), but whenever we close off and commit a journal transaction,
3977  * the contents of (the filesystem + the journal) must be consistent and
3978  * restartable.  It's pretty simple, really: bottom up, right to left (although
3979  * left-to-right works OK too).
3980  *
3981  * Note that at recovery time, journal replay occurs *before* the restart of
3982  * truncate against the orphan inode list.
3983  *
3984  * The committed inode has the new, desired i_size (which is the same as
3985  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3986  * that this inode's truncate did not complete and it will again call
3987  * ext4_truncate() to have another go.  So there will be instantiated blocks
3988  * to the right of the truncation point in a crashed ext4 filesystem.  But
3989  * that's fine - as long as they are linked from the inode, the post-crash
3990  * ext4_truncate() run will find them and release them.
3991  */
3992 void ext4_truncate(struct inode *inode)
3993 {
3994         handle_t *handle;
3995         struct ext4_inode_info *ei = EXT4_I(inode);
3996         __le32 *i_data = ei->i_data;
3997         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3998         struct address_space *mapping = inode->i_mapping;
3999         ext4_lblk_t offsets[4];
4000         Indirect chain[4];
4001         Indirect *partial;
4002         __le32 nr = 0;
4003         int n;
4004         ext4_lblk_t last_block;
4005         unsigned blocksize = inode->i_sb->s_blocksize;
4006
4007         if (!ext4_can_truncate(inode))
4008                 return;
4009
4010         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4011                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4012
4013         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4014                 ext4_ext_truncate(inode);
4015                 return;
4016         }
4017
4018         handle = start_transaction(inode);
4019         if (IS_ERR(handle))
4020                 return;         /* AKPM: return what? */
4021
4022         last_block = (inode->i_size + blocksize-1)
4023                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4024
4025         if (inode->i_size & (blocksize - 1))
4026                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4027                         goto out_stop;
4028
4029         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4030         if (n == 0)
4031                 goto out_stop;  /* error */
4032
4033         /*
4034          * OK.  This truncate is going to happen.  We add the inode to the
4035          * orphan list, so that if this truncate spans multiple transactions,
4036          * and we crash, we will resume the truncate when the filesystem
4037          * recovers.  It also marks the inode dirty, to catch the new size.
4038          *
4039          * Implication: the file must always be in a sane, consistent
4040          * truncatable state while each transaction commits.
4041          */
4042         if (ext4_orphan_add(handle, inode))
4043                 goto out_stop;
4044
4045         /*
4046          * From here we block out all ext4_get_block() callers who want to
4047          * modify the block allocation tree.
4048          */
4049         down_write(&ei->i_data_sem);
4050
4051         ext4_discard_preallocations(inode);
4052
4053         /*
4054          * The orphan list entry will now protect us from any crash which
4055          * occurs before the truncate completes, so it is now safe to propagate
4056          * the new, shorter inode size (held for now in i_size) into the
4057          * on-disk inode. We do this via i_disksize, which is the value which
4058          * ext4 *really* writes onto the disk inode.
4059          */
4060         ei->i_disksize = inode->i_size;
4061
4062         if (n == 1) {           /* direct blocks */
4063                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4064                                i_data + EXT4_NDIR_BLOCKS);
4065                 goto do_indirects;
4066         }
4067
4068         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4069         /* Kill the top of shared branch (not detached) */
4070         if (nr) {
4071                 if (partial == chain) {
4072                         /* Shared branch grows from the inode */
4073                         ext4_free_branches(handle, inode, NULL,
4074                                            &nr, &nr+1, (chain+n-1) - partial);
4075                         *partial->p = 0;
4076                         /*
4077                          * We mark the inode dirty prior to restart,
4078                          * and prior to stop.  No need for it here.
4079                          */
4080                 } else {
4081                         /* Shared branch grows from an indirect block */
4082                         BUFFER_TRACE(partial->bh, "get_write_access");
4083                         ext4_free_branches(handle, inode, partial->bh,
4084                                         partial->p,
4085                                         partial->p+1, (chain+n-1) - partial);
4086                 }
4087         }
4088         /* Clear the ends of indirect blocks on the shared branch */
4089         while (partial > chain) {
4090                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4091                                    (__le32*)partial->bh->b_data+addr_per_block,
4092                                    (chain+n-1) - partial);
4093                 BUFFER_TRACE(partial->bh, "call brelse");
4094                 brelse (partial->bh);
4095                 partial--;
4096         }
4097 do_indirects:
4098         /* Kill the remaining (whole) subtrees */
4099         switch (offsets[0]) {
4100         default:
4101                 nr = i_data[EXT4_IND_BLOCK];
4102                 if (nr) {
4103                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4104                         i_data[EXT4_IND_BLOCK] = 0;
4105                 }
4106         case EXT4_IND_BLOCK:
4107                 nr = i_data[EXT4_DIND_BLOCK];
4108                 if (nr) {
4109                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4110                         i_data[EXT4_DIND_BLOCK] = 0;
4111                 }
4112         case EXT4_DIND_BLOCK:
4113                 nr = i_data[EXT4_TIND_BLOCK];
4114                 if (nr) {
4115                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4116                         i_data[EXT4_TIND_BLOCK] = 0;
4117                 }
4118         case EXT4_TIND_BLOCK:
4119                 ;
4120         }
4121
4122         up_write(&ei->i_data_sem);
4123         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4124         ext4_mark_inode_dirty(handle, inode);
4125
4126         /*
4127          * In a multi-transaction truncate, we only make the final transaction
4128          * synchronous
4129          */
4130         if (IS_SYNC(inode))
4131                 ext4_handle_sync(handle);
4132 out_stop:
4133         /*
4134          * If this was a simple ftruncate(), and the file will remain alive
4135          * then we need to clear up the orphan record which we created above.
