[PATCH] pass b_size to ->get_block()
[safe/jmp/linux-2.6] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/writeback.h>
36 #include <linux/hash.h>
37 #include <linux/suspend.h>
38 #include <linux/buffer_head.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 static void invalidate_bh_lrus(void);
48
49 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50
51 inline void
52 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
53 {
54         bh->b_end_io = handler;
55         bh->b_private = private;
56 }
57
58 static int sync_buffer(void *word)
59 {
60         struct block_device *bd;
61         struct buffer_head *bh
62                 = container_of(word, struct buffer_head, b_state);
63
64         smp_mb();
65         bd = bh->b_bdev;
66         if (bd)
67                 blk_run_address_space(bd->bd_inode->i_mapping);
68         io_schedule();
69         return 0;
70 }
71
72 void fastcall __lock_buffer(struct buffer_head *bh)
73 {
74         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
75                                                         TASK_UNINTERRUPTIBLE);
76 }
77 EXPORT_SYMBOL(__lock_buffer);
78
79 void fastcall unlock_buffer(struct buffer_head *bh)
80 {
81         clear_buffer_locked(bh);
82         smp_mb__after_clear_bit();
83         wake_up_bit(&bh->b_state, BH_Lock);
84 }
85
86 /*
87  * Block until a buffer comes unlocked.  This doesn't stop it
88  * from becoming locked again - you have to lock it yourself
89  * if you want to preserve its state.
90  */
91 void __wait_on_buffer(struct buffer_head * bh)
92 {
93         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 }
95
96 static void
97 __clear_page_buffers(struct page *page)
98 {
99         ClearPagePrivate(page);
100         set_page_private(page, 0);
101         page_cache_release(page);
102 }
103
104 static void buffer_io_error(struct buffer_head *bh)
105 {
106         char b[BDEVNAME_SIZE];
107
108         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
109                         bdevname(bh->b_bdev, b),
110                         (unsigned long long)bh->b_blocknr);
111 }
112
113 /*
114  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
115  * unlock the buffer. This is what ll_rw_block uses too.
116  */
117 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
118 {
119         if (uptodate) {
120                 set_buffer_uptodate(bh);
121         } else {
122                 /* This happens, due to failed READA attempts. */
123                 clear_buffer_uptodate(bh);
124         }
125         unlock_buffer(bh);
126         put_bh(bh);
127 }
128
129 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
130 {
131         char b[BDEVNAME_SIZE];
132
133         if (uptodate) {
134                 set_buffer_uptodate(bh);
135         } else {
136                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
137                         buffer_io_error(bh);
138                         printk(KERN_WARNING "lost page write due to "
139                                         "I/O error on %s\n",
140                                        bdevname(bh->b_bdev, b));
141                 }
142                 set_buffer_write_io_error(bh);
143                 clear_buffer_uptodate(bh);
144         }
145         unlock_buffer(bh);
146         put_bh(bh);
147 }
148
149 /*
150  * Write out and wait upon all the dirty data associated with a block
151  * device via its mapping.  Does not take the superblock lock.
152  */
153 int sync_blockdev(struct block_device *bdev)
154 {
155         int ret = 0;
156
157         if (bdev)
158                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
159         return ret;
160 }
161 EXPORT_SYMBOL(sync_blockdev);
162
163 static void __fsync_super(struct super_block *sb)
164 {
165         sync_inodes_sb(sb, 0);
166         DQUOT_SYNC(sb);
167         lock_super(sb);
168         if (sb->s_dirt && sb->s_op->write_super)
169                 sb->s_op->write_super(sb);
170         unlock_super(sb);
171         if (sb->s_op->sync_fs)
172                 sb->s_op->sync_fs(sb, 1);
173         sync_blockdev(sb->s_bdev);
174         sync_inodes_sb(sb, 1);
175 }
176
177 /*
178  * Write out and wait upon all dirty data associated with this
179  * superblock.  Filesystem data as well as the underlying block
180  * device.  Takes the superblock lock.
181  */
182 int fsync_super(struct super_block *sb)
183 {
184         __fsync_super(sb);
185         return sync_blockdev(sb->s_bdev);
186 }
187
188 /*
189  * Write out and wait upon all dirty data associated with this
190  * device.   Filesystem data as well as the underlying block
191  * device.  Takes the superblock lock.
192  */
193 int fsync_bdev(struct block_device *bdev)
194 {
195         struct super_block *sb = get_super(bdev);
196         if (sb) {
197                 int res = fsync_super(sb);
198                 drop_super(sb);
199                 return res;
200         }
201         return sync_blockdev(bdev);
202 }
203
204 /**
205  * freeze_bdev  --  lock a filesystem and force it into a consistent state
206  * @bdev:       blockdevice to lock
207  *
208  * This takes the block device bd_mount_mutex to make sure no new mounts
209  * happen on bdev until thaw_bdev() is called.
210  * If a superblock is found on this device, we take the s_umount semaphore
211  * on it to make sure nobody unmounts until the snapshot creation is done.
212  */
213 struct super_block *freeze_bdev(struct block_device *bdev)
214 {
215         struct super_block *sb;
216
217         mutex_lock(&bdev->bd_mount_mutex);
218         sb = get_super(bdev);
219         if (sb && !(sb->s_flags & MS_RDONLY)) {
220                 sb->s_frozen = SB_FREEZE_WRITE;
221                 smp_wmb();
222
223                 __fsync_super(sb);
224
225                 sb->s_frozen = SB_FREEZE_TRANS;
226                 smp_wmb();
227
228                 sync_blockdev(sb->s_bdev);
229
230                 if (sb->s_op->write_super_lockfs)
231                         sb->s_op->write_super_lockfs(sb);
232         }
233
234         sync_blockdev(bdev);
235         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
236 }
237 EXPORT_SYMBOL(freeze_bdev);
238
239 /**
240  * thaw_bdev  -- unlock filesystem
241  * @bdev:       blockdevice to unlock
242  * @sb:         associated superblock
243  *
244  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
245  */
246 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
247 {
248         if (sb) {
249                 BUG_ON(sb->s_bdev != bdev);
250
251                 if (sb->s_op->unlockfs)
252                         sb->s_op->unlockfs(sb);
253                 sb->s_frozen = SB_UNFROZEN;
254                 smp_wmb();
255                 wake_up(&sb->s_wait_unfrozen);
256                 drop_super(sb);
257         }
258
259         mutex_unlock(&bdev->bd_mount_mutex);
260 }
261 EXPORT_SYMBOL(thaw_bdev);
262
263 /*
264  * sync everything.  Start out by waking pdflush, because that writes back
265  * all queues in parallel.
266  */
267 static void do_sync(unsigned long wait)
268 {
269         wakeup_pdflush(0);
270         sync_inodes(0);         /* All mappings, inodes and their blockdevs */
271         DQUOT_SYNC(NULL);
272         sync_supers();          /* Write the superblocks */
273         sync_filesystems(0);    /* Start syncing the filesystems */
274         sync_filesystems(wait); /* Waitingly sync the filesystems */
275         sync_inodes(wait);      /* Mappings, inodes and blockdevs, again. */
276         if (!wait)
277                 printk("Emergency Sync complete\n");
278         if (unlikely(laptop_mode))
279                 laptop_sync_completion();
280 }
281
282 asmlinkage long sys_sync(void)
283 {
284         do_sync(1);
285         return 0;
286 }
287
288 void emergency_sync(void)
289 {
290         pdflush_operation(do_sync, 0);
291 }
292
293 /*
294  * Generic function to fsync a file.
295  *
296  * filp may be NULL if called via the msync of a vma.
297  */
298  
299 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
300 {
301         struct inode * inode = dentry->d_inode;
302         struct super_block * sb;
303         int ret, err;
304
305         /* sync the inode to buffers */
306         ret = write_inode_now(inode, 0);
307
308         /* sync the superblock to buffers */
309         sb = inode->i_sb;
310         lock_super(sb);
311         if (sb->s_op->write_super)
312                 sb->s_op->write_super(sb);
313         unlock_super(sb);
314
315         /* .. finally sync the buffers to disk */
316         err = sync_blockdev(sb->s_bdev);
317         if (!ret)
318                 ret = err;
319         return ret;
320 }
321
322 long do_fsync(struct file *file, int datasync)
323 {
324         int ret;
325         int err;
326         struct address_space *mapping = file->f_mapping;
327
328         if (!file->f_op || !file->f_op->fsync) {
329                 /* Why?  We can still call filemap_fdatawrite */
330                 ret = -EINVAL;
331                 goto out;
332         }
333
334         current->flags |= PF_SYNCWRITE;
335         ret = filemap_fdatawrite(mapping);
336
337         /*
338          * We need to protect against concurrent writers, which could cause
339          * livelocks in fsync_buffers_list().
340          */
341         mutex_lock(&mapping->host->i_mutex);
342         err = file->f_op->fsync(file, file->f_dentry, datasync);
343         if (!ret)
344                 ret = err;
345         mutex_unlock(&mapping->host->i_mutex);
346         err = filemap_fdatawait(mapping);
347         if (!ret)
348                 ret = err;
349         current->flags &= ~PF_SYNCWRITE;
350 out:
351         return ret;
352 }
353
354 static long __do_fsync(unsigned int fd, int datasync)
355 {
356         struct file *file;
357         int ret = -EBADF;
358
359         file = fget(fd);
360         if (file) {
361                 ret = do_fsync(file, datasync);
362                 fput(file);
363         }
364         return ret;
365 }
366
367 asmlinkage long sys_fsync(unsigned int fd)
368 {
369         return __do_fsync(fd, 0);
370 }
371
372 asmlinkage long sys_fdatasync(unsigned int fd)
373 {
374         return __do_fsync(fd, 1);
375 }
376
377 /*
378  * Various filesystems appear to want __find_get_block to be non-blocking.
379  * But it's the page lock which protects the buffers.  To get around this,
380  * we get exclusion from try_to_free_buffers with the blockdev mapping's
381  * private_lock.
382  *
383  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
384  * may be quite high.  This code could TryLock the page, and if that
385  * succeeds, there is no need to take private_lock. (But if
386  * private_lock is contended then so is mapping->tree_lock).
387  */
388 static struct buffer_head *
389 __find_get_block_slow(struct block_device *bdev, sector_t block)
390 {
391         struct inode *bd_inode = bdev->bd_inode;
392         struct address_space *bd_mapping = bd_inode->i_mapping;
393         struct buffer_head *ret = NULL;
394         pgoff_t index;
395         struct buffer_head *bh;
396         struct buffer_head *head;
397         struct page *page;
398         int all_mapped = 1;
399
400         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
401         page = find_get_page(bd_mapping, index);
402         if (!page)
403                 goto out;
404
405         spin_lock(&bd_mapping->private_lock);
406         if (!page_has_buffers(page))
407                 goto out_unlock;
408         head = page_buffers(page);
409         bh = head;
410         do {
411                 if (bh->b_blocknr == block) {
412                         ret = bh;
413                         get_bh(bh);
414                         goto out_unlock;
415                 }
416                 if (!buffer_mapped(bh))
417                         all_mapped = 0;
418                 bh = bh->b_this_page;
419         } while (bh != head);
420
421         /* we might be here because some of the buffers on this page are
422          * not mapped.  This is due to various races between
423          * file io on the block device and getblk.  It gets dealt with
424          * elsewhere, don't buffer_error if we had some unmapped buffers
425          */
426         if (all_mapped) {
427                 printk("__find_get_block_slow() failed. "
428                         "block=%llu, b_blocknr=%llu\n",
429                         (unsigned long long)block,
430                         (unsigned long long)bh->b_blocknr);
431                 printk("b_state=0x%08lx, b_size=%zu\n",
432                         bh->b_state, bh->b_size);
433                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
434         }
435 out_unlock:
436         spin_unlock(&bd_mapping->private_lock);
437         page_cache_release(page);
438 out:
439         return ret;
440 }
441
442 /* If invalidate_buffers() will trash dirty buffers, it means some kind
443    of fs corruption is going on. Trashing dirty data always imply losing
444    information that was supposed to be just stored on the physical layer
445    by the user.
446
447    Thus invalidate_buffers in general usage is not allwowed to trash
448    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
449    be preserved.  These buffers are simply skipped.
450   
451    We also skip buffers which are still in use.  For example this can
452    happen if a userspace program is reading the block device.
453
454    NOTE: In the case where the user removed a removable-media-disk even if
455    there's still dirty data not synced on disk (due a bug in the device driver
456    or due an error of the user), by not destroying the dirty buffers we could
457    generate corruption also on the next media inserted, thus a parameter is
458    necessary to handle this case in the most safe way possible (trying
459    to not corrupt also the new disk inserted with the data belonging to
460    the old now corrupted disk). Also for the ramdisk the natural thing
461    to do in order to release the ramdisk memory is to destroy dirty buffers.
