[PATCH] eCryptfs: Cipher code to new crypto API
[safe/jmp/linux-2.6] / fs / ecryptfs / crypto.c
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2006 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *              Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include "ecryptfs_kernel.h"
37
38 static int
39 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
40                              struct page *dst_page, int dst_offset,
41                              struct page *src_page, int src_offset, int size,
42                              unsigned char *iv);
43 static int
44 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
45                              struct page *dst_page, int dst_offset,
46                              struct page *src_page, int src_offset, int size,
47                              unsigned char *iv);
48
49 /**
50  * ecryptfs_to_hex
51  * @dst: Buffer to take hex character representation of contents of
52  *       src; must be at least of size (src_size * 2)
53  * @src: Buffer to be converted to a hex string respresentation
54  * @src_size: number of bytes to convert
55  */
56 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
57 {
58         int x;
59
60         for (x = 0; x < src_size; x++)
61                 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
62 }
63
64 /**
65  * ecryptfs_from_hex
66  * @dst: Buffer to take the bytes from src hex; must be at least of
67  *       size (src_size / 2)
68  * @src: Buffer to be converted from a hex string respresentation to raw value
69  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
70  */
71 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
72 {
73         int x;
74         char tmp[3] = { 0, };
75
76         for (x = 0; x < dst_size; x++) {
77                 tmp[0] = src[x * 2];
78                 tmp[1] = src[x * 2 + 1];
79                 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
80         }
81 }
82
83 /**
84  * ecryptfs_calculate_md5 - calculates the md5 of @src
85  * @dst: Pointer to 16 bytes of allocated memory
86  * @crypt_stat: Pointer to crypt_stat struct for the current inode
87  * @src: Data to be md5'd
88  * @len: Length of @src
89  *
90  * Uses the allocated crypto context that crypt_stat references to
91  * generate the MD5 sum of the contents of src.
92  */
93 static int ecryptfs_calculate_md5(char *dst,
94                                   struct ecryptfs_crypt_stat *crypt_stat,
95                                   char *src, int len)
96 {
97         struct scatterlist sg;
98         struct hash_desc desc = {
99                 .tfm = crypt_stat->hash_tfm,
100                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
101         };
102         int rc = 0;
103
104         mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
105         sg_init_one(&sg, (u8 *)src, len);
106         if (!desc.tfm) {
107                 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
108                                              CRYPTO_ALG_ASYNC);
109                 if (IS_ERR(desc.tfm)) {
110                         rc = PTR_ERR(desc.tfm);
111                         ecryptfs_printk(KERN_ERR, "Error attempting to "
112                                         "allocate crypto context; rc = [%d]\n",
113                                         rc);
114                         goto out;
115                 }
116                 crypt_stat->hash_tfm = desc.tfm;
117         }
118         crypto_hash_init(&desc);
119         crypto_hash_update(&desc, &sg, len);
120         crypto_hash_final(&desc, dst);
121         mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
122 out:
123         return rc;
124 }
125
126 int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
127                                            char *cipher_name,
128                                            char *chaining_modifier)
129 {
130         int cipher_name_len = strlen(cipher_name);
131         int chaining_modifier_len = strlen(chaining_modifier);
132         int algified_name_len;
133         int rc;
134
135         algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
136         (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
137         if (!(algified_name)) {
138                 rc = -ENOMEM;
139                 goto out;
140         }
141         snprintf((*algified_name), algified_name_len, "%s(%s)",
142                  chaining_modifier, cipher_name);
143         rc = 0;
144 out:
145         return rc;
146 }
147
148 /**
149  * ecryptfs_derive_iv
150  * @iv: destination for the derived iv vale
151  * @crypt_stat: Pointer to crypt_stat struct for the current inode
152  * @offset: Offset of the page whose's iv we are to derive
153  *
154  * Generate the initialization vector from the given root IV and page
155  * offset.
156  *
157  * Returns zero on success; non-zero on error.
158  */
159 static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
160                               pgoff_t offset)
161 {
162         int rc = 0;
163         char dst[MD5_DIGEST_SIZE];
164         char src[ECRYPTFS_MAX_IV_BYTES + 16];
165
166         if (unlikely(ecryptfs_verbosity > 0)) {
167                 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
168                 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
169         }
170         /* TODO: It is probably secure to just cast the least
171          * significant bits of the root IV into an unsigned long and
172          * add the offset to that rather than go through all this
173          * hashing business. -Halcrow */
174         memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
175         memset((src + crypt_stat->iv_bytes), 0, 16);
176         snprintf((src + crypt_stat->iv_bytes), 16, "%ld", offset);
177         if (unlikely(ecryptfs_verbosity > 0)) {
178                 ecryptfs_printk(KERN_DEBUG, "source:\n");
179                 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
180         }
181         rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
182                                     (crypt_stat->iv_bytes + 16));
183         if (rc) {
184                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
185                                 "MD5 while generating IV for a page\n");
186                 goto out;
187         }
188         memcpy(iv, dst, crypt_stat->iv_bytes);
189         if (unlikely(ecryptfs_verbosity > 0)) {
190                 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
191                 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
192         }
193 out:
194         return rc;
195 }
196
197 /**
198  * ecryptfs_init_crypt_stat
199  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
200  *
201  * Initialize the crypt_stat structure.
202  */
203 void
204 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
205 {
206         memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
207         mutex_init(&crypt_stat->cs_mutex);
208         mutex_init(&crypt_stat->cs_tfm_mutex);
209         mutex_init(&crypt_stat->cs_hash_tfm_mutex);
210         ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_STRUCT_INITIALIZED);
211 }
212
213 /**
214  * ecryptfs_destruct_crypt_stat
215  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
216  *
217  * Releases all memory associated with a crypt_stat struct.
218  */
219 void ecryptfs_destruct_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
220 {
221         if (crypt_stat->tfm)
222                 crypto_free_blkcipher(crypt_stat->tfm);
223         if (crypt_stat->hash_tfm)
224                 crypto_free_hash(crypt_stat->hash_tfm);
225         memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226 }
227
228 void ecryptfs_destruct_mount_crypt_stat(
229         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
230 {
231         if (mount_crypt_stat->global_auth_tok_key)
232                 key_put(mount_crypt_stat->global_auth_tok_key);
233         if (mount_crypt_stat->global_key_tfm)
234                 crypto_free_blkcipher(mount_crypt_stat->global_key_tfm);
235         memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
236 }
237
238 /**
239  * virt_to_scatterlist
240  * @addr: Virtual address
241  * @size: Size of data; should be an even multiple of the block size
242  * @sg: Pointer to scatterlist array; set to NULL to obtain only
243  *      the number of scatterlist structs required in array
244  * @sg_size: Max array size
245  *
246  * Fills in a scatterlist array with page references for a passed
247  * virtual address.