4136          * However, if this was a real unlink then we were called by
4137          * ext4_delete_inode(), and we allow that function to clean up the
4138          * orphan info for us.
4139          */
4140         if (inode->i_nlink)
4141                 ext4_orphan_del(handle, inode);
4142
4143         ext4_journal_stop(handle);
4144 }
4145
4146 /*
4147  * ext4_get_inode_loc returns with an extra refcount against the inode's
4148  * underlying buffer_head on success. If 'in_mem' is true, we have all
4149  * data in memory that is needed to recreate the on-disk version of this
4150  * inode.
4151  */
4152 static int __ext4_get_inode_loc(struct inode *inode,
4153                                 struct ext4_iloc *iloc, int in_mem)
4154 {
4155         struct ext4_group_desc  *gdp;
4156         struct buffer_head      *bh;
4157         struct super_block      *sb = inode->i_sb;
4158         ext4_fsblk_t            block;
4159         int                     inodes_per_block, inode_offset;
4160
4161         iloc->bh = NULL;
4162         if (!ext4_valid_inum(sb, inode->i_ino))
4163                 return -EIO;
4164
4165         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4166         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4167         if (!gdp)
4168                 return -EIO;
4169
4170         /*
4171          * Figure out the offset within the block group inode table
4172          */
4173         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4174         inode_offset = ((inode->i_ino - 1) %
4175                         EXT4_INODES_PER_GROUP(sb));
4176         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4177         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4178
4179         bh = sb_getblk(sb, block);
4180         if (!bh) {
4181                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4182                            "inode block - inode=%lu, block=%llu",
4183                            inode->i_ino, block);
4184                 return -EIO;
4185         }
4186         if (!buffer_uptodate(bh)) {
4187                 lock_buffer(bh);
4188
4189                 /*
4190                  * If the buffer has the write error flag, we have failed
4191                  * to write out another inode in the same block.  In this
4192                  * case, we don't have to read the block because we may
4193                  * read the old inode data successfully.
4194                  */
4195                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4196                         set_buffer_uptodate(bh);
4197
4198                 if (buffer_uptodate(bh)) {
4199                         /* someone brought it uptodate while we waited */
4200                         unlock_buffer(bh);
4201                         goto has_buffer;
4202                 }
4203
4204                 /*
4205                  * If we have all information of the inode in memory and this
4206                  * is the only valid inode in the block, we need not read the
4207                  * block.
4208                  */
4209                 if (in_mem) {
4210                         struct buffer_head *bitmap_bh;
4211                         int i, start;
4212
4213                         start = inode_offset & ~(inodes_per_block - 1);
4214
4215                         /* Is the inode bitmap in cache? */
4216                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4217                         if (!bitmap_bh)
4218                                 goto make_io;
4219
4220                         /*
4221                          * If the inode bitmap isn't in cache then the
4222                          * optimisation may end up performing two reads instead
4223                          * of one, so skip it.
4224                          */
4225                         if (!buffer_uptodate(bitmap_bh)) {
4226                                 brelse(bitmap_bh);
4227                                 goto make_io;
4228                         }
4229                         for (i = start; i < start + inodes_per_block; i++) {
4230                                 if (i == inode_offset)
4231                                         continue;
4232                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4233                                         break;
4234                         }
4235                         brelse(bitmap_bh);
4236                         if (i == start + inodes_per_block) {
4237                                 /* all other inodes are free, so skip I/O */
4238                                 memset(bh->b_data, 0, bh->b_size);
4239                                 set_buffer_uptodate(bh);
4240                                 unlock_buffer(bh);
4241                                 goto has_buffer;
4242                         }
4243                 }
4244
4245 make_io:
4246                 /*
4247                  * If we need to do any I/O, try to pre-readahead extra
4248                  * blocks from the inode table.
4249                  */
4250                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4251                         ext4_fsblk_t b, end, table;
4252                         unsigned num;
4253
4254                         table = ext4_inode_table(sb, gdp);
4255                         /* s_inode_readahead_blks is always a power of 2 */
4256                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4257                         if (table > b)
4258                                 b = table;
4259                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4260                         num = EXT4_INODES_PER_GROUP(sb);
4261                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4262                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4263                                 num -= ext4_itable_unused_count(sb, gdp);
4264                         table += num / inodes_per_block;
4265                         if (end > table)
4266                                 end = table;
4267                         while (b <= end)
4268                                 sb_breadahead(sb, b++);
4269                 }
4270
4271                 /*
4272                  * There are other valid inodes in the buffer, this inode
4273                  * has in-inode xattrs, or we don't have this inode in memory.
4274                  * Read the block from disk.
