eCryptfs: use list_for_each_entry_safe() when wiping auth toks
[safe/jmp/linux-2.6] / fs / ecryptfs / keystore.c
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include "ecryptfs_kernel.h"
36
37 /**
38  * request_key returned an error instead of a valid key address;
39  * determine the type of error, make appropriate log entries, and
40  * return an error code.
41  */
42 int process_request_key_err(long err_code)
43 {
44         int rc = 0;
45
46         switch (err_code) {
47         case ENOKEY:
48                 ecryptfs_printk(KERN_WARNING, "No key\n");
49                 rc = -ENOENT;
50                 break;
51         case EKEYEXPIRED:
52                 ecryptfs_printk(KERN_WARNING, "Key expired\n");
53                 rc = -ETIME;
54                 break;
55         case EKEYREVOKED:
56                 ecryptfs_printk(KERN_WARNING, "Key revoked\n");
57                 rc = -EINVAL;
58                 break;
59         default:
60                 ecryptfs_printk(KERN_WARNING, "Unknown error code: "
61                                 "[0x%.16x]\n", err_code);
62                 rc = -EINVAL;
63         }
64         return rc;
65 }
66
67 /**
68  * parse_packet_length
69  * @data: Pointer to memory containing length at offset
70  * @size: This function writes the decoded size to this memory
71  *        address; zero on error
72  * @length_size: The number of bytes occupied by the encoded length
73  *
74  * Returns Zero on success
75  */
76 static int parse_packet_length(unsigned char *data, size_t *size,
77                                size_t *length_size)
78 {
79         int rc = 0;
80
81         (*length_size) = 0;
82         (*size) = 0;
83         if (data[0] < 192) {
84                 /* One-byte length */
85                 (*size) = (unsigned char)data[0];
86                 (*length_size) = 1;
87         } else if (data[0] < 224) {
88                 /* Two-byte length */
89                 (*size) = (((unsigned char)(data[0]) - 192) * 256);
90                 (*size) += ((unsigned char)(data[1]) + 192);
91                 (*length_size) = 2;
92         } else if (data[0] == 255) {
93                 /* Five-byte length; we're not supposed to see this */
94                 ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
95                                 "supported\n");
96                 rc = -EINVAL;
97                 goto out;
98         } else {
99                 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
100                 rc = -EINVAL;
101                 goto out;
102         }
103 out:
104         return rc;
105 }
106
107 /**
108  * write_packet_length
109  * @dest: The byte array target into which to write the
110  *       length. Must have at least 5 bytes allocated.
111  * @size: The length to write.
112  * @packet_size_length: The number of bytes used to encode the
113  *                      packet length is written to this address.
114  *
115  * Returns zero on success; non-zero on error.
116  */
117 static int write_packet_length(char *dest, size_t size,
118                                size_t *packet_size_length)
119 {
120         int rc = 0;
121
122         if (size < 192) {
123                 dest[0] = size;
124                 (*packet_size_length) = 1;
125         } else if (size < 65536) {
126                 dest[0] = (((size - 192) / 256) + 192);
127                 dest[1] = ((size - 192) % 256);
128                 (*packet_size_length) = 2;
129         } else {
130                 rc = -EINVAL;
131                 ecryptfs_printk(KERN_WARNING,
132                                 "Unsupported packet size: [%d]\n", size);
133         }
134         return rc;
135 }
136
137 static int
138 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
139                     char **packet, size_t *packet_len)
140 {
141         size_t i = 0;
142         size_t data_len;
143         size_t packet_size_len;
144         char *message;
145         int rc;
146
147         /*
148          *              ***** TAG 64 Packet Format *****
149          *    | Content Type                       | 1 byte       |
150          *    | Key Identifier Size                | 1 or 2 bytes |
151          *    | Key Identifier                     | arbitrary    |
152          *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
153          *    | Encrypted File Encryption Key      | arbitrary    |
154          */
155         data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
156                     + session_key->encrypted_key_size);
157         *packet = kmalloc(data_len, GFP_KERNEL);
158         message = *packet;
159         if (!message) {
160                 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
161                 rc = -ENOMEM;
162                 goto out;
163         }
164         message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
165         rc = write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
166                                  &packet_size_len);
167         if (rc) {
168                 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
169                                 "header; cannot generate packet length\n");
170                 goto out;
171         }
172         i += packet_size_len;
173         memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
174         i += ECRYPTFS_SIG_SIZE_HEX;
175         rc = write_packet_length(&message[i], session_key->encrypted_key_size,
176                                  &packet_size_len);
177         if (rc) {
178                 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
179                                 "header; cannot generate packet length\n");
180                 goto out;
181         }
182         i += packet_size_len;
183         memcpy(&message[i], session_key->encrypted_key,
184                session_key->encrypted_key_size);
185         i += session_key->encrypted_key_size;
186         *packet_len = i;
187 out:
188         return rc;
189 }
190
191 static int
192 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u16 *cipher_code,
193                     struct ecryptfs_message *msg)
194 {
195         size_t i = 0;
196         char *data;
197         size_t data_len;
198         size_t m_size;
199         size_t message_len;
200         u16 checksum = 0;
201         u16 expected_checksum = 0;
202         int rc;
203
204         /*
205          *              ***** TAG 65 Packet Format *****
206          *         | Content Type             | 1 byte       |
207          *         | Status Indicator         | 1 byte       |
208          *         | File Encryption Key Size | 1 or 2 bytes |
209          *         | File Encryption Key      | arbitrary    |
210          */
211         message_len = msg->data_len;
212         data = msg->data;
213         if (message_len < 4) {
214                 rc = -EIO;
215                 goto out;
216         }
217         if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
218                 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
219                 rc = -EIO;
220                 goto out;
221         }
222         if (data[i++]) {
223                 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
224                                 "[%d]\n", data[i-1]);
225                 rc = -EIO;
226                 goto out;
227         }
228         rc = parse_packet_length(&data[i], &m_size, &data_len);
229         if (rc) {
230                 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
231                                 "rc = [%d]\n", rc);
232                 goto out;
233         }
234         i += data_len;
235         if (message_len < (i + m_size)) {
236                 ecryptfs_printk(KERN_ERR, "The received netlink message is "
237                                 "shorter than expected\n");
238                 rc = -EIO;
239                 goto out;
240         }
241         if (m_size < 3) {
242                 ecryptfs_printk(KERN_ERR,
243                                 "The decrypted key is not long enough to "
244                                 "include a cipher code and checksum\n");
245                 rc = -EIO;
246                 goto out;
247         }
248         *cipher_code = data[i++];
249         /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
250         session_key->decrypted_key_size = m_size - 3;
251         if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
252                 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
253                                 "the maximum key size [%d]\n",
254                                 session_key->decrypted_key_size,
255                                 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
256                 rc = -EIO;
257                 goto out;
258         }
259         memcpy(session_key->decrypted_key, &data[i],
260                session_key->decrypted_key_size);
261         i += session_key->decrypted_key_size;
262         expected_checksum += (unsigned char)(data[i++]) << 8;
263         expected_checksum += (unsigned char)(data[i++]);
264         for (i = 0; i < session_key->decrypted_key_size; i++)
265                 checksum += session_key->decrypted_key[i];
266         if (expected_checksum != checksum) {
267                 ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
268                                 "encryption  key; expected [%x]; calculated "
269                                 "[%x]\n", expected_checksum, checksum);
270                 rc = -EIO;
271         }
272 out:
273         return rc;
274 }
275
276
277 static int
278 write_tag_66_packet(char *signature, size_t cipher_code,
279                     struct ecryptfs_crypt_stat *crypt_stat, char **packet,
280                     size_t *packet_len)
281 {
282         size_t i = 0;
283         size_t j;
284         size_t data_len;
285         size_t checksum = 0;
286         size_t packet_size_len;
287         char *message;
288         int rc;
289
290         /*
291          *              ***** TAG 66 Packet Format *****
292          *         | Content Type             | 1 byte       |
293          *         | Key Identifier Size      | 1 or 2 bytes |
294          *         | Key Identifier           | arbitrary    |
295          *         | File Encryption Key Size | 1 or 2 bytes |
296          *         | File Encryption Key      | arbitrary    |
297          */
298         data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
299         *packet = kmalloc(data_len, GFP_KERNEL);
300         message = *packet;
301         if (!message) {
302                 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
303                 rc = -ENOMEM;
304                 goto out;
305         }
306         message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
307         rc = write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
308                                  &packet_size_len);
309         if (rc) {
310                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
311                                 "header; cannot generate packet length\n");
312                 goto out;
313         }
314         i += packet_size_len;
315         memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
316         i += ECRYPTFS_SIG_SIZE_HEX;
317         /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
318         rc = write_packet_length(&message[i], crypt_stat->key_size + 3,
319                                  &packet_size_len);
320         if (rc) {
321                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
322                                 "header; cannot generate packet length\n");
323                 goto out;
324         }
325         i += packet_size_len;
326         message[i++] = cipher_code;
327         memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
328         i += crypt_stat->key_size;
329         for (j = 0; j < crypt_stat->key_size; j++)
330                 checksum += crypt_stat->key[j];
331         message[i++] = (checksum / 256) % 256;
332         message[i++] = (checksum % 256);
333         *packet_len = i;
334 out:
335         return rc;
336 }
337
338 static int
339 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
340                     struct ecryptfs_message *msg)
341 {
342         size_t i = 0;
343         char *data;
344         size_t data_len;
345         size_t message_len;
346         int rc;
347
348         /*
349          *              ***** TAG 65 Packet Format *****
350          *    | Content Type                       | 1 byte       |