248  *
249  * Returns the number of scatterlist structs in array used
250  */
251 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
252                         int sg_size)
253 {
254         int i = 0;
255         struct page *pg;
256         int offset;
257         int remainder_of_page;
258
259         while (size > 0 && i < sg_size) {
260                 pg = virt_to_page(addr);
261                 offset = offset_in_page(addr);
262                 if (sg) {
263                         sg[i].page = pg;
264                         sg[i].offset = offset;
265                 }
266                 remainder_of_page = PAGE_CACHE_SIZE - offset;
267                 if (size >= remainder_of_page) {
268                         if (sg)
269                                 sg[i].length = remainder_of_page;
270                         addr += remainder_of_page;
271                         size -= remainder_of_page;
272                 } else {
273                         if (sg)
274                                 sg[i].length = size;
275                         addr += size;
276                         size = 0;
277                 }
278                 i++;
279         }
280         if (size > 0)
281                 return -ENOMEM;
282         return i;
283 }
284
285 /**
286  * encrypt_scatterlist
287  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
288  * @dest_sg: Destination of encrypted data
289  * @src_sg: Data to be encrypted
290  * @size: Length of data to be encrypted
291  * @iv: iv to use during encryption
292  *
293  * Returns the number of bytes encrypted; negative value on error
294  */
295 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
296                                struct scatterlist *dest_sg,
297                                struct scatterlist *src_sg, int size,
298                                unsigned char *iv)
299 {
300         struct blkcipher_desc desc = {
301                 .tfm = crypt_stat->tfm,
302                 .info = iv,
303                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
304         };
305         int rc = 0;
306
307         BUG_ON(!crypt_stat || !crypt_stat->tfm
308                || !ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
309                                        ECRYPTFS_STRUCT_INITIALIZED));
310         if (unlikely(ecryptfs_verbosity > 0)) {
311                 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
312                                 crypt_stat->key_size);
313                 ecryptfs_dump_hex(crypt_stat->key,
314                                   crypt_stat->key_size);
315         }
316         /* Consider doing this once, when the file is opened */
317         mutex_lock(&crypt_stat->cs_tfm_mutex);
318         rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
319                                      crypt_stat->key_size);
320         if (rc) {
321                 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
322                                 rc);
323                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
324                 rc = -EINVAL;
325                 goto out;
326         }
327         ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
328         crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
329         mutex_unlock(&crypt_stat->cs_tfm_mutex);
330 out:
331         return rc;
332 }
333
334 static void
335 ecryptfs_extent_to_lwr_pg_idx_and_offset(unsigned long *lower_page_idx,
336                                          int *byte_offset,
337                                          struct ecryptfs_crypt_stat *crypt_stat,
338                                          unsigned long extent_num)
339 {
340         unsigned long lower_extent_num;
341         int extents_occupied_by_headers_at_front;
342         int bytes_occupied_by_headers_at_front;
343         int extent_offset;
344         int extents_per_page;
345
346         bytes_occupied_by_headers_at_front =
347                 ( crypt_stat->header_extent_size
348                   * crypt_stat->num_header_extents_at_front );
349         extents_occupied_by_headers_at_front =
350                 ( bytes_occupied_by_headers_at_front
351                   / crypt_stat->extent_size );
352         lower_extent_num = extents_occupied_by_headers_at_front + extent_num;
353         extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
354         (*lower_page_idx) = lower_extent_num / extents_per_page;
355         extent_offset = lower_extent_num % extents_per_page;
356         (*byte_offset) = extent_offset * crypt_stat->extent_size;
357         ecryptfs_printk(KERN_DEBUG, " * crypt_stat->header_extent_size = "
358                         "[%d]\n", crypt_stat->header_extent_size);
359         ecryptfs_printk(KERN_DEBUG, " * crypt_stat->"
360                         "num_header_extents_at_front = [%d]\n",
361                         crypt_stat->num_header_extents_at_front);
362         ecryptfs_printk(KERN_DEBUG, " * extents_occupied_by_headers_at_"
363                         "front = [%d]\n", extents_occupied_by_headers_at_front);
364         ecryptfs_printk(KERN_DEBUG, " * lower_extent_num = [0x%.16x]\n",
365                         lower_extent_num);
366         ecryptfs_printk(KERN_DEBUG, " * extents_per_page = [%d]\n",
367                         extents_per_page);
368         ecryptfs_printk(KERN_DEBUG, " * (*lower_page_idx) = [0x%.16x]\n",
369                         (*lower_page_idx));
370         ecryptfs_printk(KERN_DEBUG, " * extent_offset = [%d]\n",
371                         extent_offset);
372         ecryptfs_printk(KERN_DEBUG, " * (*byte_offset) = [%d]\n",
373                         (*byte_offset));
374 }
375
376 static int ecryptfs_write_out_page(struct ecryptfs_page_crypt_context *ctx,
377                                    struct page *lower_page,
378                                    struct inode *lower_inode,
379                                    int byte_offset_in_page, int bytes_to_write)
380 {
381         int rc = 0;
382
383         if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
384                 rc = ecryptfs_commit_lower_page(lower_page, lower_inode,
385                                                 ctx->param.lower_file,
386                                                 byte_offset_in_page,
387                                                 bytes_to_write);
388                 if (rc) {
389                         ecryptfs_printk(KERN_ERR, "Error calling lower "
390                                         "commit; rc = [%d]\n", rc);
391                         goto out;
392                 }
393         } else {
394                 rc = ecryptfs_writepage_and_release_lower_page(lower_page,
395                                                                lower_inode,
396                                                                ctx->param.wbc);
397                 if (rc) {
398                         ecryptfs_printk(KERN_ERR, "Error calling lower "
399                                         "writepage(); rc = [%d]\n", rc);
400                         goto out;
401                 }
402         }
403 out:
404         return rc;
405 }
406
407 static int ecryptfs_read_in_page(struct ecryptfs_page_crypt_context *ctx,
408                                  struct page **lower_page,
409                                  struct inode *lower_inode,
410                                  unsigned long lower_page_idx,
411                                  int byte_offset_in_page)
412 {
413         int rc = 0;
414
415         if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
416                 /* TODO: Limit this to only the data extents that are
417                  * needed */
418                 rc = ecryptfs_get_lower_page(lower_page, lower_inode,
419                                              ctx->param.lower_file,
420                                              lower_page_idx,
421                                              byte_offset_in_page,
422                                              (PAGE_CACHE_SIZE
423                                               - byte_offset_in_page));
424                 if (rc) {
425                         ecryptfs_printk(
426                                 KERN_ERR, "Error attempting to grab, map, "
427                                 "and prepare_write lower page with index "
428                                 "[0x%.16x]; rc = [%d]\n", lower_page_idx, rc);
429                         goto out;
430                 }
431         } else {
432                 rc = ecryptfs_grab_and_map_lower_page(lower_page, NULL,
433                                                       lower_inode,
434                                                       lower_page_idx);
435                 if (rc) {
436                         ecryptfs_printk(
437                                 KERN_ERR, "Error attempting to grab and map "
438                                 "lower page with index [0x%.16x]; rc = [%d]\n",
439                                 lower_page_idx, rc);
440                         goto out;
441                 }
442         }
443 out:
444         return rc;
445 }
446
447 /**
448  * ecryptfs_encrypt_page
449  * @ctx: The context of the page
450  *
451  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
452  * that eCryptfs pages may straddle the lower pages -- for instance,
453  * if the file was created on a machine with an 8K page size
454  * (resulting in an 8K header), and then the file is copied onto a
455  * host with a 32K page size, then when reading page 0 of the eCryptfs
456  * file, 24K of page 0 of the lower file will be read and decrypted,
457  * and then 8K of page 1 of the lower file will be read and decrypted.
