fs/ext3: use BUG_ON
[safe/jmp/linux-2.6] / fs / ext3 / balloc.c
1 /*
2  *  linux/fs/ext3/balloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10  *  Big-endian to little-endian byte-swapping/bitmaps by
11  *        David S. Miller (davem@caip.rutgers.edu), 1995
12  */
13
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd.h>
18 #include <linux/ext3_fs.h>
19 #include <linux/ext3_jbd.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22
23 /*
24  * balloc.c contains the blocks allocation and deallocation routines
25  */
26
27 /*
28  * The free blocks are managed by bitmaps.  A file system contains several
29  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
30  * block for inodes, N blocks for the inode table and data blocks.
31  *
32  * The file system contains group descriptors which are located after the
33  * super block.  Each descriptor contains the number of the bitmap block and
34  * the free blocks count in the block.  The descriptors are loaded in memory
35  * when a file system is mounted (see ext3_fill_super).
36  */
37
38
39 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
40
41 /**
42  * ext3_get_group_desc() -- load group descriptor from disk
43  * @sb:                 super block
44  * @block_group:        given block group
45  * @bh:                 pointer to the buffer head to store the block
46  *                      group descriptor
47  */
48 struct ext3_group_desc * ext3_get_group_desc(struct super_block * sb,
49                                              unsigned int block_group,
50                                              struct buffer_head ** bh)
51 {
52         unsigned long group_desc;
53         unsigned long offset;
54         struct ext3_group_desc * desc;
55         struct ext3_sb_info *sbi = EXT3_SB(sb);
56
57         if (block_group >= sbi->s_groups_count) {
58                 ext3_error (sb, "ext3_get_group_desc",
59                             "block_group >= groups_count - "
60                             "block_group = %d, groups_count = %lu",
61                             block_group, sbi->s_groups_count);
62
63                 return NULL;
64         }
65         smp_rmb();
66
67         group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
68         offset = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
69         if (!sbi->s_group_desc[group_desc]) {
70                 ext3_error (sb, "ext3_get_group_desc",
71                             "Group descriptor not loaded - "
72                             "block_group = %d, group_desc = %lu, desc = %lu",
73                              block_group, group_desc, offset);
74                 return NULL;
75         }
76
77         desc = (struct ext3_group_desc *) sbi->s_group_desc[group_desc]->b_data;
78         if (bh)
79                 *bh = sbi->s_group_desc[group_desc];
80         return desc + offset;
81 }
82
83 static int ext3_valid_block_bitmap(struct super_block *sb,
84                                         struct ext3_group_desc *desc,
85                                         unsigned int block_group,
86                                         struct buffer_head *bh)
87 {
88         ext3_grpblk_t offset;
89         ext3_grpblk_t next_zero_bit;
90         ext3_fsblk_t bitmap_blk;
91         ext3_fsblk_t group_first_block;
92
93         group_first_block = ext3_group_first_block_no(sb, block_group);
94
95         /* check whether block bitmap block number is set */
96         bitmap_blk = le32_to_cpu(desc->bg_block_bitmap);
97         offset = bitmap_blk - group_first_block;
98         if (!ext3_test_bit(offset, bh->b_data))
99                 /* bad block bitmap */
100                 goto err_out;
101
102         /* check whether the inode bitmap block number is set */
103         bitmap_blk = le32_to_cpu(desc->bg_inode_bitmap);
104         offset = bitmap_blk - group_first_block;
105         if (!ext3_test_bit(offset, bh->b_data))
106                 /* bad block bitmap */
107                 goto err_out;
108
109         /* check whether the inode table block number is set */
110         bitmap_blk = le32_to_cpu(desc->bg_inode_table);
111         offset = bitmap_blk - group_first_block;
112         next_zero_bit = ext3_find_next_zero_bit(bh->b_data,
113                                 offset + EXT3_SB(sb)->s_itb_per_group,
114                                 offset);
115         if (next_zero_bit >= offset + EXT3_SB(sb)->s_itb_per_group)
116                 /* good bitmap for inode tables */
117                 return 1;
118
119 err_out:
120         ext3_error(sb, __FUNCTION__,
121                         "Invalid block bitmap - "
122                         "block_group = %d, block = %lu",
123                         block_group, bitmap_blk);
124         return 0;
125 }
126
127 /**
128  * read_block_bitmap()
129  * @sb:                 super block
130  * @block_group:        given block group
131  *
132  * Read the bitmap for a given block_group,and validate the
133  * bits for block/inode/inode tables are set in the bitmaps
134  *
135  * Return buffer_head on success or NULL in case of failure.
136  */
137 static struct buffer_head *
138 read_block_bitmap(struct super_block *sb, unsigned int block_group)
139 {
140         struct ext3_group_desc * desc;
141         struct buffer_head * bh = NULL;
142         ext3_fsblk_t bitmap_blk;
143
144         desc = ext3_get_group_desc(sb, block_group, NULL);
145         if (!desc)
146                 return NULL;
147         bitmap_blk = le32_to_cpu(desc->bg_block_bitmap);
148         bh = sb_getblk(sb, bitmap_blk);
149         if (unlikely(!bh)) {
150                 ext3_error(sb, __FUNCTION__,
151                             "Cannot read block bitmap - "
152                             "block_group = %d, block_bitmap = %u",
153                             block_group, le32_to_cpu(desc->bg_block_bitmap));
154                 return NULL;
155         }
156         if (likely(bh_uptodate_or_lock(bh)))
157                 return bh;
158
159         if (bh_submit_read(bh) < 0) {
160                 brelse(bh);
161                 ext3_error(sb, __FUNCTION__,
162                             "Cannot read block bitmap - "
163                             "block_group = %d, block_bitmap = %u",
164                             block_group, le32_to_cpu(desc->bg_block_bitmap));
165                 return NULL;
166         }
167         if (!ext3_valid_block_bitmap(sb, desc, block_group, bh)) {
168                 brelse(bh);
169                 return NULL;
170         }
171         return bh;
172 }
173 /*
174  * The reservation window structure operations
175  * --------------------------------------------
176  * Operations include:
177  * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
178  *
179  * We use a red-black tree to represent per-filesystem reservation
180  * windows.
181  *
182  */
183
184 /**
185  * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
186  * @rb_root:            root of per-filesystem reservation rb tree
187  * @verbose:            verbose mode
188  * @fn:                 function which wishes to dump the reservation map
189  *
190  * If verbose is turned on, it will print the whole block reservation
191  * windows(start, end). Otherwise, it will only print out the "bad" windows,
192  * those windows that overlap with their immediate neighbors.
193  */
194 #if 1
195 static void __rsv_window_dump(struct rb_root *root, int verbose,
196                               const char *fn)
197 {
198         struct rb_node *n;
199         struct ext3_reserve_window_node *rsv, *prev;
200         int bad;
201
202 restart:
203         n = rb_first(root);
204         bad = 0;
205         prev = NULL;
206
207         printk("Block Allocation Reservation Windows Map (%s):\n", fn);
208         while (n) {
209                 rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node);
210                 if (verbose)
211                         printk("reservation window 0x%p "
212                                "start:  %lu, end:  %lu\n",
213                                rsv, rsv->rsv_start, rsv->rsv_end);
214                 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
215                         printk("Bad reservation %p (start >= end)\n",
216                                rsv);
217                         bad = 1;
218                 }
219                 if (prev && prev->rsv_end >= rsv->rsv_start) {
220                         printk("Bad reservation %p (prev->end >= start)\n",
221                                rsv);
222                         bad = 1;
223                 }
224                 if (bad) {
225                         if (!verbose) {
226                                 printk("Restarting reservation walk in verbose mode\n");
227                                 verbose = 1;
228                                 goto restart;
229                         }
230                 }
231                 n = rb_next(n);
232                 prev = rsv;
233         }
234         printk("Window map complete.\n");
235         BUG_ON(bad);
236 }
237 #define rsv_window_dump(root, verbose) \
238         __rsv_window_dump((root), (verbose), __FUNCTION__)
239 #else
240 #define rsv_window_dump(root, verbose) do {} while (0)
241 #endif
242
243 /**
244  * goal_in_my_reservation()
245  * @rsv:                inode's reservation window
246  * @grp_goal:           given goal block relative to the allocation block group
247  * @group:              the current allocation block group
248  * @sb:                 filesystem super block
249  *
250  * Test if the given goal block (group relative) is within the file's
251  * own block reservation window range.
252  *
253  * If the reservation window is outside the goal allocation group, return 0;
254  * grp_goal (given goal block) could be -1, which means no specific
255  * goal block. In this case, always return 1.