4275                  */
4276                 get_bh(bh);
4277                 bh->b_end_io = end_buffer_read_sync;
4278                 submit_bh(READ_META, bh);
4279                 wait_on_buffer(bh);
4280                 if (!buffer_uptodate(bh)) {
4281                         ext4_error(sb, __func__,
4282                                    "unable to read inode block - inode=%lu, "
4283                                    "block=%llu", inode->i_ino, block);
4284                         brelse(bh);
4285                         return -EIO;
4286                 }
4287         }
4288 has_buffer:
4289         iloc->bh = bh;
4290         return 0;
4291 }
4292
4293 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4294 {
4295         /* We have all inode data except xattrs in memory here. */
4296         return __ext4_get_inode_loc(inode, iloc,
4297                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4298 }
4299
4300 void ext4_set_inode_flags(struct inode *inode)
4301 {
4302         unsigned int flags = EXT4_I(inode)->i_flags;
4303
4304         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4305         if (flags & EXT4_SYNC_FL)
4306                 inode->i_flags |= S_SYNC;
4307         if (flags & EXT4_APPEND_FL)
4308                 inode->i_flags |= S_APPEND;
4309         if (flags & EXT4_IMMUTABLE_FL)
4310                 inode->i_flags |= S_IMMUTABLE;
4311         if (flags & EXT4_NOATIME_FL)
4312                 inode->i_flags |= S_NOATIME;
4313         if (flags & EXT4_DIRSYNC_FL)
4314                 inode->i_flags |= S_DIRSYNC;
4315 }
4316
4317 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4318 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4319 {
4320         unsigned int flags = ei->vfs_inode.i_flags;
4321
4322         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4323                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4324         if (flags & S_SYNC)
4325                 ei->i_flags |= EXT4_SYNC_FL;
4326         if (flags & S_APPEND)
4327                 ei->i_flags |= EXT4_APPEND_FL;
4328         if (flags & S_IMMUTABLE)
4329                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4330         if (flags & S_NOATIME)
4331                 ei->i_flags |= EXT4_NOATIME_FL;
4332         if (flags & S_DIRSYNC)
4333                 ei->i_flags |= EXT4_DIRSYNC_FL;
4334 }
4335 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4336                                         struct ext4_inode_info *ei)
4337 {
4338         blkcnt_t i_blocks ;
4339         struct inode *inode = &(ei->vfs_inode);
4340         struct super_block *sb = inode->i_sb;
4341
4342         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4343                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4344                 /* we are using combined 48 bit field */
4345                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4346                                         le32_to_cpu(raw_inode->i_blocks_lo);
4347                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4348                         /* i_blocks represent file system block size */
4349                         return i_blocks  << (inode->i_blkbits - 9);
4350                 } else {
4351                         return i_blocks;
4352                 }
4353         } else {
4354                 return le32_to_cpu(raw_inode->i_blocks_lo);
4355         }
4356 }
4357
4358 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4359 {
4360         struct ext4_iloc iloc;
4361         struct ext4_inode *raw_inode;
4362         struct ext4_inode_info *ei;
4363         struct buffer_head *bh;
4364         struct inode *inode;
4365         long ret;
4366         int block;
4367
4368         inode = iget_locked(sb, ino);
4369         if (!inode)
4370                 return ERR_PTR(-ENOMEM);
4371         if (!(inode->i_state & I_NEW))
4372                 return inode;
4373
4374         ei = EXT4_I(inode);
4375 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4376         ei->i_acl = EXT4_ACL_NOT_CACHED;
4377         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4378 #endif
4379
4380         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4381         if (ret < 0)
4382                 goto bad_inode;
4383         bh = iloc.bh;
4384         raw_inode = ext4_raw_inode(&iloc);
4385         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4386         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4387         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4388         if (!(test_opt(inode->i_sb, NO_UID32))) {
4389                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4390                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4391         }
4392         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4393
4394         ei->i_state = 0;
4395         ei->i_dir_start_lookup = 0;
4396         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4397         /* We now have enough fields to check if the inode was active or not.
4398          * This is needed because nfsd might try to access dead inodes
4399          * the test is that same one that e2fsck uses
4400          * NeilBrown 1999oct15
4401          */
4402         if (inode->i_nlink == 0) {
4403                 if (inode->i_mode == 0 ||
4404                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4405                         /* this inode is deleted */
4406                         brelse(bh);
4407                         ret = -ESTALE;
4408                         goto bad_inode;
4409                 }
4410                 /* The only unlinked inodes we let through here have
4411                  * valid i_mode and are being read by the orphan
4412                  * recovery code: that's fine, we're about to complete
4413                  * the process of deleting those. */
4414         }
4415         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4416         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4417         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4418         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4419                 ei->i_file_acl |=
4420                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4421         inode->i_size = ext4_isize(raw_inode);
4422         ei->i_disksize = inode->i_size;
4423         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4424         ei->i_block_group = iloc.block_group;
4425         ei->i_last_alloc_group = ~0;
4426         /*
4427          * NOTE! The in-memory inode i_data array is in little-endian order
4428          * even on big-endian machines: we do NOT byteswap the block numbers!
4429          */
4430         for (block = 0; block < EXT4_N_BLOCKS; block++)
4431                 ei->i_data[block] = raw_inode->i_block[block];
4432         INIT_LIST_HEAD(&ei->i_orphan);
4433
4434         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4435                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4436                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4437                     EXT4_INODE_SIZE(inode->i_sb)) {
4438                         brelse(bh);
4439                         ret = -EIO;
4440                         goto bad_inode;
4441                 }
4442                 if (ei->i_extra_isize == 0) {
4443                         /* The extra space is currently unused. Use it. */
4444                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4445                                             EXT4_GOOD_OLD_INODE_SIZE;
4446                 } else {
4447                         __le32 *magic = (void *)raw_inode +
4448                                         EXT4_GOOD_OLD_INODE_SIZE +
4449                                         ei->i_extra_isize;
4450                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4451                                  ei->i_state |= EXT4_STATE_XATTR;
4452                 }
4453         } else
4454                 ei->i_extra_isize = 0;
4455
4456         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4457         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4458         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4459         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4460
4461         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4462         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4463                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4464                         inode->i_version |=
4465                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4466         }
4467
4468         ret = 0;
4469         if (ei->i_file_acl &&
4470             ((ei->i_file_acl < 
