[PATCH] ext4: switch fsblk to sector_t
[safe/jmp/linux-2.6] / fs / ext4 / balloc.c
1 /*
2  *  linux/fs/ext4/balloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10  *  Big-endian to little-endian byte-swapping/bitmaps by
11  *        David S. Miller (davem@caip.rutgers.edu), 1995
12  */
13
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/ext4_fs.h>
19 #include <linux/ext4_jbd2.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22
23 /*
24  * balloc.c contains the blocks allocation and deallocation routines
25  */
26
27 /*
28  * The free blocks are managed by bitmaps.  A file system contains several
29  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
30  * block for inodes, N blocks for the inode table and data blocks.
31  *
32  * The file system contains group descriptors which are located after the
33  * super block.  Each descriptor contains the number of the bitmap block and
34  * the free blocks count in the block.  The descriptors are loaded in memory
35  * when a file system is mounted (see ext4_read_super).
36  */
37
38
39 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
40
41 /**
42  * ext4_get_group_desc() -- load group descriptor from disk
43  * @sb:                 super block
44  * @block_group:        given block group
45  * @bh:                 pointer to the buffer head to store the block
46  *                      group descriptor
47  */
48 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
49                                              unsigned int block_group,
50                                              struct buffer_head ** bh)
51 {
52         unsigned long group_desc;
53         unsigned long offset;
54         struct ext4_group_desc * desc;
55         struct ext4_sb_info *sbi = EXT4_SB(sb);
56
57         if (block_group >= sbi->s_groups_count) {
58                 ext4_error (sb, "ext4_get_group_desc",
59                             "block_group >= groups_count - "
60                             "block_group = %d, groups_count = %lu",
61                             block_group, sbi->s_groups_count);
62
63                 return NULL;
64         }
65         smp_rmb();
66
67         group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
68         offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
69         if (!sbi->s_group_desc[group_desc]) {
70                 ext4_error (sb, "ext4_get_group_desc",
71                             "Group descriptor not loaded - "
72                             "block_group = %d, group_desc = %lu, desc = %lu",
73                              block_group, group_desc, offset);
74                 return NULL;
75         }
76
77         desc = (struct ext4_group_desc *) sbi->s_group_desc[group_desc]->b_data;
78         if (bh)
79                 *bh = sbi->s_group_desc[group_desc];
80         return desc + offset;
81 }
82
83 /**
84  * read_block_bitmap()
85  * @sb:                 super block
86  * @block_group:        given block group
87  *
88  * Read the bitmap for a given block_group, reading into the specified
89  * slot in the superblock's bitmap cache.
90  *
91  * Return buffer_head on success or NULL in case of failure.
92  */
93 static struct buffer_head *
94 read_block_bitmap(struct super_block *sb, unsigned int block_group)
95 {
96         struct ext4_group_desc * desc;
97         struct buffer_head * bh = NULL;
98
99         desc = ext4_get_group_desc (sb, block_group, NULL);
100         if (!desc)
101                 goto error_out;
102         bh = sb_bread(sb, le32_to_cpu(desc->bg_block_bitmap));
103         if (!bh)
104                 ext4_error (sb, "read_block_bitmap",
105                             "Cannot read block bitmap - "
106                             "block_group = %d, block_bitmap = %u",
107                             block_group, le32_to_cpu(desc->bg_block_bitmap));
108 error_out:
109         return bh;
110 }
111 /*
112  * The reservation window structure operations
113  * --------------------------------------------
114  * Operations include:
115  * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
116  *
117  * We use a red-black tree to represent per-filesystem reservation
118  * windows.
119  *
120  */
121
122 /**
123  * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
124  * @rb_root:            root of per-filesystem reservation rb tree
125  * @verbose:            verbose mode
126  * @fn:                 function which wishes to dump the reservation map
127  *
128  * If verbose is turned on, it will print the whole block reservation
129  * windows(start, end). Otherwise, it will only print out the "bad" windows,
130  * those windows that overlap with their immediate neighbors.
131  */
132 #if 1
133 static void __rsv_window_dump(struct rb_root *root, int verbose,
134                               const char *fn)
135 {
136         struct rb_node *n;
137         struct ext4_reserve_window_node *rsv, *prev;
138         int bad;
139
140 restart:
141         n = rb_first(root);
142         bad = 0;
143         prev = NULL;
144
145         printk("Block Allocation Reservation Windows Map (%s):\n", fn);
146         while (n) {
147                 rsv = list_entry(n, struct ext4_reserve_window_node, rsv_node);
148                 if (verbose)
149                         printk("reservation window 0x%p "
150                                "start:  "E3FSBLK", end:  "E3FSBLK"\n",
151                                rsv, rsv->rsv_start, rsv->rsv_end);
152                 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
153                         printk("Bad reservation %p (start >= end)\n",
154                                rsv);
155                         bad = 1;
156                 }
157                 if (prev && prev->rsv_end >= rsv->rsv_start) {
158                         printk("Bad reservation %p (prev->end >= start)\n",
159                                rsv);
160                         bad = 1;
161                 }
162                 if (bad) {
163                         if (!verbose) {
164                                 printk("Restarting reservation walk in verbose mode\n");
165                                 verbose = 1;
166                                 goto restart;
167                         }
168                 }
169                 n = rb_next(n);
170                 prev = rsv;
171         }
172         printk("Window map complete.\n");
173         if (bad)
174                 BUG();
175 }
176 #define rsv_window_dump(root, verbose) \
177         __rsv_window_dump((root), (verbose), __FUNCTION__)
178 #else
179 #define rsv_window_dump(root, verbose) do {} while (0)
180 #endif
181
182 /**
183  * goal_in_my_reservation()
184  * @rsv:                inode's reservation window
185  * @grp_goal:           given goal block relative to the allocation block group
186  * @group:              the current allocation block group
187  * @sb:                 filesystem super block
188  *
189  * Test if the given goal block (group relative) is within the file's
190  * own block reservation window range.
191  *
192  * If the reservation window is outside the goal allocation group, return 0;
193  * grp_goal (given goal block) could be -1, which means no specific
194  * goal block. In this case, always return 1.
195  * If the goal block is within the reservation window, return 1;
196  * otherwise, return 0;
197  */
198 static int
199 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
200                         unsigned int group, struct super_block * sb)
201 {
202         ext4_fsblk_t group_first_block, group_last_block;
203
204         group_first_block = ext4_group_first_block_no(sb, group);
205         group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
206
207         if ((rsv->_rsv_start > group_last_block) ||
208             (rsv->_rsv_end < group_first_block))
209                 return 0;
210         if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
211                 || (grp_goal + group_first_block > rsv->_rsv_end)))
212                 return 0;
213         return 1;
214 }
215
216 /**
217  * search_reserve_window()
218  * @rb_root:            root of reservation tree
219  * @goal:               target allocation block
220  *
221  * Find the reserved window which includes the goal, or the previous one
222  * if the goal is not in any window.
223  * Returns NULL if there are no windows or if all windows start after the goal.
224  */
225 static struct ext4_reserve_window_node *
226 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
227 {
228         struct rb_node *n = root->rb_node;
229         struct ext4_reserve_window_node *rsv;
230
231         if (!n)
232                 return NULL;
233
234         do {
235                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
236
237                 if (goal < rsv->rsv_start)
238                         n = n->rb_left;
239                 else if (goal > rsv->rsv_end)
240                         n = n->rb_right;
241                 else
242                         return rsv;
243         } while (n);
244         /*
245          * We've fallen off the end of the tree: the goal wasn't inside
246          * any particular node.  OK, the previous node must be to one
247          * side of the interval containing the goal.  If it's the RHS,
248          * we need to back up one.
