ext4: Convert truncate_mutex to read write semaphore.
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "xattr.h"
40 #include "acl.h"
41
42 /*
43  * Test whether an inode is a fast symlink.
44  */
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
46 {
47         int ea_blocks = EXT4_I(inode)->i_file_acl ?
48                 (inode->i_sb->s_blocksize >> 9) : 0;
49
50         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51 }
52
53 /*
54  * The ext4 forget function must perform a revoke if we are freeing data
55  * which has been journaled.  Metadata (eg. indirect blocks) must be
56  * revoked in all cases.
57  *
58  * "bh" may be NULL: a metadata block may have been freed from memory
59  * but there may still be a record of it in the journal, and that record
60  * still needs to be revoked.
61  */
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63                         struct buffer_head *bh, ext4_fsblk_t blocknr)
64 {
65         int err;
66
67         might_sleep();
68
69         BUFFER_TRACE(bh, "enter");
70
71         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72                   "data mode %lx\n",
73                   bh, is_metadata, inode->i_mode,
74                   test_opt(inode->i_sb, DATA_FLAGS));
75
76         /* Never use the revoke function if we are doing full data
77          * journaling: there is no need to, and a V1 superblock won't
78          * support it.  Otherwise, only skip the revoke on un-journaled
79          * data blocks. */
80
81         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82             (!is_metadata && !ext4_should_journal_data(inode))) {
83                 if (bh) {
84                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
85                         return ext4_journal_forget(handle, bh);
86                 }
87                 return 0;
88         }
89
90         /*
91          * data!=journal && (is_metadata || should_journal_data(inode))
92          */
93         BUFFER_TRACE(bh, "call ext4_journal_revoke");
94         err = ext4_journal_revoke(handle, blocknr, bh);
95         if (err)
96                 ext4_abort(inode->i_sb, __FUNCTION__,
97                            "error %d when attempting revoke", err);
98         BUFFER_TRACE(bh, "exit");
99         return err;
100 }
101
102 /*
103  * Work out how many blocks we need to proceed with the next chunk of a
104  * truncate transaction.
105  */
106 static unsigned long blocks_for_truncate(struct inode *inode)
107 {
108         ext4_lblk_t needed;
109
110         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111
112         /* Give ourselves just enough room to cope with inodes in which
113          * i_blocks is corrupt: we've seen disk corruptions in the past
114          * which resulted in random data in an inode which looked enough
115          * like a regular file for ext4 to try to delete it.  Things
116          * will go a bit crazy if that happens, but at least we should
117          * try not to panic the whole kernel. */
118         if (needed < 2)
119                 needed = 2;
120
121         /* But we need to bound the transaction so we don't overflow the
122          * journal. */
123         if (needed > EXT4_MAX_TRANS_DATA)
124                 needed = EXT4_MAX_TRANS_DATA;
125
126         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 }
128
129 /*
130  * Truncate transactions can be complex and absolutely huge.  So we need to
131  * be able to restart the transaction at a conventient checkpoint to make
132  * sure we don't overflow the journal.
133  *
134  * start_transaction gets us a new handle for a truncate transaction,
135  * and extend_transaction tries to extend the existing one a bit.  If
136  * extend fails, we need to propagate the failure up and restart the
137  * transaction in the top-level truncate loop. --sct
138  */
139 static handle_t *start_transaction(struct inode *inode)
140 {
141         handle_t *result;
142
143         result = ext4_journal_start(inode, blocks_for_truncate(inode));
144         if (!IS_ERR(result))
145                 return result;
146
147         ext4_std_error(inode->i_sb, PTR_ERR(result));
148         return result;
149 }
150
151 /*
152  * Try to extend this transaction for the purposes of truncation.
153  *
154  * Returns 0 if we managed to create more room.  If we can't create more
155  * room, and the transaction must be restarted we return 1.
156  */
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158 {
159         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160                 return 0;
161         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162                 return 0;
163         return 1;
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 {
173         jbd_debug(2, "restarting handle %p\n", handle);
174         return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 }
176
177 /*
178  * Called at the last iput() if i_nlink is zero.
179  */
180 void ext4_delete_inode (struct inode * inode)
181 {
182         handle_t *handle;
183
184         truncate_inode_pages(&inode->i_data, 0);
185
186         if (is_bad_inode(inode))
187                 goto no_delete;
188
189         handle = start_transaction(inode);
190         if (IS_ERR(handle)) {
191                 /*
192                  * If we're going to skip the normal cleanup, we still need to
193                  * make sure that the in-core orphan linked list is properly
194                  * cleaned up.
195                  */
196                 ext4_orphan_del(NULL, inode);
197                 goto no_delete;
198         }
199
200         if (IS_SYNC(inode))
201                 handle->h_sync = 1;
202         inode->i_size = 0;
203         if (inode->i_blocks)
204                 ext4_truncate(inode);
205         /*
206          * Kill off the orphan record which ext4_truncate created.
207          * AKPM: I think this can be inside the above `if'.
208          * Note that ext4_orphan_del() has to be able to cope with the
209          * deletion of a non-existent orphan - this is because we don't
210          * know if ext4_truncate() actually created an orphan record.
211          * (Well, we could do this if we need to, but heck - it works)
212          */
213         ext4_orphan_del(handle, inode);
214         EXT4_I(inode)->i_dtime  = get_seconds();
215
216         /*
217          * One subtle ordering requirement: if anything has gone wrong
218          * (transaction abort, IO errors, whatever), then we can still
219          * do these next steps (the fs will already have been marked as
220          * having errors), but we can't free the inode if the mark_dirty
221          * fails.
222          */
223         if (ext4_mark_inode_dirty(handle, inode))
224                 /* If that failed, just do the required in-core inode clear. */
225                 clear_inode(inode);
226         else
227                 ext4_free_inode(handle, inode);
228         ext4_journal_stop(handle);
229         return;
230 no_delete:
231         clear_inode(inode);     /* We must guarantee clearing of inode... */
232 }
233
234 typedef struct {
235         __le32  *p;
236         __le32  key;
237         struct buffer_head *bh;
238 } Indirect;
239
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241 {
242         p->key = *(p->p = v);
243         p->bh = bh;
244 }
245
246 /**
247  *      ext4_block_to_path - parse the block number into array of offsets
248  *      @inode: inode in question (we are only interested in its superblock)
249  *      @i_block: block number to be parsed
250  *      @offsets: array to store the offsets in
251  *      @boundary: set this non-zero if the referred-to block is likely to be
252  *             followed (on disk) by an indirect block.
253  *
254  *      To store the locations of file's data ext4 uses a data structure common
255  *      for UNIX filesystems - tree of pointers anchored in the inode, with
256  *      data blocks at leaves and indirect blocks in intermediate nodes.
257  *      This function translates the block number into path in that tree -
258  *      return value is the path length and @offsets[n] is the offset of
259  *      pointer to (n+1)th node in the nth one. If @block is out of range
260  *      (negative or too large) warning is printed and zero returned.
261  *
262  *      Note: function doesn't find node addresses, so no IO is needed. All
263  *      we need to know is the capacity of indirect blocks (taken from the
264  *      inode->i_sb).
265  */
266
267 /*
268  * Portability note: the last comparison (check that we fit into triple
269  * indirect block) is spelled differently, because otherwise on an
270  * architecture with 32-bit longs and 8Kb pages we might get into trouble
271  * if our filesystem had 8Kb blocks. We might use long long, but that would
272  * kill us on x86. Oh, well, at least the sign propagation does not matter -
273  * i_block would have to be negative in the very beginning, so we would not
274  * get there at all.
275  */
276
277 static int ext4_block_to_path(struct inode *inode,
278                         ext4_lblk_t i_block,
279                         ext4_lblk_t offsets[4], int *boundary)
280 {
281         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283         const long direct_blocks = EXT4_NDIR_BLOCKS,
284                 indirect_blocks = ptrs,
285                 double_blocks = (1 << (ptrs_bits * 2));
286         int n = 0;
287         int final = 0;
288
289         if (i_block < 0) {
290                 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291         } else if (i_block < direct_blocks) {
292                 offsets[n++] = i_block;
293                 final = direct_blocks;
294         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
295                 offsets[n++] = EXT4_IND_BLOCK;
296                 offsets[n++] = i_block;
297                 final = ptrs;
298         } else if ((i_block -= indirect_blocks) < double_blocks) {
299                 offsets[n++] = EXT4_DIND_BLOCK;
300                 offsets[n++] = i_block >> ptrs_bits;
301                 offsets[n++] = i_block & (ptrs - 1);
302                 final = ptrs;
303         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304                 offsets[n++] = EXT4_TIND_BLOCK;
305                 offsets[n++] = i_block >> (ptrs_bits * 2);
306                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307                 offsets[n++] = i_block & (ptrs - 1);
308                 final = ptrs;
309         } else {
310                 ext4_warning(inode->i_sb, "ext4_block_to_path",
311                                 "block %lu > max",
312                                 i_block + direct_blocks +
313                                 indirect_blocks + double_blocks);
314         }
315         if (boundary)
316                 *boundary = final - 1 - (i_block & (ptrs - 1));
317         return n;
318 }
319
320 /**
321  *      ext4_get_branch - read the chain of indirect blocks leading to data
322  *      @inode: inode in question
323  *      @depth: depth of the chain (1 - direct pointer, etc.)
324  *      @offsets: offsets of pointers in inode/indirect blocks
325  *      @chain: place to store the result
326  *      @err: here we store the error value
327  *
328  *      Function fills the array of triples <key, p, bh> and returns %NULL
329  *      if everything went OK or the pointer to the last filled triple
330  *      (incomplete one) otherwise. Upon the return chain[i].key contains
331  *      the number of (i+1)-th block in the chain (as it is stored in memory,
332  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
333  *      number (it points into struct inode for i==0 and into the bh->b_data
334  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335  *      block for i>0 and NULL for i==0. In other words, it holds the block
336  *      numbers of the chain, addresses they were taken from (and where we can
337  *      verify that chain did not change) and buffer_heads hosting these
338  *      numbers.
339  *
340  *      Function stops when it stumbles upon zero pointer (absent block)
341  *              (pointer to last triple returned, *@err == 0)
342  *      or when it gets an IO error reading an indirect block
343  *              (ditto, *@err == -EIO)
344  *      or when it reads all @depth-1 indirect blocks successfully and finds
345  *      the whole chain, all way to the data (returns %NULL, *err == 0).
346  *
347  *      Need to be called with
348  *      down_read(&EXT4_I(inode)->i_data_sem)
349  */
350 static Indirect *ext4_get_branch(struct inode *inode, int depth,
351                                  ext4_lblk_t  *offsets,
352                                  Indirect chain[4], int *err)
353 {
354         struct super_block *sb = inode->i_sb;
355         Indirect *p = chain;
356         struct buffer_head *bh;
357
358         *err = 0;
359         /* i_data is not going away, no lock needed */
360         add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361         if (!p->key)
362                 goto no_block;
363         while (--depth) {
364                 bh = sb_bread(sb, le32_to_cpu(p->key));
365                 if (!bh)
366                         goto failure;
367                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368                 /* Reader: end */
369                 if (!p->key)
370                         goto no_block;
371         }
372         return NULL;
373
374 failure:
375         *err = -EIO;
376 no_block:
377         return p;
378 }
379
380 /**
381  *      ext4_find_near - find a place for allocation with sufficient locality
382  *      @inode: owner
383  *      @ind: descriptor of indirect block.
384  *
385  *      This function returns the prefered place for block allocation.
386  *      It is used when heuristic for sequential allocation fails.
387  *      Rules are:
388  *        + if there is a block to the left of our position - allocate near it.
389  *        + if pointer will live in indirect block - allocate near that block.
390  *        + if pointer will live in inode - allocate in the same
391  *          cylinder group.
392  *
393  * In the latter case we colour the starting block by the callers PID to
394  * prevent it from clashing with concurrent allocations for a different inode
395  * in the same block group.   The PID is used here so that functionally related
396  * files will be close-by on-disk.
397  *
398  *      Caller must make sure that @ind is valid and will stay that way.
399  */
400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
401 {
402         struct ext4_inode_info *ei = EXT4_I(inode);
403         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404         __le32 *p;
405         ext4_fsblk_t bg_start;
406         ext4_grpblk_t colour;
407
408         /* Try to find previous block */
409         for (p = ind->p - 1; p >= start; p--) {
410                 if (*p)
411                         return le32_to_cpu(*p);
412         }
413
414         /* No such thing, so let's try location of indirect block */
415         if (ind->bh)
416                 return ind->bh->b_blocknr;
417
418         /*
419          * It is going to be referred to from the inode itself? OK, just put it
420          * into the same cylinder group then.
421          */
422         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
423         colour = (current->pid % 16) *
424                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
425         return bg_start + colour;
426 }
427
428 /**
429  *      ext4_find_goal - find a prefered place for allocation.
430  *      @inode: owner
431  *      @block:  block we want
432  *      @chain:  chain of indirect blocks
433  *      @partial: pointer to the last triple within a chain
434  *      @goal:  place to store the result.
435  *
436  *      Normally this function find the prefered place for block allocation,
437  *      stores it in *@goal and returns zero.
438  */
439
440 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
441                 Indirect chain[4], Indirect *partial)
442 {
443         struct ext4_block_alloc_info *block_i;
444
445         block_i =  EXT4_I(inode)->i_block_alloc_info;
446
447         /*
448          * try the heuristic for sequential allocation,
449          * failing that at least try to get decent locality.
450          */
451         if (block_i && (block == block_i->last_alloc_logical_block + 1)
452                 && (block_i->last_alloc_physical_block != 0)) {
453                 return block_i->last_alloc_physical_block + 1;
454         }
455
456         return ext4_find_near(inode, partial);
457 }
458
459 /**
460  *      ext4_blks_to_allocate: Look up the block map and count the number
461  *      of direct blocks need to be allocated for the given branch.
462  *
463  *      @branch: chain of indirect blocks
464  *      @k: number of blocks need for indirect blocks
465  *      @blks: number of data blocks to be mapped.
466  *      @blocks_to_boundary:  the offset in the indirect block
467  *
468  *      return the total number of blocks to be allocate, including the
469  *      direct and indirect blocks.
