[PATCH] eCryptfs: Encrypted passthrough
[safe/jmp/linux-2.6] / fs / ecryptfs / mmap.c
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * This is where eCryptfs coordinates the symmetric encryption and
4  * decryption of the file data as it passes between the lower
5  * encrypted file and the upper decrypted file.
6  *
7  * Copyright (C) 1997-2003 Erez Zadok
8  * Copyright (C) 2001-2003 Stony Brook University
9  * Copyright (C) 2004-2007 International Business Machines Corp.
10  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27
28 #include <linux/pagemap.h>
29 #include <linux/writeback.h>
30 #include <linux/page-flags.h>
31 #include <linux/mount.h>
32 #include <linux/file.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include "ecryptfs_kernel.h"
36
37 struct kmem_cache *ecryptfs_lower_page_cache;
38
39 /**
40  * ecryptfs_get1page
41  *
42  * Get one page from cache or lower f/s, return error otherwise.
43  *
44  * Returns unlocked and up-to-date page (if ok), with increased
45  * refcnt.
46  */
47 static struct page *ecryptfs_get1page(struct file *file, int index)
48 {
49         struct page *page;
50         struct dentry *dentry;
51         struct inode *inode;
52         struct address_space *mapping;
53
54         dentry = file->f_path.dentry;
55         inode = dentry->d_inode;
56         mapping = inode->i_mapping;
57         page = read_cache_page(mapping, index,
58                                (filler_t *)mapping->a_ops->readpage,
59                                (void *)file);
60         if (IS_ERR(page))
61                 goto out;
62         wait_on_page_locked(page);
63 out:
64         return page;
65 }
66
67 static
68 int write_zeros(struct file *file, pgoff_t index, int start, int num_zeros);
69
70 /**
71  * ecryptfs_fill_zeros
72  * @file: The ecryptfs file
73  * @new_length: The new length of the data in the underlying file;
74  *              everything between the prior end of the file and the
75  *              new end of the file will be filled with zero's.
76  *              new_length must be greater than  current length
77  *
78  * Function for handling lseek-ing past the end of the file.
79  *
80  * This function does not support shrinking, only growing a file.
81  *
82  * Returns zero on success; non-zero otherwise.
83  */
84 int ecryptfs_fill_zeros(struct file *file, loff_t new_length)
85 {
86         int rc = 0;
87         struct dentry *dentry = file->f_path.dentry;
88         struct inode *inode = dentry->d_inode;
89         pgoff_t old_end_page_index = 0;
90         pgoff_t index = old_end_page_index;
91         int old_end_pos_in_page = -1;
92         pgoff_t new_end_page_index;
93         int new_end_pos_in_page;
94         loff_t cur_length = i_size_read(inode);
95
96         if (cur_length != 0) {
97                 index = old_end_page_index =
98                     ((cur_length - 1) >> PAGE_CACHE_SHIFT);
99                 old_end_pos_in_page = ((cur_length - 1) & ~PAGE_CACHE_MASK);
100         }
101         new_end_page_index = ((new_length - 1) >> PAGE_CACHE_SHIFT);
102         new_end_pos_in_page = ((new_length - 1) & ~PAGE_CACHE_MASK);
103         ecryptfs_printk(KERN_DEBUG, "old_end_page_index = [0x%.16x]; "
104                         "old_end_pos_in_page = [%d]; "
105                         "new_end_page_index = [0x%.16x]; "
106                         "new_end_pos_in_page = [%d]\n",
107                         old_end_page_index, old_end_pos_in_page,
108                         new_end_page_index, new_end_pos_in_page);
109         if (old_end_page_index == new_end_page_index) {
110                 /* Start and end are in the same page; we just need to
111                  * set a portion of the existing page to zero's */
112                 rc = write_zeros(file, index, (old_end_pos_in_page + 1),
113                                  (new_end_pos_in_page - old_end_pos_in_page));
114                 if (rc)
115                         ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