458  *
459  * The actual operations performed on each page depends on the
460  * contents of the ecryptfs_page_crypt_context struct.
461  *
462  * Returns zero on success; negative on error
463  */
464 int ecryptfs_encrypt_page(struct ecryptfs_page_crypt_context *ctx)
465 {
466         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
467         unsigned long base_extent;
468         unsigned long extent_offset = 0;
469         unsigned long lower_page_idx = 0;
470         unsigned long prior_lower_page_idx = 0;
471         struct page *lower_page;
472         struct inode *lower_inode;
473         struct ecryptfs_inode_info *inode_info;
474         struct ecryptfs_crypt_stat *crypt_stat;
475         int rc = 0;
476         int lower_byte_offset = 0;
477         int orig_byte_offset = 0;
478         int num_extents_per_page;
479 #define ECRYPTFS_PAGE_STATE_UNREAD    0
480 #define ECRYPTFS_PAGE_STATE_READ      1
481 #define ECRYPTFS_PAGE_STATE_MODIFIED  2
482 #define ECRYPTFS_PAGE_STATE_WRITTEN   3
483         int page_state;
484
485         lower_inode = ecryptfs_inode_to_lower(ctx->page->mapping->host);
486         inode_info = ecryptfs_inode_to_private(ctx->page->mapping->host);
487         crypt_stat = &inode_info->crypt_stat;
488         if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)) {
489                 rc = ecryptfs_copy_page_to_lower(ctx->page, lower_inode,
490                                                  ctx->param.lower_file);
491                 if (rc)
492                         ecryptfs_printk(KERN_ERR, "Error attempting to copy "
493                                         "page at index [0x%.16x]\n",
494                                         ctx->page->index);
495                 goto out;
496         }
497         num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
498         base_extent = (ctx->page->index * num_extents_per_page);
499         page_state = ECRYPTFS_PAGE_STATE_UNREAD;
500         while (extent_offset < num_extents_per_page) {
501                 ecryptfs_extent_to_lwr_pg_idx_and_offset(
502                         &lower_page_idx, &lower_byte_offset, crypt_stat,
503                         (base_extent + extent_offset));
504                 if (prior_lower_page_idx != lower_page_idx
505                     && page_state == ECRYPTFS_PAGE_STATE_MODIFIED) {
506                         rc = ecryptfs_write_out_page(ctx, lower_page,
507                                                      lower_inode,
508                                                      orig_byte_offset,
509                                                      (PAGE_CACHE_SIZE
510                                                       - orig_byte_offset));
511                         if (rc) {
512                                 ecryptfs_printk(KERN_ERR, "Error attempting "
513                                                 "to write out page; rc = [%d]"
514                                                 "\n", rc);
515                                 goto out;
516                         }
517                         page_state = ECRYPTFS_PAGE_STATE_WRITTEN;
518                 }
519                 if (page_state == ECRYPTFS_PAGE_STATE_UNREAD
520                     || page_state == ECRYPTFS_PAGE_STATE_WRITTEN) {
521                         rc = ecryptfs_read_in_page(ctx, &lower_page,
522                                                    lower_inode, lower_page_idx,
523                                                    lower_byte_offset);
524                         if (rc) {
525                                 ecryptfs_printk(KERN_ERR, "Error attempting "
526                                                 "to read in lower page with "
527                                                 "index [0x%.16x]; rc = [%d]\n",
528                                                 lower_page_idx, rc);
529                                 goto out;
530                         }
531                         orig_byte_offset = lower_byte_offset;
532                         prior_lower_page_idx = lower_page_idx;
533                         page_state = ECRYPTFS_PAGE_STATE_READ;
534                 }
535                 BUG_ON(!(page_state == ECRYPTFS_PAGE_STATE_MODIFIED
536                          || page_state == ECRYPTFS_PAGE_STATE_READ));
537                 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
538                                         (base_extent + extent_offset));
539                 if (rc) {
540                         ecryptfs_printk(KERN_ERR, "Error attempting to "
541                                         "derive IV for extent [0x%.16x]; "
542                                         "rc = [%d]\n",
543                                         (base_extent + extent_offset), rc);
544                         goto out;
545                 }
546                 if (unlikely(ecryptfs_verbosity > 0)) {
547                         ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
548                                         "with iv:\n");
549                         ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
550                         ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
551                                         "encryption:\n");
552                         ecryptfs_dump_hex((char *)
553                                           (page_address(ctx->page)
554                                            + (extent_offset
555                                               * crypt_stat->extent_size)), 8);
556                 }
557                 rc = ecryptfs_encrypt_page_offset(
558                         crypt_stat, lower_page, lower_byte_offset, ctx->page,
559                         (extent_offset * crypt_stat->extent_size),
560                         crypt_stat->extent_size, extent_iv);
561                 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
562                                 "rc = [%d]\n",
563                                 (base_extent + extent_offset), rc);
564                 if (unlikely(ecryptfs_verbosity > 0)) {
565                         ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
566                                         "encryption:\n");
567                         ecryptfs_dump_hex((char *)(page_address(lower_page)
568                                                    + lower_byte_offset), 8);
569                 }
570                 page_state = ECRYPTFS_PAGE_STATE_MODIFIED;
571                 extent_offset++;
572         }
573         BUG_ON(orig_byte_offset != 0);
574         rc = ecryptfs_write_out_page(ctx, lower_page, lower_inode, 0,
575                                      (lower_byte_offset
576                                       + crypt_stat->extent_size));
577         if (rc) {
578                 ecryptfs_printk(KERN_ERR, "Error attempting to write out "
579                                 "page; rc = [%d]\n", rc);
580                                 goto out;
581         }
582 out:
583         return rc;
584 }
585
586 /**
587  * ecryptfs_decrypt_page
588  * @file: The ecryptfs file
589  * @page: The page in ecryptfs to decrypt
590  *
591  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
592  * that eCryptfs pages may straddle the lower pages -- for instance,
593  * if the file was created on a machine with an 8K page size
594  * (resulting in an 8K header), and then the file is copied onto a
595  * host with a 32K page size, then when reading page 0 of the eCryptfs
596  * file, 24K of page 0 of the lower file will be read and decrypted,
597  * and then 8K of page 1 of the lower file will be read and decrypted.