470  */
471 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
472                 int blocks_to_boundary)
473 {
474         unsigned long count = 0;
475
476         /*
477          * Simple case, [t,d]Indirect block(s) has not allocated yet
478          * then it's clear blocks on that path have not allocated
479          */
480         if (k > 0) {
481                 /* right now we don't handle cross boundary allocation */
482                 if (blks < blocks_to_boundary + 1)
483                         count += blks;
484                 else
485                         count += blocks_to_boundary + 1;
486                 return count;
487         }
488
489         count++;
490         while (count < blks && count <= blocks_to_boundary &&
491                 le32_to_cpu(*(branch[0].p + count)) == 0) {
492                 count++;
493         }
494         return count;
495 }
496
497 /**
498  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
499  *      @indirect_blks: the number of blocks need to allocate for indirect
500  *                      blocks
501  *
502  *      @new_blocks: on return it will store the new block numbers for
503  *      the indirect blocks(if needed) and the first direct block,
504  *      @blks:  on return it will store the total number of allocated
505  *              direct blocks
506  */
507 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
508                         ext4_fsblk_t goal, int indirect_blks, int blks,
509                         ext4_fsblk_t new_blocks[4], int *err)
510 {
511         int target, i;
512         unsigned long count = 0;
513         int index = 0;
514         ext4_fsblk_t current_block = 0;
515         int ret = 0;
516
517         /*
518          * Here we try to allocate the requested multiple blocks at once,
519          * on a best-effort basis.
520          * To build a branch, we should allocate blocks for
521          * the indirect blocks(if not allocated yet), and at least
522          * the first direct block of this branch.  That's the
523          * minimum number of blocks need to allocate(required)
524          */
525         target = blks + indirect_blks;
526
527         while (1) {
528                 count = target;
529                 /* allocating blocks for indirect blocks and direct blocks */
530                 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
531                 if (*err)
532                         goto failed_out;
533
534                 target -= count;
535                 /* allocate blocks for indirect blocks */
536                 while (index < indirect_blks && count) {
537                         new_blocks[index++] = current_block++;
538                         count--;
539                 }
540
541                 if (count > 0)
542                         break;
543         }
544
545         /* save the new block number for the first direct block */
546         new_blocks[index] = current_block;
547
548         /* total number of blocks allocated for direct blocks */
549         ret = count;
550         *err = 0;
551         return ret;
552 failed_out:
553         for (i = 0; i <index; i++)
554                 ext4_free_blocks(handle, inode, new_blocks[i], 1);
555         return ret;
556 }
557
558 /**
559  *      ext4_alloc_branch - allocate and set up a chain of blocks.
560  *      @inode: owner
561  *      @indirect_blks: number of allocated indirect blocks
562  *      @blks: number of allocated direct blocks
563  *      @offsets: offsets (in the blocks) to store the pointers to next.
564  *      @branch: place to store the chain in.
565  *
566  *      This function allocates blocks, zeroes out all but the last one,
567  *      links them into chain and (if we are synchronous) writes them to disk.
568  *      In other words, it prepares a branch that can be spliced onto the
569  *      inode. It stores the information about that chain in the branch[], in
570  *      the same format as ext4_get_branch() would do. We are calling it after
571  *      we had read the existing part of chain and partial points to the last
572  *      triple of that (one with zero ->key). Upon the exit we have the same
573  *      picture as after the successful ext4_get_block(), except that in one
574  *      place chain is disconnected - *branch->p is still zero (we did not
575  *      set the last link), but branch->key contains the number that should
576  *      be placed into *branch->p to fill that gap.
577  *
578  *      If allocation fails we free all blocks we've allocated (and forget
579  *      their buffer_heads) and return the error value the from failed
580  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
581  *      as described above and return 0.
582  */
583 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
584                         int indirect_blks, int *blks, ext4_fsblk_t goal,
585                         ext4_lblk_t *offsets, Indirect *branch)
586 {
587         int blocksize = inode->i_sb->s_blocksize;
588         int i, n = 0;
589         int err = 0;
590         struct buffer_head *bh;
591         int num;
592         ext4_fsblk_t new_blocks[4];
593         ext4_fsblk_t current_block;
594
595         num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
596                                 *blks, new_blocks, &err);
597         if (err)
598                 return err;
599
600         branch[0].key = cpu_to_le32(new_blocks[0]);
601         /*
602          * metadata blocks and data blocks are allocated.
603          */
604         for (n = 1; n <= indirect_blks;  n++) {
605                 /*
606                  * Get buffer_head for parent block, zero it out
607                  * and set the pointer to new one, then send
608                  * parent to disk.
609                  */
610                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
611                 branch[n].bh = bh;
612                 lock_buffer(bh);
613                 BUFFER_TRACE(bh, "call get_create_access");
614                 err = ext4_journal_get_create_access(handle, bh);
615                 if (err) {
616                         unlock_buffer(bh);
617                         brelse(bh);
618                         goto failed;
619                 }
620
621                 memset(bh->b_data, 0, blocksize);
622                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
623                 branch[n].key = cpu_to_le32(new_blocks[n]);
624                 *branch[n].p = branch[n].key;
625                 if ( n == indirect_blks) {
626                         current_block = new_blocks[n];
627                         /*
628                          * End of chain, update the last new metablock of
629                          * the chain to point to the new allocated
630                          * data blocks numbers
631                          */
632                         for (i=1; i < num; i++)
633                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
634                 }
635                 BUFFER_TRACE(bh, "marking uptodate");
636                 set_buffer_uptodate(bh);
637                 unlock_buffer(bh);
638
639                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
640                 err = ext4_journal_dirty_metadata(handle, bh);
641                 if (err)
642                         goto failed;
643         }
644         *blks = num;
645         return err;
646 failed:
647         /* Allocation failed, free what we already allocated */
648         for (i = 1; i <= n ; i++) {
649                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
650                 ext4_journal_forget(handle, branch[i].bh);
651         }
652         for (i = 0; i <indirect_blks; i++)
653                 ext4_free_blocks(handle, inode, new_blocks[i], 1);
654
655         ext4_free_blocks(handle, inode, new_blocks[i], num);
656
657         return err;
658 }
659
660 /**
661  * ext4_splice_branch - splice the allocated branch onto inode.
662  * @inode: owner
663  * @block: (logical) number of block we are adding
664  * @chain: chain of indirect blocks (with a missing link - see
665  *      ext4_alloc_branch)
666  * @where: location of missing link
667  * @num:   number of indirect blocks we are adding
668  * @blks:  number of direct blocks we are adding
669  *
670  * This function fills the missing link and does all housekeeping needed in
671  * inode (->i_blocks, etc.). In case of success we end up with the full
672  * chain to new block and return 0.
673  */
674 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
675                         ext4_lblk_t block, Indirect *where, int num, int blks)
676 {
677         int i;
678         int err = 0;
679         struct ext4_block_alloc_info *block_i;
680         ext4_fsblk_t current_block;
681
682         block_i = EXT4_I(inode)->i_block_alloc_info;
683         /*
684          * If we're splicing into a [td]indirect block (as opposed to the
685          * inode) then we need to get write access to the [td]indirect block
686          * before the splice.
687          */
688         if (where->bh) {
689                 BUFFER_TRACE(where->bh, "get_write_access");
690                 err = ext4_journal_get_write_access(handle, where->bh);
691                 if (err)
692                         goto err_out;
693         }
694         /* That's it */
695
696         *where->p = where->key;
697
698         /*
699          * Update the host buffer_head or inode to point to more just allocated
700          * direct blocks blocks
701          */
702         if (num == 0 && blks > 1) {
703                 current_block = le32_to_cpu(where->key) + 1;
704                 for (i = 1; i < blks; i++)
705                         *(where->p + i ) = cpu_to_le32(current_block++);
706         }
707
708         /*
709          * update the most recently allocated logical & physical block
710          * in i_block_alloc_info, to assist find the proper goal block for next
711          * allocation
712          */
713         if (block_i) {
714                 block_i->last_alloc_logical_block = block + blks - 1;
715                 block_i->last_alloc_physical_block =
716                                 le32_to_cpu(where[num].key) + blks - 1;
717         }
718
719         /* We are done with atomic stuff, now do the rest of housekeeping */
720
721         inode->i_ctime = ext4_current_time(inode);
722         ext4_mark_inode_dirty(handle, inode);
723
724         /* had we spliced it onto indirect block? */
725         if (where->bh) {
726                 /*
727                  * If we spliced it onto an indirect block, we haven't
728                  * altered the inode.  Note however that if it is being spliced
729                  * onto an indirect block at the very end of the file (the
730                  * file is growing) then we *will* alter the inode to reflect
731                  * the new i_size.  But that is not done here - it is done in
732                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
733                  */
734                 jbd_debug(5, "splicing indirect only\n");
735                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
736                 err = ext4_journal_dirty_metadata(handle, where->bh);
737                 if (err)
738                         goto err_out;
739         } else {
740                 /*
741                  * OK, we spliced it into the inode itself on a direct block.
742                  * Inode was dirtied above.
743                  */
744                 jbd_debug(5, "splicing direct\n");
745         }
746         return err;
747
748 err_out:
749         for (i = 1; i <= num; i++) {
750                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
751                 ext4_journal_forget(handle, where[i].bh);
752                 ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
753         }
754         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
755
756         return err;
757 }
758
759 /*
760  * Allocation strategy is simple: if we have to allocate something, we will
761  * have to go the whole way to leaf. So let's do it before attaching anything
762  * to tree, set linkage between the newborn blocks, write them if sync is
763  * required, recheck the path, free and repeat if check fails, otherwise
764  * set the last missing link (that will protect us from any truncate-generated
765  * removals - all blocks on the path are immune now) and possibly force the
766  * write on the parent block.
767  * That has a nice additional property: no special recovery from the failed
768  * allocations is needed - we simply release blocks and do not touch anything
769  * reachable from inode.
770  *
771  * `handle' can be NULL if create == 0.
772  *
773  * The BKL may not be held on entry here.  Be sure to take it early.
774  * return > 0, # of blocks mapped or allocated.
775  * return = 0, if plain lookup failed.
776  * return < 0, error case.
777  *
778  *
779  * Need to be called with
780  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
781  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
782  */
783 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
784                 ext4_lblk_t iblock, unsigned long maxblocks,
785                 struct buffer_head *bh_result,
786                 int create, int extend_disksize)
787 {
788         int err = -EIO;
789         ext4_lblk_t offsets[4];
790         Indirect chain[4];
791         Indirect *partial;
792         ext4_fsblk_t goal;
793         int indirect_blks;
794         int blocks_to_boundary = 0;
795         int depth;
796         struct ext4_inode_info *ei = EXT4_I(inode);
797         int count = 0;
798         ext4_fsblk_t first_block = 0;
799
800
801         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
802         J_ASSERT(handle != NULL || create == 0);
803         depth = ext4_block_to_path(inode, iblock, offsets,
804                                         &blocks_to_boundary);
805
806         if (depth == 0)
807                 goto out;
808
809         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
810
811         /* Simplest case - block found, no allocation needed */
812         if (!partial) {
813                 first_block = le32_to_cpu(chain[depth - 1].key);
814                 clear_buffer_new(bh_result);
815                 count++;
816                 /*map more blocks*/
817                 while (count < maxblocks && count <= blocks_to_boundary) {
818                         ext4_fsblk_t blk;
819
820                         blk = le32_to_cpu(*(chain[depth-1].p + count));
821
822                         if (blk == first_block + count)
823                                 count++;
824                         else
825                                 break;
826                 }
827                 goto got_it;
828         }
829
830         /* Next simple case - plain lookup or failed read of indirect block */
831         if (!create || err == -EIO)
832                 goto cleanup;
833
834         /*
835          * Okay, we need to do block allocation.  Lazily initialize the block
836          * allocation info here if necessary
837         */
838         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
839                 ext4_init_block_alloc_info(inode);
840
841         goal = ext4_find_goal(inode, iblock, chain, partial);
842
843         /* the number of blocks need to allocate for [d,t]indirect blocks */
844         indirect_blks = (chain + depth) - partial - 1;
845
846         /*
847          * Next look up the indirect map to count the totoal number of
848          * direct blocks to allocate for this branch.
849          */
850         count = ext4_blks_to_allocate(partial, indirect_blks,
851                                         maxblocks, blocks_to_boundary);
852         /*
853          * Block out ext4_truncate while we alter the tree
854          */
855         err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
856                                 offsets + (partial - chain), partial);
857
858         /*
859          * The ext4_splice_branch call will free and forget any buffers
860          * on the new chain if there is a failure, but that risks using
861          * up transaction credits, especially for bitmaps where the
862          * credits cannot be returned.  Can we handle this somehow?  We
863          * may need to return -EAGAIN upwards in the worst case.  --sct
864          */
865         if (!err)
866                 err = ext4_splice_branch(handle, inode, iblock,
867                                         partial, indirect_blks, count);
868         /*
869          * i_disksize growing is protected by i_data_sem.  Don't forget to
870          * protect it if you're about to implement concurrent
871          * ext4_get_block() -bzzz
872         */
873         if (!err && extend_disksize && inode->i_size > ei->i_disksize)
874                 ei->i_disksize = inode->i_size;
875         if (err)
876                 goto cleanup;
877
878         set_buffer_new(bh_result);
879 got_it:
880         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
881         if (count > blocks_to_boundary)
882                 set_buffer_boundary(bh_result);
883         err = count;
884         /* Clean up and exit */
885         partial = chain + depth - 1;    /* the whole chain */
886 cleanup:
887         while (partial > chain) {
888                 BUFFER_TRACE(partial->bh, "call brelse");
889                 brelse(partial->bh);
890                 partial--;
891         }
892         BUFFER_TRACE(bh_result, "returned");
893 out:
894         return err;
895 }
896
897 #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
898
899 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
900                         unsigned long max_blocks, struct buffer_head *bh,
901                         int create, int extend_disksize)
902 {
903         int retval;
904         if (create) {
905                 down_write((&EXT4_I(inode)->i_data_sem));
906         } else {
907                 down_read((&EXT4_I(inode)->i_data_sem));
908         }
909         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
910                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
911                                 bh, create, extend_disksize);
912         } else {
913                 retval = ext4_get_blocks_handle(handle, inode, block,
914                                 max_blocks, bh, create, extend_disksize);
915         }
916         if (create) {
917                 up_write((&EXT4_I(inode)->i_data_sem));
918         } else {
919                 up_read((&EXT4_I(inode)->i_data_sem));
920         }
921         return retval;
922 }
923
924 static int ext4_get_block(struct inode *inode, sector_t iblock,
925                         struct buffer_head *bh_result, int create)
926 {
927         handle_t *handle = ext4_journal_current_handle();
928         int ret = 0;
929         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
930
931         if (!create)
932                 goto get_block;         /* A read */
933
934         if (max_blocks == 1)
935                 goto get_block;         /* A single block get */
936
937         if (handle->h_transaction->t_state == T_LOCKED) {
938                 /*
939                  * Huge direct-io writes can hold off commits for long
940                  * periods of time.  Let this commit run.