116                                         "index=[0x%.16x], "
117                                         "old_end_pos_in_page=[d], "
118                                         "(PAGE_CACHE_SIZE - new_end_pos_in_page"
119                                         "=[%d]"
120                                         ")=[d]) returned [%d]\n", file, index,
121                                         old_end_pos_in_page,
122                                         new_end_pos_in_page,
123                                         (PAGE_CACHE_SIZE - new_end_pos_in_page),
124                                         rc);
125                 goto out;
126         }
127         /* Fill the remainder of the previous last page with zeros */
128         rc = write_zeros(file, index, (old_end_pos_in_page + 1),
129                          ((PAGE_CACHE_SIZE - 1) - old_end_pos_in_page));
130         if (rc) {
131                 ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
132                                 "index=[0x%.16x], old_end_pos_in_page=[d], "
133                                 "(PAGE_CACHE_SIZE - old_end_pos_in_page)=[d]) "
134                                 "returned [%d]\n", file, index,
135                                 old_end_pos_in_page,
136                                 (PAGE_CACHE_SIZE - old_end_pos_in_page), rc);
137                 goto out;
138         }
139         index++;
140         while (index < new_end_page_index) {
141                 /* Fill all intermediate pages with zeros */
142                 rc = write_zeros(file, index, 0, PAGE_CACHE_SIZE);
143                 if (rc) {
144                         ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
145                                         "index=[0x%.16x], "
146                                         "old_end_pos_in_page=[d], "
147                                         "(PAGE_CACHE_SIZE - new_end_pos_in_page"
148                                         "=[%d]"
149                                         ")=[d]) returned [%d]\n", file, index,
150                                         old_end_pos_in_page,
151                                         new_end_pos_in_page,
152                                         (PAGE_CACHE_SIZE - new_end_pos_in_page),
153                                         rc);
154                         goto out;
155                 }
156                 index++;
157         }
158         /* Fill the portion at the beginning of the last new page with
159          * zero's */
160         rc = write_zeros(file, index, 0, (new_end_pos_in_page + 1));
161         if (rc) {
162                 ecryptfs_printk(KERN_ERR, "write_zeros(file="
163                                 "[%p], index=[0x%.16x], 0, "
164                                 "new_end_pos_in_page=[%d]"
165                                 "returned [%d]\n", file, index,
166                                 new_end_pos_in_page, rc);
167                 goto out;
168         }
169 out:
170         return rc;
171 }
172
173 /**
174  * ecryptfs_writepage
175  * @page: Page that is locked before this call is made
176  *
177  * Returns zero on success; non-zero otherwise
178  */
179 static int ecryptfs_writepage(struct page *page, struct writeback_control *wbc)
180 {
181         struct ecryptfs_page_crypt_context ctx;
182         int rc;
183
184         ctx.page = page;
185         ctx.mode = ECRYPTFS_WRITEPAGE_MODE;
186         ctx.param.wbc = wbc;
187         rc = ecryptfs_encrypt_page(&ctx);
188         if (rc) {
189                 ecryptfs_printk(KERN_WARNING, "Error encrypting "
190                                 "page (upper index [0x%.16x])\n", page->index);
191                 ClearPageUptodate(page);
192                 goto out;
193         }
194         SetPageUptodate(page);
195         unlock_page(page);
196 out:
197         return rc;
198 }
199
200 /**
201  * Reads the data from the lower file file at index lower_page_index
202  * and copies that data into page.