598  *
599  * Returns zero on success; negative on error
600  */
601 int ecryptfs_decrypt_page(struct file *file, struct page *page)
602 {
603         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
604         unsigned long base_extent;
605         unsigned long extent_offset = 0;
606         unsigned long lower_page_idx = 0;
607         unsigned long prior_lower_page_idx = 0;
608         struct page *lower_page;
609         char *lower_page_virt = NULL;
610         struct inode *lower_inode;
611         struct ecryptfs_crypt_stat *crypt_stat;
612         int rc = 0;
613         int byte_offset;
614         int num_extents_per_page;
615         int page_state;
616
617         crypt_stat = &(ecryptfs_inode_to_private(
618                                page->mapping->host)->crypt_stat);
619         lower_inode = ecryptfs_inode_to_lower(page->mapping->host);
620         if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)) {
621                 rc = ecryptfs_do_readpage(file, page, page->index);
622                 if (rc)
623                         ecryptfs_printk(KERN_ERR, "Error attempting to copy "
624                                         "page at index [0x%.16x]\n",
625                                         page->index);
626                 goto out;
627         }
628         num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
629         base_extent = (page->index * num_extents_per_page);
630         lower_page_virt = kmem_cache_alloc(ecryptfs_lower_page_cache,
631                                            SLAB_KERNEL);
632         if (!lower_page_virt) {
633                 rc = -ENOMEM;
634                 ecryptfs_printk(KERN_ERR, "Error getting page for encrypted "
635                                 "lower page(s)\n");
636                 goto out;
637         }
638         lower_page = virt_to_page(lower_page_virt);
639         page_state = ECRYPTFS_PAGE_STATE_UNREAD;
640         while (extent_offset < num_extents_per_page) {
641                 ecryptfs_extent_to_lwr_pg_idx_and_offset(
642                         &lower_page_idx, &byte_offset, crypt_stat,
643                         (base_extent + extent_offset));
644                 if (prior_lower_page_idx != lower_page_idx
645                     || page_state == ECRYPTFS_PAGE_STATE_UNREAD) {
646                         rc = ecryptfs_do_readpage(file, lower_page,
647                                                   lower_page_idx);
648                         if (rc) {
649                                 ecryptfs_printk(KERN_ERR, "Error reading "
650                                                 "lower encrypted page; rc = "
651                                                 "[%d]\n", rc);
652                                 goto out;
653                         }
654                         prior_lower_page_idx = lower_page_idx;
655                         page_state = ECRYPTFS_PAGE_STATE_READ;
656                 }
657                 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
658                                         (base_extent + extent_offset));
659                 if (rc) {
660                         ecryptfs_printk(KERN_ERR, "Error attempting to "
661                                         "derive IV for extent [0x%.16x]; rc = "
662                                         "[%d]\n",
663                                         (base_extent + extent_offset), rc);
664                         goto out;
665                 }
666                 if (unlikely(ecryptfs_verbosity > 0)) {
667                         ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
668                                         "with iv:\n");
669                         ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
670                         ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
671                                         "decryption:\n");
672                         ecryptfs_dump_hex((lower_page_virt + byte_offset), 8);
673                 }
674                 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
675                                                   (extent_offset
676                                                    * crypt_stat->extent_size),
677                                                   lower_page, byte_offset,
678                                                   crypt_stat->extent_size,
679                                                   extent_iv);
680                 if (rc != crypt_stat->extent_size) {
681                         ecryptfs_printk(KERN_ERR, "Error attempting to "
682                                         "decrypt extent [0x%.16x]\n",
683                                         (base_extent + extent_offset));
684                         goto out;
685                 }
686                 rc = 0;
687                 if (unlikely(ecryptfs_verbosity > 0)) {
688                         ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
689                                         "decryption:\n");
690                         ecryptfs_dump_hex((char *)(page_address(page)
691                                                    + byte_offset), 8);
692                 }
693                 extent_offset++;
694         }
695 out:
696         if (lower_page_virt)
697                 kmem_cache_free(ecryptfs_lower_page_cache, lower_page_virt);
698         return rc;
699 }
700
701 /**
702  * decrypt_scatterlist
703  *
704  * Returns the number of bytes decrypted; negative value on error
705  */
706 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
707                                struct scatterlist *dest_sg,
708                                struct scatterlist *src_sg, int size,
709                                unsigned char *iv)
710 {
711         struct blkcipher_desc desc = {
712                 .tfm = crypt_stat->tfm,
713                 .info = iv,
714                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
715         };
716         int rc = 0;
717
718         /* Consider doing this once, when the file is opened */
719         mutex_lock(&crypt_stat->cs_tfm_mutex);
720         rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
721                                      crypt_stat->key_size);
722         if (rc) {
723                 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
724                                 rc);
725                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
726                 rc = -EINVAL;
727                 goto out;
728         }
729         ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
730         rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
731         mutex_unlock(&crypt_stat->cs_tfm_mutex);
732         if (rc) {
733                 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
734                                 rc);
735                 goto out;
736         }
737         rc = size;
738 out:
739         return rc;
740 }
741
742 /**
743  * ecryptfs_encrypt_page_offset
744  *
745  * Returns the number of bytes encrypted
746  */
747 static int
748 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
749                              struct page *dst_page, int dst_offset,
750                              struct page *src_page, int src_offset, int size,
751                              unsigned char *iv)
752 {
753         struct scatterlist src_sg, dst_sg;
754
755         src_sg.page = src_page;
756         src_sg.offset = src_offset;
757         src_sg.length = size;
758         dst_sg.page = dst_page;
759         dst_sg.offset = dst_offset;
760         dst_sg.length = size;
761         return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
762 }
763
764 /**
765  * ecryptfs_decrypt_page_offset
766  *
767  * Returns the number of bytes decrypted
768  */
769 static int
770 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
771                              struct page *dst_page, int dst_offset,
772                              struct page *src_page, int src_offset, int size,
773                              unsigned char *iv)
774 {
775         struct scatterlist src_sg, dst_sg;
776
777         src_sg.page = src_page;
778         src_sg.offset = src_offset;
779         src_sg.length = size;
780         dst_sg.page = dst_page;
781         dst_sg.offset = dst_offset;
782         dst_sg.length = size;
783         return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
784 }
785
786 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
787
788 /**
789  * ecryptfs_init_crypt_ctx
790  * @crypt_stat: Uninitilized crypt stats structure
791  *
792  * Initialize the crypto context.
793  *
794  * TODO: Performance: Keep a cache of initialized cipher contexts;
795  * only init if needed
796  */
797 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
798 {
799         char *full_alg_name;
800         int rc = -EINVAL;
801
802         if (!crypt_stat->cipher) {
803                 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
804                 goto out;
805         }
806         ecryptfs_printk(KERN_DEBUG,
807                         "Initializing cipher [%s]; strlen = [%d]; "
808                         "key_size_bits = [%d]\n",
809                         crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
810                         crypt_stat->key_size << 3);
811         if (crypt_stat->tfm) {
812                 rc = 0;
813                 goto out;
814         }
815         mutex_lock(&crypt_stat->cs_tfm_mutex);
816         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
817                                                     crypt_stat->cipher, "cbc");
818         if (rc)
819                 goto out;
820         crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
821                                                  CRYPTO_ALG_ASYNC);
822         kfree(full_alg_name);
823         if (!crypt_stat->tfm) {
824                 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
825                                 "Error initializing cipher [%s]\n",
826                                 crypt_stat->cipher);
827                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
828                 goto out;
829         }
830         crypto_blkcipher_set_flags(crypt_stat->tfm,
831                                    (ECRYPTFS_DEFAULT_CHAINING_MODE
832                                     | CRYPTO_TFM_REQ_WEAK_KEY));
833         mutex_unlock(&crypt_stat->cs_tfm_mutex);
834         rc = 0;
835 out:
836         return rc;
837 }
838
839 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
840 {
841         int extent_size_tmp;
842
843         crypt_stat->extent_mask = 0xFFFFFFFF;
844         crypt_stat->extent_shift = 0;
845         if (crypt_stat->extent_size == 0)
846                 return;
847         extent_size_tmp = crypt_stat->extent_size;
848         while ((extent_size_tmp & 0x01) == 0) {
849                 extent_size_tmp >>= 1;
850                 crypt_stat->extent_mask <<= 1;
851                 crypt_stat->extent_shift++;
852         }
853 }
854
855 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
856 {
857         /* Default values; may be overwritten as we are parsing the
858          * packets. */
859         crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
860         set_extent_mask_and_shift(crypt_stat);
861         crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
862         if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) {
863                 crypt_stat->header_extent_size =
864                         ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
865         } else
866                 crypt_stat->header_extent_size = PAGE_CACHE_SIZE;
867         crypt_stat->num_header_extents_at_front = 1;
868 }
869
870 /**
871  * ecryptfs_compute_root_iv
872  * @crypt_stats
873  *
874  * On error, sets the root IV to all 0's.