4471               (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4472                EXT4_SB(sb)->s_gdb_count)) ||
4473              (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4474                 ext4_error(sb, __func__,
4475                            "bad extended attribute block %llu in inode #%lu",
4476                            ei->i_file_acl, inode->i_ino);
4477                 ret = -EIO;
4478                 goto bad_inode;
4479         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4480                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4481                     (S_ISLNK(inode->i_mode) &&
4482                      !ext4_inode_is_fast_symlink(inode)))
4483                         /* Validate extent which is part of inode */
4484                         ret = ext4_ext_check_inode(inode);
4485         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4486                    (S_ISLNK(inode->i_mode) &&
4487                     !ext4_inode_is_fast_symlink(inode))) {
4488                 /* Validate block references which are part of inode */
4489                 ret = ext4_check_inode_blockref(inode);
4490         }
4491         if (ret) {
4492                 brelse(bh);
4493                 goto bad_inode;
4494         }
4495
4496         if (S_ISREG(inode->i_mode)) {
4497                 inode->i_op = &ext4_file_inode_operations;
4498                 inode->i_fop = &ext4_file_operations;
4499                 ext4_set_aops(inode);
4500         } else if (S_ISDIR(inode->i_mode)) {
4501                 inode->i_op = &ext4_dir_inode_operations;
4502                 inode->i_fop = &ext4_dir_operations;
4503         } else if (S_ISLNK(inode->i_mode)) {
4504                 if (ext4_inode_is_fast_symlink(inode)) {
4505                         inode->i_op = &ext4_fast_symlink_inode_operations;
4506                         nd_terminate_link(ei->i_data, inode->i_size,
4507                                 sizeof(ei->i_data) - 1);
4508                 } else {
4509                         inode->i_op = &ext4_symlink_inode_operations;
4510                         ext4_set_aops(inode);
4511                 }
4512         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4513               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4514                 inode->i_op = &ext4_special_inode_operations;
4515                 if (raw_inode->i_block[0])
4516                         init_special_inode(inode, inode->i_mode,
4517                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4518                 else
4519                         init_special_inode(inode, inode->i_mode,
4520                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4521         } else {
4522                 brelse(bh);
4523                 ret = -EIO;
4524                 ext4_error(inode->i_sb, __func__, 
4525                            "bogus i_mode (%o) for inode=%lu",
4526                            inode->i_mode, inode->i_ino);
4527                 goto bad_inode;
4528         }
4529         brelse(iloc.bh);
4530         ext4_set_inode_flags(inode);
4531         unlock_new_inode(inode);
4532         return inode;
4533
4534 bad_inode:
4535         iget_failed(inode);
4536         return ERR_PTR(ret);
4537 }
4538
4539 static int ext4_inode_blocks_set(handle_t *handle,
4540                                 struct ext4_inode *raw_inode,
4541                                 struct ext4_inode_info *ei)
4542 {
4543         struct inode *inode = &(ei->vfs_inode);
4544         u64 i_blocks = inode->i_blocks;
4545         struct super_block *sb = inode->i_sb;
4546
4547         if (i_blocks <= ~0U) {
4548                 /*
4549                  * i_blocks can be represnted in a 32 bit variable
4550                  * as multiple of 512 bytes
4551                  */
4552                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4553                 raw_inode->i_blocks_high = 0;
4554                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4555                 return 0;
4556         }
4557         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4558                 return -EFBIG;
4559
4560         if (i_blocks <= 0xffffffffffffULL) {
4561                 /*
4562                  * i_blocks can be represented in a 48 bit variable
4563                  * as multiple of 512 bytes
4564                  */
4565                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4566                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4567                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4568         } else {
4569                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4570                 /* i_block is stored in file system block size */
4571                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4572                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4573                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4574         }
4575         return 0;
4576 }
4577
4578 /*
4579  * Post the struct inode info into an on-disk inode location in the
4580  * buffer-cache.  This gobbles the caller's reference to the
4581  * buffer_head in the inode location struct.
4582  *
4583  * The caller must have write access to iloc->bh.
4584  */
4585 static int ext4_do_update_inode(handle_t *handle,
4586                                 struct inode *inode,
4587                                 struct ext4_iloc *iloc)
4588 {
4589         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4590         struct ext4_inode_info *ei = EXT4_I(inode);
4591         struct buffer_head *bh = iloc->bh;
4592         int err = 0, rc, block;
4593
4594         /* For fields not not tracking in the in-memory inode,
4595          * initialise them to zero for new inodes. */
4596         if (ei->i_state & EXT4_STATE_NEW)
4597                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4598
4599         ext4_get_inode_flags(ei);
4600         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4601         if (!(test_opt(inode->i_sb, NO_UID32))) {
4602                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4603                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4604 /*
4605  * Fix up interoperability with old kernels. Otherwise, old inodes get
4606  * re-used with the upper 16 bits of the uid/gid intact
4607  */
4608                 if (!ei->i_dtime) {
4609                         raw_inode->i_uid_high =
4610                                 cpu_to_le16(high_16_bits(inode->i_uid));
4611                         raw_inode->i_gid_high =
4612                                 cpu_to_le16(high_16_bits(inode->i_gid));
4613                 } else {
4614                         raw_inode->i_uid_high = 0;
4615                         raw_inode->i_gid_high = 0;
4616                 }
4617         } else {
4618                 raw_inode->i_uid_low =
4619                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4620                 raw_inode->i_gid_low =
4621                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4622                 raw_inode->i_uid_high = 0;
4623                 raw_inode->i_gid_high = 0;
4624         }
4625         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4626
4627         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4628         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4629         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4630         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4631
4632         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4633                 goto out_brelse;
4634         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4635         /* clear the migrate flag in the raw_inode */
4636         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4637         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4638             cpu_to_le32(EXT4_OS_HURD))
4639                 raw_inode->i_file_acl_high =
4640                         cpu_to_le16(ei->i_file_acl >> 32);
4641         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4642         ext4_isize_set(raw_inode, ei->i_disksize);
4643         if (ei->i_disksize > 0x7fffffffULL) {
4644                 struct super_block *sb = inode->i_sb;
4645                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4646                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4647                                 EXT4_SB(sb)->s_es->s_rev_level ==
4648                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4649                         /* If this is the first large file
4650                          * created, add a flag to the superblock.
