[PATCH] eCryptfs: convert kmap() to kmap_atomic()
[safe/jmp/linux-2.6] / fs / ecryptfs / mmap.c
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * This is where eCryptfs coordinates the symmetric encryption and
4  * decryption of the file data as it passes between the lower
5  * encrypted file and the upper decrypted file.
6  *
7  * Copyright (C) 1997-2003 Erez Zadok
8  * Copyright (C) 2001-2003 Stony Brook University
9  * Copyright (C) 2004-2007 International Business Machines Corp.
10  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27
28 #include <linux/pagemap.h>
29 #include <linux/writeback.h>
30 #include <linux/page-flags.h>
31 #include <linux/mount.h>
32 #include <linux/file.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include "ecryptfs_kernel.h"
36
37 struct kmem_cache *ecryptfs_lower_page_cache;
38
39 /**
40  * ecryptfs_get1page
41  *
42  * Get one page from cache or lower f/s, return error otherwise.
43  *
44  * Returns unlocked and up-to-date page (if ok), with increased
45  * refcnt.
46  */
47 static struct page *ecryptfs_get1page(struct file *file, int index)
48 {
49         struct page *page;
50         struct dentry *dentry;
51         struct inode *inode;
52         struct address_space *mapping;
53
54         dentry = file->f_path.dentry;
55         inode = dentry->d_inode;
56         mapping = inode->i_mapping;
57         page = read_cache_page(mapping, index,
58                                (filler_t *)mapping->a_ops->readpage,
59                                (void *)file);
60         if (IS_ERR(page))
61                 goto out;
62         wait_on_page_locked(page);
63 out:
64         return page;
65 }
66
67 static
68 int write_zeros(struct file *file, pgoff_t index, int start, int num_zeros);
69
70 /**
71  * ecryptfs_fill_zeros
72  * @file: The ecryptfs file
73  * @new_length: The new length of the data in the underlying file;
74  *              everything between the prior end of the file and the
75  *              new end of the file will be filled with zero's.
76  *              new_length must be greater than  current length
77  *
78  * Function for handling lseek-ing past the end of the file.
79  *
80  * This function does not support shrinking, only growing a file.
81  *
82  * Returns zero on success; non-zero otherwise.
83  */
84 int ecryptfs_fill_zeros(struct file *file, loff_t new_length)
85 {
86         int rc = 0;
87         struct dentry *dentry = file->f_path.dentry;
88         struct inode *inode = dentry->d_inode;
89         pgoff_t old_end_page_index = 0;
90         pgoff_t index = old_end_page_index;
91         int old_end_pos_in_page = -1;
92         pgoff_t new_end_page_index;
93         int new_end_pos_in_page;
94         loff_t cur_length = i_size_read(inode);
95
96         if (cur_length != 0) {
97                 index = old_end_page_index =
98                     ((cur_length - 1) >> PAGE_CACHE_SHIFT);
99                 old_end_pos_in_page = ((cur_length - 1) & ~PAGE_CACHE_MASK);
100         }
101         new_end_page_index = ((new_length - 1) >> PAGE_CACHE_SHIFT);
102         new_end_pos_in_page = ((new_length - 1) & ~PAGE_CACHE_MASK);
103         ecryptfs_printk(KERN_DEBUG, "old_end_page_index = [0x%.16x]; "
104                         "old_end_pos_in_page = [%d]; "
105                         "new_end_page_index = [0x%.16x]; "
106                         "new_end_pos_in_page = [%d]\n",
107                         old_end_page_index, old_end_pos_in_page,
108                         new_end_page_index, new_end_pos_in_page);
109         if (old_end_page_index == new_end_page_index) {
110                 /* Start and end are in the same page; we just need to
111                  * set a portion of the existing page to zero's */
112                 rc = write_zeros(file, index, (old_end_pos_in_page + 1),
113                                  (new_end_pos_in_page - old_end_pos_in_page));
114                 if (rc)
115                         ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