941                  */
942                 ext4_journal_stop(handle);
943                 handle = ext4_journal_start(inode, DIO_CREDITS);
944                 if (IS_ERR(handle))
945                         ret = PTR_ERR(handle);
946                 goto get_block;
947         }
948
949         if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
950                 /*
951                  * Getting low on buffer credits...
952                  */
953                 ret = ext4_journal_extend(handle, DIO_CREDITS);
954                 if (ret > 0) {
955                         /*
956                          * Couldn't extend the transaction.  Start a new one.
957                          */
958                         ret = ext4_journal_restart(handle, DIO_CREDITS);
959                 }
960         }
961
962 get_block:
963         if (ret == 0) {
964                 ret = ext4_get_blocks_wrap(handle, inode, iblock,
965                                         max_blocks, bh_result, create, 0);
966                 if (ret > 0) {
967                         bh_result->b_size = (ret << inode->i_blkbits);
968                         ret = 0;
969                 }
970         }
971         return ret;
972 }
973
974 /*
975  * `handle' can be NULL if create is zero
976  */
977 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
978                                 ext4_lblk_t block, int create, int *errp)
979 {
980         struct buffer_head dummy;
981         int fatal = 0, err;
982
983         J_ASSERT(handle != NULL || create == 0);
984
985         dummy.b_state = 0;
986         dummy.b_blocknr = -1000;
987         buffer_trace_init(&dummy.b_history);
988         err = ext4_get_blocks_wrap(handle, inode, block, 1,
989                                         &dummy, create, 1);
990         /*
991          * ext4_get_blocks_handle() returns number of blocks
992          * mapped. 0 in case of a HOLE.
993          */
994         if (err > 0) {
995                 if (err > 1)
996                         WARN_ON(1);
997                 err = 0;
998         }
999         *errp = err;
1000         if (!err && buffer_mapped(&dummy)) {
1001                 struct buffer_head *bh;
1002                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1003                 if (!bh) {
1004                         *errp = -EIO;
1005                         goto err;
1006                 }
1007                 if (buffer_new(&dummy)) {
1008                         J_ASSERT(create != 0);
1009                         J_ASSERT(handle != NULL);
1010
1011                         /*
1012                          * Now that we do not always journal data, we should
1013                          * keep in mind whether this should always journal the
1014                          * new buffer as metadata.  For now, regular file
1015                          * writes use ext4_get_block instead, so it's not a
1016                          * problem.
1017                          */
1018                         lock_buffer(bh);
1019                         BUFFER_TRACE(bh, "call get_create_access");
1020                         fatal = ext4_journal_get_create_access(handle, bh);
1021                         if (!fatal && !buffer_uptodate(bh)) {
1022                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1023                                 set_buffer_uptodate(bh);
1024                         }
1025                         unlock_buffer(bh);
1026                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1027                         err = ext4_journal_dirty_metadata(handle, bh);
1028                         if (!fatal)
1029                                 fatal = err;
1030                 } else {
1031                         BUFFER_TRACE(bh, "not a new buffer");
1032                 }
1033                 if (fatal) {
1034                         *errp = fatal;
1035                         brelse(bh);
1036                         bh = NULL;
1037                 }
1038                 return bh;
1039         }
1040 err:
1041         return NULL;
1042 }
1043
1044 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1045                                ext4_lblk_t block, int create, int *err)
1046 {
1047         struct buffer_head * bh;
1048
1049         bh = ext4_getblk(handle, inode, block, create, err);
1050         if (!bh)
1051                 return bh;
1052         if (buffer_uptodate(bh))
1053                 return bh;
1054         ll_rw_block(READ_META, 1, &bh);
1055         wait_on_buffer(bh);
1056         if (buffer_uptodate(bh))
1057                 return bh;
1058         put_bh(bh);
1059         *err = -EIO;
1060         return NULL;
1061 }
1062
1063 static int walk_page_buffers(   handle_t *handle,
1064                                 struct buffer_head *head,
1065                                 unsigned from,
1066                                 unsigned to,
1067                                 int *partial,
1068                                 int (*fn)(      handle_t *handle,
1069                                                 struct buffer_head *bh))
1070 {
1071         struct buffer_head *bh;
1072         unsigned block_start, block_end;
1073         unsigned blocksize = head->b_size;
1074         int err, ret = 0;
1075         struct buffer_head *next;
1076
1077         for (   bh = head, block_start = 0;
1078                 ret == 0 && (bh != head || !block_start);
1079                 block_start = block_end, bh = next)
1080         {
1081                 next = bh->b_this_page;
1082                 block_end = block_start + blocksize;
1083                 if (block_end <= from || block_start >= to) {
1084                         if (partial && !buffer_uptodate(bh))
1085                                 *partial = 1;
1086                         continue;
1087                 }
1088                 err = (*fn)(handle, bh);
1089                 if (!ret)
1090                         ret = err;
1091         }
1092         return ret;
1093 }
1094
1095 /*
1096  * To preserve ordering, it is essential that the hole instantiation and
1097  * the data write be encapsulated in a single transaction.  We cannot
1098  * close off a transaction and start a new one between the ext4_get_block()
1099  * and the commit_write().  So doing the jbd2_journal_start at the start of
1100  * prepare_write() is the right place.
1101  *
1102  * Also, this function can nest inside ext4_writepage() ->
1103  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1104  * has generated enough buffer credits to do the whole page.  So we won't
1105  * block on the journal in that case, which is good, because the caller may
1106  * be PF_MEMALLOC.
1107  *
1108  * By accident, ext4 can be reentered when a transaction is open via
1109  * quota file writes.  If we were to commit the transaction while thus
1110  * reentered, there can be a deadlock - we would be holding a quota
1111  * lock, and the commit would never complete if another thread had a
1112  * transaction open and was blocking on the quota lock - a ranking
1113  * violation.
1114  *
1115  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1116  * will _not_ run commit under these circumstances because handle->h_ref
1117  * is elevated.  We'll still have enough credits for the tiny quotafile
1118  * write.
1119  */
1120 static int do_journal_get_write_access(handle_t *handle,
1121                                         struct buffer_head *bh)
1122 {
1123         if (!buffer_mapped(bh) || buffer_freed(bh))
1124                 return 0;
1125         return ext4_journal_get_write_access(handle, bh);
1126 }
1127
1128 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1129                                 loff_t pos, unsigned len, unsigned flags,
1130                                 struct page **pagep, void **fsdata)
1131 {
1132         struct inode *inode = mapping->host;
1133         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1134         handle_t *handle;
1135         int retries = 0;
1136         struct page *page;
1137         pgoff_t index;
1138         unsigned from, to;
1139
1140         index = pos >> PAGE_CACHE_SHIFT;
1141         from = pos & (PAGE_CACHE_SIZE - 1);
1142         to = from + len;
1143
1144 retry:
1145         page = __grab_cache_page(mapping, index);
1146         if (!page)
1147                 return -ENOMEM;
1148         *pagep = page;
1149
1150         handle = ext4_journal_start(inode, needed_blocks);
1151         if (IS_ERR(handle)) {
1152                 unlock_page(page);
1153                 page_cache_release(page);
1154                 ret = PTR_ERR(handle);
1155                 goto out;
1156         }
1157
1158         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1159                                                         ext4_get_block);
1160
1161         if (!ret && ext4_should_journal_data(inode)) {
1162                 ret = walk_page_buffers(handle, page_buffers(page),
1163                                 from, to, NULL, do_journal_get_write_access);
1164         }
1165
1166         if (ret) {
1167                 ext4_journal_stop(handle);
1168                 unlock_page(page);
1169                 page_cache_release(page);
1170         }
1171
1172         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1173                 goto retry;
1174 out:
1175         return ret;
1176 }
1177
1178 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1179 {
1180         int err = jbd2_journal_dirty_data(handle, bh);
1181         if (err)
1182                 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1183                                                 bh, handle, err);
1184         return err;
1185 }
1186
1187 /* For write_end() in data=journal mode */
1188 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1189 {
1190         if (!buffer_mapped(bh) || buffer_freed(bh))
1191                 return 0;
1192         set_buffer_uptodate(bh);
1193         return ext4_journal_dirty_metadata(handle, bh);
1194 }
1195
1196 /*
1197  * Generic write_end handler for ordered and writeback ext4 journal modes.
1198  * We can't use generic_write_end, because that unlocks the page and we need to
1199  * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1200  * after block_write_end.
1201  */
1202 static int ext4_generic_write_end(struct file *file,
1203                                 struct address_space *mapping,
1204                                 loff_t pos, unsigned len, unsigned copied,
1205                                 struct page *page, void *fsdata)
1206 {
1207         struct inode *inode = file->f_mapping->host;
1208
1209         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1210
1211         if (pos+copied > inode->i_size) {
1212                 i_size_write(inode, pos+copied);
1213                 mark_inode_dirty(inode);
1214         }
1215
1216         return copied;
1217 }
1218
1219 /*
1220  * We need to pick up the new inode size which generic_commit_write gave us
1221  * `file' can be NULL - eg, when called from page_symlink().
1222  *
1223  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1224  * buffers are managed internally.
1225  */
1226 static int ext4_ordered_write_end(struct file *file,
1227                                 struct address_space *mapping,
1228                                 loff_t pos, unsigned len, unsigned copied,
1229                                 struct page *page, void *fsdata)
1230 {
1231         handle_t *handle = ext4_journal_current_handle();
1232         struct inode *inode = file->f_mapping->host;
1233         unsigned from, to;
1234         int ret = 0, ret2;
1235
1236         from = pos & (PAGE_CACHE_SIZE - 1);
1237         to = from + len;
1238
1239         ret = walk_page_buffers(handle, page_buffers(page),
1240                 from, to, NULL, ext4_journal_dirty_data);
1241
1242         if (ret == 0) {
1243                 /*
1244                  * generic_write_end() will run mark_inode_dirty() if i_size
1245                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1246                  * into that.
1247                  */
1248                 loff_t new_i_size;
1249
1250                 new_i_size = pos + copied;
1251                 if (new_i_size > EXT4_I(inode)->i_disksize)
1252                         EXT4_I(inode)->i_disksize = new_i_size;
1253                 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1254                                                         page, fsdata);
1255                 if (copied < 0)
1256                         ret = copied;
1257         }
1258         ret2 = ext4_journal_stop(handle);
1259         if (!ret)
1260                 ret = ret2;
1261         unlock_page(page);
1262         page_cache_release(page);
1263
1264         return ret ? ret : copied;
1265 }
1266
1267 static int ext4_writeback_write_end(struct file *file,
1268                                 struct address_space *mapping,
1269                                 loff_t pos, unsigned len, unsigned copied,
1270                                 struct page *page, void *fsdata)
1271 {
1272         handle_t *handle = ext4_journal_current_handle();
1273         struct inode *inode = file->f_mapping->host;
1274         int ret = 0, ret2;
1275         loff_t new_i_size;
1276
1277         new_i_size = pos + copied;
1278         if (new_i_size > EXT4_I(inode)->i_disksize)
1279                 EXT4_I(inode)->i_disksize = new_i_size;
1280
1281         copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1282                                                         page, fsdata);
1283         if (copied < 0)
1284                 ret = copied;
1285
1286         ret2 = ext4_journal_stop(handle);
1287         if (!ret)
1288                 ret = ret2;
1289         unlock_page(page);
1290         page_cache_release(page);
1291
1292         return ret ? ret : copied;
1293 }
1294
1295 static int ext4_journalled_write_end(struct file *file,
1296                                 struct address_space *mapping,
1297                                 loff_t pos, unsigned len, unsigned copied,
1298                                 struct page *page, void *fsdata)
1299 {
1300         handle_t *handle = ext4_journal_current_handle();
1301         struct inode *inode = mapping->host;
1302         int ret = 0, ret2;
1303         int partial = 0;
1304         unsigned from, to;
1305
1306         from = pos & (PAGE_CACHE_SIZE - 1);
1307         to = from + len;
1308
1309         if (copied < len) {
1310                 if (!PageUptodate(page))
1311                         copied = 0;
1312                 page_zero_new_buffers(page, from+copied, to);
1313         }
1314
1315         ret = walk_page_buffers(handle, page_buffers(page), from,
1316                                 to, &partial, write_end_fn);
1317         if (!partial)
1318                 SetPageUptodate(page);
1319         if (pos+copied > inode->i_size)
1320                 i_size_write(inode, pos+copied);
1321         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1322         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1323                 EXT4_I(inode)->i_disksize = inode->i_size;
1324                 ret2 = ext4_mark_inode_dirty(handle, inode);
1325                 if (!ret)
1326                         ret = ret2;
1327         }
1328
1329         ret2 = ext4_journal_stop(handle);
1330         if (!ret)
1331                 ret = ret2;
1332         unlock_page(page);
1333         page_cache_release(page);
1334
1335         return ret ? ret : copied;
1336 }
1337
1338 /*
1339  * bmap() is special.  It gets used by applications such as lilo and by
1340  * the swapper to find the on-disk block of a specific piece of data.