4651                          */
4652                         err = ext4_journal_get_write_access(handle,
4653                                         EXT4_SB(sb)->s_sbh);
4654                         if (err)
4655                                 goto out_brelse;
4656                         ext4_update_dynamic_rev(sb);
4657                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4658                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4659                         sb->s_dirt = 1;
4660                         ext4_handle_sync(handle);
4661                         err = ext4_handle_dirty_metadata(handle, inode,
4662                                         EXT4_SB(sb)->s_sbh);
4663                 }
4664         }
4665         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4666         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4667                 if (old_valid_dev(inode->i_rdev)) {
4668                         raw_inode->i_block[0] =
4669                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4670                         raw_inode->i_block[1] = 0;
4671                 } else {
4672                         raw_inode->i_block[0] = 0;
4673                         raw_inode->i_block[1] =
4674                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4675                         raw_inode->i_block[2] = 0;
4676                 }
4677         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4678                 raw_inode->i_block[block] = ei->i_data[block];
4679
4680         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4681         if (ei->i_extra_isize) {
4682                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4683                         raw_inode->i_version_hi =
4684                         cpu_to_le32(inode->i_version >> 32);
4685                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4686         }
4687
4688         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4689         rc = ext4_handle_dirty_metadata(handle, inode, bh);
4690         if (!err)
4691                 err = rc;
4692         ei->i_state &= ~EXT4_STATE_NEW;
4693
4694 out_brelse:
4695         brelse(bh);
4696         ext4_std_error(inode->i_sb, err);
4697         return err;
4698 }
4699
4700 /*
4701  * ext4_write_inode()
4702  *
4703  * We are called from a few places:
4704  *
4705  * - Within generic_file_write() for O_SYNC files.
4706  *   Here, there will be no transaction running. We wait for any running
4707  *   trasnaction to commit.
4708  *
4709  * - Within sys_sync(), kupdate and such.
4710  *   We wait on commit, if tol to.
4711  *
4712  * - Within prune_icache() (PF_MEMALLOC == true)
4713  *   Here we simply return.  We can't afford to block kswapd on the
4714  *   journal commit.
4715  *
4716  * In all cases it is actually safe for us to return without doing anything,
4717  * because the inode has been copied into a raw inode buffer in
4718  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4719  * knfsd.
4720  *
4721  * Note that we are absolutely dependent upon all inode dirtiers doing the
4722  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4723  * which we are interested.
4724  *
4725  * It would be a bug for them to not do this.  The code:
4726  *
4727  *      mark_inode_dirty(inode)
4728  *      stuff();
4729  *      inode->i_size = expr;
4730  *
4731  * is in error because a kswapd-driven write_inode() could occur while
4732  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4733  * will no longer be on the superblock's dirty inode list.
4734  */
4735 int ext4_write_inode(struct inode *inode, int wait)
4736 {
4737         if (current->flags & PF_MEMALLOC)
4738                 return 0;
4739
4740         if (ext4_journal_current_handle()) {
4741                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4742                 dump_stack();
4743                 return -EIO;
4744         }
4745
4746         if (!wait)
4747                 return 0;
4748
4749         return ext4_force_commit(inode->i_sb);
4750 }
4751
4752 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4753 {
4754         int err = 0;
4755
4756         mark_buffer_dirty(bh);
4757         if (inode && inode_needs_sync(inode)) {
4758                 sync_dirty_buffer(bh);
4759                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4760                         ext4_error(inode->i_sb, __func__,
4761                                    "IO error syncing inode, "
4762                                    "inode=%lu, block=%llu",
4763                                    inode->i_ino,
4764                                    (unsigned long long)bh->b_blocknr);
4765                         err = -EIO;
4766                 }
4767         }
4768         return err;
4769 }
4770
4771 /*
4772  * ext4_setattr()
4773  *
4774  * Called from notify_change.
4775  *
4776  * We want to trap VFS attempts to truncate the file as soon as
4777  * possible.  In particular, we want to make sure that when the VFS
4778  * shrinks i_size, we put the inode on the orphan list and modify
4779  * i_disksize immediately, so that during the subsequent flushing of
4780  * dirty pages and freeing of disk blocks, we can guarantee that any
4781  * commit will leave the blocks being flushed in an unused state on
4782  * disk.  (On recovery, the inode will get truncated and the blocks will
4783  * be freed, so we have a strong guarantee that no future commit will
4784  * leave these blocks visible to the user.)
4785  *
4786  * Another thing we have to assure is that if we are in ordered mode
4787  * and inode is still attached to the committing transaction, we must
4788  * we start writeout of all the dirty pages which are being truncated.
4789  * This way we are sure that all the data written in the previous
4790  * transaction are already on disk (truncate waits for pages under
4791  * writeback).
4792  *
4793  * Called with inode->i_mutex down.
