ceph: separate banner and connect during handshake into distinct stages
[safe/jmp/linux-2.6] / fs / ceph / messenger.c
1 #include "ceph_debug.h"
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/socket.h>
10 #include <linux/string.h>
11 #include <net/tcp.h>
12
13 #include "super.h"
14 #include "messenger.h"
15 #include "decode.h"
16
17 /*
18  * Ceph uses the messenger to exchange ceph_msg messages with other
19  * hosts in the system.  The messenger provides ordered and reliable
20  * delivery.  We tolerate TCP disconnects by reconnecting (with
21  * exponential backoff) in the case of a fault (disconnection, bad
22  * crc, protocol error).  Acks allow sent messages to be discarded by
23  * the sender.
24  */
25
26 /* static tag bytes (protocol control messages) */
27 static char tag_msg = CEPH_MSGR_TAG_MSG;
28 static char tag_ack = CEPH_MSGR_TAG_ACK;
29 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
30
31
32 static void queue_con(struct ceph_connection *con);
33 static void con_work(struct work_struct *);
34 static void ceph_fault(struct ceph_connection *con);
35
36 const char *ceph_name_type_str(int t)
37 {
38         switch (t) {
39         case CEPH_ENTITY_TYPE_MON: return "mon";
40         case CEPH_ENTITY_TYPE_MDS: return "mds";
41         case CEPH_ENTITY_TYPE_OSD: return "osd";
42         case CEPH_ENTITY_TYPE_CLIENT: return "client";
43         case CEPH_ENTITY_TYPE_ADMIN: return "admin";
44         default: return "???";
45         }
46 }
47
48 /*
49  * nicely render a sockaddr as a string.
50  */
51 #define MAX_ADDR_STR 20
52 static char addr_str[MAX_ADDR_STR][40];
53 static DEFINE_SPINLOCK(addr_str_lock);
54 static int last_addr_str;
55
56 const char *pr_addr(const struct sockaddr_storage *ss)
57 {
58         int i;
59         char *s;
60         struct sockaddr_in *in4 = (void *)ss;
61         unsigned char *quad = (void *)&in4->sin_addr.s_addr;
62         struct sockaddr_in6 *in6 = (void *)ss;
63
64         spin_lock(&addr_str_lock);
65         i = last_addr_str++;
66         if (last_addr_str == MAX_ADDR_STR)
67                 last_addr_str = 0;
68         spin_unlock(&addr_str_lock);
69         s = addr_str[i];
70
71         switch (ss->ss_family) {
72         case AF_INET:
73                 sprintf(s, "%u.%u.%u.%u:%u",
74                         (unsigned int)quad[0],
75                         (unsigned int)quad[1],
76                         (unsigned int)quad[2],
77                         (unsigned int)quad[3],
78                         (unsigned int)ntohs(in4->sin_port));
79                 break;
80
81         case AF_INET6:
82                 sprintf(s, "%04x:%04x:%04x:%04x:%04x:%04x:%04x:%04x:%u",
83                         in6->sin6_addr.s6_addr16[0],
84                         in6->sin6_addr.s6_addr16[1],
85                         in6->sin6_addr.s6_addr16[2],
86                         in6->sin6_addr.s6_addr16[3],
87                         in6->sin6_addr.s6_addr16[4],
88                         in6->sin6_addr.s6_addr16[5],
89                         in6->sin6_addr.s6_addr16[6],
90                         in6->sin6_addr.s6_addr16[7],
91                         (unsigned int)ntohs(in6->sin6_port));
92                 break;
93
94         default:
95                 sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
96         }
97
98         return s;
99 }
100
101 static void encode_my_addr(struct ceph_messenger *msgr)
102 {
103         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
104         ceph_encode_addr(&msgr->my_enc_addr);
105 }
106
107 /*
108  * work queue for all reading and writing to/from the socket.
109  */
110 struct workqueue_struct *ceph_msgr_wq;
111
112 int __init ceph_msgr_init(void)
113 {
114         ceph_msgr_wq = create_workqueue("ceph-msgr");
115         if (IS_ERR(ceph_msgr_wq)) {
116                 int ret = PTR_ERR(ceph_msgr_wq);
117                 pr_err("msgr_init failed to create workqueue: %d\n", ret);
118                 ceph_msgr_wq = NULL;
119                 return ret;
120         }
121         return 0;
122 }
123
124 void ceph_msgr_exit(void)
125 {
126         destroy_workqueue(ceph_msgr_wq);
127 }
128
129 /*
130  * socket callback functions
131  */
132
133 /* data available on socket, or listen socket received a connect */
134 static void ceph_data_ready(struct sock *sk, int count_unused)
135 {
136         struct ceph_connection *con =
137                 (struct ceph_connection *)sk->sk_user_data;
138         if (sk->sk_state != TCP_CLOSE_WAIT) {
139                 dout("ceph_data_ready on %p state = %lu, queueing work\n",
140                      con, con->state);
141                 queue_con(con);
142         }
143 }
144
145 /* socket has buffer space for writing */
146 static void ceph_write_space(struct sock *sk)
147 {
148         struct ceph_connection *con =
149                 (struct ceph_connection *)sk->sk_user_data;
150
151         /* only queue to workqueue if there is data we want to write. */
152         if (test_bit(WRITE_PENDING, &con->state)) {
153                 dout("ceph_write_space %p queueing write work\n", con);
154                 queue_con(con);
155         } else {
156                 dout("ceph_write_space %p nothing to write\n", con);
157         }
158
159         /* since we have our own write_space, clear the SOCK_NOSPACE flag */
160         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
161 }
162
163 /* socket's state has changed */
164 static void ceph_state_change(struct sock *sk)
165 {
166         struct ceph_connection *con =
167                 (struct ceph_connection *)sk->sk_user_data;
168
169         dout("ceph_state_change %p state = %lu sk_state = %u\n",
170              con, con->state, sk->sk_state);
171
172         if (test_bit(CLOSED, &con->state))
173                 return;
174
175         switch (sk->sk_state) {
176         case TCP_CLOSE:
177                 dout("ceph_state_change TCP_CLOSE\n");
178         case TCP_CLOSE_WAIT:
179                 dout("ceph_state_change TCP_CLOSE_WAIT\n");
180                 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
181                         if (test_bit(CONNECTING, &con->state))
182                                 con->error_msg = "connection failed";
183                         else
184                                 con->error_msg = "socket closed";
185                         queue_con(con);
186                 }
187                 break;
188         case TCP_ESTABLISHED:
189                 dout("ceph_state_change TCP_ESTABLISHED\n");
190                 queue_con(con);
191                 break;
192         }
193 }
194
195 /*
196  * set up socket callbacks
197  */
198 static void set_sock_callbacks(struct socket *sock,
199                                struct ceph_connection *con)
200 {
201         struct sock *sk = sock->sk;
202         sk->sk_user_data = (void *)con;
203         sk->sk_data_ready = ceph_data_ready;
204         sk->sk_write_space = ceph_write_space;
205         sk->sk_state_change = ceph_state_change;
206 }
207
208
209 /*
210  * socket helpers
211  */
212
213 /*
214  * initiate connection to a remote socket.
215  */
216 static struct socket *ceph_tcp_connect(struct ceph_connection *con)
217 {
218         struct sockaddr *paddr = (struct sockaddr *)&con->peer_addr.in_addr;
219         struct socket *sock;
220         int ret;
221
222         BUG_ON(con->sock);
223         ret = sock_create_kern(AF_INET, SOCK_STREAM, IPPROTO_TCP, &sock);
224         if (ret)
225                 return ERR_PTR(ret);
226         con->sock = sock;
227         sock->sk->sk_allocation = GFP_NOFS;
228
229         set_sock_callbacks(sock, con);
230
231         dout("connect %s\n", pr_addr(&con->peer_addr.in_addr));
232
233         ret = sock->ops->connect(sock, paddr, sizeof(*paddr), O_NONBLOCK);
234         if (ret == -EINPROGRESS) {
235                 dout("connect %s EINPROGRESS sk_state = %u\n",
236                      pr_addr(&con->peer_addr.in_addr),
237                      sock->sk->sk_state);
238                 ret = 0;
239         }
240         if (ret < 0) {
241                 pr_err("connect %s error %d\n",
242                        pr_addr(&con->peer_addr.in_addr), ret);
243                 sock_release(sock);
244                 con->sock = NULL;
245                 con->error_msg = "connect error";
246         }
247
248         if (ret < 0)
249                 return ERR_PTR(ret);
250         return sock;
251 }
252
253 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
254 {
255         struct kvec iov = {buf, len};
256         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
257
258         return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
259 }
260
261 /*
262  * write something.  @more is true if caller will be sending more data
263  * shortly.
