ext4: Use BUG_ON() instead of BUG()
[safe/jmp/linux-2.6] / fs / ext4 / balloc.c
1 /*
2  *  linux/fs/ext4/balloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10  *  Big-endian to little-endian byte-swapping/bitmaps by
11  *        David S. Miller (davem@caip.rutgers.edu), 1995
12  */
13
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/quotaops.h>
19 #include <linux/buffer_head.h>
20 #include "ext4.h"
21 #include "ext4_jbd2.h"
22 #include "group.h"
23
24 /*
25  * balloc.c contains the blocks allocation and deallocation routines
26  */
27
28 /*
29  * Calculate the block group number and offset, given a block number
30  */
31 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
32                 ext4_group_t *blockgrpp, ext4_grpblk_t *offsetp)
33 {
34         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
35         ext4_grpblk_t offset;
36
37         blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
38         offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
39         if (offsetp)
40                 *offsetp = offset;
41         if (blockgrpp)
42                 *blockgrpp = blocknr;
43
44 }
45
46 static int ext4_block_in_group(struct super_block *sb, ext4_fsblk_t block,
47                         ext4_group_t block_group)
48 {
49         ext4_group_t actual_group;
50         ext4_get_group_no_and_offset(sb, block, &actual_group, 0);
51         if (actual_group == block_group)
52                 return 1;
53         return 0;
54 }
55
56 static int ext4_group_used_meta_blocks(struct super_block *sb,
57                                 ext4_group_t block_group)
58 {
59         ext4_fsblk_t tmp;
60         struct ext4_sb_info *sbi = EXT4_SB(sb);
61         /* block bitmap, inode bitmap, and inode table blocks */
62         int used_blocks = sbi->s_itb_per_group + 2;
63
64         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
65                 struct ext4_group_desc *gdp;
66                 struct buffer_head *bh;
67
68                 gdp = ext4_get_group_desc(sb, block_group, &bh);
69                 if (!ext4_block_in_group(sb, ext4_block_bitmap(sb, gdp),
70                                         block_group))
71                         used_blocks--;
72
73                 if (!ext4_block_in_group(sb, ext4_inode_bitmap(sb, gdp),
74                                         block_group))
75                         used_blocks--;
76
77                 tmp = ext4_inode_table(sb, gdp);
78                 for (; tmp < ext4_inode_table(sb, gdp) +
79                                 sbi->s_itb_per_group; tmp++) {
80                         if (!ext4_block_in_group(sb, tmp, block_group))
81                                 used_blocks -= 1;
82                 }
83         }
84         return used_blocks;
85 }
86 /* Initializes an uninitialized block bitmap if given, and returns the
87  * number of blocks free in the group. */
88 unsigned ext4_init_block_bitmap(struct super_block *sb, struct buffer_head *bh,
89                  ext4_group_t block_group, struct ext4_group_desc *gdp)
90 {
91         int bit, bit_max;
92         unsigned free_blocks, group_blocks;
93         struct ext4_sb_info *sbi = EXT4_SB(sb);
94
95         if (bh) {
96                 J_ASSERT_BH(bh, buffer_locked(bh));
97
98                 /* If checksum is bad mark all blocks used to prevent allocation
99                  * essentially implementing a per-group read-only flag. */
100                 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
101                         ext4_error(sb, __func__,
102                                   "Checksum bad for group %lu\n", block_group);
103                         gdp->bg_free_blocks_count = 0;
104                         gdp->bg_free_inodes_count = 0;
105                         gdp->bg_itable_unused = 0;
106                         memset(bh->b_data, 0xff, sb->s_blocksize);
107                         return 0;
108                 }
109                 memset(bh->b_data, 0, sb->s_blocksize);
110         }
111
112         /* Check for superblock and gdt backups in this group */
113         bit_max = ext4_bg_has_super(sb, block_group);
114
115         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
116             block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) *
117                           sbi->s_desc_per_block) {
118                 if (bit_max) {
119                         bit_max += ext4_bg_num_gdb(sb, block_group);
120                         bit_max +=
121                                 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks);
122                 }
123         } else { /* For META_BG_BLOCK_GROUPS */
124                 int group_rel = (block_group -
125                                  le32_to_cpu(sbi->s_es->s_first_meta_bg)) %
126                                 EXT4_DESC_PER_BLOCK(sb);
127                 if (group_rel == 0 || group_rel == 1 ||
128                     (group_rel == EXT4_DESC_PER_BLOCK(sb) - 1))
129                         bit_max += 1;
130         }
131
132         if (block_group == sbi->s_groups_count - 1) {
133                 /*
134                  * Even though mke2fs always initialize first and last group
135                  * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need
136                  * to make sure we calculate the right free blocks
137                  */
138                 group_blocks = ext4_blocks_count(sbi->s_es) -
139                         le32_to_cpu(sbi->s_es->s_first_data_block) -
140                         (EXT4_BLOCKS_PER_GROUP(sb) * (sbi->s_groups_count -1));
141         } else {
142                 group_blocks = EXT4_BLOCKS_PER_GROUP(sb);
143         }
144
145         free_blocks = group_blocks - bit_max;
146
147         if (bh) {
148                 ext4_fsblk_t start, tmp;
149                 int flex_bg = 0;
150
151                 for (bit = 0; bit < bit_max; bit++)
152                         ext4_set_bit(bit, bh->b_data);
153
154                 start = ext4_group_first_block_no(sb, block_group);
155
156                 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
157                                               EXT4_FEATURE_INCOMPAT_FLEX_BG))
158                         flex_bg = 1;
159
160                 /* Set bits for block and inode bitmaps, and inode table */
161                 tmp = ext4_block_bitmap(sb, gdp);
162                 if (!flex_bg || ext4_block_in_group(sb, tmp, block_group))
163                         ext4_set_bit(tmp - start, bh->b_data);
164
165                 tmp = ext4_inode_bitmap(sb, gdp);
166                 if (!flex_bg || ext4_block_in_group(sb, tmp, block_group))
167                         ext4_set_bit(tmp - start, bh->b_data);
168
169                 tmp = ext4_inode_table(sb, gdp);
170                 for (; tmp < ext4_inode_table(sb, gdp) +
171                                 sbi->s_itb_per_group; tmp++) {
172                         if (!flex_bg ||
173                                 ext4_block_in_group(sb, tmp, block_group))
174                                 ext4_set_bit(tmp - start, bh->b_data);
175                 }
176                 /*
177                  * Also if the number of blocks within the group is
178                  * less than the blocksize * 8 ( which is the size
179                  * of bitmap ), set rest of the block bitmap to 1
180                  */
181                 mark_bitmap_end(group_blocks, sb->s_blocksize * 8, bh->b_data);
182         }
183         return free_blocks - ext4_group_used_meta_blocks(sb, block_group);
184 }
185
186
187 /*
188  * The free blocks are managed by bitmaps.  A file system contains several
189  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
190  * block for inodes, N blocks for the inode table and data blocks.
191  *
192  * The file system contains group descriptors which are located after the
193  * super block.  Each descriptor contains the number of the bitmap block and
194  * the free blocks count in the block.  The descriptors are loaded in memory
195  * when a file system is mounted (see ext4_fill_super).
196  */
197
198
199 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
200
201 /**
202  * ext4_get_group_desc() -- load group descriptor from disk
203  * @sb:                 super block
204  * @block_group:        given block group
205  * @bh:                 pointer to the buffer head to store the block
206  *                      group descriptor
207  */
208 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
209                                              ext4_group_t block_group,
210                                              struct buffer_head ** bh)
211 {
212         unsigned long group_desc;
213         unsigned long offset;
214         struct ext4_group_desc * desc;
215         struct ext4_sb_info *sbi = EXT4_SB(sb);
216
217         if (block_group >= sbi->s_groups_count) {
218                 ext4_error (sb, "ext4_get_group_desc",
219                             "block_group >= groups_count - "
220                             "block_group = %lu, groups_count = %lu",
221                             block_group, sbi->s_groups_count);
222
223                 return NULL;
224         }
225         smp_rmb();
226
227         group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
228         offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
229         if (!sbi->s_group_desc[group_desc]) {
230                 ext4_error (sb, "ext4_get_group_desc",
231                             "Group descriptor not loaded - "
232                             "block_group = %lu, group_desc = %lu, desc = %lu",
233                              block_group, group_desc, offset);
234                 return NULL;
235         }
236
237         desc = (struct ext4_group_desc *)(
238                 (__u8 *)sbi->s_group_desc[group_desc]->b_data +
239                 offset * EXT4_DESC_SIZE(sb));
240         if (bh)
241                 *bh = sbi->s_group_desc[group_desc];
242         return desc;
243 }
244
245 static int ext4_valid_block_bitmap(struct super_block *sb,
246                                         struct ext4_group_desc *desc,
247                                         unsigned int block_group,
248                                         struct buffer_head *bh)
249 {
250         ext4_grpblk_t offset;
251         ext4_grpblk_t next_zero_bit;
252         ext4_fsblk_t bitmap_blk;
253         ext4_fsblk_t group_first_block;
254
255         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
256                 /* with FLEX_BG, the inode/block bitmaps and itable
257                  * blocks may not be in the group at all
258                  * so the bitmap validation will be skipped for those groups
259                  * or it has to also read the block group where the bitmaps
260                  * are located to verify they are set.