203  *
204  * @param page  Page to fill
205  * @param lower_page_index Index of the page in the lower file to get
206  */
207 int ecryptfs_do_readpage(struct file *file, struct page *page,
208                          pgoff_t lower_page_index)
209 {
210         int rc;
211         struct dentry *dentry;
212         struct file *lower_file;
213         struct dentry *lower_dentry;
214         struct inode *inode;
215         struct inode *lower_inode;
216         char *page_data;
217         struct page *lower_page = NULL;
218         char *lower_page_data;
219         const struct address_space_operations *lower_a_ops;
220
221         dentry = file->f_path.dentry;
222         lower_file = ecryptfs_file_to_lower(file);
223         lower_dentry = ecryptfs_dentry_to_lower(dentry);
224         inode = dentry->d_inode;
225         lower_inode = ecryptfs_inode_to_lower(inode);
226         lower_a_ops = lower_inode->i_mapping->a_ops;
227         lower_page = read_cache_page(lower_inode->i_mapping, lower_page_index,
228                                      (filler_t *)lower_a_ops->readpage,
229                                      (void *)lower_file);
230         if (IS_ERR(lower_page)) {
231                 rc = PTR_ERR(lower_page);
232                 lower_page = NULL;
233                 ecryptfs_printk(KERN_ERR, "Error reading from page cache\n");
234                 goto out;
235         }
236         wait_on_page_locked(lower_page);
237         page_data = (char *)kmap(page);
238         if (!page_data) {
239                 rc = -ENOMEM;
240                 ecryptfs_printk(KERN_ERR, "Error mapping page\n");
241                 goto out;
242         }
243         lower_page_data = (char *)kmap(lower_page);
244         if (!lower_page_data) {
245                 rc = -ENOMEM;
246                 ecryptfs_printk(KERN_ERR, "Error mapping page\n");
247                 kunmap(page);
248                 goto out;
249         }
250         memcpy(page_data, lower_page_data, PAGE_CACHE_SIZE);
251         kunmap(lower_page);
252         kunmap(page);
253         rc = 0;
254 out:
255         if (likely(lower_page))
256                 page_cache_release(lower_page);
257         if (rc == 0)
258                 SetPageUptodate(page);
259         else
260                 ClearPageUptodate(page);
261         return rc;
262 }
263 /**
264  *   Header Extent:
265  *     Octets 0-7:        Unencrypted file size (big-endian)
266  *     Octets 8-15:       eCryptfs special marker
267  *     Octets 16-19:      Flags
268  *      Octet 16:         File format version number (between 0 and 255)
269  *      Octets 17-18:     Reserved
270  *      Octet 19:         Bit 1 (lsb): Reserved
271  *                        Bit 2: Encrypted?
272  *                        Bits 3-8: Reserved
273  *     Octets 20-23:      Header extent size (big-endian)
274  *     Octets 24-25:      Number of header extents at front of file
275  *                        (big-endian)
276  *     Octet  26:         Begin RFC 2440 authentication token packet set
277  */
278 static void set_header_info(char *page_virt,
279                             struct ecryptfs_crypt_stat *crypt_stat)
280 {
281         size_t written;
282         int save_num_header_extents_at_front =
283                 crypt_stat->num_header_extents_at_front;
284
285         crypt_stat->num_header_extents_at_front = 1;
286         ecryptfs_write_header_metadata(page_virt + 20, crypt_stat, &written);
287         crypt_stat->num_header_extents_at_front =
288                 save_num_header_extents_at_front;
289 }
290
291 /**
292  * ecryptfs_readpage
293  * @file: This is an ecryptfs file
294  * @page: ecryptfs associated page to stick the read data into
295  *
296  * Read in a page, decrypting if necessary.
297  *
298  * Returns zero on success; non-zero on error.