462
463    These are two special cases. Normal usage imply the device driver
464    to issue a sync on the device (without waiting I/O completion) and
465    then an invalidate_buffers call that doesn't trash dirty buffers.
466
467    For handling cache coherency with the blkdev pagecache the 'update' case
468    is been introduced. It is needed to re-read from disk any pinned
469    buffer. NOTE: re-reading from disk is destructive so we can do it only
470    when we assume nobody is changing the buffercache under our I/O and when
471    we think the disk contains more recent information than the buffercache.
472    The update == 1 pass marks the buffers we need to update, the update == 2
473    pass does the actual I/O. */
474 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
475 {
476         invalidate_bh_lrus();
477         /*
478          * FIXME: what about destroy_dirty_buffers?
479          * We really want to use invalidate_inode_pages2() for
480          * that, but not until that's cleaned up.
481          */
482         invalidate_inode_pages(bdev->bd_inode->i_mapping);
483 }
484
485 /*
486  * Kick pdflush then try to free up some ZONE_NORMAL memory.
487  */
488 static void free_more_memory(void)
489 {
490         struct zone **zones;
491         pg_data_t *pgdat;
492
493         wakeup_pdflush(1024);
494         yield();
495
496         for_each_pgdat(pgdat) {
497                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
498                 if (*zones)
499                         try_to_free_pages(zones, GFP_NOFS);
500         }
501 }
502
503 /*
504  * I/O completion handler for block_read_full_page() - pages
505  * which come unlocked at the end of I/O.
506  */
507 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
508 {
509         unsigned long flags;
510         struct buffer_head *first;
511         struct buffer_head *tmp;
512         struct page *page;
513         int page_uptodate = 1;
514
515         BUG_ON(!buffer_async_read(bh));
516
517         page = bh->b_page;
518         if (uptodate) {
519                 set_buffer_uptodate(bh);
520         } else {
521                 clear_buffer_uptodate(bh);
522                 if (printk_ratelimit())
523                         buffer_io_error(bh);
524                 SetPageError(page);
525         }
526
527         /*
528          * Be _very_ careful from here on. Bad things can happen if
529          * two buffer heads end IO at almost the same time and both
530          * decide that the page is now completely done.
531          */
532         first = page_buffers(page);
533         local_irq_save(flags);
534         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
535         clear_buffer_async_read(bh);
536         unlock_buffer(bh);
537         tmp = bh;
538         do {
539                 if (!buffer_uptodate(tmp))
540                         page_uptodate = 0;
541                 if (buffer_async_read(tmp)) {
542                         BUG_ON(!buffer_locked(tmp));
543                         goto still_busy;
544                 }
545                 tmp = tmp->b_this_page;
546         } while (tmp != bh);
547         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
548         local_irq_restore(flags);
549
550         /*
551          * If none of the buffers had errors and they are all
552          * uptodate then we can set the page uptodate.
553          */
554         if (page_uptodate && !PageError(page))
555                 SetPageUptodate(page);
556         unlock_page(page);
557         return;
558
559 still_busy:
560         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
561         local_irq_restore(flags);
562         return;
563 }
564
565 /*
566  * Completion handler for block_write_full_page() - pages which are unlocked
567  * during I/O, and which have PageWriteback cleared upon I/O completion.
568  */
569 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
570 {
571         char b[BDEVNAME_SIZE];
572         unsigned long flags;
573         struct buffer_head *first;
574         struct buffer_head *tmp;
575         struct page *page;
576
577         BUG_ON(!buffer_async_write(bh));
578
579         page = bh->b_page;
580         if (uptodate) {
581                 set_buffer_uptodate(bh);
582         } else {
583                 if (printk_ratelimit()) {
584                         buffer_io_error(bh);
585                         printk(KERN_WARNING "lost page write due to "
586                                         "I/O error on %s\n",
587                                bdevname(bh->b_bdev, b));
588                 }
589                 set_bit(AS_EIO, &page->mapping->flags);
590                 clear_buffer_uptodate(bh);
591                 SetPageError(page);
592         }
593
594         first = page_buffers(page);
595         local_irq_save(flags);
596         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
597
598         clear_buffer_async_write(bh);
599         unlock_buffer(bh);
600         tmp = bh->b_this_page;
601         while (tmp != bh) {
602                 if (buffer_async_write(tmp)) {
603                         BUG_ON(!buffer_locked(tmp));
604                         goto still_busy;
605                 }
606                 tmp = tmp->b_this_page;
607         }
608         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
609         local_irq_restore(flags);
610         end_page_writeback(page);
611         return;
612
613 still_busy:
614         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
615         local_irq_restore(flags);
616         return;
617 }
618
619 /*
620  * If a page's buffers are under async readin (end_buffer_async_read
621  * completion) then there is a possibility that another thread of
622  * control could lock one of the buffers after it has completed
623  * but while some of the other buffers have not completed.  This
624  * locked buffer would confuse end_buffer_async_read() into not unlocking
625  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
626  * that this buffer is not under async I/O.
627  *
628  * The page comes unlocked when it has no locked buffer_async buffers
629  * left.
630  *
631  * PageLocked prevents anyone starting new async I/O reads any of
632  * the buffers.
633  *
634  * PageWriteback is used to prevent simultaneous writeout of the same
635  * page.
636  *
637  * PageLocked prevents anyone from starting writeback of a page which is
638  * under read I/O (PageWriteback is only ever set against a locked page).
639  */
640 static void mark_buffer_async_read(struct buffer_head *bh)
641 {
642         bh->b_end_io = end_buffer_async_read;
643         set_buffer_async_read(bh);
644 }
645
646 void mark_buffer_async_write(struct buffer_head *bh)
647 {
648         bh->b_end_io = end_buffer_async_write;
649         set_buffer_async_write(bh);
650 }
651 EXPORT_SYMBOL(mark_buffer_async_write);
652
653
654 /*
655  * fs/buffer.c contains helper functions for buffer-backed address space's
656  * fsync functions.  A common requirement for buffer-based filesystems is
657  * that certain data from the backing blockdev needs to be written out for
658  * a successful fsync().  For example, ext2 indirect blocks need to be
659  * written back and waited upon before fsync() returns.
660  *
661  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
662  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
663  * management of a list of dependent buffers at ->i_mapping->private_list.
664  *
665  * Locking is a little subtle: try_to_free_buffers() will remove buffers
666  * from their controlling inode's queue when they are being freed.  But
667  * try_to_free_buffers() will be operating against the *blockdev* mapping
668  * at the time, not against the S_ISREG file which depends on those buffers.
669  * So the locking for private_list is via the private_lock in the address_space
670  * which backs the buffers.  Which is different from the address_space 
671  * against which the buffers are listed.  So for a particular address_space,
672  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
673  * mapping->private_list will always be protected by the backing blockdev's
674  * ->private_lock.
675  *
676  * Which introduces a requirement: all buffers on an address_space's
677  * ->private_list must be from the same address_space: the blockdev's.
678  *
679  * address_spaces which do not place buffers at ->private_list via these
680  * utility functions are free to use private_lock and private_list for
681  * whatever they want.  The only requirement is that list_empty(private_list)
682  * be true at clear_inode() time.
683  *
684  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
685  * filesystems should do that.  invalidate_inode_buffers() should just go
686  * BUG_ON(!list_empty).
687  *
688  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
689  * take an address_space, not an inode.  And it should be called
690  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
691  * queued up.
692  *
693  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
694  * list if it is already on a list.  Because if the buffer is on a list,
695  * it *must* already be on the right one.  If not, the filesystem is being
696  * silly.  This will save a ton of locking.  But first we have to ensure
697  * that buffers are taken *off* the old inode's list when they are freed
698  * (presumably in truncate).  That requires careful auditing of all
699  * filesystems (do it inside bforget()).  It could also be done by bringing
700  * b_inode back.
701  */
702
703 /*
704  * The buffer's backing address_space's private_lock must be held
705  */
706 static inline void __remove_assoc_queue(struct buffer_head *bh)
707 {
708         list_del_init(&bh->b_assoc_buffers);
709 }
710
711 int inode_has_buffers(struct inode *inode)
712 {
713         return !list_empty(&inode->i_data.private_list);
714 }
715
716 /*
717  * osync is designed to support O_SYNC io.  It waits synchronously for
718  * all already-submitted IO to complete, but does not queue any new
719  * writes to the disk.
720  *
721  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
722  * you dirty the buffers, and then use osync_inode_buffers to wait for
723  * completion.  Any other dirty buffers which are not yet queued for
724  * write will not be flushed to disk by the osync.
725  */
726 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
727 {
728         struct buffer_head *bh;
729         struct list_head *p;
730         int err = 0;
731
732         spin_lock(lock);
733 repeat:
734         list_for_each_prev(p, list) {
735                 bh = BH_ENTRY(p);
736                 if (buffer_locked(bh)) {
737                         get_bh(bh);
738                         spin_unlock(lock);
739                         wait_on_buffer(bh);
740                         if (!buffer_uptodate(bh))
741                                 err = -EIO;
742                         brelse(bh);
743                         spin_lock(lock);
744                         goto repeat;
745                 }
746         }
747         spin_unlock(lock);
748         return err;
749 }
750
751 /**
752  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
753  *                        buffers
754  * @mapping: the mapping which wants those buffers written
755  *
756  * Starts I/O against the buffers at mapping->private_list, and waits upon
757  * that I/O.
758  *
759  * Basically, this is a convenience function for fsync().
760  * @mapping is a file or directory which needs those buffers to be written for
761  * a successful fsync().
762  */
763 int sync_mapping_buffers(struct address_space *mapping)
764 {
765         struct address_space *buffer_mapping = mapping->assoc_mapping;
766
767         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
768                 return 0;
769
770         return fsync_buffers_list(&buffer_mapping->private_lock,
771                                         &mapping->private_list);
772 }
773 EXPORT_SYMBOL(sync_mapping_buffers);
774
775 /*
776  * Called when we've recently written block `bblock', and it is known that
777  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
778  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
779  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
780  */
781 void write_boundary_block(struct block_device *bdev,
782                         sector_t bblock, unsigned blocksize)
783 {
784         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
785         if (bh) {
786                 if (buffer_dirty(bh))
787                         ll_rw_block(WRITE, 1, &bh);
788                 put_bh(bh);
789         }
790 }
791
792 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
793 {
794         struct address_space *mapping = inode->i_mapping;
795         struct address_space *buffer_mapping = bh->b_page->mapping;
796
797         mark_buffer_dirty(bh);
798         if (!mapping->assoc_mapping) {
799                 mapping->assoc_mapping = buffer_mapping;
800         } else {
801                 if (mapping->assoc_mapping != buffer_mapping)
802                         BUG();
803         }
804         if (list_empty(&bh->b_assoc_buffers)) {
805                 spin_lock(&buffer_mapping->private_lock);
806                 list_move_tail(&bh->b_assoc_buffers,
807                                 &mapping->private_list);
808                 spin_unlock(&buffer_mapping->private_lock);
809         }
810 }
811 EXPORT_SYMBOL(mark_buffer_dirty_inode);
812
813 /*
814  * Add a page to the dirty page list.
815  *
816  * It is a sad fact of life that this function is called from several places
817  * deeply under spinlocking.  It may not sleep.
818  *
819  * If the page has buffers, the uptodate buffers are set dirty, to preserve
820  * dirty-state coherency between the page and the buffers.  It the page does
821  * not have buffers then when they are later attached they will all be set
822  * dirty.
823  *
824  * The buffers are dirtied before the page is dirtied.  There's a small race
825  * window in which a writepage caller may see the page cleanness but not the
826  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
827  * before the buffers, a concurrent writepage caller could clear the page dirty
828  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
829  * page on the dirty page list.
830  *
831  * We use private_lock to lock against try_to_free_buffers while using the
832  * page's buffer list.  Also use this to protect against clean buffers being
833  * added to the page after it was set dirty.
834  *
835  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
836  * address_space though.
837  */
838 int __set_page_dirty_buffers(struct page *page)
839 {
840         struct address_space * const mapping = page->mapping;
841
842         spin_lock(&mapping->private_lock);
843         if (page_has_buffers(page)) {
844                 struct buffer_head *head = page_buffers(page);
845                 struct buffer_head *bh = head;
846
847                 do {
848                         set_buffer_dirty(bh);
849                         bh = bh->b_this_page;
850                 } while (bh != head);
851         }
852         spin_unlock(&mapping->private_lock);
853
854         if (!TestSetPageDirty(page)) {
855                 write_lock_irq(&mapping->tree_lock);
856                 if (page->mapping) {    /* Race with truncate? */
857                         if (mapping_cap_account_dirty(mapping))
858                                 inc_page_state(nr_dirty);
859                         radix_tree_tag_set(&mapping->page_tree,
860                                                 page_index(page),
861                                                 PAGECACHE_TAG_DIRTY);
862                 }
863                 write_unlock_irq(&mapping->tree_lock);
864                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
865                 return 1;
866         }
867         return 0;
868 }
869 EXPORT_SYMBOL(__set_page_dirty_buffers);
870
871 /*
872  * Write out and wait upon a list of buffers.