249          */
250         if (rsv->rsv_start > goal) {
251                 n = rb_prev(&rsv->rsv_node);
252                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
253         }
254         return rsv;
255 }
256
257 /**
258  * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
259  * @sb:                 super block
260  * @rsv:                reservation window to add
261  *
262  * Must be called with rsv_lock hold.
263  */
264 void ext4_rsv_window_add(struct super_block *sb,
265                     struct ext4_reserve_window_node *rsv)
266 {
267         struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
268         struct rb_node *node = &rsv->rsv_node;
269         ext4_fsblk_t start = rsv->rsv_start;
270
271         struct rb_node ** p = &root->rb_node;
272         struct rb_node * parent = NULL;
273         struct ext4_reserve_window_node *this;
274
275         while (*p)
276         {
277                 parent = *p;
278                 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
279
280                 if (start < this->rsv_start)
281                         p = &(*p)->rb_left;
282                 else if (start > this->rsv_end)
283                         p = &(*p)->rb_right;
284                 else {
285                         rsv_window_dump(root, 1);
286                         BUG();
287                 }
288         }
289
290         rb_link_node(node, parent, p);
291         rb_insert_color(node, root);
292 }
293
294 /**
295  * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
296  * @sb:                 super block
297  * @rsv:                reservation window to remove
298  *
299  * Mark the block reservation window as not allocated, and unlink it
300  * from the filesystem reservation window rb tree. Must be called with
301  * rsv_lock hold.
302  */
303 static void rsv_window_remove(struct super_block *sb,
304                               struct ext4_reserve_window_node *rsv)
305 {
306         rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
307         rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
308         rsv->rsv_alloc_hit = 0;
309         rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
310 }
311
312 /*
313  * rsv_is_empty() -- Check if the reservation window is allocated.
314  * @rsv:                given reservation window to check
315  *
316  * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
317  */
318 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
319 {
320         /* a valid reservation end block could not be 0 */
321         return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
322 }
323
324 /**
325  * ext4_init_block_alloc_info()
326  * @inode:              file inode structure
327  *
328  * Allocate and initialize the  reservation window structure, and
329  * link the window to the ext4 inode structure at last
330  *
331  * The reservation window structure is only dynamically allocated
332  * and linked to ext4 inode the first time the open file
333  * needs a new block. So, before every ext4_new_block(s) call, for
334  * regular files, we should check whether the reservation window
335  * structure exists or not. In the latter case, this function is called.
336  * Fail to do so will result in block reservation being turned off for that
337  * open file.
338  *
339  * This function is called from ext4_get_blocks_handle(), also called
340  * when setting the reservation window size through ioctl before the file
341  * is open for write (needs block allocation).
342  *
343  * Needs truncate_mutex protection prior to call this function.
344  */
345 void ext4_init_block_alloc_info(struct inode *inode)
346 {
347         struct ext4_inode_info *ei = EXT4_I(inode);
348         struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
349         struct super_block *sb = inode->i_sb;
350
351         block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
352         if (block_i) {
353                 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
354
355                 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
356                 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
357
358                 /*
359                  * if filesystem is mounted with NORESERVATION, the goal
360                  * reservation window size is set to zero to indicate
361                  * block reservation is off
362                  */
363                 if (!test_opt(sb, RESERVATION))
364                         rsv->rsv_goal_size = 0;
365                 else
366                         rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
367                 rsv->rsv_alloc_hit = 0;
368                 block_i->last_alloc_logical_block = 0;
369                 block_i->last_alloc_physical_block = 0;
370         }
371         ei->i_block_alloc_info = block_i;
372 }
373
374 /**
375  * ext4_discard_reservation()
376  * @inode:              inode
377  *
378  * Discard(free) block reservation window on last file close, or truncate
379  * or at last iput().
380  *
381  * It is being called in three cases:
382  *      ext4_release_file(): last writer close the file
383  *      ext4_clear_inode(): last iput(), when nobody link to this file.
384  *      ext4_truncate(): when the block indirect map is about to change.
385  *
386  */
387 void ext4_discard_reservation(struct inode *inode)
388 {
389         struct ext4_inode_info *ei = EXT4_I(inode);
390         struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
391         struct ext4_reserve_window_node *rsv;
392         spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
393
394         if (!block_i)
395                 return;
396
397         rsv = &block_i->rsv_window_node;
398         if (!rsv_is_empty(&rsv->rsv_window)) {
399                 spin_lock(rsv_lock);
400                 if (!rsv_is_empty(&rsv->rsv_window))
401                         rsv_window_remove(inode->i_sb, rsv);
402                 spin_unlock(rsv_lock);
403         }
404 }
405
406 /**
407  * ext4_free_blocks_sb() -- Free given blocks and update quota
408  * @handle:                     handle to this transaction
409  * @sb:                         super block
410  * @block:                      start physcial block to free
411  * @count:                      number of blocks to free
412  * @pdquot_freed_blocks:        pointer to quota
413  */
414 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
415                          ext4_fsblk_t block, unsigned long count,
416                          unsigned long *pdquot_freed_blocks)
417 {
418         struct buffer_head *bitmap_bh = NULL;
419         struct buffer_head *gd_bh;
420         unsigned long block_group;
421         ext4_grpblk_t bit;
422         unsigned long i;
423         unsigned long overflow;
424         struct ext4_group_desc * desc;
425         struct ext4_super_block * es;
426         struct ext4_sb_info *sbi;
427         int err = 0, ret;
428         ext4_grpblk_t group_freed;
429
430         *pdquot_freed_blocks = 0;
431         sbi = EXT4_SB(sb);
432         es = sbi->s_es;
433         if (block < le32_to_cpu(es->s_first_data_block) ||
434             block + count < block ||
435             block + count > le32_to_cpu(es->s_blocks_count)) {
436                 ext4_error (sb, "ext4_free_blocks",
437                             "Freeing blocks not in datazone - "
438                             "block = "E3FSBLK", count = %lu", block, count);
439                 goto error_return;
440         }
441
442         ext4_debug ("freeing block(s) %lu-%lu\n", block, block + count - 1);
443
444 do_more:
445         overflow = 0;
446         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
447         /*
448          * Check to see if we are freeing blocks across a group
449          * boundary.
450          */
451         if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
452                 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
453                 count -= overflow;
454         }
455         brelse(bitmap_bh);
456         bitmap_bh = read_block_bitmap(sb, block_group);
457         if (!bitmap_bh)
458                 goto error_return;
459         desc = ext4_get_group_desc (sb, block_group, &gd_bh);
460         if (!desc)
461                 goto error_return;
462
463         if (in_range (le32_to_cpu(desc->bg_block_bitmap), block, count) ||
464             in_range (le32_to_cpu(desc->bg_inode_bitmap), block, count) ||
465             in_range (block, le32_to_cpu(desc->bg_inode_table),
466                       sbi->s_itb_per_group) ||
467             in_range (block + count - 1, le32_to_cpu(desc->bg_inode_table),
468                       sbi->s_itb_per_group))
469                 ext4_error (sb, "ext4_free_blocks",
470                             "Freeing blocks in system zones - "
471                             "Block = "E3FSBLK", count = %lu",
472                             block, count);
473
474         /*
475          * We are about to start releasing blocks in the bitmap,
476          * so we need undo access.