116                                         "index=[0x%.16x], "
117                                         "old_end_pos_in_page=[d], "
118                                         "(PAGE_CACHE_SIZE - new_end_pos_in_page"
119                                         "=[%d]"
120                                         ")=[d]) returned [%d]\n", file, index,
121                                         old_end_pos_in_page,
122                                         new_end_pos_in_page,
123                                         (PAGE_CACHE_SIZE - new_end_pos_in_page),
124                                         rc);
125                 goto out;
126         }
127         /* Fill the remainder of the previous last page with zeros */
128         rc = write_zeros(file, index, (old_end_pos_in_page + 1),
129                          ((PAGE_CACHE_SIZE - 1) - old_end_pos_in_page));
130         if (rc) {
131                 ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
132                                 "index=[0x%.16x], old_end_pos_in_page=[d], "
133                                 "(PAGE_CACHE_SIZE - old_end_pos_in_page)=[d]) "
134                                 "returned [%d]\n", file, index,
135                                 old_end_pos_in_page,
136                                 (PAGE_CACHE_SIZE - old_end_pos_in_page), rc);
137                 goto out;
138         }
139         index++;
140         while (index < new_end_page_index) {
141                 /* Fill all intermediate pages with zeros */
142                 rc = write_zeros(file, index, 0, PAGE_CACHE_SIZE);
143                 if (rc) {
144                         ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
145                                         "index=[0x%.16x], "
146                                         "old_end_pos_in_page=[d], "
147                                         "(PAGE_CACHE_SIZE - new_end_pos_in_page"
148                                         "=[%d]"
149                                         ")=[d]) returned [%d]\n", file, index,
150                                         old_end_pos_in_page,
151                                         new_end_pos_in_page,
152                                         (PAGE_CACHE_SIZE - new_end_pos_in_page),
153                                         rc);
154                         goto out;
155                 }
156                 index++;
157         }
158         /* Fill the portion at the beginning of the last new page with
159          * zero's */
160         rc = write_zeros(file, index, 0, (new_end_pos_in_page + 1));
161         if (rc) {
162                 ecryptfs_printk(KERN_ERR, "write_zeros(file="
163                                 "[%p], index=[0x%.16x], 0, "
164                                 "new_end_pos_in_page=[%d]"
165                                 "returned [%d]\n", file, index,
166                                 new_end_pos_in_page, rc);
167                 goto out;
168         }
169 out:
170         return rc;
171 }
172
173 /**
174  * ecryptfs_writepage
175  * @page: Page that is locked before this call is made
176  *
177  * Returns zero on success; non-zero otherwise
178  */
179 static int ecryptfs_writepage(struct page *page, struct writeback_control *wbc)
180 {
181         struct ecryptfs_page_crypt_context ctx;
182         int rc;
183
184         ctx.page = page;
185         ctx.mode = ECRYPTFS_WRITEPAGE_MODE;
186         ctx.param.wbc = wbc;
187         rc = ecryptfs_encrypt_page(&ctx);
188         if (rc) {
189                 ecryptfs_printk(KERN_WARNING, "Error encrypting "
190                                 "page (upper index [0x%.16x])\n", page->index);
191                 ClearPageUptodate(page);
192                 goto out;
193         }
194         SetPageUptodate(page);
195         unlock_page(page);
196 out:
197         return rc;
198 }
199
200 /**
201  * Reads the data from the lower file file at index lower_page_index
202  * and copies that data into page.