873  *
874  * We have conflicting pressures: we want to make sure that all
875  * initially dirty buffers get waited on, but that any subsequently
876  * dirtied buffers don't.  After all, we don't want fsync to last
877  * forever if somebody is actively writing to the file.
878  *
879  * Do this in two main stages: first we copy dirty buffers to a
880  * temporary inode list, queueing the writes as we go.  Then we clean
881  * up, waiting for those writes to complete.
882  * 
883  * During this second stage, any subsequent updates to the file may end
884  * up refiling the buffer on the original inode's dirty list again, so
885  * there is a chance we will end up with a buffer queued for write but
886  * not yet completed on that list.  So, as a final cleanup we go through
887  * the osync code to catch these locked, dirty buffers without requeuing
888  * any newly dirty buffers for write.
889  */
890 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
891 {
892         struct buffer_head *bh;
893         struct list_head tmp;
894         int err = 0, err2;
895
896         INIT_LIST_HEAD(&tmp);
897
898         spin_lock(lock);
899         while (!list_empty(list)) {
900                 bh = BH_ENTRY(list->next);
901                 list_del_init(&bh->b_assoc_buffers);
902                 if (buffer_dirty(bh) || buffer_locked(bh)) {
903                         list_add(&bh->b_assoc_buffers, &tmp);
904                         if (buffer_dirty(bh)) {
905                                 get_bh(bh);
906                                 spin_unlock(lock);
907                                 /*
908                                  * Ensure any pending I/O completes so that
909                                  * ll_rw_block() actually writes the current
910                                  * contents - it is a noop if I/O is still in
911                                  * flight on potentially older contents.
912                                  */
913                                 ll_rw_block(SWRITE, 1, &bh);
914                                 brelse(bh);
915                                 spin_lock(lock);
916                         }
917                 }
918         }
919
920         while (!list_empty(&tmp)) {
921                 bh = BH_ENTRY(tmp.prev);
922                 __remove_assoc_queue(bh);
923                 get_bh(bh);
924                 spin_unlock(lock);
925                 wait_on_buffer(bh);
926                 if (!buffer_uptodate(bh))
927                         err = -EIO;
928                 brelse(bh);
929                 spin_lock(lock);
930         }
931         
932         spin_unlock(lock);
933         err2 = osync_buffers_list(lock, list);
934         if (err)
935                 return err;
936         else
937                 return err2;
938 }
939
940 /*
941  * Invalidate any and all dirty buffers on a given inode.  We are
942  * probably unmounting the fs, but that doesn't mean we have already
943  * done a sync().  Just drop the buffers from the inode list.
944  *
945  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
946  * assumes that all the buffers are against the blockdev.  Not true
947  * for reiserfs.
948  */
949 void invalidate_inode_buffers(struct inode *inode)
950 {
951         if (inode_has_buffers(inode)) {
952                 struct address_space *mapping = &inode->i_data;
953                 struct list_head *list = &mapping->private_list;
954                 struct address_space *buffer_mapping = mapping->assoc_mapping;
955
956                 spin_lock(&buffer_mapping->private_lock);
957                 while (!list_empty(list))
958                         __remove_assoc_queue(BH_ENTRY(list->next));
959                 spin_unlock(&buffer_mapping->private_lock);
960         }
961 }
962
963 /*
964  * Remove any clean buffers from the inode's buffer list.  This is called
965  * when we're trying to free the inode itself.  Those buffers can pin it.
966  *
967  * Returns true if all buffers were removed.
968  */
969 int remove_inode_buffers(struct inode *inode)
970 {
971         int ret = 1;
972
973         if (inode_has_buffers(inode)) {
974                 struct address_space *mapping = &inode->i_data;
975                 struct list_head *list = &mapping->private_list;
976                 struct address_space *buffer_mapping = mapping->assoc_mapping;
977
978                 spin_lock(&buffer_mapping->private_lock);
979                 while (!list_empty(list)) {
980                         struct buffer_head *bh = BH_ENTRY(list->next);
981                         if (buffer_dirty(bh)) {
982                                 ret = 0;
983                                 break;
984                         }
985                         __remove_assoc_queue(bh);
986                 }
987                 spin_unlock(&buffer_mapping->private_lock);
988         }
989         return ret;
990 }
991
992 /*
993  * Create the appropriate buffers when given a page for data area and
994  * the size of each buffer.. Use the bh->b_this_page linked list to
995  * follow the buffers created.  Return NULL if unable to create more
996  * buffers.
997  *
998  * The retry flag is used to differentiate async IO (paging, swapping)
999  * which may not fail from ordinary buffer allocations.
1000  */
1001 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1002                 int retry)
1003 {
1004         struct buffer_head *bh, *head;
1005         long offset;
1006
1007 try_again:
1008         head = NULL;
1009         offset = PAGE_SIZE;
1010         while ((offset -= size) >= 0) {
1011                 bh = alloc_buffer_head(GFP_NOFS);
1012                 if (!bh)
1013                         goto no_grow;
1014
1015                 bh->b_bdev = NULL;
1016                 bh->b_this_page = head;
1017                 bh->b_blocknr = -1;
1018                 head = bh;
1019
1020                 bh->b_state = 0;
1021                 atomic_set(&bh->b_count, 0);
1022                 bh->b_private = NULL;
1023                 bh->b_size = size;
1024
1025                 /* Link the buffer to its page */
1026                 set_bh_page(bh, page, offset);
1027
1028                 init_buffer(bh, NULL, NULL);
1029         }
1030         return head;
1031 /*
1032  * In case anything failed, we just free everything we got.
1033  */
1034 no_grow:
1035         if (head) {
1036                 do {
1037                         bh = head;
1038                         head = head->b_this_page;
1039                         free_buffer_head(bh);
1040                 } while (head);
1041         }
1042
1043         /*
1044          * Return failure for non-async IO requests.  Async IO requests
1045          * are not allowed to fail, so we have to wait until buffer heads
1046          * become available.  But we don't want tasks sleeping with 
1047          * partially complete buffers, so all were released above.
1048          */
1049         if (!retry)
1050                 return NULL;
1051
1052         /* We're _really_ low on memory. Now we just
1053          * wait for old buffer heads to become free due to
1054          * finishing IO.  Since this is an async request and
1055          * the reserve list is empty, we're sure there are 
1056          * async buffer heads in use.
1057          */
1058         free_more_memory();
1059         goto try_again;
1060 }
1061 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1062
1063 static inline void
1064 link_dev_buffers(struct page *page, struct buffer_head *head)
1065 {
1066         struct buffer_head *bh, *tail;
1067
1068         bh = head;
1069         do {
1070                 tail = bh;
1071                 bh = bh->b_this_page;
1072         } while (bh);
1073         tail->b_this_page = head;
1074         attach_page_buffers(page, head);
1075 }
1076
1077 /*
1078  * Initialise the state of a blockdev page's buffers.
1079  */ 
1080 static void
1081 init_page_buffers(struct page *page, struct block_device *bdev,
1082                         sector_t block, int size)
1083 {
1084         struct buffer_head *head = page_buffers(page);
1085         struct buffer_head *bh = head;
1086         int uptodate = PageUptodate(page);
1087
1088         do {
1089                 if (!buffer_mapped(bh)) {
1090                         init_buffer(bh, NULL, NULL);
1091                         bh->b_bdev = bdev;
1092                         bh->b_blocknr = block;
1093                         if (uptodate)
1094                                 set_buffer_uptodate(bh);
1095                         set_buffer_mapped(bh);
1096                 }
1097                 block++;
1098                 bh = bh->b_this_page;
1099         } while (bh != head);
1100 }
1101
1102 /*
1103  * Create the page-cache page that contains the requested block.
1104  *
1105  * This is user purely for blockdev mappings.
1106  */
1107 static struct page *
1108 grow_dev_page(struct block_device *bdev, sector_t block,
1109                 pgoff_t index, int size)
1110 {
1111         struct inode *inode = bdev->bd_inode;
1112         struct page *page;
1113         struct buffer_head *bh;
1114
1115         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1116         if (!page)
1117                 return NULL;
1118
1119         if (!PageLocked(page))
1120                 BUG();
1121
1122         if (page_has_buffers(page)) {
1123                 bh = page_buffers(page);
1124                 if (bh->b_size == size) {
1125                         init_page_buffers(page, bdev, block, size);
1126                         return page;
1127                 }
1128                 if (!try_to_free_buffers(page))
1129                         goto failed;
1130         }
1131
1132         /*
1133          * Allocate some buffers for this page
1134          */
1135         bh = alloc_page_buffers(page, size, 0);
1136         if (!bh)
1137                 goto failed;
1138
1139         /*
1140          * Link the page to the buffers and initialise them.  Take the
1141          * lock to be atomic wrt __find_get_block(), which does not
1142          * run under the page lock.
1143          */
1144         spin_lock(&inode->i_mapping->private_lock);
1145         link_dev_buffers(page, bh);
1146         init_page_buffers(page, bdev, block, size);
1147         spin_unlock(&inode->i_mapping->private_lock);
1148         return page;
1149
1150 failed:
1151         BUG();
1152         unlock_page(page);
1153         page_cache_release(page);
1154         return NULL;
1155 }
1156
1157 /*
1158  * Create buffers for the specified block device block's page.  If
1159  * that page was dirty, the buffers are set dirty also.
1160  *
1161  * Except that's a bug.  Attaching dirty buffers to a dirty
1162  * blockdev's page can result in filesystem corruption, because
1163  * some of those buffers may be aliases of filesystem data.
1164  * grow_dev_page() will go BUG() if this happens.
1165  */
1166 static int
1167 grow_buffers(struct block_device *bdev, sector_t block, int size)
1168 {
1169         struct page *page;
1170         pgoff_t index;
1171         int sizebits;
1172
1173         sizebits = -1;
1174         do {
1175                 sizebits++;
1176         } while ((size << sizebits) < PAGE_SIZE);
1177
1178         index = block >> sizebits;
1179         block = index << sizebits;
1180
1181         /* Create a page with the proper size buffers.. */
1182         page = grow_dev_page(bdev, block, index, size);
1183         if (!page)
1184                 return 0;
1185         unlock_page(page);
1186         page_cache_release(page);
1187         return 1;
1188 }
1189
1190 static struct buffer_head *
1191 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1192 {
1193         /* Size must be multiple of hard sectorsize */
1194         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1195                         (size < 512 || size > PAGE_SIZE))) {
1196                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1197                                         size);
1198                 printk(KERN_ERR "hardsect size: %d\n",
1199                                         bdev_hardsect_size(bdev));
1200
1201                 dump_stack();
1202                 return NULL;
1203         }
1204
1205         for (;;) {
1206                 struct buffer_head * bh;
1207
1208                 bh = __find_get_block(bdev, block, size);
1209                 if (bh)
1210                         return bh;
1211
1212                 if (!grow_buffers(bdev, block, size))
1213                         free_more_memory();
1214         }
1215 }
1216
1217 /*
1218  * The relationship between dirty buffers and dirty pages:
1219  *
1220  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1221  * the page is tagged dirty in its radix tree.
1222  *
1223  * At all times, the dirtiness of the buffers represents the dirtiness of
1224  * subsections of the page.  If the page has buffers, the page dirty bit is
1225  * merely a hint about the true dirty state.
1226  *
1227  * When a page is set dirty in its entirety, all its buffers are marked dirty
1228  * (if the page has buffers).
1229  *
1230  * When a buffer is marked dirty, its page is dirtied, but the page's other
1231  * buffers are not.
1232  *
1233  * Also.  When blockdev buffers are explicitly read with bread(), they
1234  * individually become uptodate.  But their backing page remains not
1235  * uptodate - even if all of its buffers are uptodate.  A subsequent
1236  * block_read_full_page() against that page will discover all the uptodate
1237  * buffers, will set the page uptodate and will perform no I/O.
1238  */
1239
1240 /**
1241  * mark_buffer_dirty - mark a buffer_head as needing writeout
1242  * @bh: the buffer_head to mark dirty
1243  *
1244  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1245  * backing page dirty, then tag the page as dirty in its address_space's radix
1246  * tree and then attach the address_space's inode to its superblock's dirty
1247  * inode list.
1248  *
1249  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1250  * mapping->tree_lock and the global inode_lock.