264  */
265 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
266                      size_t kvlen, size_t len, int more)
267 {
268         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
269
270         if (more)
271                 msg.msg_flags |= MSG_MORE;
272         else
273                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
274
275         return kernel_sendmsg(sock, &msg, iov, kvlen, len);
276 }
277
278
279 /*
280  * Shutdown/close the socket for the given connection.
281  */
282 static int con_close_socket(struct ceph_connection *con)
283 {
284         int rc;
285
286         dout("con_close_socket on %p sock %p\n", con, con->sock);
287         if (!con->sock)
288                 return 0;
289         set_bit(SOCK_CLOSED, &con->state);
290         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
291         sock_release(con->sock);
292         con->sock = NULL;
293         clear_bit(SOCK_CLOSED, &con->state);
294         return rc;
295 }
296
297 /*
298  * Reset a connection.  Discard all incoming and outgoing messages
299  * and clear *_seq state.
300  */
301 static void ceph_msg_remove(struct ceph_msg *msg)
302 {
303         list_del_init(&msg->list_head);
304         ceph_msg_put(msg);
305 }
306 static void ceph_msg_remove_list(struct list_head *head)
307 {
308         while (!list_empty(head)) {
309                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
310                                                         list_head);
311                 ceph_msg_remove(msg);
312         }
313 }
314
315 static void reset_connection(struct ceph_connection *con)
316 {
317         /* reset connection, out_queue, msg_ and connect_seq */
318         /* discard existing out_queue and msg_seq */
319         mutex_lock(&con->out_mutex);
320         ceph_msg_remove_list(&con->out_queue);
321         ceph_msg_remove_list(&con->out_sent);
322
323         con->connect_seq = 0;
324         con->out_seq = 0;
325         con->out_msg = NULL;
326         con->in_seq = 0;
327         mutex_unlock(&con->out_mutex);
328 }
329
330 /*
331  * mark a peer down.  drop any open connections.
332  */
333 void ceph_con_close(struct ceph_connection *con)
334 {
335         dout("con_close %p peer %s\n", con, pr_addr(&con->peer_addr.in_addr));
336         set_bit(CLOSED, &con->state);  /* in case there's queued work */
337         clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
338         reset_connection(con);
339         queue_con(con);
340 }
341
342 /*
343  * clean up connection state
344  */
345 void ceph_con_shutdown(struct ceph_connection *con)
346 {
347         dout("con_shutdown %p\n", con);
348         reset_connection(con);
349         set_bit(DEAD, &con->state);
350         con_close_socket(con); /* silently ignore errors */
351 }
352
353 /*
354  * Reopen a closed connection, with a new peer address.
355  */
356 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
357 {
358         dout("con_open %p %s\n", con, pr_addr(&addr->in_addr));
359         set_bit(OPENING, &con->state);
360         clear_bit(CLOSED, &con->state);
361         memcpy(&con->peer_addr, addr, sizeof(*addr));
362         queue_con(con);
363 }
364
365 /*
366  * generic get/put
367  */
368 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
369 {
370         dout("con_get %p nref = %d -> %d\n", con,
371              atomic_read(&con->nref), atomic_read(&con->nref) + 1);
372         if (atomic_inc_not_zero(&con->nref))
373                 return con;
374         return NULL;
375 }
376
377 void ceph_con_put(struct ceph_connection *con)
378 {
379         dout("con_put %p nref = %d -> %d\n", con,
380              atomic_read(&con->nref), atomic_read(&con->nref) - 1);
381         BUG_ON(atomic_read(&con->nref) == 0);
382         if (atomic_dec_and_test(&con->nref)) {
383                 ceph_con_shutdown(con);
384                 kfree(con);
385         }
386 }
387
388 /*
389  * initialize a new connection.
390  */
391 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
392 {
393         dout("con_init %p\n", con);
394         memset(con, 0, sizeof(*con));
395         atomic_set(&con->nref, 1);
396         con->msgr = msgr;
397         mutex_init(&con->out_mutex);
398         INIT_LIST_HEAD(&con->out_queue);
399         INIT_LIST_HEAD(&con->out_sent);
400         INIT_DELAYED_WORK(&con->work, con_work);
401 }
402
403
404 /*
405  * We maintain a global counter to order connection attempts.  Get
406  * a unique seq greater than @gt.
407  */
408 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
409 {
410         u32 ret;
411
412         spin_lock(&msgr->global_seq_lock);
413         if (msgr->global_seq < gt)
414                 msgr->global_seq = gt;
415         ret = ++msgr->global_seq;
416         spin_unlock(&msgr->global_seq_lock);
417         return ret;
418 }
419
420
421 /*
422  * Prepare footer for currently outgoing message, and finish things
423  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
424  */
425 static void prepare_write_message_footer(struct ceph_connection *con, int v)
426 {
427         struct ceph_msg *m = con->out_msg;
428
429         dout("prepare_write_message_footer %p\n", con);
430         con->out_kvec_is_msg = true;
431         con->out_kvec[v].iov_base = &m->footer;
432         con->out_kvec[v].iov_len = sizeof(m->footer);
433         con->out_kvec_bytes += sizeof(m->footer);
434         con->out_kvec_left++;
435         con->out_more = m->more_to_follow;
436         con->out_msg = NULL;   /* we're done with this one */
437 }
438
439 /*
440  * Prepare headers for the next outgoing message.
441  */
442 static void prepare_write_message(struct ceph_connection *con)
443 {
444         struct ceph_msg *m;
445         int v = 0;
446
447         con->out_kvec_bytes = 0;
448         con->out_kvec_is_msg = true;
449
450         /* Sneak an ack in there first?  If we can get it into the same
451          * TCP packet that's a good thing. */
452         if (con->in_seq > con->in_seq_acked) {
453                 con->in_seq_acked = con->in_seq;
454                 con->out_kvec[v].iov_base = &tag_ack;
455                 con->out_kvec[v++].iov_len = 1;
456                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
457                 con->out_kvec[v].iov_base = &con->out_temp_ack;
458                 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
459                 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
460         }
461
462         /* move message to sending/sent list */
463         m = list_first_entry(&con->out_queue,
464                        struct ceph_msg, list_head);
465         list_move_tail(&m->list_head, &con->out_sent);
466         con->out_msg = m;   /* we don't bother taking a reference here. */
467
468         m->hdr.seq = cpu_to_le64(++con->out_seq);
469
470         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
471              m, con->out_seq, le16_to_cpu(m->hdr.type),
472              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
473              le32_to_cpu(m->hdr.data_len),
474              m->nr_pages);
475         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
476
477         /* tag + hdr + front + middle */
478         con->out_kvec[v].iov_base = &tag_msg;
479         con->out_kvec[v++].iov_len = 1;
480         con->out_kvec[v].iov_base = &m->hdr;
481         con->out_kvec[v++].iov_len = sizeof(m->hdr);
482         con->out_kvec[v++] = m->front;
483         if (m->middle)
484                 con->out_kvec[v++] = m->middle->vec;
485         con->out_kvec_left = v;
486         con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
487                 (m->middle ? m->middle->vec.iov_len : 0);
488         con->out_kvec_cur = con->out_kvec;
489
490         /* fill in crc (except data pages), footer */
491         con->out_msg->hdr.crc =
492                 cpu_to_le32(crc32c(0, (void *)&m->hdr,
493                                       sizeof(m->hdr) - sizeof(m->hdr.crc)));
494         con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
495         con->out_msg->footer.front_crc =
496                 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
497         if (m->middle)
498                 con->out_msg->footer.middle_crc =
499                         cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
500                                            m->middle->vec.iov_len));
501         else
502                 con->out_msg->footer.middle_crc = 0;
503         con->out_msg->footer.data_crc = 0;
504         dout("prepare_write_message front_crc %u data_crc %u\n",
505              le32_to_cpu(con->out_msg->footer.front_crc),
506              le32_to_cpu(con->out_msg->footer.middle_crc));
507
508         /* is there a data payload? */
509         if (le32_to_cpu(m->hdr.data_len) > 0) {
510                 /* initialize page iterator */
511                 con->out_msg_pos.page = 0;
512                 con->out_msg_pos.page_pos =
513                         le16_to_cpu(m->hdr.data_off) & ~PAGE_MASK;
514                 con->out_msg_pos.data_pos = 0;
515                 con->out_msg_pos.did_page_crc = 0;
516                 con->out_more = 1;  /* data + footer will follow */
517         } else {
518                 /* no, queue up footer too and be done */
519                 prepare_write_message_footer(con, v);
520         }
521
522         set_bit(WRITE_PENDING, &con->state);
523 }
524
525 /*
526  * Prepare an ack.