1341  *
1342  * Naturally, this is dangerous if the block concerned is still in the
1343  * journal.  If somebody makes a swapfile on an ext4 data-journaling
1344  * filesystem and enables swap, then they may get a nasty shock when the
1345  * data getting swapped to that swapfile suddenly gets overwritten by
1346  * the original zero's written out previously to the journal and
1347  * awaiting writeback in the kernel's buffer cache.
1348  *
1349  * So, if we see any bmap calls here on a modified, data-journaled file,
1350  * take extra steps to flush any blocks which might be in the cache.
1351  */
1352 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1353 {
1354         struct inode *inode = mapping->host;
1355         journal_t *journal;
1356         int err;
1357
1358         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1359                 /*
1360                  * This is a REALLY heavyweight approach, but the use of
1361                  * bmap on dirty files is expected to be extremely rare:
1362                  * only if we run lilo or swapon on a freshly made file
1363                  * do we expect this to happen.
1364                  *
1365                  * (bmap requires CAP_SYS_RAWIO so this does not
1366                  * represent an unprivileged user DOS attack --- we'd be
1367                  * in trouble if mortal users could trigger this path at
1368                  * will.)
1369                  *
1370                  * NB. EXT4_STATE_JDATA is not set on files other than
1371                  * regular files.  If somebody wants to bmap a directory
1372                  * or symlink and gets confused because the buffer
1373                  * hasn't yet been flushed to disk, they deserve
1374                  * everything they get.
1375                  */
1376
1377                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1378                 journal = EXT4_JOURNAL(inode);
1379                 jbd2_journal_lock_updates(journal);
1380                 err = jbd2_journal_flush(journal);
1381                 jbd2_journal_unlock_updates(journal);
1382
1383                 if (err)
1384                         return 0;
1385         }
1386
1387         return generic_block_bmap(mapping,block,ext4_get_block);
1388 }
1389
1390 static int bget_one(handle_t *handle, struct buffer_head *bh)
1391 {
1392         get_bh(bh);
1393         return 0;
1394 }
1395
1396 static int bput_one(handle_t *handle, struct buffer_head *bh)
1397 {
1398         put_bh(bh);
1399         return 0;
1400 }
1401
1402 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1403 {
1404         if (buffer_mapped(bh))
1405                 return ext4_journal_dirty_data(handle, bh);
1406         return 0;
1407 }
1408
1409 /*
1410  * Note that we always start a transaction even if we're not journalling
1411  * data.  This is to preserve ordering: any hole instantiation within
1412  * __block_write_full_page -> ext4_get_block() should be journalled
1413  * along with the data so we don't crash and then get metadata which
1414  * refers to old data.
1415  *
1416  * In all journalling modes block_write_full_page() will start the I/O.
1417  *
1418  * Problem:
1419  *
1420  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1421  *              ext4_writepage()
1422  *
1423  * Similar for:
1424  *
1425  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1426  *
1427  * Same applies to ext4_get_block().  We will deadlock on various things like
1428  * lock_journal and i_data_sem
1429  *
1430  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1431  * allocations fail.
1432  *
1433  * 16May01: If we're reentered then journal_current_handle() will be
1434  *          non-zero. We simply *return*.
1435  *
1436  * 1 July 2001: @@@ FIXME:
1437  *   In journalled data mode, a data buffer may be metadata against the
1438  *   current transaction.  But the same file is part of a shared mapping
1439  *   and someone does a writepage() on it.
1440  *
1441  *   We will move the buffer onto the async_data list, but *after* it has
1442  *   been dirtied. So there's a small window where we have dirty data on
1443  *   BJ_Metadata.
1444  *
1445  *   Note that this only applies to the last partial page in the file.  The
1446  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1447  *   broken code anyway: it's wrong for msync()).
1448  *
1449  *   It's a rare case: affects the final partial page, for journalled data
1450  *   where the file is subject to bith write() and writepage() in the same
1451  *   transction.  To fix it we'll need a custom block_write_full_page().
1452  *   We'll probably need that anyway for journalling writepage() output.
1453  *
1454  * We don't honour synchronous mounts for writepage().  That would be
1455  * disastrous.  Any write() or metadata operation will sync the fs for
1456  * us.
1457  *
1458  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1459  * we don't need to open a transaction here.
1460  */
1461 static int ext4_ordered_writepage(struct page *page,
1462                                 struct writeback_control *wbc)
1463 {
1464         struct inode *inode = page->mapping->host;
1465         struct buffer_head *page_bufs;
1466         handle_t *handle = NULL;
1467         int ret = 0;
1468         int err;
1469
1470         J_ASSERT(PageLocked(page));
1471
1472         /*
1473          * We give up here if we're reentered, because it might be for a
1474          * different filesystem.
1475          */
1476         if (ext4_journal_current_handle())
1477                 goto out_fail;
1478
1479         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1480
1481         if (IS_ERR(handle)) {
1482                 ret = PTR_ERR(handle);
1483                 goto out_fail;
1484         }
1485
1486         if (!page_has_buffers(page)) {
1487                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1488                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1489         }
1490         page_bufs = page_buffers(page);
1491         walk_page_buffers(handle, page_bufs, 0,
1492                         PAGE_CACHE_SIZE, NULL, bget_one);
1493
1494         ret = block_write_full_page(page, ext4_get_block, wbc);
1495
1496         /*
1497          * The page can become unlocked at any point now, and
1498          * truncate can then come in and change things.  So we
1499          * can't touch *page from now on.  But *page_bufs is
1500          * safe due to elevated refcount.
1501          */
1502
1503         /*
1504          * And attach them to the current transaction.  But only if
1505          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1506          * and generally junk.
1507          */
1508         if (ret == 0) {
1509                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1510                                         NULL, jbd2_journal_dirty_data_fn);
1511                 if (!ret)
1512                         ret = err;
1513         }
1514         walk_page_buffers(handle, page_bufs, 0,
1515                         PAGE_CACHE_SIZE, NULL, bput_one);
1516         err = ext4_journal_stop(handle);
1517         if (!ret)
1518                 ret = err;
1519         return ret;
1520
1521 out_fail:
1522         redirty_page_for_writepage(wbc, page);
1523         unlock_page(page);
1524         return ret;
1525 }
1526
1527 static int ext4_writeback_writepage(struct page *page,
1528                                 struct writeback_control *wbc)
1529 {
1530         struct inode *inode = page->mapping->host;
1531         handle_t *handle = NULL;
1532         int ret = 0;
1533         int err;
1534
1535         if (ext4_journal_current_handle())
1536                 goto out_fail;
1537
1538         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1539         if (IS_ERR(handle)) {
1540                 ret = PTR_ERR(handle);
1541                 goto out_fail;
1542         }
1543
1544         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1545                 ret = nobh_writepage(page, ext4_get_block, wbc);
1546         else
1547                 ret = block_write_full_page(page, ext4_get_block, wbc);
1548
1549         err = ext4_journal_stop(handle);
1550         if (!ret)
1551                 ret = err;
1552         return ret;
1553
1554 out_fail:
1555         redirty_page_for_writepage(wbc, page);
1556         unlock_page(page);
1557         return ret;
1558 }
1559
1560 static int ext4_journalled_writepage(struct page *page,
1561                                 struct writeback_control *wbc)
1562 {
1563         struct inode *inode = page->mapping->host;
1564         handle_t *handle = NULL;
1565         int ret = 0;
1566         int err;
1567
1568         if (ext4_journal_current_handle())
1569                 goto no_write;
1570
1571         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1572         if (IS_ERR(handle)) {
1573                 ret = PTR_ERR(handle);
1574                 goto no_write;
1575         }
1576
1577         if (!page_has_buffers(page) || PageChecked(page)) {
1578                 /*
1579                  * It's mmapped pagecache.  Add buffers and journal it.  There
1580                  * doesn't seem much point in redirtying the page here.
1581                  */
1582                 ClearPageChecked(page);
1583                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1584                                         ext4_get_block);
1585                 if (ret != 0) {
1586                         ext4_journal_stop(handle);
1587                         goto out_unlock;
1588                 }
1589                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1590                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1591
1592                 err = walk_page_buffers(handle, page_buffers(page), 0,
1593                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1594                 if (ret == 0)
1595                         ret = err;
1596                 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1597                 unlock_page(page);
1598         } else {
1599                 /*
1600                  * It may be a page full of checkpoint-mode buffers.  We don't
1601                  * really know unless we go poke around in the buffer_heads.
1602                  * But block_write_full_page will do the right thing.
1603                  */
1604                 ret = block_write_full_page(page, ext4_get_block, wbc);
1605         }
1606         err = ext4_journal_stop(handle);
1607         if (!ret)
1608                 ret = err;
1609 out:
1610         return ret;
1611
1612 no_write:
1613         redirty_page_for_writepage(wbc, page);
1614 out_unlock:
1615         unlock_page(page);
1616         goto out;
1617 }
1618
1619 static int ext4_readpage(struct file *file, struct page *page)
1620 {
1621         return mpage_readpage(page, ext4_get_block);
1622 }
1623
1624 static int
1625 ext4_readpages(struct file *file, struct address_space *mapping,
1626                 struct list_head *pages, unsigned nr_pages)
1627 {
1628         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1629 }
1630
1631 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1632 {
1633         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1634
1635         /*
1636          * If it's a full truncate we just forget about the pending dirtying
1637          */
1638         if (offset == 0)
1639                 ClearPageChecked(page);
1640
1641         jbd2_journal_invalidatepage(journal, page, offset);
1642 }
1643
1644 static int ext4_releasepage(struct page *page, gfp_t wait)
1645 {
1646         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1647
1648         WARN_ON(PageChecked(page));
1649         if (!page_has_buffers(page))
1650                 return 0;
1651         return jbd2_journal_try_to_free_buffers(journal, page, wait);
1652 }
1653
1654 /*
1655  * If the O_DIRECT write will extend the file then add this inode to the
1656  * orphan list.  So recovery will truncate it back to the original size
1657  * if the machine crashes during the write.
1658  *
1659  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1660  * crashes then stale disk data _may_ be exposed inside the file.
1661  */
1662 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1663                         const struct iovec *iov, loff_t offset,
1664                         unsigned long nr_segs)
1665 {
1666         struct file *file = iocb->ki_filp;
1667         struct inode *inode = file->f_mapping->host;
1668         struct ext4_inode_info *ei = EXT4_I(inode);
1669         handle_t *handle = NULL;
1670         ssize_t ret;
1671         int orphan = 0;
1672         size_t count = iov_length(iov, nr_segs);
1673
1674         if (rw == WRITE) {
1675                 loff_t final_size = offset + count;
1676
1677                 handle = ext4_journal_start(inode, DIO_CREDITS);
1678                 if (IS_ERR(handle)) {
1679                         ret = PTR_ERR(handle);
1680                         goto out;
1681                 }
1682                 if (final_size > inode->i_size) {
1683                         ret = ext4_orphan_add(handle, inode);
1684                         if (ret)
1685                                 goto out_stop;
1686                         orphan = 1;
1687                         ei->i_disksize = inode->i_size;
1688                 }
1689         }
1690
1691         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1692                                  offset, nr_segs,
1693                                  ext4_get_block, NULL);
1694
1695         /*
1696          * Reacquire the handle: ext4_get_block() can restart the transaction
1697          */
1698         handle = ext4_journal_current_handle();
1699
1700 out_stop:
1701         if (handle) {
1702                 int err;
1703
1704                 if (orphan && inode->i_nlink)
1705                         ext4_orphan_del(handle, inode);
1706                 if (orphan && ret > 0) {
1707                         loff_t end = offset + ret;
1708                         if (end > inode->i_size) {
1709                                 ei->i_disksize = end;
1710                                 i_size_write(inode, end);
1711                                 /*
1712                                  * We're going to return a positive `ret'
1713                                  * here due to non-zero-length I/O, so there's
1714                                  * no way of reporting error returns from
1715                                  * ext4_mark_inode_dirty() to userspace.  So
1716                                  * ignore it.
1717                                  */
1718                                 ext4_mark_inode_dirty(handle, inode);
1719                         }
1720                 }
1721                 err = ext4_journal_stop(handle);
1722                 if (ret == 0)
1723                         ret = err;
1724         }
1725 out:
1726         return ret;
1727 }
1728
1729 /*
1730  * Pages can be marked dirty completely asynchronously from ext4's journalling
1731  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1732  * much here because ->set_page_dirty is called under VFS locks.  The page is
1733  * not necessarily locked.
1734  *
1735  * We cannot just dirty the page and leave attached buffers clean, because the
1736  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1737  * or jbddirty because all the journalling code will explode.
1738  *
1739  * So what we do is to mark the page "pending dirty" and next time writepage
1740  * is called, propagate that into the buffers appropriately.
1741  */
1742 static int ext4_journalled_set_page_dirty(struct page *page)
1743 {
1744         SetPageChecked(page);
1745         return __set_page_dirty_nobuffers(page);
1746 }
1747
1748 static const struct address_space_operations ext4_ordered_aops = {
1749         .readpage       = ext4_readpage,
1750         .readpages      = ext4_readpages,
1751         .writepage      = ext4_ordered_writepage,
1752         .sync_page      = block_sync_page,
1753         .write_begin    = ext4_write_begin,
1754         .write_end      = ext4_ordered_write_end,
1755         .bmap           = ext4_bmap,
1756         .invalidatepage = ext4_invalidatepage,
1757         .releasepage    = ext4_releasepage,
1758         .direct_IO      = ext4_direct_IO,
1759         .migratepage    = buffer_migrate_page,
1760 };
1761
1762 static const struct address_space_operations ext4_writeback_aops = {
1763         .readpage       = ext4_readpage,
1764         .readpages      = ext4_readpages,
1765         .writepage      = ext4_writeback_writepage,
1766         .sync_page      = block_sync_page,
1767         .write_begin    = ext4_write_begin,
1768         .write_end      = ext4_writeback_write_end,
1769         .bmap           = ext4_bmap,
1770         .invalidatepage = ext4_invalidatepage,
1771         .releasepage    = ext4_releasepage,
1772         .direct_IO      = ext4_direct_IO,
1773         .migratepage    = buffer_migrate_page,
1774 };
1775
1776 static const struct address_space_operations ext4_journalled_aops = {
1777         .readpage       = ext4_readpage,
1778         .readpages      = ext4_readpages,
1779         .writepage      = ext4_journalled_writepage,
1780         .sync_page      = block_sync_page,
1781         .write_begin    = ext4_write_begin,
1782         .write_end      = ext4_journalled_write_end,
1783         .set_page_dirty = ext4_journalled_set_page_dirty,
1784         .bmap           = ext4_bmap,
1785         .invalidatepage = ext4_invalidatepage,
1786         .releasepage    = ext4_releasepage,
1787 };
1788
1789 void ext4_set_aops(struct inode *inode)
1790 {
1791         if (ext4_should_order_data(inode))
1792                 inode->i_mapping->a_ops = &ext4_ordered_aops;
1793         else if (ext4_should_writeback_data(inode))
1794                 inode->i_mapping->a_ops = &ext4_writeback_aops;
1795         else
1796                 inode->i_mapping->a_ops = &ext4_journalled_aops;
1797 }
1798
1799 /*
1800  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1801  * up to the end of the block which corresponds to `from'.