875  */
876 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
877 {
878         int rc = 0;
879         char dst[MD5_DIGEST_SIZE];
880
881         BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
882         BUG_ON(crypt_stat->iv_bytes <= 0);
883         if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID)) {
884                 rc = -EINVAL;
885                 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
886                                 "cannot generate root IV\n");
887                 goto out;
888         }
889         rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
890                                     crypt_stat->key_size);
891         if (rc) {
892                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
893                                 "MD5 while generating root IV\n");
894                 goto out;
895         }
896         memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
897 out:
898         if (rc) {
899                 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
900                 ECRYPTFS_SET_FLAG(crypt_stat->flags,
901                                   ECRYPTFS_SECURITY_WARNING);
902         }
903         return rc;
904 }
905
906 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
907 {
908         get_random_bytes(crypt_stat->key, crypt_stat->key_size);
909         ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
910         ecryptfs_compute_root_iv(crypt_stat);
911         if (unlikely(ecryptfs_verbosity > 0)) {
912                 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
913                 ecryptfs_dump_hex(crypt_stat->key,
914                                   crypt_stat->key_size);
915         }
916 }
917
918 /**
919  * ecryptfs_set_default_crypt_stat_vals
920  * @crypt_stat
921  *
922  * Default values in the event that policy does not override them.
923  */
924 static void ecryptfs_set_default_crypt_stat_vals(
925         struct ecryptfs_crypt_stat *crypt_stat,
926         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
927 {
928         ecryptfs_set_default_sizes(crypt_stat);
929         strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
930         crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
931         ECRYPTFS_CLEAR_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
932         crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
933         crypt_stat->mount_crypt_stat = mount_crypt_stat;
934 }
935
936 /**
937  * ecryptfs_new_file_context
938  * @ecryptfs_dentry
939  *
940  * If the crypto context for the file has not yet been established,
941  * this is where we do that.  Establishing a new crypto context
942  * involves the following decisions:
943  *  - What cipher to use?
944  *  - What set of authentication tokens to use?
945  * Here we just worry about getting enough information into the
946  * authentication tokens so that we know that they are available.
947  * We associate the available authentication tokens with the new file
948  * via the set of signatures in the crypt_stat struct.  Later, when
949  * the headers are actually written out, we may again defer to
950  * userspace to perform the encryption of the session key; for the
951  * foreseeable future, this will be the case with public key packets.
952  *
953  * Returns zero on success; non-zero otherwise
954  */
955 /* Associate an authentication token(s) with the file */
956 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
957 {
958         int rc = 0;
959         struct ecryptfs_crypt_stat *crypt_stat =
960             &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
961         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
962             &ecryptfs_superblock_to_private(
963                     ecryptfs_dentry->d_sb)->mount_crypt_stat;
964         int cipher_name_len;
965
966         ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
967         /* See if there are mount crypt options */
968         if (mount_crypt_stat->global_auth_tok) {
969                 ecryptfs_printk(KERN_DEBUG, "Initializing context for new "
970                                 "file using mount_crypt_stat\n");
971                 ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED);
972                 ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
973                 memcpy(crypt_stat->keysigs[crypt_stat->num_keysigs++],
974                        mount_crypt_stat->global_auth_tok_sig,
975                        ECRYPTFS_SIG_SIZE_HEX);
976                 cipher_name_len =
977                     strlen(mount_crypt_stat->global_default_cipher_name);
978                 memcpy(crypt_stat->cipher,
979                        mount_crypt_stat->global_default_cipher_name,
980                        cipher_name_len);
981                 crypt_stat->cipher[cipher_name_len] = '\0';
982                 crypt_stat->key_size =
983                         mount_crypt_stat->global_default_cipher_key_size;
984                 ecryptfs_generate_new_key(crypt_stat);
985         } else
986                 /* We should not encounter this scenario since we
987                  * should detect lack of global_auth_tok at mount time
988                  * TODO: Applies to 0.1 release only; remove in future
989                  * release */
990                 BUG();
991         rc = ecryptfs_init_crypt_ctx(crypt_stat);
992         if (rc)
993                 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
994                                 "context for cipher [%s]: rc = [%d]\n",
995                                 crypt_stat->cipher, rc);
996         return rc;
997 }
998
999 /**
1000  * contains_ecryptfs_marker - check for the ecryptfs marker
1001  * @data: The data block in which to check
1002  *
1003  * Returns one if marker found; zero if not found
1004  */
1005 int contains_ecryptfs_marker(char *data)
1006 {
1007         u32 m_1, m_2;
1008
1009         memcpy(&m_1, data, 4);
1010         m_1 = be32_to_cpu(m_1);
1011         memcpy(&m_2, (data + 4), 4);
1012         m_2 = be32_to_cpu(m_2);
1013         if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1014                 return 1;
1015         ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1016                         "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1017                         MAGIC_ECRYPTFS_MARKER);
1018         ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1019                         "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1020         return 0;
1021 }
1022
1023 struct ecryptfs_flag_map_elem {
1024         u32 file_flag;
1025         u32 local_flag;
1026 };
1027
1028 /* Add support for additional flags by adding elements here. */
1029 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1030         {0x00000001, ECRYPTFS_ENABLE_HMAC},
1031         {0x00000002, ECRYPTFS_ENCRYPTED}
1032 };
1033
1034 /**
1035  * ecryptfs_process_flags
1036  * @crypt_stat
1037  * @page_virt: Source data to be parsed
1038  * @bytes_read: Updated with the number of bytes read
1039  *
1040  * Returns zero on success; non-zero if the flag set is invalid
1041  */
1042 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1043                                   char *page_virt, int *bytes_read)
1044 {
1045         int rc = 0;
1046         int i;
1047         u32 flags;
1048
1049         memcpy(&flags, page_virt, 4);
1050         flags = be32_to_cpu(flags);
1051         for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1052                           / sizeof(struct ecryptfs_flag_map_elem))); i++)
1053                 if (flags & ecryptfs_flag_map[i].file_flag) {
1054                         ECRYPTFS_SET_FLAG(crypt_stat->flags,
1055                                           ecryptfs_flag_map[i].local_flag);
1056                 } else
1057                         ECRYPTFS_CLEAR_FLAG(crypt_stat->flags,