299  */
300 static int ecryptfs_readpage(struct file *file, struct page *page)
301 {
302         int rc = 0;
303         struct ecryptfs_crypt_stat *crypt_stat;
304
305         BUG_ON(!(file && file->f_path.dentry && file->f_path.dentry->d_inode));
306         crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
307                         ->crypt_stat;
308         if (!crypt_stat
309             || !ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)
310             || ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_NEW_FILE)) {
311                 ecryptfs_printk(KERN_DEBUG,
312                                 "Passing through unencrypted page\n");
313                 rc = ecryptfs_do_readpage(file, page, page->index);
314                 if (rc) {
315                         ecryptfs_printk(KERN_ERR, "Error reading page; rc = "
316                                         "[%d]\n", rc);
317                         goto out;
318                 }
319         } else if (crypt_stat->flags & ECRYPTFS_VIEW_AS_ENCRYPTED) {
320                 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) {
321                         int num_pages_in_header_region =
322                                 (crypt_stat->header_extent_size
323                                  / PAGE_CACHE_SIZE);
324
325                         if (page->index < num_pages_in_header_region) {
326                                 char *page_virt;
327
328                                 page_virt = (char *)kmap(page);
329                                 if (!page_virt) {
330                                         rc = -ENOMEM;
331                                         printk(KERN_ERR "Error mapping page\n");
332                                         goto out;
333                                 }
334                                 memset(page_virt, 0, PAGE_CACHE_SIZE);
335                                 if (page->index == 0) {
336                                         rc = ecryptfs_read_xattr_region(
337                                                 page_virt, file->f_path.dentry);
338                                         set_header_info(page_virt, crypt_stat);
339                                 }
340                                 kunmap(page);
341                                 if (rc) {
342                                         printk(KERN_ERR "Error reading xattr "
343                                                "region\n");
344                                         goto out;
345                                 }
346                         } else {
347                                 rc = ecryptfs_do_readpage(
348                                         file, page,
349                                         (page->index
350                                          - num_pages_in_header_region));
351                                 if (rc) {
352                                         printk(KERN_ERR "Error reading page; "
353                                                "rc = [%d]\n", rc);
354                                         goto out;
355                                 }
356                         }
357                 } else {
358                         rc = ecryptfs_do_readpage(file, page, page->index);
359                         if (rc) {
360                                 printk(KERN_ERR "Error reading page; rc = "
361                                        "[%d]\n", rc);
362                                 goto out;
363                         }
364                 }
365         } else {
366                 rc = ecryptfs_decrypt_page(file, page);
367                 if (rc) {
368                         ecryptfs_printk(KERN_ERR, "Error decrypting page; "
369                                         "rc = [%d]\n", rc);
370                         goto out;
371                 }
372         }
373         SetPageUptodate(page);
374 out:
375         if (rc)
376                 ClearPageUptodate(page);
377         ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
378                         page->index);
379         unlock_page(page);
380         return rc;
381 }
382
383 /**
384  * Called with lower inode mutex held.
385  */
386 static int fill_zeros_to_end_of_page(struct page *page, unsigned int to)
387 {
388         struct inode *inode = page->mapping->host;
389         int end_byte_in_page;
390         int rc = 0;
391         char *page_virt;
392
393         if ((i_size_read(inode) / PAGE_CACHE_SIZE) == page->index) {
394                 end_byte_in_page = i_size_read(inode) % PAGE_CACHE_SIZE;
395                 if (to > end_byte_in_page)
396                         end_byte_in_page = to;
397                 page_virt = kmap(page);
398                 if (!page_virt) {
399                         rc = -ENOMEM;
400                         ecryptfs_printk(KERN_WARNING,
401                                         "Could not map page\n");
402                         goto out;
403                 }
404                 memset((page_virt + end_byte_in_page), 0,
405                        (PAGE_CACHE_SIZE - end_byte_in_page));
406                 kunmap(page);
407         }
408 out:
409         return rc;
410 }
411
412 static int ecryptfs_prepare_write(struct file *file, struct page *page,
413                                   unsigned from, unsigned to)
414 {
415         int rc = 0;
416
417         kmap(page);
418         if (from == 0 && to == PAGE_CACHE_SIZE)
419                 goto out;       /* If we are writing a full page, it will be
420                                    up to date. */
421         if (!PageUptodate(page))
422                 rc = ecryptfs_do_readpage(file, page, page->index);
423 out:
424         return rc;
425 }
426
427 int ecryptfs_grab_and_map_lower_page(struct page **lower_page,
428                                      char **lower_virt,
429                                      struct inode *lower_inode,
430                                      unsigned long lower_page_index)
431 {
432         int rc = 0;
433
434         (*lower_page) = grab_cache_page(lower_inode->i_mapping,
435                                         lower_page_index);
436         if (!(*lower_page)) {
437                 ecryptfs_printk(KERN_ERR, "grab_cache_page for "
438                                 "lower_page_index = [0x%.16x] failed\n",
439                                 lower_page_index);
440                 rc = -EINVAL;
441                 goto out;
442         }
443         if (lower_virt)
444                 (*lower_virt) = kmap((*lower_page));
445         else
446                 kmap((*lower_page));
447 out:
448         return rc;
449 }
450
451 int ecryptfs_writepage_and_release_lower_page(struct page *lower_page,
452                                               struct inode *lower_inode,
453                                               struct writeback_control *wbc)
454 {
455         int rc = 0;
456
457         rc = lower_inode->i_mapping->a_ops->writepage(lower_page, wbc);
458         if (rc) {
459                 ecryptfs_printk(KERN_ERR, "Error calling lower writepage(); "
460                                 "rc = [%d]\n", rc);
461                 goto out;
462         }
463         lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
464         page_cache_release(lower_page);
465 out:
466         return rc;
467 }
468
469 static void ecryptfs_unmap_and_release_lower_page(struct page *lower_page)
470 {
471         kunmap(lower_page);
472         ecryptfs_printk(KERN_DEBUG, "Unlocking lower page with index = "
473                         "[0x%.16x]\n", lower_page->index);
474         unlock_page(lower_page);
475         page_cache_release(lower_page);
476 }
477
478 /**
479  * ecryptfs_write_inode_size_to_header
480  *
481  * Writes the lower file size to the first 8 bytes of the header.