261                  */
262                 return 1;
263         }
264         group_first_block = ext4_group_first_block_no(sb, block_group);
265
266         /* check whether block bitmap block number is set */
267         bitmap_blk = ext4_block_bitmap(sb, desc);
268         offset = bitmap_blk - group_first_block;
269         if (!ext4_test_bit(offset, bh->b_data))
270                 /* bad block bitmap */
271                 goto err_out;
272
273         /* check whether the inode bitmap block number is set */
274         bitmap_blk = ext4_inode_bitmap(sb, desc);
275         offset = bitmap_blk - group_first_block;
276         if (!ext4_test_bit(offset, bh->b_data))
277                 /* bad block bitmap */
278                 goto err_out;
279
280         /* check whether the inode table block number is set */
281         bitmap_blk = ext4_inode_table(sb, desc);
282         offset = bitmap_blk - group_first_block;
283         next_zero_bit = ext4_find_next_zero_bit(bh->b_data,
284                                 offset + EXT4_SB(sb)->s_itb_per_group,
285                                 offset);
286         if (next_zero_bit >= offset + EXT4_SB(sb)->s_itb_per_group)
287                 /* good bitmap for inode tables */
288                 return 1;
289
290 err_out:
291         ext4_error(sb, __func__,
292                         "Invalid block bitmap - "
293                         "block_group = %d, block = %llu",
294                         block_group, bitmap_blk);
295         return 0;
296 }
297 /**
298  * read_block_bitmap()
299  * @sb:                 super block
300  * @block_group:        given block group
301  *
302  * Read the bitmap for a given block_group,and validate the
303  * bits for block/inode/inode tables are set in the bitmaps
304  *
305  * Return buffer_head on success or NULL in case of failure.
306  */
307 struct buffer_head *
308 read_block_bitmap(struct super_block *sb, ext4_group_t block_group)
309 {
310         struct ext4_group_desc * desc;
311         struct buffer_head * bh = NULL;
312         ext4_fsblk_t bitmap_blk;
313
314         desc = ext4_get_group_desc(sb, block_group, NULL);
315         if (!desc)
316                 return NULL;
317         bitmap_blk = ext4_block_bitmap(sb, desc);
318         bh = sb_getblk(sb, bitmap_blk);
319         if (unlikely(!bh)) {
320                 ext4_error(sb, __func__,
321                             "Cannot read block bitmap - "
322                             "block_group = %d, block_bitmap = %llu",
323                             (int)block_group, (unsigned long long)bitmap_blk);
324                 return NULL;
325         }
326         if (bh_uptodate_or_lock(bh))
327                 return bh;
328
329         if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
330                 ext4_init_block_bitmap(sb, bh, block_group, desc);
331                 set_buffer_uptodate(bh);
332                 unlock_buffer(bh);
333                 return bh;
334         }
335         if (bh_submit_read(bh) < 0) {
336                 put_bh(bh);
337                 ext4_error(sb, __func__,
338                             "Cannot read block bitmap - "
339                             "block_group = %d, block_bitmap = %llu",
340                             (int)block_group, (unsigned long long)bitmap_blk);
341                 return NULL;
342         }
343         ext4_valid_block_bitmap(sb, desc, block_group, bh);
344         /*
345          * file system mounted not to panic on error,
346          * continue with corrupt bitmap
347          */
348         return bh;
349 }
350 /*
351  * The reservation window structure operations
352  * --------------------------------------------
353  * Operations include:
354  * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
355  *
356  * We use a red-black tree to represent per-filesystem reservation
357  * windows.
358  *
359  */
360
361 /**
362  * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
363  * @rb_root:            root of per-filesystem reservation rb tree
364  * @verbose:            verbose mode
365  * @fn:                 function which wishes to dump the reservation map
366  *
367  * If verbose is turned on, it will print the whole block reservation
368  * windows(start, end). Otherwise, it will only print out the "bad" windows,
369  * those windows that overlap with their immediate neighbors.
370  */
371 #if 1
372 static void __rsv_window_dump(struct rb_root *root, int verbose,
373                               const char *fn)
374 {
375         struct rb_node *n;
376         struct ext4_reserve_window_node *rsv, *prev;
377         int bad;
378
379 restart:
380         n = rb_first(root);
381         bad = 0;
382         prev = NULL;
383
384         printk("Block Allocation Reservation Windows Map (%s):\n", fn);
385         while (n) {
386                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
387                 if (verbose)
388                         printk("reservation window 0x%p "
389                                "start:  %llu, end:  %llu\n",
390                                rsv, rsv->rsv_start, rsv->rsv_end);
391                 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
392                         printk("Bad reservation %p (start >= end)\n",
393                                rsv);
394                         bad = 1;
395                 }
396                 if (prev && prev->rsv_end >= rsv->rsv_start) {
397                         printk("Bad reservation %p (prev->end >= start)\n",
398                                rsv);
399                         bad = 1;
400                 }
401                 if (bad) {
402                         if (!verbose) {
403                                 printk("Restarting reservation walk in verbose mode\n");
404                                 verbose = 1;
405                                 goto restart;
406                         }
407                 }
408                 n = rb_next(n);
409                 prev = rsv;
410         }
411         printk("Window map complete.\n");
412         BUG_ON(bad);
413 }
414 #define rsv_window_dump(root, verbose) \
415         __rsv_window_dump((root), (verbose), __func__)
416 #else
417 #define rsv_window_dump(root, verbose) do {} while (0)
418 #endif
419
420 /**
421  * goal_in_my_reservation()
422  * @rsv:                inode's reservation window
423  * @grp_goal:           given goal block relative to the allocation block group
424  * @group:              the current allocation block group
425  * @sb:                 filesystem super block
426  *
427  * Test if the given goal block (group relative) is within the file's
428  * own block reservation window range.
429  *
430  * If the reservation window is outside the goal allocation group, return 0;
431  * grp_goal (given goal block) could be -1, which means no specific
432  * goal block. In this case, always return 1.
433  * If the goal block is within the reservation window, return 1;
434  * otherwise, return 0;
435  */
436 static int
437 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
438                         ext4_group_t group, struct super_block *sb)
439 {
440         ext4_fsblk_t group_first_block, group_last_block;
441
442         group_first_block = ext4_group_first_block_no(sb, group);
443         group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
444
445         if ((rsv->_rsv_start > group_last_block) ||
446             (rsv->_rsv_end < group_first_block))
447                 return 0;
448         if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
449                 || (grp_goal + group_first_block > rsv->_rsv_end)))
450                 return 0;
451         return 1;
452 }
453
454 /**
455  * search_reserve_window()
456  * @rb_root:            root of reservation tree
457  * @goal:               target allocation block
458  *
459  * Find the reserved window which includes the goal, or the previous one
460  * if the goal is not in any window.
461  * Returns NULL if there are no windows or if all windows start after the goal.
462  */
463 static struct ext4_reserve_window_node *
464 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
465 {
466         struct rb_node *n = root->rb_node;
467         struct ext4_reserve_window_node *rsv;
468
469         if (!n)
470                 return NULL;
471
472         do {
473                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
474
475                 if (goal < rsv->rsv_start)
476                         n = n->rb_left;
477                 else if (goal > rsv->rsv_end)
478                         n = n->rb_right;
479                 else
480                         return rsv;
481         } while (n);
482         /*
483          * We've fallen off the end of the tree: the goal wasn't inside
484          * any particular node.  OK, the previous node must be to one
485          * side of the interval containing the goal.  If it's the RHS,
486          * we need to back up one.
487          */
488         if (rsv->rsv_start > goal) {
489                 n = rb_prev(&rsv->rsv_node);
490                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
491         }
492         return rsv;
493 }
494
495 /**
496  * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
497  * @sb:                 super block
498  * @rsv:                reservation window to add
499  *
500  * Must be called with rsv_lock hold.
501  */
502 void ext4_rsv_window_add(struct super_block *sb,
503                     struct ext4_reserve_window_node *rsv)
504 {
505         struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
506         struct rb_node *node = &rsv->rsv_node;
507         ext4_fsblk_t start = rsv->rsv_start;
508
509         struct rb_node ** p = &root->rb_node;
510         struct rb_node * parent = NULL;
511         struct ext4_reserve_window_node *this;
512
513         while (*p)
514         {
515                 parent = *p;
516                 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
517
518                 if (start < this->rsv_start)
519                         p = &(*p)->rb_left;
520                 else if (start > this->rsv_end)
521                         p = &(*p)->rb_right;
522                 else {
523                         rsv_window_dump(root, 1);
524                         BUG();
525                 }
526         }
527
528         rb_link_node(node, parent, p);
529         rb_insert_color(node, root);
530 }
531
532 /**
533  * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
534  * @sb:                 super block
535  * @rsv:                reservation window to remove
536  *
537  * Mark the block reservation window as not allocated, and unlink it
538  * from the filesystem reservation window rb tree. Must be called with
539  * rsv_lock hold.