203  *
204  * @param page  Page to fill
205  * @param lower_page_index Index of the page in the lower file to get
206  */
207 int ecryptfs_do_readpage(struct file *file, struct page *page,
208                          pgoff_t lower_page_index)
209 {
210         int rc;
211         struct dentry *dentry;
212         struct file *lower_file;
213         struct dentry *lower_dentry;
214         struct inode *inode;
215         struct inode *lower_inode;
216         char *page_data;
217         struct page *lower_page = NULL;
218         char *lower_page_data;
219         const struct address_space_operations *lower_a_ops;
220
221         dentry = file->f_path.dentry;
222         lower_file = ecryptfs_file_to_lower(file);
223         lower_dentry = ecryptfs_dentry_to_lower(dentry);
224         inode = dentry->d_inode;
225         lower_inode = ecryptfs_inode_to_lower(inode);
226         lower_a_ops = lower_inode->i_mapping->a_ops;
227         lower_page = read_cache_page(lower_inode->i_mapping, lower_page_index,
228                                      (filler_t *)lower_a_ops->readpage,
229                                      (void *)lower_file);
230         if (IS_ERR(lower_page)) {
231                 rc = PTR_ERR(lower_page);
232                 lower_page = NULL;
233                 ecryptfs_printk(KERN_ERR, "Error reading from page cache\n");
234                 goto out;
235         }
236         wait_on_page_locked(lower_page);
237         page_data = kmap_atomic(page, KM_USER0);
238         lower_page_data = kmap_atomic(lower_page, KM_USER1);
239         memcpy(page_data, lower_page_data, PAGE_CACHE_SIZE);
240         kunmap_atomic(lower_page_data, KM_USER1);
241         kunmap_atomic(page_data, KM_USER0);
242         rc = 0;
243 out:
244         if (likely(lower_page))
245                 page_cache_release(lower_page);
246         if (rc == 0)
247                 SetPageUptodate(page);
248         else
249                 ClearPageUptodate(page);
250         return rc;
251 }
252 /**
253  *   Header Extent:
254  *     Octets 0-7:        Unencrypted file size (big-endian)
255  *     Octets 8-15:       eCryptfs special marker
256  *     Octets 16-19:      Flags
257  *      Octet 16:         File format version number (between 0 and 255)
258  *      Octets 17-18:     Reserved
259  *      Octet 19:         Bit 1 (lsb): Reserved
260  *                        Bit 2: Encrypted?
261  *                        Bits 3-8: Reserved
262  *     Octets 20-23:      Header extent size (big-endian)
263  *     Octets 24-25:      Number of header extents at front of file
264  *                        (big-endian)
265  *     Octet  26:         Begin RFC 2440 authentication token packet set
266  */
267 static void set_header_info(char *page_virt,
268                             struct ecryptfs_crypt_stat *crypt_stat)
269 {
270         size_t written;
271         int save_num_header_extents_at_front =
272                 crypt_stat->num_header_extents_at_front;
273
274         crypt_stat->num_header_extents_at_front = 1;
275         ecryptfs_write_header_metadata(page_virt + 20, crypt_stat, &written);
276         crypt_stat->num_header_extents_at_front =
277                 save_num_header_extents_at_front;
278 }
279
280 /**
281  * ecryptfs_readpage
282  * @file: This is an ecryptfs file
283  * @page: ecryptfs associated page to stick the read data into
284  *
285  * Read in a page, decrypting if necessary.
286  *
287  * Returns zero on success; non-zero on error.