482  *
483  * Returns zero on success; non-zero on error.
484  */
485 static int ecryptfs_write_inode_size_to_header(struct file *lower_file,
486                                                struct inode *lower_inode,
487                                                struct inode *inode)
488 {
489         int rc = 0;
490         struct page *header_page;
491         char *header_virt;
492         const struct address_space_operations *lower_a_ops;
493         u64 file_size;
494
495         rc = ecryptfs_grab_and_map_lower_page(&header_page, &header_virt,
496                                               lower_inode, 0);
497         if (rc) {
498                 ecryptfs_printk(KERN_ERR, "grab_cache_page for header page "
499                                 "failed\n");
500                 goto out;
501         }
502         lower_a_ops = lower_inode->i_mapping->a_ops;
503         rc = lower_a_ops->prepare_write(lower_file, header_page, 0, 8);
504         file_size = (u64)i_size_read(inode);
505         ecryptfs_printk(KERN_DEBUG, "Writing size: [0x%.16x]\n", file_size);
506         file_size = cpu_to_be64(file_size);
507         memcpy(header_virt, &file_size, sizeof(u64));
508         rc = lower_a_ops->commit_write(lower_file, header_page, 0, 8);
509         if (rc < 0)
510                 ecryptfs_printk(KERN_ERR, "Error commiting header page "
511                                 "write\n");
512         ecryptfs_unmap_and_release_lower_page(header_page);
513         lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
514         mark_inode_dirty_sync(inode);
515 out:
516         return rc;
517 }
518
519 static int ecryptfs_write_inode_size_to_xattr(struct inode *lower_inode,
520                                               struct inode *inode,
521                                               struct dentry *ecryptfs_dentry,
522                                               int lower_i_mutex_held)
523 {
524         ssize_t size;
525         void *xattr_virt;
526         struct dentry *lower_dentry;
527         u64 file_size;
528         int rc;
529
530         xattr_virt = kmem_cache_alloc(ecryptfs_xattr_cache, GFP_KERNEL);
531         if (!xattr_virt) {
532                 printk(KERN_ERR "Out of memory whilst attempting to write "
533                        "inode size to xattr\n");
534                 rc = -ENOMEM;
535                 goto out;
536         }
537         lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
538         if (!lower_dentry->d_inode->i_op->getxattr) {
539                 printk(KERN_WARNING
540                        "No support for setting xattr in lower filesystem\n");
541                 rc = -ENOSYS;
542                 kmem_cache_free(ecryptfs_xattr_cache, xattr_virt);
543                 goto out;
544         }
545         if (!lower_i_mutex_held)
546                 mutex_lock(&lower_dentry->d_inode->i_mutex);
547         size = lower_dentry->d_inode->i_op->getxattr(lower_dentry,
548                                                      ECRYPTFS_XATTR_NAME,
549                                                      xattr_virt,
550                                                      PAGE_CACHE_SIZE);
551         if (!lower_i_mutex_held)
552                 mutex_unlock(&lower_dentry->d_inode->i_mutex);
553         if (size < 0)
554                 size = 8;
555         file_size = (u64)i_size_read(inode);
556         file_size = cpu_to_be64(file_size);
557         memcpy(xattr_virt, &file_size, sizeof(u64));
558         if (!lower_i_mutex_held)
559                 mutex_lock(&lower_dentry->d_inode->i_mutex);
560         rc = lower_dentry->d_inode->i_op->setxattr(lower_dentry,
561                                                    ECRYPTFS_XATTR_NAME,
562                                                    xattr_virt, size, 0);