351          *    | Status Indicator                   | 1 byte       |
352          *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
353          *    | Encrypted File Encryption Key      | arbitrary    |
354          */
355         message_len = msg->data_len;
356         data = msg->data;
357         /* verify that everything through the encrypted FEK size is present */
358         if (message_len < 4) {
359                 rc = -EIO;
360                 goto out;
361         }
362         if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
363                 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_67\n");
364                 rc = -EIO;
365                 goto out;
366         }
367         if (data[i++]) {
368                 ecryptfs_printk(KERN_ERR, "Status indicator has non zero value"
369                                 " [%d]\n", data[i-1]);
370                 rc = -EIO;
371                 goto out;
372         }
373         rc = parse_packet_length(&data[i], &key_rec->enc_key_size, &data_len);
374         if (rc) {
375                 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
376                                 "rc = [%d]\n", rc);
377                 goto out;
378         }
379         i += data_len;
380         if (message_len < (i + key_rec->enc_key_size)) {
381                 ecryptfs_printk(KERN_ERR, "message_len [%d]; max len is [%d]\n",
382                                 message_len, (i + key_rec->enc_key_size));
383                 rc = -EIO;
384                 goto out;
385         }
386         if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
387                 ecryptfs_printk(KERN_ERR, "Encrypted key_size [%d] larger than "
388                                 "the maximum key size [%d]\n",
389                                 key_rec->enc_key_size,
390                                 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
391                 rc = -EIO;
392                 goto out;
393         }
394         memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
395 out:
396         return rc;
397 }
398
399 /**
400  * decrypt_pki_encrypted_session_key - Decrypt the session key with
401  * the given auth_tok.
402  *
403  * Returns Zero on success; non-zero error otherwise.
404  */
405 static int
406 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
407                                   struct ecryptfs_crypt_stat *crypt_stat)
408 {
409         u16 cipher_code = 0;
410         struct ecryptfs_msg_ctx *msg_ctx;
411         struct ecryptfs_message *msg = NULL;
412         char *auth_tok_sig;
413         char *netlink_message;
414         size_t netlink_message_length;
415         int rc;
416
417         if ((rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok))) {
418                 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
419                        auth_tok->token_type);
420                 goto out;
421         }
422         rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
423                                  &netlink_message, &netlink_message_length);
424         if (rc) {
425                 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet");
426                 goto out;
427         }
428         rc = ecryptfs_send_message(ecryptfs_transport, netlink_message,
429                                    netlink_message_length, &msg_ctx);
430         if (rc) {
431                 ecryptfs_printk(KERN_ERR, "Error sending netlink message\n");
432                 goto out;
433         }
434         rc = ecryptfs_wait_for_response(msg_ctx, &msg);
435         if (rc) {
436                 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
437                                 "from the user space daemon\n");
438                 rc = -EIO;
439                 goto out;
440         }
441         rc = parse_tag_65_packet(&(auth_tok->session_key),
442                                  &cipher_code, msg);
443         if (rc) {
444                 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
445                        rc);
446                 goto out;
447         }
448         auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
449         memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
450                auth_tok->session_key.decrypted_key_size);
451         crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
452         rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
453         if (rc) {
454                 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
455                                 cipher_code)
456                 goto out;
457         }
458         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
459         if (ecryptfs_verbosity > 0) {
460                 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
461                 ecryptfs_dump_hex(crypt_stat->key,
462                                   crypt_stat->key_size);
463         }
464 out:
465         if (msg)
466                 kfree(msg);
467         return rc;
468 }
469
470 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
471 {
472         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
473         struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
474
475         list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
476                                  auth_tok_list_head, list) {
477                 list_del(&auth_tok_list_item->list);
478                 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
479                                 auth_tok_list_item);
480         }
481 }
482
483 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
484
485 /**
486  * parse_tag_1_packet
487  * @crypt_stat: The cryptographic context to modify based on packet
488  *              contents.
489  * @data: The raw bytes of the packet.
490  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
491  *                 a new authentication token will be placed at the end
492  *                 of this list for this packet.
493  * @new_auth_tok: Pointer to a pointer to memory that this function
494  *                allocates; sets the memory address of the pointer to
495  *                NULL on error. This object is added to the
496  *                auth_tok_list.
497  * @packet_size: This function writes the size of the parsed packet
498  *               into this memory location; zero on error.
499  *
500  * Returns zero on success; non-zero on error.
501  */
502 static int
503 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
504                    unsigned char *data, struct list_head *auth_tok_list,
505                    struct ecryptfs_auth_tok **new_auth_tok,
506                    size_t *packet_size, size_t max_packet_size)
507 {
508         size_t body_size;
509         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
510         size_t length_size;
511         int rc = 0;
512
513         (*packet_size) = 0;
514         (*new_auth_tok) = NULL;
515
516         /* we check that:
517          *   one byte for the Tag 1 ID flag
518          *   two bytes for the body size
519          * do not exceed the maximum_packet_size
520          */
521         if (unlikely((*packet_size) + 3 > max_packet_size)) {
522                 ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n");
523                 rc = -EINVAL;
524                 goto out;
525         }
526         /* check for Tag 1 identifier - one byte */
527         if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
528                 ecryptfs_printk(KERN_ERR, "Enter w/ first byte != 0x%.2x\n",
529                                 ECRYPTFS_TAG_1_PACKET_TYPE);
530                 rc = -EINVAL;
531                 goto out;
532         }
533         /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
534          * at end of function upon failure */
535         auth_tok_list_item =
536                 kmem_cache_alloc(ecryptfs_auth_tok_list_item_cache,
537                                  GFP_KERNEL);
538         if (!auth_tok_list_item) {
539                 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
540                 rc = -ENOMEM;
541                 goto out;
542         }
543         memset(auth_tok_list_item, 0,
544                sizeof(struct ecryptfs_auth_tok_list_item));
545         (*new_auth_tok) = &auth_tok_list_item->auth_tok;
546         /* check for body size - one to two bytes
547          *
548          *              ***** TAG 1 Packet Format *****
549          *    | version number                     | 1 byte       |
550          *    | key ID                             | 8 bytes      |
551          *    | public key algorithm               | 1 byte       |
552          *    | encrypted session key              | arbitrary    |
553          */
554         rc = parse_packet_length(&data[(*packet_size)], &body_size,
555                                  &length_size);
556         if (rc) {
557                 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
558                                 "rc = [%d]\n", rc);
559                 goto out_free;
560         }
561         if (unlikely(body_size < (0x02 + ECRYPTFS_SIG_SIZE))) {
562                 ecryptfs_printk(KERN_WARNING, "Invalid body size ([%d])\n",
563                                 body_size);
564                 rc = -EINVAL;
565                 goto out_free;
566         }
567         (*packet_size) += length_size;
568         if (unlikely((*packet_size) + body_size > max_packet_size)) {
569                 ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n");
570                 rc = -EINVAL;
571                 goto out_free;
572         }
573         /* Version 3 (from RFC2440) - one byte */
574         if (unlikely(data[(*packet_size)++] != 0x03)) {
575                 ecryptfs_printk(KERN_DEBUG, "Unknown version number "
576                                 "[%d]\n", data[(*packet_size) - 1]);
577                 rc = -EINVAL;
578                 goto out_free;
579         }
580         /* Read Signature */
581         ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
582                         &data[(*packet_size)], ECRYPTFS_SIG_SIZE);
583         *packet_size += ECRYPTFS_SIG_SIZE;
584         /* This byte is skipped because the kernel does not need to
585          * know which public key encryption algorithm was used */
586         (*packet_size)++;
587         (*new_auth_tok)->session_key.encrypted_key_size =
588                 body_size - (0x02 + ECRYPTFS_SIG_SIZE);
589         if ((*new_auth_tok)->session_key.encrypted_key_size
590             > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
591                 ecryptfs_printk(KERN_ERR, "Tag 1 packet contains key larger "
592                                 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
593                 rc = -EINVAL;
594                 goto out;
595         }
596         ecryptfs_printk(KERN_DEBUG, "Encrypted key size = [%d]\n",
597                         (*new_auth_tok)->session_key.encrypted_key_size);
598         memcpy((*new_auth_tok)->session_key.encrypted_key,
599                &data[(*packet_size)], (body_size - 0x02 - ECRYPTFS_SIG_SIZE));
600         (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
601         (*new_auth_tok)->session_key.flags &=
602                 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
603         (*new_auth_tok)->session_key.flags |=
604                 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
605         (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
606         (*new_auth_tok)->flags |= ECRYPTFS_PRIVATE_KEY;
607         /* TODO: Why are we setting this flag here? Don't we want the
608          * userspace to decrypt the session key? */
609         (*new_auth_tok)->session_key.flags &=
610                 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
611         (*new_auth_tok)->session_key.flags &=
612                 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
613         list_add(&auth_tok_list_item->list, auth_tok_list);
614         goto out;
615 out_free:
616         (*new_auth_tok) = NULL;
617         memset(auth_tok_list_item, 0,
618                sizeof(struct ecryptfs_auth_tok_list_item));
619         kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
620                         auth_tok_list_item);
621 out:
622         if (rc)
623                 (*packet_size) = 0;
624         return rc;
625 }
626
627 /**
628  * parse_tag_3_packet
629  * @crypt_stat: The cryptographic context to modify based on packet
630  *              contents.