288  */
289 static int ecryptfs_readpage(struct file *file, struct page *page)
290 {
291         int rc = 0;
292         struct ecryptfs_crypt_stat *crypt_stat;
293
294         BUG_ON(!(file && file->f_path.dentry && file->f_path.dentry->d_inode));
295         crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
296                         ->crypt_stat;
297         if (!crypt_stat
298             || !ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)
299             || ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_NEW_FILE)) {
300                 ecryptfs_printk(KERN_DEBUG,
301                                 "Passing through unencrypted page\n");
302                 rc = ecryptfs_do_readpage(file, page, page->index);
303                 if (rc) {
304                         ecryptfs_printk(KERN_ERR, "Error reading page; rc = "
305                                         "[%d]\n", rc);
306                         goto out;
307                 }
308         } else if (crypt_stat->flags & ECRYPTFS_VIEW_AS_ENCRYPTED) {
309                 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) {
310                         int num_pages_in_header_region =
311                                 (crypt_stat->header_extent_size
312                                  / PAGE_CACHE_SIZE);
313
314                         if (page->index < num_pages_in_header_region) {
315                                 char *page_virt;
316
317                                 page_virt = kmap_atomic(page, KM_USER0);
318                                 memset(page_virt, 0, PAGE_CACHE_SIZE);
319                                 if (page->index == 0) {
320                                         rc = ecryptfs_read_xattr_region(
321                                                 page_virt, file->f_path.dentry);
322                                         set_header_info(page_virt, crypt_stat);
323                                 }
324                                 kunmap_atomic(page_virt, KM_USER0);
325                                 if (rc) {
326                                         printk(KERN_ERR "Error reading xattr "
327                                                "region\n");
328                                         goto out;
329                                 }
330                         } else {
331                                 rc = ecryptfs_do_readpage(
332                                         file, page,
333                                         (page->index
334                                          - num_pages_in_header_region));
335                                 if (rc) {
336                                         printk(KERN_ERR "Error reading page; "
337                                                "rc = [%d]\n", rc);
338                                         goto out;
339                                 }
340                         }
341                 } else {
342                         rc = ecryptfs_do_readpage(file, page, page->index);
343                         if (rc) {
344                                 printk(KERN_ERR "Error reading page; rc = "
345                                        "[%d]\n", rc);
346                                 goto out;
347                         }
348                 }
349         } else {
350                 rc = ecryptfs_decrypt_page(file, page);
351                 if (rc) {
352                         ecryptfs_printk(KERN_ERR, "Error decrypting page; "
353                                         "rc = [%d]\n", rc);
354                         goto out;
355                 }
356         }
357         SetPageUptodate(page);
358 out:
359         if (rc)
360                 ClearPageUptodate(page);
361         ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
362                         page->index);
363         unlock_page(page);
364         return rc;
365 }
366
367 /**
368  * Called with lower inode mutex held.
369  */
370 static int fill_zeros_to_end_of_page(struct page *page, unsigned int to)
371 {
372         struct inode *inode = page->mapping->host;
373         int end_byte_in_page;
374         char *page_virt;
375
376         if ((i_size_read(inode) / PAGE_CACHE_SIZE) != page->index)
377                 goto out;
378         end_byte_in_page = i_size_read(inode) % PAGE_CACHE_SIZE;
379         if (to > end_byte_in_page)
380                 end_byte_in_page = to;
381         page_virt = kmap_atomic(page, KM_USER0);
382         memset((page_virt + end_byte_in_page), 0,
383                (PAGE_CACHE_SIZE - end_byte_in_page));
384         kunmap_atomic(page_virt, KM_USER0);
385 out:
386         return 0;
387 }
388
389 static int ecryptfs_prepare_write(struct file *file, struct page *page,
390                                   unsigned from, unsigned to)
391 {
392         int rc = 0;
393
394         if (from == 0 && to == PAGE_CACHE_SIZE)
395                 goto out;       /* If we are writing a full page, it will be
396                                    up to date. */
397         if (!PageUptodate(page))
398                 rc = ecryptfs_do_readpage(file, page, page->index);
399 out:
400         return rc;
401 }
402
403 int ecryptfs_writepage_and_release_lower_page(struct page *lower_page,
404                                               struct inode *lower_inode,
405                                               struct writeback_control *wbc)
406 {
407         int rc = 0;
408
409         rc = lower_inode->i_mapping->a_ops->writepage(lower_page, wbc);
410         if (rc) {
411                 ecryptfs_printk(KERN_ERR, "Error calling lower writepage(); "
412                                 "rc = [%d]\n", rc);
413                 goto out;
414         }
415         lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
416         page_cache_release(lower_page);
417 out:
418         return rc;
419 }
420
421 static void ecryptfs_release_lower_page(struct page *lower_page)
422 {
423         unlock_page(lower_page);
424         page_cache_release(lower_page);
425 }
426
427 /**
428  * ecryptfs_write_inode_size_to_header
429  *
430  * Writes the lower file size to the first 8 bytes of the header.