256  * If the goal block is within the reservation window, return 1;
257  * otherwise, return 0;
258  */
259 static int
260 goal_in_my_reservation(struct ext3_reserve_window *rsv, ext3_grpblk_t grp_goal,
261                         unsigned int group, struct super_block * sb)
262 {
263         ext3_fsblk_t group_first_block, group_last_block;
264
265         group_first_block = ext3_group_first_block_no(sb, group);
266         group_last_block = group_first_block + (EXT3_BLOCKS_PER_GROUP(sb) - 1);
267
268         if ((rsv->_rsv_start > group_last_block) ||
269             (rsv->_rsv_end < group_first_block))
270                 return 0;
271         if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
272                 || (grp_goal + group_first_block > rsv->_rsv_end)))
273                 return 0;
274         return 1;
275 }
276
277 /**
278  * search_reserve_window()
279  * @rb_root:            root of reservation tree
280  * @goal:               target allocation block
281  *
282  * Find the reserved window which includes the goal, or the previous one
283  * if the goal is not in any window.
284  * Returns NULL if there are no windows or if all windows start after the goal.
285  */
286 static struct ext3_reserve_window_node *
287 search_reserve_window(struct rb_root *root, ext3_fsblk_t goal)
288 {
289         struct rb_node *n = root->rb_node;
290         struct ext3_reserve_window_node *rsv;
291
292         if (!n)
293                 return NULL;
294
295         do {
296                 rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node);
297
298                 if (goal < rsv->rsv_start)
299                         n = n->rb_left;
300                 else if (goal > rsv->rsv_end)
301                         n = n->rb_right;
302                 else
303                         return rsv;
304         } while (n);
305         /*
306          * We've fallen off the end of the tree: the goal wasn't inside
307          * any particular node.  OK, the previous node must be to one
308          * side of the interval containing the goal.  If it's the RHS,
309          * we need to back up one.
310          */
311         if (rsv->rsv_start > goal) {
312                 n = rb_prev(&rsv->rsv_node);
313                 rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node);
314         }
315         return rsv;
316 }
317
318 /**
319  * ext3_rsv_window_add() -- Insert a window to the block reservation rb tree.
320  * @sb:                 super block
321  * @rsv:                reservation window to add
322  *
323  * Must be called with rsv_lock hold.
324  */
325 void ext3_rsv_window_add(struct super_block *sb,
326                     struct ext3_reserve_window_node *rsv)
327 {
328         struct rb_root *root = &EXT3_SB(sb)->s_rsv_window_root;
329         struct rb_node *node = &rsv->rsv_node;
330         ext3_fsblk_t start = rsv->rsv_start;
331
332         struct rb_node ** p = &root->rb_node;
333         struct rb_node * parent = NULL;
334         struct ext3_reserve_window_node *this;
335
336         while (*p)
337         {
338                 parent = *p;
339                 this = rb_entry(parent, struct ext3_reserve_window_node, rsv_node);
340
341                 if (start < this->rsv_start)
342                         p = &(*p)->rb_left;
343                 else if (start > this->rsv_end)
344                         p = &(*p)->rb_right;
345                 else {
346                         rsv_window_dump(root, 1);
347                         BUG();
348                 }
349         }
350
351         rb_link_node(node, parent, p);
352         rb_insert_color(node, root);
353 }
354
355 /**
356  * ext3_rsv_window_remove() -- unlink a window from the reservation rb tree
357  * @sb:                 super block
358  * @rsv:                reservation window to remove
359  *
360  * Mark the block reservation window as not allocated, and unlink it
361  * from the filesystem reservation window rb tree. Must be called with
362  * rsv_lock hold.
363  */
364 static void rsv_window_remove(struct super_block *sb,
365                               struct ext3_reserve_window_node *rsv)
366 {
367         rsv->rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
368         rsv->rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
369         rsv->rsv_alloc_hit = 0;
370         rb_erase(&rsv->rsv_node, &EXT3_SB(sb)->s_rsv_window_root);
371 }
372
373 /*
374  * rsv_is_empty() -- Check if the reservation window is allocated.
375  * @rsv:                given reservation window to check
376  *
377  * returns 1 if the end block is EXT3_RESERVE_WINDOW_NOT_ALLOCATED.
378  */
379 static inline int rsv_is_empty(struct ext3_reserve_window *rsv)
380 {
381         /* a valid reservation end block could not be 0 */
382         return rsv->_rsv_end == EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
383 }
384
385 /**
386  * ext3_init_block_alloc_info()
387  * @inode:              file inode structure
388  *
389  * Allocate and initialize the  reservation window structure, and
390  * link the window to the ext3 inode structure at last
391  *
392  * The reservation window structure is only dynamically allocated
393  * and linked to ext3 inode the first time the open file
394  * needs a new block. So, before every ext3_new_block(s) call, for
395  * regular files, we should check whether the reservation window
396  * structure exists or not. In the latter case, this function is called.
397  * Fail to do so will result in block reservation being turned off for that
398  * open file.
399  *
400  * This function is called from ext3_get_blocks_handle(), also called
401  * when setting the reservation window size through ioctl before the file
402  * is open for write (needs block allocation).
403  *
404  * Needs truncate_mutex protection prior to call this function.
405  */
406 void ext3_init_block_alloc_info(struct inode *inode)
407 {
408         struct ext3_inode_info *ei = EXT3_I(inode);
409         struct ext3_block_alloc_info *block_i = ei->i_block_alloc_info;
410         struct super_block *sb = inode->i_sb;
411
412         block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
413         if (block_i) {
414                 struct ext3_reserve_window_node *rsv = &block_i->rsv_window_node;
415
416                 rsv->rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
417                 rsv->rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
418
419                 /*
420                  * if filesystem is mounted with NORESERVATION, the goal
421                  * reservation window size is set to zero to indicate
422                  * block reservation is off
423                  */
424                 if (!test_opt(sb, RESERVATION))
425                         rsv->rsv_goal_size = 0;
426                 else
427                         rsv->rsv_goal_size = EXT3_DEFAULT_RESERVE_BLOCKS;
428                 rsv->rsv_alloc_hit = 0;
429                 block_i->last_alloc_logical_block = 0;
430                 block_i->last_alloc_physical_block = 0;
431         }
432         ei->i_block_alloc_info = block_i;
433 }
434
435 /**
436  * ext3_discard_reservation()
437  * @inode:              inode
438  *
439  * Discard(free) block reservation window on last file close, or truncate
440  * or at last iput().
441  *
442  * It is being called in three cases:
443  *      ext3_release_file(): last writer close the file
444  *      ext3_clear_inode(): last iput(), when nobody link to this file.
445  *      ext3_truncate(): when the block indirect map is about to change.
446  *
447  */
448 void ext3_discard_reservation(struct inode *inode)
449 {
450         struct ext3_inode_info *ei = EXT3_I(inode);
451         struct ext3_block_alloc_info *block_i = ei->i_block_alloc_info;
452         struct ext3_reserve_window_node *rsv;
453         spinlock_t *rsv_lock = &EXT3_SB(inode->i_sb)->s_rsv_window_lock;
454
455         if (!block_i)
456                 return;
457
458         rsv = &block_i->rsv_window_node;
459         if (!rsv_is_empty(&rsv->rsv_window)) {
460                 spin_lock(rsv_lock);
461                 if (!rsv_is_empty(&rsv->rsv_window))
462                         rsv_window_remove(inode->i_sb, rsv);
463                 spin_unlock(rsv_lock);
464         }
465 }
466
467 /**
468  * ext3_free_blocks_sb() -- Free given blocks and update quota
469  * @handle:                     handle to this transaction
470  * @sb:                         super block
471  * @block:                      start physcial block to free
472  * @count:                      number of blocks to free
473  * @pdquot_freed_blocks:        pointer to quota
474  */
475 void ext3_free_blocks_sb(handle_t *handle, struct super_block *sb,
476                          ext3_fsblk_t block, unsigned long count,
477                          unsigned long *pdquot_freed_blocks)
478 {
479         struct buffer_head *bitmap_bh = NULL;
480         struct buffer_head *gd_bh;
481         unsigned long block_group;
482         ext3_grpblk_t bit;
483         unsigned long i;
484         unsigned long overflow;
485         struct ext3_group_desc * desc;
486         struct ext3_super_block * es;
487         struct ext3_sb_info *sbi;
488         int err = 0, ret;
489         ext3_grpblk_t group_freed;
490
491         *pdquot_freed_blocks = 0;
492         sbi = EXT3_SB(sb);
493         es = sbi->s_es;
494         if (block < le32_to_cpu(es->s_first_data_block) ||
495             block + count < block ||
496             block + count > le32_to_cpu(es->s_blocks_count)) {
497                 ext3_error (sb, "ext3_free_blocks",
498                             "Freeing blocks not in datazone - "
499                             "block = "E3FSBLK", count = %lu", block, count);
500                 goto error_return;
501         }
502
503         ext3_debug ("freeing block(s) %lu-%lu\n", block, block + count - 1);
504
505 do_more:
506         overflow = 0;
507         block_group = (block - le32_to_cpu(es->s_first_data_block)) /
508                       EXT3_BLOCKS_PER_GROUP(sb);
509         bit = (block - le32_to_cpu(es->s_first_data_block)) %
510                       EXT3_BLOCKS_PER_GROUP(sb);
511         /*
512          * Check to see if we are freeing blocks across a group
513          * boundary.