631  * @data: The raw bytes of the packet.
632  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
633  *                 a new authentication token will be placed at the end
634  *                 of this list for this packet.
635  * @new_auth_tok: Pointer to a pointer to memory that this function
636  *                allocates; sets the memory address of the pointer to
637  *                NULL on error. This object is added to the
638  *                auth_tok_list.
639  * @packet_size: This function writes the size of the parsed packet
640  *               into this memory location; zero on error.
641  * @max_packet_size: maximum number of bytes to parse
642  *
643  * Returns zero on success; non-zero on error.
644  */
645 static int
646 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
647                    unsigned char *data, struct list_head *auth_tok_list,
648                    struct ecryptfs_auth_tok **new_auth_tok,
649                    size_t *packet_size, size_t max_packet_size)
650 {
651         size_t body_size;
652         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
653         size_t length_size;
654         int rc = 0;
655
656         (*packet_size) = 0;
657         (*new_auth_tok) = NULL;
658
659         /* we check that:
660          *   one byte for the Tag 3 ID flag
661          *   two bytes for the body size
662          * do not exceed the maximum_packet_size
663          */
664         if (unlikely((*packet_size) + 3 > max_packet_size)) {
665                 ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n");
666                 rc = -EINVAL;
667                 goto out;
668         }
669
670         /* check for Tag 3 identifyer - one byte */
671         if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
672                 ecryptfs_printk(KERN_ERR, "Enter w/ first byte != 0x%.2x\n",
673                                 ECRYPTFS_TAG_3_PACKET_TYPE);
674                 rc = -EINVAL;
675                 goto out;
676         }
677         /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
678          * at end of function upon failure */
679         auth_tok_list_item =
680             kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
681         if (!auth_tok_list_item) {
682                 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
683                 rc = -ENOMEM;
684                 goto out;
685         }
686         (*new_auth_tok) = &auth_tok_list_item->auth_tok;
687
688         /* check for body size - one to two bytes */
689         rc = parse_packet_length(&data[(*packet_size)], &body_size,
690                                  &length_size);
691         if (rc) {
692                 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
693                                 "rc = [%d]\n", rc);
694                 goto out_free;
695         }
696         if (unlikely(body_size < (0x05 + ECRYPTFS_SALT_SIZE))) {
697                 ecryptfs_printk(KERN_WARNING, "Invalid body size ([%d])\n",
698                                 body_size);
699                 rc = -EINVAL;
700                 goto out_free;
701         }
702         (*packet_size) += length_size;
703
704         /* now we know the length of the remainting Tag 3 packet size:
705          *   5 fix bytes for: version string, cipher, S2K ID, hash algo,
706          *                    number of hash iterations
707          *   ECRYPTFS_SALT_SIZE bytes for salt
708          *   body_size bytes minus the stuff above is the encrypted key size
709          */
710         if (unlikely((*packet_size) + body_size > max_packet_size)) {
711                 ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n");
712                 rc = -EINVAL;
713                 goto out_free;
714         }
715
716         /* There are 5 characters of additional information in the
717          * packet */
718         (*new_auth_tok)->session_key.encrypted_key_size =
719                 body_size - (0x05 + ECRYPTFS_SALT_SIZE);
720         ecryptfs_printk(KERN_DEBUG, "Encrypted key size = [%d]\n",
721                         (*new_auth_tok)->session_key.encrypted_key_size);
722
723         /* Version 4 (from RFC2440) - one byte */
724         if (unlikely(data[(*packet_size)++] != 0x04)) {
725                 ecryptfs_printk(KERN_DEBUG, "Unknown version number "
726                                 "[%d]\n", data[(*packet_size) - 1]);
727                 rc = -EINVAL;
728                 goto out_free;
729         }
730
731         /* cipher - one byte */
732         ecryptfs_cipher_code_to_string(crypt_stat->cipher,
733                                        (u16)data[(*packet_size)]);
734         /* A little extra work to differentiate among the AES key
735          * sizes; see RFC2440 */
736         switch(data[(*packet_size)++]) {
737         case RFC2440_CIPHER_AES_192:
738                 crypt_stat->key_size = 24;
739                 break;
740         default:
741                 crypt_stat->key_size =
742                         (*new_auth_tok)->session_key.encrypted_key_size;
743         }
744         ecryptfs_init_crypt_ctx(crypt_stat);
745         /* S2K identifier 3 (from RFC2440) */
746         if (unlikely(data[(*packet_size)++] != 0x03)) {
747                 ecryptfs_printk(KERN_ERR, "Only S2K ID 3 is currently "
748                                 "supported\n");
749                 rc = -ENOSYS;
750                 goto out_free;
751         }
752
753         /* TODO: finish the hash mapping */
754         /* hash algorithm - one byte */
755         switch (data[(*packet_size)++]) {
756         case 0x01: /* See RFC2440 for these numbers and their mappings */
757                 /* Choose MD5 */
758                 /* salt - ECRYPTFS_SALT_SIZE bytes */
759                 memcpy((*new_auth_tok)->token.password.salt,
760                        &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
761                 (*packet_size) += ECRYPTFS_SALT_SIZE;
762
763                 /* This conversion was taken straight from RFC2440 */
764                 /* number of hash iterations - one byte */
765                 (*new_auth_tok)->token.password.hash_iterations =
766                         ((u32) 16 + (data[(*packet_size)] & 15))
767                                 << ((data[(*packet_size)] >> 4) + 6);
768                 (*packet_size)++;
769
770                 /* encrypted session key -
771                  *   (body_size-5-ECRYPTFS_SALT_SIZE) bytes */
772                 memcpy((*new_auth_tok)->session_key.encrypted_key,
773                        &data[(*packet_size)],
774                        (*new_auth_tok)->session_key.encrypted_key_size);
775                 (*packet_size) +=
776                         (*new_auth_tok)->session_key.encrypted_key_size;
777                 (*new_auth_tok)->session_key.flags &=
778                         ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
779                 (*new_auth_tok)->session_key.flags |=
780                         ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
781                 (*new_auth_tok)->token.password.hash_algo = 0x01;
782                 break;
783         default:
784                 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
785                                 "[%d]\n", data[(*packet_size) - 1]);
786                 rc = -ENOSYS;
787                 goto out_free;
788         }
789         (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
790         /* TODO: Parametarize; we might actually want userspace to
791          * decrypt the session key. */
792         (*new_auth_tok)->session_key.flags &=
793                             ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
794         (*new_auth_tok)->session_key.flags &=
795                             ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
796         list_add(&auth_tok_list_item->list, auth_tok_list);
797         goto out;
798 out_free:
799         (*new_auth_tok) = NULL;
800         memset(auth_tok_list_item, 0,
801                sizeof(struct ecryptfs_auth_tok_list_item));
802         kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
803                         auth_tok_list_item);
804 out:
805         if (rc)
806                 (*packet_size) = 0;
807         return rc;
808 }
809
810 /**
811  * parse_tag_11_packet
812  * @data: The raw bytes of the packet
813  * @contents: This function writes the data contents of the literal
814  *            packet into this memory location
815  * @max_contents_bytes: The maximum number of bytes that this function
816  *                      is allowed to write into contents
817  * @tag_11_contents_size: This function writes the size of the parsed
818  *                        contents into this memory location; zero on
819  *                        error
820  * @packet_size: This function writes the size of the parsed packet
821  *               into this memory location; zero on error
822  * @max_packet_size: maximum number of bytes to parse
823  *
824  * Returns zero on success; non-zero on error.