563         if (!lower_i_mutex_held)
564                 mutex_unlock(&lower_dentry->d_inode->i_mutex);
565         if (rc)
566                 printk(KERN_ERR "Error whilst attempting to write inode size "
567                        "to lower file xattr; rc = [%d]\n", rc);
568         kmem_cache_free(ecryptfs_xattr_cache, xattr_virt);
569 out:
570         return rc;
571 }
572
573 int
574 ecryptfs_write_inode_size_to_metadata(struct file *lower_file,
575                                       struct inode *lower_inode,
576                                       struct inode *inode,
577                                       struct dentry *ecryptfs_dentry,
578                                       int lower_i_mutex_held)
579 {
580         struct ecryptfs_crypt_stat *crypt_stat;
581
582         crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
583         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
584                 return ecryptfs_write_inode_size_to_xattr(lower_inode, inode,
585                                                           ecryptfs_dentry,
586                                                           lower_i_mutex_held);
587         else
588                 return ecryptfs_write_inode_size_to_header(lower_file,
589                                                            lower_inode,
590                                                            inode);
591 }
592
593 int ecryptfs_get_lower_page(struct page **lower_page, struct inode *lower_inode,
594                             struct file *lower_file,
595                             unsigned long lower_page_index, int byte_offset,
596                             int region_bytes)
597 {
598         int rc = 0;
599
600         rc = ecryptfs_grab_and_map_lower_page(lower_page, NULL, lower_inode,
601                                               lower_page_index);
602         if (rc) {
603                 ecryptfs_printk(KERN_ERR, "Error attempting to grab and map "
604                                 "lower page with index [0x%.16x]\n",
605                                 lower_page_index);
606                 goto out;
607         }
608         rc = lower_inode->i_mapping->a_ops->prepare_write(lower_file,
609                                                           (*lower_page),
610                                                           byte_offset,
611                                                           region_bytes);
612         if (rc) {
613                 ecryptfs_printk(KERN_ERR, "prepare_write for "
614                                 "lower_page_index = [0x%.16x] failed; rc = "
615                                 "[%d]\n", lower_page_index, rc);
616         }
617 out:
618         if (rc && (*lower_page)) {
619                 ecryptfs_unmap_and_release_lower_page(*lower_page);
620                 (*lower_page) = NULL;
621         }
622         return rc;
623 }
624
625 /**
626  * ecryptfs_commit_lower_page
627  *
628  * Returns zero on success; non-zero on error
629  */
630 int
631 ecryptfs_commit_lower_page(struct page *lower_page, struct inode *lower_inode,
632                            struct file *lower_file, int byte_offset,
633                            int region_size)
634 {
635         int rc = 0;
636
637         rc = lower_inode->i_mapping->a_ops->commit_write(
638                 lower_file, lower_page, byte_offset, region_size);
639         if (rc < 0) {
640                 ecryptfs_printk(KERN_ERR,
641                                 "Error committing write; rc = [%d]\n", rc);
642         } else
643                 rc = 0;
644         ecryptfs_unmap_and_release_lower_page(lower_page);
645         return rc;
646 }
647
648 /**
649  * ecryptfs_copy_page_to_lower
650  *
651  * Used for plaintext pass-through; no page index interpolation
652  * required.