514          */
515         if (bit + count > EXT3_BLOCKS_PER_GROUP(sb)) {
516                 overflow = bit + count - EXT3_BLOCKS_PER_GROUP(sb);
517                 count -= overflow;
518         }
519         brelse(bitmap_bh);
520         bitmap_bh = read_block_bitmap(sb, block_group);
521         if (!bitmap_bh)
522                 goto error_return;
523         desc = ext3_get_group_desc (sb, block_group, &gd_bh);
524         if (!desc)
525                 goto error_return;
526
527         if (in_range (le32_to_cpu(desc->bg_block_bitmap), block, count) ||
528             in_range (le32_to_cpu(desc->bg_inode_bitmap), block, count) ||
529             in_range (block, le32_to_cpu(desc->bg_inode_table),
530                       sbi->s_itb_per_group) ||
531             in_range (block + count - 1, le32_to_cpu(desc->bg_inode_table),
532                       sbi->s_itb_per_group)) {
533                 ext3_error (sb, "ext3_free_blocks",
534                             "Freeing blocks in system zones - "
535                             "Block = "E3FSBLK", count = %lu",
536                             block, count);
537                 goto error_return;
538         }
539
540         /*
541          * We are about to start releasing blocks in the bitmap,
542          * so we need undo access.
543          */
544         /* @@@ check errors */
545         BUFFER_TRACE(bitmap_bh, "getting undo access");
546         err = ext3_journal_get_undo_access(handle, bitmap_bh);
547         if (err)
548                 goto error_return;
549
550         /*
551          * We are about to modify some metadata.  Call the journal APIs
552          * to unshare ->b_data if a currently-committing transaction is
553          * using it
554          */
555         BUFFER_TRACE(gd_bh, "get_write_access");
556         err = ext3_journal_get_write_access(handle, gd_bh);
557         if (err)
558                 goto error_return;
559
560         jbd_lock_bh_state(bitmap_bh);
561
562         for (i = 0, group_freed = 0; i < count; i++) {
563                 /*
564                  * An HJ special.  This is expensive...
565                  */
566 #ifdef CONFIG_JBD_DEBUG
567                 jbd_unlock_bh_state(bitmap_bh);
568                 {
569                         struct buffer_head *debug_bh;
570                         debug_bh = sb_find_get_block(sb, block + i);
571                         if (debug_bh) {
572                                 BUFFER_TRACE(debug_bh, "Deleted!");
573                                 if (!bh2jh(bitmap_bh)->b_committed_data)
574                                         BUFFER_TRACE(debug_bh,
575                                                 "No commited data in bitmap");
576                                 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
577                                 __brelse(debug_bh);
578                         }
579                 }
580                 jbd_lock_bh_state(bitmap_bh);
581 #endif
582                 if (need_resched()) {
583                         jbd_unlock_bh_state(bitmap_bh);
584                         cond_resched();
585                         jbd_lock_bh_state(bitmap_bh);
586                 }
587                 /* @@@ This prevents newly-allocated data from being
588                  * freed and then reallocated within the same
589                  * transaction.
590                  *
591                  * Ideally we would want to allow that to happen, but to
592                  * do so requires making journal_forget() capable of
593                  * revoking the queued write of a data block, which
594                  * implies blocking on the journal lock.  *forget()
595                  * cannot block due to truncate races.
596                  *
597                  * Eventually we can fix this by making journal_forget()
598                  * return a status indicating whether or not it was able
599                  * to revoke the buffer.  On successful revoke, it is
600                  * safe not to set the allocation bit in the committed
601                  * bitmap, because we know that there is no outstanding
602                  * activity on the buffer any more and so it is safe to
603                  * reallocate it.
604                  */
605                 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
606                 J_ASSERT_BH(bitmap_bh,
607                                 bh2jh(bitmap_bh)->b_committed_data != NULL);
608                 ext3_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
609                                 bh2jh(bitmap_bh)->b_committed_data);
610
611                 /*
612                  * We clear the bit in the bitmap after setting the committed
613                  * data bit, because this is the reverse order to that which
614                  * the allocator uses.
615                  */
616                 BUFFER_TRACE(bitmap_bh, "clear bit");
617                 if (!ext3_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
618                                                 bit + i, bitmap_bh->b_data)) {
619                         jbd_unlock_bh_state(bitmap_bh);
620                         ext3_error(sb, __FUNCTION__,
621                                 "bit already cleared for block "E3FSBLK,
622                                  block + i);
623                         jbd_lock_bh_state(bitmap_bh);
624                         BUFFER_TRACE(bitmap_bh, "bit already cleared");
625                 } else {
626                         group_freed++;
627                 }
628         }
629         jbd_unlock_bh_state(bitmap_bh);
630
631         spin_lock(sb_bgl_lock(sbi, block_group));
632         le16_add_cpu(&desc->bg_free_blocks_count, group_freed);
633         spin_unlock(sb_bgl_lock(sbi, block_group));
634         percpu_counter_add(&sbi->s_freeblocks_counter, count);
635
636         /* We dirtied the bitmap block */
637         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
638         err = ext3_journal_dirty_metadata(handle, bitmap_bh);
639
640         /* And the group descriptor block */
641         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
642         ret = ext3_journal_dirty_metadata(handle, gd_bh);
643         if (!err) err = ret;
644         *pdquot_freed_blocks += group_freed;
645
646         if (overflow && !err) {
647                 block += count;
648                 count = overflow;
649                 goto do_more;
650         }
651         sb->s_dirt = 1;
652 error_return:
653         brelse(bitmap_bh);
654         ext3_std_error(sb, err);
655         return;
656 }
657
658 /**
659  * ext3_free_blocks() -- Free given blocks and update quota
660  * @handle:             handle for this transaction
661  * @inode:              inode
662  * @block:              start physical block to free
663  * @count:              number of blocks to count
664  */
665 void ext3_free_blocks(handle_t *handle, struct inode *inode,
666                         ext3_fsblk_t block, unsigned long count)
667 {
668         struct super_block * sb;
669         unsigned long dquot_freed_blocks;
670
671         sb = inode->i_sb;
672         if (!sb) {
673                 printk ("ext3_free_blocks: nonexistent device");
674                 return;
675         }
676         ext3_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
677         if (dquot_freed_blocks)
678                 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
679         return;
680 }
681
682 /**
683  * ext3_test_allocatable()
684  * @nr:                 given allocation block group
685  * @bh:                 bufferhead contains the bitmap of the given block group
686  *
687  * For ext3 allocations, we must not reuse any blocks which are
688  * allocated in the bitmap buffer's "last committed data" copy.  This
689  * prevents deletes from freeing up the page for reuse until we have
690  * committed the delete transaction.
691  *
692  * If we didn't do this, then deleting something and reallocating it as
693  * data would allow the old block to be overwritten before the
694  * transaction committed (because we force data to disk before commit).
695  * This would lead to corruption if we crashed between overwriting the
696  * data and committing the delete.
697  *
698  * @@@ We may want to make this allocation behaviour conditional on
699  * data-writes at some point, and disable it for metadata allocations or
700  * sync-data inodes.
701  */
702 static int ext3_test_allocatable(ext3_grpblk_t nr, struct buffer_head *bh)
703 {
704         int ret;
705         struct journal_head *jh = bh2jh(bh);
706
707         if (ext3_test_bit(nr, bh->b_data))
708                 return 0;
709
710         jbd_lock_bh_state(bh);
711         if (!jh->b_committed_data)
712                 ret = 1;
713         else
714                 ret = !ext3_test_bit(nr, jh->b_committed_data);
715         jbd_unlock_bh_state(bh);
716         return ret;
717 }
718
719 /**
720  * bitmap_search_next_usable_block()
721  * @start:              the starting block (group relative) of the search
722  * @bh:                 bufferhead contains the block group bitmap
723  * @maxblocks:          the ending block (group relative) of the reservation
724  *
725  * The bitmap search --- search forward alternately through the actual
726  * bitmap on disk and the last-committed copy in journal, until we find a
727  * bit free in both bitmaps.