825  */
826 static int
827 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
828                     size_t max_contents_bytes, size_t *tag_11_contents_size,
829                     size_t *packet_size, size_t max_packet_size)
830 {
831         size_t body_size;
832         size_t length_size;
833         int rc = 0;
834
835         (*packet_size) = 0;
836         (*tag_11_contents_size) = 0;
837
838         /* check that:
839          *   one byte for the Tag 11 ID flag
840          *   two bytes for the Tag 11 length
841          * do not exceed the maximum_packet_size
842          */
843         if (unlikely((*packet_size) + 3 > max_packet_size)) {
844                 ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n");
845                 rc = -EINVAL;
846                 goto out;
847         }
848
849         /* check for Tag 11 identifyer - one byte */
850         if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
851                 ecryptfs_printk(KERN_WARNING,
852                                 "Invalid tag 11 packet format\n");
853                 rc = -EINVAL;
854                 goto out;
855         }
856
857         /* get Tag 11 content length - one or two bytes */
858         rc = parse_packet_length(&data[(*packet_size)], &body_size,
859                                  &length_size);
860         if (rc) {
861                 ecryptfs_printk(KERN_WARNING,
862                                 "Invalid tag 11 packet format\n");
863                 goto out;
864         }
865         (*packet_size) += length_size;
866
867         if (body_size < 13) {
868                 ecryptfs_printk(KERN_WARNING, "Invalid body size ([%d])\n",
869                                 body_size);
870                 rc = -EINVAL;
871                 goto out;
872         }
873         /* We have 13 bytes of surrounding packet values */
874         (*tag_11_contents_size) = (body_size - 13);
875
876         /* now we know the length of the remainting Tag 11 packet size:
877          *   14 fix bytes for: special flag one, special flag two,
878          *                     12 skipped bytes
879          *   body_size bytes minus the stuff above is the Tag 11 content
880          */
881         /* FIXME why is the body size one byte smaller than the actual
882          * size of the body?
883          * this seems to be an error here as well as in
884          * write_tag_11_packet() */
885         if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
886                 ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n");
887                 rc = -EINVAL;
888                 goto out;
889         }
890
891         /* special flag one - one byte */
892         if (data[(*packet_size)++] != 0x62) {
893                 ecryptfs_printk(KERN_WARNING, "Unrecognizable packet\n");
894                 rc = -EINVAL;
895                 goto out;
896         }
897
898         /* special flag two - one byte */
899         if (data[(*packet_size)++] != 0x08) {
900                 ecryptfs_printk(KERN_WARNING, "Unrecognizable packet\n");
901                 rc = -EINVAL;
902                 goto out;
903         }
904
905         /* skip the next 12 bytes */
906         (*packet_size) += 12; /* We don't care about the filename or
907                                * the timestamp */
908
909         /* get the Tag 11 contents - tag_11_contents_size bytes */
910         memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
911         (*packet_size) += (*tag_11_contents_size);
912
913 out:
914         if (rc) {
915                 (*packet_size) = 0;
916                 (*tag_11_contents_size) = 0;
917         }
918         return rc;
919 }
920
921 static int
922 ecryptfs_find_global_auth_tok_for_sig(
923         struct ecryptfs_global_auth_tok **global_auth_tok,
924         struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
925 {
926         struct ecryptfs_global_auth_tok *walker;
927         int rc = 0;
928
929         (*global_auth_tok) = NULL;
930         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
931         list_for_each_entry(walker,
932                             &mount_crypt_stat->global_auth_tok_list,
933                             mount_crypt_stat_list) {
934                 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
935                         (*global_auth_tok) = walker;
936                         goto out;
937                 }
938         }
939         rc = -EINVAL;
940 out:
941         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
942         return rc;
943 }
944
945 /**
946  * ecryptfs_verify_version
947  * @version: The version number to confirm
948  *
949  * Returns zero on good version; non-zero otherwise
950  */
951 static int ecryptfs_verify_version(u16 version)
952 {
953         int rc = 0;
954         unsigned char major;
955         unsigned char minor;
956
957         major = ((version >> 8) & 0xFF);
958         minor = (version & 0xFF);
959         if (major != ECRYPTFS_VERSION_MAJOR) {
960                 ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
961                                 "Expected [%d]; got [%d]\n",
962                                 ECRYPTFS_VERSION_MAJOR, major);
963                 rc = -EINVAL;
964                 goto out;
965         }
966         if (minor != ECRYPTFS_VERSION_MINOR) {
967                 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
968                                 "Expected [%d]; got [%d]\n",
969                                 ECRYPTFS_VERSION_MINOR, minor);
970                 rc = -EINVAL;
971                 goto out;
972         }
973 out:
974         return rc;
975 }
976
977 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
978                                       struct ecryptfs_auth_tok **auth_tok,
979                                       char *sig)
980 {
981         int rc = 0;
982
983         (*auth_tok_key) = request_key(&key_type_user, sig, NULL);
984         if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
985                 printk(KERN_ERR "Could not find key with description: [%s]\n",
986                        sig);
987                 process_request_key_err(PTR_ERR(*auth_tok_key));
988                 rc = -EINVAL;
989                 goto out;
990         }
991         (*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
992         if (ecryptfs_verify_version((*auth_tok)->version)) {
993                 printk(KERN_ERR
994                        "Data structure version mismatch. "
995                        "Userspace tools must match eCryptfs "
996                        "kernel module with major version [%d] "
997                        "and minor version [%d]\n",
998                        ECRYPTFS_VERSION_MAJOR,
999                        ECRYPTFS_VERSION_MINOR);
1000                 rc = -EINVAL;
1001                 goto out;
1002         }
1003         if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
1004             && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
1005                 printk(KERN_ERR "Invalid auth_tok structure "
1006                        "returned from key query\n");
1007                 rc = -EINVAL;
1008                 goto out;
1009         }
1010 out:
1011         return rc;
1012 }
1013
1014 /**
1015  * ecryptfs_find_auth_tok_for_sig
1016  * @auth_tok: Set to the matching auth_tok; NULL if not found
1017  * @crypt_stat: inode crypt_stat crypto context
1018  * @sig: Sig of auth_tok to find
1019  *
1020  * For now, this function simply looks at the registered auth_tok's
1021  * linked off the mount_crypt_stat, so all the auth_toks that can be
1022  * used must be registered at mount time. This function could
1023  * potentially try a lot harder to find auth_tok's (e.g., by calling
1024  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
1025  * that static registration of auth_tok's will no longer be necessary.
1026  *
1027  * Returns zero on no error; non-zero on error
1028  */
1029 static int
1030 ecryptfs_find_auth_tok_for_sig(
1031         struct ecryptfs_auth_tok **auth_tok,
1032         struct ecryptfs_crypt_stat *crypt_stat, char *sig)
1033 {
1034         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1035                 crypt_stat->mount_crypt_stat;
1036         struct ecryptfs_global_auth_tok *global_auth_tok;
1037         int rc = 0;
1038
1039         (*auth_tok) = NULL;
1040         if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
1041                                                   mount_crypt_stat, sig)) {
1042                 struct key *auth_tok_key;
1043
1044                 rc = ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key, auth_tok,
1045                                                        sig);
1046         } else
1047                 (*auth_tok) = global_auth_tok->global_auth_tok;
1048         return rc;
1049 }
1050
1051 /**
1052  * decrypt_passphrase_encrypted_session_key - Decrypt the session key
1053  * with the given auth_tok.
1054  *
1055  * Returns Zero on success; non-zero error otherwise.