527  */
528 static void prepare_write_ack(struct ceph_connection *con)
529 {
530         dout("prepare_write_ack %p %llu -> %llu\n", con,
531              con->in_seq_acked, con->in_seq);
532         con->in_seq_acked = con->in_seq;
533
534         con->out_kvec[0].iov_base = &tag_ack;
535         con->out_kvec[0].iov_len = 1;
536         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
537         con->out_kvec[1].iov_base = &con->out_temp_ack;
538         con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
539         con->out_kvec_left = 2;
540         con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
541         con->out_kvec_cur = con->out_kvec;
542         con->out_more = 1;  /* more will follow.. eventually.. */
543         set_bit(WRITE_PENDING, &con->state);
544 }
545
546 /*
547  * Prepare to write keepalive byte.
548  */
549 static void prepare_write_keepalive(struct ceph_connection *con)
550 {
551         dout("prepare_write_keepalive %p\n", con);
552         con->out_kvec[0].iov_base = &tag_keepalive;
553         con->out_kvec[0].iov_len = 1;
554         con->out_kvec_left = 1;
555         con->out_kvec_bytes = 1;
556         con->out_kvec_cur = con->out_kvec;
557         set_bit(WRITE_PENDING, &con->state);
558 }
559
560 /*
561  * Connection negotiation.
562  */
563
564 /*
565  * We connected to a peer and are saying hello.
566  */
567 static void prepare_write_banner(struct ceph_messenger *msgr,
568                                  struct ceph_connection *con)
569 {
570         int len = strlen(CEPH_BANNER);
571
572         con->out_kvec[0].iov_base = CEPH_BANNER;
573         con->out_kvec[0].iov_len = len;
574         con->out_kvec[1].iov_base = &msgr->my_enc_addr;
575         con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
576         con->out_kvec_left = 2;
577         con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
578         con->out_kvec_cur = con->out_kvec;
579         con->out_more = 0;
580         set_bit(WRITE_PENDING, &con->state);
581 }
582
583 static void prepare_write_connect(struct ceph_messenger *msgr,
584                                   struct ceph_connection *con,
585                                   int after_banner)
586 {
587         unsigned global_seq = get_global_seq(con->msgr, 0);
588         int proto;
589
590         switch (con->peer_name.type) {
591         case CEPH_ENTITY_TYPE_MON:
592                 proto = CEPH_MONC_PROTOCOL;
593                 break;
594         case CEPH_ENTITY_TYPE_OSD:
595                 proto = CEPH_OSDC_PROTOCOL;
596                 break;
597         case CEPH_ENTITY_TYPE_MDS:
598                 proto = CEPH_MDSC_PROTOCOL;
599                 break;
600         default:
601                 BUG();
602         }
603
604         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
605              con->connect_seq, global_seq, proto);
606         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
607         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
608         con->out_connect.global_seq = cpu_to_le32(global_seq);
609         con->out_connect.protocol_version = cpu_to_le32(proto);
610         con->out_connect.flags = 0;
611         if (test_bit(LOSSYTX, &con->state))
612                 con->out_connect.flags = CEPH_MSG_CONNECT_LOSSY;
613
614         if (!after_banner) {
615                 con->out_kvec_left = 0;
616                 con->out_kvec_bytes = 0;
617         }
618         con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
619         con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
620         con->out_kvec_left++;
621         con->out_kvec_bytes += sizeof(con->out_connect);
622         con->out_kvec_cur = con->out_kvec;
623         con->out_more = 0;
624         set_bit(WRITE_PENDING, &con->state);
625 }
626
627
628 /*
629  * write as much of pending kvecs to the socket as we can.
630  *  1 -> done
631  *  0 -> socket full, but more to do
632  * <0 -> error
633  */
634 static int write_partial_kvec(struct ceph_connection *con)
635 {
636         int ret;
637
638         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
639         while (con->out_kvec_bytes > 0) {
640                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
641                                        con->out_kvec_left, con->out_kvec_bytes,
642                                        con->out_more);
643                 if (ret <= 0)
644                         goto out;
645                 con->out_kvec_bytes -= ret;
646                 if (con->out_kvec_bytes == 0)
647                         break;            /* done */
648                 while (ret > 0) {
649                         if (ret >= con->out_kvec_cur->iov_len) {
650                                 ret -= con->out_kvec_cur->iov_len;
651                                 con->out_kvec_cur++;
652                                 con->out_kvec_left--;
653                         } else {
654                                 con->out_kvec_cur->iov_len -= ret;
655                                 con->out_kvec_cur->iov_base += ret;
656                                 ret = 0;
657                                 break;
658                         }
659                 }
660         }
661         con->out_kvec_left = 0;
662         con->out_kvec_is_msg = false;
663         ret = 1;
664 out:
665         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
666              con->out_kvec_bytes, con->out_kvec_left, ret);
667         return ret;  /* done! */
668 }
669
670 /*
671  * Write as much message data payload as we can.  If we finish, queue
672  * up the footer.
673  *  1 -> done, footer is now queued in out_kvec[].
674  *  0 -> socket full, but more to do
675  * <0 -> error
676  */
677 static int write_partial_msg_pages(struct ceph_connection *con)
678 {
679         struct ceph_msg *msg = con->out_msg;
680         unsigned data_len = le32_to_cpu(msg->hdr.data_len);
681         size_t len;
682         int crc = con->msgr->nocrc;
683         int ret;
684
685         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
686              con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
687              con->out_msg_pos.page_pos);
688
689         while (con->out_msg_pos.page < con->out_msg->nr_pages) {
690                 struct page *page = NULL;
691                 void *kaddr = NULL;
692
693                 /*
694                  * if we are calculating the data crc (the default), we need
695                  * to map the page.  if our pages[] has been revoked, use the
696                  * zero page.
697                  */
698                 if (msg->pages) {
699                         page = msg->pages[con->out_msg_pos.page];
700                         if (crc)
701                                 kaddr = kmap(page);
702                 } else {
703                         page = con->msgr->zero_page;
704                         if (crc)
705                                 kaddr = page_address(con->msgr->zero_page);
706                 }
707                 len = min((int)(PAGE_SIZE - con->out_msg_pos.page_pos),
708                           (int)(data_len - con->out_msg_pos.data_pos));
709                 if (crc && !con->out_msg_pos.did_page_crc) {
710                         void *base = kaddr + con->out_msg_pos.page_pos;
711                         u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
712
713                         BUG_ON(kaddr == NULL);
714                         con->out_msg->footer.data_crc =
715                                 cpu_to_le32(crc32c(tmpcrc, base, len));
716                         con->out_msg_pos.did_page_crc = 1;
717                 }
718
719                 ret = kernel_sendpage(con->sock, page,
720                                       con->out_msg_pos.page_pos, len,
721                                       MSG_DONTWAIT | MSG_NOSIGNAL |
722                                       MSG_MORE);
723
724                 if (crc && msg->pages)
725                         kunmap(page);
726
727                 if (ret <= 0)
728                         goto out;
729
730                 con->out_msg_pos.data_pos += ret;
731                 con->out_msg_pos.page_pos += ret;
732                 if (ret == len) {
733                         con->out_msg_pos.page_pos = 0;
734                         con->out_msg_pos.page++;
735                         con->out_msg_pos.did_page_crc = 0;
736                 }
737         }
738
739         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
740
741         /* prepare and queue up footer, too */
742         if (!crc)
743                 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
744         con->out_kvec_bytes = 0;
745         con->out_kvec_left = 0;
746         con->out_kvec_cur = con->out_kvec;
747         prepare_write_message_footer(con, 0);
748         ret = 1;
749 out:
750         return ret;
751 }
752
753 /*
754  * write some zeros
755  */
756 static int write_partial_skip(struct ceph_connection *con)
757 {
758         int ret;
759
760         while (con->out_skip > 0) {
761                 struct kvec iov = {
762                         .iov_base = page_address(con->msgr->zero_page),
763                         .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
764                 };
765
766                 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
767                 if (ret <= 0)
768                         goto out;
769                 con->out_skip -= ret;
770         }
771         ret = 1;
772 out:
773         return ret;
774 }
775
776 /*
777  * Prepare to read connection handshake, or an ack.