540  */
541 static void rsv_window_remove(struct super_block *sb,
542                               struct ext4_reserve_window_node *rsv)
543 {
544         rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
545         rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
546         rsv->rsv_alloc_hit = 0;
547         rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
548 }
549
550 /*
551  * rsv_is_empty() -- Check if the reservation window is allocated.
552  * @rsv:                given reservation window to check
553  *
554  * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
555  */
556 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
557 {
558         /* a valid reservation end block could not be 0 */
559         return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
560 }
561
562 /**
563  * ext4_init_block_alloc_info()
564  * @inode:              file inode structure
565  *
566  * Allocate and initialize the  reservation window structure, and
567  * link the window to the ext4 inode structure at last
568  *
569  * The reservation window structure is only dynamically allocated
570  * and linked to ext4 inode the first time the open file
571  * needs a new block. So, before every ext4_new_block(s) call, for
572  * regular files, we should check whether the reservation window
573  * structure exists or not. In the latter case, this function is called.
574  * Fail to do so will result in block reservation being turned off for that
575  * open file.
576  *
577  * This function is called from ext4_get_blocks_handle(), also called
578  * when setting the reservation window size through ioctl before the file
579  * is open for write (needs block allocation).
580  *
581  * Needs down_write(i_data_sem) protection prior to call this function.
582  */
583 void ext4_init_block_alloc_info(struct inode *inode)
584 {
585         struct ext4_inode_info *ei = EXT4_I(inode);
586         struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
587         struct super_block *sb = inode->i_sb;
588
589         block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
590         if (block_i) {
591                 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
592
593                 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
594                 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
595
596                 /*
597                  * if filesystem is mounted with NORESERVATION, the goal
598                  * reservation window size is set to zero to indicate
599                  * block reservation is off
600                  */
601                 if (!test_opt(sb, RESERVATION))
602                         rsv->rsv_goal_size = 0;
603                 else
604                         rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
605                 rsv->rsv_alloc_hit = 0;
606                 block_i->last_alloc_logical_block = 0;
607                 block_i->last_alloc_physical_block = 0;
608         }
609         ei->i_block_alloc_info = block_i;
610 }
611
612 /**
613  * ext4_discard_reservation()
614  * @inode:              inode
615  *
616  * Discard(free) block reservation window on last file close, or truncate
617  * or at last iput().
618  *
619  * It is being called in three cases:
620  *      ext4_release_file(): last writer close the file
621  *      ext4_clear_inode(): last iput(), when nobody link to this file.
622  *      ext4_truncate(): when the block indirect map is about to change.
623  *
624  */
625 void ext4_discard_reservation(struct inode *inode)
626 {
627         struct ext4_inode_info *ei = EXT4_I(inode);
628         struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
629         struct ext4_reserve_window_node *rsv;
630         spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
631
632         ext4_mb_discard_inode_preallocations(inode);
633
634         if (!block_i)
635                 return;
636
637         rsv = &block_i->rsv_window_node;
638         if (!rsv_is_empty(&rsv->rsv_window)) {
639                 spin_lock(rsv_lock);
640                 if (!rsv_is_empty(&rsv->rsv_window))
641                         rsv_window_remove(inode->i_sb, rsv);
642                 spin_unlock(rsv_lock);
643         }
644 }
645
646 /**
647  * ext4_free_blocks_sb() -- Free given blocks and update quota
648  * @handle:                     handle to this transaction
649  * @sb:                         super block
650  * @block:                      start physcial block to free
651  * @count:                      number of blocks to free
652  * @pdquot_freed_blocks:        pointer to quota
653  */
654 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
655                          ext4_fsblk_t block, unsigned long count,
656                          unsigned long *pdquot_freed_blocks)
657 {
658         struct buffer_head *bitmap_bh = NULL;
659         struct buffer_head *gd_bh;
660         ext4_group_t block_group;
661         ext4_grpblk_t bit;
662         unsigned long i;
663         unsigned long overflow;
664         struct ext4_group_desc * desc;
665         struct ext4_super_block * es;
666         struct ext4_sb_info *sbi;
667         int err = 0, ret;
668         ext4_grpblk_t group_freed;
669
670         *pdquot_freed_blocks = 0;
671         sbi = EXT4_SB(sb);
672         es = sbi->s_es;
673         if (block < le32_to_cpu(es->s_first_data_block) ||
674             block + count < block ||
675             block + count > ext4_blocks_count(es)) {
676                 ext4_error (sb, "ext4_free_blocks",
677                             "Freeing blocks not in datazone - "
678                             "block = %llu, count = %lu", block, count);
679                 goto error_return;
680         }
681
682         ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
683
684 do_more:
685         overflow = 0;
686         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
687         /*
688          * Check to see if we are freeing blocks across a group
689          * boundary.
690          */
691         if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
692                 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
693                 count -= overflow;
694         }
695         brelse(bitmap_bh);
696         bitmap_bh = read_block_bitmap(sb, block_group);
697         if (!bitmap_bh)
698                 goto error_return;
699         desc = ext4_get_group_desc (sb, block_group, &gd_bh);
700         if (!desc)
701                 goto error_return;
702
703         if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
704             in_range(ext4_inode_bitmap(sb, desc), block, count) ||
705             in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
706             in_range(block + count - 1, ext4_inode_table(sb, desc),
707                      sbi->s_itb_per_group)) {
708                 ext4_error (sb, "ext4_free_blocks",
709                             "Freeing blocks in system zones - "
710                             "Block = %llu, count = %lu",
711                             block, count);
712                 goto error_return;
713         }
714
715         /*
716          * We are about to start releasing blocks in the bitmap,
717          * so we need undo access.
718          */
719         /* @@@ check errors */
720         BUFFER_TRACE(bitmap_bh, "getting undo access");
721         err = ext4_journal_get_undo_access(handle, bitmap_bh);
722         if (err)
723                 goto error_return;
724
725         /*
726          * We are about to modify some metadata.  Call the journal APIs
727          * to unshare ->b_data if a currently-committing transaction is
728          * using it
729          */
730         BUFFER_TRACE(gd_bh, "get_write_access");
731         err = ext4_journal_get_write_access(handle, gd_bh);
732         if (err)
733                 goto error_return;
734
735         jbd_lock_bh_state(bitmap_bh);
736
737         for (i = 0, group_freed = 0; i < count; i++) {
738                 /*
739                  * An HJ special.  This is expensive...
740                  */
741 #ifdef CONFIG_JBD2_DEBUG
742                 jbd_unlock_bh_state(bitmap_bh);
743                 {
744                         struct buffer_head *debug_bh;
745                         debug_bh = sb_find_get_block(sb, block + i);
746                         if (debug_bh) {
747                                 BUFFER_TRACE(debug_bh, "Deleted!");
748                                 if (!bh2jh(bitmap_bh)->b_committed_data)
749                                         BUFFER_TRACE(debug_bh,
750                                                 "No commited data in bitmap");
751                                 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
752                                 __brelse(debug_bh);
753                         }
754                 }
755                 jbd_lock_bh_state(bitmap_bh);
756 #endif
757                 if (need_resched()) {
758                         jbd_unlock_bh_state(bitmap_bh);
759                         cond_resched();
760                         jbd_lock_bh_state(bitmap_bh);
761                 }
762                 /* @@@ This prevents newly-allocated data from being
763                  * freed and then reallocated within the same
764                  * transaction.
765                  *
766                  * Ideally we would want to allow that to happen, but to
767                  * do so requires making jbd2_journal_forget() capable of
768                  * revoking the queued write of a data block, which
769                  * implies blocking on the journal lock.  *forget()
770                  * cannot block due to truncate races.
771                  *
772                  * Eventually we can fix this by making jbd2_journal_forget()
773                  * return a status indicating whether or not it was able
774                  * to revoke the buffer.  On successful revoke, it is
775                  * safe not to set the allocation bit in the committed
776                  * bitmap, because we know that there is no outstanding
777                  * activity on the buffer any more and so it is safe to
778                  * reallocate it.
779                  */
780                 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
781                 J_ASSERT_BH(bitmap_bh,
782                                 bh2jh(bitmap_bh)->b_committed_data != NULL);
783                 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
784                                 bh2jh(bitmap_bh)->b_committed_data);
785
786                 /*
787                  * We clear the bit in the bitmap after setting the committed
788                  * data bit, because this is the reverse order to that which
789                  * the allocator uses.