477          */
478         /* @@@ check errors */
479         BUFFER_TRACE(bitmap_bh, "getting undo access");
480         err = ext4_journal_get_undo_access(handle, bitmap_bh);
481         if (err)
482                 goto error_return;
483
484         /*
485          * We are about to modify some metadata.  Call the journal APIs
486          * to unshare ->b_data if a currently-committing transaction is
487          * using it
488          */
489         BUFFER_TRACE(gd_bh, "get_write_access");
490         err = ext4_journal_get_write_access(handle, gd_bh);
491         if (err)
492                 goto error_return;
493
494         jbd_lock_bh_state(bitmap_bh);
495
496         for (i = 0, group_freed = 0; i < count; i++) {
497                 /*
498                  * An HJ special.  This is expensive...
499                  */
500 #ifdef CONFIG_JBD_DEBUG
501                 jbd_unlock_bh_state(bitmap_bh);
502                 {
503                         struct buffer_head *debug_bh;
504                         debug_bh = sb_find_get_block(sb, block + i);
505                         if (debug_bh) {
506                                 BUFFER_TRACE(debug_bh, "Deleted!");
507                                 if (!bh2jh(bitmap_bh)->b_committed_data)
508                                         BUFFER_TRACE(debug_bh,
509                                                 "No commited data in bitmap");
510                                 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
511                                 __brelse(debug_bh);
512                         }
513                 }
514                 jbd_lock_bh_state(bitmap_bh);
515 #endif
516                 if (need_resched()) {
517                         jbd_unlock_bh_state(bitmap_bh);
518                         cond_resched();
519                         jbd_lock_bh_state(bitmap_bh);
520                 }
521                 /* @@@ This prevents newly-allocated data from being
522                  * freed and then reallocated within the same
523                  * transaction.
524                  *
525                  * Ideally we would want to allow that to happen, but to
526                  * do so requires making jbd2_journal_forget() capable of
527                  * revoking the queued write of a data block, which
528                  * implies blocking on the journal lock.  *forget()
529                  * cannot block due to truncate races.
530                  *
531                  * Eventually we can fix this by making jbd2_journal_forget()
532                  * return a status indicating whether or not it was able
533                  * to revoke the buffer.  On successful revoke, it is
534                  * safe not to set the allocation bit in the committed
535                  * bitmap, because we know that there is no outstanding
536                  * activity on the buffer any more and so it is safe to
537                  * reallocate it.
538                  */
539                 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
540                 J_ASSERT_BH(bitmap_bh,
541                                 bh2jh(bitmap_bh)->b_committed_data != NULL);
542                 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
543                                 bh2jh(bitmap_bh)->b_committed_data);
544
545                 /*
546                  * We clear the bit in the bitmap after setting the committed
547                  * data bit, because this is the reverse order to that which
548                  * the allocator uses.
549                  */
550                 BUFFER_TRACE(bitmap_bh, "clear bit");
551                 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
552                                                 bit + i, bitmap_bh->b_data)) {
553                         jbd_unlock_bh_state(bitmap_bh);
554                         ext4_error(sb, __FUNCTION__,
555                                 "bit already cleared for block "E3FSBLK,
556                                  block + i);
557                         jbd_lock_bh_state(bitmap_bh);
558                         BUFFER_TRACE(bitmap_bh, "bit already cleared");
559                 } else {
560                         group_freed++;
561                 }
562         }
563         jbd_unlock_bh_state(bitmap_bh);
564
565         spin_lock(sb_bgl_lock(sbi, block_group));
566         desc->bg_free_blocks_count =
567                 cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
568                         group_freed);
569         spin_unlock(sb_bgl_lock(sbi, block_group));
570         percpu_counter_mod(&sbi->s_freeblocks_counter, count);
571
572         /* We dirtied the bitmap block */
573         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
574         err = ext4_journal_dirty_metadata(handle, bitmap_bh);
575
576         /* And the group descriptor block */
577         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
578         ret = ext4_journal_dirty_metadata(handle, gd_bh);
579         if (!err) err = ret;
580         *pdquot_freed_blocks += group_freed;
581
582         if (overflow && !err) {
583                 block += count;
584                 count = overflow;
585                 goto do_more;
586         }
587         sb->s_dirt = 1;
588 error_return:
589         brelse(bitmap_bh);
590         ext4_std_error(sb, err);
591         return;
592 }
593
594 /**
595  * ext4_free_blocks() -- Free given blocks and update quota
596  * @handle:             handle for this transaction
597  * @inode:              inode
598  * @block:              start physical block to free
599  * @count:              number of blocks to count
600  */
601 void ext4_free_blocks(handle_t *handle, struct inode *inode,
602                         ext4_fsblk_t block, unsigned long count)
603 {
604         struct super_block * sb;
605         unsigned long dquot_freed_blocks;
606
607         sb = inode->i_sb;
608         if (!sb) {
609                 printk ("ext4_free_blocks: nonexistent device");
610                 return;
611         }
612         ext4_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
613         if (dquot_freed_blocks)
614                 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
615         return;
616 }
617
618 /**
619  * ext4_test_allocatable()
620  * @nr:                 given allocation block group
621  * @bh:                 bufferhead contains the bitmap of the given block group
622  *
623  * For ext4 allocations, we must not reuse any blocks which are
624  * allocated in the bitmap buffer's "last committed data" copy.  This
625  * prevents deletes from freeing up the page for reuse until we have
626  * committed the delete transaction.
627  *
628  * If we didn't do this, then deleting something and reallocating it as
629  * data would allow the old block to be overwritten before the
630  * transaction committed (because we force data to disk before commit).
631  * This would lead to corruption if we crashed between overwriting the
632  * data and committing the delete.
633  *
634  * @@@ We may want to make this allocation behaviour conditional on
635  * data-writes at some point, and disable it for metadata allocations or
636  * sync-data inodes.
637  */
638 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
639 {
640         int ret;
641         struct journal_head *jh = bh2jh(bh);
642
643         if (ext4_test_bit(nr, bh->b_data))
644                 return 0;
645
646         jbd_lock_bh_state(bh);
647         if (!jh->b_committed_data)
648                 ret = 1;
649         else
650                 ret = !ext4_test_bit(nr, jh->b_committed_data);
651         jbd_unlock_bh_state(bh);
652         return ret;
653 }
654
655 /**
656  * bitmap_search_next_usable_block()
657  * @start:              the starting block (group relative) of the search
658  * @bh:                 bufferhead contains the block group bitmap
659  * @maxblocks:          the ending block (group relative) of the reservation
660  *
661  * The bitmap search --- search forward alternately through the actual
662  * bitmap on disk and the last-committed copy in journal, until we find a
663  * bit free in both bitmaps.
664  */
665 static ext4_grpblk_t
666 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
667                                         ext4_grpblk_t maxblocks)
668 {
669         ext4_grpblk_t next;
670         struct journal_head *jh = bh2jh(bh);
671
672         while (start < maxblocks) {
673                 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
674                 if (next >= maxblocks)
675                         return -1;
676                 if (ext4_test_allocatable(next, bh))
677                         return next;
678                 jbd_lock_bh_state(bh);
679                 if (jh->b_committed_data)
680                         start = ext4_find_next_zero_bit(jh->b_committed_data,
681                                                         maxblocks, next);
682                 jbd_unlock_bh_state(bh);
683         }
684         return -1;
685 }
686
687 /**
688  * find_next_usable_block()
689  * @start:              the starting block (group relative) to find next
690  *                      allocatable block in bitmap.
691  * @bh:                 bufferhead contains the block group bitmap
692  * @maxblocks:          the ending block (group relative) for the search
693  *
694  * Find an allocatable block in a bitmap.  We honor both the bitmap and
695  * its last-committed copy (if that exists), and perform the "most
696  * appropriate allocation" algorithm of looking for a free block near
697  * the initial goal; then for a free byte somewhere in the bitmap; then
698  * for any free bit in the bitmap.