4794  */
4795 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4796 {
4797         struct inode *inode = dentry->d_inode;
4798         int error, rc = 0;
4799         const unsigned int ia_valid = attr->ia_valid;
4800
4801         error = inode_change_ok(inode, attr);
4802         if (error)
4803                 return error;
4804
4805         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4806                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4807                 handle_t *handle;
4808
4809                 /* (user+group)*(old+new) structure, inode write (sb,
4810                  * inode block, ? - but truncate inode update has it) */
4811                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4812                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4813                 if (IS_ERR(handle)) {
4814                         error = PTR_ERR(handle);
4815                         goto err_out;
4816                 }
4817                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4818                 if (error) {
4819                         ext4_journal_stop(handle);
4820                         return error;
4821                 }
4822                 /* Update corresponding info in inode so that everything is in
4823                  * one transaction */
4824                 if (attr->ia_valid & ATTR_UID)
4825                         inode->i_uid = attr->ia_uid;
4826                 if (attr->ia_valid & ATTR_GID)
4827                         inode->i_gid = attr->ia_gid;
4828                 error = ext4_mark_inode_dirty(handle, inode);
4829                 ext4_journal_stop(handle);
4830         }
4831
4832         if (attr->ia_valid & ATTR_SIZE) {
4833                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4834                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4835
4836                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4837                                 error = -EFBIG;
4838                                 goto err_out;
4839                         }
4840                 }
4841         }
4842
4843         if (S_ISREG(inode->i_mode) &&
4844             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4845                 handle_t *handle;
4846
4847                 handle = ext4_journal_start(inode, 3);
4848                 if (IS_ERR(handle)) {
4849                         error = PTR_ERR(handle);
4850                         goto err_out;
4851                 }
4852
4853                 error = ext4_orphan_add(handle, inode);
4854                 EXT4_I(inode)->i_disksize = attr->ia_size;
4855                 rc = ext4_mark_inode_dirty(handle, inode);
4856                 if (!error)
4857                         error = rc;
4858                 ext4_journal_stop(handle);
4859
4860                 if (ext4_should_order_data(inode)) {
4861                         error = ext4_begin_ordered_truncate(inode,
4862                                                             attr->ia_size);
4863                         if (error) {
4864                                 /* Do as much error cleanup as possible */
4865                                 handle = ext4_journal_start(inode, 3);
4866                                 if (IS_ERR(handle)) {
4867                                         ext4_orphan_del(NULL, inode);
4868                                         goto err_out;
4869                                 }
4870                                 ext4_orphan_del(handle, inode);
4871                                 ext4_journal_stop(handle);
4872                                 goto err_out;
4873                         }
4874                 }
4875         }
4876
4877         rc = inode_setattr(inode, attr);
4878
4879         /* If inode_setattr's call to ext4_truncate failed to get a
4880          * transaction handle at all, we need to clean up the in-core
4881          * orphan list manually. */
4882         if (inode->i_nlink)
4883                 ext4_orphan_del(NULL, inode);
4884
4885         if (!rc && (ia_valid & ATTR_MODE))
4886                 rc = ext4_acl_chmod(inode);
4887
4888 err_out:
4889         ext4_std_error(inode->i_sb, error);
4890         if (!error)
4891                 error = rc;
4892         return error;
4893 }
4894
4895 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4896                  struct kstat *stat)
4897 {
4898         struct inode *inode;
4899         unsigned long delalloc_blocks;
4900
4901         inode = dentry->d_inode;
4902         generic_fillattr(inode, stat);
4903
4904         /*
4905          * We can't update i_blocks if the block allocation is delayed
4906          * otherwise in the case of system crash before the real block
4907          * allocation is done, we will have i_blocks inconsistent with
4908          * on-disk file blocks.
4909          * We always keep i_blocks updated together with real
4910          * allocation. But to not confuse with user, stat
4911          * will return the blocks that include the delayed allocation
4912          * blocks for this file.
4913          */
4914         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4915         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4916         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4917
4918         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4919         return 0;
4920 }
4921
4922 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4923                                       int chunk)
4924 {
4925         int indirects;
4926
4927         /* if nrblocks are contiguous */
4928         if (chunk) {
4929                 /*
4930                  * With N contiguous data blocks, it need at most
4931                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4932                  * 2 dindirect blocks
4933                  * 1 tindirect block
4934                  */
4935                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4936                 return indirects + 3;
4937         }
4938         /*
4939          * if nrblocks are not contiguous, worse case, each block touch
4940          * a indirect block, and each indirect block touch a double indirect
4941          * block, plus a triple indirect block
4942          */
4943         indirects = nrblocks * 2 + 1;
4944         return indirects;
4945 }
4946
4947 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4948 {
4949         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4950                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4951         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4952 }
4953
4954 /*
4955  * Account for index blocks, block groups bitmaps and block group
4956  * descriptor blocks if modify datablocks and index blocks
4957  * worse case, the indexs blocks spread over different block groups
4958  *
4959  * If datablocks are discontiguous, they are possible to spread over
4960  * different block groups too. If they are contiugous, with flexbg,
4961  * they could still across block group boundary.
4962  *
4963  * Also account for superblock, inode, quota and xattr blocks
4964  */
4965 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4966 {
4967         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4968         int gdpblocks;
4969         int idxblocks;
4970         int ret = 0;
4971
4972         /*
4973          * How many index blocks need to touch to modify nrblocks?
4974          * The "Chunk" flag indicating whether the nrblocks is
4975          * physically contiguous on disk
4976          *
4977          * For Direct IO and fallocate, they calls get_block to allocate
4978          * one single extent at a time, so they could set the "Chunk" flag
4979          */
4980         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4981
4982         ret = idxblocks;
4983
4984         /*
4985          * Now let's see how many group bitmaps and group descriptors need
4986          * to account
4987          */
4988         groups = idxblocks;
4989         if (chunk)
4990                 groups += 1;
4991         else
4992                 groups += nrblocks;
4993
4994         gdpblocks = groups;
4995         if (groups > ngroups)
4996                 groups = ngroups;
4997         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4998                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4999
5000         /* bitmaps and block group descriptor blocks */
5001         ret += groups + gdpblocks;
5002
5003         /* Blocks for super block, inode, quota and xattr blocks */
5004         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5005
5006         return ret;
5007 }
5008
5009 /*
5010  * Calulate the total number of credits to reserve to fit
5011  * the modification of a single pages into a single transaction,
5012  * which may include multiple chunks of block allocations.
5013  *
5014  * This could be called via ext4_write_begin()
5015  *
5016  * We need to consider the worse case, when
5017  * one new block per extent.