1251  */
1252 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1253 {
1254         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1255                 __set_page_dirty_nobuffers(bh->b_page);
1256 }
1257
1258 /*
1259  * Decrement a buffer_head's reference count.  If all buffers against a page
1260  * have zero reference count, are clean and unlocked, and if the page is clean
1261  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1262  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1263  * a page but it ends up not being freed, and buffers may later be reattached).
1264  */
1265 void __brelse(struct buffer_head * buf)
1266 {
1267         if (atomic_read(&buf->b_count)) {
1268                 put_bh(buf);
1269                 return;
1270         }
1271         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1272         WARN_ON(1);
1273 }
1274
1275 /*
1276  * bforget() is like brelse(), except it discards any
1277  * potentially dirty data.
1278  */
1279 void __bforget(struct buffer_head *bh)
1280 {
1281         clear_buffer_dirty(bh);
1282         if (!list_empty(&bh->b_assoc_buffers)) {
1283                 struct address_space *buffer_mapping = bh->b_page->mapping;
1284
1285                 spin_lock(&buffer_mapping->private_lock);
1286                 list_del_init(&bh->b_assoc_buffers);
1287                 spin_unlock(&buffer_mapping->private_lock);
1288         }
1289         __brelse(bh);
1290 }
1291
1292 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1293 {
1294         lock_buffer(bh);
1295         if (buffer_uptodate(bh)) {
1296                 unlock_buffer(bh);
1297                 return bh;
1298         } else {
1299                 get_bh(bh);
1300                 bh->b_end_io = end_buffer_read_sync;
1301                 submit_bh(READ, bh);
1302                 wait_on_buffer(bh);
1303                 if (buffer_uptodate(bh))
1304                         return bh;
1305         }
1306         brelse(bh);
1307         return NULL;
1308 }
1309
1310 /*
1311  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1312  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1313  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1314  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1315  * CPU's LRUs at the same time.
1316  *
1317  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1318  * sb_find_get_block().
1319  *
1320  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1321  * a local interrupt disable for that.
1322  */
1323
1324 #define BH_LRU_SIZE     8
1325
1326 struct bh_lru {
1327         struct buffer_head *bhs[BH_LRU_SIZE];
1328 };
1329
1330 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1331
1332 #ifdef CONFIG_SMP
1333 #define bh_lru_lock()   local_irq_disable()
1334 #define bh_lru_unlock() local_irq_enable()
1335 #else
1336 #define bh_lru_lock()   preempt_disable()
1337 #define bh_lru_unlock() preempt_enable()
1338 #endif
1339
1340 static inline void check_irqs_on(void)
1341 {
1342 #ifdef irqs_disabled
1343         BUG_ON(irqs_disabled());
1344 #endif
1345 }
1346
1347 /*
1348  * The LRU management algorithm is dopey-but-simple.  Sorry.
1349  */
1350 static void bh_lru_install(struct buffer_head *bh)
1351 {
1352         struct buffer_head *evictee = NULL;
1353         struct bh_lru *lru;
1354
1355         check_irqs_on();
1356         bh_lru_lock();
1357         lru = &__get_cpu_var(bh_lrus);
1358         if (lru->bhs[0] != bh) {
1359                 struct buffer_head *bhs[BH_LRU_SIZE];
1360                 int in;
1361                 int out = 0;
1362
1363                 get_bh(bh);
1364                 bhs[out++] = bh;
1365                 for (in = 0; in < BH_LRU_SIZE; in++) {
1366                         struct buffer_head *bh2 = lru->bhs[in];
1367
1368                         if (bh2 == bh) {
1369                                 __brelse(bh2);
1370                         } else {
1371                                 if (out >= BH_LRU_SIZE) {
1372                                         BUG_ON(evictee != NULL);
1373                                         evictee = bh2;
1374                                 } else {
1375                                         bhs[out++] = bh2;
1376                                 }
1377                         }
1378                 }
1379                 while (out < BH_LRU_SIZE)
1380                         bhs[out++] = NULL;
1381                 memcpy(lru->bhs, bhs, sizeof(bhs));
1382         }
1383         bh_lru_unlock();
1384
1385         if (evictee)
1386                 __brelse(evictee);
1387 }
1388
1389 /*
1390  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1391  */
1392 static struct buffer_head *
1393 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1394 {
1395         struct buffer_head *ret = NULL;
1396         struct bh_lru *lru;
1397         int i;
1398
1399         check_irqs_on();
1400         bh_lru_lock();
1401         lru = &__get_cpu_var(bh_lrus);
1402         for (i = 0; i < BH_LRU_SIZE; i++) {
1403                 struct buffer_head *bh = lru->bhs[i];
1404
1405                 if (bh && bh->b_bdev == bdev &&
1406                                 bh->b_blocknr == block && bh->b_size == size) {
1407                         if (i) {
1408                                 while (i) {
1409                                         lru->bhs[i] = lru->bhs[i - 1];
1410                                         i--;
1411                                 }
1412                                 lru->bhs[0] = bh;
1413                         }
1414                         get_bh(bh);
1415                         ret = bh;
1416                         break;
1417                 }
1418         }
1419         bh_lru_unlock();
1420         return ret;
1421 }
1422
1423 /*
1424  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1425  * it in the LRU and mark it as accessed.  If it is not present then return
1426  * NULL
1427  */
1428 struct buffer_head *
1429 __find_get_block(struct block_device *bdev, sector_t block, int size)
1430 {
1431         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1432
1433         if (bh == NULL) {
1434                 bh = __find_get_block_slow(bdev, block);
1435                 if (bh)
1436                         bh_lru_install(bh);
1437         }
1438         if (bh)
1439                 touch_buffer(bh);
1440         return bh;
1441 }
1442 EXPORT_SYMBOL(__find_get_block);
1443
1444 /*
1445  * __getblk will locate (and, if necessary, create) the buffer_head
1446  * which corresponds to the passed block_device, block and size. The
1447  * returned buffer has its reference count incremented.
1448  *
1449  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1450  * illegal block number, __getblk() will happily return a buffer_head
1451  * which represents the non-existent block.  Very weird.
1452  *
1453  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1454  * attempt is failing.  FIXME, perhaps?
1455  */
1456 struct buffer_head *
1457 __getblk(struct block_device *bdev, sector_t block, int size)
1458 {
1459         struct buffer_head *bh = __find_get_block(bdev, block, size);
1460
1461         might_sleep();
1462         if (bh == NULL)
1463                 bh = __getblk_slow(bdev, block, size);
1464         return bh;
1465 }
1466 EXPORT_SYMBOL(__getblk);
1467
1468 /*
1469  * Do async read-ahead on a buffer..
1470  */
1471 void __breadahead(struct block_device *bdev, sector_t block, int size)
1472 {
1473         struct buffer_head *bh = __getblk(bdev, block, size);
1474         if (likely(bh)) {
1475                 ll_rw_block(READA, 1, &bh);
1476                 brelse(bh);
1477         }
1478 }
1479 EXPORT_SYMBOL(__breadahead);
1480
1481 /**
1482  *  __bread() - reads a specified block and returns the bh
1483  *  @bdev: the block_device to read from
1484  *  @block: number of block
1485  *  @size: size (in bytes) to read
1486  * 
1487  *  Reads a specified block, and returns buffer head that contains it.
1488  *  It returns NULL if the block was unreadable.
1489  */
1490 struct buffer_head *
1491 __bread(struct block_device *bdev, sector_t block, int size)
1492 {
1493         struct buffer_head *bh = __getblk(bdev, block, size);
1494
1495         if (likely(bh) && !buffer_uptodate(bh))
1496                 bh = __bread_slow(bh);
1497         return bh;
1498 }
1499 EXPORT_SYMBOL(__bread);
1500
1501 /*
1502  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1503  * This doesn't race because it runs in each cpu either in irq
1504  * or with preempt disabled.
1505  */
1506 static void invalidate_bh_lru(void *arg)
1507 {
1508         struct bh_lru *b = &get_cpu_var(bh_lrus);
1509         int i;
1510
1511         for (i = 0; i < BH_LRU_SIZE; i++) {
1512                 brelse(b->bhs[i]);
1513                 b->bhs[i] = NULL;
1514         }
1515         put_cpu_var(bh_lrus);
1516 }
1517         
1518 static void invalidate_bh_lrus(void)
1519 {
1520         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1521 }
1522
1523 void set_bh_page(struct buffer_head *bh,
1524                 struct page *page, unsigned long offset)
1525 {
1526         bh->b_page = page;
1527         if (offset >= PAGE_SIZE)
1528                 BUG();
1529         if (PageHighMem(page))
1530                 /*
1531                  * This catches illegal uses and preserves the offset:
1532                  */
1533                 bh->b_data = (char *)(0 + offset);
1534         else
1535                 bh->b_data = page_address(page) + offset;
1536 }
1537 EXPORT_SYMBOL(set_bh_page);
1538
1539 /*
1540  * Called when truncating a buffer on a page completely.
1541  */
1542 static void discard_buffer(struct buffer_head * bh)
1543 {
1544         lock_buffer(bh);
1545         clear_buffer_dirty(bh);
1546         bh->b_bdev = NULL;
1547         clear_buffer_mapped(bh);
1548         clear_buffer_req(bh);
1549         clear_buffer_new(bh);
1550         clear_buffer_delay(bh);
1551         unlock_buffer(bh);
1552 }
1553
1554 /**
1555  * try_to_release_page() - release old fs-specific metadata on a page
1556  *
1557  * @page: the page which the kernel is trying to free
1558  * @gfp_mask: memory allocation flags (and I/O mode)
1559  *
1560  * The address_space is to try to release any data against the page
1561  * (presumably at page->private).  If the release was successful, return `1'.
1562  * Otherwise return zero.
1563  *
1564  * The @gfp_mask argument specifies whether I/O may be performed to release
1565  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1566  *
1567  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1568  */
1569 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1570 {
1571         struct address_space * const mapping = page->mapping;
1572
1573         BUG_ON(!PageLocked(page));
1574         if (PageWriteback(page))
1575                 return 0;
1576         
1577         if (mapping && mapping->a_ops->releasepage)
1578                 return mapping->a_ops->releasepage(page, gfp_mask);
1579         return try_to_free_buffers(page);
1580 }
1581 EXPORT_SYMBOL(try_to_release_page);
1582
1583 /**
1584  * block_invalidatepage - invalidate part of all of a buffer-backed page
1585  *
1586  * @page: the page which is affected
1587  * @offset: the index of the truncation point
1588  *
1589  * block_invalidatepage() is called when all or part of the page has become
1590  * invalidatedby a truncate operation.
1591  *
1592  * block_invalidatepage() does not have to release all buffers, but it must
1593  * ensure that no dirty buffer is left outside @offset and that no I/O
1594  * is underway against any of the blocks which are outside the truncation
1595  * point.  Because the caller is about to free (and possibly reuse) those
1596  * blocks on-disk.
1597  */
1598 void block_invalidatepage(struct page *page, unsigned long offset)
1599 {
1600         struct buffer_head *head, *bh, *next;
1601         unsigned int curr_off = 0;
1602
1603         BUG_ON(!PageLocked(page));
1604         if (!page_has_buffers(page))
1605                 goto out;
1606
1607         head = page_buffers(page);
1608         bh = head;
1609         do {
1610                 unsigned int next_off = curr_off + bh->b_size;
1611                 next = bh->b_this_page;
1612
1613                 /*
1614                  * is this block fully invalidated?
1615                  */
1616                 if (offset <= curr_off)
1617                         discard_buffer(bh);
1618                 curr_off = next_off;
1619                 bh = next;
1620         } while (bh != head);
1621
1622         /*
1623          * We release buffers only if the entire page is being invalidated.
1624          * The get_block cached value has been unconditionally invalidated,
1625          * so real IO is not possible anymore.
1626          */
1627         if (offset == 0)
1628                 try_to_release_page(page, 0);
1629 out:
1630         return;
1631 }
1632 EXPORT_SYMBOL(block_invalidatepage);
1633
1634 void do_invalidatepage(struct page *page, unsigned long offset)
1635 {
1636         void (*invalidatepage)(struct page *, unsigned long);
1637         invalidatepage = page->mapping->a_ops->invalidatepage ? :
1638                 block_invalidatepage;
1639         (*invalidatepage)(page, offset);
1640 }
1641
1642 /*
1643  * We attach and possibly dirty the buffers atomically wrt
1644  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1645  * is already excluded via the page lock.