431  *
432  * Returns zero on success; non-zero on error.
433  */
434 static int ecryptfs_write_inode_size_to_header(struct file *lower_file,
435                                                struct inode *lower_inode,
436                                                struct inode *inode)
437 {
438         int rc = 0;
439         struct page *header_page;
440         char *header_virt;
441         const struct address_space_operations *lower_a_ops;
442         u64 file_size;
443
444         header_page = grab_cache_page(lower_inode->i_mapping, 0);
445         if (!header_page) {
446                 ecryptfs_printk(KERN_ERR, "grab_cache_page for "
447                                 "lower_page_index 0 failed\n");
448                 rc = -EINVAL;
449                 goto out;
450         }
451         lower_a_ops = lower_inode->i_mapping->a_ops;
452         rc = lower_a_ops->prepare_write(lower_file, header_page, 0, 8);
453         file_size = (u64)i_size_read(inode);
454         ecryptfs_printk(KERN_DEBUG, "Writing size: [0x%.16x]\n", file_size);
455         file_size = cpu_to_be64(file_size);
456         header_virt = kmap_atomic(header_page, KM_USER0);
457         memcpy(header_virt, &file_size, sizeof(u64));
458         kunmap_atomic(header_virt, KM_USER0);
459         rc = lower_a_ops->commit_write(lower_file, header_page, 0, 8);
460         if (rc < 0)
461                 ecryptfs_printk(KERN_ERR, "Error commiting header page "
462                                 "write\n");
463         ecryptfs_release_lower_page(header_page);
464         lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
465         mark_inode_dirty_sync(inode);
466 out:
467         return rc;
468 }
469
470 static int ecryptfs_write_inode_size_to_xattr(struct inode *lower_inode,
471                                               struct inode *inode,
472                                               struct dentry *ecryptfs_dentry,
473                                               int lower_i_mutex_held)
474 {
475         ssize_t size;
476         void *xattr_virt;
477         struct dentry *lower_dentry;
478         u64 file_size;
479         int rc;
480
481         xattr_virt = kmem_cache_alloc(ecryptfs_xattr_cache, GFP_KERNEL);
482         if (!xattr_virt) {
483                 printk(KERN_ERR "Out of memory whilst attempting to write "
484                        "inode size to xattr\n");
485                 rc = -ENOMEM;
486                 goto out;
487         }
488         lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
489         if (!lower_dentry->d_inode->i_op->getxattr) {
490                 printk(KERN_WARNING
491                        "No support for setting xattr in lower filesystem\n");
492                 rc = -ENOSYS;
493                 kmem_cache_free(ecryptfs_xattr_cache, xattr_virt);
494                 goto out;
495         }
496         if (!lower_i_mutex_held)
497                 mutex_lock(&lower_dentry->d_inode->i_mutex);
498         size = lower_dentry->d_inode->i_op->getxattr(lower_dentry,
499                                                      ECRYPTFS_XATTR_NAME,
500                                                      xattr_virt,
501                                                      PAGE_CACHE_SIZE);
502         if (!lower_i_mutex_held)
503                 mutex_unlock(&lower_dentry->d_inode->i_mutex);
504         if (size < 0)
505                 size = 8;
506         file_size = (u64)i_size_read(inode);
507         file_size = cpu_to_be64(file_size);
508         memcpy(xattr_virt, &file_size, sizeof(u64));
509         if (!lower_i_mutex_held)
510                 mutex_lock(&lower_dentry->d_inode->i_mutex);
511         rc = lower_dentry->d_inode->i_op->setxattr(lower_dentry,
512                                                    ECRYPTFS_XATTR_NAME,