5018  */
5019 int ext4_writepage_trans_blocks(struct inode *inode)
5020 {
5021         int bpp = ext4_journal_blocks_per_page(inode);
5022         int ret;
5023
5024         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5025
5026         /* Account for data blocks for journalled mode */
5027         if (ext4_should_journal_data(inode))
5028                 ret += bpp;
5029         return ret;
5030 }
5031
5032 /*
5033  * Calculate the journal credits for a chunk of data modification.
5034  *
5035  * This is called from DIO, fallocate or whoever calling
5036  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5037  *
5038  * journal buffers for data blocks are not included here, as DIO
5039  * and fallocate do no need to journal data buffers.
5040  */
5041 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5042 {
5043         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5044 }
5045
5046 /*
5047  * The caller must have previously called ext4_reserve_inode_write().
5048  * Give this, we know that the caller already has write access to iloc->bh.
5049  */
5050 int ext4_mark_iloc_dirty(handle_t *handle,
5051                 struct inode *inode, struct ext4_iloc *iloc)
5052 {
5053         int err = 0;
5054
5055         if (test_opt(inode->i_sb, I_VERSION))
5056                 inode_inc_iversion(inode);
5057
5058         /* the do_update_inode consumes one bh->b_count */
5059         get_bh(iloc->bh);
5060
5061         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5062         err = ext4_do_update_inode(handle, inode, iloc);
5063         put_bh(iloc->bh);
5064         return err;
5065 }
5066
5067 /*
5068  * On success, We end up with an outstanding reference count against
5069  * iloc->bh.  This _must_ be cleaned up later.
5070  */
5071
5072 int
5073 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5074                          struct ext4_iloc *iloc)
5075 {
5076         int err;
5077
5078         err = ext4_get_inode_loc(inode, iloc);
5079         if (!err) {
5080                 BUFFER_TRACE(iloc->bh, "get_write_access");
5081                 err = ext4_journal_get_write_access(handle, iloc->bh);
5082                 if (err) {
5083                         brelse(iloc->bh);
5084                         iloc->bh = NULL;
5085                 }
5086         }
5087         ext4_std_error(inode->i_sb, err);
5088         return err;
5089 }
5090
5091 /*
5092  * Expand an inode by new_extra_isize bytes.
5093  * Returns 0 on success or negative error number on failure.
5094  */
5095 static int ext4_expand_extra_isize(struct inode *inode,
5096                                    unsigned int new_extra_isize,
5097                                    struct ext4_iloc iloc,
5098                                    handle_t *handle)
5099 {
5100         struct ext4_inode *raw_inode;
5101         struct ext4_xattr_ibody_header *header;
5102         struct ext4_xattr_entry *entry;
5103
5104         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5105                 return 0;
5106
5107         raw_inode = ext4_raw_inode(&iloc);
5108
5109         header = IHDR(inode, raw_inode);
5110         entry = IFIRST(header);
5111
5112         /* No extended attributes present */
5113         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5114                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5115                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5116                         new_extra_isize);
5117                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5118                 return 0;
5119         }
5120
5121         /* try to expand with EAs present */
5122         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5123                                           raw_inode, handle);
5124 }
5125
5126 /*
5127  * What we do here is to mark the in-core inode as clean with respect to inode
5128  * dirtiness (it may still be data-dirty).
5129  * This means that the in-core inode may be reaped by prune_icache
5130  * without having to perform any I/O.  This is a very good thing,
5131  * because *any* task may call prune_icache - even ones which
5132  * have a transaction open against a different journal.
5133  *
5134  * Is this cheating?  Not really.  Sure, we haven't written the
5135  * inode out, but prune_icache isn't a user-visible syncing function.
5136  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5137  * we start and wait on commits.
5138  *
5139  * Is this efficient/effective?  Well, we're being nice to the system
5140  * by cleaning up our inodes proactively so they can be reaped
5141  * without I/O.  But we are potentially leaving up to five seconds'
5142  * worth of inodes floating about which prune_icache wants us to
5143  * write out.  One way to fix that would be to get prune_icache()
5144  * to do a write_super() to free up some memory.  It has the desired
5145  * effect.
5146  */
5147 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5148 {
5149         struct ext4_iloc iloc;
5150         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5151         static unsigned int mnt_count;
5152         int err, ret;
5153
5154         might_sleep();
5155         err = ext4_reserve_inode_write(handle, inode, &iloc);
5156         if (ext4_handle_valid(handle) &&
5157             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5158             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5159                 /*
5160                  * We need extra buffer credits since we may write into EA block
5161                  * with this same handle. If journal_extend fails, then it will
5162                  * only result in a minor loss of functionality for that inode.
5163                  * If this is felt to be critical, then e2fsck should be run to
5164                  * force a large enough s_min_extra_isize.
5165                  */
5166                 if ((jbd2_journal_extend(handle,
5167                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5168                         ret = ext4_expand_extra_isize(inode,
5169                                                       sbi->s_want_extra_isize,
5170                                                       iloc, handle);
5171                         if (ret) {
5172                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5173                                 if (mnt_count !=
5174                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5175                                         ext4_warning(inode->i_sb, __func__,
5176                                         "Unable to expand inode %lu. Delete"
5177                                         " some EAs or run e2fsck.",
5178                                         inode->i_ino);
5179                                         mnt_count =
5180                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5181                                 }
5182                         }
5183                 }
5184         }
5185         if (!err)
5186                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5187         return err;
5188 }
5189
5190 /*
5191  * ext4_dirty_inode() is called from __mark_inode_dirty()
5192  *
5193  * We're really interested in the case where a file is being extended.
5194  * i_size has been changed by generic_commit_write() and we thus need
5195  * to include the updated inode in the current transaction.
5196  *
5197  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5198  * are allocated to the file.
5199  *
5200  * If the inode is marked synchronous, we don't honour that here - doing
5201  * so would cause a commit on atime updates, which we don't bother doing.