1802  * This required during truncate. We need to physically zero the tail end
1803  * of that block so it doesn't yield old data if the file is later grown.
1804  */
1805 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1806                 struct address_space *mapping, loff_t from)
1807 {
1808         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1809         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1810         unsigned blocksize, length, pos;
1811         ext4_lblk_t iblock;
1812         struct inode *inode = mapping->host;
1813         struct buffer_head *bh;
1814         int err = 0;
1815
1816         blocksize = inode->i_sb->s_blocksize;
1817         length = blocksize - (offset & (blocksize - 1));
1818         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1819
1820         /*
1821          * For "nobh" option,  we can only work if we don't need to
1822          * read-in the page - otherwise we create buffers to do the IO.
1823          */
1824         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1825              ext4_should_writeback_data(inode) && PageUptodate(page)) {
1826                 zero_user_page(page, offset, length, KM_USER0);
1827                 set_page_dirty(page);
1828                 goto unlock;
1829         }
1830
1831         if (!page_has_buffers(page))
1832                 create_empty_buffers(page, blocksize, 0);
1833
1834         /* Find the buffer that contains "offset" */
1835         bh = page_buffers(page);
1836         pos = blocksize;
1837         while (offset >= pos) {
1838                 bh = bh->b_this_page;
1839                 iblock++;
1840                 pos += blocksize;
1841         }
1842
1843         err = 0;
1844         if (buffer_freed(bh)) {
1845                 BUFFER_TRACE(bh, "freed: skip");
1846                 goto unlock;
1847         }
1848
1849         if (!buffer_mapped(bh)) {
1850                 BUFFER_TRACE(bh, "unmapped");
1851                 ext4_get_block(inode, iblock, bh, 0);
1852                 /* unmapped? It's a hole - nothing to do */
1853                 if (!buffer_mapped(bh)) {
1854                         BUFFER_TRACE(bh, "still unmapped");
1855                         goto unlock;
1856                 }
1857         }
1858
1859         /* Ok, it's mapped. Make sure it's up-to-date */
1860         if (PageUptodate(page))
1861                 set_buffer_uptodate(bh);
1862
1863         if (!buffer_uptodate(bh)) {
1864                 err = -EIO;
1865                 ll_rw_block(READ, 1, &bh);
1866                 wait_on_buffer(bh);
1867                 /* Uhhuh. Read error. Complain and punt. */
1868                 if (!buffer_uptodate(bh))
1869                         goto unlock;
1870         }
1871
1872         if (ext4_should_journal_data(inode)) {
1873                 BUFFER_TRACE(bh, "get write access");
1874                 err = ext4_journal_get_write_access(handle, bh);
1875                 if (err)
1876                         goto unlock;
1877         }
1878
1879         zero_user_page(page, offset, length, KM_USER0);
1880
1881         BUFFER_TRACE(bh, "zeroed end of block");
1882
1883         err = 0;
1884         if (ext4_should_journal_data(inode)) {
1885                 err = ext4_journal_dirty_metadata(handle, bh);
1886         } else {
1887                 if (ext4_should_order_data(inode))
1888                         err = ext4_journal_dirty_data(handle, bh);
1889                 mark_buffer_dirty(bh);
1890         }
1891
1892 unlock:
1893         unlock_page(page);
1894         page_cache_release(page);
1895         return err;
1896 }
1897
1898 /*
1899  * Probably it should be a library function... search for first non-zero word
1900  * or memcmp with zero_page, whatever is better for particular architecture.
1901  * Linus?
1902  */
1903 static inline int all_zeroes(__le32 *p, __le32 *q)
1904 {
1905         while (p < q)
1906                 if (*p++)
1907                         return 0;
1908         return 1;
1909 }
1910
1911 /**
1912  *      ext4_find_shared - find the indirect blocks for partial truncation.
1913  *      @inode:   inode in question
1914  *      @depth:   depth of the affected branch
1915  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1916  *      @chain:   place to store the pointers to partial indirect blocks
1917  *      @top:     place to the (detached) top of branch
1918  *
1919  *      This is a helper function used by ext4_truncate().
1920  *
1921  *      When we do truncate() we may have to clean the ends of several
1922  *      indirect blocks but leave the blocks themselves alive. Block is
1923  *      partially truncated if some data below the new i_size is refered
1924  *      from it (and it is on the path to the first completely truncated
1925  *      data block, indeed).  We have to free the top of that path along
1926  *      with everything to the right of the path. Since no allocation
1927  *      past the truncation point is possible until ext4_truncate()
1928  *      finishes, we may safely do the latter, but top of branch may
1929  *      require special attention - pageout below the truncation point
1930  *      might try to populate it.
1931  *
1932  *      We atomically detach the top of branch from the tree, store the
1933  *      block number of its root in *@top, pointers to buffer_heads of
1934  *      partially truncated blocks - in @chain[].bh and pointers to
1935  *      their last elements that should not be removed - in
1936  *      @chain[].p. Return value is the pointer to last filled element
1937  *      of @chain.
1938  *
1939  *      The work left to caller to do the actual freeing of subtrees:
1940  *              a) free the subtree starting from *@top
1941  *              b) free the subtrees whose roots are stored in
1942  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1943  *              c) free the subtrees growing from the inode past the @chain[0].
1944  *                      (no partially truncated stuff there).  */
1945
1946 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1947                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
1948 {
1949         Indirect *partial, *p;
1950         int k, err;
1951
1952         *top = 0;
1953         /* Make k index the deepest non-null offest + 1 */
1954         for (k = depth; k > 1 && !offsets[k-1]; k--)
1955                 ;
1956         partial = ext4_get_branch(inode, k, offsets, chain, &err);
1957         /* Writer: pointers */
1958         if (!partial)
1959                 partial = chain + k-1;
1960         /*
1961          * If the branch acquired continuation since we've looked at it -
1962          * fine, it should all survive and (new) top doesn't belong to us.
1963          */
1964         if (!partial->key && *partial->p)
1965                 /* Writer: end */
1966                 goto no_top;
1967         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1968                 ;
1969         /*
1970          * OK, we've found the last block that must survive. The rest of our
1971          * branch should be detached before unlocking. However, if that rest
1972          * of branch is all ours and does not grow immediately from the inode
1973          * it's easier to cheat and just decrement partial->p.
1974          */
1975         if (p == chain + k - 1 && p > chain) {
1976                 p->p--;
1977         } else {
1978                 *top = *p->p;
1979                 /* Nope, don't do this in ext4.  Must leave the tree intact */
1980 #if 0
1981                 *p->p = 0;
1982 #endif
1983         }
1984         /* Writer: end */
1985
1986         while(partial > p) {
1987                 brelse(partial->bh);
1988                 partial--;
1989         }
1990 no_top:
1991         return partial;
1992 }
1993
1994 /*
1995  * Zero a number of block pointers in either an inode or an indirect block.
1996  * If we restart the transaction we must again get write access to the
1997  * indirect block for further modification.
1998  *
1999  * We release `count' blocks on disk, but (last - first) may be greater
2000  * than `count' because there can be holes in there.
2001  */
2002 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2003                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2004                 unsigned long count, __le32 *first, __le32 *last)
2005 {
2006         __le32 *p;
2007         if (try_to_extend_transaction(handle, inode)) {
2008                 if (bh) {
2009                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2010                         ext4_journal_dirty_metadata(handle, bh);
2011                 }
2012                 ext4_mark_inode_dirty(handle, inode);
2013                 ext4_journal_test_restart(handle, inode);
2014                 if (bh) {
2015                         BUFFER_TRACE(bh, "retaking write access");
2016                         ext4_journal_get_write_access(handle, bh);
2017                 }
2018         }
2019
2020         /*
2021          * Any buffers which are on the journal will be in memory. We find
2022          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2023          * on them.  We've already detached each block from the file, so
2024          * bforget() in jbd2_journal_forget() should be safe.
2025          *
2026          * AKPM: turn on bforget in jbd2_journal_forget()!!!
2027          */
2028         for (p = first; p < last; p++) {
2029                 u32 nr = le32_to_cpu(*p);
2030                 if (nr) {
2031                         struct buffer_head *tbh;
2032
2033                         *p = 0;
2034                         tbh = sb_find_get_block(inode->i_sb, nr);
2035                         ext4_forget(handle, 0, inode, tbh, nr);
2036                 }
2037         }
2038
2039         ext4_free_blocks(handle, inode, block_to_free, count);
2040 }
2041
2042 /**
2043  * ext4_free_data - free a list of data blocks
2044  * @handle:     handle for this transaction
2045  * @inode:      inode we are dealing with
2046  * @this_bh:    indirect buffer_head which contains *@first and *@last
2047  * @first:      array of block numbers
2048  * @last:       points immediately past the end of array
2049  *
2050  * We are freeing all blocks refered from that array (numbers are stored as
2051  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2052  *
2053  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2054  * blocks are contiguous then releasing them at one time will only affect one
2055  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2056  * actually use a lot of journal space.
2057  *
2058  * @this_bh will be %NULL if @first and @last point into the inode's direct
2059  * block pointers.
2060  */
2061 static void ext4_free_data(handle_t *handle, struct inode *inode,
2062                            struct buffer_head *this_bh,
2063                            __le32 *first, __le32 *last)
2064 {
2065         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2066         unsigned long count = 0;            /* Number of blocks in the run */
2067         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2068                                                corresponding to
2069                                                block_to_free */
2070         ext4_fsblk_t nr;                    /* Current block # */
2071         __le32 *p;                          /* Pointer into inode/ind
2072                                                for current block */
2073         int err;
2074
2075         if (this_bh) {                          /* For indirect block */
2076                 BUFFER_TRACE(this_bh, "get_write_access");
2077                 err = ext4_journal_get_write_access(handle, this_bh);
2078                 /* Important: if we can't update the indirect pointers
2079                  * to the blocks, we can't free them. */
2080                 if (err)
2081                         return;
2082         }
2083
2084         for (p = first; p < last; p++) {
2085                 nr = le32_to_cpu(*p);
2086                 if (nr) {
2087                         /* accumulate blocks to free if they're contiguous */
2088                         if (count == 0) {
2089                                 block_to_free = nr;
2090                                 block_to_free_p = p;
2091                                 count = 1;
2092                         } else if (nr == block_to_free + count) {
2093                                 count++;
2094                         } else {
2095                                 ext4_clear_blocks(handle, inode, this_bh,
2096                                                   block_to_free,
2097                                                   count, block_to_free_p, p);
2098                                 block_to_free = nr;
2099                                 block_to_free_p = p;
2100                                 count = 1;
2101                         }
2102                 }
2103         }
2104
2105         if (count > 0)
2106                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2107                                   count, block_to_free_p, p);
2108
2109         if (this_bh) {
2110                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2111                 ext4_journal_dirty_metadata(handle, this_bh);
2112         }
2113 }
2114
2115 /**
2116  *      ext4_free_branches - free an array of branches
2117  *      @handle: JBD handle for this transaction
2118  *      @inode: inode we are dealing with
2119  *      @parent_bh: the buffer_head which contains *@first and *@last
2120  *      @first: array of block numbers
2121  *      @last:  pointer immediately past the end of array
2122  *      @depth: depth of the branches to free
2123  *
2124  *      We are freeing all blocks refered from these branches (numbers are
2125  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2126  *      appropriately.
2127  */
2128 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2129                                struct buffer_head *parent_bh,
2130                                __le32 *first, __le32 *last, int depth)
2131 {
2132         ext4_fsblk_t nr;
2133         __le32 *p;
2134
2135         if (is_handle_aborted(handle))
2136                 return;
2137
2138         if (depth--) {
2139                 struct buffer_head *bh;
2140                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2141                 p = last;
2142                 while (--p >= first) {
2143                         nr = le32_to_cpu(*p);
2144                         if (!nr)
2145                                 continue;               /* A hole */
2146
2147                         /* Go read the buffer for the next level down */
2148                         bh = sb_bread(inode->i_sb, nr);
2149
2150                         /*
2151                          * A read failure? Report error and clear slot
2152                          * (should be rare).
2153                          */
2154                         if (!bh) {
2155                                 ext4_error(inode->i_sb, "ext4_free_branches",
2156                                            "Read failure, inode=%lu, block=%llu",
2157                                            inode->i_ino, nr);
2158                                 continue;
2159                         }
2160
2161                         /* This zaps the entire block.  Bottom up. */
2162                         BUFFER_TRACE(bh, "free child branches");
2163                         ext4_free_branches(handle, inode, bh,
2164                                            (__le32*)bh->b_data,
2165                                            (__le32*)bh->b_data + addr_per_block,
2166                                            depth);
2167
2168                         /*
2169                          * We've probably journalled the indirect block several
2170                          * times during the truncate.  But it's no longer
2171                          * needed and we now drop it from the transaction via
2172                          * jbd2_journal_revoke().
2173                          *
2174                          * That's easy if it's exclusively part of this
2175                          * transaction.  But if it's part of the committing
2176                          * transaction then jbd2_journal_forget() will simply
2177                          * brelse() it.  That means that if the underlying
2178                          * block is reallocated in ext4_get_block(),
2179                          * unmap_underlying_metadata() will find this block
2180                          * and will try to get rid of it.  damn, damn.