1058                                             ecryptfs_flag_map[i].local_flag);
1059         /* Version is in top 8 bits of the 32-bit flag vector */
1060         crypt_stat->file_version = ((flags >> 24) & 0xFF);
1061         (*bytes_read) = 4;
1062         return rc;
1063 }
1064
1065 /**
1066  * write_ecryptfs_marker
1067  * @page_virt: The pointer to in a page to begin writing the marker
1068  * @written: Number of bytes written
1069  *
1070  * Marker = 0x3c81b7f5
1071  */
1072 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1073 {
1074         u32 m_1, m_2;
1075
1076         get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1077         m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1078         m_1 = cpu_to_be32(m_1);
1079         memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1080         m_2 = cpu_to_be32(m_2);
1081         memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
1082                (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1083         (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1084 }
1085
1086 static void
1087 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1088                      size_t *written)
1089 {
1090         u32 flags = 0;
1091         int i;
1092
1093         for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1094                           / sizeof(struct ecryptfs_flag_map_elem))); i++)
1095                 if (ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
1096                                         ecryptfs_flag_map[i].local_flag))
1097                         flags |= ecryptfs_flag_map[i].file_flag;
1098         /* Version is in top 8 bits of the 32-bit flag vector */
1099         flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1100         flags = cpu_to_be32(flags);
1101         memcpy(page_virt, &flags, 4);
1102         (*written) = 4;
1103 }
1104
1105 struct ecryptfs_cipher_code_str_map_elem {
1106         char cipher_str[16];
1107         u16 cipher_code;
1108 };
1109
1110 /* Add support for additional ciphers by adding elements here. The
1111  * cipher_code is whatever OpenPGP applicatoins use to identify the
1112  * ciphers. List in order of probability. */
1113 static struct ecryptfs_cipher_code_str_map_elem
1114 ecryptfs_cipher_code_str_map[] = {
1115         {"aes",RFC2440_CIPHER_AES_128 },
1116         {"blowfish", RFC2440_CIPHER_BLOWFISH},
1117         {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1118         {"cast5", RFC2440_CIPHER_CAST_5},
1119         {"twofish", RFC2440_CIPHER_TWOFISH},
1120         {"cast6", RFC2440_CIPHER_CAST_6},
1121         {"aes", RFC2440_CIPHER_AES_192},
1122         {"aes", RFC2440_CIPHER_AES_256}
1123 };
1124
1125 /**
1126  * ecryptfs_code_for_cipher_string
1127  * @str: The string representing the cipher name
1128  *
1129  * Returns zero on no match, or the cipher code on match
1130  */
1131 u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
1132 {
1133         int i;
1134         u16 code = 0;
1135         struct ecryptfs_cipher_code_str_map_elem *map =
1136                 ecryptfs_cipher_code_str_map;
1137
1138         if (strcmp(crypt_stat->cipher, "aes") == 0) {
1139                 switch (crypt_stat->key_size) {
1140                 case 16:
1141                         code = RFC2440_CIPHER_AES_128;
1142                         break;
1143                 case 24:
1144                         code = RFC2440_CIPHER_AES_192;
1145                         break;
1146                 case 32:
1147                         code = RFC2440_CIPHER_AES_256;
1148                 }
1149         } else {
1150                 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1151                         if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
1152                                 code = map[i].cipher_code;
1153                                 break;
1154                         }
1155         }
1156         return code;
1157 }
1158
1159 /**
1160  * ecryptfs_cipher_code_to_string
1161  * @str: Destination to write out the cipher name
1162  * @cipher_code: The code to convert to cipher name string
1163  *
1164  * Returns zero on success
1165  */
1166 int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
1167 {
1168         int rc = 0;
1169         int i;
1170
1171         str[0] = '\0';
1172         for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1173                 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1174                         strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1175         if (str[0] == '\0') {
1176                 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1177                                 "[%d]\n", cipher_code);
1178                 rc = -EINVAL;
1179         }
1180         return rc;
1181 }
1182
1183 /**
1184  * ecryptfs_read_header_region
1185  * @data
1186  * @dentry
1187  * @nd
1188  *
1189  * Returns zero on success; non-zero otherwise
1190  */
1191 int ecryptfs_read_header_region(char *data, struct dentry *dentry,
1192                                 struct vfsmount *mnt)
1193 {
1194         struct file *file;
1195         mm_segment_t oldfs;
1196         int rc;
1197
1198         mnt = mntget(mnt);
1199         file = dentry_open(dentry, mnt, O_RDONLY);
1200         if (IS_ERR(file)) {
1201                 ecryptfs_printk(KERN_DEBUG, "Error opening file to "
1202                                 "read header region\n");
1203                 mntput(mnt);
1204                 rc = PTR_ERR(file);
1205                 goto out;
1206         }
1207         file->f_pos = 0;
1208         oldfs = get_fs();
1209         set_fs(get_ds());
1210         /* For releases 0.1 and 0.2, all of the header information
1211          * fits in the first data extent-sized region. */
1212         rc = file->f_op->read(file, (char __user *)data,
1213                               ECRYPTFS_DEFAULT_EXTENT_SIZE, &file->f_pos);
1214         set_fs(oldfs);
1215         fput(file);
1216         rc = 0;
1217 out:
1218         return rc;
1219 }
1220
1221 static void
1222 write_header_metadata(char *virt, struct ecryptfs_crypt_stat *crypt_stat,
1223                       size_t *written)
1224 {
1225         u32 header_extent_size;
1226         u16 num_header_extents_at_front;
1227
1228         header_extent_size = (u32)crypt_stat->header_extent_size;
1229         num_header_extents_at_front =
1230                 (u16)crypt_stat->num_header_extents_at_front;
1231         header_extent_size = cpu_to_be32(header_extent_size);
1232         memcpy(virt, &header_extent_size, 4);
1233         virt += 4;
1234         num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
1235         memcpy(virt, &num_header_extents_at_front, 2);
1236         (*written) = 6;
1237 }
1238
1239 struct kmem_cache *ecryptfs_header_cache_0;
1240 struct kmem_cache *ecryptfs_header_cache_1;
1241 struct kmem_cache *ecryptfs_header_cache_2;
1242
1243 /**
1244  * ecryptfs_write_headers_virt
1245  * @page_virt
1246  * @crypt_stat
1247  * @ecryptfs_dentry
1248  *
1249  * Format version: 1
1250  *
1251  *   Header Extent:
1252  *     Octets 0-7:        Unencrypted file size (big-endian)
1253  *     Octets 8-15:       eCryptfs special marker
1254  *     Octets 16-19:      Flags
1255  *      Octet 16:         File format version number (between 0 and 255)
1256  *      Octets 17-18:     Reserved
1257  *      Octet 19:         Bit 1 (lsb): Reserved
1258  *                        Bit 2: Encrypted?
1259  *                        Bits 3-8: Reserved
1260  *     Octets 20-23:      Header extent size (big-endian)
1261  *     Octets 24-25:      Number of header extents at front of file
1262  *                        (big-endian)
1263  *     Octet  26:         Begin RFC 2440 authentication token packet set
1264  *   Data Extent 0:
1265  *     Lower data (CBC encrypted)
1266  *   Data Extent 1:
1267  *     Lower data (CBC encrypted)
1268  *   ...