513                                                    xattr_virt, size, 0);
514         if (!lower_i_mutex_held)
515                 mutex_unlock(&lower_dentry->d_inode->i_mutex);
516         if (rc)
517                 printk(KERN_ERR "Error whilst attempting to write inode size "
518                        "to lower file xattr; rc = [%d]\n", rc);
519         kmem_cache_free(ecryptfs_xattr_cache, xattr_virt);
520 out:
521         return rc;
522 }
523
524 int
525 ecryptfs_write_inode_size_to_metadata(struct file *lower_file,
526                                       struct inode *lower_inode,
527                                       struct inode *inode,
528                                       struct dentry *ecryptfs_dentry,
529                                       int lower_i_mutex_held)
530 {
531         struct ecryptfs_crypt_stat *crypt_stat;
532
533         crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
534         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
535                 return ecryptfs_write_inode_size_to_xattr(lower_inode, inode,
536                                                           ecryptfs_dentry,
537                                                           lower_i_mutex_held);
538         else
539                 return ecryptfs_write_inode_size_to_header(lower_file,
540                                                            lower_inode,
541                                                            inode);
542 }
543
544 int ecryptfs_get_lower_page(struct page **lower_page, struct inode *lower_inode,
545                             struct file *lower_file,
546                             unsigned long lower_page_index, int byte_offset,
547                             int region_bytes)
548 {
549         int rc = 0;
550
551         *lower_page = grab_cache_page(lower_inode->i_mapping, lower_page_index);
552         if (!(*lower_page)) {
553                 rc = -EINVAL;
554                 ecryptfs_printk(KERN_ERR, "Error attempting to grab "
555                                 "lower page with index [0x%.16x]\n",
556                                 lower_page_index);
557                 goto out;
558         }
559         rc = lower_inode->i_mapping->a_ops->prepare_write(lower_file,
560                                                           (*lower_page),
561                                                           byte_offset,
562                                                           region_bytes);
563         if (rc) {
564                 ecryptfs_printk(KERN_ERR, "prepare_write for "
565                                 "lower_page_index = [0x%.16x] failed; rc = "
566                                 "[%d]\n", lower_page_index, rc);
567         }
568 out:
569         if (rc && (*lower_page)) {
570                 ecryptfs_release_lower_page(*lower_page);
571                 (*lower_page) = NULL;
572         }
573         return rc;
574 }
575
576 /**
577  * ecryptfs_commit_lower_page
578  *
579  * Returns zero on success; non-zero on error
580  */
581 int
582 ecryptfs_commit_lower_page(struct page *lower_page, struct inode *lower_inode,
583                            struct file *lower_file, int byte_offset,
584                            int region_size)
585 {
586         int rc = 0;
587
588         rc = lower_inode->i_mapping->a_ops->commit_write(
589                 lower_file, lower_page, byte_offset, region_size);
590         if (rc < 0) {
591                 ecryptfs_printk(KERN_ERR,
592                                 "Error committing write; rc = [%d]\n", rc);
593         } else
594                 rc = 0;
595         ecryptfs_release_lower_page(lower_page);
596         return rc;
597 }
598
599 /**
600  * ecryptfs_copy_page_to_lower
601  *
602  * Used for plaintext pass-through; no page index interpolation
603  * required.