1646  */
1647 void create_empty_buffers(struct page *page,
1648                         unsigned long blocksize, unsigned long b_state)
1649 {
1650         struct buffer_head *bh, *head, *tail;
1651
1652         head = alloc_page_buffers(page, blocksize, 1);
1653         bh = head;
1654         do {
1655                 bh->b_state |= b_state;
1656                 tail = bh;
1657                 bh = bh->b_this_page;
1658         } while (bh);
1659         tail->b_this_page = head;
1660
1661         spin_lock(&page->mapping->private_lock);
1662         if (PageUptodate(page) || PageDirty(page)) {
1663                 bh = head;
1664                 do {
1665                         if (PageDirty(page))
1666                                 set_buffer_dirty(bh);
1667                         if (PageUptodate(page))
1668                                 set_buffer_uptodate(bh);
1669                         bh = bh->b_this_page;
1670                 } while (bh != head);
1671         }
1672         attach_page_buffers(page, head);
1673         spin_unlock(&page->mapping->private_lock);
1674 }
1675 EXPORT_SYMBOL(create_empty_buffers);
1676
1677 /*
1678  * We are taking a block for data and we don't want any output from any
1679  * buffer-cache aliases starting from return from that function and
1680  * until the moment when something will explicitly mark the buffer
1681  * dirty (hopefully that will not happen until we will free that block ;-)
1682  * We don't even need to mark it not-uptodate - nobody can expect
1683  * anything from a newly allocated buffer anyway. We used to used
1684  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1685  * don't want to mark the alias unmapped, for example - it would confuse
1686  * anyone who might pick it with bread() afterwards...
1687  *
1688  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1689  * be writeout I/O going on against recently-freed buffers.  We don't
1690  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1691  * only if we really need to.  That happens here.
1692  */
1693 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1694 {
1695         struct buffer_head *old_bh;
1696
1697         might_sleep();
1698
1699         old_bh = __find_get_block_slow(bdev, block);
1700         if (old_bh) {
1701                 clear_buffer_dirty(old_bh);
1702                 wait_on_buffer(old_bh);
1703                 clear_buffer_req(old_bh);
1704                 __brelse(old_bh);
1705         }
1706 }
1707 EXPORT_SYMBOL(unmap_underlying_metadata);
1708
1709 /*
1710  * NOTE! All mapped/uptodate combinations are valid:
1711  *
1712  *      Mapped  Uptodate        Meaning
1713  *
1714  *      No      No              "unknown" - must do get_block()
1715  *      No      Yes             "hole" - zero-filled
1716  *      Yes     No              "allocated" - allocated on disk, not read in
1717  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1718  *
1719  * "Dirty" is valid only with the last case (mapped+uptodate).
1720  */
1721
1722 /*
1723  * While block_write_full_page is writing back the dirty buffers under
1724  * the page lock, whoever dirtied the buffers may decide to clean them
1725  * again at any time.  We handle that by only looking at the buffer
1726  * state inside lock_buffer().
1727  *
1728  * If block_write_full_page() is called for regular writeback
1729  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1730  * locked buffer.   This only can happen if someone has written the buffer
1731  * directly, with submit_bh().  At the address_space level PageWriteback
1732  * prevents this contention from occurring.
1733  */
1734 static int __block_write_full_page(struct inode *inode, struct page *page,
1735                         get_block_t *get_block, struct writeback_control *wbc)
1736 {
1737         int err;
1738         sector_t block;
1739         sector_t last_block;
1740         struct buffer_head *bh, *head;
1741         const unsigned blocksize = 1 << inode->i_blkbits;
1742         int nr_underway = 0;
1743
1744         BUG_ON(!PageLocked(page));
1745
1746         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1747
1748         if (!page_has_buffers(page)) {
1749                 create_empty_buffers(page, blocksize,
1750                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1751         }
1752
1753         /*
1754          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1755          * here, and the (potentially unmapped) buffers may become dirty at
1756          * any time.  If a buffer becomes dirty here after we've inspected it
1757          * then we just miss that fact, and the page stays dirty.
1758          *
1759          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1760          * handle that here by just cleaning them.
1761          */
1762
1763         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1764         head = page_buffers(page);
1765         bh = head;
1766
1767         /*
1768          * Get all the dirty buffers mapped to disk addresses and
1769          * handle any aliases from the underlying blockdev's mapping.
1770          */
1771         do {
1772                 if (block > last_block) {
1773                         /*
1774                          * mapped buffers outside i_size will occur, because
1775                          * this page can be outside i_size when there is a
1776                          * truncate in progress.
1777                          */
1778                         /*
1779                          * The buffer was zeroed by block_write_full_page()
1780                          */
1781                         clear_buffer_dirty(bh);
1782                         set_buffer_uptodate(bh);
1783                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1784                         WARN_ON(bh->b_size != blocksize);
1785                         err = get_block(inode, block, bh, 1);
1786                         if (err)
1787                                 goto recover;
1788                         if (buffer_new(bh)) {
1789                                 /* blockdev mappings never come here */
1790                                 clear_buffer_new(bh);
1791                                 unmap_underlying_metadata(bh->b_bdev,
1792                                                         bh->b_blocknr);
1793                         }
1794                 }
1795                 bh = bh->b_this_page;
1796                 block++;
1797         } while (bh != head);
1798
1799         do {
1800                 if (!buffer_mapped(bh))
1801                         continue;
1802                 /*
1803                  * If it's a fully non-blocking write attempt and we cannot
1804                  * lock the buffer then redirty the page.  Note that this can
1805                  * potentially cause a busy-wait loop from pdflush and kswapd
1806                  * activity, but those code paths have their own higher-level
1807                  * throttling.
1808                  */
1809                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1810                         lock_buffer(bh);
1811                 } else if (test_set_buffer_locked(bh)) {
1812                         redirty_page_for_writepage(wbc, page);
1813                         continue;
1814                 }
1815                 if (test_clear_buffer_dirty(bh)) {
1816                         mark_buffer_async_write(bh);
1817                 } else {
1818                         unlock_buffer(bh);
1819                 }
1820         } while ((bh = bh->b_this_page) != head);
1821
1822         /*
1823          * The page and its buffers are protected by PageWriteback(), so we can
1824          * drop the bh refcounts early.
1825          */
1826         BUG_ON(PageWriteback(page));
1827         set_page_writeback(page);
1828
1829         do {
1830                 struct buffer_head *next = bh->b_this_page;
1831                 if (buffer_async_write(bh)) {
1832                         submit_bh(WRITE, bh);
1833                         nr_underway++;
1834                 }
1835                 bh = next;
1836         } while (bh != head);
1837         unlock_page(page);
1838
1839         err = 0;
1840 done:
1841         if (nr_underway == 0) {
1842                 /*
1843                  * The page was marked dirty, but the buffers were
1844                  * clean.  Someone wrote them back by hand with
1845                  * ll_rw_block/submit_bh.  A rare case.
1846                  */
1847                 int uptodate = 1;
1848                 do {
1849                         if (!buffer_uptodate(bh)) {
1850                                 uptodate = 0;
1851                                 break;
1852                         }
1853                         bh = bh->b_this_page;
1854                 } while (bh != head);
1855                 if (uptodate)
1856                         SetPageUptodate(page);
1857                 end_page_writeback(page);
1858                 /*
1859                  * The page and buffer_heads can be released at any time from
1860                  * here on.
1861                  */
1862                 wbc->pages_skipped++;   /* We didn't write this page */
1863         }
1864         return err;
1865
1866 recover:
1867         /*
1868          * ENOSPC, or some other error.  We may already have added some
1869          * blocks to the file, so we need to write these out to avoid
1870          * exposing stale data.
1871          * The page is currently locked and not marked for writeback
1872          */
1873         bh = head;
1874         /* Recovery: lock and submit the mapped buffers */
1875         do {
1876                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1877                         lock_buffer(bh);
1878                         mark_buffer_async_write(bh);
1879                 } else {
1880                         /*
1881                          * The buffer may have been set dirty during
1882                          * attachment to a dirty page.
1883                          */
1884                         clear_buffer_dirty(bh);
1885                 }
1886         } while ((bh = bh->b_this_page) != head);
1887         SetPageError(page);
1888         BUG_ON(PageWriteback(page));
1889         set_page_writeback(page);
1890         unlock_page(page);
1891         do {
1892                 struct buffer_head *next = bh->b_this_page;
1893                 if (buffer_async_write(bh)) {
1894                         clear_buffer_dirty(bh);
1895                         submit_bh(WRITE, bh);
1896                         nr_underway++;
1897                 }
1898                 bh = next;
1899         } while (bh != head);
1900         goto done;
1901 }
1902
1903 static int __block_prepare_write(struct inode *inode, struct page *page,
1904                 unsigned from, unsigned to, get_block_t *get_block)
1905 {
1906         unsigned block_start, block_end;
1907         sector_t block;
1908         int err = 0;
1909         unsigned blocksize, bbits;
1910         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1911
1912         BUG_ON(!PageLocked(page));
1913         BUG_ON(from > PAGE_CACHE_SIZE);
1914         BUG_ON(to > PAGE_CACHE_SIZE);
1915         BUG_ON(from > to);
1916
1917         blocksize = 1 << inode->i_blkbits;
1918         if (!page_has_buffers(page))
1919                 create_empty_buffers(page, blocksize, 0);
1920         head = page_buffers(page);
1921
1922         bbits = inode->i_blkbits;
1923         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1924
1925         for(bh = head, block_start = 0; bh != head || !block_start;
1926             block++, block_start=block_end, bh = bh->b_this_page) {
1927                 block_end = block_start + blocksize;
1928                 if (block_end <= from || block_start >= to) {
1929                         if (PageUptodate(page)) {
1930                                 if (!buffer_uptodate(bh))
1931                                         set_buffer_uptodate(bh);
1932                         }
1933                         continue;
1934                 }
1935                 if (buffer_new(bh))
1936                         clear_buffer_new(bh);
1937                 if (!buffer_mapped(bh)) {
1938                         WARN_ON(bh->b_size != blocksize);
1939                         err = get_block(inode, block, bh, 1);
1940                         if (err)
1941                                 break;
1942                         if (buffer_new(bh)) {
1943                                 unmap_underlying_metadata(bh->b_bdev,
1944                                                         bh->b_blocknr);
1945                                 if (PageUptodate(page)) {
1946                                         set_buffer_uptodate(bh);
1947                                         continue;
1948                                 }
1949                                 if (block_end > to || block_start < from) {
1950                                         void *kaddr;
1951
1952                                         kaddr = kmap_atomic(page, KM_USER0);
1953                                         if (block_end > to)
1954                                                 memset(kaddr+to, 0,
1955                                                         block_end-to);
1956                                         if (block_start < from)
1957                                                 memset(kaddr+block_start,
1958                                                         0, from-block_start);
1959                                         flush_dcache_page(page);
1960                                         kunmap_atomic(kaddr, KM_USER0);
1961                                 }
1962                                 continue;
1963                         }
1964                 }
1965                 if (PageUptodate(page)) {
1966                         if (!buffer_uptodate(bh))
1967                                 set_buffer_uptodate(bh);
1968                         continue; 
1969                 }
1970                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1971                      (block_start < from || block_end > to)) {
1972                         ll_rw_block(READ, 1, &bh);
1973                         *wait_bh++=bh;
1974                 }
1975         }
1976         /*
1977          * If we issued read requests - let them complete.
1978          */
1979         while(wait_bh > wait) {
1980                 wait_on_buffer(*--wait_bh);
1981                 if (!buffer_uptodate(*wait_bh))
1982                         err = -EIO;
1983         }
1984         if (!err) {
1985                 bh = head;
1986                 do {
1987                         if (buffer_new(bh))
1988                                 clear_buffer_new(bh);
1989                 } while ((bh = bh->b_this_page) != head);
1990                 return 0;
1991         }
1992         /* Error case: */
1993         /*
1994          * Zero out any newly allocated blocks to avoid exposing stale
1995          * data.  If BH_New is set, we know that the block was newly
1996          * allocated in the above loop.
1997          */
1998         bh = head;
1999         block_start = 0;
2000         do {
2001                 block_end = block_start+blocksize;
2002                 if (block_end <= from)
2003                         goto next_bh;
2004                 if (block_start >= to)
2005                         break;
2006                 if (buffer_new(bh)) {
2007                         void *kaddr;
2008
2009                         clear_buffer_new(bh);
2010                         kaddr = kmap_atomic(page, KM_USER0);
2011                         memset(kaddr+block_start, 0, bh->b_size);
2012                         kunmap_atomic(kaddr, KM_USER0);
2013                         set_buffer_uptodate(bh);
2014                         mark_buffer_dirty(bh);
2015                 }
2016 next_bh:
2017                 block_start = block_end;
2018                 bh = bh->b_this_page;
2019         } while (bh != head);
2020         return err;
2021 }
2022
2023 static int __block_commit_write(struct inode *inode, struct page *page,
2024                 unsigned from, unsigned to)
2025 {
2026         unsigned block_start, block_end;
2027         int partial = 0;
2028         unsigned blocksize;
2029         struct buffer_head *bh, *head;
2030
2031         blocksize = 1 << inode->i_blkbits;
2032
2033         for(bh = head = page_buffers(page), block_start = 0;
2034             bh != head || !block_start;
2035             block_start=block_end, bh = bh->b_this_page) {
2036                 block_end = block_start + blocksize;
2037                 if (block_end <= from || block_start >= to) {
2038                         if (!buffer_uptodate(bh))
2039                                 partial = 1;
2040                 } else {
2041                         set_buffer_uptodate(bh);
2042                         mark_buffer_dirty(bh);
2043                 }
2044         }
2045
2046         /*
2047          * If this is a partial write which happened to make all buffers
2048          * uptodate then we can optimize away a bogus readpage() for
2049          * the next read(). Here we 'discover' whether the page went
2050          * uptodate as a result of this (potentially partial) write.