790                  */
791                 BUFFER_TRACE(bitmap_bh, "clear bit");
792                 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
793                                                 bit + i, bitmap_bh->b_data)) {
794                         jbd_unlock_bh_state(bitmap_bh);
795                         ext4_error(sb, __func__,
796                                    "bit already cleared for block %llu",
797                                    (ext4_fsblk_t)(block + i));
798                         jbd_lock_bh_state(bitmap_bh);
799                         BUFFER_TRACE(bitmap_bh, "bit already cleared");
800                 } else {
801                         group_freed++;
802                 }
803         }
804         jbd_unlock_bh_state(bitmap_bh);
805
806         spin_lock(sb_bgl_lock(sbi, block_group));
807         le16_add_cpu(&desc->bg_free_blocks_count, group_freed);
808         desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
809         spin_unlock(sb_bgl_lock(sbi, block_group));
810         percpu_counter_add(&sbi->s_freeblocks_counter, count);
811
812         /* We dirtied the bitmap block */
813         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
814         err = ext4_journal_dirty_metadata(handle, bitmap_bh);
815
816         /* And the group descriptor block */
817         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
818         ret = ext4_journal_dirty_metadata(handle, gd_bh);
819         if (!err) err = ret;
820         *pdquot_freed_blocks += group_freed;
821
822         if (overflow && !err) {
823                 block += count;
824                 count = overflow;
825                 goto do_more;
826         }
827         sb->s_dirt = 1;
828 error_return:
829         brelse(bitmap_bh);
830         ext4_std_error(sb, err);
831         return;
832 }
833
834 /**
835  * ext4_free_blocks() -- Free given blocks and update quota
836  * @handle:             handle for this transaction
837  * @inode:              inode
838  * @block:              start physical block to free
839  * @count:              number of blocks to count
840  * @metadata:           Are these metadata blocks
841  */
842 void ext4_free_blocks(handle_t *handle, struct inode *inode,
843                         ext4_fsblk_t block, unsigned long count,
844                         int metadata)
845 {
846         struct super_block * sb;
847         unsigned long dquot_freed_blocks;
848
849         /* this isn't the right place to decide whether block is metadata
850          * inode.c/extents.c knows better, but for safety ... */
851         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
852                         ext4_should_journal_data(inode))
853                 metadata = 1;
854
855         sb = inode->i_sb;
856
857         if (!test_opt(sb, MBALLOC) || !EXT4_SB(sb)->s_group_info)
858                 ext4_free_blocks_sb(handle, sb, block, count,
859                                                 &dquot_freed_blocks);
860         else
861                 ext4_mb_free_blocks(handle, inode, block, count,
862                                                 metadata, &dquot_freed_blocks);
863         if (dquot_freed_blocks)
864                 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
865         return;
866 }
867
868 /**
869  * ext4_test_allocatable()
870  * @nr:                 given allocation block group
871  * @bh:                 bufferhead contains the bitmap of the given block group
872  *
873  * For ext4 allocations, we must not reuse any blocks which are
874  * allocated in the bitmap buffer's "last committed data" copy.  This
875  * prevents deletes from freeing up the page for reuse until we have
876  * committed the delete transaction.
877  *
878  * If we didn't do this, then deleting something and reallocating it as
879  * data would allow the old block to be overwritten before the
880  * transaction committed (because we force data to disk before commit).
881  * This would lead to corruption if we crashed between overwriting the
882  * data and committing the delete.
883  *
884  * @@@ We may want to make this allocation behaviour conditional on
885  * data-writes at some point, and disable it for metadata allocations or
886  * sync-data inodes.
887  */
888 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
889 {
890         int ret;
891         struct journal_head *jh = bh2jh(bh);
892
893         if (ext4_test_bit(nr, bh->b_data))
894                 return 0;
895
896         jbd_lock_bh_state(bh);
897         if (!jh->b_committed_data)
898                 ret = 1;
899         else
900                 ret = !ext4_test_bit(nr, jh->b_committed_data);
901         jbd_unlock_bh_state(bh);
902         return ret;
903 }
904
905 /**
906  * bitmap_search_next_usable_block()
907  * @start:              the starting block (group relative) of the search
908  * @bh:                 bufferhead contains the block group bitmap
909  * @maxblocks:          the ending block (group relative) of the reservation
910  *
911  * The bitmap search --- search forward alternately through the actual
912  * bitmap on disk and the last-committed copy in journal, until we find a
913  * bit free in both bitmaps.
914  */
915 static ext4_grpblk_t
916 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
917                                         ext4_grpblk_t maxblocks)
918 {
919         ext4_grpblk_t next;
920         struct journal_head *jh = bh2jh(bh);
921
922         while (start < maxblocks) {
923                 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
924                 if (next >= maxblocks)
925                         return -1;
926                 if (ext4_test_allocatable(next, bh))
927                         return next;
928                 jbd_lock_bh_state(bh);
929                 if (jh->b_committed_data)
930                         start = ext4_find_next_zero_bit(jh->b_committed_data,
931                                                         maxblocks, next);
932                 jbd_unlock_bh_state(bh);
933         }
934         return -1;
935 }
936
937 /**
938  * find_next_usable_block()
939  * @start:              the starting block (group relative) to find next
940  *                      allocatable block in bitmap.
941  * @bh:                 bufferhead contains the block group bitmap
942  * @maxblocks:          the ending block (group relative) for the search
943  *
944  * Find an allocatable block in a bitmap.  We honor both the bitmap and
945  * its last-committed copy (if that exists), and perform the "most
946  * appropriate allocation" algorithm of looking for a free block near
947  * the initial goal; then for a free byte somewhere in the bitmap; then
948  * for any free bit in the bitmap.
949  */
950 static ext4_grpblk_t
951 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
952                         ext4_grpblk_t maxblocks)
953 {
954         ext4_grpblk_t here, next;
955         char *p, *r;
956
957         if (start > 0) {
958                 /*
959                  * The goal was occupied; search forward for a free
960                  * block within the next XX blocks.
961                  *
962                  * end_goal is more or less random, but it has to be
963                  * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
964                  * next 64-bit boundary is simple..
965                  */
966                 ext4_grpblk_t end_goal = (start + 63) & ~63;
967                 if (end_goal > maxblocks)
968                         end_goal = maxblocks;
969                 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
970                 if (here < end_goal && ext4_test_allocatable(here, bh))
971                         return here;
972                 ext4_debug("Bit not found near goal\n");
973         }
974
975         here = start;
976         if (here < 0)
977                 here = 0;
978
979         p = ((char *)bh->b_data) + (here >> 3);
980         r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
981         next = (r - ((char *)bh->b_data)) << 3;
982
983         if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
984                 return next;
985
986         /*
987          * The bitmap search --- search forward alternately through the actual
988          * bitmap and the last-committed copy until we find a bit free in
989          * both
990          */
991         here = bitmap_search_next_usable_block(here, bh, maxblocks);
992         return here;
993 }
994
995 /**
996  * claim_block()
997  * @block:              the free block (group relative) to allocate
998  * @bh:                 the bufferhead containts the block group bitmap
999  *
1000  * We think we can allocate this block in this bitmap.  Try to set the bit.
1001  * If that succeeds then check that nobody has allocated and then freed the
1002  * block since we saw that is was not marked in b_committed_data.  If it _was_
1003  * allocated and freed then clear the bit in the bitmap again and return
1004  * zero (failure).
1005  */
1006 static inline int
1007 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
1008 {
1009         struct journal_head *jh = bh2jh(bh);
1010         int ret;
1011
1012         if (ext4_set_bit_atomic(lock, block, bh->b_data))
1013                 return 0;
1014         jbd_lock_bh_state(bh);
1015         if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
1016                 ext4_clear_bit_atomic(lock, block, bh->b_data);
1017                 ret = 0;
1018         } else {
1019                 ret = 1;
1020         }
1021         jbd_unlock_bh_state(bh);
1022         return ret;
1023 }
1024
1025 /**
1026  * ext4_try_to_allocate()
1027  * @sb:                 superblock
1028  * @handle:             handle to this transaction
1029  * @group:              given allocation block group
1030  * @bitmap_bh:          bufferhead holds the block bitmap
1031  * @grp_goal:           given target block within the group
1032  * @count:              target number of blocks to allocate
1033  * @my_rsv:             reservation window
1034  *
1035  * Attempt to allocate blocks within a give range. Set the range of allocation
1036  * first, then find the first free bit(s) from the bitmap (within the range),
1037  * and at last, allocate the blocks by claiming the found free bit as allocated.
1038  *
1039  * To set the range of this allocation:
1040  *      if there is a reservation window, only try to allocate block(s) from the
1041  *      file's own reservation window;
1042  *      Otherwise, the allocation range starts from the give goal block, ends at
1043  *      the block group's last block.
1044  *
1045  * If we failed to allocate the desired block then we may end up crossing to a
1046  * new bitmap.  In that case we must release write access to the old one via
1047  * ext4_journal_release_buffer(), else we'll run out of credits.