699  */
700 static ext4_grpblk_t
701 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
702                         ext4_grpblk_t maxblocks)
703 {
704         ext4_grpblk_t here, next;
705         char *p, *r;
706
707         if (start > 0) {
708                 /*
709                  * The goal was occupied; search forward for a free
710                  * block within the next XX blocks.
711                  *
712                  * end_goal is more or less random, but it has to be
713                  * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
714                  * next 64-bit boundary is simple..
715                  */
716                 ext4_grpblk_t end_goal = (start + 63) & ~63;
717                 if (end_goal > maxblocks)
718                         end_goal = maxblocks;
719                 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
720                 if (here < end_goal && ext4_test_allocatable(here, bh))
721                         return here;
722                 ext4_debug("Bit not found near goal\n");
723         }
724
725         here = start;
726         if (here < 0)
727                 here = 0;
728
729         p = ((char *)bh->b_data) + (here >> 3);
730         r = memscan(p, 0, (maxblocks - here + 7) >> 3);
731         next = (r - ((char *)bh->b_data)) << 3;
732
733         if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
734                 return next;
735
736         /*
737          * The bitmap search --- search forward alternately through the actual
738          * bitmap and the last-committed copy until we find a bit free in
739          * both
740          */
741         here = bitmap_search_next_usable_block(here, bh, maxblocks);
742         return here;
743 }
744
745 /**
746  * claim_block()
747  * @block:              the free block (group relative) to allocate
748  * @bh:                 the bufferhead containts the block group bitmap
749  *
750  * We think we can allocate this block in this bitmap.  Try to set the bit.
751  * If that succeeds then check that nobody has allocated and then freed the
752  * block since we saw that is was not marked in b_committed_data.  If it _was_
753  * allocated and freed then clear the bit in the bitmap again and return
754  * zero (failure).
755  */
756 static inline int
757 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
758 {
759         struct journal_head *jh = bh2jh(bh);
760         int ret;
761
762         if (ext4_set_bit_atomic(lock, block, bh->b_data))
763                 return 0;
764         jbd_lock_bh_state(bh);
765         if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
766                 ext4_clear_bit_atomic(lock, block, bh->b_data);
767                 ret = 0;
768         } else {
769                 ret = 1;
770         }
771         jbd_unlock_bh_state(bh);
772         return ret;
773 }
774
775 /**
776  * ext4_try_to_allocate()
777  * @sb:                 superblock
778  * @handle:             handle to this transaction
779  * @group:              given allocation block group
780  * @bitmap_bh:          bufferhead holds the block bitmap
781  * @grp_goal:           given target block within the group
782  * @count:              target number of blocks to allocate
783  * @my_rsv:             reservation window
784  *
785  * Attempt to allocate blocks within a give range. Set the range of allocation
786  * first, then find the first free bit(s) from the bitmap (within the range),
787  * and at last, allocate the blocks by claiming the found free bit as allocated.
788  *
789  * To set the range of this allocation:
790  *      if there is a reservation window, only try to allocate block(s) from the
791  *      file's own reservation window;
792  *      Otherwise, the allocation range starts from the give goal block, ends at
793  *      the block group's last block.
794  *
795  * If we failed to allocate the desired block then we may end up crossing to a
796  * new bitmap.  In that case we must release write access to the old one via
797  * ext4_journal_release_buffer(), else we'll run out of credits.
798  */
799 static ext4_grpblk_t
800 ext4_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
801                         struct buffer_head *bitmap_bh, ext4_grpblk_t grp_goal,
802                         unsigned long *count, struct ext4_reserve_window *my_rsv)
803 {
804         ext4_fsblk_t group_first_block;
805         ext4_grpblk_t start, end;
806         unsigned long num = 0;
807
808         /* we do allocation within the reservation window if we have a window */
809         if (my_rsv) {
810                 group_first_block = ext4_group_first_block_no(sb, group);
811                 if (my_rsv->_rsv_start >= group_first_block)
812                         start = my_rsv->_rsv_start - group_first_block;
813                 else
814                         /* reservation window cross group boundary */
815                         start = 0;
816                 end = my_rsv->_rsv_end - group_first_block + 1;
817                 if (end > EXT4_BLOCKS_PER_GROUP(sb))
818                         /* reservation window crosses group boundary */
819                         end = EXT4_BLOCKS_PER_GROUP(sb);
820                 if ((start <= grp_goal) && (grp_goal < end))
821                         start = grp_goal;
822                 else
823                         grp_goal = -1;
824         } else {
825                 if (grp_goal > 0)
826                         start = grp_goal;
827                 else
828                         start = 0;
829                 end = EXT4_BLOCKS_PER_GROUP(sb);
830         }
831
832         BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
833
834 repeat:
835         if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
836                 grp_goal = find_next_usable_block(start, bitmap_bh, end);
837                 if (grp_goal < 0)
838                         goto fail_access;
839                 if (!my_rsv) {
840                         int i;
841
842                         for (i = 0; i < 7 && grp_goal > start &&
843                                         ext4_test_allocatable(grp_goal - 1,
844                                                                 bitmap_bh);
845                                         i++, grp_goal--)
846                                 ;
847                 }
848         }
849         start = grp_goal;
850
851         if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
852                 grp_goal, bitmap_bh)) {
853                 /*
854                  * The block was allocated by another thread, or it was
855                  * allocated and then freed by another thread
856                  */
857                 start++;
858                 grp_goal++;
859                 if (start >= end)
860                         goto fail_access;
861                 goto repeat;
862         }
863         num++;
864         grp_goal++;
865         while (num < *count && grp_goal < end
866                 && ext4_test_allocatable(grp_goal, bitmap_bh)
867                 && claim_block(sb_bgl_lock(EXT4_SB(sb), group),
868                                 grp_goal, bitmap_bh)) {
869                 num++;
870                 grp_goal++;
871         }
872         *count = num;
873         return grp_goal - num;
874 fail_access:
875         *count = num;
876         return -1;
877 }
878
879 /**
880  *      find_next_reservable_window():
881  *              find a reservable space within the given range.
882  *              It does not allocate the reservation window for now:
883  *              alloc_new_reservation() will do the work later.
884  *
885  *      @search_head: the head of the searching list;
886  *              This is not necessarily the list head of the whole filesystem
887  *
888  *              We have both head and start_block to assist the search
889  *              for the reservable space. The list starts from head,
890  *              but we will shift to the place where start_block is,
891  *              then start from there, when looking for a reservable space.
892  *
893  *      @size: the target new reservation window size
894  *
895  *      @group_first_block: the first block we consider to start
896  *                      the real search from
897  *
898  *      @last_block:
899  *              the maximum block number that our goal reservable space
900  *              could start from. This is normally the last block in this
901  *              group. The search will end when we found the start of next
902  *              possible reservable space is out of this boundary.
903  *              This could handle the cross boundary reservation window
904  *              request.
905  *
906  *      basically we search from the given range, rather than the whole
907  *      reservation double linked list, (start_block, last_block)
908  *      to find a free region that is of my size and has not
909  *      been reserved.
910  *
911  */
912 static int find_next_reservable_window(
913                                 struct ext4_reserve_window_node *search_head,
914                                 struct ext4_reserve_window_node *my_rsv,
915                                 struct super_block * sb,
916                                 ext4_fsblk_t start_block,
917                                 ext4_fsblk_t last_block)
918 {
919         struct rb_node *next;
920         struct ext4_reserve_window_node *rsv, *prev;
921         ext4_fsblk_t cur;
922         int size = my_rsv->rsv_goal_size;
923
924         /* TODO: make the start of the reservation window byte-aligned */
925         /* cur = *start_block & ~7;*/
926         cur = start_block;
927         rsv = search_head;
928         if (!rsv)
929                 return -1;
930
931         while (1) {
932                 if (cur <= rsv->rsv_end)
933                         cur = rsv->rsv_end + 1;
934
935                 /* TODO?