1056  */
1057 static int
1058 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1059                                          struct ecryptfs_crypt_stat *crypt_stat)
1060 {
1061         struct scatterlist dst_sg;
1062         struct scatterlist src_sg;
1063         struct mutex *tfm_mutex = NULL;
1064         struct blkcipher_desc desc = {
1065                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
1066         };
1067         int rc = 0;
1068
1069         if (unlikely(ecryptfs_verbosity > 0)) {
1070                 ecryptfs_printk(
1071                         KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1072                         auth_tok->token.password.session_key_encryption_key_bytes);
1073                 ecryptfs_dump_hex(
1074                         auth_tok->token.password.session_key_encryption_key,
1075                         auth_tok->token.password.session_key_encryption_key_bytes);
1076         }
1077         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1078                                                         crypt_stat->cipher);
1079         if (unlikely(rc)) {
1080                 printk(KERN_ERR "Internal error whilst attempting to get "
1081                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1082                        crypt_stat->cipher, rc);
1083                 goto out;
1084         }
1085         if ((rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1086                                       auth_tok->session_key.encrypted_key_size,
1087                                       &src_sg, 1)) != 1) {
1088                 printk(KERN_ERR "Internal error whilst attempting to convert "
1089                         "auth_tok->session_key.encrypted_key to scatterlist; "
1090                         "expected rc = 1; got rc = [%d]. "
1091                        "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1092                         auth_tok->session_key.encrypted_key_size);
1093                 goto out;
1094         }
1095         auth_tok->session_key.decrypted_key_size =
1096                 auth_tok->session_key.encrypted_key_size;
1097         if ((rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1098                                       auth_tok->session_key.decrypted_key_size,
1099                                       &dst_sg, 1)) != 1) {
1100                 printk(KERN_ERR "Internal error whilst attempting to convert "
1101                         "auth_tok->session_key.decrypted_key to scatterlist; "
1102                         "expected rc = 1; got rc = [%d]\n", rc);
1103                 goto out;
1104         }
1105         mutex_lock(tfm_mutex);
1106         rc = crypto_blkcipher_setkey(
1107                 desc.tfm, auth_tok->token.password.session_key_encryption_key,
1108                 crypt_stat->key_size);
1109         if (unlikely(rc < 0)) {
1110                 mutex_unlock(tfm_mutex);
1111                 printk(KERN_ERR "Error setting key for crypto context\n");
1112                 rc = -EINVAL;
1113                 goto out;
1114         }
1115         rc = crypto_blkcipher_decrypt(&desc, &dst_sg, &src_sg,
1116                                       auth_tok->session_key.encrypted_key_size);
1117         mutex_unlock(tfm_mutex);
1118         if (unlikely(rc)) {
1119                 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1120                 goto out;
1121         }
1122         auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1123         memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1124                auth_tok->session_key.decrypted_key_size);
1125         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1126         if (unlikely(ecryptfs_verbosity > 0)) {
1127                 ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
1128                                 crypt_stat->key_size);
1129                 ecryptfs_dump_hex(crypt_stat->key,
1130                                   crypt_stat->key_size);
1131         }
1132 out:
1133         return rc;
1134 }
1135
1136 int ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1137 {
1138         int rc = 0;
1139
1140         (*sig) = NULL;
1141         switch (auth_tok->token_type) {
1142         case ECRYPTFS_PASSWORD:
1143                 (*sig) = auth_tok->token.password.signature;
1144                 break;
1145         case ECRYPTFS_PRIVATE_KEY:
1146                 (*sig) = auth_tok->token.private_key.signature;
1147                 break;
1148         default:
1149                 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1150                        auth_tok->token_type);
1151                 rc = -EINVAL;
1152         }
1153         return rc;
1154 }
1155
1156 /**
1157  * ecryptfs_parse_packet_set
1158  * @dest: The header page in memory
1159  * @version: Version of file format, to guide parsing behavior
1160  *
1161  * Get crypt_stat to have the file's session key if the requisite key
1162  * is available to decrypt the session key.
1163  *
1164  * Returns Zero if a valid authentication token was retrieved and
1165  * processed; negative value for file not encrypted or for error
1166  * conditions.
1167  */
1168 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1169                               unsigned char *src,
1170                               struct dentry *ecryptfs_dentry)
1171 {
1172         size_t i = 0;
1173         size_t found_auth_tok;
1174         size_t next_packet_is_auth_tok_packet;
1175         struct list_head auth_tok_list;
1176         struct ecryptfs_auth_tok *matching_auth_tok = NULL;
1177         struct ecryptfs_auth_tok *candidate_auth_tok = NULL;
1178         char *candidate_auth_tok_sig;
1179         size_t packet_size;
1180         struct ecryptfs_auth_tok *new_auth_tok;
1181         unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1182         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1183         size_t tag_11_contents_size;
1184         size_t tag_11_packet_size;
1185         int rc = 0;
1186
1187         INIT_LIST_HEAD(&auth_tok_list);
1188         /* Parse the header to find as many packets as we can; these will be
1189          * added the our &auth_tok_list */
1190         next_packet_is_auth_tok_packet = 1;
1191         while (next_packet_is_auth_tok_packet) {
1192                 size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1193
1194                 switch (src[i]) {
1195                 case ECRYPTFS_TAG_3_PACKET_TYPE:
1196                         rc = parse_tag_3_packet(crypt_stat,
1197                                                 (unsigned char *)&src[i],
1198                                                 &auth_tok_list, &new_auth_tok,
1199                                                 &packet_size, max_packet_size);
1200                         if (rc) {
1201                                 ecryptfs_printk(KERN_ERR, "Error parsing "
1202                                                 "tag 3 packet\n");
1203                                 rc = -EIO;
1204                                 goto out_wipe_list;
1205                         }
1206                         i += packet_size;
1207                         rc = parse_tag_11_packet((unsigned char *)&src[i],
1208                                                  sig_tmp_space,
1209                                                  ECRYPTFS_SIG_SIZE,
1210                                                  &tag_11_contents_size,
1211                                                  &tag_11_packet_size,
1212                                                  max_packet_size);
1213                         if (rc) {
1214                                 ecryptfs_printk(KERN_ERR, "No valid "
1215                                                 "(ecryptfs-specific) literal "
1216                                                 "packet containing "
1217                                                 "authentication token "
1218                                                 "signature found after "
1219                                                 "tag 3 packet\n");
1220                                 rc = -EIO;
1221                                 goto out_wipe_list;
1222                         }
1223                         i += tag_11_packet_size;
1224                         if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1225                                 ecryptfs_printk(KERN_ERR, "Expected "
1226                                                 "signature of size [%d]; "
1227                                                 "read size [%d]\n",
1228                                                 ECRYPTFS_SIG_SIZE,
1229                                                 tag_11_contents_size);
1230                                 rc = -EIO;
1231                                 goto out_wipe_list;
1232                         }
1233                         ecryptfs_to_hex(new_auth_tok->token.password.signature,
1234                                         sig_tmp_space, tag_11_contents_size);
1235                         new_auth_tok->token.password.signature[
1236                                 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1237                         crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1238                         break;
1239                 case ECRYPTFS_TAG_1_PACKET_TYPE:
1240                         rc = parse_tag_1_packet(crypt_stat,
1241                                                 (unsigned char *)&src[i],
1242                                                 &auth_tok_list, &new_auth_tok,
1243                                                 &packet_size, max_packet_size);
1244                         if (rc) {
1245                                 ecryptfs_printk(KERN_ERR, "Error parsing "
1246                                                 "tag 1 packet\n");
1247                                 rc = -EIO;
1248                                 goto out_wipe_list;
1249                         }
1250                         i += packet_size;
1251                         crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1252                         break;
1253                 case ECRYPTFS_TAG_11_PACKET_TYPE:
1254                         ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1255                                         "(Tag 11 not allowed by itself)\n");
1256                         rc = -EIO;
1257                         goto out_wipe_list;
1258                         break;
1259                 default:
1260                         ecryptfs_printk(KERN_DEBUG, "No packet at offset "
1261                                         "[%d] of the file header; hex value of "
1262                                         "character is [0x%.2x]\n", i, src[i]);
1263                         next_packet_is_auth_tok_packet = 0;
1264                 }
1265         }
1266         if (list_empty(&auth_tok_list)) {
1267                 printk(KERN_ERR "The lower file appears to be a non-encrypted "
1268                        "eCryptfs file; this is not supported in this version "
1269                        "of the eCryptfs kernel module\n");
1270                 rc = -EINVAL;
1271                 goto out;
1272         }