778  */
779 static void prepare_read_banner(struct ceph_connection *con)
780 {
781         dout("prepare_read_banner %p\n", con);
782         con->in_base_pos = 0;
783 }
784
785 static void prepare_read_connect(struct ceph_connection *con)
786 {
787         dout("prepare_read_connect %p\n", con);
788         con->in_base_pos = 0;
789 }
790
791 static void prepare_read_ack(struct ceph_connection *con)
792 {
793         dout("prepare_read_ack %p\n", con);
794         con->in_base_pos = 0;
795 }
796
797 static void prepare_read_tag(struct ceph_connection *con)
798 {
799         dout("prepare_read_tag %p\n", con);
800         con->in_base_pos = 0;
801         con->in_tag = CEPH_MSGR_TAG_READY;
802 }
803
804 /*
805  * Prepare to read a message.
806  */
807 static int prepare_read_message(struct ceph_connection *con)
808 {
809         dout("prepare_read_message %p\n", con);
810         BUG_ON(con->in_msg != NULL);
811         con->in_base_pos = 0;
812         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
813         return 0;
814 }
815
816
817 static int read_partial(struct ceph_connection *con,
818                         int *to, int size, void *object)
819 {
820         *to += size;
821         while (con->in_base_pos < *to) {
822                 int left = *to - con->in_base_pos;
823                 int have = size - left;
824                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
825                 if (ret <= 0)
826                         return ret;
827                 con->in_base_pos += ret;
828         }
829         return 1;
830 }
831
832
833 /*
834  * Read all or part of the connect-side handshake on a new connection
835  */
836 static int read_partial_banner(struct ceph_connection *con)
837 {
838         int ret, to = 0;
839
840         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
841
842         /* peer's banner */
843         ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
844         if (ret <= 0)
845                 goto out;
846         ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
847                            &con->actual_peer_addr);
848         if (ret <= 0)
849                 goto out;
850         ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
851                            &con->peer_addr_for_me);
852         if (ret <= 0)
853                 goto out;
854 out:
855         return ret;
856 }
857
858 static int read_partial_connect(struct ceph_connection *con)
859 {
860         int ret, to = 0;
861
862         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
863
864         ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
865         if (ret <= 0)
866                 goto out;
867
868         dout("read_partial_connect %p connect_seq = %u, global_seq = %u\n",
869              con, le32_to_cpu(con->in_reply.connect_seq),
870              le32_to_cpu(con->in_reply.global_seq));
871 out:
872         return ret;
873
874 }
875
876 /*
877  * Verify the hello banner looks okay.
878  */
879 static int verify_hello(struct ceph_connection *con)
880 {
881         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
882                 pr_err("connect to %s got bad banner\n",
883                        pr_addr(&con->peer_addr.in_addr));
884                 con->error_msg = "protocol error, bad banner";
885                 return -1;
886         }
887         return 0;
888 }
889
890 static bool addr_is_blank(struct sockaddr_storage *ss)
891 {
892         switch (ss->ss_family) {
893         case AF_INET:
894                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
895         case AF_INET6:
896                 return
897                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
898                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
899                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
900                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
901         }
902         return false;
903 }
904
905 static int addr_port(struct sockaddr_storage *ss)
906 {
907         switch (ss->ss_family) {
908         case AF_INET:
909                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
910         case AF_INET6:
911                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
912         }
913         return 0;
914 }
915
916 static void addr_set_port(struct sockaddr_storage *ss, int p)
917 {
918         switch (ss->ss_family) {
919         case AF_INET:
920                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
921         case AF_INET6:
922                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
923         }
924 }
925
926 /*
927  * Parse an ip[:port] list into an addr array.  Use the default
928  * monitor port if a port isn't specified.
929  */
930 int ceph_parse_ips(const char *c, const char *end,
931                    struct ceph_entity_addr *addr,
932                    int max_count, int *count)
933 {
934         int i;
935         const char *p = c;
936
937         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
938         for (i = 0; i < max_count; i++) {
939                 const char *ipend;
940                 struct sockaddr_storage *ss = &addr[i].in_addr;
941                 struct sockaddr_in *in4 = (void *)ss;
942                 struct sockaddr_in6 *in6 = (void *)ss;
943                 int port;
944
945                 memset(ss, 0, sizeof(*ss));
946                 if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
947                              ',', &ipend)) {
948                         ss->ss_family = AF_INET;
949                 } else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
950                                     ',', &ipend)) {
951                         ss->ss_family = AF_INET6;
952                 } else {
953                         goto bad;
954                 }
955                 p = ipend;
956
957                 /* port? */
958                 if (p < end && *p == ':') {
959                         port = 0;
960                         p++;
961                         while (p < end && *p >= '0' && *p <= '9') {
962                                 port = (port * 10) + (*p - '0');
963                                 p++;
964                         }
965                         if (port > 65535 || port == 0)
966                                 goto bad;
967                 } else {
968                         port = CEPH_MON_PORT;
969                 }
970
971                 addr_set_port(ss, port);
972
973                 dout("parse_ips got %s\n", pr_addr(ss));
974
975                 if (p == end)
976                         break;
977                 if (*p != ',')
978                         goto bad;
979                 p++;
980         }
981
982         if (p != end)
983                 goto bad;
984
985         if (count)
986                 *count = i + 1;
987         return 0;
988
989 bad:
990         pr_err("parse_ips bad ip '%s'\n", c);
991         return -EINVAL;
992 }
993
994 static int process_banner(struct ceph_connection *con)
995 {
996         dout("process_banner on %p\n", con);
997
998         if (verify_hello(con) < 0)
999                 return -1;
1000
1001         ceph_decode_addr(&con->actual_peer_addr);
1002         ceph_decode_addr(&con->peer_addr_for_me);
1003
1004         /*
1005          * Make sure the other end is who we wanted.  note that the other
1006          * end may not yet know their ip address, so if it's 0.0.0.0, give
1007          * them the benefit of the doubt.
1008          */
1009         if (!ceph_entity_addr_is_local(&con->peer_addr,
1010                                        &con->actual_peer_addr) &&
1011             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1012               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1013                 pr_err("wrong peer, want %s/%d, "
1014                        "got %s/%d, wtf\n",
1015                        pr_addr(&con->peer_addr.in_addr),
1016                        con->peer_addr.nonce,
1017                        pr_addr(&con->actual_peer_addr.in_addr),
1018                        con->actual_peer_addr.nonce);
1019                 con->error_msg = "protocol error, wrong peer";
1020                 return -1;
1021         }
1022
1023         /*
1024          * did we learn our address?
1025          */
1026         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1027                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1028
1029                 memcpy(&con->msgr->inst.addr.in_addr,
1030                        &con->peer_addr_for_me.in_addr,
1031                        sizeof(con->peer_addr_for_me.in_addr));
1032                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1033                 encode_my_addr(con->msgr);
1034                 dout("process_banner learned my addr is %s\n",
1035                      pr_addr(&con->msgr->inst.addr.in_addr));
1036         }
1037
1038         set_bit(NEGOTIATING, &con->state);
1039         prepare_read_connect(con);
1040         return 0;
1041 }
1042
1043 static int process_connect(struct ceph_connection *con)
1044 {
1045         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1046
1047         switch (con->in_reply.tag) {
1048         case CEPH_MSGR_TAG_BADPROTOVER:
1049                 dout("process_connect got BADPROTOVER my %d != their %d\n",
1050                      le32_to_cpu(con->out_connect.protocol_version),
1051                      le32_to_cpu(con->in_reply.protocol_version));
1052                 pr_err("%s%lld %s protocol version mismatch,"
1053                        " my %d != server's %d\n",
1054                        ENTITY_NAME(con->peer_name),
1055                        pr_addr(&con->peer_addr.in_addr),
1056                        le32_to_cpu(con->out_connect.protocol_version),
1057                        le32_to_cpu(con->in_reply.protocol_version));
1058                 con->error_msg = "protocol version mismatch";
1059                 if (con->ops->bad_proto)
1060                         con->ops->bad_proto(con);
1061                 reset_connection(con);
1062                 set_bit(CLOSED, &con->state);  /* in case there's queued work */
1063                 return -1;
1064
1065
1066         case CEPH_MSGR_TAG_RESETSESSION:
1067                 /*
1068                  * If we connected with a large connect_seq but the peer
1069                  * has no record of a session with us (no connection, or
1070                  * connect_seq == 0), they will send RESETSESION to indicate
1071                  * that they must have reset their session, and may have
1072                  * dropped messages.