2051          */
2052         if (!partial)
2053                 SetPageUptodate(page);
2054         return 0;
2055 }
2056
2057 /*
2058  * Generic "read page" function for block devices that have the normal
2059  * get_block functionality. This is most of the block device filesystems.
2060  * Reads the page asynchronously --- the unlock_buffer() and
2061  * set/clear_buffer_uptodate() functions propagate buffer state into the
2062  * page struct once IO has completed.
2063  */
2064 int block_read_full_page(struct page *page, get_block_t *get_block)
2065 {
2066         struct inode *inode = page->mapping->host;
2067         sector_t iblock, lblock;
2068         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2069         unsigned int blocksize;
2070         int nr, i;
2071         int fully_mapped = 1;
2072
2073         BUG_ON(!PageLocked(page));
2074         blocksize = 1 << inode->i_blkbits;
2075         if (!page_has_buffers(page))
2076                 create_empty_buffers(page, blocksize, 0);
2077         head = page_buffers(page);
2078
2079         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2080         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2081         bh = head;
2082         nr = 0;
2083         i = 0;
2084
2085         do {
2086                 if (buffer_uptodate(bh))
2087                         continue;
2088
2089                 if (!buffer_mapped(bh)) {
2090                         int err = 0;
2091
2092                         fully_mapped = 0;
2093                         if (iblock < lblock) {
2094                                 WARN_ON(bh->b_size != blocksize);
2095                                 err = get_block(inode, iblock, bh, 0);
2096                                 if (err)
2097                                         SetPageError(page);
2098                         }
2099                         if (!buffer_mapped(bh)) {
2100                                 void *kaddr = kmap_atomic(page, KM_USER0);
2101                                 memset(kaddr + i * blocksize, 0, blocksize);
2102                                 flush_dcache_page(page);
2103                                 kunmap_atomic(kaddr, KM_USER0);
2104                                 if (!err)
2105                                         set_buffer_uptodate(bh);
2106                                 continue;
2107                         }
2108                         /*
2109                          * get_block() might have updated the buffer
2110                          * synchronously
2111                          */
2112                         if (buffer_uptodate(bh))
2113                                 continue;
2114                 }
2115                 arr[nr++] = bh;
2116         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2117
2118         if (fully_mapped)
2119                 SetPageMappedToDisk(page);
2120
2121         if (!nr) {
2122                 /*
2123                  * All buffers are uptodate - we can set the page uptodate
2124                  * as well. But not if get_block() returned an error.
2125                  */
2126                 if (!PageError(page))
2127                         SetPageUptodate(page);
2128                 unlock_page(page);
2129                 return 0;
2130         }
2131
2132         /* Stage two: lock the buffers */
2133         for (i = 0; i < nr; i++) {
2134                 bh = arr[i];
2135                 lock_buffer(bh);
2136                 mark_buffer_async_read(bh);
2137         }
2138
2139         /*
2140          * Stage 3: start the IO.  Check for uptodateness
2141          * inside the buffer lock in case another process reading
2142          * the underlying blockdev brought it uptodate (the sct fix).
2143          */
2144         for (i = 0; i < nr; i++) {
2145                 bh = arr[i];
2146                 if (buffer_uptodate(bh))
2147                         end_buffer_async_read(bh, 1);
2148                 else
2149                         submit_bh(READ, bh);
2150         }
2151         return 0;
2152 }
2153
2154 /* utility function for filesystems that need to do work on expanding
2155  * truncates.  Uses prepare/commit_write to allow the filesystem to
2156  * deal with the hole.  
2157  */
2158 static int __generic_cont_expand(struct inode *inode, loff_t size,
2159                                  pgoff_t index, unsigned int offset)
2160 {
2161         struct address_space *mapping = inode->i_mapping;
2162         struct page *page;
2163         unsigned long limit;
2164         int err;
2165
2166         err = -EFBIG;
2167         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2168         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2169                 send_sig(SIGXFSZ, current, 0);
2170                 goto out;
2171         }
2172         if (size > inode->i_sb->s_maxbytes)
2173                 goto out;
2174
2175         err = -ENOMEM;
2176         page = grab_cache_page(mapping, index);
2177         if (!page)
2178                 goto out;
2179         err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2180         if (err) {
2181                 /*
2182                  * ->prepare_write() may have instantiated a few blocks
2183                  * outside i_size.  Trim these off again.
2184                  */
2185                 unlock_page(page);
2186                 page_cache_release(page);
2187                 vmtruncate(inode, inode->i_size);
2188                 goto out;
2189         }
2190
2191         err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2192
2193         unlock_page(page);
2194         page_cache_release(page);
2195         if (err > 0)
2196                 err = 0;
2197 out:
2198         return err;
2199 }
2200
2201 int generic_cont_expand(struct inode *inode, loff_t size)
2202 {
2203         pgoff_t index;
2204         unsigned int offset;
2205
2206         offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2207
2208         /* ugh.  in prepare/commit_write, if from==to==start of block, we
2209         ** skip the prepare.  make sure we never send an offset for the start
2210         ** of a block
2211         */
2212         if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2213                 /* caller must handle this extra byte. */
2214                 offset++;
2215         }
2216         index = size >> PAGE_CACHE_SHIFT;
2217
2218         return __generic_cont_expand(inode, size, index, offset);
2219 }
2220
2221 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2222 {
2223         loff_t pos = size - 1;
2224         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2225         unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2226
2227         /* prepare/commit_write can handle even if from==to==start of block. */
2228         return __generic_cont_expand(inode, size, index, offset);
2229 }
2230
2231 /*
2232  * For moronic filesystems that do not allow holes in file.
2233  * We may have to extend the file.
2234  */
2235
2236 int cont_prepare_write(struct page *page, unsigned offset,
2237                 unsigned to, get_block_t *get_block, loff_t *bytes)
2238 {
2239         struct address_space *mapping = page->mapping;
2240         struct inode *inode = mapping->host;
2241         struct page *new_page;
2242         pgoff_t pgpos;
2243         long status;
2244         unsigned zerofrom;
2245         unsigned blocksize = 1 << inode->i_blkbits;
2246         void *kaddr;
2247
2248         while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2249                 status = -ENOMEM;
2250                 new_page = grab_cache_page(mapping, pgpos);
2251                 if (!new_page)
2252                         goto out;
2253                 /* we might sleep */
2254                 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2255                         unlock_page(new_page);
2256                         page_cache_release(new_page);
2257                         continue;
2258                 }
2259                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2260                 if (zerofrom & (blocksize-1)) {
2261                         *bytes |= (blocksize-1);
2262                         (*bytes)++;
2263                 }
2264                 status = __block_prepare_write(inode, new_page, zerofrom,
2265                                                 PAGE_CACHE_SIZE, get_block);
2266                 if (status)
2267                         goto out_unmap;
2268                 kaddr = kmap_atomic(new_page, KM_USER0);
2269                 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2270                 flush_dcache_page(new_page);
2271                 kunmap_atomic(kaddr, KM_USER0);
2272                 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2273                 unlock_page(new_page);
2274                 page_cache_release(new_page);
2275         }
2276
2277         if (page->index < pgpos) {
2278                 /* completely inside the area */
2279                 zerofrom = offset;
2280         } else {
2281                 /* page covers the boundary, find the boundary offset */
2282                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2283
2284                 /* if we will expand the thing last block will be filled */
2285                 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2286                         *bytes |= (blocksize-1);
2287                         (*bytes)++;
2288                 }
2289
2290                 /* starting below the boundary? Nothing to zero out */
2291                 if (offset <= zerofrom)
2292                         zerofrom = offset;
2293         }
2294         status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2295         if (status)
2296                 goto out1;
2297         if (zerofrom < offset) {
2298                 kaddr = kmap_atomic(page, KM_USER0);
2299                 memset(kaddr+zerofrom, 0, offset-zerofrom);
2300                 flush_dcache_page(page);
2301                 kunmap_atomic(kaddr, KM_USER0);
2302                 __block_commit_write(inode, page, zerofrom, offset);
2303         }
2304         return 0;
2305 out1:
2306         ClearPageUptodate(page);
2307         return status;
2308
2309 out_unmap:
2310         ClearPageUptodate(new_page);
2311         unlock_page(new_page);
2312         page_cache_release(new_page);
2313 out:
2314         return status;
2315 }
2316
2317 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2318                         get_block_t *get_block)
2319 {
2320         struct inode *inode = page->mapping->host;
2321         int err = __block_prepare_write(inode, page, from, to, get_block);
2322         if (err)
2323                 ClearPageUptodate(page);
2324         return err;
2325 }
2326
2327 int block_commit_write(struct page *page, unsigned from, unsigned to)
2328 {
2329         struct inode *inode = page->mapping->host;
2330         __block_commit_write(inode,page,from,to);
2331         return 0;
2332 }
2333
2334 int generic_commit_write(struct file *file, struct page *page,
2335                 unsigned from, unsigned to)
2336 {
2337         struct inode *inode = page->mapping->host;
2338         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2339         __block_commit_write(inode,page,from,to);
2340         /*
2341          * No need to use i_size_read() here, the i_size
2342          * cannot change under us because we hold i_mutex.
2343          */
2344         if (pos > inode->i_size) {
2345                 i_size_write(inode, pos);
2346                 mark_inode_dirty(inode);
2347         }
2348         return 0;
2349 }
2350
2351
2352 /*
2353  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2354  * immediately, while under the page lock.  So it needs a special end_io
2355  * handler which does not touch the bh after unlocking it.
2356  *
2357  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2358  * a race there is benign: unlock_buffer() only use the bh's address for
2359  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2360  * itself.
2361  */
2362 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2363 {
2364         if (uptodate) {
2365                 set_buffer_uptodate(bh);
2366         } else {
2367                 /* This happens, due to failed READA attempts. */
2368                 clear_buffer_uptodate(bh);
2369         }
2370         unlock_buffer(bh);
2371 }
2372
2373 /*
2374  * On entry, the page is fully not uptodate.
2375  * On exit the page is fully uptodate in the areas outside (from,to)
2376  */
2377 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2378                         get_block_t *get_block)
2379 {
2380         struct inode *inode = page->mapping->host;
2381         const unsigned blkbits = inode->i_blkbits;
2382         const unsigned blocksize = 1 << blkbits;
2383         struct buffer_head map_bh;
2384         struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2385         unsigned block_in_page;
2386         unsigned block_start;
2387         sector_t block_in_file;
2388         char *kaddr;
2389         int nr_reads = 0;
2390         int i;
2391         int ret = 0;
2392         int is_mapped_to_disk = 1;
2393         int dirtied_it = 0;
2394
2395         if (PageMappedToDisk(page))
2396                 return 0;
2397
2398         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2399         map_bh.b_page = page;
2400
2401         /*
2402          * We loop across all blocks in the page, whether or not they are
2403          * part of the affected region.  This is so we can discover if the
2404          * page is fully mapped-to-disk.
2405          */
2406         for (block_start = 0, block_in_page = 0;
2407                   block_start < PAGE_CACHE_SIZE;
2408                   block_in_page++, block_start += blocksize) {
2409                 unsigned block_end = block_start + blocksize;
2410                 int create;
2411
2412                 map_bh.b_state = 0;
2413                 create = 1;
2414                 if (block_start >= to)
2415                         create = 0;
2416                 map_bh.b_size = blocksize;
2417                 ret = get_block(inode, block_in_file + block_in_page,
2418                                         &map_bh, create);
2419                 if (ret)
2420                         goto failed;
2421                 if (!buffer_mapped(&map_bh))
2422                         is_mapped_to_disk = 0;
2423                 if (buffer_new(&map_bh))
2424                         unmap_underlying_metadata(map_bh.b_bdev,
2425                                                         map_bh.b_blocknr);
2426                 if (PageUptodate(page))
2427                         continue;
2428                 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2429                         kaddr = kmap_atomic(page, KM_USER0);
2430                         if (block_start < from) {
2431                                 memset(kaddr+block_start, 0, from-block_start);
2432                                 dirtied_it = 1;
2433                         }
2434                         if (block_end > to) {
2435                                 memset(kaddr + to, 0, block_end - to);
2436                                 dirtied_it = 1;
2437                         }
2438                         flush_dcache_page(page);
2439                         kunmap_atomic(kaddr, KM_USER0);
2440                         continue;
2441                 }
2442                 if (buffer_uptodate(&map_bh))
2443                         continue;       /* reiserfs does this */
2444                 if (block_start < from || block_end > to) {
2445                         struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2446
2447                         if (!bh) {
2448                                 ret = -ENOMEM;
2449                                 goto failed;
2450                         }
2451                         bh->b_state = map_bh.b_state;
2452                         atomic_set(&bh->b_count, 0);
2453                         bh->b_this_page = NULL;
2454                         bh->b_page = page;
2455                         bh->b_blocknr = map_bh.b_blocknr;
2456                         bh->b_size = blocksize;
2457                         bh->b_data = (char *)(long)block_start;
2458                         bh->b_bdev = map_bh.b_bdev;
2459                         bh->b_private = NULL;
2460                         read_bh[nr_reads++] = bh;
2461                 }
2462         }
2463
2464         if (nr_reads) {
2465                 struct buffer_head *bh;
2466
2467                 /*
2468                  * The page is locked, so these buffers are protected from
2469                  * any VM or truncate activity.  Hence we don't need to care
2470                  * for the buffer_head refcounts.