1273         /* auth_tok_list contains the set of authentication tokens
1274          * parsed from the metadata. We need to find a matching
1275          * authentication token that has the secret component(s)
1276          * necessary to decrypt the EFEK in the auth_tok parsed from
1277          * the metadata. There may be several potential matches, but
1278          * just one will be sufficient to decrypt to get the FEK. */
1279 find_next_matching_auth_tok:
1280         found_auth_tok = 0;
1281         list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1282                 candidate_auth_tok = &auth_tok_list_item->auth_tok;
1283                 if (unlikely(ecryptfs_verbosity > 0)) {
1284                         ecryptfs_printk(KERN_DEBUG,
1285                                         "Considering cadidate auth tok:\n");
1286                         ecryptfs_dump_auth_tok(candidate_auth_tok);
1287                 }
1288                 if ((rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1289                                                     candidate_auth_tok))) {
1290                         printk(KERN_ERR
1291                                "Unrecognized candidate auth tok type: [%d]\n",
1292                                candidate_auth_tok->token_type);
1293                         rc = -EINVAL;
1294                         goto out_wipe_list;
1295                 }
1296                 if ((rc = ecryptfs_find_auth_tok_for_sig(
1297                              &matching_auth_tok, crypt_stat,
1298                              candidate_auth_tok_sig)))
1299                         rc = 0;
1300                 if (matching_auth_tok) {
1301                         found_auth_tok = 1;
1302                         goto found_matching_auth_tok;
1303                 }
1304         }
1305         if (!found_auth_tok) {
1306                 ecryptfs_printk(KERN_ERR, "Could not find a usable "
1307                                 "authentication token\n");
1308                 rc = -EIO;
1309                 goto out_wipe_list;
1310         }
1311 found_matching_auth_tok:
1312         if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1313                 memcpy(&(candidate_auth_tok->token.private_key),
1314                        &(matching_auth_tok->token.private_key),
1315                        sizeof(struct ecryptfs_private_key));
1316                 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1317                                                        crypt_stat);
1318         } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1319                 memcpy(&(candidate_auth_tok->token.password),
1320                        &(matching_auth_tok->token.password),
1321                        sizeof(struct ecryptfs_password));
1322                 rc = decrypt_passphrase_encrypted_session_key(
1323                         candidate_auth_tok, crypt_stat);
1324         }
1325         if (rc) {
1326                 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1327
1328                 ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1329                                 "session key for authentication token with sig "
1330                                 "[%.*s]; rc = [%d]. Removing auth tok "
1331                                 "candidate from the list and searching for "
1332                                 "the next match.\n", candidate_auth_tok_sig,
1333                                 ECRYPTFS_SIG_SIZE_HEX, rc);
1334                 list_for_each_entry_safe(auth_tok_list_item,
1335                                          auth_tok_list_item_tmp,
1336                                          &auth_tok_list, list) {
1337                         if (candidate_auth_tok
1338                             == &auth_tok_list_item->auth_tok) {
1339                                 list_del(&auth_tok_list_item->list);
1340                                 kmem_cache_free(
1341                                         ecryptfs_auth_tok_list_item_cache,
1342                                         auth_tok_list_item);
1343                                 goto find_next_matching_auth_tok;
1344                         }
1345                 }
1346                 BUG();
1347         }
1348         rc = ecryptfs_compute_root_iv(crypt_stat);
1349         if (rc) {
1350                 ecryptfs_printk(KERN_ERR, "Error computing "
1351                                 "the root IV\n");
1352                 goto out_wipe_list;
1353         }
1354         rc = ecryptfs_init_crypt_ctx(crypt_stat);
1355         if (rc) {
1356                 ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1357                                 "context for cipher [%s]; rc = [%d]\n",
1358                                 crypt_stat->cipher, rc);
1359         }
1360 out_wipe_list:
1361         wipe_auth_tok_list(&auth_tok_list);
1362 out:
1363         return rc;
1364 }
1365
1366 static int
1367 pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
1368                         struct ecryptfs_crypt_stat *crypt_stat,
1369                         struct ecryptfs_key_record *key_rec)
1370 {
1371         struct ecryptfs_msg_ctx *msg_ctx = NULL;
1372         char *netlink_payload;
1373         size_t netlink_payload_length;
1374         struct ecryptfs_message *msg;
1375         int rc;
1376
1377         rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1378                                  ecryptfs_code_for_cipher_string(crypt_stat),
1379                                  crypt_stat, &netlink_payload,
1380                                  &netlink_payload_length);
1381         if (rc) {
1382                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1383                 goto out;
1384         }
1385         rc = ecryptfs_send_message(ecryptfs_transport, netlink_payload,
1386                                    netlink_payload_length, &msg_ctx);
1387         if (rc) {
1388                 ecryptfs_printk(KERN_ERR, "Error sending netlink message\n");
1389                 goto out;
1390         }
1391         rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1392         if (rc) {
1393                 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1394                                 "from the user space daemon\n");
1395                 rc = -EIO;
1396                 goto out;
1397         }
1398         rc = parse_tag_67_packet(key_rec, msg);
1399         if (rc)
1400                 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1401         kfree(msg);
1402 out:
1403         if (netlink_payload)
1404                 kfree(netlink_payload);
1405         return rc;
1406 }
1407 /**
1408  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1409  * @dest: Buffer into which to write the packet
1410  * @max: Maximum number of bytes that can be writtn
1411  * @packet_size: This function will write the number of bytes that end
1412  *               up constituting the packet; set to zero on error
1413  *
1414  * Returns zero on success; non-zero on error.
1415  */
1416 static int
1417 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1418                    struct ecryptfs_auth_tok *auth_tok,
1419                    struct ecryptfs_crypt_stat *crypt_stat,
1420                    struct ecryptfs_key_record *key_rec, size_t *packet_size)
1421 {
1422         size_t i;
1423         size_t encrypted_session_key_valid = 0;
1424         size_t packet_size_length;
1425         size_t max_packet_size;
1426         int rc = 0;
1427
1428         (*packet_size) = 0;
1429         ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1430                           ECRYPTFS_SIG_SIZE);
1431         encrypted_session_key_valid = 0;
1432         for (i = 0; i < crypt_stat->key_size; i++)
1433                 encrypted_session_key_valid |=
1434                         auth_tok->session_key.encrypted_key[i];
1435         if (encrypted_session_key_valid) {
1436                 memcpy(key_rec->enc_key,
1437                        auth_tok->session_key.encrypted_key,
1438                        auth_tok->session_key.encrypted_key_size);
1439                 goto encrypted_session_key_set;
1440         }
1441         if (auth_tok->session_key.encrypted_key_size == 0)
1442                 auth_tok->session_key.encrypted_key_size =
1443                         auth_tok->token.private_key.key_size;
1444         rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
1445         if (rc) {
1446                 ecryptfs_printk(KERN_ERR, "Failed to encrypt session key "
1447                                 "via a pki");
1448                 goto out;
1449         }
1450         if (ecryptfs_verbosity > 0) {
1451                 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
1452                 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
1453         }
1454 encrypted_session_key_set:
1455         /* This format is inspired by OpenPGP; see RFC 2440
1456          * packet tag 1 */
1457         max_packet_size = (1                         /* Tag 1 identifier */
1458                            + 3                       /* Max Tag 1 packet size */
1459                            + 1                       /* Version */
1460                            + ECRYPTFS_SIG_SIZE       /* Key identifier */
1461                            + 1                       /* Cipher identifier */
1462                            + key_rec->enc_key_size); /* Encrypted key size */
1463         if (max_packet_size > (*remaining_bytes)) {
1464                 printk(KERN_ERR "Packet length larger than maximum allowable; "
1465                        "need up to [%d] bytes, but there are only [%d] "
1466                        "available\n", max_packet_size, (*remaining_bytes));
1467                 rc = -EINVAL;
1468                 goto out;
1469         }
1470         dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
1471         rc = write_packet_length(&dest[(*packet_size)], (max_packet_size - 4),
1472                                  &packet_size_length);
1473         if (rc) {
1474                 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
1475                                 "header; cannot generate packet length\n");
1476                 goto out;
1477         }
1478         (*packet_size) += packet_size_length;
1479         dest[(*packet_size)++] = 0x03; /* version 3 */
1480         memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
1481         (*packet_size) += ECRYPTFS_SIG_SIZE;
1482         dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
1483         memcpy(&dest[(*packet_size)], key_rec->enc_key,
1484                key_rec->enc_key_size);
1485         (*packet_size) += key_rec->enc_key_size;
1486 out:
1487         if (rc)
1488                 (*packet_size) = 0;
1489         else
1490                 (*remaining_bytes) -= (*packet_size);
1491         return rc;
1492 }
1493
1494 /**
1495  * write_tag_11_packet
1496  * @dest: Target into which Tag 11 packet is to be written
1497  * @max: Maximum packet length
1498  * @contents: Byte array of contents to copy in
1499  * @contents_length: Number of bytes in contents
1500  * @packet_length: Length of the Tag 11 packet written; zero on error
1501  *
1502  * Returns zero on success; non-zero on error.