604  */
605 int ecryptfs_copy_page_to_lower(struct page *page, struct inode *lower_inode,
606                                 struct file *lower_file)
607 {
608         int rc = 0;
609         struct page *lower_page;
610
611         rc = ecryptfs_get_lower_page(&lower_page, lower_inode, lower_file,
612                                      page->index, 0, PAGE_CACHE_SIZE);
613         if (rc) {
614                 ecryptfs_printk(KERN_ERR, "Error attempting to get page "
615                                 "at index [0x%.16x]\n", page->index);
616                 goto out;
617         }
618         /* TODO: aops */
619         memcpy((char *)page_address(lower_page), page_address(page),
620                PAGE_CACHE_SIZE);
621         rc = ecryptfs_commit_lower_page(lower_page, lower_inode, lower_file,
622                                         0, PAGE_CACHE_SIZE);
623         if (rc)
624                 ecryptfs_printk(KERN_ERR, "Error attempting to commit page "
625                                 "at index [0x%.16x]\n", page->index);
626 out:
627         return rc;
628 }
629
630 struct kmem_cache *ecryptfs_xattr_cache;
631
632 /**
633  * ecryptfs_commit_write
634  * @file: The eCryptfs file object
635  * @page: The eCryptfs page
636  * @from: Ignored (we rotate the page IV on each write)
637  * @to: Ignored
638  *
639  * This is where we encrypt the data and pass the encrypted data to
640  * the lower filesystem.  In OpenPGP-compatible mode, we operate on
641  * entire underlying packets.
642  */
643 static int ecryptfs_commit_write(struct file *file, struct page *page,
644                                  unsigned from, unsigned to)
645 {
646         struct ecryptfs_page_crypt_context ctx;
647         loff_t pos;
648         struct inode *inode;
649         struct inode *lower_inode;
650         struct file *lower_file;
651         struct ecryptfs_crypt_stat *crypt_stat;
652         int rc;
653
654         inode = page->mapping->host;
655         lower_inode = ecryptfs_inode_to_lower(inode);
656         lower_file = ecryptfs_file_to_lower(file);
657         mutex_lock(&lower_inode->i_mutex);
658         crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
659                                 ->crypt_stat;
660         if (ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_NEW_FILE)) {
661                 ecryptfs_printk(KERN_DEBUG, "ECRYPTFS_NEW_FILE flag set in "
662                         "crypt_stat at memory location [%p]\n", crypt_stat);
663                 ECRYPTFS_CLEAR_FLAG(crypt_stat->flags, ECRYPTFS_NEW_FILE);
664         } else
665                 ecryptfs_printk(KERN_DEBUG, "Not a new file\n");
666         ecryptfs_printk(KERN_DEBUG, "Calling fill_zeros_to_end_of_page"
667                         "(page w/ index = [0x%.16x], to = [%d])\n", page->index,
668                         to);
669         rc = fill_zeros_to_end_of_page(page, to);
670         if (rc) {
671                 ecryptfs_printk(KERN_WARNING, "Error attempting to fill "
672                                 "zeros in page with index = [0x%.16x]\n",
673                                 page->index);
674                 goto out;
675         }
676         ctx.page = page;
677         ctx.mode = ECRYPTFS_PREPARE_COMMIT_MODE;
678         ctx.param.lower_file = lower_file;
679         rc = ecryptfs_encrypt_page(&ctx);
680         if (rc) {
681                 ecryptfs_printk(KERN_WARNING, "Error encrypting page (upper "
682                                 "index [0x%.16x])\n", page->index);
683                 goto out;
684         }
685         inode->i_blocks = lower_inode->i_blocks;
686         pos = (page->index << PAGE_CACHE_SHIFT) + to;
687         if (pos > i_size_read(inode)) {
688                 i_size_write(inode, pos);
689                 ecryptfs_printk(KERN_DEBUG, "Expanded file size to "
690                                 "[0x%.16x]\n", i_size_read(inode));
691         }
692         rc = ecryptfs_write_inode_size_to_metadata(lower_file, lower_inode,
693                                                    inode, file->f_dentry,
694                                                    ECRYPTFS_LOWER_I_MUTEX_HELD);
695         if (rc)
696                 printk(KERN_ERR "Error writing inode size to metadata; "
697                        "rc = [%d]\n", rc);
698         lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
699         mark_inode_dirty_sync(inode);
700 out:
701         if (rc < 0)
702                 ClearPageUptodate(page);
703         else
704                 SetPageUptodate(page);
705         mutex_unlock(&lower_inode->i_mutex);
706         return rc;
707 }
708
709 /**
710  * write_zeros
711  * @file: The ecryptfs file
712  * @index: The index in which we are writing
713  * @start: The position after the last block of data
714  * @num_zeros: The number of zeros to write
715  *
716  * Write a specified number of zero's to a page.