1269  *
1270  * Returns zero on success
1271  */
1272 int ecryptfs_write_headers_virt(char *page_virt,
1273                                 struct ecryptfs_crypt_stat *crypt_stat,
1274                                 struct dentry *ecryptfs_dentry)
1275 {
1276         int rc;
1277         size_t written;
1278         size_t offset;
1279
1280         offset = ECRYPTFS_FILE_SIZE_BYTES;
1281         write_ecryptfs_marker((page_virt + offset), &written);
1282         offset += written;
1283         write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1284         offset += written;
1285         write_header_metadata((page_virt + offset), crypt_stat, &written);
1286         offset += written;
1287         rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1288                                               ecryptfs_dentry, &written,
1289                                               PAGE_CACHE_SIZE - offset);
1290         if (rc)
1291                 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1292                                 "set; rc = [%d]\n", rc);
1293         return rc;
1294 }
1295
1296 /**
1297  * ecryptfs_write_headers
1298  * @lower_file: The lower file struct, which was returned from dentry_open
1299  *
1300  * Write the file headers out.  This will likely involve a userspace
1301  * callout, in which the session key is encrypted with one or more
1302  * public keys and/or the passphrase necessary to do the encryption is
1303  * retrieved via a prompt.  Exactly what happens at this point should
1304  * be policy-dependent.
1305  *
1306  * Returns zero on success; non-zero on error
1307  */
1308 int ecryptfs_write_headers(struct dentry *ecryptfs_dentry,
1309                            struct file *lower_file)
1310 {
1311         mm_segment_t oldfs;
1312         struct ecryptfs_crypt_stat *crypt_stat;
1313         char *page_virt;
1314         int current_header_page;
1315         int header_pages;
1316         int rc = 0;
1317
1318         crypt_stat = &ecryptfs_inode_to_private(
1319                 ecryptfs_dentry->d_inode)->crypt_stat;
1320         if (likely(ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
1321                                        ECRYPTFS_ENCRYPTED))) {
1322                 if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
1323                                          ECRYPTFS_KEY_VALID)) {
1324                         ecryptfs_printk(KERN_DEBUG, "Key is "
1325                                         "invalid; bailing out\n");
1326                         rc = -EINVAL;
1327                         goto out;
1328                 }
1329         } else {
1330                 rc = -EINVAL;
1331                 ecryptfs_printk(KERN_WARNING,
1332                                 "Called with crypt_stat->encrypted == 0\n");
1333                 goto out;
1334         }
1335         /* Released in this function */
1336         page_virt = kmem_cache_alloc(ecryptfs_header_cache_0, SLAB_USER);
1337         if (!page_virt) {
1338                 ecryptfs_printk(KERN_ERR, "Out of memory\n");
1339                 rc = -ENOMEM;
1340                 goto out;
1341         }
1342         memset(page_virt, 0, PAGE_CACHE_SIZE);
1343         rc = ecryptfs_write_headers_virt(page_virt, crypt_stat,
1344                                          ecryptfs_dentry);
1345         if (unlikely(rc)) {
1346                 ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n");
1347                 memset(page_virt, 0, PAGE_CACHE_SIZE);
1348                 goto out_free;
1349         }
1350         ecryptfs_printk(KERN_DEBUG,
1351                         "Writing key packet set to underlying file\n");
1352         lower_file->f_pos = 0;
1353         oldfs = get_fs();
1354         set_fs(get_ds());
1355         ecryptfs_printk(KERN_DEBUG, "Calling lower_file->f_op->"
1356                         "write() w/ header page; lower_file->f_pos = "
1357                         "[0x%.16x]\n", lower_file->f_pos);
1358         lower_file->f_op->write(lower_file, (char __user *)page_virt,
1359                                 PAGE_CACHE_SIZE, &lower_file->f_pos);
1360         header_pages = ((crypt_stat->header_extent_size
1361                          * crypt_stat->num_header_extents_at_front)
1362                         / PAGE_CACHE_SIZE);
1363         memset(page_virt, 0, PAGE_CACHE_SIZE);
1364         current_header_page = 1;
1365         while (current_header_page < header_pages) {
1366                 ecryptfs_printk(KERN_DEBUG, "Calling lower_file->f_op->"
1367                                 "write() w/ zero'd page; lower_file->f_pos = "
1368                                 "[0x%.16x]\n", lower_file->f_pos);
1369                 lower_file->f_op->write(lower_file, (char __user *)page_virt,
1370                                         PAGE_CACHE_SIZE, &lower_file->f_pos);
1371                 current_header_page++;
1372         }
1373         set_fs(oldfs);
1374         ecryptfs_printk(KERN_DEBUG,
1375                         "Done writing key packet set to underlying file.\n");
1376 out_free:
1377         kmem_cache_free(ecryptfs_header_cache_0, page_virt);
1378 out:
1379         return rc;
1380 }
1381
1382 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1383                                  char *virt, int *bytes_read)
1384 {
1385         int rc = 0;
1386         u32 header_extent_size;
1387         u16 num_header_extents_at_front;
1388
1389         memcpy(&header_extent_size, virt, 4);
1390         header_extent_size = be32_to_cpu(header_extent_size);
1391         virt += 4;
1392         memcpy(&num_header_extents_at_front, virt, 2);
1393         num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
1394         crypt_stat->header_extent_size = (int)header_extent_size;
1395         crypt_stat->num_header_extents_at_front =
1396                 (int)num_header_extents_at_front;
1397         (*bytes_read) = 6;
1398         if ((crypt_stat->header_extent_size
1399              * crypt_stat->num_header_extents_at_front)
1400             < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) {
1401                 rc = -EINVAL;
1402                 ecryptfs_printk(KERN_WARNING, "Invalid header extent size: "
1403                                 "[%d]\n", crypt_stat->header_extent_size);
1404         }
1405         return rc;
1406 }
1407
1408 /**
1409  * set_default_header_data
1410  *
1411  * For version 0 file format; this function is only for backwards
1412  * compatibility for files created with the prior versions of
1413  * eCryptfs.
1414  */
1415 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1416 {
1417         crypt_stat->header_extent_size = 4096;
1418         crypt_stat->num_header_extents_at_front = 1;
1419 }
1420
1421 /**
1422  * ecryptfs_read_headers_virt
1423  *
1424  * Read/parse the header data. The header format is detailed in the
1425  * comment block for the ecryptfs_write_headers_virt() function.