5202  * We handle synchronous inodes at the highest possible level.
5203  */
5204 void ext4_dirty_inode(struct inode *inode)
5205 {
5206         handle_t *current_handle = ext4_journal_current_handle();
5207         handle_t *handle;
5208
5209         if (!ext4_handle_valid(current_handle)) {
5210                 ext4_mark_inode_dirty(current_handle, inode);
5211                 return;
5212         }
5213
5214         handle = ext4_journal_start(inode, 2);
5215         if (IS_ERR(handle))
5216                 goto out;
5217         if (current_handle &&
5218                 current_handle->h_transaction != handle->h_transaction) {
5219                 /* This task has a transaction open against a different fs */
5220                 printk(KERN_EMERG "%s: transactions do not match!\n",
5221                        __func__);
5222         } else {
5223                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
5224                                 current_handle);
5225                 ext4_mark_inode_dirty(handle, inode);
5226         }
5227         ext4_journal_stop(handle);
5228 out:
5229         return;
5230 }
5231
5232 #if 0
5233 /*
5234  * Bind an inode's backing buffer_head into this transaction, to prevent
5235  * it from being flushed to disk early.  Unlike
5236  * ext4_reserve_inode_write, this leaves behind no bh reference and
5237  * returns no iloc structure, so the caller needs to repeat the iloc
5238  * lookup to mark the inode dirty later.
5239  */
5240 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5241 {
5242         struct ext4_iloc iloc;
5243
5244         int err = 0;
5245         if (handle) {
5246                 err = ext4_get_inode_loc(inode, &iloc);
5247                 if (!err) {
5248                         BUFFER_TRACE(iloc.bh, "get_write_access");
5249                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5250                         if (!err)
5251                                 err = ext4_handle_dirty_metadata(handle,
5252                                                                  inode,
5253                                                                  iloc.bh);
5254                         brelse(iloc.bh);
5255                 }
5256         }
5257         ext4_std_error(inode->i_sb, err);
5258         return err;
5259 }
5260 #endif
5261
5262 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5263 {
5264         journal_t *journal;
5265         handle_t *handle;
5266         int err;
5267
5268         /*
5269          * We have to be very careful here: changing a data block's
5270          * journaling status dynamically is dangerous.  If we write a
5271          * data block to the journal, change the status and then delete
5272          * that block, we risk forgetting to revoke the old log record
5273          * from the journal and so a subsequent replay can corrupt data.
5274          * So, first we make sure that the journal is empty and that
5275          * nobody is changing anything.
5276          */
5277
5278         journal = EXT4_JOURNAL(inode);
5279         if (!journal)
5280                 return 0;
5281         if (is_journal_aborted(journal))
5282                 return -EROFS;
5283
5284         jbd2_journal_lock_updates(journal);
5285         jbd2_journal_flush(journal);
5286
5287         /*
5288          * OK, there are no updates running now, and all cached data is
5289          * synced to disk.  We are now in a completely consistent state
5290          * which doesn't have anything in the journal, and we know that
5291          * no filesystem updates are running, so it is safe to modify
5292          * the inode's in-core data-journaling state flag now.
5293          */
5294
5295         if (val)
5296                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5297         else
5298                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5299         ext4_set_aops(inode);
5300
5301         jbd2_journal_unlock_updates(journal);
5302
5303         /* Finally we can mark the inode as dirty. */
5304
5305         handle = ext4_journal_start(inode, 1);
5306         if (IS_ERR(handle))
5307                 return PTR_ERR(handle);
5308
5309         err = ext4_mark_inode_dirty(handle, inode);
5310         ext4_handle_sync(handle);
5311         ext4_journal_stop(handle);
5312         ext4_std_error(inode->i_sb, err);
5313
5314         return err;
5315 }
5316
5317 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5318 {
5319         return !buffer_mapped(bh);
5320 }
5321
5322 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5323 {
5324         struct page *page = vmf->page;
5325         loff_t size;
5326         unsigned long len;
5327         int ret = -EINVAL;
5328         void *fsdata;
5329         struct file *file = vma->vm_file;
5330         struct inode *inode = file->f_path.dentry->d_inode;
5331         struct address_space *mapping = inode->i_mapping;
5332
5333         /*
5334          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5335          * get i_mutex because we are already holding mmap_sem.
5336          */
5337         down_read(&inode->i_alloc_sem);
5338         size = i_size_read(inode);
5339         if (page->mapping != mapping || size <= page_offset(page)
5340             || !PageUptodate(page)) {
5341                 /* page got truncated from under us? */
5342                 goto out_unlock;
5343         }
5344         ret = 0;
5345         if (PageMappedToDisk(page))
5346                 goto out_unlock;
5347
5348         if (page->index == size >> PAGE_CACHE_SHIFT)
5349                 len = size & ~PAGE_CACHE_MASK;
5350         else
5351                 len = PAGE_CACHE_SIZE;
5352
5353         if (page_has_buffers(page)) {
5354                 /* return if we have all the buffers mapped */
5355                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5356                                        ext4_bh_unmapped))
5357                         goto out_unlock;
5358         }
5359         /*
5360          * OK, we need to fill the hole... Do write_begin write_end
5361          * to do block allocation/reservation.We are not holding
5362          * inode.i__mutex here. That allow * parallel write_begin,
5363          * write_end call. lock_page prevent this from happening
5364          * on the same page though
5365          */
5366         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5367                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5368         if (ret < 0)
5369                 goto out_unlock;
5370         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5371                         len, len, page, fsdata);
5372         if (ret < 0)
5373                 goto out_unlock;
5374         ret = 0;
5375 out_unlock:
5376         if (ret)
5377                 ret = VM_FAULT_SIGBUS;
5378         up_read(&inode->i_alloc_sem);
5379         return ret;
5380 }