1048  */
1049 static ext4_grpblk_t
1050 ext4_try_to_allocate(struct super_block *sb, handle_t *handle,
1051                         ext4_group_t group, struct buffer_head *bitmap_bh,
1052                         ext4_grpblk_t grp_goal, unsigned long *count,
1053                         struct ext4_reserve_window *my_rsv)
1054 {
1055         ext4_fsblk_t group_first_block;
1056         ext4_grpblk_t start, end;
1057         unsigned long num = 0;
1058
1059         /* we do allocation within the reservation window if we have a window */
1060         if (my_rsv) {
1061                 group_first_block = ext4_group_first_block_no(sb, group);
1062                 if (my_rsv->_rsv_start >= group_first_block)
1063                         start = my_rsv->_rsv_start - group_first_block;
1064                 else
1065                         /* reservation window cross group boundary */
1066                         start = 0;
1067                 end = my_rsv->_rsv_end - group_first_block + 1;
1068                 if (end > EXT4_BLOCKS_PER_GROUP(sb))
1069                         /* reservation window crosses group boundary */
1070                         end = EXT4_BLOCKS_PER_GROUP(sb);
1071                 if ((start <= grp_goal) && (grp_goal < end))
1072                         start = grp_goal;
1073                 else
1074                         grp_goal = -1;
1075         } else {
1076                 if (grp_goal > 0)
1077                         start = grp_goal;
1078                 else
1079                         start = 0;
1080                 end = EXT4_BLOCKS_PER_GROUP(sb);
1081         }
1082
1083         BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
1084
1085 repeat:
1086         if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
1087                 grp_goal = find_next_usable_block(start, bitmap_bh, end);
1088                 if (grp_goal < 0)
1089                         goto fail_access;
1090                 if (!my_rsv) {
1091                         int i;
1092
1093                         for (i = 0; i < 7 && grp_goal > start &&
1094                                         ext4_test_allocatable(grp_goal - 1,
1095                                                                 bitmap_bh);
1096                                         i++, grp_goal--)
1097                                 ;
1098                 }
1099         }
1100         start = grp_goal;
1101
1102         if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1103                 grp_goal, bitmap_bh)) {
1104                 /*
1105                  * The block was allocated by another thread, or it was
1106                  * allocated and then freed by another thread
1107                  */
1108                 start++;
1109                 grp_goal++;
1110                 if (start >= end)
1111                         goto fail_access;
1112                 goto repeat;
1113         }
1114         num++;
1115         grp_goal++;
1116         while (num < *count && grp_goal < end
1117                 && ext4_test_allocatable(grp_goal, bitmap_bh)
1118                 && claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1119                                 grp_goal, bitmap_bh)) {
1120                 num++;
1121                 grp_goal++;
1122         }
1123         *count = num;
1124         return grp_goal - num;
1125 fail_access:
1126         *count = num;
1127         return -1;
1128 }
1129
1130 /**
1131  *      find_next_reservable_window():
1132  *              find a reservable space within the given range.
1133  *              It does not allocate the reservation window for now:
1134  *              alloc_new_reservation() will do the work later.
1135  *
1136  *      @search_head: the head of the searching list;
1137  *              This is not necessarily the list head of the whole filesystem
1138  *
1139  *              We have both head and start_block to assist the search
1140  *              for the reservable space. The list starts from head,
1141  *              but we will shift to the place where start_block is,
1142  *              then start from there, when looking for a reservable space.
1143  *
1144  *      @size: the target new reservation window size
1145  *
1146  *      @group_first_block: the first block we consider to start
1147  *                      the real search from
1148  *
1149  *      @last_block:
1150  *              the maximum block number that our goal reservable space
1151  *              could start from. This is normally the last block in this
1152  *              group. The search will end when we found the start of next
1153  *              possible reservable space is out of this boundary.
1154  *              This could handle the cross boundary reservation window
1155  *              request.
1156  *
1157  *      basically we search from the given range, rather than the whole
1158  *      reservation double linked list, (start_block, last_block)
1159  *      to find a free region that is of my size and has not
1160  *      been reserved.
1161  *
1162  */
1163 static int find_next_reservable_window(
1164                                 struct ext4_reserve_window_node *search_head,
1165                                 struct ext4_reserve_window_node *my_rsv,
1166                                 struct super_block * sb,
1167                                 ext4_fsblk_t start_block,
1168                                 ext4_fsblk_t last_block)
1169 {
1170         struct rb_node *next;
1171         struct ext4_reserve_window_node *rsv, *prev;
1172         ext4_fsblk_t cur;
1173         int size = my_rsv->rsv_goal_size;
1174
1175         /* TODO: make the start of the reservation window byte-aligned */
1176         /* cur = *start_block & ~7;*/
1177         cur = start_block;
1178         rsv = search_head;
1179         if (!rsv)
1180                 return -1;
1181
1182         while (1) {
1183                 if (cur <= rsv->rsv_end)
1184                         cur = rsv->rsv_end + 1;
1185
1186                 /* TODO?
1187                  * in the case we could not find a reservable space
1188                  * that is what is expected, during the re-search, we could
1189                  * remember what's the largest reservable space we could have
1190                  * and return that one.
1191                  *
1192                  * For now it will fail if we could not find the reservable
1193                  * space with expected-size (or more)...
1194                  */
1195                 if (cur > last_block)
1196                         return -1;              /* fail */
1197
1198                 prev = rsv;
1199                 next = rb_next(&rsv->rsv_node);
1200                 rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
1201
1202                 /*
1203                  * Reached the last reservation, we can just append to the
1204                  * previous one.
1205                  */
1206                 if (!next)
1207                         break;
1208
1209                 if (cur + size <= rsv->rsv_start) {
1210                         /*
1211                          * Found a reserveable space big enough.  We could
1212                          * have a reservation across the group boundary here
1213                          */
1214                         break;
1215                 }
1216         }
1217         /*
1218          * we come here either :
1219          * when we reach the end of the whole list,
1220          * and there is empty reservable space after last entry in the list.
1221          * append it to the end of the list.
1222          *
1223          * or we found one reservable space in the middle of the list,
1224          * return the reservation window that we could append to.
1225          * succeed.
1226          */
1227
1228         if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1229                 rsv_window_remove(sb, my_rsv);
1230
1231         /*
1232          * Let's book the whole avaliable window for now.  We will check the
1233          * disk bitmap later and then, if there are free blocks then we adjust
1234          * the window size if it's larger than requested.
1235          * Otherwise, we will remove this node from the tree next time
1236          * call find_next_reservable_window.
1237          */
1238         my_rsv->rsv_start = cur;
1239         my_rsv->rsv_end = cur + size - 1;
1240         my_rsv->rsv_alloc_hit = 0;
1241
1242         if (prev != my_rsv)
1243                 ext4_rsv_window_add(sb, my_rsv);
1244
1245         return 0;
1246 }
1247
1248 /**
1249  *      alloc_new_reservation()--allocate a new reservation window
1250  *
1251  *              To make a new reservation, we search part of the filesystem
1252  *              reservation list (the list that inside the group). We try to
1253  *              allocate a new reservation window near the allocation goal,
1254  *              or the beginning of the group, if there is no goal.
1255  *
1256  *              We first find a reservable space after the goal, then from
1257  *              there, we check the bitmap for the first free block after
1258  *              it. If there is no free block until the end of group, then the
1259  *              whole group is full, we failed. Otherwise, check if the free
1260  *              block is inside the expected reservable space, if so, we
1261  *              succeed.
1262  *              If the first free block is outside the reservable space, then
1263  *              start from the first free block, we search for next available
1264  *              space, and go on.
1265  *
1266  *      on succeed, a new reservation will be found and inserted into the list
1267  *      It contains at least one free block, and it does not overlap with other
1268  *      reservation windows.
1269  *
1270  *      failed: we failed to find a reservation window in this group
1271  *
1272  *      @rsv: the reservation
1273  *
1274  *      @grp_goal: The goal (group-relative).  It is where the search for a
1275  *              free reservable space should start from.
1276  *              if we have a grp_goal(grp_goal >0 ), then start from there,
1277  *              no grp_goal(grp_goal = -1), we start from the first block
1278  *              of the group.
1279  *
1280  *      @sb: the super block
1281  *      @group: the group we are trying to allocate in
1282  *      @bitmap_bh: the block group block bitmap
1283  *
1284  */
1285 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1286                 ext4_grpblk_t grp_goal, struct super_block *sb,
1287                 ext4_group_t group, struct buffer_head *bitmap_bh)
1288 {
1289         struct ext4_reserve_window_node *search_head;
1290         ext4_fsblk_t group_first_block, group_end_block, start_block;
1291         ext4_grpblk_t first_free_block;
1292         struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1293         unsigned long size;
1294         int ret;
1295         spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1296
1297         group_first_block = ext4_group_first_block_no(sb, group);
1298         group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1299
1300         if (grp_goal < 0)
1301                 start_block = group_first_block;
1302         else
1303                 start_block = grp_goal + group_first_block;
1304
1305         size = my_rsv->rsv_goal_size;
1306
1307         if (!rsv_is_empty(&my_rsv->rsv_window)) {
1308                 /*
1309                  * if the old reservation is cross group boundary
1310                  * and if the goal is inside the old reservation window,
1311                  * we will come here when we just failed to allocate from
1312                  * the first part of the window. We still have another part
1313                  * that belongs to the next group. In this case, there is no
1314                  * point to discard our window and try to allocate a new one
1315                  * in this group(which will fail). we should
1316                  * keep the reservation window, just simply move on.