653  */
654 int ecryptfs_copy_page_to_lower(struct page *page, struct inode *lower_inode,
655                                 struct file *lower_file)
656 {
657         int rc = 0;
658         struct page *lower_page;
659
660         rc = ecryptfs_get_lower_page(&lower_page, lower_inode, lower_file,
661                                      page->index, 0, PAGE_CACHE_SIZE);
662         if (rc) {
663                 ecryptfs_printk(KERN_ERR, "Error attempting to get page "
664                                 "at index [0x%.16x]\n", page->index);
665                 goto out;
666         }
667         /* TODO: aops */
668         memcpy((char *)page_address(lower_page), page_address(page),
669                PAGE_CACHE_SIZE);
670         rc = ecryptfs_commit_lower_page(lower_page, lower_inode, lower_file,
671                                         0, PAGE_CACHE_SIZE);
672         if (rc)
673                 ecryptfs_printk(KERN_ERR, "Error attempting to commit page "
674                                 "at index [0x%.16x]\n", page->index);
675 out:
676         return rc;
677 }
678
679 struct kmem_cache *ecryptfs_xattr_cache;
680
681 /**
682  * ecryptfs_commit_write
683  * @file: The eCryptfs file object
684  * @page: The eCryptfs page
685  * @from: Ignored (we rotate the page IV on each write)
686  * @to: Ignored
687  *
688  * This is where we encrypt the data and pass the encrypted data to
689  * the lower filesystem.  In OpenPGP-compatible mode, we operate on
690  * entire underlying packets.
691  */
692 static int ecryptfs_commit_write(struct file *file, struct page *page,
693                                  unsigned from, unsigned to)
694 {
695         struct ecryptfs_page_crypt_context ctx;
696         loff_t pos;
697         struct inode *inode;
698         struct inode *lower_inode;
699         struct file *lower_file;
700         struct ecryptfs_crypt_stat *crypt_stat;
701         int rc;
702
703         inode = page->mapping->host;
704         lower_inode = ecryptfs_inode_to_lower(inode);
705         lower_file = ecryptfs_file_to_lower(file);
706         mutex_lock(&lower_inode->i_mutex);
707         crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
708                                 ->crypt_stat;
709         if (ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_NEW_FILE)) {
710                 ecryptfs_printk(KERN_DEBUG, "ECRYPTFS_NEW_FILE flag set in "
711                         "crypt_stat at memory location [%p]\n", crypt_stat);
712                 ECRYPTFS_CLEAR_FLAG(crypt_stat->flags, ECRYPTFS_NEW_FILE);
713         } else
714                 ecryptfs_printk(KERN_DEBUG, "Not a new file\n");
715         ecryptfs_printk(KERN_DEBUG, "Calling fill_zeros_to_end_of_page"
716                         "(page w/ index = [0x%.16x], to = [%d])\n", page->index,
717                         to);
718         rc = fill_zeros_to_end_of_page(page, to);
719         if (rc) {
720                 ecryptfs_printk(KERN_WARNING, "Error attempting to fill "
721                                 "zeros in page with index = [0x%.16x]\n",
722                                 page->index);
723                 goto out;
724         }
725         ctx.page = page;
726         ctx.mode = ECRYPTFS_PREPARE_COMMIT_MODE;
727         ctx.param.lower_file = lower_file;
728         rc = ecryptfs_encrypt_page(&ctx);
729         if (rc) {
730                 ecryptfs_printk(KERN_WARNING, "Error encrypting page (upper "
731                                 "index [0x%.16x])\n", page->index);
732                 goto out;
733         }
734         inode->i_blocks = lower_inode->i_blocks;
735         pos = (page->index << PAGE_CACHE_SHIFT) + to;
736         if (pos > i_size_read(inode)) {
737                 i_size_write(inode, pos);
738                 ecryptfs_printk(KERN_DEBUG, "Expanded file size to "
739                                 "[0x%.16x]\n", i_size_read(inode));
740         }
741         rc = ecryptfs_write_inode_size_to_metadata(lower_file, lower_inode,
742                                                    inode, file->f_dentry,
743                                                    ECRYPTFS_LOWER_I_MUTEX_HELD);
744         if (rc)
745                 printk(KERN_ERR "Error writing inode size to metadata; "
746                        "rc = [%d]\n", rc);
747         lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
748         mark_inode_dirty_sync(inode);
749 out:
750         kunmap(page); /* mapped in prior call (prepare_write) */
751         if (rc < 0)
752                 ClearPageUptodate(page);
753         else
754                 SetPageUptodate(page);
755         mutex_unlock(&lower_inode->i_mutex);
756         return rc;
757 }
758
759 /**
760  * write_zeros
761  * @file: The ecryptfs file
762  * @index: The index in which we are writing
763  * @start: The position after the last block of data
764  * @num_zeros: The number of zeros to write
765  *
766  * Write a specified number of zero's to a page.