717  *
718  * (start + num_zeros) must be less than or equal to PAGE_CACHE_SIZE
719  */
720 static
721 int write_zeros(struct file *file, pgoff_t index, int start, int num_zeros)
722 {
723         int rc = 0;
724         struct page *tmp_page;
725         char *tmp_page_virt;
726
727         tmp_page = ecryptfs_get1page(file, index);
728         if (IS_ERR(tmp_page)) {
729                 ecryptfs_printk(KERN_ERR, "Error getting page at index "
730                                 "[0x%.16x]\n", index);
731                 rc = PTR_ERR(tmp_page);
732                 goto out;
733         }
734         rc = ecryptfs_prepare_write(file, tmp_page, start, start + num_zeros);
735         if (rc) {
736                 ecryptfs_printk(KERN_ERR, "Error preparing to write zero's "
737                                 "to remainder of page at index [0x%.16x]\n",
738                                 index);
739                 page_cache_release(tmp_page);
740                 goto out;
741         }
742         tmp_page_virt = kmap_atomic(tmp_page, KM_USER0);
743         memset(((char *)tmp_page_virt + start), 0, num_zeros);
744         kunmap_atomic(tmp_page_virt, KM_USER0);
745         rc = ecryptfs_commit_write(file, tmp_page, start, start + num_zeros);
746         if (rc < 0) {
747                 ecryptfs_printk(KERN_ERR, "Error attempting to write zero's "
748                                 "to remainder of page at index [0x%.16x]\n",
749                                 index);
750                 page_cache_release(tmp_page);
751                 goto out;
752         }
753         rc = 0;
754         page_cache_release(tmp_page);
755 out:
756         return rc;
757 }
758
759 static sector_t ecryptfs_bmap(struct address_space *mapping, sector_t block)
760 {
761         int rc = 0;
762         struct inode *inode;
763         struct inode *lower_inode;
764
765         inode = (struct inode *)mapping->host;
766         lower_inode = ecryptfs_inode_to_lower(inode);
767         if (lower_inode->i_mapping->a_ops->bmap)
768                 rc = lower_inode->i_mapping->a_ops->bmap(lower_inode->i_mapping,
769                                                          block);
770         return rc;
771 }
772
773 static void ecryptfs_sync_page(struct page *page)
774 {
775         struct inode *inode;
776         struct inode *lower_inode;
777         struct page *lower_page;
778
779         inode = page->mapping->host;
780         lower_inode = ecryptfs_inode_to_lower(inode);
781         /* NOTE: Recently swapped with grab_cache_page(), since
782          * sync_page() just makes sure that pending I/O gets done. */
783         lower_page = find_lock_page(lower_inode->i_mapping, page->index);
784         if (!lower_page) {
785                 ecryptfs_printk(KERN_DEBUG, "find_lock_page failed\n");
786                 return;
787         }
788         lower_page->mapping->a_ops->sync_page(lower_page);
789         ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
790                         lower_page->index);
791         unlock_page(lower_page);
792         page_cache_release(lower_page);
793 }
794
795 struct address_space_operations ecryptfs_aops = {
796         .writepage = ecryptfs_writepage,
797         .readpage = ecryptfs_readpage,
798         .prepare_write = ecryptfs_prepare_write,
799         .commit_write = ecryptfs_commit_write,
800         .bmap = ecryptfs_bmap,
801         .sync_page = ecryptfs_sync_page,
802 };