1073                  */
1074                 dout("process_connect got RESET peer seq %u\n",
1075                      le32_to_cpu(con->in_connect.connect_seq));
1076                 pr_err("%s%lld %s connection reset\n",
1077                        ENTITY_NAME(con->peer_name),
1078                        pr_addr(&con->peer_addr.in_addr));
1079                 reset_connection(con);
1080                 prepare_write_connect(con->msgr, con, 0);
1081                 prepare_read_connect(con);
1082
1083                 /* Tell ceph about it. */
1084                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1085                 if (con->ops->peer_reset)
1086                         con->ops->peer_reset(con);
1087                 break;
1088
1089         case CEPH_MSGR_TAG_RETRY_SESSION:
1090                 /*
1091                  * If we sent a smaller connect_seq than the peer has, try
1092                  * again with a larger value.
1093                  */
1094                 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1095                      le32_to_cpu(con->out_connect.connect_seq),
1096                      le32_to_cpu(con->in_connect.connect_seq));
1097                 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1098                 prepare_write_connect(con->msgr, con, 0);
1099                 prepare_read_connect(con);
1100                 break;
1101
1102         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1103                 /*
1104                  * If we sent a smaller global_seq than the peer has, try
1105                  * again with a larger value.
1106                  */
1107                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1108                      con->peer_global_seq,
1109                      le32_to_cpu(con->in_connect.global_seq));
1110                 get_global_seq(con->msgr,
1111                                le32_to_cpu(con->in_connect.global_seq));
1112                 prepare_write_connect(con->msgr, con, 0);
1113                 prepare_read_connect(con);
1114                 break;
1115
1116         case CEPH_MSGR_TAG_READY:
1117                 clear_bit(CONNECTING, &con->state);
1118                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1119                 con->connect_seq++;
1120                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1121                      con->peer_global_seq,
1122                      le32_to_cpu(con->in_reply.connect_seq),
1123                      con->connect_seq);
1124                 WARN_ON(con->connect_seq !=
1125                         le32_to_cpu(con->in_reply.connect_seq));
1126
1127                 con->delay = 0;  /* reset backoff memory */
1128                 prepare_read_tag(con);
1129                 break;
1130
1131         case CEPH_MSGR_TAG_WAIT:
1132                 /*
1133                  * If there is a connection race (we are opening
1134                  * connections to each other), one of us may just have
1135                  * to WAIT.  This shouldn't happen if we are the
1136                  * client.
1137                  */
1138                 pr_err("process_connect peer connecting WAIT\n");
1139
1140         default:
1141                 pr_err("connect protocol error, will retry\n");
1142                 con->error_msg = "protocol error, garbage tag during connect";
1143                 return -1;
1144         }
1145         return 0;
1146 }
1147
1148
1149 /*
1150  * read (part of) an ack
1151  */
1152 static int read_partial_ack(struct ceph_connection *con)
1153 {
1154         int to = 0;
1155
1156         return read_partial(con, &to, sizeof(con->in_temp_ack),
1157                             &con->in_temp_ack);
1158 }
1159
1160
1161 /*
1162  * We can finally discard anything that's been acked.
1163  */
1164 static void process_ack(struct ceph_connection *con)
1165 {
1166         struct ceph_msg *m;
1167         u64 ack = le64_to_cpu(con->in_temp_ack);
1168         u64 seq;
1169
1170         mutex_lock(&con->out_mutex);
1171         while (!list_empty(&con->out_sent)) {
1172                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1173                                      list_head);
1174                 seq = le64_to_cpu(m->hdr.seq);
1175                 if (seq > ack)
1176                         break;
1177                 dout("got ack for seq %llu type %d at %p\n", seq,
1178                      le16_to_cpu(m->hdr.type), m);
1179                 ceph_msg_remove(m);
1180         }
1181         mutex_unlock(&con->out_mutex);
1182         prepare_read_tag(con);
1183 }
1184
1185
1186
1187
1188
1189
1190 /*
1191  * read (part of) a message.
1192  */
1193 static int read_partial_message(struct ceph_connection *con)
1194 {
1195         struct ceph_msg *m = con->in_msg;
1196         void *p;
1197         int ret;
1198         int to, want, left;
1199         unsigned front_len, middle_len, data_len, data_off;
1200         int datacrc = con->msgr->nocrc;
1201
1202         dout("read_partial_message con %p msg %p\n", con, m);
1203
1204         /* header */
1205         while (con->in_base_pos < sizeof(con->in_hdr)) {
1206                 left = sizeof(con->in_hdr) - con->in_base_pos;
1207                 ret = ceph_tcp_recvmsg(con->sock,
1208                                        (char *)&con->in_hdr + con->in_base_pos,
1209                                        left);
1210                 if (ret <= 0)
1211                         return ret;
1212                 con->in_base_pos += ret;
1213                 if (con->in_base_pos == sizeof(con->in_hdr)) {
1214                         u32 crc = crc32c(0, (void *)&con->in_hdr,
1215                                  sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1216                         if (crc != le32_to_cpu(con->in_hdr.crc)) {
1217                                 pr_err("read_partial_message bad hdr "
1218                                        " crc %u != expected %u\n",
1219                                        crc, con->in_hdr.crc);
1220                                 return -EBADMSG;
1221                         }
1222                 }
1223         }
1224
1225         front_len = le32_to_cpu(con->in_hdr.front_len);
1226         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1227                 return -EIO;
1228         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1229         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1230                 return -EIO;
1231         data_len = le32_to_cpu(con->in_hdr.data_len);
1232         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1233                 return -EIO;
1234
1235         /* allocate message? */
1236         if (!con->in_msg) {
1237                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1238                      con->in_hdr.front_len, con->in_hdr.data_len);
1239                 con->in_msg = con->ops->alloc_msg(con, &con->in_hdr);
1240                 if (!con->in_msg) {
1241                         /* skip this message */
1242                         dout("alloc_msg returned NULL, skipping message\n");
1243                         con->in_base_pos = -front_len - middle_len - data_len -
1244                                 sizeof(m->footer);
1245                         con->in_tag = CEPH_MSGR_TAG_READY;
1246                         return 0;
1247                 }
1248                 if (IS_ERR(con->in_msg)) {
1249                         ret = PTR_ERR(con->in_msg);
1250                         con->in_msg = NULL;
1251                         con->error_msg = "out of memory for incoming message";
1252                         return ret;
1253                 }
1254                 m = con->in_msg;
1255                 m->front.iov_len = 0;    /* haven't read it yet */
1256                 memcpy(&m->hdr, &con->in_hdr, sizeof(con->in_hdr));
1257         }
1258
1259         /* front */
1260         while (m->front.iov_len < front_len) {
1261                 BUG_ON(m->front.iov_base == NULL);
1262                 left = front_len - m->front.iov_len;
1263                 ret = ceph_tcp_recvmsg(con->sock, (char *)m->front.iov_base +
1264                                        m->front.iov_len, left);
1265                 if (ret <= 0)
1266                         return ret;
1267                 m->front.iov_len += ret;
1268                 if (m->front.iov_len == front_len)
1269                         con->in_front_crc = crc32c(0, m->front.iov_base,
1270                                                       m->front.iov_len);
1271         }
1272
1273         /* middle */
1274         while (middle_len > 0 && (!m->middle ||
1275                                   m->middle->vec.iov_len < middle_len)) {
1276                 if (m->middle == NULL) {
1277                         ret = -EOPNOTSUPP;
1278                         if (con->ops->alloc_middle)
1279                                 ret = con->ops->alloc_middle(con, m);
1280                         if (ret < 0) {
1281                                 dout("alloc_middle failed, skipping payload\n");
1282                                 con->in_base_pos = -middle_len - data_len
1283                                         - sizeof(m->footer);
1284                                 ceph_msg_put(con->in_msg);
1285                                 con->in_msg = NULL;
1286                                 con->in_tag = CEPH_MSGR_TAG_READY;
1287                                 return 0;
1288                         }
1289                         m->middle->vec.iov_len = 0;
1290                 }
1291                 left = middle_len - m->middle->vec.iov_len;
1292                 ret = ceph_tcp_recvmsg(con->sock,
1293                                        (char *)m->middle->vec.iov_base +
1294                                        m->middle->vec.iov_len, left);
1295                 if (ret <= 0)
1296                         return ret;
1297                 m->middle->vec.iov_len += ret;
1298                 if (m->middle->vec.iov_len == middle_len)
1299                         con->in_middle_crc = crc32c(0, m->middle->vec.iov_base,
1300                                                       m->middle->vec.iov_len);
1301         }
1302
1303         /* (page) data */
1304         data_off = le16_to_cpu(m->hdr.data_off);
1305         if (data_len == 0)
1306                 goto no_data;
1307
1308         if (m->nr_pages == 0) {
1309                 con->in_msg_pos.page = 0;