1503  */
1504 static int
1505 write_tag_11_packet(char *dest, int max, char *contents, size_t contents_length,
1506                     size_t *packet_length)
1507 {
1508         size_t packet_size_length;
1509         int rc = 0;
1510
1511         (*packet_length) = 0;
1512         if ((13 + contents_length) > max) {
1513                 rc = -EINVAL;
1514                 ecryptfs_printk(KERN_ERR, "Packet length larger than "
1515                                 "maximum allowable\n");
1516                 goto out;
1517         }
1518         /* General packet header */
1519         /* Packet tag */
1520         dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
1521         /* Packet length */
1522         rc = write_packet_length(&dest[(*packet_length)],
1523                                  (13 + contents_length), &packet_size_length);
1524         if (rc) {
1525                 ecryptfs_printk(KERN_ERR, "Error generating tag 11 packet "
1526                                 "header; cannot generate packet length\n");
1527                 goto out;
1528         }
1529         (*packet_length) += packet_size_length;
1530         /* Tag 11 specific */
1531         /* One-octet field that describes how the data is formatted */
1532         dest[(*packet_length)++] = 0x62; /* binary data */
1533         /* One-octet filename length followed by filename */
1534         dest[(*packet_length)++] = 8;
1535         memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
1536         (*packet_length) += 8;
1537         /* Four-octet number indicating modification date */
1538         memset(&dest[(*packet_length)], 0x00, 4);
1539         (*packet_length) += 4;
1540         /* Remainder is literal data */
1541         memcpy(&dest[(*packet_length)], contents, contents_length);
1542         (*packet_length) += contents_length;
1543  out:
1544         if (rc)
1545                 (*packet_length) = 0;
1546         return rc;
1547 }
1548
1549 /**
1550  * write_tag_3_packet
1551  * @dest: Buffer into which to write the packet
1552  * @max: Maximum number of bytes that can be written
1553  * @auth_tok: Authentication token
1554  * @crypt_stat: The cryptographic context
1555  * @key_rec: encrypted key
1556  * @packet_size: This function will write the number of bytes that end
1557  *               up constituting the packet; set to zero on error
1558  *
1559  * Returns zero on success; non-zero on error.
1560  */
1561 static int
1562 write_tag_3_packet(char *dest, size_t *remaining_bytes,
1563                    struct ecryptfs_auth_tok *auth_tok,
1564                    struct ecryptfs_crypt_stat *crypt_stat,
1565                    struct ecryptfs_key_record *key_rec, size_t *packet_size)
1566 {
1567         size_t i;
1568         size_t encrypted_session_key_valid = 0;
1569         char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
1570         struct scatterlist dst_sg;
1571         struct scatterlist src_sg;
1572         struct mutex *tfm_mutex = NULL;
1573         size_t cipher_code;
1574         size_t packet_size_length;
1575         size_t max_packet_size;
1576         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1577                 crypt_stat->mount_crypt_stat;
1578         struct blkcipher_desc desc = {
1579                 .tfm = NULL,
1580                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
1581         };
1582         int rc = 0;
1583
1584         (*packet_size) = 0;
1585         ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
1586                           ECRYPTFS_SIG_SIZE);
1587         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1588                                                         crypt_stat->cipher);
1589         if (unlikely(rc)) {
1590                 printk(KERN_ERR "Internal error whilst attempting to get "
1591                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1592                        crypt_stat->cipher, rc);
1593                 goto out;
1594         }
1595         if (mount_crypt_stat->global_default_cipher_key_size == 0) {
1596                 struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
1597
1598                 printk(KERN_WARNING "No key size specified at mount; "
1599                        "defaulting to [%d]\n", alg->max_keysize);
1600                 mount_crypt_stat->global_default_cipher_key_size =
1601                         alg->max_keysize;
1602         }
1603         if (crypt_stat->key_size == 0)
1604                 crypt_stat->key_size =
1605                         mount_crypt_stat->global_default_cipher_key_size;
1606         if (auth_tok->session_key.encrypted_key_size == 0)
1607                 auth_tok->session_key.encrypted_key_size =
1608                         crypt_stat->key_size;
1609         if (crypt_stat->key_size == 24
1610             && strcmp("aes", crypt_stat->cipher) == 0) {
1611                 memset((crypt_stat->key + 24), 0, 8);
1612                 auth_tok->session_key.encrypted_key_size = 32;
1613         } else
1614                 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
1615         key_rec->enc_key_size =
1616                 auth_tok->session_key.encrypted_key_size;
1617         encrypted_session_key_valid = 0;
1618         for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
1619                 encrypted_session_key_valid |=
1620                         auth_tok->session_key.encrypted_key[i];
1621         if (encrypted_session_key_valid) {
1622                 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
1623                                 "using auth_tok->session_key.encrypted_key, "
1624                                 "where key_rec->enc_key_size = [%d]\n",
1625                                 key_rec->enc_key_size);
1626                 memcpy(key_rec->enc_key,
1627                        auth_tok->session_key.encrypted_key,
1628                        key_rec->enc_key_size);
1629                 goto encrypted_session_key_set;
1630         }
1631         if (auth_tok->token.password.flags &
1632             ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
1633                 ecryptfs_printk(KERN_DEBUG, "Using previously generated "
1634                                 "session key encryption key of size [%d]\n",
1635                                 auth_tok->token.password.