2181                          *
2182                          * If this block has already been committed to the
2183                          * journal, a revoke record will be written.  And
2184                          * revoke records must be emitted *before* clearing
2185                          * this block's bit in the bitmaps.
2186                          */
2187                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2188
2189                         /*
2190                          * Everything below this this pointer has been
2191                          * released.  Now let this top-of-subtree go.
2192                          *
2193                          * We want the freeing of this indirect block to be
2194                          * atomic in the journal with the updating of the
2195                          * bitmap block which owns it.  So make some room in
2196                          * the journal.
2197                          *
2198                          * We zero the parent pointer *after* freeing its
2199                          * pointee in the bitmaps, so if extend_transaction()
2200                          * for some reason fails to put the bitmap changes and
2201                          * the release into the same transaction, recovery
2202                          * will merely complain about releasing a free block,
2203                          * rather than leaking blocks.
2204                          */
2205                         if (is_handle_aborted(handle))
2206                                 return;
2207                         if (try_to_extend_transaction(handle, inode)) {
2208                                 ext4_mark_inode_dirty(handle, inode);
2209                                 ext4_journal_test_restart(handle, inode);
2210                         }
2211
2212                         ext4_free_blocks(handle, inode, nr, 1);
2213
2214                         if (parent_bh) {
2215                                 /*
2216                                  * The block which we have just freed is
2217                                  * pointed to by an indirect block: journal it
2218                                  */
2219                                 BUFFER_TRACE(parent_bh, "get_write_access");
2220                                 if (!ext4_journal_get_write_access(handle,
2221                                                                    parent_bh)){
2222                                         *p = 0;
2223                                         BUFFER_TRACE(parent_bh,
2224                                         "call ext4_journal_dirty_metadata");
2225                                         ext4_journal_dirty_metadata(handle,
2226                                                                     parent_bh);
2227                                 }
2228                         }
2229                 }
2230         } else {
2231                 /* We have reached the bottom of the tree. */
2232                 BUFFER_TRACE(parent_bh, "free data blocks");
2233                 ext4_free_data(handle, inode, parent_bh, first, last);
2234         }
2235 }
2236
2237 /*
2238  * ext4_truncate()
2239  *
2240  * We block out ext4_get_block() block instantiations across the entire
2241  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2242  * simultaneously on behalf of the same inode.
2243  *
2244  * As we work through the truncate and commmit bits of it to the journal there
2245  * is one core, guiding principle: the file's tree must always be consistent on
2246  * disk.  We must be able to restart the truncate after a crash.
2247  *
2248  * The file's tree may be transiently inconsistent in memory (although it
2249  * probably isn't), but whenever we close off and commit a journal transaction,
2250  * the contents of (the filesystem + the journal) must be consistent and
2251  * restartable.  It's pretty simple, really: bottom up, right to left (although
2252  * left-to-right works OK too).
2253  *
2254  * Note that at recovery time, journal replay occurs *before* the restart of
2255  * truncate against the orphan inode list.
2256  *
2257  * The committed inode has the new, desired i_size (which is the same as
2258  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2259  * that this inode's truncate did not complete and it will again call
2260  * ext4_truncate() to have another go.  So there will be instantiated blocks
2261  * to the right of the truncation point in a crashed ext4 filesystem.  But
2262  * that's fine - as long as they are linked from the inode, the post-crash
2263  * ext4_truncate() run will find them and release them.
2264  */
2265 void ext4_truncate(struct inode *inode)
2266 {
2267         handle_t *handle;
2268         struct ext4_inode_info *ei = EXT4_I(inode);
2269         __le32 *i_data = ei->i_data;
2270         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2271         struct address_space *mapping = inode->i_mapping;
2272         ext4_lblk_t offsets[4];
2273         Indirect chain[4];
2274         Indirect *partial;
2275         __le32 nr = 0;
2276         int n;
2277         ext4_lblk_t last_block;
2278         unsigned blocksize = inode->i_sb->s_blocksize;
2279         struct page *page;
2280
2281         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2282             S_ISLNK(inode->i_mode)))
2283                 return;
2284         if (ext4_inode_is_fast_symlink(inode))
2285                 return;
2286         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2287                 return;
2288
2289         /*
2290          * We have to lock the EOF page here, because lock_page() nests
2291          * outside jbd2_journal_start().
2292          */
2293         if ((inode->i_size & (blocksize - 1)) == 0) {
2294                 /* Block boundary? Nothing to do */
2295                 page = NULL;
2296         } else {
2297                 page = grab_cache_page(mapping,
2298                                 inode->i_size >> PAGE_CACHE_SHIFT);
2299                 if (!page)
2300                         return;
2301         }
2302
2303         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2304                 ext4_ext_truncate(inode, page);
2305                 return;
2306         }
2307
2308         handle = start_transaction(inode);
2309         if (IS_ERR(handle)) {
2310                 if (page) {
2311                         clear_highpage(page);
2312                         flush_dcache_page(page);
2313                         unlock_page(page);
2314                         page_cache_release(page);
2315                 }
2316                 return;         /* AKPM: return what? */
2317         }
2318
2319         last_block = (inode->i_size + blocksize-1)
2320                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2321
2322         if (page)
2323                 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2324
2325         n = ext4_block_to_path(inode, last_block, offsets, NULL);
2326         if (n == 0)
2327                 goto out_stop;  /* error */
2328
2329         /*
2330          * OK.  This truncate is going to happen.  We add the inode to the
2331          * orphan list, so that if this truncate spans multiple transactions,
2332          * and we crash, we will resume the truncate when the filesystem
2333          * recovers.  It also marks the inode dirty, to catch the new size.
2334          *
2335          * Implication: the file must always be in a sane, consistent
2336          * truncatable state while each transaction commits.
2337          */
2338         if (ext4_orphan_add(handle, inode))
2339                 goto out_stop;
2340
2341         /*
2342          * The orphan list entry will now protect us from any crash which
2343          * occurs before the truncate completes, so it is now safe to propagate
2344          * the new, shorter inode size (held for now in i_size) into the
2345          * on-disk inode. We do this via i_disksize, which is the value which
2346          * ext4 *really* writes onto the disk inode.
2347          */
2348         ei->i_disksize = inode->i_size;
2349
2350         /*
2351          * From here we block out all ext4_get_block() callers who want to
2352          * modify the block allocation tree.
2353          */
2354         down_write(&ei->i_data_sem);
2355
2356         if (n == 1) {           /* direct blocks */
2357                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2358                                i_data + EXT4_NDIR_BLOCKS);
2359                 goto do_indirects;
2360         }
2361
2362         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2363         /* Kill the top of shared branch (not detached) */
2364         if (nr) {
2365                 if (partial == chain) {
2366                         /* Shared branch grows from the inode */
2367                         ext4_free_branches(handle, inode, NULL,
2368                                            &nr, &nr+1, (chain+n-1) - partial);
2369                         *partial->p = 0;
2370                         /*
2371                          * We mark the inode dirty prior to restart,
2372                          * and prior to stop.  No need for it here.
2373                          */
2374                 } else {
2375                         /* Shared branch grows from an indirect block */
2376                         BUFFER_TRACE(partial->bh, "get_write_access");
2377                         ext4_free_branches(handle, inode, partial->bh,
2378                                         partial->p,
2379                                         partial->p+1, (chain+n-1) - partial);
2380                 }
2381         }
2382         /* Clear the ends of indirect blocks on the shared branch */
2383         while (partial > chain) {
2384                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2385                                    (__le32*)partial->bh->b_data+addr_per_block,
2386                                    (chain+n-1) - partial);
2387                 BUFFER_TRACE(partial->bh, "call brelse");
2388                 brelse (partial->bh);
2389                 partial--;
2390         }
2391 do_indirects:
2392         /* Kill the remaining (whole) subtrees */
2393         switch (offsets[0]) {
2394         default:
2395                 nr = i_data[EXT4_IND_BLOCK];
2396                 if (nr) {
2397                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2398                         i_data[EXT4_IND_BLOCK] = 0;
2399                 }
2400         case EXT4_IND_BLOCK:
2401                 nr = i_data[EXT4_DIND_BLOCK];
2402                 if (nr) {
2403                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2404                         i_data[EXT4_DIND_BLOCK] = 0;
2405                 }
2406         case EXT4_DIND_BLOCK:
2407                 nr = i_data[EXT4_TIND_BLOCK];
2408                 if (nr) {
2409                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2410                         i_data[EXT4_TIND_BLOCK] = 0;
2411                 }
2412         case EXT4_TIND_BLOCK:
2413                 ;
2414         }
2415
2416         ext4_discard_reservation(inode);
2417
2418         up_write(&ei->i_data_sem);
2419         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2420         ext4_mark_inode_dirty(handle, inode);
2421
2422         /*
2423          * In a multi-transaction truncate, we only make the final transaction
2424          * synchronous
2425          */
2426         if (IS_SYNC(inode))
2427                 handle->h_sync = 1;
2428 out_stop:
2429         /*
2430          * If this was a simple ftruncate(), and the file will remain alive
2431          * then we need to clear up the orphan record which we created above.
2432          * However, if this was a real unlink then we were called by
2433          * ext4_delete_inode(), and we allow that function to clean up the
2434          * orphan info for us.
2435          */
2436         if (inode->i_nlink)
2437                 ext4_orphan_del(handle, inode);
2438
2439         ext4_journal_stop(handle);
2440 }
2441
2442 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2443                 unsigned long ino, struct ext4_iloc *iloc)
2444 {
2445         unsigned long desc, group_desc;
2446         ext4_group_t block_group;
2447         unsigned long offset;
2448         ext4_fsblk_t block;
2449         struct buffer_head *bh;
2450         struct ext4_group_desc * gdp;
2451
2452         if (!ext4_valid_inum(sb, ino)) {
2453                 /*
2454                  * This error is already checked for in namei.c unless we are
2455                  * looking at an NFS filehandle, in which case no error
2456                  * report is needed
2457                  */
2458                 return 0;
2459         }
2460
2461         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2462         if (block_group >= EXT4_SB(sb)->s_groups_count) {
2463                 ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2464                 return 0;
2465         }
2466         smp_rmb();
2467         group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2468         desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2469         bh = EXT4_SB(sb)->s_group_desc[group_desc];
2470         if (!bh) {
2471                 ext4_error (sb, "ext4_get_inode_block",
2472                             "Descriptor not loaded");
2473                 return 0;
2474         }
2475
2476         gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2477                 desc * EXT4_DESC_SIZE(sb));
2478         /*
2479          * Figure out the offset within the block group inode table
2480          */
2481         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2482                 EXT4_INODE_SIZE(sb);
2483         block = ext4_inode_table(sb, gdp) +
2484                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2485
2486         iloc->block_group = block_group;
2487         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2488         return block;
2489 }
2490
2491 /*
2492  * ext4_get_inode_loc returns with an extra refcount against the inode's
2493  * underlying buffer_head on success. If 'in_mem' is true, we have all
2494  * data in memory that is needed to recreate the on-disk version of this
2495  * inode.
2496  */
2497 static int __ext4_get_inode_loc(struct inode *inode,
2498                                 struct ext4_iloc *iloc, int in_mem)
2499 {
2500         ext4_fsblk_t block;
2501         struct buffer_head *bh;
2502
2503         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2504         if (!block)
2505                 return -EIO;
2506
2507         bh = sb_getblk(inode->i_sb, block);
2508         if (!bh) {
2509                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
2510                                 "unable to read inode block - "
2511                                 "inode=%lu, block=%llu",
2512                                  inode->i_ino, block);
2513                 return -EIO;
2514         }
2515         if (!buffer_uptodate(bh)) {
2516                 lock_buffer(bh);
2517                 if (buffer_uptodate(bh)) {
2518                         /* someone brought it uptodate while we waited */
2519                         unlock_buffer(bh);
2520                         goto has_buffer;
2521                 }
2522
2523                 /*
2524                  * If we have all information of the inode in memory and this
2525                  * is the only valid inode in the block, we need not read the
2526                  * block.
2527                  */
2528                 if (in_mem) {
2529                         struct buffer_head *bitmap_bh;
2530                         struct ext4_group_desc *desc;
2531                         int inodes_per_buffer;
2532                         int inode_offset, i;
2533                         ext4_group_t block_group;
2534                         int start;
2535
2536                         block_group = (inode->i_ino - 1) /
2537                                         EXT4_INODES_PER_GROUP(inode->i_sb);
2538                         inodes_per_buffer = bh->b_size /
2539                                 EXT4_INODE_SIZE(inode->i_sb);
2540                         inode_offset = ((inode->i_ino - 1) %
2541                                         EXT4_INODES_PER_GROUP(inode->i_sb));
2542                         start = inode_offset & ~(inodes_per_buffer - 1);
2543
2544                         /* Is the inode bitmap in cache? */
2545                         desc = ext4_get_group_desc(inode->i_sb,
2546                                                 block_group, NULL);
2547                         if (!desc)
2548                                 goto make_io;
2549
2550                         bitmap_bh = sb_getblk(inode->i_sb,
2551                                 ext4_inode_bitmap(inode->i_sb, desc));
2552                         if (!bitmap_bh)
2553                                 goto make_io;
2554
2555                         /*
2556                          * If the inode bitmap isn't in cache then the
2557                          * optimisation may end up performing two reads instead
2558                          * of one, so skip it.
2559                          */
2560                         if (!buffer_uptodate(bitmap_bh)) {
2561                                 brelse(bitmap_bh);
2562                                 goto make_io;
2563                         }
2564                         for (i = start; i < start + inodes_per_buffer; i++) {
2565                                 if (i == inode_offset)
2566                                         continue;
2567                                 if (ext4_test_bit(i, bitmap_bh->b_data))
2568                                         break;
2569                         }
2570                         brelse(bitmap_bh);
2571                         if (i == start + inodes_per_buffer) {
2572                                 /* all other inodes are free, so skip I/O */
2573                                 memset(bh->b_data, 0, bh->b_size);
2574                                 set_buffer_uptodate(bh);
2575                                 unlock_buffer(bh);
2576                                 goto has_buffer;
2577                         }
2578                 }
2579
2580 make_io:
2581                 /*
2582                  * There are other valid inodes in the buffer, this inode
2583                  * has in-inode xattrs, or we don't have this inode in memory.