1317                  *
1318                  * Maybe we could shift the start block of the reservation
1319                  * window to the first block of next group.
1320                  */
1321
1322                 if ((my_rsv->rsv_start <= group_end_block) &&
1323                                 (my_rsv->rsv_end > group_end_block) &&
1324                                 (start_block >= my_rsv->rsv_start))
1325                         return -1;
1326
1327                 if ((my_rsv->rsv_alloc_hit >
1328                      (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1329                         /*
1330                          * if the previously allocation hit ratio is
1331                          * greater than 1/2, then we double the size of
1332                          * the reservation window the next time,
1333                          * otherwise we keep the same size window
1334                          */
1335                         size = size * 2;
1336                         if (size > EXT4_MAX_RESERVE_BLOCKS)
1337                                 size = EXT4_MAX_RESERVE_BLOCKS;
1338                         my_rsv->rsv_goal_size= size;
1339                 }
1340         }
1341
1342         spin_lock(rsv_lock);
1343         /*
1344          * shift the search start to the window near the goal block
1345          */
1346         search_head = search_reserve_window(fs_rsv_root, start_block);
1347
1348         /*
1349          * find_next_reservable_window() simply finds a reservable window
1350          * inside the given range(start_block, group_end_block).
1351          *
1352          * To make sure the reservation window has a free bit inside it, we
1353          * need to check the bitmap after we found a reservable window.
1354          */
1355 retry:
1356         ret = find_next_reservable_window(search_head, my_rsv, sb,
1357                                                 start_block, group_end_block);
1358
1359         if (ret == -1) {
1360                 if (!rsv_is_empty(&my_rsv->rsv_window))
1361                         rsv_window_remove(sb, my_rsv);
1362                 spin_unlock(rsv_lock);
1363                 return -1;
1364         }
1365
1366         /*
1367          * On success, find_next_reservable_window() returns the
1368          * reservation window where there is a reservable space after it.
1369          * Before we reserve this reservable space, we need
1370          * to make sure there is at least a free block inside this region.
1371          *
1372          * searching the first free bit on the block bitmap and copy of
1373          * last committed bitmap alternatively, until we found a allocatable
1374          * block. Search start from the start block of the reservable space
1375          * we just found.
1376          */
1377         spin_unlock(rsv_lock);
1378         first_free_block = bitmap_search_next_usable_block(
1379                         my_rsv->rsv_start - group_first_block,
1380                         bitmap_bh, group_end_block - group_first_block + 1);
1381
1382         if (first_free_block < 0) {
1383                 /*
1384                  * no free block left on the bitmap, no point
1385                  * to reserve the space. return failed.
1386                  */
1387                 spin_lock(rsv_lock);
1388                 if (!rsv_is_empty(&my_rsv->rsv_window))
1389                         rsv_window_remove(sb, my_rsv);
1390                 spin_unlock(rsv_lock);
1391                 return -1;              /* failed */
1392         }
1393
1394         start_block = first_free_block + group_first_block;
1395         /*
1396          * check if the first free block is within the
1397          * free space we just reserved
1398          */
1399         if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1400                 return 0;               /* success */
1401         /*
1402          * if the first free bit we found is out of the reservable space
1403          * continue search for next reservable space,
1404          * start from where the free block is,
1405          * we also shift the list head to where we stopped last time
1406          */
1407         search_head = my_rsv;
1408         spin_lock(rsv_lock);
1409         goto retry;
1410 }
1411
1412 /**
1413  * try_to_extend_reservation()
1414  * @my_rsv:             given reservation window
1415  * @sb:                 super block
1416  * @size:               the delta to extend
1417  *
1418  * Attempt to expand the reservation window large enough to have
1419  * required number of free blocks
1420  *
1421  * Since ext4_try_to_allocate() will always allocate blocks within
1422  * the reservation window range, if the window size is too small,
1423  * multiple blocks allocation has to stop at the end of the reservation
1424  * window. To make this more efficient, given the total number of
1425  * blocks needed and the current size of the window, we try to
1426  * expand the reservation window size if necessary on a best-effort
1427  * basis before ext4_new_blocks() tries to allocate blocks,
1428  */
1429 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1430                         struct super_block *sb, int size)
1431 {
1432         struct ext4_reserve_window_node *next_rsv;
1433         struct rb_node *next;
1434         spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1435
1436         if (!spin_trylock(rsv_lock))
1437                 return;
1438
1439         next = rb_next(&my_rsv->rsv_node);
1440
1441         if (!next)
1442                 my_rsv->rsv_end += size;
1443         else {
1444                 next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1445
1446                 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1447                         my_rsv->rsv_end += size;
1448                 else
1449                         my_rsv->rsv_end = next_rsv->rsv_start - 1;
1450         }
1451         spin_unlock(rsv_lock);
1452 }
1453
1454 /**
1455  * ext4_try_to_allocate_with_rsv()
1456  * @sb:                 superblock
1457  * @handle:             handle to this transaction
1458  * @group:              given allocation block group
1459  * @bitmap_bh:          bufferhead holds the block bitmap
1460  * @grp_goal:           given target block within the group
1461  * @count:              target number of blocks to allocate
1462  * @my_rsv:             reservation window
1463  * @errp:               pointer to store the error code
1464  *
1465  * This is the main function used to allocate a new block and its reservation
1466  * window.
1467  *
1468  * Each time when a new block allocation is need, first try to allocate from
1469  * its own reservation.  If it does not have a reservation window, instead of
1470  * looking for a free bit on bitmap first, then look up the reservation list to
1471  * see if it is inside somebody else's reservation window, we try to allocate a
1472  * reservation window for it starting from the goal first. Then do the block
1473  * allocation within the reservation window.
1474  *
1475  * This will avoid keeping on searching the reservation list again and
1476  * again when somebody is looking for a free block (without
1477  * reservation), and there are lots of free blocks, but they are all
1478  * being reserved.
1479  *
1480  * We use a red-black tree for the per-filesystem reservation list.
1481  *
1482  */
1483 static ext4_grpblk_t
1484 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1485                         ext4_group_t group, struct buffer_head *bitmap_bh,
1486                         ext4_grpblk_t grp_goal,
1487                         struct ext4_reserve_window_node * my_rsv,
1488                         unsigned long *count, int *errp)
1489 {
1490         ext4_fsblk_t group_first_block, group_last_block;
1491         ext4_grpblk_t ret = 0;
1492         int fatal;
1493         unsigned long num = *count;
1494
1495         *errp = 0;
1496
1497         /*
1498          * Make sure we use undo access for the bitmap, because it is critical
1499          * that we do the frozen_data COW on bitmap buffers in all cases even
1500          * if the buffer is in BJ_Forget state in the committing transaction.
1501          */
1502         BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1503         fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1504         if (fatal) {
1505                 *errp = fatal;
1506                 return -1;
1507         }
1508
1509         /*
1510          * we don't deal with reservation when
1511          * filesystem is mounted without reservation
1512          * or the file is not a regular file
1513          * or last attempt to allocate a block with reservation turned on failed
1514          */
1515         if (my_rsv == NULL ) {
1516                 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1517                                                 grp_goal, count, NULL);
1518                 goto out;
1519         }
1520         /*
1521          * grp_goal is a group relative block number (if there is a goal)
1522          * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1523          * first block is a filesystem wide block number
1524          * first block is the block number of the first block in this group
1525          */
1526         group_first_block = ext4_group_first_block_no(sb, group);
1527         group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1528
1529         /*
1530          * Basically we will allocate a new block from inode's reservation
1531          * window.
1532          *
1533          * We need to allocate a new reservation window, if:
1534          * a) inode does not have a reservation window; or
1535          * b) last attempt to allocate a block from existing reservation
1536          *    failed; or
1537          * c) we come here with a goal and with a reservation window
1538          *
1539          * We do not need to allocate a new reservation window if we come here
1540          * at the beginning with a goal and the goal is inside the window, or
1541          * we don't have a goal but already have a reservation window.
1542          * then we could go to allocate from the reservation window directly.