936                  * in the case we could not find a reservable space
937                  * that is what is expected, during the re-search, we could
938                  * remember what's the largest reservable space we could have
939                  * and return that one.
940                  *
941                  * For now it will fail if we could not find the reservable
942                  * space with expected-size (or more)...
943                  */
944                 if (cur > last_block)
945                         return -1;              /* fail */
946
947                 prev = rsv;
948                 next = rb_next(&rsv->rsv_node);
949                 rsv = list_entry(next,struct ext4_reserve_window_node,rsv_node);
950
951                 /*
952                  * Reached the last reservation, we can just append to the
953                  * previous one.
954                  */
955                 if (!next)
956                         break;
957
958                 if (cur + size <= rsv->rsv_start) {
959                         /*
960                          * Found a reserveable space big enough.  We could
961                          * have a reservation across the group boundary here
962                          */
963                         break;
964                 }
965         }
966         /*
967          * we come here either :
968          * when we reach the end of the whole list,
969          * and there is empty reservable space after last entry in the list.
970          * append it to the end of the list.
971          *
972          * or we found one reservable space in the middle of the list,
973          * return the reservation window that we could append to.
974          * succeed.
975          */
976
977         if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
978                 rsv_window_remove(sb, my_rsv);
979
980         /*
981          * Let's book the whole avaliable window for now.  We will check the
982          * disk bitmap later and then, if there are free blocks then we adjust
983          * the window size if it's larger than requested.
984          * Otherwise, we will remove this node from the tree next time
985          * call find_next_reservable_window.
986          */
987         my_rsv->rsv_start = cur;
988         my_rsv->rsv_end = cur + size - 1;
989         my_rsv->rsv_alloc_hit = 0;
990
991         if (prev != my_rsv)
992                 ext4_rsv_window_add(sb, my_rsv);
993
994         return 0;
995 }
996
997 /**
998  *      alloc_new_reservation()--allocate a new reservation window
999  *
1000  *              To make a new reservation, we search part of the filesystem
1001  *              reservation list (the list that inside the group). We try to
1002  *              allocate a new reservation window near the allocation goal,
1003  *              or the beginning of the group, if there is no goal.
1004  *
1005  *              We first find a reservable space after the goal, then from
1006  *              there, we check the bitmap for the first free block after
1007  *              it. If there is no free block until the end of group, then the
1008  *              whole group is full, we failed. Otherwise, check if the free
1009  *              block is inside the expected reservable space, if so, we
1010  *              succeed.
1011  *              If the first free block is outside the reservable space, then
1012  *              start from the first free block, we search for next available
1013  *              space, and go on.
1014  *
1015  *      on succeed, a new reservation will be found and inserted into the list
1016  *      It contains at least one free block, and it does not overlap with other
1017  *      reservation windows.
1018  *
1019  *      failed: we failed to find a reservation window in this group
1020  *
1021  *      @rsv: the reservation
1022  *
1023  *      @grp_goal: The goal (group-relative).  It is where the search for a
1024  *              free reservable space should start from.
1025  *              if we have a grp_goal(grp_goal >0 ), then start from there,
1026  *              no grp_goal(grp_goal = -1), we start from the first block
1027  *              of the group.
1028  *
1029  *      @sb: the super block
1030  *      @group: the group we are trying to allocate in
1031  *      @bitmap_bh: the block group block bitmap
1032  *
1033  */
1034 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1035                 ext4_grpblk_t grp_goal, struct super_block *sb,
1036                 unsigned int group, struct buffer_head *bitmap_bh)
1037 {
1038         struct ext4_reserve_window_node *search_head;
1039         ext4_fsblk_t group_first_block, group_end_block, start_block;
1040         ext4_grpblk_t first_free_block;
1041         struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1042         unsigned long size;
1043         int ret;
1044         spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1045
1046         group_first_block = ext4_group_first_block_no(sb, group);
1047         group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1048
1049         if (grp_goal < 0)
1050                 start_block = group_first_block;
1051         else
1052                 start_block = grp_goal + group_first_block;
1053
1054         size = my_rsv->rsv_goal_size;
1055
1056         if (!rsv_is_empty(&my_rsv->rsv_window)) {
1057                 /*
1058                  * if the old reservation is cross group boundary
1059                  * and if the goal is inside the old reservation window,
1060                  * we will come here when we just failed to allocate from
1061                  * the first part of the window. We still have another part
1062                  * that belongs to the next group. In this case, there is no
1063                  * point to discard our window and try to allocate a new one
1064                  * in this group(which will fail). we should
1065                  * keep the reservation window, just simply move on.
1066                  *
1067                  * Maybe we could shift the start block of the reservation
1068                  * window to the first block of next group.
1069                  */
1070
1071                 if ((my_rsv->rsv_start <= group_end_block) &&
1072                                 (my_rsv->rsv_end > group_end_block) &&
1073                                 (start_block >= my_rsv->rsv_start))
1074                         return -1;
1075
1076                 if ((my_rsv->rsv_alloc_hit >
1077                      (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1078                         /*
1079                          * if the previously allocation hit ratio is
1080                          * greater than 1/2, then we double the size of
1081                          * the reservation window the next time,
1082                          * otherwise we keep the same size window
1083                          */
1084                         size = size * 2;
1085                         if (size > EXT4_MAX_RESERVE_BLOCKS)
1086                                 size = EXT4_MAX_RESERVE_BLOCKS;
1087                         my_rsv->rsv_goal_size= size;
1088                 }
1089         }
1090
1091         spin_lock(rsv_lock);
1092         /*
1093          * shift the search start to the window near the goal block
1094          */
1095         search_head = search_reserve_window(fs_rsv_root, start_block);
1096
1097         /*
1098          * find_next_reservable_window() simply finds a reservable window
1099          * inside the given range(start_block, group_end_block).
1100          *
1101          * To make sure the reservation window has a free bit inside it, we
1102          * need to check the bitmap after we found a reservable window.
1103          */
1104 retry:
1105         ret = find_next_reservable_window(search_head, my_rsv, sb,
1106                                                 start_block, group_end_block);
1107
1108         if (ret == -1) {
1109                 if (!rsv_is_empty(&my_rsv->rsv_window))
1110                         rsv_window_remove(sb, my_rsv);
1111                 spin_unlock(rsv_lock);
1112                 return -1;
1113         }
1114
1115         /*
1116          * On success, find_next_reservable_window() returns the
1117          * reservation window where there is a reservable space after it.
1118          * Before we reserve this reservable space, we need
1119          * to make sure there is at least a free block inside this region.
1120          *
1121          * searching the first free bit on the block bitmap and copy of
1122          * last committed bitmap alternatively, until we found a allocatable
1123          * block. Search start from the start block of the reservable space
1124          * we just found.
1125          */
1126         spin_unlock(rsv_lock);
1127         first_free_block = bitmap_search_next_usable_block(
1128                         my_rsv->rsv_start - group_first_block,
1129                         bitmap_bh, group_end_block - group_first_block + 1);
1130
1131         if (first_free_block < 0) {
1132                 /*
1133                  * no free block left on the bitmap, no point
1134                  * to reserve the space. return failed.