2584                  * Read the block from disk.
2585                  */
2586                 get_bh(bh);
2587                 bh->b_end_io = end_buffer_read_sync;
2588                 submit_bh(READ_META, bh);
2589                 wait_on_buffer(bh);
2590                 if (!buffer_uptodate(bh)) {
2591                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
2592                                         "unable to read inode block - "
2593                                         "inode=%lu, block=%llu",
2594                                         inode->i_ino, block);
2595                         brelse(bh);
2596                         return -EIO;
2597                 }
2598         }
2599 has_buffer:
2600         iloc->bh = bh;
2601         return 0;
2602 }
2603
2604 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2605 {
2606         /* We have all inode data except xattrs in memory here. */
2607         return __ext4_get_inode_loc(inode, iloc,
2608                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2609 }
2610
2611 void ext4_set_inode_flags(struct inode *inode)
2612 {
2613         unsigned int flags = EXT4_I(inode)->i_flags;
2614
2615         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2616         if (flags & EXT4_SYNC_FL)
2617                 inode->i_flags |= S_SYNC;
2618         if (flags & EXT4_APPEND_FL)
2619                 inode->i_flags |= S_APPEND;
2620         if (flags & EXT4_IMMUTABLE_FL)
2621                 inode->i_flags |= S_IMMUTABLE;
2622         if (flags & EXT4_NOATIME_FL)
2623                 inode->i_flags |= S_NOATIME;
2624         if (flags & EXT4_DIRSYNC_FL)
2625                 inode->i_flags |= S_DIRSYNC;
2626 }
2627
2628 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2629 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2630 {
2631         unsigned int flags = ei->vfs_inode.i_flags;
2632
2633         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2634                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2635         if (flags & S_SYNC)
2636                 ei->i_flags |= EXT4_SYNC_FL;
2637         if (flags & S_APPEND)
2638                 ei->i_flags |= EXT4_APPEND_FL;
2639         if (flags & S_IMMUTABLE)
2640                 ei->i_flags |= EXT4_IMMUTABLE_FL;
2641         if (flags & S_NOATIME)
2642                 ei->i_flags |= EXT4_NOATIME_FL;
2643         if (flags & S_DIRSYNC)
2644                 ei->i_flags |= EXT4_DIRSYNC_FL;
2645 }
2646 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2647                                         struct ext4_inode_info *ei)
2648 {
2649         blkcnt_t i_blocks ;
2650         struct inode *inode = &(ei->vfs_inode);
2651         struct super_block *sb = inode->i_sb;
2652
2653         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2654                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2655                 /* we are using combined 48 bit field */
2656                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2657                                         le32_to_cpu(raw_inode->i_blocks_lo);
2658                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2659                         /* i_blocks represent file system block size */
2660                         return i_blocks  << (inode->i_blkbits - 9);
2661                 } else {
2662                         return i_blocks;
2663                 }
2664         } else {
2665                 return le32_to_cpu(raw_inode->i_blocks_lo);
2666         }
2667 }
2668
2669 void ext4_read_inode(struct inode * inode)
2670 {
2671         struct ext4_iloc iloc;
2672         struct ext4_inode *raw_inode;
2673         struct ext4_inode_info *ei = EXT4_I(inode);
2674         struct buffer_head *bh;
2675         int block;
2676
2677 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2678         ei->i_acl = EXT4_ACL_NOT_CACHED;
2679         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2680 #endif
2681         ei->i_block_alloc_info = NULL;
2682
2683         if (__ext4_get_inode_loc(inode, &iloc, 0))
2684                 goto bad_inode;
2685         bh = iloc.bh;
2686         raw_inode = ext4_raw_inode(&iloc);
2687         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2688         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2689         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2690         if(!(test_opt (inode->i_sb, NO_UID32))) {
2691                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2692                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2693         }
2694         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2695
2696         ei->i_state = 0;
2697         ei->i_dir_start_lookup = 0;
2698         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2699         /* We now have enough fields to check if the inode was active or not.
2700          * This is needed because nfsd might try to access dead inodes
2701          * the test is that same one that e2fsck uses
2702          * NeilBrown 1999oct15
2703          */
2704         if (inode->i_nlink == 0) {
2705                 if (inode->i_mode == 0 ||
2706                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2707                         /* this inode is deleted */
2708                         brelse (bh);
2709                         goto bad_inode;
2710                 }
2711                 /* The only unlinked inodes we let through here have
2712                  * valid i_mode and are being read by the orphan
2713                  * recovery code: that's fine, we're about to complete
2714                  * the process of deleting those. */
2715         }
2716         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2717         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2718         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2719         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2720             cpu_to_le32(EXT4_OS_HURD)) {
2721                 ei->i_file_acl |=
2722                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2723         }
2724         inode->i_size = ext4_isize(raw_inode);
2725         ei->i_disksize = inode->i_size;
2726         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2727         ei->i_block_group = iloc.block_group;
2728         /*
2729          * NOTE! The in-memory inode i_data array is in little-endian order
2730          * even on big-endian machines: we do NOT byteswap the block numbers!
2731          */
2732         for (block = 0; block < EXT4_N_BLOCKS; block++)
2733                 ei->i_data[block] = raw_inode->i_block[block];
2734         INIT_LIST_HEAD(&ei->i_orphan);
2735
2736         if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
2737             EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2738                 /*
2739                  * When mke2fs creates big inodes it does not zero out
2740                  * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2741                  * so ignore those first few inodes.
2742                  */
2743                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2744                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2745                     EXT4_INODE_SIZE(inode->i_sb)) {
2746                         brelse (bh);
2747                         goto bad_inode;
2748                 }
2749                 if (ei->i_extra_isize == 0) {
2750                         /* The extra space is currently unused. Use it. */
2751                         ei->i_extra_isize = sizeof(struct ext4_inode) -
2752                                             EXT4_GOOD_OLD_INODE_SIZE;
2753                 } else {
2754                         __le32 *magic = (void *)raw_inode +
2755                                         EXT4_GOOD_OLD_INODE_SIZE +
2756                                         ei->i_extra_isize;
2757                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2758                                  ei->i_state |= EXT4_STATE_XATTR;
2759                 }
2760         } else
2761                 ei->i_extra_isize = 0;
2762
2763         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2764         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2765         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2766         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2767
2768         if (S_ISREG(inode->i_mode)) {
2769                 inode->i_op = &ext4_file_inode_operations;
2770                 inode->i_fop = &ext4_file_operations;
2771                 ext4_set_aops(inode);
2772         } else if (S_ISDIR(inode->i_mode)) {
2773                 inode->i_op = &ext4_dir_inode_operations;
2774                 inode->i_fop = &ext4_dir_operations;
2775         } else if (S_ISLNK(inode->i_mode)) {
2776                 if (ext4_inode_is_fast_symlink(inode))
2777                         inode->i_op = &ext4_fast_symlink_inode_operations;
2778                 else {
2779                         inode->i_op = &ext4_symlink_inode_operations;
2780                         ext4_set_aops(inode);
2781                 }
2782         } else {
2783                 inode->i_op = &ext4_special_inode_operations;
2784                 if (raw_inode->i_block[0])
2785                         init_special_inode(inode, inode->i_mode,
2786                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2787                 else
2788                         init_special_inode(inode, inode->i_mode,
2789                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2790         }
2791         brelse (iloc.bh);
2792         ext4_set_inode_flags(inode);
2793         return;
2794
2795 bad_inode:
2796         make_bad_inode(inode);
2797         return;
2798 }
2799
2800 static int ext4_inode_blocks_set(handle_t *handle,
2801                                 struct ext4_inode *raw_inode,
2802                                 struct ext4_inode_info *ei)
2803 {
2804         struct inode *inode = &(ei->vfs_inode);
2805         u64 i_blocks = inode->i_blocks;
2806         struct super_block *sb = inode->i_sb;
2807         int err = 0;
2808
2809         if (i_blocks <= ~0U) {
2810                 /*
2811                  * i_blocks can be represnted in a 32 bit variable
2812                  * as multiple of 512 bytes
2813                  */
2814                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2815                 raw_inode->i_blocks_high = 0;
2816                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2817         } else if (i_blocks <= 0xffffffffffffULL) {
2818                 /*
2819                  * i_blocks can be represented in a 48 bit variable
2820                  * as multiple of 512 bytes
2821                  */
2822                 err = ext4_update_rocompat_feature(handle, sb,
2823                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2824                 if (err)
2825                         goto  err_out;
2826                 /* i_block is stored in the split  48 bit fields */
2827                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2828                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2829                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2830         } else {
2831                 /*
2832                  * i_blocks should be represented in a 48 bit variable
2833                  * as multiple of  file system block size
2834                  */
2835                 err = ext4_update_rocompat_feature(handle, sb,
2836                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2837                 if (err)
2838                         goto  err_out;
2839                 ei->i_flags |= EXT4_HUGE_FILE_FL;
2840                 /* i_block is stored in file system block size */
2841                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2842                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2843                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2844         }
2845 err_out:
2846         return err;
2847 }
2848
2849 /*
2850  * Post the struct inode info into an on-disk inode location in the
2851  * buffer-cache.  This gobbles the caller's reference to the
2852  * buffer_head in the inode location struct.
2853  *
2854  * The caller must have write access to iloc->bh.
2855  */
2856 static int ext4_do_update_inode(handle_t *handle,
2857                                 struct inode *inode,
2858                                 struct ext4_iloc *iloc)
2859 {
2860         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2861         struct ext4_inode_info *ei = EXT4_I(inode);
2862         struct buffer_head *bh = iloc->bh;
2863         int err = 0, rc, block;
2864
2865         /* For fields not not tracking in the in-memory inode,
2866          * initialise them to zero for new inodes. */
2867         if (ei->i_state & EXT4_STATE_NEW)
2868                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2869
2870         ext4_get_inode_flags(ei);
2871         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2872         if(!(test_opt(inode->i_sb, NO_UID32))) {
2873                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2874                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2875 /*
2876  * Fix up interoperability with old kernels. Otherwise, old inodes get
2877  * re-used with the upper 16 bits of the uid/gid intact
2878  */
2879                 if(!ei->i_dtime) {
2880                         raw_inode->i_uid_high =
2881                                 cpu_to_le16(high_16_bits(inode->i_uid));
2882                         raw_inode->i_gid_high =
2883                                 cpu_to_le16(high_16_bits(inode->i_gid));
2884                 } else {
2885                         raw_inode->i_uid_high = 0;
2886                         raw_inode->i_gid_high = 0;
2887                 }
2888         } else {
2889                 raw_inode->i_uid_low =
2890                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
2891                 raw_inode->i_gid_low =
2892                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
2893                 raw_inode->i_uid_high = 0;
2894                 raw_inode->i_gid_high = 0;
2895         }
2896         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2897
2898         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2899         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2900         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2901         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2902
2903         if (ext4_inode_blocks_set(handle, raw_inode, ei))
2904                 goto out_brelse;
2905         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2906         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2907         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2908             cpu_to_le32(EXT4_OS_HURD))
2909                 raw_inode->i_file_acl_high =
2910                         cpu_to_le16(ei->i_file_acl >> 32);
2911         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2912         ext4_isize_set(raw_inode, ei->i_disksize);
2913         if (ei->i_disksize > 0x7fffffffULL) {
2914                 struct super_block *sb = inode->i_sb;
2915                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2916                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2917                                 EXT4_SB(sb)->s_es->s_rev_level ==
2918                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2919                         /* If this is the first large file
2920                          * created, add a flag to the superblock.
2921                          */
2922                         err = ext4_journal_get_write_access(handle,
2923                                         EXT4_SB(sb)->s_sbh);
2924                         if (err)
2925                                 goto out_brelse;
2926                         ext4_update_dynamic_rev(sb);
2927                         EXT4_SET_RO_COMPAT_FEATURE(sb,
2928                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2929                         sb->s_dirt = 1;
2930                         handle->h_sync = 1;
2931                         err = ext4_journal_dirty_metadata(handle,
2932                                         EXT4_SB(sb)->s_sbh);
2933                 }
2934         }
2935         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2936         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2937                 if (old_valid_dev(inode->i_rdev)) {
2938                         raw_inode->i_block[0] =
2939                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
2940                         raw_inode->i_block[1] = 0;
2941                 } else {
2942                         raw_inode->i_block[0] = 0;
2943                         raw_inode->i_block[1] =
2944                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
2945                         raw_inode->i_block[2] = 0;
2946                 }
2947         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
2948                 raw_inode->i_block[block] = ei->i_data[block];
2949
2950         if (ei->i_extra_isize)
2951                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2952
2953         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2954         rc = ext4_journal_dirty_metadata(handle, bh);
2955         if (!err)
2956                 err = rc;
2957         ei->i_state &= ~EXT4_STATE_NEW;
2958
2959 out_brelse:
2960         brelse (bh);
2961         ext4_std_error(inode->i_sb, err);
2962         return err;
2963 }
2964
2965 /*
2966  * ext4_write_inode()
2967  *
2968  * We are called from a few places:
2969  *
2970  * - Within generic_file_write() for O_SYNC files.
2971  *   Here, there will be no transaction running. We wait for any running
2972  *   trasnaction to commit.
2973  *
2974  * - Within sys_sync(), kupdate and such.
2975  *   We wait on commit, if tol to.
2976  *
2977  * - Within prune_icache() (PF_MEMALLOC == true)
2978  *   Here we simply return.  We can't afford to block kswapd on the
2979  *   journal commit.
2980  *
2981  * In all cases it is actually safe for us to return without doing anything,
2982  * because the inode has been copied into a raw inode buffer in
2983  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
2984  * knfsd.
2985  *
2986  * Note that we are absolutely dependent upon all inode dirtiers doing the
2987  * right thing: they *must* call mark_inode_dirty() after dirtying info in
2988  * which we are interested.