728  */
729 static ext3_grpblk_t
730 bitmap_search_next_usable_block(ext3_grpblk_t start, struct buffer_head *bh,
731                                         ext3_grpblk_t maxblocks)
732 {
733         ext3_grpblk_t next;
734         struct journal_head *jh = bh2jh(bh);
735
736         while (start < maxblocks) {
737                 next = ext3_find_next_zero_bit(bh->b_data, maxblocks, start);
738                 if (next >= maxblocks)
739                         return -1;
740                 if (ext3_test_allocatable(next, bh))
741                         return next;
742                 jbd_lock_bh_state(bh);
743                 if (jh->b_committed_data)
744                         start = ext3_find_next_zero_bit(jh->b_committed_data,
745                                                         maxblocks, next);
746                 jbd_unlock_bh_state(bh);
747         }
748         return -1;
749 }
750
751 /**
752  * find_next_usable_block()
753  * @start:              the starting block (group relative) to find next
754  *                      allocatable block in bitmap.
755  * @bh:                 bufferhead contains the block group bitmap
756  * @maxblocks:          the ending block (group relative) for the search
757  *
758  * Find an allocatable block in a bitmap.  We honor both the bitmap and
759  * its last-committed copy (if that exists), and perform the "most
760  * appropriate allocation" algorithm of looking for a free block near
761  * the initial goal; then for a free byte somewhere in the bitmap; then
762  * for any free bit in the bitmap.
763  */
764 static ext3_grpblk_t
765 find_next_usable_block(ext3_grpblk_t start, struct buffer_head *bh,
766                         ext3_grpblk_t maxblocks)
767 {
768         ext3_grpblk_t here, next;
769         char *p, *r;
770
771         if (start > 0) {
772                 /*
773                  * The goal was occupied; search forward for a free
774                  * block within the next XX blocks.
775                  *
776                  * end_goal is more or less random, but it has to be
777                  * less than EXT3_BLOCKS_PER_GROUP. Aligning up to the
778                  * next 64-bit boundary is simple..
779                  */
780                 ext3_grpblk_t end_goal = (start + 63) & ~63;
781                 if (end_goal > maxblocks)
782                         end_goal = maxblocks;
783                 here = ext3_find_next_zero_bit(bh->b_data, end_goal, start);
784                 if (here < end_goal && ext3_test_allocatable(here, bh))
785                         return here;
786                 ext3_debug("Bit not found near goal\n");
787         }
788
789         here = start;
790         if (here < 0)
791                 here = 0;
792
793         p = ((char *)bh->b_data) + (here >> 3);
794         r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
795         next = (r - ((char *)bh->b_data)) << 3;
796
797         if (next < maxblocks && next >= start && ext3_test_allocatable(next, bh))
798                 return next;
799
800         /*
801          * The bitmap search --- search forward alternately through the actual
802          * bitmap and the last-committed copy until we find a bit free in
803          * both
804          */
805         here = bitmap_search_next_usable_block(here, bh, maxblocks);
806         return here;
807 }
808
809 /**
810  * claim_block()
811  * @block:              the free block (group relative) to allocate
812  * @bh:                 the bufferhead containts the block group bitmap
813  *
814  * We think we can allocate this block in this bitmap.  Try to set the bit.
815  * If that succeeds then check that nobody has allocated and then freed the
816  * block since we saw that is was not marked in b_committed_data.  If it _was_
817  * allocated and freed then clear the bit in the bitmap again and return
818  * zero (failure).
819  */
820 static inline int
821 claim_block(spinlock_t *lock, ext3_grpblk_t block, struct buffer_head *bh)
822 {
823         struct journal_head *jh = bh2jh(bh);
824         int ret;
825
826         if (ext3_set_bit_atomic(lock, block, bh->b_data))
827                 return 0;
828         jbd_lock_bh_state(bh);
829         if (jh->b_committed_data && ext3_test_bit(block,jh->b_committed_data)) {
830                 ext3_clear_bit_atomic(lock, block, bh->b_data);
831                 ret = 0;
832         } else {
833                 ret = 1;
834         }
835         jbd_unlock_bh_state(bh);
836         return ret;
837 }
838
839 /**
840  * ext3_try_to_allocate()
841  * @sb:                 superblock
842  * @handle:             handle to this transaction
843  * @group:              given allocation block group
844  * @bitmap_bh:          bufferhead holds the block bitmap
845  * @grp_goal:           given target block within the group
846  * @count:              target number of blocks to allocate
847  * @my_rsv:             reservation window
848  *
849  * Attempt to allocate blocks within a give range. Set the range of allocation
850  * first, then find the first free bit(s) from the bitmap (within the range),
851  * and at last, allocate the blocks by claiming the found free bit as allocated.
852  *
853  * To set the range of this allocation:
854  *      if there is a reservation window, only try to allocate block(s) from the
855  *      file's own reservation window;
856  *      Otherwise, the allocation range starts from the give goal block, ends at
857  *      the block group's last block.
858  *
859  * If we failed to allocate the desired block then we may end up crossing to a
860  * new bitmap.  In that case we must release write access to the old one via
861  * ext3_journal_release_buffer(), else we'll run out of credits.
862  */
863 static ext3_grpblk_t
864 ext3_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
865                         struct buffer_head *bitmap_bh, ext3_grpblk_t grp_goal,
866                         unsigned long *count, struct ext3_reserve_window *my_rsv)
867 {
868         ext3_fsblk_t group_first_block;
869         ext3_grpblk_t start, end;
870         unsigned long num = 0;
871
872         /* we do allocation within the reservation window if we have a window */
873         if (my_rsv) {
874                 group_first_block = ext3_group_first_block_no(sb, group);
875                 if (my_rsv->_rsv_start >= group_first_block)
876                         start = my_rsv->_rsv_start - group_first_block;
877                 else
878                         /* reservation window cross group boundary */
879                         start = 0;
880                 end = my_rsv->_rsv_end - group_first_block + 1;
881                 if (end > EXT3_BLOCKS_PER_GROUP(sb))
882                         /* reservation window crosses group boundary */
883                         end = EXT3_BLOCKS_PER_GROUP(sb);
884                 if ((start <= grp_goal) && (grp_goal < end))
885                         start = grp_goal;
886                 else
887                         grp_goal = -1;
888         } else {
889                 if (grp_goal > 0)
890                         start = grp_goal;
891                 else
892                         start = 0;
893                 end = EXT3_BLOCKS_PER_GROUP(sb);
894         }
895
896         BUG_ON(start > EXT3_BLOCKS_PER_GROUP(sb));
897
898 repeat:
899         if (grp_goal < 0 || !ext3_test_allocatable(grp_goal, bitmap_bh)) {
900                 grp_goal = find_next_usable_block(start, bitmap_bh, end);
901                 if (grp_goal < 0)
902                         goto fail_access;
903                 if (!my_rsv) {
904                         int i;
905
906                         for (i = 0; i < 7 && grp_goal > start &&
907                                         ext3_test_allocatable(grp_goal - 1,
908                                                                 bitmap_bh);
909                                         i++, grp_goal--)
910                                 ;
911                 }
912         }
913         start = grp_goal;
914
915         if (!claim_block(sb_bgl_lock(EXT3_SB(sb), group),
916                 grp_goal, bitmap_bh)) {
917                 /*
918                  * The block was allocated by another thread, or it was
919                  * allocated and then freed by another thread
920                  */
921                 start++;
922                 grp_goal++;
923                 if (start >= end)
924                         goto fail_access;
925                 goto repeat;
926         }
927         num++;
928         grp_goal++;
929         while (num < *count && grp_goal < end
930                 && ext3_test_allocatable(grp_goal, bitmap_bh)
931                 && claim_block(sb_bgl_lock(EXT3_SB(sb), group),
932                                 grp_goal, bitmap_bh)) {
933                 num++;
934                 grp_goal++;
935         }
936         *count = num;
937         return grp_goal - num;
938 fail_access:
939         *count = num;
940         return -1;
941 }
942
943 /**
944  *      find_next_reservable_window():
945  *              find a reservable space within the given range.
946  *              It does not allocate the reservation window for now:
947  *              alloc_new_reservation() will do the work later.
948  *
949  *      @search_head: the head of the searching list;
950  *              This is not necessarily the list head of the whole filesystem
951  *
952  *              We have both head and start_block to assist the search
953  *              for the reservable space. The list starts from head,
954  *              but we will shift to the place where start_block is,
955  *              then start from there, when looking for a reservable space.