1426  *
1427  * Returns zero on success
1428  */
1429 static int ecryptfs_read_headers_virt(char *page_virt,
1430                                       struct ecryptfs_crypt_stat *crypt_stat,
1431                                       struct dentry *ecryptfs_dentry)
1432 {
1433         int rc = 0;
1434         int offset;
1435         int bytes_read;
1436
1437         ecryptfs_set_default_sizes(crypt_stat);
1438         crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1439                 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1440         offset = ECRYPTFS_FILE_SIZE_BYTES;
1441         rc = contains_ecryptfs_marker(page_virt + offset);
1442         if (rc == 0) {
1443                 rc = -EINVAL;
1444                 goto out;
1445         }
1446         offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1447         rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1448                                     &bytes_read);
1449         if (rc) {
1450                 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1451                 goto out;
1452         }
1453         if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1454                 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1455                                 "file version [%d] is supported by this "
1456                                 "version of eCryptfs\n",
1457                                 crypt_stat->file_version,
1458                                 ECRYPTFS_SUPPORTED_FILE_VERSION);
1459                 rc = -EINVAL;
1460                 goto out;
1461         }
1462         offset += bytes_read;
1463         if (crypt_stat->file_version >= 1) {
1464                 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1465                                            &bytes_read);
1466                 if (rc) {
1467                         ecryptfs_printk(KERN_WARNING, "Error reading header "
1468                                         "metadata; rc = [%d]\n", rc);
1469                 }
1470                 offset += bytes_read;
1471         } else
1472                 set_default_header_data(crypt_stat);
1473         rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1474                                        ecryptfs_dentry);
1475 out:
1476         return rc;
1477 }
1478
1479 /**
1480  * ecryptfs_read_headers
1481  *
1482  * Returns zero if valid headers found and parsed; non-zero otherwise
1483  */
1484 int ecryptfs_read_headers(struct dentry *ecryptfs_dentry,
1485                           struct file *lower_file)
1486 {
1487         int rc = 0;
1488         char *page_virt = NULL;
1489         mm_segment_t oldfs;
1490         ssize_t bytes_read;
1491         struct ecryptfs_crypt_stat *crypt_stat =
1492             &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1493
1494         /* Read the first page from the underlying file */
1495         page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, SLAB_USER);
1496         if (!page_virt) {
1497                 rc = -ENOMEM;
1498                 ecryptfs_printk(KERN_ERR, "Unable to allocate page_virt\n");
1499                 goto out;
1500         }
1501         lower_file->f_pos = 0;
1502         oldfs = get_fs();
1503         set_fs(get_ds());
1504         bytes_read = lower_file->f_op->read(lower_file,
1505                                             (char __user *)page_virt,
1506                                             ECRYPTFS_DEFAULT_EXTENT_SIZE,
1507                                             &lower_file->f_pos);
1508         set_fs(oldfs);
1509         if (bytes_read != ECRYPTFS_DEFAULT_EXTENT_SIZE) {
1510                 rc = -EINVAL;
1511                 goto out;
1512         }
1513         rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1514                                         ecryptfs_dentry);
1515         if (rc) {
1516                 ecryptfs_printk(KERN_DEBUG, "Valid eCryptfs headers not "
1517                                 "found\n");
1518                 rc = -EINVAL;
1519         }
1520 out:
1521         if (page_virt) {
1522                 memset(page_virt, 0, PAGE_CACHE_SIZE);
1523                 kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1524         }
1525         return rc;
1526 }
1527
1528 /**
1529  * ecryptfs_encode_filename - converts a plaintext file name to cipher text
1530  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1531  * @name: The plaintext name
1532  * @length: The length of the plaintext
1533  * @encoded_name: The encypted name
1534  *
1535  * Encrypts and encodes a filename into something that constitutes a
1536  * valid filename for a filesystem, with printable characters.
1537  *
1538  * We assume that we have a properly initialized crypto context,
1539  * pointed to by crypt_stat->tfm.
1540  *
1541  * TODO: Implement filename decoding and decryption here, in place of
1542  * memcpy. We are keeping the framework around for now to (1)
1543  * facilitate testing of the components needed to implement filename
1544  * encryption and (2) to provide a code base from which other
1545  * developers in the community can easily implement this feature.
1546  *
1547  * Returns the length of encoded filename; negative if error
1548  */
1549 int
1550 ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1551                          const char *name, int length, char **encoded_name)
1552 {
1553         int error = 0;
1554
1555         (*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
1556         if (!(*encoded_name)) {
1557                 error = -ENOMEM;
1558                 goto out;
1559         }
1560         /* TODO: Filename encryption is a scheduled feature for a
1561          * future version of eCryptfs. This function is here only for
1562          * the purpose of providing a framework for other developers
1563          * to easily implement filename encryption. Hint: Replace this
1564          * memcpy() with a call to encrypt and encode the
1565          * filename, the set the length accordingly. */
1566         memcpy((void *)(*encoded_name), (void *)name, length);
1567         (*encoded_name)[length] = '\0';
1568         error = length + 1;
1569 out:
1570         return error;
1571 }
1572
1573 /**
1574  * ecryptfs_decode_filename - converts the cipher text name to plaintext
1575  * @crypt_stat: The crypt_stat struct associated with the file
1576  * @name: The filename in cipher text
1577  * @length: The length of the cipher text name
1578  * @decrypted_name: The plaintext name
1579  *
1580  * Decodes and decrypts the filename.
1581  *
1582  * We assume that we have a properly initialized crypto context,
1583  * pointed to by crypt_stat->tfm.
1584  *
1585  * TODO: Implement filename decoding and decryption here, in place of
1586  * memcpy. We are keeping the framework around for now to (1)
1587  * facilitate testing of the components needed to implement filename
1588  * encryption and (2) to provide a code base from which other
1589  * developers in the community can easily implement this feature.
1590  *
1591  * Returns the length of decoded filename; negative if error
1592  */
1593 int
1594 ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1595                          const char *name, int length, char **decrypted_name)
1596 {
1597         int error = 0;
1598
1599         (*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
1600         if (!(*decrypted_name)) {
1601                 error = -ENOMEM;
1602                 goto out;
1603         }
1604         /* TODO: Filename encryption is a scheduled feature for a
1605          * future version of eCryptfs. This function is here only for
1606          * the purpose of providing a framework for other developers
1607          * to easily implement filename encryption. Hint: Replace this
1608          * memcpy() with a call to decode and decrypt the
1609          * filename, the set the length accordingly. */
1610         memcpy((void *)(*decrypted_name), (void *)name, length);
1611         (*decrypted_name)[length + 1] = '\0';   /* Only for convenience
1612                                                  * in printing out the
1613                                                  * string in debug
1614                                                  * messages */
1615         error = length;
1616 out:
1617         return error;
1618 }
1619
1620 /**
1621  * ecryptfs_process_cipher - Perform cipher initialization.
1622  * @key_tfm: Crypto context for key material, set by this function
1623  * @cipher_name: Name of the cipher
1624  * @key_size: Size of the key in bytes
1625  *
1626  * Returns zero on success. Any crypto_tfm structs allocated here
1627  * should be released by other functions, such as on a superblock put
1628  * event, regardless of whether this function succeeds for fails.
1629  */
1630 int
1631 ecryptfs_process_cipher(struct crypto_blkcipher **key_tfm, char *cipher_name,
1632                         size_t *key_size)
1633 {
1634         char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1635         char *full_alg_name;
1636         int rc;
1637
1638         *key_tfm = NULL;
1639         if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1640                 rc = -EINVAL;
1641                 printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
1642                       "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1643                 goto out;
1644         }
1645         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1646                                                     "ecb");
1647         if (rc)
1648                 goto out;
1649         *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1650         kfree(full_alg_name);
1651         if (IS_ERR(*key_tfm)) {
1652                 rc = PTR_ERR(*key_tfm);
1653                 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1654                        "[%s]; rc = [%d]\n", cipher_name, rc);
1655                 goto out;
1656         }
1657         crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1658         if (*key_size == 0) {
1659                 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1660
1661                 *key_size = alg->max_keysize;
1662         }
1663         get_random_bytes(dummy_key, *key_size);
1664         rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1665         if (rc) {
1666                 printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
1667                        "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1668                 rc = -EINVAL;
1669                 goto out;
1670         }
1671 out:
1672         return rc;
1673 }