1543          */
1544         while (1) {
1545                 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1546                         !goal_in_my_reservation(&my_rsv->rsv_window,
1547                                                 grp_goal, group, sb)) {
1548                         if (my_rsv->rsv_goal_size < *count)
1549                                 my_rsv->rsv_goal_size = *count;
1550                         ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1551                                                         group, bitmap_bh);
1552                         if (ret < 0)
1553                                 break;                  /* failed */
1554
1555                         if (!goal_in_my_reservation(&my_rsv->rsv_window,
1556                                                         grp_goal, group, sb))
1557                                 grp_goal = -1;
1558                 } else if (grp_goal >= 0) {
1559                         int curr = my_rsv->rsv_end -
1560                                         (grp_goal + group_first_block) + 1;
1561
1562                         if (curr < *count)
1563                                 try_to_extend_reservation(my_rsv, sb,
1564                                                         *count - curr);
1565                 }
1566
1567                 if ((my_rsv->rsv_start > group_last_block) ||
1568                                 (my_rsv->rsv_end < group_first_block)) {
1569                         rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1570                         BUG();
1571                 }
1572                 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1573                                            grp_goal, &num, &my_rsv->rsv_window);
1574                 if (ret >= 0) {
1575                         my_rsv->rsv_alloc_hit += num;
1576                         *count = num;
1577                         break;                          /* succeed */
1578                 }
1579                 num = *count;
1580         }
1581 out:
1582         if (ret >= 0) {
1583                 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1584                                         "bitmap block");
1585                 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1586                 if (fatal) {
1587                         *errp = fatal;
1588                         return -1;
1589                 }
1590                 return ret;
1591         }
1592
1593         BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1594         ext4_journal_release_buffer(handle, bitmap_bh);
1595         return ret;
1596 }
1597
1598 /**
1599  * ext4_has_free_blocks()
1600  * @sbi:                in-core super block structure.
1601  *
1602  * Check if filesystem has at least 1 free block available for allocation.
1603  */
1604 static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1605 {
1606         ext4_fsblk_t free_blocks, root_blocks;
1607
1608         free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1609         root_blocks = ext4_r_blocks_count(sbi->s_es);
1610         if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1611                 sbi->s_resuid != current->fsuid &&
1612                 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1613                 return 0;
1614         }
1615         return 1;
1616 }
1617
1618 /**
1619  * ext4_should_retry_alloc()
1620  * @sb:                 super block
1621  * @retries             number of attemps has been made
1622  *
1623  * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1624  * it is profitable to retry the operation, this function will wait
1625  * for the current or commiting transaction to complete, and then
1626  * return TRUE.
1627  *
1628  * if the total number of retries exceed three times, return FALSE.
1629  */
1630 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1631 {
1632         if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1633                 return 0;
1634
1635         jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1636
1637         return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1638 }
1639
1640 /**
1641  * ext4_new_blocks_old() -- core block(s) allocation function
1642  * @handle:             handle to this transaction
1643  * @inode:              file inode
1644  * @goal:               given target block(filesystem wide)
1645  * @count:              target number of blocks to allocate
1646  * @errp:               error code
1647  *
1648  * ext4_new_blocks uses a goal block to assist allocation.  It tries to
1649  * allocate block(s) from the block group contains the goal block first. If that
1650  * fails, it will try to allocate block(s) from other block groups without
1651  * any specific goal block.
1652  *
1653  */
1654 ext4_fsblk_t ext4_new_blocks_old(handle_t *handle, struct inode *inode,
1655                         ext4_fsblk_t goal, unsigned long *count, int *errp)
1656 {
1657         struct buffer_head *bitmap_bh = NULL;
1658         struct buffer_head *gdp_bh;
1659         ext4_group_t group_no;
1660         ext4_group_t goal_group;
1661         ext4_grpblk_t grp_target_blk;   /* blockgroup relative goal block */
1662         ext4_grpblk_t grp_alloc_blk;    /* blockgroup-relative allocated block*/
1663         ext4_fsblk_t ret_block;         /* filesyetem-wide allocated block */
1664         ext4_group_t bgi;                       /* blockgroup iteration index */
1665         int fatal = 0, err;
1666         int performed_allocation = 0;
1667         ext4_grpblk_t free_blocks;      /* number of free blocks in a group */
1668         struct super_block *sb;
1669         struct ext4_group_desc *gdp;
1670         struct ext4_super_block *es;
1671         struct ext4_sb_info *sbi;
1672         struct ext4_reserve_window_node *my_rsv = NULL;
1673         struct ext4_block_alloc_info *block_i;
1674         unsigned short windowsz = 0;
1675         ext4_group_t ngroups;
1676         unsigned long num = *count;
1677
1678         *errp = -ENOSPC;
1679         sb = inode->i_sb;
1680         if (!sb) {
1681                 printk("ext4_new_block: nonexistent device");
1682                 return 0;
1683         }
1684
1685         /*
1686          * Check quota for allocation of this block.
1687          */
1688         if (DQUOT_ALLOC_BLOCK(inode, num)) {
1689                 *errp = -EDQUOT;
1690                 return 0;
1691         }
1692
1693         sbi = EXT4_SB(sb);
1694         es = EXT4_SB(sb)->s_es;
1695         ext4_debug("goal=%llu.\n", goal);
1696         /*
1697          * Allocate a block from reservation only when
1698          * filesystem is mounted with reservation(default,-o reservation), and
1699          * it's a regular file, and
1700          * the desired window size is greater than 0 (One could use ioctl
1701          * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1702          * reservation on that particular file)
1703          */
1704         block_i = EXT4_I(inode)->i_block_alloc_info;
1705         if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1706                 my_rsv = &block_i->rsv_window_node;
1707
1708         if (!ext4_has_free_blocks(sbi)) {
1709                 *errp = -ENOSPC;
1710                 goto out;
1711         }
1712
1713         /*
1714          * First, test whether the goal block is free.
1715          */
1716         if (goal < le32_to_cpu(es->s_first_data_block) ||
1717             goal >= ext4_blocks_count(es))
1718                 goal = le32_to_cpu(es->s_first_data_block);
1719         ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1720         goal_group = group_no;
1721 retry_alloc:
1722         gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1723         if (!gdp)
1724                 goto io_error;
1725
1726         free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1727         /*
1728          * if there is not enough free blocks to make a new resevation
1729          * turn off reservation for this allocation
1730          */
1731         if (my_rsv && (free_blocks < windowsz)
1732                 && (rsv_is_empty(&my_rsv->rsv_window)))
1733                 my_rsv = NULL;
1734
1735         if (free_blocks > 0) {
1736                 bitmap_bh = read_block_bitmap(sb, group_no);
1737                 if (!bitmap_bh)
1738                         goto io_error;
1739                 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1740                                         group_no, bitmap_bh, grp_target_blk,
1741                                         my_rsv, &num, &fatal);
1742                 if (fatal)
1743                         goto out;
1744                 if (grp_alloc_blk >= 0)
1745                         goto allocated;
1746         }
1747
1748         ngroups = EXT4_SB(sb)->s_groups_count;
1749         smp_rmb();
1750
1751         /*
1752          * Now search the rest of the groups.  We assume that
1753          * group_no and gdp correctly point to the last group visited.
1754          */
1755         for (bgi = 0; bgi < ngroups; bgi++) {
1756                 group_no++;
1757                 if (group_no >= ngroups)
1758                         group_no = 0;
1759                 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1760                 if (!gdp)
1761                         goto io_error;
1762                 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1763                 /*
1764                  * skip this group if the number of
1765                  * free blocks is less than half of the reservation
1766                  * window size.
1767                  */
1768                 if (free_blocks <= (windowsz/2))
1769                         continue;
1770
1771                 brelse(bitmap_bh);
1772                 bitmap_bh = read_block_bitmap(sb, group_no);
1773                 if (!bitmap_bh)
1774                         goto io_error;
1775                 /*
1776                  * try to allocate block(s) from this group, without a goal(-1).
1777                  */
1778                 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1779                                         group_no, bitmap_bh, -1, my_rsv,
1780                                         &num, &fatal);
1781                 if (fatal)
1782                         goto out;
1783                 if (grp_alloc_blk >= 0)
1784                         goto allocated;
1785         }
1786         /*
1787          * We may end up a bogus ealier ENOSPC error due to
1788          * filesystem is "full" of reservations, but
1789          * there maybe indeed free blocks avaliable on disk
1790          * In this case, we just forget about the reservations
1791          * just do block allocation as without reservations.