1310                 con->in_msg_pos.page_pos = data_off & ~PAGE_MASK;
1311                 con->in_msg_pos.data_pos = 0;
1312                 /* find pages for data payload */
1313                 want = calc_pages_for(data_off & ~PAGE_MASK, data_len);
1314                 ret = -1;
1315                 if (con->ops->prepare_pages)
1316                         ret = con->ops->prepare_pages(con, m, want);
1317                 if (ret < 0) {
1318                         dout("%p prepare_pages failed, skipping payload\n", m);
1319                         con->in_base_pos = -data_len - sizeof(m->footer);
1320                         ceph_msg_put(con->in_msg);
1321                         con->in_msg = NULL;
1322                         con->in_tag = CEPH_MSGR_TAG_READY;
1323                         return 0;
1324                 }
1325                 BUG_ON(m->nr_pages < want);
1326         }
1327         while (con->in_msg_pos.data_pos < data_len) {
1328                 left = min((int)(data_len - con->in_msg_pos.data_pos),
1329                            (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1330                 BUG_ON(m->pages == NULL);
1331                 p = kmap(m->pages[con->in_msg_pos.page]);
1332                 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1333                                        left);
1334                 if (ret > 0 && datacrc)
1335                         con->in_data_crc =
1336                                 crc32c(con->in_data_crc,
1337                                           p + con->in_msg_pos.page_pos, ret);
1338                 kunmap(m->pages[con->in_msg_pos.page]);
1339                 if (ret <= 0)
1340                         return ret;
1341                 con->in_msg_pos.data_pos += ret;
1342                 con->in_msg_pos.page_pos += ret;
1343                 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1344                         con->in_msg_pos.page_pos = 0;
1345                         con->in_msg_pos.page++;
1346                 }
1347         }
1348
1349 no_data:
1350         /* footer */
1351         to = sizeof(m->hdr) + sizeof(m->footer);
1352         while (con->in_base_pos < to) {
1353                 left = to - con->in_base_pos;
1354                 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1355                                        (con->in_base_pos - sizeof(m->hdr)),
1356                                        left);
1357                 if (ret <= 0)
1358                         return ret;
1359                 con->in_base_pos += ret;
1360         }
1361         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1362              m, front_len, m->footer.front_crc, middle_len,
1363              m->footer.middle_crc, data_len, m->footer.data_crc);
1364
1365         /* crc ok? */
1366         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1367                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1368                        m, con->in_front_crc, m->footer.front_crc);
1369                 return -EBADMSG;
1370         }
1371         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1372                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1373                        m, con->in_middle_crc, m->footer.middle_crc);
1374                 return -EBADMSG;
1375         }
1376         if (datacrc &&
1377             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1378             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1379                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1380                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1381                 return -EBADMSG;
1382         }
1383
1384         return 1; /* done! */
1385 }
1386
1387 /*
1388  * Process message.  This happens in the worker thread.  The callback should
1389  * be careful not to do anything that waits on other incoming messages or it
1390  * may deadlock.
1391  */
1392 static void process_message(struct ceph_connection *con)
1393 {
1394         struct ceph_msg *msg = con->in_msg;
1395
1396         con->in_msg = NULL;
1397
1398         /* if first message, set peer_name */
1399         if (con->peer_name.type == 0)
1400                 con->peer_name = msg->hdr.src.name;
1401
1402         mutex_lock(&con->out_mutex);
1403         con->in_seq++;
1404         mutex_unlock(&con->out_mutex);
1405
1406         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1407              msg, le64_to_cpu(msg->hdr.seq),
1408              ENTITY_NAME(msg->hdr.src.name),
1409              le16_to_cpu(msg->hdr.type),
1410              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1411              le32_to_cpu(msg->hdr.front_len),
1412              le32_to_cpu(msg->hdr.data_len),
1413              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1414         con->ops->dispatch(con, msg);
1415         prepare_read_tag(con);
1416 }
1417
1418
1419 /*
1420  * Write something to the socket.  Called in a worker thread when the
1421  * socket appears to be writeable and we have something ready to send.
1422  */
1423 static int try_write(struct ceph_connection *con)
1424 {
1425         struct ceph_messenger *msgr = con->msgr;
1426         int ret = 1;
1427
1428         dout("try_write start %p state %lu nref %d\n", con, con->state,
1429              atomic_read(&con->nref));
1430
1431         mutex_lock(&con->out_mutex);
1432 more:
1433         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1434
1435         /* open the socket first? */
1436         if (con->sock == NULL) {
1437                 /*
1438                  * if we were STANDBY and are reconnecting _this_
1439                  * connection, bump connect_seq now.  Always bump
1440                  * global_seq.
1441                  */
1442                 if (test_and_clear_bit(STANDBY, &con->state))
1443                         con->connect_seq++;
1444
1445                 prepare_write_banner(msgr, con);
1446                 prepare_write_connect(msgr, con, 1);
1447                 prepare_read_banner(con);
1448                 set_bit(CONNECTING, &con->state);
1449                 clear_bit(NEGOTIATING, &con->state);
1450
1451                 con->in_tag = CEPH_MSGR_TAG_READY;
1452                 dout("try_write initiating connect on %p new state %lu\n",
1453                      con, con->state);
1454                 con->sock = ceph_tcp_connect(con);
1455                 if (IS_ERR(con->sock)) {
1456                         con->sock = NULL;
1457                         con->error_msg = "connect error";
1458                         ret = -1;
1459                         goto out;
1460                 }
1461         }
1462
1463 more_kvec:
1464         /* kvec data queued? */
1465         if (con->out_skip) {
1466                 ret = write_partial_skip(con);
1467                 if (ret <= 0)
1468                         goto done;
1469                 if (ret < 0) {
1470                         dout("try_write write_partial_skip err %d\n", ret);
1471                         goto done;
1472                 }
1473         }
1474         if (con->out_kvec_left) {
1475                 ret = write_partial_kvec(con);
1476                 if (ret <= 0)
1477                         goto done;
1478                 if (ret < 0) {
1479                         dout("try_write write_partial_kvec err %d\n", ret);
1480                         goto done;
1481                 }
1482         }
1483
1484         /* msg pages? */
1485         if (con->out_msg) {
1486                 ret = write_partial_msg_pages(con);
1487                 if (ret == 1)
1488                         goto more_kvec;  /* we need to send the footer, too! */
1489                 if (ret == 0)
1490                         goto done;
1491                 if (ret < 0) {
1492                         dout("try_write write_partial_msg_pages err %d\n",
1493                              ret);
1494                         goto done;
1495                 }
1496         }
1497
1498         if (!test_bit(CONNECTING, &con->state)) {
1499                 /* is anything else pending? */
1500                 if (!list_empty(&con->out_queue)) {
1501                         prepare_write_message(con);
1502                         goto more;
1503                 }
1504                 if (con->in_seq > con->in_seq_acked) {
1505                         prepare_write_ack(con);
1506                         goto more;
1507                 }
1508                 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1509                         prepare_write_keepalive(con);
1510                         goto more;
1511                 }
1512         }
1513
1514         /* Nothing to do! */
1515         clear_bit(WRITE_PENDING, &con->state);
1516         dout("try_write nothing else to write.\n");
1517 done:
1518         ret = 0;
1519 out:
1520         mutex_unlock(&con->out_mutex);
1521         dout("try_write done on %p\n", con);
1522         return ret;
1523 }
1524
1525
1526
1527 /*
1528  * Read what we can from the socket.
1529  */
1530 static int try_read(struct ceph_connection *con)
1531 {
1532         struct ceph_messenger *msgr;
1533         int ret = -1;
1534
1535         if (!con->sock)
1536                 return 0;
1537
1538         if (test_bit(STANDBY, &con->state))
1539                 return 0;
1540
1541         dout("try_read start on %p\n", con);
1542         msgr = con->msgr;
1543
1544 more:
1545         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1546              con->in_base_pos);
1547         if (test_bit(CONNECTING, &con->state)) {
1548                 if (!test_bit(NEGOTIATING, &con->state)) {
1549                         dout("try_read connecting\n");
1550                         ret = read_partial_banner(con);
1551                         if (ret <= 0)
1552                                 goto done;
1553                         if (process_banner(con) < 0) {
1554                                 ret = -1;
1555                                 goto out;
1556                         }
1557                 }
1558                 ret = read_partial_connect(con);
1559                 if (ret <= 0)
1560                         goto done;
1561                 if (process_connect(con) < 0) {
1562                         ret = -1;
1563                         goto out;
1564                 }
1565                 goto more;
1566         }
1567
1568         if (con->in_base_pos < 0) {
1569                 /*
1570                  * skipping + discarding content.