2989  *
2990  * It would be a bug for them to not do this.  The code:
2991  *
2992  *      mark_inode_dirty(inode)
2993  *      stuff();
2994  *      inode->i_size = expr;
2995  *
2996  * is in error because a kswapd-driven write_inode() could occur while
2997  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
2998  * will no longer be on the superblock's dirty inode list.
2999  */
3000 int ext4_write_inode(struct inode *inode, int wait)
3001 {
3002         if (current->flags & PF_MEMALLOC)
3003                 return 0;
3004
3005         if (ext4_journal_current_handle()) {
3006                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3007                 dump_stack();
3008                 return -EIO;
3009         }
3010
3011         if (!wait)
3012                 return 0;
3013
3014         return ext4_force_commit(inode->i_sb);
3015 }
3016
3017 /*
3018  * ext4_setattr()
3019  *
3020  * Called from notify_change.
3021  *
3022  * We want to trap VFS attempts to truncate the file as soon as
3023  * possible.  In particular, we want to make sure that when the VFS
3024  * shrinks i_size, we put the inode on the orphan list and modify
3025  * i_disksize immediately, so that during the subsequent flushing of
3026  * dirty pages and freeing of disk blocks, we can guarantee that any
3027  * commit will leave the blocks being flushed in an unused state on
3028  * disk.  (On recovery, the inode will get truncated and the blocks will
3029  * be freed, so we have a strong guarantee that no future commit will
3030  * leave these blocks visible to the user.)
3031  *
3032  * Called with inode->sem down.
3033  */
3034 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3035 {
3036         struct inode *inode = dentry->d_inode;
3037         int error, rc = 0;
3038         const unsigned int ia_valid = attr->ia_valid;
3039
3040         error = inode_change_ok(inode, attr);
3041         if (error)
3042                 return error;
3043
3044         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3045                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3046                 handle_t *handle;
3047
3048                 /* (user+group)*(old+new) structure, inode write (sb,
3049                  * inode block, ? - but truncate inode update has it) */
3050                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3051                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3052                 if (IS_ERR(handle)) {
3053                         error = PTR_ERR(handle);
3054                         goto err_out;
3055                 }
3056                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3057                 if (error) {
3058                         ext4_journal_stop(handle);
3059                         return error;
3060                 }
3061                 /* Update corresponding info in inode so that everything is in
3062                  * one transaction */
3063                 if (attr->ia_valid & ATTR_UID)
3064                         inode->i_uid = attr->ia_uid;
3065                 if (attr->ia_valid & ATTR_GID)
3066                         inode->i_gid = attr->ia_gid;
3067                 error = ext4_mark_inode_dirty(handle, inode);
3068                 ext4_journal_stop(handle);
3069         }
3070
3071         if (attr->ia_valid & ATTR_SIZE) {
3072                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3073                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3074
3075                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3076                                 error = -EFBIG;
3077                                 goto err_out;
3078                         }
3079                 }
3080         }
3081
3082         if (S_ISREG(inode->i_mode) &&
3083             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3084                 handle_t *handle;
3085
3086                 handle = ext4_journal_start(inode, 3);
3087                 if (IS_ERR(handle)) {
3088                         error = PTR_ERR(handle);
3089                         goto err_out;
3090                 }
3091
3092                 error = ext4_orphan_add(handle, inode);
3093                 EXT4_I(inode)->i_disksize = attr->ia_size;
3094                 rc = ext4_mark_inode_dirty(handle, inode);
3095                 if (!error)
3096                         error = rc;
3097                 ext4_journal_stop(handle);
3098         }
3099
3100         rc = inode_setattr(inode, attr);
3101
3102         /* If inode_setattr's call to ext4_truncate failed to get a
3103          * transaction handle at all, we need to clean up the in-core
3104          * orphan list manually. */
3105         if (inode->i_nlink)
3106                 ext4_orphan_del(NULL, inode);
3107
3108         if (!rc && (ia_valid & ATTR_MODE))
3109                 rc = ext4_acl_chmod(inode);
3110
3111 err_out:
3112         ext4_std_error(inode->i_sb, error);
3113         if (!error)
3114                 error = rc;
3115         return error;
3116 }
3117
3118
3119 /*
3120  * How many blocks doth make a writepage()?
3121  *
3122  * With N blocks per page, it may be:
3123  * N data blocks
3124  * 2 indirect block
3125  * 2 dindirect
3126  * 1 tindirect
3127  * N+5 bitmap blocks (from the above)
3128  * N+5 group descriptor summary blocks
3129  * 1 inode block
3130  * 1 superblock.
3131  * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3132  *
3133  * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3134  *
3135  * With ordered or writeback data it's the same, less the N data blocks.
3136  *
3137  * If the inode's direct blocks can hold an integral number of pages then a
3138  * page cannot straddle two indirect blocks, and we can only touch one indirect
3139  * and dindirect block, and the "5" above becomes "3".
3140  *
3141  * This still overestimates under most circumstances.  If we were to pass the
3142  * start and end offsets in here as well we could do block_to_path() on each
3143  * block and work out the exact number of indirects which are touched.  Pah.
3144  */
3145
3146 int ext4_writepage_trans_blocks(struct inode *inode)
3147 {
3148         int bpp = ext4_journal_blocks_per_page(inode);
3149         int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3150         int ret;
3151
3152         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3153                 return ext4_ext_writepage_trans_blocks(inode, bpp);
3154
3155         if (ext4_should_journal_data(inode))
3156                 ret = 3 * (bpp + indirects) + 2;
3157         else
3158                 ret = 2 * (bpp + indirects) + 2;
3159
3160 #ifdef CONFIG_QUOTA
3161         /* We know that structure was already allocated during DQUOT_INIT so
3162          * we will be updating only the data blocks + inodes */
3163         ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3164 #endif
3165
3166         return ret;
3167 }
3168
3169 /*
3170  * The caller must have previously called ext4_reserve_inode_write().
3171  * Give this, we know that the caller already has write access to iloc->bh.
3172  */
3173 int ext4_mark_iloc_dirty(handle_t *handle,
3174                 struct inode *inode, struct ext4_iloc *iloc)
3175 {
3176         int err = 0;
3177
3178         /* the do_update_inode consumes one bh->b_count */
3179         get_bh(iloc->bh);
3180
3181         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3182         err = ext4_do_update_inode(handle, inode, iloc);
3183         put_bh(iloc->bh);
3184         return err;
3185 }
3186
3187 /*
3188  * On success, We end up with an outstanding reference count against
3189  * iloc->bh.  This _must_ be cleaned up later.
3190  */
3191
3192 int
3193 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3194                          struct ext4_iloc *iloc)
3195 {
3196         int err = 0;
3197         if (handle) {
3198                 err = ext4_get_inode_loc(inode, iloc);
3199                 if (!err) {
3200                         BUFFER_TRACE(iloc->bh, "get_write_access");
3201                         err = ext4_journal_get_write_access(handle, iloc->bh);
3202                         if (err) {
3203                                 brelse(iloc->bh);
3204                                 iloc->bh = NULL;
3205                         }
3206                 }
3207         }
3208         ext4_std_error(inode->i_sb, err);
3209         return err;
3210 }
3211
3212 /*
3213  * Expand an inode by new_extra_isize bytes.
3214  * Returns 0 on success or negative error number on failure.
3215  */
3216 static int ext4_expand_extra_isize(struct inode *inode,
3217                                    unsigned int new_extra_isize,
3218                                    struct ext4_iloc iloc,
3219                                    handle_t *handle)
3220 {
3221         struct ext4_inode *raw_inode;
3222         struct ext4_xattr_ibody_header *header;
3223         struct ext4_xattr_entry *entry;
3224
3225         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3226                 return 0;
3227
3228         raw_inode = ext4_raw_inode(&iloc);
3229
3230         header = IHDR(inode, raw_inode);
3231         entry = IFIRST(header);
3232
3233         /* No extended attributes present */
3234         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3235                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3236                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3237                         new_extra_isize);
3238                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3239                 return 0;
3240         }
3241
3242         /* try to expand with EAs present */
3243         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3244                                           raw_inode, handle);
3245 }
3246
3247 /*
3248  * What we do here is to mark the in-core inode as clean with respect to inode
3249  * dirtiness (it may still be data-dirty).
3250  * This means that the in-core inode may be reaped by prune_icache
3251  * without having to perform any I/O.  This is a very good thing,
3252  * because *any* task may call prune_icache - even ones which
3253  * have a transaction open against a different journal.
3254  *
3255  * Is this cheating?  Not really.  Sure, we haven't written the
3256  * inode out, but prune_icache isn't a user-visible syncing function.
3257  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3258  * we start and wait on commits.
3259  *
3260  * Is this efficient/effective?  Well, we're being nice to the system
3261  * by cleaning up our inodes proactively so they can be reaped
3262  * without I/O.  But we are potentially leaving up to five seconds'
3263  * worth of inodes floating about which prune_icache wants us to
3264  * write out.  One way to fix that would be to get prune_icache()
3265  * to do a write_super() to free up some memory.  It has the desired
3266  * effect.
3267  */
3268 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3269 {
3270         struct ext4_iloc iloc;
3271         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3272         static unsigned int mnt_count;
3273         int err, ret;
3274
3275         might_sleep();
3276         err = ext4_reserve_inode_write(handle, inode, &iloc);
3277         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3278             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3279                 /*
3280                  * We need extra buffer credits since we may write into EA block
3281                  * with this same handle. If journal_extend fails, then it will
3282                  * only result in a minor loss of functionality for that inode.
3283                  * If this is felt to be critical, then e2fsck should be run to
3284                  * force a large enough s_min_extra_isize.
3285                  */
3286                 if ((jbd2_journal_extend(handle,
3287                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3288                         ret = ext4_expand_extra_isize(inode,
3289                                                       sbi->s_want_extra_isize,
3290                                                       iloc, handle);
3291                         if (ret) {
3292                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3293                                 if (mnt_count !=
3294                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
3295                                         ext4_warning(inode->i_sb, __FUNCTION__,
3296                                         "Unable to expand inode %lu. Delete"
3297                                         " some EAs or run e2fsck.",
3298                                         inode->i_ino);
3299                                         mnt_count =
3300                                           le16_to_cpu(sbi->s_es->s_mnt_count);
3301                                 }
3302                         }
3303                 }
3304         }
3305         if (!err)
3306                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3307         return err;
3308 }
3309
3310 /*
3311  * ext4_dirty_inode() is called from __mark_inode_dirty()
3312  *
3313  * We're really interested in the case where a file is being extended.
3314  * i_size has been changed by generic_commit_write() and we thus need
3315  * to include the updated inode in the current transaction.
3316  *
3317  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3318  * are allocated to the file.
3319  *
3320  * If the inode is marked synchronous, we don't honour that here - doing
3321  * so would cause a commit on atime updates, which we don't bother doing.
3322  * We handle synchronous inodes at the highest possible level.
3323  */
3324 void ext4_dirty_inode(struct inode *inode)
3325 {
3326         handle_t *current_handle = ext4_journal_current_handle();
3327         handle_t *handle;
3328
3329         handle = ext4_journal_start(inode, 2);
3330         if (IS_ERR(handle))
3331                 goto out;
3332         if (current_handle &&
3333                 current_handle->h_transaction != handle->h_transaction) {
3334                 /* This task has a transaction open against a different fs */
3335                 printk(KERN_EMERG "%s: transactions do not match!\n",
3336                        __FUNCTION__);
3337         } else {
3338                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3339                                 current_handle);
3340                 ext4_mark_inode_dirty(handle, inode);
3341         }
3342         ext4_journal_stop(handle);
3343 out:
3344         return;
3345 }
3346
3347 #if 0
3348 /*
3349  * Bind an inode's backing buffer_head into this transaction, to prevent
3350  * it from being flushed to disk early.  Unlike
3351  * ext4_reserve_inode_write, this leaves behind no bh reference and
3352  * returns no iloc structure, so the caller needs to repeat the iloc
3353  * lookup to mark the inode dirty later.
3354  */
3355 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3356 {
3357         struct ext4_iloc iloc;
3358
3359         int err = 0;
3360         if (handle) {
3361                 err = ext4_get_inode_loc(inode, &iloc);
3362                 if (!err) {
3363                         BUFFER_TRACE(iloc.bh, "get_write_access");
3364                         err = jbd2_journal_get_write_access(handle, iloc.bh);
3365                         if (!err)
3366                                 err = ext4_journal_dirty_metadata(handle,
3367                                                                   iloc.bh);
3368                         brelse(iloc.bh);
3369                 }
3370         }
3371         ext4_std_error(inode->i_sb, err);
3372         return err;
3373 }
3374 #endif
3375
3376 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3377 {
3378         journal_t *journal;
3379         handle_t *handle;
3380         int err;
3381
3382         /*
3383          * We have to be very careful here: changing a data block's
3384          * journaling status dynamically is dangerous.  If we write a
3385          * data block to the journal, change the status and then delete
3386          * that block, we risk forgetting to revoke the old log record
3387          * from the journal and so a subsequent replay can corrupt data.
3388          * So, first we make sure that the journal is empty and that
3389          * nobody is changing anything.
3390          */
3391
3392         journal = EXT4_JOURNAL(inode);
3393         if (is_journal_aborted(journal))
3394                 return -EROFS;
3395
3396         jbd2_journal_lock_updates(journal);
3397         jbd2_journal_flush(journal);
3398
3399         /*
3400          * OK, there are no updates running now, and all cached data is
3401          * synced to disk.  We are now in a completely consistent state
3402          * which doesn't have anything in the journal, and we know that
3403          * no filesystem updates are running, so it is safe to modify
3404          * the inode's in-core data-journaling state flag now.
3405          */
3406
3407         if (val)
3408                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3409         else
3410                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3411         ext4_set_aops(inode);
3412
3413         jbd2_journal_unlock_updates(journal);
3414
3415         /* Finally we can mark the inode as dirty. */
3416
3417         handle = ext4_journal_start(inode, 1);
3418         if (IS_ERR(handle))
3419                 return PTR_ERR(handle);
3420
3421         err = ext4_mark_inode_dirty(handle, inode);
3422         handle->h_sync = 1;
3423         ext4_journal_stop(handle);
3424         ext4_std_error(inode->i_sb, err);
3425
3426         return err;
3427 }