1792          */
1793         if (my_rsv) {
1794                 my_rsv = NULL;
1795                 windowsz = 0;
1796                 group_no = goal_group;
1797                 goto retry_alloc;
1798         }
1799         /* No space left on the device */
1800         *errp = -ENOSPC;
1801         goto out;
1802
1803 allocated:
1804
1805         ext4_debug("using block group %lu(%d)\n",
1806                         group_no, gdp->bg_free_blocks_count);
1807
1808         BUFFER_TRACE(gdp_bh, "get_write_access");
1809         fatal = ext4_journal_get_write_access(handle, gdp_bh);
1810         if (fatal)
1811                 goto out;
1812
1813         ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1814
1815         if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1816             in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) ||
1817             in_range(ret_block, ext4_inode_table(sb, gdp),
1818                      EXT4_SB(sb)->s_itb_per_group) ||
1819             in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1820                      EXT4_SB(sb)->s_itb_per_group)) {
1821                 ext4_error(sb, "ext4_new_block",
1822                             "Allocating block in system zone - "
1823                             "blocks from %llu, length %lu",
1824                              ret_block, num);
1825                 /*
1826                  * claim_block marked the blocks we allocated
1827                  * as in use. So we may want to selectively
1828                  * mark some of the blocks as free
1829                  */
1830                 goto retry_alloc;
1831         }
1832
1833         performed_allocation = 1;
1834
1835 #ifdef CONFIG_JBD2_DEBUG
1836         {
1837                 struct buffer_head *debug_bh;
1838
1839                 /* Record bitmap buffer state in the newly allocated block */
1840                 debug_bh = sb_find_get_block(sb, ret_block);
1841                 if (debug_bh) {
1842                         BUFFER_TRACE(debug_bh, "state when allocated");
1843                         BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1844                         brelse(debug_bh);
1845                 }
1846         }
1847         jbd_lock_bh_state(bitmap_bh);
1848         spin_lock(sb_bgl_lock(sbi, group_no));
1849         if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1850                 int i;
1851
1852                 for (i = 0; i < num; i++) {
1853                         if (ext4_test_bit(grp_alloc_blk+i,
1854                                         bh2jh(bitmap_bh)->b_committed_data)) {
1855                                 printk("%s: block was unexpectedly set in "
1856                                         "b_committed_data\n", __func__);
1857                         }
1858                 }
1859         }
1860         ext4_debug("found bit %d\n", grp_alloc_blk);
1861         spin_unlock(sb_bgl_lock(sbi, group_no));
1862         jbd_unlock_bh_state(bitmap_bh);
1863 #endif
1864
1865         if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1866                 ext4_error(sb, "ext4_new_block",
1867                             "block(%llu) >= blocks count(%llu) - "
1868                             "block_group = %lu, es == %p ", ret_block,
1869                         ext4_blocks_count(es), group_no, es);
1870                 goto out;
1871         }
1872
1873         /*
1874          * It is up to the caller to add the new buffer to a journal
1875          * list of some description.  We don't know in advance whether
1876          * the caller wants to use it as metadata or data.
1877          */
1878         spin_lock(sb_bgl_lock(sbi, group_no));
1879         if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1880                 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1881         le16_add_cpu(&gdp->bg_free_blocks_count, -num);
1882         gdp->bg_checksum = ext4_group_desc_csum(sbi, group_no, gdp);
1883         spin_unlock(sb_bgl_lock(sbi, group_no));
1884         percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1885
1886         BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1887         err = ext4_journal_dirty_metadata(handle, gdp_bh);
1888         if (!fatal)
1889                 fatal = err;
1890
1891         sb->s_dirt = 1;
1892         if (fatal)
1893                 goto out;
1894
1895         *errp = 0;
1896         brelse(bitmap_bh);
1897         DQUOT_FREE_BLOCK(inode, *count-num);
1898         *count = num;
1899         return ret_block;
1900
1901 io_error:
1902         *errp = -EIO;
1903 out:
1904         if (fatal) {
1905                 *errp = fatal;
1906                 ext4_std_error(sb, fatal);
1907         }
1908         /*
1909          * Undo the block allocation
1910          */
1911         if (!performed_allocation)
1912                 DQUOT_FREE_BLOCK(inode, *count);
1913         brelse(bitmap_bh);
1914         return 0;
1915 }
1916
1917 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
1918                 ext4_fsblk_t goal, int *errp)
1919 {
1920         struct ext4_allocation_request ar;
1921         ext4_fsblk_t ret;
1922
1923         if (!test_opt(inode->i_sb, MBALLOC)) {
1924                 unsigned long count = 1;
1925                 ret = ext4_new_blocks_old(handle, inode, goal, &count, errp);
1926                 return ret;
1927         }
1928
1929         memset(&ar, 0, sizeof(ar));
1930         ar.inode = inode;
1931         ar.goal = goal;
1932         ar.len = 1;
1933         ret = ext4_mb_new_blocks(handle, &ar, errp);
1934         return ret;
1935 }
1936
1937 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
1938                 ext4_fsblk_t goal, unsigned long *count, int *errp)
1939 {
1940         struct ext4_allocation_request ar;
1941         ext4_fsblk_t ret;
1942
1943         if (!test_opt(inode->i_sb, MBALLOC)) {
1944                 ret = ext4_new_blocks_old(handle, inode, goal, count, errp);
1945                 return ret;
1946         }
1947
1948         memset(&ar, 0, sizeof(ar));
1949         ar.inode = inode;
1950         ar.goal = goal;
1951         ar.len = *count;
1952         ret = ext4_mb_new_blocks(handle, &ar, errp);
1953         *count = ar.len;
1954         return ret;
1955 }
1956
1957
1958 /**
1959  * ext4_count_free_blocks() -- count filesystem free blocks
1960  * @sb:         superblock
1961  *
1962  * Adds up the number of free blocks from each block group.
1963  */
1964 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1965 {
1966         ext4_fsblk_t desc_count;
1967         struct ext4_group_desc *gdp;
1968         ext4_group_t i;
1969         ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
1970 #ifdef EXT4FS_DEBUG
1971         struct ext4_super_block *es;
1972         ext4_fsblk_t bitmap_count;
1973         unsigned long x;
1974         struct buffer_head *bitmap_bh = NULL;
1975
1976         es = EXT4_SB(sb)->s_es;
1977         desc_count = 0;
1978         bitmap_count = 0;
1979         gdp = NULL;
1980
1981         smp_rmb();
1982         for (i = 0; i < ngroups; i++) {
1983                 gdp = ext4_get_group_desc(sb, i, NULL);
1984                 if (!gdp)
1985                         continue;
1986                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1987                 brelse(bitmap_bh);
1988                 bitmap_bh = read_block_bitmap(sb, i);
1989                 if (bitmap_bh == NULL)
1990                         continue;
1991
1992                 x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1993                 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1994                         i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1995                 bitmap_count += x;
1996         }
1997         brelse(bitmap_bh);
1998         printk("ext4_count_free_blocks: stored = %llu"
1999                 ", computed = %llu, %llu\n",
2000                 ext4_free_blocks_count(es),
2001                 desc_count, bitmap_count);
2002         return bitmap_count;
2003 #else
2004         desc_count = 0;
2005         smp_rmb();
2006         for (i = 0; i < ngroups; i++) {
2007                 gdp = ext4_get_group_desc(sb, i, NULL);
2008                 if (!gdp)
2009                         continue;
2010                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
2011         }
2012
2013         return desc_count;
2014 #endif
2015 }
2016
2017 static inline int test_root(ext4_group_t a, int b)
2018 {
2019         int num = b;
2020
2021         while (a > num)
2022                 num *= b;
2023         return num == a;
2024 }
2025
2026 static int ext4_group_sparse(ext4_group_t group)
2027 {
2028         if (group <= 1)
2029                 return 1;
2030         if (!(group & 1))
2031                 return 0;
2032         return (test_root(group, 7) || test_root(group, 5) ||
2033                 test_root(group, 3));
2034 }
2035
2036 /**
2037  *      ext4_bg_has_super - number of blocks used by the superblock in group
2038  *      @sb: superblock for filesystem
2039  *      @group: group number to check
2040  *
2041  *      Return the number of blocks used by the superblock (primary or backup)
2042  *      in this group.  Currently this will be only 0 or 1.
2043  */
2044 int ext4_bg_has_super(struct super_block *sb, ext4_group_t group)
2045 {
2046         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2047                                 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
2048                         !ext4_group_sparse(group))
2049                 return 0;
2050         return 1;
2051 }
2052
2053 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb,
2054                                         ext4_group_t group)
2055 {
2056         unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2057         ext4_group_t first = metagroup * EXT4_DESC_PER_BLOCK(sb);
2058         ext4_group_t last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
2059
2060         if (group == first || group == first + 1 || group == last)
2061                 return 1;
2062         return 0;
2063 }
2064
2065 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb,
2066                                         ext4_group_t group)
2067 {
2068         return ext4_bg_has_super(sb, group) ? EXT4_SB(sb)->s_gdb_count : 0;
2069 }
2070
2071 /**
2072  *      ext4_bg_num_gdb - number of blocks used by the group table in group
2073  *      @sb: superblock for filesystem
2074  *      @group: group number to check
2075  *
2076  *      Return the number of blocks used by the group descriptor table
2077  *      (primary or backup) in this group.  In the future there may be a
2078  *      different number of descriptor blocks in each group.
2079  */
2080 unsigned long ext4_bg_num_gdb(struct super_block *sb, ext4_group_t group)
2081 {
2082         unsigned long first_meta_bg =
2083                         le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
2084         unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2085
2086         if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
2087                         metagroup < first_meta_bg)
2088                 return ext4_bg_num_gdb_nometa(sb,group);
2089
2090         return ext4_bg_num_gdb_meta(sb,group);
2091
2092 }