1571                  *
1572                  * FIXME: there must be a better way to do this!
1573                  */
1574                 static char buf[1024];
1575                 int skip = min(1024, -con->in_base_pos);
1576                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1577                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1578                 if (ret <= 0)
1579                         goto done;
1580                 con->in_base_pos += ret;
1581                 if (con->in_base_pos)
1582                         goto more;
1583         }
1584         if (con->in_tag == CEPH_MSGR_TAG_READY) {
1585                 /*
1586                  * what's next?
1587                  */
1588                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1589                 if (ret <= 0)
1590                         goto done;
1591                 dout("try_read got tag %d\n", (int)con->in_tag);
1592                 switch (con->in_tag) {
1593                 case CEPH_MSGR_TAG_MSG:
1594                         prepare_read_message(con);
1595                         break;
1596                 case CEPH_MSGR_TAG_ACK:
1597                         prepare_read_ack(con);
1598                         break;
1599                 case CEPH_MSGR_TAG_CLOSE:
1600                         set_bit(CLOSED, &con->state);   /* fixme */
1601                         goto done;
1602                 default:
1603                         goto bad_tag;
1604                 }
1605         }
1606         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1607                 ret = read_partial_message(con);
1608                 if (ret <= 0) {
1609                         switch (ret) {
1610                         case -EBADMSG:
1611                                 con->error_msg = "bad crc";
1612                                 ret = -EIO;
1613                                 goto out;
1614                         case -EIO:
1615                                 con->error_msg = "io error";
1616                                 goto out;
1617                         default:
1618                                 goto done;
1619                         }
1620                 }
1621                 if (con->in_tag == CEPH_MSGR_TAG_READY)
1622                         goto more;
1623                 process_message(con);
1624                 goto more;
1625         }
1626         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1627                 ret = read_partial_ack(con);
1628                 if (ret <= 0)
1629                         goto done;
1630                 process_ack(con);
1631                 goto more;
1632         }
1633
1634 done:
1635         ret = 0;
1636 out:
1637         dout("try_read done on %p\n", con);
1638         return ret;
1639
1640 bad_tag:
1641         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1642         con->error_msg = "protocol error, garbage tag";
1643         ret = -1;
1644         goto out;
1645 }
1646
1647
1648 /*
1649  * Atomically queue work on a connection.  Bump @con reference to
1650  * avoid races with connection teardown.
1651  *
1652  * There is some trickery going on with QUEUED and BUSY because we
1653  * only want a _single_ thread operating on each connection at any
1654  * point in time, but we want to use all available CPUs.
1655  *
1656  * The worker thread only proceeds if it can atomically set BUSY.  It
1657  * clears QUEUED and does it's thing.  When it thinks it's done, it
1658  * clears BUSY, then rechecks QUEUED.. if it's set again, it loops
1659  * (tries again to set BUSY).
1660  *
1661  * To queue work, we first set QUEUED, _then_ if BUSY isn't set, we
1662  * try to queue work.  If that fails (work is already queued, or BUSY)
1663  * we give up (work also already being done or is queued) but leave QUEUED
1664  * set so that the worker thread will loop if necessary.
1665  */
1666 static void queue_con(struct ceph_connection *con)
1667 {
1668         if (test_bit(DEAD, &con->state)) {
1669                 dout("queue_con %p ignoring: DEAD\n",
1670                      con);
1671                 return;
1672         }
1673
1674         if (!con->ops->get(con)) {
1675                 dout("queue_con %p ref count 0\n", con);
1676                 return;
1677         }
1678
1679         set_bit(QUEUED, &con->state);
1680         if (test_bit(BUSY, &con->state)) {
1681                 dout("queue_con %p - already BUSY\n", con);
1682                 con->ops->put(con);
1683         } else if (!queue_work(ceph_msgr_wq, &con->work.work)) {
1684                 dout("queue_con %p - already queued\n", con);
1685                 con->ops->put(con);
1686         } else {
1687                 dout("queue_con %p\n", con);
1688         }
1689 }
1690
1691 /*
1692  * Do some work on a connection.  Drop a connection ref when we're done.
1693  */
1694 static void con_work(struct work_struct *work)
1695 {
1696         struct ceph_connection *con = container_of(work, struct ceph_connection,
1697                                                    work.work);
1698         int backoff = 0;
1699
1700 more:
1701         if (test_and_set_bit(BUSY, &con->state) != 0) {
1702                 dout("con_work %p BUSY already set\n", con);
1703                 goto out;
1704         }
1705         dout("con_work %p start, clearing QUEUED\n", con);
1706         clear_bit(QUEUED, &con->state);
1707
1708         if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1709                 dout("con_work CLOSED\n");
1710                 con_close_socket(con);
1711                 goto done;
1712         }
1713         if (test_and_clear_bit(OPENING, &con->state)) {
1714                 /* reopen w/ new peer */
1715                 dout("con_work OPENING\n");
1716                 con_close_socket(con);
1717         }
1718
1719         if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
1720             try_read(con) < 0 ||
1721             try_write(con) < 0) {
1722                 backoff = 1;
1723                 ceph_fault(con);     /* error/fault path */
1724         }
1725
1726 done:
1727         clear_bit(BUSY, &con->state);
1728         dout("con->state=%lu\n", con->state);
1729         if (test_bit(QUEUED, &con->state)) {
1730                 if (!backoff) {
1731                         dout("con_work %p QUEUED reset, looping\n", con);
1732                         goto more;
1733                 }
1734                 dout("con_work %p QUEUED reset, but just faulted\n", con);
1735                 clear_bit(QUEUED, &con->state);
1736         }
1737         dout("con_work %p done\n", con);
1738
1739 out:
1740         con->ops->put(con);
1741 }
1742
1743
1744 /*
1745  * Generic error/fault handler.  A retry mechanism is used with
1746  * exponential backoff
1747  */
1748 static void ceph_fault(struct ceph_connection *con)
1749 {
1750         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1751                pr_addr(&con->peer_addr.in_addr), con->error_msg);
1752         dout("fault %p state %lu to peer %s\n",
1753              con, con->state, pr_addr(&con->peer_addr.in_addr));
1754
1755         if (test_bit(LOSSYTX, &con->state)) {
1756                 dout("fault on LOSSYTX channel\n");
1757                 goto out;
1758         }
1759
1760         clear_bit(BUSY, &con->state);  /* to avoid an improbable race */
1761
1762         con_close_socket(con);
1763         con->in_msg = NULL;
1764
1765         /* If there are no messages in the queue, place the connection
1766          * in a STANDBY state (i.e., don't try to reconnect just yet). */
1767         mutex_lock(&con->out_mutex);
1768         if (list_empty(&con->out_queue) && !con->out_keepalive_pending) {
1769                 dout("fault setting STANDBY\n");
1770                 set_bit(STANDBY, &con->state);
1771                 mutex_unlock(&con->out_mutex);
1772                 goto out;
1773         }
1774
1775         /* Requeue anything that hasn't been acked, and retry after a
1776          * delay. */
1777         list_splice_init(&con->out_sent, &con->out_queue);
1778         mutex_unlock(&con->out_mutex);
1779
1780         if (con->delay == 0)
1781                 con->delay = BASE_DELAY_INTERVAL;
1782         else if (con->delay < MAX_DELAY_INTERVAL)
1783                 con->delay *= 2;
1784
1785         /* explicitly schedule work to try to reconnect again later. */
1786         dout("fault queueing %p delay %lu\n", con, con->delay);
1787         con->ops->get(con);
1788         if (queue_delayed_work(ceph_msgr_wq, &con->work,
1789                                round_jiffies_relative(con->delay)) == 0)
1790                 con->ops->put(con);
1791
1792 out:
1793         if (con->ops->fault)
1794                 con->ops->fault(con);
1795 }
1796
1797
1798
1799 /*
1800  * create a new messenger instance
1801  */
1802 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr)
1803 {
1804         struct ceph_messenger *msgr;
1805
1806         msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
1807         if (msgr == NULL)
1808                 return ERR_PTR(-ENOMEM);
1809
1810         spin_lock_init(&msgr->global_seq_lock);
1811
1812         /* the zero page is needed if a request is "canceled" while the message
1813          * is being written over the socket */
1814         msgr->zero_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1815         if (!msgr->zero_page) {
1816                 kfree(msgr);
1817                 return ERR_PTR(-ENOMEM);
1818         }
1819         kmap(msgr->zero_page);
1820
1821         if (myaddr)
1822                 msgr->inst.addr = *myaddr;
1823
1824         /* select a random nonce */
1825         get_random_bytes(&msgr->inst.addr.nonce,
1826                          sizeof(msgr->inst.addr.nonce));
1827         encode_my_addr(msgr);
1828
1829         dout("messenger_create %p\n", msgr);
1830         return msgr;
1831 }
1832
1833 void ceph_messenger_destroy(struct ceph_messenger *msgr)
1834 {
1835         dout("destroy %p\n", msgr);
1836         kunmap(msgr->zero_page);
1837         __free_page(msgr->zero_page);
1838         kfree(msgr);
1839         dout("destroyed messenger %p\n", msgr);
1840 }
1841
1842 /*
1843  * Queue up an outgoing message on the given connection.