2471                  */
2472                 for (i = 0; i < nr_reads; i++) {
2473                         bh = read_bh[i];
2474                         lock_buffer(bh);
2475                         bh->b_end_io = end_buffer_read_nobh;
2476                         submit_bh(READ, bh);
2477                 }
2478                 for (i = 0; i < nr_reads; i++) {
2479                         bh = read_bh[i];
2480                         wait_on_buffer(bh);
2481                         if (!buffer_uptodate(bh))
2482                                 ret = -EIO;
2483                         free_buffer_head(bh);
2484                         read_bh[i] = NULL;
2485                 }
2486                 if (ret)
2487                         goto failed;
2488         }
2489
2490         if (is_mapped_to_disk)
2491                 SetPageMappedToDisk(page);
2492         SetPageUptodate(page);
2493
2494         /*
2495          * Setting the page dirty here isn't necessary for the prepare_write
2496          * function - commit_write will do that.  But if/when this function is
2497          * used within the pagefault handler to ensure that all mmapped pages
2498          * have backing space in the filesystem, we will need to dirty the page
2499          * if its contents were altered.
2500          */
2501         if (dirtied_it)
2502                 set_page_dirty(page);
2503
2504         return 0;
2505
2506 failed:
2507         for (i = 0; i < nr_reads; i++) {
2508                 if (read_bh[i])
2509                         free_buffer_head(read_bh[i]);
2510         }
2511
2512         /*
2513          * Error recovery is pretty slack.  Clear the page and mark it dirty
2514          * so we'll later zero out any blocks which _were_ allocated.
2515          */
2516         kaddr = kmap_atomic(page, KM_USER0);
2517         memset(kaddr, 0, PAGE_CACHE_SIZE);
2518         kunmap_atomic(kaddr, KM_USER0);
2519         SetPageUptodate(page);
2520         set_page_dirty(page);
2521         return ret;
2522 }
2523 EXPORT_SYMBOL(nobh_prepare_write);
2524
2525 int nobh_commit_write(struct file *file, struct page *page,
2526                 unsigned from, unsigned to)
2527 {
2528         struct inode *inode = page->mapping->host;
2529         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2530
2531         set_page_dirty(page);
2532         if (pos > inode->i_size) {
2533                 i_size_write(inode, pos);
2534                 mark_inode_dirty(inode);
2535         }
2536         return 0;
2537 }
2538 EXPORT_SYMBOL(nobh_commit_write);
2539
2540 /*
2541  * nobh_writepage() - based on block_full_write_page() except
2542  * that it tries to operate without attaching bufferheads to
2543  * the page.
2544  */
2545 int nobh_writepage(struct page *page, get_block_t *get_block,
2546                         struct writeback_control *wbc)
2547 {
2548         struct inode * const inode = page->mapping->host;
2549         loff_t i_size = i_size_read(inode);
2550         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2551         unsigned offset;
2552         void *kaddr;
2553         int ret;
2554
2555         /* Is the page fully inside i_size? */
2556         if (page->index < end_index)
2557                 goto out;
2558
2559         /* Is the page fully outside i_size? (truncate in progress) */
2560         offset = i_size & (PAGE_CACHE_SIZE-1);
2561         if (page->index >= end_index+1 || !offset) {
2562                 /*
2563                  * The page may have dirty, unmapped buffers.  For example,
2564                  * they may have been added in ext3_writepage().  Make them
2565                  * freeable here, so the page does not leak.
2566                  */
2567 #if 0
2568                 /* Not really sure about this  - do we need this ? */
2569                 if (page->mapping->a_ops->invalidatepage)
2570                         page->mapping->a_ops->invalidatepage(page, offset);
2571 #endif
2572                 unlock_page(page);
2573                 return 0; /* don't care */
2574         }
2575
2576         /*
2577          * The page straddles i_size.  It must be zeroed out on each and every
2578          * writepage invocation because it may be mmapped.  "A file is mapped
2579          * in multiples of the page size.  For a file that is not a multiple of
2580          * the  page size, the remaining memory is zeroed when mapped, and
2581          * writes to that region are not written out to the file."
2582          */
2583         kaddr = kmap_atomic(page, KM_USER0);
2584         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2585         flush_dcache_page(page);
2586         kunmap_atomic(kaddr, KM_USER0);
2587 out:
2588         ret = mpage_writepage(page, get_block, wbc);
2589         if (ret == -EAGAIN)
2590                 ret = __block_write_full_page(inode, page, get_block, wbc);
2591         return ret;
2592 }
2593 EXPORT_SYMBOL(nobh_writepage);
2594
2595 /*
2596  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2597  */
2598 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2599 {
2600         struct inode *inode = mapping->host;
2601         unsigned blocksize = 1 << inode->i_blkbits;
2602         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2603         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2604         unsigned to;
2605         struct page *page;
2606         struct address_space_operations *a_ops = mapping->a_ops;
2607         char *kaddr;
2608         int ret = 0;
2609
2610         if ((offset & (blocksize - 1)) == 0)
2611                 goto out;
2612
2613         ret = -ENOMEM;
2614         page = grab_cache_page(mapping, index);
2615         if (!page)
2616                 goto out;
2617
2618         to = (offset + blocksize) & ~(blocksize - 1);
2619         ret = a_ops->prepare_write(NULL, page, offset, to);
2620         if (ret == 0) {
2621                 kaddr = kmap_atomic(page, KM_USER0);
2622                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2623                 flush_dcache_page(page);
2624                 kunmap_atomic(kaddr, KM_USER0);
2625                 set_page_dirty(page);
2626         }
2627         unlock_page(page);
2628         page_cache_release(page);
2629 out:
2630         return ret;
2631 }
2632 EXPORT_SYMBOL(nobh_truncate_page);
2633
2634 int block_truncate_page(struct address_space *mapping,
2635                         loff_t from, get_block_t *get_block)
2636 {
2637         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2638         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2639         unsigned blocksize;
2640         sector_t iblock;
2641         unsigned length, pos;
2642         struct inode *inode = mapping->host;
2643         struct page *page;
2644         struct buffer_head *bh;
2645         void *kaddr;
2646         int err;
2647
2648         blocksize = 1 << inode->i_blkbits;
2649         length = offset & (blocksize - 1);
2650
2651         /* Block boundary? Nothing to do */
2652         if (!length)
2653                 return 0;
2654
2655         length = blocksize - length;
2656         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2657         
2658         page = grab_cache_page(mapping, index);
2659         err = -ENOMEM;
2660         if (!page)
2661                 goto out;
2662
2663         if (!page_has_buffers(page))
2664                 create_empty_buffers(page, blocksize, 0);
2665
2666         /* Find the buffer that contains "offset" */
2667         bh = page_buffers(page);
2668         pos = blocksize;
2669         while (offset >= pos) {
2670                 bh = bh->b_this_page;
2671                 iblock++;
2672                 pos += blocksize;
2673         }
2674
2675         err = 0;
2676         if (!buffer_mapped(bh)) {
2677                 WARN_ON(bh->b_size != blocksize);
2678                 err = get_block(inode, iblock, bh, 0);
2679                 if (err)
2680                         goto unlock;
2681                 /* unmapped? It's a hole - nothing to do */
2682                 if (!buffer_mapped(bh))
2683                         goto unlock;
2684         }
2685
2686         /* Ok, it's mapped. Make sure it's up-to-date */
2687         if (PageUptodate(page))
2688                 set_buffer_uptodate(bh);
2689
2690         if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2691                 err = -EIO;
2692                 ll_rw_block(READ, 1, &bh);
2693                 wait_on_buffer(bh);
2694                 /* Uhhuh. Read error. Complain and punt. */
2695                 if (!buffer_uptodate(bh))
2696                         goto unlock;
2697         }
2698
2699         kaddr = kmap_atomic(page, KM_USER0);
2700         memset(kaddr + offset, 0, length);
2701         flush_dcache_page(page);
2702         kunmap_atomic(kaddr, KM_USER0);
2703
2704         mark_buffer_dirty(bh);
2705         err = 0;
2706
2707 unlock:
2708         unlock_page(page);
2709         page_cache_release(page);
2710 out:
2711         return err;
2712 }
2713
2714 /*
2715  * The generic ->writepage function for buffer-backed address_spaces
2716  */
2717 int block_write_full_page(struct page *page, get_block_t *get_block,
2718                         struct writeback_control *wbc)
2719 {
2720         struct inode * const inode = page->mapping->host;
2721         loff_t i_size = i_size_read(inode);
2722         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2723         unsigned offset;
2724         void *kaddr;
2725
2726         /* Is the page fully inside i_size? */
2727         if (page->index < end_index)
2728                 return __block_write_full_page(inode, page, get_block, wbc);
2729
2730         /* Is the page fully outside i_size? (truncate in progress) */
2731         offset = i_size & (PAGE_CACHE_SIZE-1);
2732         if (page->index >= end_index+1 || !offset) {
2733                 /*
2734                  * The page may have dirty, unmapped buffers.  For example,
2735                  * they may have been added in ext3_writepage().  Make them
2736                  * freeable here, so the page does not leak.
2737                  */
2738                 do_invalidatepage(page, 0);
2739                 unlock_page(page);
2740                 return 0; /* don't care */
2741         }
2742
2743         /*
2744          * The page straddles i_size.  It must be zeroed out on each and every
2745          * writepage invokation because it may be mmapped.  "A file is mapped
2746          * in multiples of the page size.  For a file that is not a multiple of
2747          * the  page size, the remaining memory is zeroed when mapped, and
2748          * writes to that region are not written out to the file."
2749          */
2750         kaddr = kmap_atomic(page, KM_USER0);
2751         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2752         flush_dcache_page(page);
2753         kunmap_atomic(kaddr, KM_USER0);
2754         return __block_write_full_page(inode, page, get_block, wbc);
2755 }
2756
2757 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2758                             get_block_t *get_block)
2759 {
2760         struct buffer_head tmp;
2761         struct inode *inode = mapping->host;
2762         tmp.b_state = 0;
2763         tmp.b_blocknr = 0;
2764         tmp.b_size = 1 << inode->i_blkbits;
2765         get_block(inode, block, &tmp, 0);
2766         return tmp.b_blocknr;
2767 }
2768
2769 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2770 {
2771         struct buffer_head *bh = bio->bi_private;
2772
2773         if (bio->bi_size)
2774                 return 1;
2775
2776         if (err == -EOPNOTSUPP) {
2777                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2778                 set_bit(BH_Eopnotsupp, &bh->b_state);
2779         }
2780
2781         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2782         bio_put(bio);
2783         return 0;
2784 }
2785
2786 int submit_bh(int rw, struct buffer_head * bh)
2787 {
2788         struct bio *bio;
2789         int ret = 0;
2790
2791         BUG_ON(!buffer_locked(bh));
2792         BUG_ON(!buffer_mapped(bh));
2793         BUG_ON(!bh->b_end_io);
2794
2795         if (buffer_ordered(bh) && (rw == WRITE))
2796                 rw = WRITE_BARRIER;
2797
2798         /*
2799          * Only clear out a write error when rewriting, should this
2800          * include WRITE_SYNC as well?