1135                  */
1136                 spin_lock(rsv_lock);
1137                 if (!rsv_is_empty(&my_rsv->rsv_window))
1138                         rsv_window_remove(sb, my_rsv);
1139                 spin_unlock(rsv_lock);
1140                 return -1;              /* failed */
1141         }
1142
1143         start_block = first_free_block + group_first_block;
1144         /*
1145          * check if the first free block is within the
1146          * free space we just reserved
1147          */
1148         if (start_block >= my_rsv->rsv_start && start_block < my_rsv->rsv_end)
1149                 return 0;               /* success */
1150         /*
1151          * if the first free bit we found is out of the reservable space
1152          * continue search for next reservable space,
1153          * start from where the free block is,
1154          * we also shift the list head to where we stopped last time
1155          */
1156         search_head = my_rsv;
1157         spin_lock(rsv_lock);
1158         goto retry;
1159 }
1160
1161 /**
1162  * try_to_extend_reservation()
1163  * @my_rsv:             given reservation window
1164  * @sb:                 super block
1165  * @size:               the delta to extend
1166  *
1167  * Attempt to expand the reservation window large enough to have
1168  * required number of free blocks
1169  *
1170  * Since ext4_try_to_allocate() will always allocate blocks within
1171  * the reservation window range, if the window size is too small,
1172  * multiple blocks allocation has to stop at the end of the reservation
1173  * window. To make this more efficient, given the total number of
1174  * blocks needed and the current size of the window, we try to
1175  * expand the reservation window size if necessary on a best-effort
1176  * basis before ext4_new_blocks() tries to allocate blocks,
1177  */
1178 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1179                         struct super_block *sb, int size)
1180 {
1181         struct ext4_reserve_window_node *next_rsv;
1182         struct rb_node *next;
1183         spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1184
1185         if (!spin_trylock(rsv_lock))
1186                 return;
1187
1188         next = rb_next(&my_rsv->rsv_node);
1189
1190         if (!next)
1191                 my_rsv->rsv_end += size;
1192         else {
1193                 next_rsv = list_entry(next, struct ext4_reserve_window_node, rsv_node);
1194
1195                 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1196                         my_rsv->rsv_end += size;
1197                 else
1198                         my_rsv->rsv_end = next_rsv->rsv_start - 1;
1199         }
1200         spin_unlock(rsv_lock);
1201 }
1202
1203 /**
1204  * ext4_try_to_allocate_with_rsv()
1205  * @sb:                 superblock
1206  * @handle:             handle to this transaction
1207  * @group:              given allocation block group
1208  * @bitmap_bh:          bufferhead holds the block bitmap
1209  * @grp_goal:           given target block within the group
1210  * @count:              target number of blocks to allocate
1211  * @my_rsv:             reservation window
1212  * @errp:               pointer to store the error code
1213  *
1214  * This is the main function used to allocate a new block and its reservation
1215  * window.
1216  *
1217  * Each time when a new block allocation is need, first try to allocate from
1218  * its own reservation.  If it does not have a reservation window, instead of
1219  * looking for a free bit on bitmap first, then look up the reservation list to
1220  * see if it is inside somebody else's reservation window, we try to allocate a
1221  * reservation window for it starting from the goal first. Then do the block
1222  * allocation within the reservation window.
1223  *
1224  * This will avoid keeping on searching the reservation list again and
1225  * again when somebody is looking for a free block (without
1226  * reservation), and there are lots of free blocks, but they are all
1227  * being reserved.
1228  *
1229  * We use a red-black tree for the per-filesystem reservation list.
1230  *
1231  */
1232 static ext4_grpblk_t
1233 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1234                         unsigned int group, struct buffer_head *bitmap_bh,
1235                         ext4_grpblk_t grp_goal,
1236                         struct ext4_reserve_window_node * my_rsv,
1237                         unsigned long *count, int *errp)
1238 {
1239         ext4_fsblk_t group_first_block, group_last_block;
1240         ext4_grpblk_t ret = 0;
1241         int fatal;
1242         unsigned long num = *count;
1243
1244         *errp = 0;
1245
1246         /*
1247          * Make sure we use undo access for the bitmap, because it is critical
1248          * that we do the frozen_data COW on bitmap buffers in all cases even
1249          * if the buffer is in BJ_Forget state in the committing transaction.
1250          */
1251         BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1252         fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1253         if (fatal) {
1254                 *errp = fatal;
1255                 return -1;
1256         }
1257
1258         /*
1259          * we don't deal with reservation when
1260          * filesystem is mounted without reservation
1261          * or the file is not a regular file
1262          * or last attempt to allocate a block with reservation turned on failed
1263          */
1264         if (my_rsv == NULL ) {
1265                 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1266                                                 grp_goal, count, NULL);
1267                 goto out;
1268         }
1269         /*
1270          * grp_goal is a group relative block number (if there is a goal)
1271          * 0 < grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1272          * first block is a filesystem wide block number
1273          * first block is the block number of the first block in this group
1274          */
1275         group_first_block = ext4_group_first_block_no(sb, group);
1276         group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1277
1278         /*
1279          * Basically we will allocate a new block from inode's reservation
1280          * window.
1281          *
1282          * We need to allocate a new reservation window, if:
1283          * a) inode does not have a reservation window; or
1284          * b) last attempt to allocate a block from existing reservation
1285          *    failed; or
1286          * c) we come here with a goal and with a reservation window
1287          *
1288          * We do not need to allocate a new reservation window if we come here
1289          * at the beginning with a goal and the goal is inside the window, or
1290          * we don't have a goal but already have a reservation window.
1291          * then we could go to allocate from the reservation window directly.
1292          */
1293         while (1) {
1294                 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1295                         !goal_in_my_reservation(&my_rsv->rsv_window,
1296                                                 grp_goal, group, sb)) {
1297                         if (my_rsv->rsv_goal_size < *count)
1298                                 my_rsv->rsv_goal_size = *count;
1299                         ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1300                                                         group, bitmap_bh);
1301                         if (ret < 0)
1302                                 break;                  /* failed */
1303
1304                         if (!goal_in_my_reservation(&my_rsv->rsv_window,
1305                                                         grp_goal, group, sb))
1306                                 grp_goal = -1;
1307                 } else if (grp_goal > 0 &&
1308                           (my_rsv->rsv_end-grp_goal+1) < *count)
1309                         try_to_extend_reservation(my_rsv, sb,
1310                                         *count-my_rsv->rsv_end + grp_goal - 1);
1311
1312                 if ((my_rsv->rsv_start > group_last_block) ||
1313                                 (my_rsv->rsv_end < group_first_block)) {
1314                         rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1315                         BUG();
1316                 }
1317                 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1318                                            grp_goal, &num, &my_rsv->rsv_window);
1319                 if (ret >= 0) {
1320                         my_rsv->rsv_alloc_hit += num;
1321                         *count = num;
1322                         break;                          /* succeed */
1323                 }
1324                 num = *count;
1325         }
1326 out:
1327         if (ret >= 0) {
1328                 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1329                                         "bitmap block");
1330                 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1331                 if (fatal) {
1332                         *errp = fatal;
1333                         return -1;
1334                 }
1335                 return ret;
1336         }
1337
1338         BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1339         ext4_journal_release_buffer(handle, bitmap_bh);
1340         return ret;
1341 }
1342
1343 /**
1344  * ext4_has_free_blocks()
1345  * @sbi:                in-core super block structure.
1346  *
1347  * Check if filesystem has at least 1 free block available for allocation.
1348  */
1349 static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1350 {
1351         ext4_fsblk_t free_blocks, root_blocks;
1352
1353         free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1354         root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count);
1355         if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1356                 sbi->s_resuid != current->fsuid &&
1357                 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1358                 return 0;
1359         }
1360         return 1;
1361 }
1362
1363 /**
1364  * ext4_should_retry_alloc()
1365  * @sb:                 super block
1366  * @retries             number of attemps has been made
1367  *
1368  * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1369  * it is profitable to retry the operation, this function will wait
1370  * for the current or commiting transaction to complete, and then
1371  * return TRUE.