1844  */
1845 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1846 {
1847         if (test_bit(CLOSED, &con->state)) {
1848                 dout("con_send %p closed, dropping %p\n", con, msg);
1849                 ceph_msg_put(msg);
1850                 return;
1851         }
1852
1853         /* set src+dst */
1854         msg->hdr.src.name = con->msgr->inst.name;
1855         msg->hdr.src.addr = con->msgr->my_enc_addr;
1856         msg->hdr.orig_src = msg->hdr.src;
1857         msg->hdr.dst_erank = con->peer_addr.erank;
1858
1859         /* queue */
1860         mutex_lock(&con->out_mutex);
1861         BUG_ON(!list_empty(&msg->list_head));
1862         list_add_tail(&msg->list_head, &con->out_queue);
1863         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1864              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1865              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1866              le32_to_cpu(msg->hdr.front_len),
1867              le32_to_cpu(msg->hdr.middle_len),
1868              le32_to_cpu(msg->hdr.data_len));
1869         mutex_unlock(&con->out_mutex);
1870
1871         /* if there wasn't anything waiting to send before, queue
1872          * new work */
1873         if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
1874                 queue_con(con);
1875 }
1876
1877 /*
1878  * Revoke a message that was previously queued for send
1879  */
1880 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
1881 {
1882         mutex_lock(&con->out_mutex);
1883         if (!list_empty(&msg->list_head)) {
1884                 dout("con_revoke %p msg %p\n", con, msg);
1885                 list_del_init(&msg->list_head);
1886                 ceph_msg_put(msg);
1887                 msg->hdr.seq = 0;
1888                 if (con->out_msg == msg)
1889                         con->out_msg = NULL;
1890                 if (con->out_kvec_is_msg) {
1891                         con->out_skip = con->out_kvec_bytes;
1892                         con->out_kvec_is_msg = false;
1893                 }
1894         } else {
1895                 dout("con_revoke %p msg %p - not queued (sent?)\n", con, msg);
1896         }
1897         mutex_unlock(&con->out_mutex);
1898 }
1899
1900 /*
1901  * Queue a keepalive byte to ensure the tcp connection is alive.
1902  */
1903 void ceph_con_keepalive(struct ceph_connection *con)
1904 {
1905         if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
1906             test_and_set_bit(WRITE_PENDING, &con->state) == 0)
1907                 queue_con(con);
1908 }
1909
1910
1911 /*
1912  * construct a new message with given type, size
1913  * the new msg has a ref count of 1.
1914  */
1915 struct ceph_msg *ceph_msg_new(int type, int front_len,
1916                               int page_len, int page_off, struct page **pages)
1917 {
1918         struct ceph_msg *m;
1919
1920         m = kmalloc(sizeof(*m), GFP_NOFS);
1921         if (m == NULL)
1922                 goto out;
1923         atomic_set(&m->nref, 1);
1924         INIT_LIST_HEAD(&m->list_head);
1925
1926         m->hdr.type = cpu_to_le16(type);
1927         m->hdr.front_len = cpu_to_le32(front_len);
1928         m->hdr.middle_len = 0;
1929         m->hdr.data_len = cpu_to_le32(page_len);
1930         m->hdr.data_off = cpu_to_le16(page_off);
1931         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1932         m->footer.front_crc = 0;
1933         m->footer.middle_crc = 0;
1934         m->footer.data_crc = 0;
1935         m->front_max = front_len;
1936         m->front_is_vmalloc = false;
1937         m->more_to_follow = false;
1938         m->pool = NULL;
1939
1940         /* front */
1941         if (front_len) {
1942                 if (front_len > PAGE_CACHE_SIZE) {
1943                         m->front.iov_base = __vmalloc(front_len, GFP_NOFS,
1944                                                       PAGE_KERNEL);
1945                         m->front_is_vmalloc = true;
1946                 } else {
1947                         m->front.iov_base = kmalloc(front_len, GFP_NOFS);
1948                 }
1949                 if (m->front.iov_base == NULL) {
1950                         pr_err("msg_new can't allocate %d bytes\n",
1951                              front_len);
1952                         goto out2;
1953                 }
1954         } else {
1955                 m->front.iov_base = NULL;
1956         }
1957         m->front.iov_len = front_len;
1958
1959         /* middle */
1960         m->middle = NULL;
1961
1962         /* data */
1963         m->nr_pages = calc_pages_for(page_off, page_len);
1964         m->pages = pages;
1965
1966         dout("ceph_msg_new %p page %d~%d -> %d\n", m, page_off, page_len,
1967              m->nr_pages);
1968         return m;
1969
1970 out2:
1971         ceph_msg_put(m);
1972 out:
1973         pr_err("msg_new can't create type %d len %d\n", type, front_len);
1974         return ERR_PTR(-ENOMEM);
1975 }
1976
1977 /*
1978  * Generic message allocator, for incoming messages.
1979  */
1980 struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1981                                 struct ceph_msg_header *hdr)
1982 {
1983         int type = le16_to_cpu(hdr->type);
1984         int front_len = le32_to_cpu(hdr->front_len);
1985         struct ceph_msg *msg = ceph_msg_new(type, front_len, 0, 0, NULL);
1986
1987         if (!msg) {
1988                 pr_err("unable to allocate msg type %d len %d\n",
1989                        type, front_len);
1990                 return ERR_PTR(-ENOMEM);
1991         }
1992         return msg;
1993 }
1994
1995 /*
1996  * Allocate "middle" portion of a message, if it is needed and wasn't
1997  * allocated by alloc_msg.  This allows us to read a small fixed-size
1998  * per-type header in the front and then gracefully fail (i.e.,
1999  * propagate the error to the caller based on info in the front) when
2000  * the middle is too large.
2001  */
2002 int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2003 {
2004         int type = le16_to_cpu(msg->hdr.type);
2005         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2006
2007         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2008              ceph_msg_type_name(type), middle_len);
2009         BUG_ON(!middle_len);
2010         BUG_ON(msg->middle);
2011
2012         msg->middle = ceph_buffer_new_alloc(middle_len, GFP_NOFS);
2013         if (!msg->middle)
2014                 return -ENOMEM;
2015         return 0;
2016 }
2017
2018
2019 /*
2020  * Free a generically kmalloc'd message.
2021  */
2022 void ceph_msg_kfree(struct ceph_msg *m)
2023 {
2024         dout("msg_kfree %p\n", m);
2025         if (m->front_is_vmalloc)
2026                 vfree(m->front.iov_base);
2027         else
2028                 kfree(m->front.iov_base);
2029         kfree(m);
2030 }
2031
2032 /*
2033  * Drop a msg ref.  Destroy as needed.
2034  */
2035 void ceph_msg_put(struct ceph_msg *m)
2036 {
2037         dout("ceph_msg_put %p %d -> %d\n", m, atomic_read(&m->nref),
2038              atomic_read(&m->nref)-1);
2039         if (atomic_read(&m->nref) <= 0) {
2040                 pr_err("bad ceph_msg_put on %p %llu %d=%s %d+%d\n",
2041                        m, le64_to_cpu(m->hdr.seq),
2042                        le16_to_cpu(m->hdr.type),
2043                        ceph_msg_type_name(le16_to_cpu(m->hdr.type)),
2044                        le32_to_cpu(m->hdr.front_len),
2045                        le32_to_cpu(m->hdr.data_len));
2046                 WARN_ON(1);
2047         }
2048         if (atomic_dec_and_test(&m->nref)) {
2049                 dout("ceph_msg_put last one on %p\n", m);
2050                 WARN_ON(!list_empty(&m->list_head));
2051
2052                 /* drop middle, data, if any */
2053                 if (m->middle) {
2054                         ceph_buffer_put(m->middle);
2055                         m->middle = NULL;
2056                 }
2057                 m->nr_pages = 0;
2058                 m->pages = NULL;
2059
2060                 if (m->pool)
2061                         ceph_msgpool_put(m->pool, m);
2062                 else
2063                         ceph_msg_kfree(m);
2064         }
2065 }