956  *
957  *      @size: the target new reservation window size
958  *
959  *      @group_first_block: the first block we consider to start
960  *                      the real search from
961  *
962  *      @last_block:
963  *              the maximum block number that our goal reservable space
964  *              could start from. This is normally the last block in this
965  *              group. The search will end when we found the start of next
966  *              possible reservable space is out of this boundary.
967  *              This could handle the cross boundary reservation window
968  *              request.
969  *
970  *      basically we search from the given range, rather than the whole
971  *      reservation double linked list, (start_block, last_block)
972  *      to find a free region that is of my size and has not
973  *      been reserved.
974  *
975  */
976 static int find_next_reservable_window(
977                                 struct ext3_reserve_window_node *search_head,
978                                 struct ext3_reserve_window_node *my_rsv,
979                                 struct super_block * sb,
980                                 ext3_fsblk_t start_block,
981                                 ext3_fsblk_t last_block)
982 {
983         struct rb_node *next;
984         struct ext3_reserve_window_node *rsv, *prev;
985         ext3_fsblk_t cur;
986         int size = my_rsv->rsv_goal_size;
987
988         /* TODO: make the start of the reservation window byte-aligned */
989         /* cur = *start_block & ~7;*/
990         cur = start_block;
991         rsv = search_head;
992         if (!rsv)
993                 return -1;
994
995         while (1) {
996                 if (cur <= rsv->rsv_end)
997                         cur = rsv->rsv_end + 1;
998
999                 /* TODO?
1000                  * in the case we could not find a reservable space
1001                  * that is what is expected, during the re-search, we could
1002                  * remember what's the largest reservable space we could have
1003                  * and return that one.
1004                  *
1005                  * For now it will fail if we could not find the reservable
1006                  * space with expected-size (or more)...
1007                  */
1008                 if (cur > last_block)
1009                         return -1;              /* fail */
1010
1011                 prev = rsv;
1012                 next = rb_next(&rsv->rsv_node);
1013                 rsv = rb_entry(next,struct ext3_reserve_window_node,rsv_node);
1014
1015                 /*
1016                  * Reached the last reservation, we can just append to the
1017                  * previous one.
1018                  */
1019                 if (!next)
1020                         break;
1021
1022                 if (cur + size <= rsv->rsv_start) {
1023                         /*
1024                          * Found a reserveable space big enough.  We could
1025                          * have a reservation across the group boundary here
1026                          */
1027                         break;
1028                 }
1029         }
1030         /*
1031          * we come here either :
1032          * when we reach the end of the whole list,
1033          * and there is empty reservable space after last entry in the list.
1034          * append it to the end of the list.
1035          *
1036          * or we found one reservable space in the middle of the list,
1037          * return the reservation window that we could append to.
1038          * succeed.
1039          */
1040
1041         if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1042                 rsv_window_remove(sb, my_rsv);
1043
1044         /*
1045          * Let's book the whole avaliable window for now.  We will check the
1046          * disk bitmap later and then, if there are free blocks then we adjust
1047          * the window size if it's larger than requested.
1048          * Otherwise, we will remove this node from the tree next time
1049          * call find_next_reservable_window.
1050          */
1051         my_rsv->rsv_start = cur;
1052         my_rsv->rsv_end = cur + size - 1;
1053         my_rsv->rsv_alloc_hit = 0;
1054
1055         if (prev != my_rsv)
1056                 ext3_rsv_window_add(sb, my_rsv);
1057
1058         return 0;
1059 }
1060
1061 /**
1062  *      alloc_new_reservation()--allocate a new reservation window
1063  *
1064  *              To make a new reservation, we search part of the filesystem
1065  *              reservation list (the list that inside the group). We try to
1066  *              allocate a new reservation window near the allocation goal,
1067  *              or the beginning of the group, if there is no goal.
1068  *
1069  *              We first find a reservable space after the goal, then from
1070  *              there, we check the bitmap for the first free block after
1071  *              it. If there is no free block until the end of group, then the
1072  *              whole group is full, we failed. Otherwise, check if the free
1073  *              block is inside the expected reservable space, if so, we
1074  *              succeed.
1075  *              If the first free block is outside the reservable space, then
1076  *              start from the first free block, we search for next available
1077  *              space, and go on.
1078  *
1079  *      on succeed, a new reservation will be found and inserted into the list
1080  *      It contains at least one free block, and it does not overlap with other
1081  *      reservation windows.
1082  *
1083  *      failed: we failed to find a reservation window in this group
1084  *
1085  *      @rsv: the reservation
1086  *
1087  *      @grp_goal: The goal (group-relative).  It is where the search for a
1088  *              free reservable space should start from.
1089  *              if we have a grp_goal(grp_goal >0 ), then start from there,
1090  *              no grp_goal(grp_goal = -1), we start from the first block
1091  *              of the group.
1092  *
1093  *      @sb: the super block
1094  *      @group: the group we are trying to allocate in
1095  *      @bitmap_bh: the block group block bitmap
1096  *
1097  */
1098 static int alloc_new_reservation(struct ext3_reserve_window_node *my_rsv,
1099                 ext3_grpblk_t grp_goal, struct super_block *sb,
1100                 unsigned int group, struct buffer_head *bitmap_bh)
1101 {
1102         struct ext3_reserve_window_node *search_head;
1103         ext3_fsblk_t group_first_block, group_end_block, start_block;
1104         ext3_grpblk_t first_free_block;
1105         struct rb_root *fs_rsv_root = &EXT3_SB(sb)->s_rsv_window_root;
1106         unsigned long size;
1107         int ret;
1108         spinlock_t *rsv_lock = &EXT3_SB(sb)->s_rsv_window_lock;
1109
1110         group_first_block = ext3_group_first_block_no(sb, group);
1111         group_end_block = group_first_block + (EXT3_BLOCKS_PER_GROUP(sb) - 1);
1112
1113         if (grp_goal < 0)
1114                 start_block = group_first_block;
1115         else
1116                 start_block = grp_goal + group_first_block;
1117
1118         size = my_rsv->rsv_goal_size;
1119
1120         if (!rsv_is_empty(&my_rsv->rsv_window)) {
1121                 /*
1122                  * if the old reservation is cross group boundary
1123                  * and if the goal is inside the old reservation window,
1124                  * we will come here when we just failed to allocate from
1125                  * the first part of the window. We still have another part
1126                  * that belongs to the next group. In this case, there is no
1127                  * point to discard our window and try to allocate a new one
1128                  * in this group(which will fail). we should
1129                  * keep the reservation window, just simply move on.
1130                  *
1131                  * Maybe we could shift the start block of the reservation
1132                  * window to the first block of next group.
1133                  */
1134
1135                 if ((my_rsv->rsv_start <= group_end_block) &&
1136                                 (my_rsv->rsv_end > group_end_block) &&
1137                                 (start_block >= my_rsv->rsv_start))
1138                         return -1;
1139
1140                 if ((my_rsv->rsv_alloc_hit >
1141                      (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1142                         /*
1143                          * if the previously allocation hit ratio is
1144                          * greater than 1/2, then we double the size of
1145                          * the reservation window the next time,
1146                          * otherwise we keep the same size window
1147                          */
1148                         size = size * 2;
1149                         if (size > EXT3_MAX_RESERVE_BLOCKS)
1150                                 size = EXT3_MAX_RESERVE_BLOCKS;
1151                         my_rsv->rsv_goal_size= size;
1152                 }
1153         }
1154
1155         spin_lock(rsv_lock);
1156         /*
1157          * shift the search start to the window near the goal block
1158          */
1159         search_head = search_reserve_window(fs_rsv_root, start_block);
1160
1161         /*
1162          * find_next_reservable_window() simply finds a reservable window
1163          * inside the given range(start_block, group_end_block).
1164          *
1165          * To make sure the reservation window has a free bit inside it, we
1166          * need to check the bitmap after we found a reservable window.
1167          */
1168 retry:
1169         ret = find_next_reservable_window(search_head, my_rsv, sb,
1170                                                 start_block, group_end_block);
1171
1172         if (ret == -1) {
1173                 if (!rsv_is_empty(&my_rsv->rsv_window))
1174                         rsv_window_remove(sb, my_rsv);
1175                 spin_unlock(rsv_lock);
1176                 return -1;
1177         }
1178
1179         /*
1180          * On success, find_next_reservable_window() returns the
1181          * reservation window where there is a reservable space after it.
1182          * Before we reserve this reservable space, we need
1183          * to make sure there is at least a free block inside this region.
1184          *
1185          * searching the first free bit on the block bitmap and copy of
1186          * last committed bitmap alternatively, until we found a allocatable
1187          * block. Search start from the start block of the reservable space
1188          * we just found.