767  *
768  * (start + num_zeros) must be less than or equal to PAGE_CACHE_SIZE
769  */
770 static
771 int write_zeros(struct file *file, pgoff_t index, int start, int num_zeros)
772 {
773         int rc = 0;
774         struct page *tmp_page;
775
776         tmp_page = ecryptfs_get1page(file, index);
777         if (IS_ERR(tmp_page)) {
778                 ecryptfs_printk(KERN_ERR, "Error getting page at index "
779                                 "[0x%.16x]\n", index);
780                 rc = PTR_ERR(tmp_page);
781                 goto out;
782         }
783         kmap(tmp_page);
784         rc = ecryptfs_prepare_write(file, tmp_page, start, start + num_zeros);
785         if (rc) {
786                 ecryptfs_printk(KERN_ERR, "Error preparing to write zero's "
787                                 "to remainder of page at index [0x%.16x]\n",
788                                 index);
789                 kunmap(tmp_page);
790                 page_cache_release(tmp_page);
791                 goto out;
792         }
793         memset(((char *)page_address(tmp_page) + start), 0, num_zeros);
794         rc = ecryptfs_commit_write(file, tmp_page, start, start + num_zeros);
795         if (rc < 0) {
796                 ecryptfs_printk(KERN_ERR, "Error attempting to write zero's "
797                                 "to remainder of page at index [0x%.16x]\n",
798                                 index);
799                 kunmap(tmp_page);
800                 page_cache_release(tmp_page);
801                 goto out;
802         }
803         rc = 0;
804         kunmap(tmp_page);
805         page_cache_release(tmp_page);
806 out:
807         return rc;
808 }
809
810 static sector_t ecryptfs_bmap(struct address_space *mapping, sector_t block)
811 {
812         int rc = 0;
813         struct inode *inode;
814         struct inode *lower_inode;
815
816         inode = (struct inode *)mapping->host;
817         lower_inode = ecryptfs_inode_to_lower(inode);
818         if (lower_inode->i_mapping->a_ops->bmap)
819                 rc = lower_inode->i_mapping->a_ops->bmap(lower_inode->i_mapping,
820                                                          block);
821         return rc;
822 }
823
824 static void ecryptfs_sync_page(struct page *page)
825 {
826         struct inode *inode;
827         struct inode *lower_inode;
828         struct page *lower_page;
829
830         inode = page->mapping->host;
831         lower_inode = ecryptfs_inode_to_lower(inode);
832         /* NOTE: Recently swapped with grab_cache_page(), since
833          * sync_page() just makes sure that pending I/O gets done. */
834         lower_page = find_lock_page(lower_inode->i_mapping, page->index);
835         if (!lower_page) {
836                 ecryptfs_printk(KERN_DEBUG, "find_lock_page failed\n");
837                 return;
838         }
839         lower_page->mapping->a_ops->sync_page(lower_page);
840         ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
841                         lower_page->index);
842         unlock_page(lower_page);
843         page_cache_release(lower_page);
844 }
845
846 struct address_space_operations ecryptfs_aops = {
847         .writepage = ecryptfs_writepage,
848         .readpage = ecryptfs_readpage,
849         .prepare_write = ecryptfs_prepare_write,
850         .commit_write = ecryptfs_commit_write,
851         .bmap = ecryptfs_bmap,
852         .sync_page = ecryptfs_sync_page,
853 };