2801          */
2802         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2803                 clear_buffer_write_io_error(bh);
2804
2805         /*
2806          * from here on down, it's all bio -- do the initial mapping,
2807          * submit_bio -> generic_make_request may further map this bio around
2808          */
2809         bio = bio_alloc(GFP_NOIO, 1);
2810
2811         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2812         bio->bi_bdev = bh->b_bdev;
2813         bio->bi_io_vec[0].bv_page = bh->b_page;
2814         bio->bi_io_vec[0].bv_len = bh->b_size;
2815         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2816
2817         bio->bi_vcnt = 1;
2818         bio->bi_idx = 0;
2819         bio->bi_size = bh->b_size;
2820
2821         bio->bi_end_io = end_bio_bh_io_sync;
2822         bio->bi_private = bh;
2823
2824         bio_get(bio);
2825         submit_bio(rw, bio);
2826
2827         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2828                 ret = -EOPNOTSUPP;
2829
2830         bio_put(bio);
2831         return ret;
2832 }
2833
2834 /**
2835  * ll_rw_block: low-level access to block devices (DEPRECATED)
2836  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2837  * @nr: number of &struct buffer_heads in the array
2838  * @bhs: array of pointers to &struct buffer_head
2839  *
2840  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2841  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2842  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2843  * are sent to disk. The fourth %READA option is described in the documentation
2844  * for generic_make_request() which ll_rw_block() calls.
2845  *
2846  * This function drops any buffer that it cannot get a lock on (with the
2847  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2848  * clean when doing a write request, and any buffer that appears to be
2849  * up-to-date when doing read request.  Further it marks as clean buffers that
2850  * are processed for writing (the buffer cache won't assume that they are
2851  * actually clean until the buffer gets unlocked).
2852  *
2853  * ll_rw_block sets b_end_io to simple completion handler that marks
2854  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2855  * any waiters. 
2856  *
2857  * All of the buffers must be for the same device, and must also be a
2858  * multiple of the current approved size for the device.
2859  */
2860 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2861 {
2862         int i;
2863
2864         for (i = 0; i < nr; i++) {
2865                 struct buffer_head *bh = bhs[i];
2866
2867                 if (rw == SWRITE)
2868                         lock_buffer(bh);
2869                 else if (test_set_buffer_locked(bh))
2870                         continue;
2871
2872                 if (rw == WRITE || rw == SWRITE) {
2873                         if (test_clear_buffer_dirty(bh)) {
2874                                 bh->b_end_io = end_buffer_write_sync;
2875                                 get_bh(bh);
2876                                 submit_bh(WRITE, bh);
2877                                 continue;
2878                         }
2879                 } else {
2880                         if (!buffer_uptodate(bh)) {
2881                                 bh->b_end_io = end_buffer_read_sync;
2882                                 get_bh(bh);
2883                                 submit_bh(rw, bh);
2884                                 continue;
2885                         }
2886                 }
2887                 unlock_buffer(bh);
2888         }
2889 }
2890
2891 /*
2892  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2893  * and then start new I/O and then wait upon it.  The caller must have a ref on
2894  * the buffer_head.
2895  */
2896 int sync_dirty_buffer(struct buffer_head *bh)
2897 {
2898         int ret = 0;
2899
2900         WARN_ON(atomic_read(&bh->b_count) < 1);
2901         lock_buffer(bh);
2902         if (test_clear_buffer_dirty(bh)) {
2903                 get_bh(bh);
2904                 bh->b_end_io = end_buffer_write_sync;
2905                 ret = submit_bh(WRITE, bh);
2906                 wait_on_buffer(bh);
2907                 if (buffer_eopnotsupp(bh)) {
2908                         clear_buffer_eopnotsupp(bh);
2909                         ret = -EOPNOTSUPP;
2910                 }
2911                 if (!ret && !buffer_uptodate(bh))
2912                         ret = -EIO;
2913         } else {
2914                 unlock_buffer(bh);
2915         }
2916         return ret;
2917 }
2918
2919 /*
2920  * try_to_free_buffers() checks if all the buffers on this particular page
2921  * are unused, and releases them if so.
2922  *
2923  * Exclusion against try_to_free_buffers may be obtained by either
2924  * locking the page or by holding its mapping's private_lock.
2925  *
2926  * If the page is dirty but all the buffers are clean then we need to
2927  * be sure to mark the page clean as well.  This is because the page
2928  * may be against a block device, and a later reattachment of buffers
2929  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2930  * filesystem data on the same device.
2931  *
2932  * The same applies to regular filesystem pages: if all the buffers are
2933  * clean then we set the page clean and proceed.  To do that, we require
2934  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2935  * private_lock.
2936  *
2937  * try_to_free_buffers() is non-blocking.
2938  */
2939 static inline int buffer_busy(struct buffer_head *bh)
2940 {
2941         return atomic_read(&bh->b_count) |
2942                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2943 }
2944
2945 static int
2946 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2947 {
2948         struct buffer_head *head = page_buffers(page);
2949         struct buffer_head *bh;
2950
2951         bh = head;
2952         do {
2953                 if (buffer_write_io_error(bh) && page->mapping)
2954                         set_bit(AS_EIO, &page->mapping->flags);
2955                 if (buffer_busy(bh))
2956                         goto failed;
2957                 bh = bh->b_this_page;
2958         } while (bh != head);
2959
2960         do {
2961                 struct buffer_head *next = bh->b_this_page;
2962
2963                 if (!list_empty(&bh->b_assoc_buffers))
2964                         __remove_assoc_queue(bh);
2965                 bh = next;
2966         } while (bh != head);
2967         *buffers_to_free = head;
2968         __clear_page_buffers(page);
2969         return 1;
2970 failed:
2971         return 0;
2972 }
2973
2974 int try_to_free_buffers(struct page *page)
2975 {
2976         struct address_space * const mapping = page->mapping;
2977         struct buffer_head *buffers_to_free = NULL;
2978         int ret = 0;
2979
2980         BUG_ON(!PageLocked(page));
2981         if (PageWriteback(page))
2982                 return 0;
2983
2984         if (mapping == NULL) {          /* can this still happen? */
2985                 ret = drop_buffers(page, &buffers_to_free);
2986                 goto out;
2987         }
2988
2989         spin_lock(&mapping->private_lock);
2990         ret = drop_buffers(page, &buffers_to_free);
2991         if (ret) {
2992                 /*
2993                  * If the filesystem writes its buffers by hand (eg ext3)
2994                  * then we can have clean buffers against a dirty page.  We
2995                  * clean the page here; otherwise later reattachment of buffers
2996                  * could encounter a non-uptodate page, which is unresolvable.
2997                  * This only applies in the rare case where try_to_free_buffers
2998                  * succeeds but the page is not freed.
2999                  */
3000                 clear_page_dirty(page);
3001         }
3002         spin_unlock(&mapping->private_lock);
3003 out:
3004         if (buffers_to_free) {
3005                 struct buffer_head *bh = buffers_to_free;
3006
3007                 do {
3008                         struct buffer_head *next = bh->b_this_page;
3009                         free_buffer_head(bh);
3010                         bh = next;
3011                 } while (bh != buffers_to_free);
3012         }
3013         return ret;
3014 }
3015 EXPORT_SYMBOL(try_to_free_buffers);
3016
3017 void block_sync_page(struct page *page)
3018 {
3019         struct address_space *mapping;
3020
3021         smp_mb();
3022         mapping = page_mapping(page);
3023         if (mapping)
3024                 blk_run_backing_dev(mapping->backing_dev_info, page);
3025 }
3026
3027 /*
3028  * There are no bdflush tunables left.  But distributions are
3029  * still running obsolete flush daemons, so we terminate them here.
3030  *
3031  * Use of bdflush() is deprecated and will be removed in a future kernel.
3032  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3033  */
3034 asmlinkage long sys_bdflush(int func, long data)
3035 {
3036         static int msg_count;
3037
3038         if (!capable(CAP_SYS_ADMIN))
3039                 return -EPERM;
3040
3041         if (msg_count < 5) {
3042                 msg_count++;
3043                 printk(KERN_INFO
3044                         "warning: process `%s' used the obsolete bdflush"
3045                         " system call\n", current->comm);
3046                 printk(KERN_INFO "Fix your initscripts?\n");
3047         }
3048
3049         if (func == 1)
3050                 do_exit(0);
3051         return 0;
3052 }
3053
3054 /*
3055  * Buffer-head allocation
3056  */
3057 static kmem_cache_t *bh_cachep;
3058
3059 /*
3060  * Once the number of bh's in the machine exceeds this level, we start
3061  * stripping them in writeback.
3062  */
3063 static int max_buffer_heads;
3064
3065 int buffer_heads_over_limit;
3066
3067 struct bh_accounting {
3068         int nr;                 /* Number of live bh's */
3069         int ratelimit;          /* Limit cacheline bouncing */
3070 };
3071
3072 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3073
3074 static void recalc_bh_state(void)
3075 {
3076         int i;
3077         int tot = 0;
3078
3079         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3080                 return;
3081         __get_cpu_var(bh_accounting).ratelimit = 0;
3082         for_each_online_cpu(i)
3083                 tot += per_cpu(bh_accounting, i).nr;
3084         buffer_heads_over_limit = (tot > max_buffer_heads);
3085 }
3086         
3087 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3088 {
3089         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3090         if (ret) {
3091                 get_cpu_var(bh_accounting).nr++;
3092                 recalc_bh_state();
3093                 put_cpu_var(bh_accounting);
3094         }
3095         return ret;
3096 }
3097 EXPORT_SYMBOL(alloc_buffer_head);
3098
3099 void free_buffer_head(struct buffer_head *bh)
3100 {
3101         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3102         kmem_cache_free(bh_cachep, bh);
3103         get_cpu_var(bh_accounting).nr--;
3104         recalc_bh_state();
3105         put_cpu_var(bh_accounting);
3106 }
3107 EXPORT_SYMBOL(free_buffer_head);
3108
3109 static void
3110 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3111 {
3112         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3113                             SLAB_CTOR_CONSTRUCTOR) {
3114                 struct buffer_head * bh = (struct buffer_head *)data;
3115
3116                 memset(bh, 0, sizeof(*bh));
3117                 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3118         }
3119 }
3120
3121 #ifdef CONFIG_HOTPLUG_CPU
3122 static void buffer_exit_cpu(int cpu)
3123 {
3124         int i;
3125         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3126
3127         for (i = 0; i < BH_LRU_SIZE; i++) {
3128                 brelse(b->bhs[i]);
3129                 b->bhs[i] = NULL;
3130         }
3131         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3132         per_cpu(bh_accounting, cpu).nr = 0;
3133         put_cpu_var(bh_accounting);
3134 }
3135
3136 static int buffer_cpu_notify(struct notifier_block *self,
3137                               unsigned long action, void *hcpu)
3138 {
3139         if (action == CPU_DEAD)
3140                 buffer_exit_cpu((unsigned long)hcpu);
3141         return NOTIFY_OK;
3142 }
3143 #endif /* CONFIG_HOTPLUG_CPU */
3144
3145 void __init buffer_init(void)
3146 {
3147         int nrpages;
3148
3149         bh_cachep = kmem_cache_create("buffer_head",
3150                                         sizeof(struct buffer_head), 0,
3151                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3152                                         SLAB_MEM_SPREAD),
3153                                         init_buffer_head,
3154                                         NULL);
3155
3156         /*
3157          * Limit the bh occupancy to 10% of ZONE_NORMAL
3158          */
3159         nrpages = (nr_free_buffer_pages() * 10) / 100;
3160         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3161         hotcpu_notifier(buffer_cpu_notify, 0);
3162 }
3163
3164 EXPORT_SYMBOL(__bforget);
3165 EXPORT_SYMBOL(__brelse);
3166 EXPORT_SYMBOL(__wait_on_buffer);
3167 EXPORT_SYMBOL(block_commit_write);
3168 EXPORT_SYMBOL(block_prepare_write);
3169 EXPORT_SYMBOL(block_read_full_page);
3170 EXPORT_SYMBOL(block_sync_page);
3171 EXPORT_SYMBOL(block_truncate_page);
3172 EXPORT_SYMBOL(block_write_full_page);
3173 EXPORT_SYMBOL(cont_prepare_write);
3174 EXPORT_SYMBOL(end_buffer_async_write);
3175 EXPORT_SYMBOL(end_buffer_read_sync);
3176 EXPORT_SYMBOL(end_buffer_write_sync);
3177 EXPORT_SYMBOL(file_fsync);
3178 EXPORT_SYMBOL(fsync_bdev);
3179 EXPORT_SYMBOL(generic_block_bmap);
3180 EXPORT_SYMBOL(generic_commit_write);
3181 EXPORT_SYMBOL(generic_cont_expand);
3182 EXPORT_SYMBOL(generic_cont_expand_simple);
3183 EXPORT_SYMBOL(init_buffer);
3184 EXPORT_SYMBOL(invalidate_bdev);
3185 EXPORT_SYMBOL(ll_rw_block);
3186 EXPORT_SYMBOL(mark_buffer_dirty);
3187 EXPORT_SYMBOL(submit_bh);
3188 EXPORT_SYMBOL(sync_dirty_buffer);
3189 EXPORT_SYMBOL(unlock_buffer);