1372  *
1373  * if the total number of retries exceed three times, return FALSE.
1374  */
1375 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1376 {
1377         if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1378                 return 0;
1379
1380         jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1381
1382         return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1383 }
1384
1385 /**
1386  * ext4_new_blocks() -- core block(s) allocation function
1387  * @handle:             handle to this transaction
1388  * @inode:              file inode
1389  * @goal:               given target block(filesystem wide)
1390  * @count:              target number of blocks to allocate
1391  * @errp:               error code
1392  *
1393  * ext4_new_blocks uses a goal block to assist allocation.  It tries to
1394  * allocate block(s) from the block group contains the goal block first. If that
1395  * fails, it will try to allocate block(s) from other block groups without
1396  * any specific goal block.
1397  *
1398  */
1399 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
1400                         ext4_fsblk_t goal, unsigned long *count, int *errp)
1401 {
1402         struct buffer_head *bitmap_bh = NULL;
1403         struct buffer_head *gdp_bh;
1404         unsigned long group_no;
1405         int goal_group;
1406         ext4_grpblk_t grp_target_blk;   /* blockgroup relative goal block */
1407         ext4_grpblk_t grp_alloc_blk;    /* blockgroup-relative allocated block*/
1408         ext4_fsblk_t ret_block;         /* filesyetem-wide allocated block */
1409         int bgi;                        /* blockgroup iteration index */
1410         int fatal = 0, err;
1411         int performed_allocation = 0;
1412         ext4_grpblk_t free_blocks;      /* number of free blocks in a group */
1413         struct super_block *sb;
1414         struct ext4_group_desc *gdp;
1415         struct ext4_super_block *es;
1416         struct ext4_sb_info *sbi;
1417         struct ext4_reserve_window_node *my_rsv = NULL;
1418         struct ext4_block_alloc_info *block_i;
1419         unsigned short windowsz = 0;
1420 #ifdef EXT4FS_DEBUG
1421         static int goal_hits, goal_attempts;
1422 #endif
1423         unsigned long ngroups;
1424         unsigned long num = *count;
1425
1426         *errp = -ENOSPC;
1427         sb = inode->i_sb;
1428         if (!sb) {
1429                 printk("ext4_new_block: nonexistent device");
1430                 return 0;
1431         }
1432
1433         /*
1434          * Check quota for allocation of this block.
1435          */
1436         if (DQUOT_ALLOC_BLOCK(inode, num)) {
1437                 *errp = -EDQUOT;
1438                 return 0;
1439         }
1440
1441         sbi = EXT4_SB(sb);
1442         es = EXT4_SB(sb)->s_es;
1443         ext4_debug("goal=%lu.\n", goal);
1444         /*
1445          * Allocate a block from reservation only when
1446          * filesystem is mounted with reservation(default,-o reservation), and
1447          * it's a regular file, and
1448          * the desired window size is greater than 0 (One could use ioctl
1449          * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1450          * reservation on that particular file)
1451          */
1452         block_i = EXT4_I(inode)->i_block_alloc_info;
1453         if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1454                 my_rsv = &block_i->rsv_window_node;
1455
1456         if (!ext4_has_free_blocks(sbi)) {
1457                 *errp = -ENOSPC;
1458                 goto out;
1459         }
1460
1461         /*
1462          * First, test whether the goal block is free.
1463          */
1464         if (goal < le32_to_cpu(es->s_first_data_block) ||
1465             goal >= le32_to_cpu(es->s_blocks_count))
1466                 goal = le32_to_cpu(es->s_first_data_block);
1467         ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1468         goal_group = group_no;
1469 retry_alloc:
1470         gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1471         if (!gdp)
1472                 goto io_error;
1473
1474         free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1475         /*
1476          * if there is not enough free blocks to make a new resevation
1477          * turn off reservation for this allocation
1478          */
1479         if (my_rsv && (free_blocks < windowsz)
1480                 && (rsv_is_empty(&my_rsv->rsv_window)))
1481                 my_rsv = NULL;
1482
1483         if (free_blocks > 0) {
1484                 bitmap_bh = read_block_bitmap(sb, group_no);
1485                 if (!bitmap_bh)
1486                         goto io_error;
1487                 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1488                                         group_no, bitmap_bh, grp_target_blk,
1489                                         my_rsv, &num, &fatal);
1490                 if (fatal)
1491                         goto out;
1492                 if (grp_alloc_blk >= 0)
1493                         goto allocated;
1494         }
1495
1496         ngroups = EXT4_SB(sb)->s_groups_count;
1497         smp_rmb();
1498
1499         /*
1500          * Now search the rest of the groups.  We assume that
1501          * i and gdp correctly point to the last group visited.
1502          */
1503         for (bgi = 0; bgi < ngroups; bgi++) {
1504                 group_no++;
1505                 if (group_no >= ngroups)
1506                         group_no = 0;
1507                 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1508                 if (!gdp) {
1509                         *errp = -EIO;
1510                         goto out;
1511                 }
1512                 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1513                 /*
1514                  * skip this group if the number of
1515                  * free blocks is less than half of the reservation
1516                  * window size.
1517                  */
1518                 if (free_blocks <= (windowsz/2))
1519                         continue;
1520
1521                 brelse(bitmap_bh);
1522                 bitmap_bh = read_block_bitmap(sb, group_no);
1523                 if (!bitmap_bh)
1524                         goto io_error;
1525                 /*
1526                  * try to allocate block(s) from this group, without a goal(-1).
1527                  */
1528                 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1529                                         group_no, bitmap_bh, -1, my_rsv,
1530                                         &num, &fatal);
1531                 if (fatal)
1532                         goto out;
1533                 if (grp_alloc_blk >= 0)
1534                         goto allocated;
1535         }
1536         /*
1537          * We may end up a bogus ealier ENOSPC error due to
1538          * filesystem is "full" of reservations, but
1539          * there maybe indeed free blocks avaliable on disk
1540          * In this case, we just forget about the reservations
1541          * just do block allocation as without reservations.
1542          */
1543         if (my_rsv) {
1544                 my_rsv = NULL;
1545                 group_no = goal_group;
1546                 goto retry_alloc;
1547         }
1548         /* No space left on the device */
1549         *errp = -ENOSPC;
1550         goto out;
1551
1552 allocated:
1553
1554         ext4_debug("using block group %d(%d)\n",
1555                         group_no, gdp->bg_free_blocks_count);
1556
1557         BUFFER_TRACE(gdp_bh, "get_write_access");
1558         fatal = ext4_journal_get_write_access(handle, gdp_bh);
1559         if (fatal)
1560                 goto out;
1561
1562         ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1563
1564         if (in_range(le32_to_cpu(gdp->bg_block_bitmap), ret_block, num) ||
1565             in_range(le32_to_cpu(gdp->bg_inode_bitmap), ret_block, num) ||
1566             in_range(ret_block, le32_to_cpu(gdp->bg_inode_table),
1567                       EXT4_SB(sb)->s_itb_per_group) ||
1568             in_range(ret_block + num - 1, le32_to_cpu(gdp->bg_inode_table),
1569                       EXT4_SB(sb)->s_itb_per_group))
1570                 ext4_error(sb, "ext4_new_block",
1571                             "Allocating block in system zone - "
1572                             "blocks from "E3FSBLK", length %lu",
1573                              ret_block, num);
1574
1575         performed_allocation = 1;
1576
1577 #ifdef CONFIG_JBD_DEBUG
1578         {
1579                 struct buffer_head *debug_bh;
1580
1581                 /* Record bitmap buffer state in the newly allocated block */
1582                 debug_bh = sb_find_get_block(sb, ret_block);
1583                 if (debug_bh) {
1584                         BUFFER_TRACE(debug_bh, "state when allocated");
1585                         BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1586                         brelse(debug_bh);
1587                 }
1588         }
1589         jbd_lock_bh_state(bitmap_bh);
1590         spin_lock(sb_bgl_lock(sbi, group_no));
1591         if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1592                 int i;
1593
1594                 for (i = 0; i < num; i++) {
1595                         if (ext4_test_bit(grp_alloc_blk+i,
1596                                         bh2jh(bitmap_bh)->b_committed_data)) {
1597                                 printk("%s: block was unexpectedly set in "
1598                                         "b_committed_data\n", __FUNCTION__);
1599                         }
1600                 }
1601         }
1602         ext4_debug("found bit %d\n", grp_alloc_blk);
1603         spin_unlock(sb_bgl_lock(sbi, group_no));
1604         jbd_unlock_bh_state(bitmap_bh);
1605 #endif
1606
1607         if (ret_block + num - 1 >= le32_to_cpu(es->s_blocks_count)) {
1608                 ext4_error(sb, "ext4_new_block",
1609                             "block("E3FSBLK") >= blocks count(%d) - "
1610                             "block_group = %lu, es == %p ", ret_block,
1611                         le32_to_cpu(es->s_blocks_count), group_no, es);
1612                 goto out;
1613         }
1614
1615         /*
1616          * It is up to the caller to add the new buffer to a journal
1617          * list of some description.  We don't know in advance whether
1618          * the caller wants to use it as metadata or data.