1189          */
1190         spin_unlock(rsv_lock);
1191         first_free_block = bitmap_search_next_usable_block(
1192                         my_rsv->rsv_start - group_first_block,
1193                         bitmap_bh, group_end_block - group_first_block + 1);
1194
1195         if (first_free_block < 0) {
1196                 /*
1197                  * no free block left on the bitmap, no point
1198                  * to reserve the space. return failed.
1199                  */
1200                 spin_lock(rsv_lock);
1201                 if (!rsv_is_empty(&my_rsv->rsv_window))
1202                         rsv_window_remove(sb, my_rsv);
1203                 spin_unlock(rsv_lock);
1204                 return -1;              /* failed */
1205         }
1206
1207         start_block = first_free_block + group_first_block;
1208         /*
1209          * check if the first free block is within the
1210          * free space we just reserved
1211          */
1212         if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1213                 return 0;               /* success */
1214         /*
1215          * if the first free bit we found is out of the reservable space
1216          * continue search for next reservable space,
1217          * start from where the free block is,
1218          * we also shift the list head to where we stopped last time
1219          */
1220         search_head = my_rsv;
1221         spin_lock(rsv_lock);
1222         goto retry;
1223 }
1224
1225 /**
1226  * try_to_extend_reservation()
1227  * @my_rsv:             given reservation window
1228  * @sb:                 super block
1229  * @size:               the delta to extend
1230  *
1231  * Attempt to expand the reservation window large enough to have
1232  * required number of free blocks
1233  *
1234  * Since ext3_try_to_allocate() will always allocate blocks within
1235  * the reservation window range, if the window size is too small,
1236  * multiple blocks allocation has to stop at the end of the reservation
1237  * window. To make this more efficient, given the total number of
1238  * blocks needed and the current size of the window, we try to
1239  * expand the reservation window size if necessary on a best-effort
1240  * basis before ext3_new_blocks() tries to allocate blocks,
1241  */
1242 static void try_to_extend_reservation(struct ext3_reserve_window_node *my_rsv,
1243                         struct super_block *sb, int size)
1244 {
1245         struct ext3_reserve_window_node *next_rsv;
1246         struct rb_node *next;
1247         spinlock_t *rsv_lock = &EXT3_SB(sb)->s_rsv_window_lock;
1248
1249         if (!spin_trylock(rsv_lock))
1250                 return;
1251
1252         next = rb_next(&my_rsv->rsv_node);
1253
1254         if (!next)
1255                 my_rsv->rsv_end += size;
1256         else {
1257                 next_rsv = rb_entry(next, struct ext3_reserve_window_node, rsv_node);
1258
1259                 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1260                         my_rsv->rsv_end += size;
1261                 else
1262                         my_rsv->rsv_end = next_rsv->rsv_start - 1;
1263         }
1264         spin_unlock(rsv_lock);
1265 }
1266
1267 /**
1268  * ext3_try_to_allocate_with_rsv()
1269  * @sb:                 superblock
1270  * @handle:             handle to this transaction
1271  * @group:              given allocation block group
1272  * @bitmap_bh:          bufferhead holds the block bitmap
1273  * @grp_goal:           given target block within the group
1274  * @count:              target number of blocks to allocate
1275  * @my_rsv:             reservation window
1276  * @errp:               pointer to store the error code
1277  *
1278  * This is the main function used to allocate a new block and its reservation
1279  * window.
1280  *
1281  * Each time when a new block allocation is need, first try to allocate from
1282  * its own reservation.  If it does not have a reservation window, instead of
1283  * looking for a free bit on bitmap first, then look up the reservation list to
1284  * see if it is inside somebody else's reservation window, we try to allocate a
1285  * reservation window for it starting from the goal first. Then do the block
1286  * allocation within the reservation window.
1287  *
1288  * This will avoid keeping on searching the reservation list again and
1289  * again when somebody is looking for a free block (without
1290  * reservation), and there are lots of free blocks, but they are all
1291  * being reserved.
1292  *
1293  * We use a red-black tree for the per-filesystem reservation list.
1294  *
1295  */
1296 static ext3_grpblk_t
1297 ext3_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1298                         unsigned int group, struct buffer_head *bitmap_bh,
1299                         ext3_grpblk_t grp_goal,
1300                         struct ext3_reserve_window_node * my_rsv,
1301                         unsigned long *count, int *errp)
1302 {
1303         ext3_fsblk_t group_first_block, group_last_block;
1304         ext3_grpblk_t ret = 0;
1305         int fatal;
1306         unsigned long num = *count;
1307
1308         *errp = 0;
1309
1310         /*
1311          * Make sure we use undo access for the bitmap, because it is critical
1312          * that we do the frozen_data COW on bitmap buffers in all cases even
1313          * if the buffer is in BJ_Forget state in the committing transaction.
1314          */
1315         BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1316         fatal = ext3_journal_get_undo_access(handle, bitmap_bh);
1317         if (fatal) {
1318                 *errp = fatal;
1319                 return -1;
1320         }
1321
1322         /*
1323          * we don't deal with reservation when
1324          * filesystem is mounted without reservation
1325          * or the file is not a regular file
1326          * or last attempt to allocate a block with reservation turned on failed
1327          */
1328         if (my_rsv == NULL ) {
1329                 ret = ext3_try_to_allocate(sb, handle, group, bitmap_bh,
1330                                                 grp_goal, count, NULL);
1331                 goto out;
1332         }
1333         /*
1334          * grp_goal is a group relative block number (if there is a goal)
1335          * 0 <= grp_goal < EXT3_BLOCKS_PER_GROUP(sb)
1336          * first block is a filesystem wide block number
1337          * first block is the block number of the first block in this group
1338          */
1339         group_first_block = ext3_group_first_block_no(sb, group);
1340         group_last_block = group_first_block + (EXT3_BLOCKS_PER_GROUP(sb) - 1);
1341
1342         /*
1343          * Basically we will allocate a new block from inode's reservation
1344          * window.
1345          *
1346          * We need to allocate a new reservation window, if:
1347          * a) inode does not have a reservation window; or
1348          * b) last attempt to allocate a block from existing reservation
1349          *    failed; or
1350          * c) we come here with a goal and with a reservation window
1351          *
1352          * We do not need to allocate a new reservation window if we come here
1353          * at the beginning with a goal and the goal is inside the window, or
1354          * we don't have a goal but already have a reservation window.
1355          * then we could go to allocate from the reservation window directly.
1356          */
1357         while (1) {
1358                 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1359                         !goal_in_my_reservation(&my_rsv->rsv_window,
1360                                                 grp_goal, group, sb)) {
1361                         if (my_rsv->rsv_goal_size < *count)
1362                                 my_rsv->rsv_goal_size = *count;
1363                         ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1364                                                         group, bitmap_bh);
1365                         if (ret < 0)
1366                                 break;                  /* failed */
1367
1368                         if (!goal_in_my_reservation(&my_rsv->rsv_window,
1369                                                         grp_goal, group, sb))
1370                                 grp_goal = -1;
1371                 } else if (grp_goal >= 0) {
1372                         int curr = my_rsv->rsv_end -
1373                                         (grp_goal + group_first_block) + 1;
1374
1375                         if (curr < *count)
1376                                 try_to_extend_reservation(my_rsv, sb,
1377                                                         *count - curr);
1378                 }
1379
1380                 if ((my_rsv->rsv_start > group_last_block) ||
1381                                 (my_rsv->rsv_end < group_first_block)) {
1382                         rsv_window_dump(&EXT3_SB(sb)->s_rsv_window_root, 1);
1383                         BUG();
1384                 }
1385                 ret = ext3_try_to_allocate(sb, handle, group, bitmap_bh,
1386                                            grp_goal, &num, &my_rsv->rsv_window);
1387                 if (ret >= 0) {
1388                         my_rsv->rsv_alloc_hit += num;
1389                         *count = num;
1390                         break;                          /* succeed */
1391                 }
1392                 num = *count;
1393         }
1394 out:
1395         if (ret >= 0) {
1396                 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1397                                         "bitmap block");
1398                 fatal = ext3_journal_dirty_metadata(handle, bitmap_bh);
1399                 if (fatal) {
1400                         *errp = fatal;
1401                         return -1;
1402                 }
1403                 return ret;
1404         }
1405
1406         BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1407         ext3_journal_release_buffer(handle, bitmap_bh);
1408         return ret;
1409 }
1410
1411 /**
1412  * ext3_has_free_blocks()
1413  * @sbi:                in-core super block structure.
1414  *
1415  * Check if filesystem has at least 1 free block available for allocation.