1636                                 session_key_encryption_key_bytes);
1637                 memcpy(session_key_encryption_key,
1638                        auth_tok->token.password.session_key_encryption_key,
1639                        crypt_stat->key_size);
1640                 ecryptfs_printk(KERN_DEBUG,
1641                                 "Cached session key " "encryption key: \n");
1642                 if (ecryptfs_verbosity > 0)
1643                         ecryptfs_dump_hex(session_key_encryption_key, 16);
1644         }
1645         if (unlikely(ecryptfs_verbosity > 0)) {
1646                 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
1647                 ecryptfs_dump_hex(session_key_encryption_key, 16);
1648         }
1649         if ((rc = virt_to_scatterlist(crypt_stat->key,
1650                                       key_rec->enc_key_size, &src_sg, 1))
1651             != 1) {
1652                 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
1653                                 "for crypt_stat session key; expected rc = 1; "
1654                                 "got rc = [%d]. key_rec->enc_key_size = [%d]\n",
1655                                 rc, key_rec->enc_key_size);
1656                 rc = -ENOMEM;
1657                 goto out;
1658         }
1659         if ((rc = virt_to_scatterlist(key_rec->enc_key,
1660                                       key_rec->enc_key_size, &dst_sg, 1))
1661             != 1) {
1662                 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
1663                                 "for crypt_stat encrypted session key; "
1664                                 "expected rc = 1; got rc = [%d]. "
1665                                 "key_rec->enc_key_size = [%d]\n", rc,
1666                                 key_rec->enc_key_size);
1667                 rc = -ENOMEM;
1668                 goto out;
1669         }
1670         mutex_lock(tfm_mutex);
1671         rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
1672                                      crypt_stat->key_size);
1673         if (rc < 0) {
1674                 mutex_unlock(tfm_mutex);
1675                 ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
1676                                 "context; rc = [%d]\n", rc);
1677                 goto out;
1678         }
1679         rc = 0;
1680         ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
1681                         crypt_stat->key_size);
1682         rc = crypto_blkcipher_encrypt(&desc, &dst_sg, &src_sg,
1683                                       (*key_rec).enc_key_size);
1684         mutex_unlock(tfm_mutex);
1685         if (rc) {
1686                 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
1687                 goto out;
1688         }
1689         ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
1690         if (ecryptfs_verbosity > 0) {
1691                 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
1692                                 key_rec->enc_key_size);
1693                 ecryptfs_dump_hex(key_rec->enc_key,
1694                                   key_rec->enc_key_size);
1695         }
1696 encrypted_session_key_set:
1697         /* This format is inspired by OpenPGP; see RFC 2440
1698          * packet tag 3 */
1699         max_packet_size = (1                         /* Tag 3 identifier */
1700                            + 3                       /* Max Tag 3 packet size */
1701                            + 1                       /* Version */
1702                            + 1                       /* Cipher code */
1703                            + 1                       /* S2K specifier */
1704                            + 1                       /* Hash identifier */
1705                            + ECRYPTFS_SALT_SIZE      /* Salt */
1706                            + 1                       /* Hash iterations */
1707                            + key_rec->enc_key_size); /* Encrypted key size */
1708         if (max_packet_size > (*remaining_bytes)) {
1709                 printk(KERN_ERR "Packet too large; need up to [%d] bytes, but "
1710                        "there are only [%d] available\n", max_packet_size,
1711                        (*remaining_bytes));
1712                 rc = -EINVAL;
1713                 goto out;
1714         }
1715         dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
1716         /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
1717          * to get the number of octets in the actual Tag 3 packet */
1718         rc = write_packet_length(&dest[(*packet_size)], (max_packet_size - 4),
1719                                  &packet_size_length);
1720         if (rc) {
1721                 printk(KERN_ERR "Error generating tag 3 packet header; cannot "
1722                        "generate packet length. rc = [%d]\n", rc);
1723                 goto out;
1724         }
1725         (*packet_size) += packet_size_length;
1726         dest[(*packet_size)++] = 0x04; /* version 4 */
1727         /* TODO: Break from RFC2440 so that arbitrary ciphers can be
1728          * specified with strings */
1729         cipher_code = ecryptfs_code_for_cipher_string(crypt_stat);
1730         if (cipher_code == 0) {
1731                 ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
1732                                 "cipher [%s]\n", crypt_stat->cipher);
1733                 rc = -EINVAL;
1734                 goto out;
1735         }
1736         dest[(*packet_size)++] = cipher_code;
1737         dest[(*packet_size)++] = 0x03;  /* S2K */
1738         dest[(*packet_size)++] = 0x01;  /* MD5 (TODO: parameterize) */
1739         memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
1740                ECRYPTFS_SALT_SIZE);
1741         (*packet_size) += ECRYPTFS_SALT_SIZE;   /* salt */
1742         dest[(*packet_size)++] = 0x60;  /* hash iterations (65536) */
1743         memcpy(&dest[(*packet_size)], key_rec->enc_key,
1744                key_rec->enc_key_size);
1745         (*packet_size) += key_rec->enc_key_size;
1746 out:
1747         if (rc)
1748                 (*packet_size) = 0;
1749         else
1750                 (*remaining_bytes) -= (*packet_size);
1751         return rc;
1752 }
1753
1754 struct kmem_cache *ecryptfs_key_record_cache;
1755
1756 /**
1757  * ecryptfs_generate_key_packet_set
1758  * @dest: Virtual address from which to write the key record set
1759  * @crypt_stat: The cryptographic context from which the
1760  *              authentication tokens will be retrieved
1761  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
1762  *                   for the global parameters
1763  * @len: The amount written
1764  * @max: The maximum amount of data allowed to be written
1765  *
1766  * Generates a key packet set and writes it to the virtual address
1767  * passed in.
1768  *
1769  * Returns zero on success; non-zero on error.
1770  */
1771 int
1772 ecryptfs_generate_key_packet_set(char *dest_base,
1773                                  struct ecryptfs_crypt_stat *crypt_stat,
1774                                  struct dentry *ecryptfs_dentry, size_t *len,
1775                                  size_t max)
1776 {
1777         struct ecryptfs_auth_tok *auth_tok;
1778         struct ecryptfs_global_auth_tok *global_auth_tok;
1779         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1780                 &ecryptfs_superblock_to_private(
1781                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
1782         size_t written;
1783         struct ecryptfs_key_record *key_rec;
1784         struct ecryptfs_key_sig *key_sig;
1785         int rc = 0;
1786
1787         (*len) = 0;
1788         mutex_lock(&crypt_stat->keysig_list_mutex);
1789         key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
1790         if (!key_rec) {
1791                 rc = -ENOMEM;
1792                 goto out;
1793         }
1794         list_for_each_entry(key_sig, &crypt_stat->keysig_list,
1795                             crypt_stat_list) {
1796                 memset(key_rec, 0, sizeof(*key_rec));
1797                 rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
1798                                                            mount_crypt_stat,
1799                                                            key_sig->keysig);
1800                 if (rc) {
1801                         printk(KERN_ERR "Error attempting to get the global "
1802                                "auth_tok; rc = [%d]\n", rc);
1803                         goto out_free;
1804                 }
1805                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
1806                         printk(KERN_WARNING
1807                                "Skipping invalid auth tok with sig = [%s]\n",
1808                                global_auth_tok->sig);
1809                         continue;
1810                 }
1811                 auth_tok = global_auth_tok->global_auth_tok;
1812                 if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
1813                         rc = write_tag_3_packet((dest_base + (*len)),
1814                                                 &max, auth_tok,
1815                                                 crypt_stat, key_rec,
1816                                                 &written);
1817                         if (rc) {
1818                                 ecryptfs_printk(KERN_WARNING, "Error "
1819                                                 "writing tag 3 packet\n");
1820                                 goto out_free;
1821                         }
1822                         (*len) += written;
1823                         /* Write auth tok signature packet */
1824                         rc = write_tag_11_packet((dest_base + (*len)), &max,
1825                                                  key_rec->sig,
1826                                                  ECRYPTFS_SIG_SIZE, &written);
1827                         if (rc) {
1828                                 ecryptfs_printk(KERN_ERR, "Error writing "
1829                                                 "auth tok signature packet\n");
1830                                 goto out_free;
1831                         }
1832                         (*len) += written;
1833                 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1834                         rc = write_tag_1_packet(dest_base + (*len),
1835                                                 &max, auth_tok,
1836                                                 crypt_stat, key_rec, &written);
1837                         if (rc) {
1838                                 ecryptfs_printk(KERN_WARNING, "Error "
1839                                                 "writing tag 1 packet\n");
1840                                 goto out_free;
1841                         }
1842                         (*len) += written;
1843                 } else {
1844                         ecryptfs_printk(KERN_WARNING, "Unsupported "
1845                                         "authentication token type\n");
1846                         rc = -EINVAL;
1847                         goto out_free;
1848                 }
1849         }
1850         if (likely(max > 0)) {
1851                 dest_base[(*len)] = 0x00;
1852         } else {
1853                 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
1854                 rc = -EIO;
1855         }
1856 out_free:
1857         kmem_cache_free(ecryptfs_key_record_cache, key_rec);
1858 out:
1859         if (rc)
1860                 (*len) = 0;
1861         mutex_unlock(&crypt_stat->keysig_list_mutex);
1862         return rc;
1863 }
1864
1865 struct kmem_cache *ecryptfs_key_sig_cache;
1866
1867 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
1868 {
1869         struct ecryptfs_key_sig *new_key_sig;
1870         int rc = 0;
1871
1872         new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
1873         if (!new_key_sig) {
1874                 rc = -ENOMEM;
1875                 printk(KERN_ERR
1876                        "Error allocating from ecryptfs_key_sig_cache\n");
1877                 goto out;
1878         }
1879         memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
1880         mutex_lock(&crypt_stat->keysig_list_mutex);
1881         list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
1882         mutex_unlock(&crypt_stat->keysig_list_mutex);
1883 out:
1884         return rc;
1885 }
1886
1887 struct kmem_cache *ecryptfs_global_auth_tok_cache;
1888
1889 int
1890 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1891                              char *sig)
1892 {
1893         struct ecryptfs_global_auth_tok *new_auth_tok;
1894         int rc = 0;
1895
1896         new_auth_tok = kmem_cache_alloc(ecryptfs_global_auth_tok_cache,
1897                                         GFP_KERNEL);
1898         if (!new_auth_tok) {
1899                 rc = -ENOMEM;
1900                 printk(KERN_ERR "Error allocating from "
1901                        "ecryptfs_global_auth_tok_cache\n");
1902                 goto out;
1903         }
1904         memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
1905         new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
1906         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
1907         list_add(&new_auth_tok->mount_crypt_stat_list,
1908                  &mount_crypt_stat->global_auth_tok_list);
1909         mount_crypt_stat->num_global_auth_toks++;
1910         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
1911 out:
1912         return rc;
1913 }
1914