1619          */
1620         ext4_debug("allocating block %lu. Goal hits %d of %d.\n",
1621                         ret_block, goal_hits, goal_attempts);
1622
1623         spin_lock(sb_bgl_lock(sbi, group_no));
1624         gdp->bg_free_blocks_count =
1625                         cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count)-num);
1626         spin_unlock(sb_bgl_lock(sbi, group_no));
1627         percpu_counter_mod(&sbi->s_freeblocks_counter, -num);
1628
1629         BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1630         err = ext4_journal_dirty_metadata(handle, gdp_bh);
1631         if (!fatal)
1632                 fatal = err;
1633
1634         sb->s_dirt = 1;
1635         if (fatal)
1636                 goto out;
1637
1638         *errp = 0;
1639         brelse(bitmap_bh);
1640         DQUOT_FREE_BLOCK(inode, *count-num);
1641         *count = num;
1642         return ret_block;
1643
1644 io_error:
1645         *errp = -EIO;
1646 out:
1647         if (fatal) {
1648                 *errp = fatal;
1649                 ext4_std_error(sb, fatal);
1650         }
1651         /*
1652          * Undo the block allocation
1653          */
1654         if (!performed_allocation)
1655                 DQUOT_FREE_BLOCK(inode, *count);
1656         brelse(bitmap_bh);
1657         return 0;
1658 }
1659
1660 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
1661                         ext4_fsblk_t goal, int *errp)
1662 {
1663         unsigned long count = 1;
1664
1665         return ext4_new_blocks(handle, inode, goal, &count, errp);
1666 }
1667
1668 /**
1669  * ext4_count_free_blocks() -- count filesystem free blocks
1670  * @sb:         superblock
1671  *
1672  * Adds up the number of free blocks from each block group.
1673  */
1674 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1675 {
1676         ext4_fsblk_t desc_count;
1677         struct ext4_group_desc *gdp;
1678         int i;
1679         unsigned long ngroups = EXT4_SB(sb)->s_groups_count;
1680 #ifdef EXT4FS_DEBUG
1681         struct ext4_super_block *es;
1682         ext4_fsblk_t bitmap_count;
1683         unsigned long x;
1684         struct buffer_head *bitmap_bh = NULL;
1685
1686         es = EXT4_SB(sb)->s_es;
1687         desc_count = 0;
1688         bitmap_count = 0;
1689         gdp = NULL;
1690
1691         smp_rmb();
1692         for (i = 0; i < ngroups; i++) {
1693                 gdp = ext4_get_group_desc(sb, i, NULL);
1694                 if (!gdp)
1695                         continue;
1696                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1697                 brelse(bitmap_bh);
1698                 bitmap_bh = read_block_bitmap(sb, i);
1699                 if (bitmap_bh == NULL)
1700                         continue;
1701
1702                 x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1703                 printk("group %d: stored = %d, counted = %lu\n",
1704                         i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1705                 bitmap_count += x;
1706         }
1707         brelse(bitmap_bh);
1708         printk("ext4_count_free_blocks: stored = "E3FSBLK
1709                 ", computed = "E3FSBLK", "E3FSBLK"\n",
1710                le32_to_cpu(es->s_free_blocks_count),
1711                 desc_count, bitmap_count);
1712         return bitmap_count;
1713 #else
1714         desc_count = 0;
1715         smp_rmb();
1716         for (i = 0; i < ngroups; i++) {
1717                 gdp = ext4_get_group_desc(sb, i, NULL);
1718                 if (!gdp)
1719                         continue;
1720                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1721         }
1722
1723         return desc_count;
1724 #endif
1725 }
1726
1727 static inline int
1728 block_in_use(ext4_fsblk_t block, struct super_block *sb, unsigned char *map)
1729 {
1730         ext4_grpblk_t offset;
1731
1732         ext4_get_group_no_and_offset(sb, block, NULL, &offset);
1733         return ext4_test_bit (offset, map);
1734 }
1735
1736 static inline int test_root(int a, int b)
1737 {
1738         int num = b;
1739
1740         while (a > num)
1741                 num *= b;
1742         return num == a;
1743 }
1744
1745 static int ext4_group_sparse(int group)
1746 {
1747         if (group <= 1)
1748                 return 1;
1749         if (!(group & 1))
1750                 return 0;
1751         return (test_root(group, 7) || test_root(group, 5) ||
1752                 test_root(group, 3));
1753 }
1754
1755 /**
1756  *      ext4_bg_has_super - number of blocks used by the superblock in group
1757  *      @sb: superblock for filesystem
1758  *      @group: group number to check
1759  *
1760  *      Return the number of blocks used by the superblock (primary or backup)
1761  *      in this group.  Currently this will be only 0 or 1.
1762  */
1763 int ext4_bg_has_super(struct super_block *sb, int group)
1764 {
1765         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1766                                 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1767                         !ext4_group_sparse(group))
1768                 return 0;
1769         return 1;
1770 }
1771
1772 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb, int group)
1773 {
1774         unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1775         unsigned long first = metagroup * EXT4_DESC_PER_BLOCK(sb);
1776         unsigned long last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
1777
1778         if (group == first || group == first + 1 || group == last)
1779                 return 1;
1780         return 0;
1781 }
1782
1783 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb, int group)
1784 {
1785         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1786                                 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1787                         !ext4_group_sparse(group))
1788                 return 0;
1789         return EXT4_SB(sb)->s_gdb_count;
1790 }
1791
1792 /**
1793  *      ext4_bg_num_gdb - number of blocks used by the group table in group
1794  *      @sb: superblock for filesystem
1795  *      @group: group number to check
1796  *
1797  *      Return the number of blocks used by the group descriptor table
1798  *      (primary or backup) in this group.  In the future there may be a
1799  *      different number of descriptor blocks in each group.
1800  */
1801 unsigned long ext4_bg_num_gdb(struct super_block *sb, int group)
1802 {
1803         unsigned long first_meta_bg =
1804                         le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
1805         unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1806
1807         if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
1808                         metagroup < first_meta_bg)
1809                 return ext4_bg_num_gdb_nometa(sb,group);
1810
1811         return ext4_bg_num_gdb_meta(sb,group);
1812
1813 }