1416  */
1417 static int ext3_has_free_blocks(struct ext3_sb_info *sbi)
1418 {
1419         ext3_fsblk_t free_blocks, root_blocks;
1420
1421         free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1422         root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count);
1423         if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1424                 sbi->s_resuid != current->fsuid &&
1425                 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1426                 return 0;
1427         }
1428         return 1;
1429 }
1430
1431 /**
1432  * ext3_should_retry_alloc()
1433  * @sb:                 super block
1434  * @retries             number of attemps has been made
1435  *
1436  * ext3_should_retry_alloc() is called when ENOSPC is returned, and if
1437  * it is profitable to retry the operation, this function will wait
1438  * for the current or commiting transaction to complete, and then
1439  * return TRUE.
1440  *
1441  * if the total number of retries exceed three times, return FALSE.
1442  */
1443 int ext3_should_retry_alloc(struct super_block *sb, int *retries)
1444 {
1445         if (!ext3_has_free_blocks(EXT3_SB(sb)) || (*retries)++ > 3)
1446                 return 0;
1447
1448         jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1449
1450         return journal_force_commit_nested(EXT3_SB(sb)->s_journal);
1451 }
1452
1453 /**
1454  * ext3_new_blocks() -- core block(s) allocation function
1455  * @handle:             handle to this transaction
1456  * @inode:              file inode
1457  * @goal:               given target block(filesystem wide)
1458  * @count:              target number of blocks to allocate
1459  * @errp:               error code
1460  *
1461  * ext3_new_blocks uses a goal block to assist allocation.  It tries to
1462  * allocate block(s) from the block group contains the goal block first. If that
1463  * fails, it will try to allocate block(s) from other block groups without
1464  * any specific goal block.
1465  *
1466  */
1467 ext3_fsblk_t ext3_new_blocks(handle_t *handle, struct inode *inode,
1468                         ext3_fsblk_t goal, unsigned long *count, int *errp)
1469 {
1470         struct buffer_head *bitmap_bh = NULL;
1471         struct buffer_head *gdp_bh;
1472         int group_no;
1473         int goal_group;
1474         ext3_grpblk_t grp_target_blk;   /* blockgroup relative goal block */
1475         ext3_grpblk_t grp_alloc_blk;    /* blockgroup-relative allocated block*/
1476         ext3_fsblk_t ret_block;         /* filesyetem-wide allocated block */
1477         int bgi;                        /* blockgroup iteration index */
1478         int fatal = 0, err;
1479         int performed_allocation = 0;
1480         ext3_grpblk_t free_blocks;      /* number of free blocks in a group */
1481         struct super_block *sb;
1482         struct ext3_group_desc *gdp;
1483         struct ext3_super_block *es;
1484         struct ext3_sb_info *sbi;
1485         struct ext3_reserve_window_node *my_rsv = NULL;
1486         struct ext3_block_alloc_info *block_i;
1487         unsigned short windowsz = 0;
1488 #ifdef EXT3FS_DEBUG
1489         static int goal_hits, goal_attempts;
1490 #endif
1491         unsigned long ngroups;
1492         unsigned long num = *count;
1493
1494         *errp = -ENOSPC;
1495         sb = inode->i_sb;
1496         if (!sb) {
1497                 printk("ext3_new_block: nonexistent device");
1498                 return 0;
1499         }
1500
1501         /*
1502          * Check quota for allocation of this block.
1503          */
1504         if (DQUOT_ALLOC_BLOCK(inode, num)) {
1505                 *errp = -EDQUOT;
1506                 return 0;
1507         }
1508
1509         sbi = EXT3_SB(sb);
1510         es = EXT3_SB(sb)->s_es;
1511         ext3_debug("goal=%lu.\n", goal);
1512         /*
1513          * Allocate a block from reservation only when
1514          * filesystem is mounted with reservation(default,-o reservation), and
1515          * it's a regular file, and
1516          * the desired window size is greater than 0 (One could use ioctl
1517          * command EXT3_IOC_SETRSVSZ to set the window size to 0 to turn off
1518          * reservation on that particular file)
1519          */
1520         block_i = EXT3_I(inode)->i_block_alloc_info;
1521         if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1522                 my_rsv = &block_i->rsv_window_node;
1523
1524         if (!ext3_has_free_blocks(sbi)) {
1525                 *errp = -ENOSPC;
1526                 goto out;
1527         }
1528
1529         /*
1530          * First, test whether the goal block is free.
1531          */
1532         if (goal < le32_to_cpu(es->s_first_data_block) ||
1533             goal >= le32_to_cpu(es->s_blocks_count))
1534                 goal = le32_to_cpu(es->s_first_data_block);
1535         group_no = (goal - le32_to_cpu(es->s_first_data_block)) /
1536                         EXT3_BLOCKS_PER_GROUP(sb);
1537         goal_group = group_no;
1538 retry_alloc:
1539         gdp = ext3_get_group_desc(sb, group_no, &gdp_bh);
1540         if (!gdp)
1541                 goto io_error;
1542
1543         free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1544         /*
1545          * if there is not enough free blocks to make a new resevation
1546          * turn off reservation for this allocation
1547          */
1548         if (my_rsv && (free_blocks < windowsz)
1549                 && (rsv_is_empty(&my_rsv->rsv_window)))
1550                 my_rsv = NULL;
1551
1552         if (free_blocks > 0) {
1553                 grp_target_blk = ((goal - le32_to_cpu(es->s_first_data_block)) %
1554                                 EXT3_BLOCKS_PER_GROUP(sb));
1555                 bitmap_bh = read_block_bitmap(sb, group_no);
1556                 if (!bitmap_bh)
1557                         goto io_error;
1558                 grp_alloc_blk = ext3_try_to_allocate_with_rsv(sb, handle,
1559                                         group_no, bitmap_bh, grp_target_blk,
1560                                         my_rsv, &num, &fatal);
1561                 if (fatal)
1562                         goto out;
1563                 if (grp_alloc_blk >= 0)
1564                         goto allocated;
1565         }
1566
1567         ngroups = EXT3_SB(sb)->s_groups_count;
1568         smp_rmb();
1569
1570         /*
1571          * Now search the rest of the groups.  We assume that
1572          * group_no and gdp correctly point to the last group visited.
1573          */
1574         for (bgi = 0; bgi < ngroups; bgi++) {
1575                 group_no++;
1576                 if (group_no >= ngroups)
1577                         group_no = 0;
1578                 gdp = ext3_get_group_desc(sb, group_no, &gdp_bh);
1579                 if (!gdp)
1580                         goto io_error;
1581                 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1582                 /*
1583                  * skip this group if the number of
1584                  * free blocks is less than half of the reservation
1585                  * window size.
1586                  */
1587                 if (free_blocks <= (windowsz/2))
1588                         continue;
1589
1590                 brelse(bitmap_bh);
1591                 bitmap_bh = read_block_bitmap(sb, group_no);
1592                 if (!bitmap_bh)
1593                         goto io_error;
1594                 /*
1595                  * try to allocate block(s) from this group, without a goal(-1).
1596                  */
1597                 grp_alloc_blk = ext3_try_to_allocate_with_rsv(sb, handle,
1598                                         group_no, bitmap_bh, -1, my_rsv,
1599                                         &num, &fatal);
1600                 if (fatal)
1601                         goto out;
1602                 if (grp_alloc_blk >= 0)
1603                         goto allocated;
1604         }
1605         /*
1606          * We may end up a bogus ealier ENOSPC error due to
1607          * filesystem is "full" of reservations, but
1608          * there maybe indeed free blocks avaliable on disk
1609          * In this case, we just forget about the reservations
1610          * just do block allocation as without reservations.
1611          */
1612         if (my_rsv) {
1613                 my_rsv = NULL;
1614                 windowsz = 0;
1615                 group_no = goal_group;
1616                 goto retry_alloc;
1617         }
1618         /* No space left on the device */
1619         *errp = -ENOSPC;
1620         goto out;
1621
1622 allocated:
1623
1624         ext3_debug("using block group %d(%d)\n",
1625                         group_no, gdp->bg_free_blocks_count);
1626
1627         BUFFER_TRACE(gdp_bh, "get_write_access");
1628         fatal = ext3_journal_get_write_access(handle, gdp_bh);
1629         if (fatal)
1630                 goto out;
1631
1632         ret_block = grp_alloc_blk + ext3_group_first_block_no(sb, group_no);
1633
1634         if (in_range(le32_to_cpu(gdp->bg_block_bitmap), ret_block, num) ||
1635             in_range(le32_to_cpu(gdp->bg_inode_bitmap), ret_block, num) ||
1636             in_range(ret_block, le32_to_cpu(gdp->bg_inode_table),
1637                       EXT3_SB(sb)->s_itb_per_group) ||
1638             in_range(ret_block + num - 1, le32_to_cpu(gdp->bg_inode_table),
1639                       EXT3_SB(sb)->s_itb_per_group)) {
1640                 ext3_error(sb, "ext3_new_block",
1641                             "Allocating block in system zone - "
1642                             "blocks from "E3FSBLK", length %lu",
1643                              ret_block, num);
1644                 goto out;
1645         }
1646
1647         performed_allocation = 1;
1648
1649 #ifdef CONFIG_JBD_DEBUG
1650         {
1651                 struct buffer_head *debug_bh;
1652
1653                 /* Record bitmap buffer state in the newly allocated block */
1654                 debug_bh = sb_find_get_block(sb, ret_block);
1655                 if (debug_bh) {
1656                         BUFFER_TRACE(debug_bh, "state when allocated");
1657                         BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1658                         brelse(debug_bh);
1659                 }
1660         }
1661         jbd_lock_bh_state(bitmap_bh);
1662         spin_lock(sb_bgl_lock(sbi, group_no));
1663         if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1664                 int i;
1665
1666                 for (i = 0; i < num; i++) {
1667                         if (ext3_test_bit(grp_alloc_blk+i,
1668                                         bh2jh(bitmap_bh)->b_committed_data)) {
1669                                 printk("%s: block was unexpectedly set in "
1670                                         "b_committed_data\n", __FUNCTION__);
1671                         }
1672                 }
1673         }
1674         ext3_debug("found bit %d\n", grp_alloc_blk);
1675         spin_unlock(sb_bgl_lock(sbi, group_no));
1676         jbd_unlock_bh_state(bitmap_bh);
1677 #endif
1678
1679         if (ret_block + num - 1 >= le32_to_cpu(es->s_blocks_count)) {
1680                 ext3_error(sb, "ext3_new_block",
1681                             "block("E3FSBLK") >= blocks count(%d) - "
1682                             "block_group = %d, es == %p ", ret_block,
1683                         le32_to_cpu(es->s_blocks_count), group_no, es);
1684                 goto out;
1685         }
1686
1687         /*
1688          * It is up to the caller to add the new buffer to a journal
1689          * list of some description.  We don't know in advance whether
1690          * the caller wants to use it as metadata or data.
1691          */
1692         ext3_debug("allocating block %lu. Goal hits %d of %d.\n",
1693                         ret_block, goal_hits, goal_attempts);
1694
1695         spin_lock(sb_bgl_lock(sbi, group_no));
1696         le16_add_cpu(&gdp->bg_free_blocks_count, -num);
1697         spin_unlock(sb_bgl_lock(sbi, group_no));
1698         percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1699
1700         BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1701         err = ext3_journal_dirty_metadata(handle, gdp_bh);
1702         if (!fatal)
1703                 fatal = err;
1704
1705         sb->s_dirt = 1;
1706         if (fatal)
1707                 goto out;
1708
1709         *errp = 0;
1710         brelse(bitmap_bh);
1711         DQUOT_FREE_BLOCK(inode, *count-num);
1712         *count = num;
1713         return ret_block;
1714
1715 io_error:
1716         *errp = -EIO;
1717 out:
1718         if (fatal) {
1719                 *errp = fatal;
1720                 ext3_std_error(sb, fatal);
1721         }
1722         /*
1723          * Undo the block allocation
1724          */
1725         if (!performed_allocation)
1726                 DQUOT_FREE_BLOCK(inode, *count);
1727         brelse(bitmap_bh);
1728         return 0;
1729 }
1730
1731 ext3_fsblk_t ext3_new_block(handle_t *handle, struct inode *inode,
1732                         ext3_fsblk_t goal, int *errp)
1733 {
1734         unsigned long count = 1;
1735
1736         return ext3_new_blocks(handle, inode, goal, &count, errp);
1737 }
1738
1739 /**
1740  * ext3_count_free_blocks() -- count filesystem free blocks
1741  * @sb:         superblock
1742  *
1743  * Adds up the number of free blocks from each block group.
1744  */
1745 ext3_fsblk_t ext3_count_free_blocks(struct super_block *sb)
1746 {
1747         ext3_fsblk_t desc_count;
1748         struct ext3_group_desc *gdp;
1749         int i;
1750         unsigned long ngroups = EXT3_SB(sb)->s_groups_count;
1751 #ifdef EXT3FS_DEBUG
1752         struct ext3_super_block *es;
1753         ext3_fsblk_t bitmap_count;
1754         unsigned long x;
1755         struct buffer_head *bitmap_bh = NULL;
1756
1757         es = EXT3_SB(sb)->s_es;
1758         desc_count = 0;
1759         bitmap_count = 0;
1760         gdp = NULL;
1761
1762         smp_rmb();
1763         for (i = 0; i < ngroups; i++) {
1764                 gdp = ext3_get_group_desc(sb, i, NULL);
1765                 if (!gdp)
1766                         continue;
1767                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1768                 brelse(bitmap_bh);
1769                 bitmap_bh = read_block_bitmap(sb, i);
1770                 if (bitmap_bh == NULL)
1771                         continue;
1772
1773                 x = ext3_count_free(bitmap_bh, sb->s_blocksize);
1774                 printk("group %d: stored = %d, counted = %lu\n",
1775                         i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1776                 bitmap_count += x;
1777         }
1778         brelse(bitmap_bh);
1779         printk("ext3_count_free_blocks: stored = "E3FSBLK
1780                 ", computed = "E3FSBLK", "E3FSBLK"\n",
1781                le32_to_cpu(es->s_free_blocks_count),
1782                 desc_count, bitmap_count);
1783         return bitmap_count;
1784 #else
1785         desc_count = 0;
1786         smp_rmb();
1787         for (i = 0; i < ngroups; i++) {
1788                 gdp = ext3_get_group_desc(sb, i, NULL);
1789                 if (!gdp)
1790                         continue;
1791                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1792         }
1793
1794         return desc_count;
1795 #endif
1796 }
1797
1798 static inline int test_root(int a, int b)
1799 {
1800         int num = b;
1801
1802         while (a > num)
1803                 num *= b;
1804         return num == a;
1805 }
1806
1807 static int ext3_group_sparse(int group)
1808 {
1809         if (group <= 1)
1810                 return 1;
1811         if (!(group & 1))
1812                 return 0;
1813         return (test_root(group, 7) || test_root(group, 5) ||
1814                 test_root(group, 3));
1815 }
1816
1817 /**
1818  *      ext3_bg_has_super - number of blocks used by the superblock in group
1819  *      @sb: superblock for filesystem
1820  *      @group: group number to check
1821  *
1822  *      Return the number of blocks used by the superblock (primary or backup)
1823  *      in this group.  Currently this will be only 0 or 1.
1824  */
1825 int ext3_bg_has_super(struct super_block *sb, int group)
1826 {
1827         if (EXT3_HAS_RO_COMPAT_FEATURE(sb,
1828                                 EXT3_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1829                         !ext3_group_sparse(group))
1830                 return 0;
1831         return 1;
1832 }
1833
1834 static unsigned long ext3_bg_num_gdb_meta(struct super_block *sb, int group)
1835 {
1836         unsigned long metagroup = group / EXT3_DESC_PER_BLOCK(sb);
1837         unsigned long first = metagroup * EXT3_DESC_PER_BLOCK(sb);
1838         unsigned long last = first + EXT3_DESC_PER_BLOCK(sb) - 1;
1839
1840         if (group == first || group == first + 1 || group == last)
1841                 return 1;
1842         return 0;
1843 }
1844
1845 static unsigned long ext3_bg_num_gdb_nometa(struct super_block *sb, int group)
1846 {
1847         return ext3_bg_has_super(sb, group) ? EXT3_SB(sb)->s_gdb_count : 0;
1848 }
1849
1850 /**
1851  *      ext3_bg_num_gdb - number of blocks used by the group table in group
1852  *      @sb: superblock for filesystem
1853  *      @group: group number to check
1854  *
1855  *      Return the number of blocks used by the group descriptor table
1856  *      (primary or backup) in this group.  In the future there may be a
1857  *      different number of descriptor blocks in each group.
1858  */
1859 unsigned long ext3_bg_num_gdb(struct super_block *sb, int group)
1860 {
1861         unsigned long first_meta_bg =
1862                         le32_to_cpu(EXT3_SB(sb)->s_es->s_first_meta_bg);
1863         unsigned long metagroup = group / EXT3_DESC_PER_BLOCK(sb);
1864
1865         if (!EXT3_HAS_INCOMPAT_FEATURE(sb,EXT3_FEATURE_INCOMPAT_META_BG) ||
1866                         metagroup < first_meta_bg)
1867                 return ext3_bg_num_gdb_nometa(sb,group);
1868
1869         return ext3_bg_num_gdb_meta(sb,group);
1870
1871 }