Btrfs: Count async bios separately from async checksum work items
[safe/jmp/linux-2.6] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/buffer_head.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <asm/div64.h>
24 #include "ctree.h"
25 #include "extent_map.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "print-tree.h"
29 #include "volumes.h"
30 #include "async-thread.h"
31
32 struct map_lookup {
33         u64 type;
34         int io_align;
35         int io_width;
36         int stripe_len;
37         int sector_size;
38         int num_stripes;
39         int sub_stripes;
40         struct btrfs_bio_stripe stripes[];
41 };
42
43 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
44                             (sizeof(struct btrfs_bio_stripe) * (n)))
45
46 static DEFINE_MUTEX(uuid_mutex);
47 static LIST_HEAD(fs_uuids);
48
49 void btrfs_lock_volumes(void)
50 {
51         mutex_lock(&uuid_mutex);
52 }
53
54 void btrfs_unlock_volumes(void)
55 {
56         mutex_unlock(&uuid_mutex);
57 }
58
59 static void lock_chunks(struct btrfs_root *root)
60 {
61         mutex_lock(&root->fs_info->alloc_mutex);
62         mutex_lock(&root->fs_info->chunk_mutex);
63 }
64
65 static void unlock_chunks(struct btrfs_root *root)
66 {
67         mutex_unlock(&root->fs_info->alloc_mutex);
68         mutex_unlock(&root->fs_info->chunk_mutex);
69 }
70
71 int btrfs_cleanup_fs_uuids(void)
72 {
73         struct btrfs_fs_devices *fs_devices;
74         struct list_head *uuid_cur;
75         struct list_head *devices_cur;
76         struct btrfs_device *dev;
77
78         list_for_each(uuid_cur, &fs_uuids) {
79                 fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
80                                         list);
81                 while(!list_empty(&fs_devices->devices)) {
82                         devices_cur = fs_devices->devices.next;
83                         dev = list_entry(devices_cur, struct btrfs_device,
84                                          dev_list);
85                         if (dev->bdev) {
86                                 close_bdev_excl(dev->bdev);
87                                 fs_devices->open_devices--;
88                         }
89                         list_del(&dev->dev_list);
90                         kfree(dev->name);
91                         kfree(dev);
92                 }
93         }
94         return 0;
95 }
96
97 static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
98                                           u8 *uuid)
99 {
100         struct btrfs_device *dev;
101         struct list_head *cur;
102
103         list_for_each(cur, head) {
104                 dev = list_entry(cur, struct btrfs_device, dev_list);
105                 if (dev->devid == devid &&
106                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
107                         return dev;
108                 }
109         }
110         return NULL;
111 }
112
113 static struct btrfs_fs_devices *find_fsid(u8 *fsid)
114 {
115         struct list_head *cur;
116         struct btrfs_fs_devices *fs_devices;
117
118         list_for_each(cur, &fs_uuids) {
119                 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
120                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
121                         return fs_devices;
122         }
123         return NULL;
124 }
125
126 /*
127  * we try to collect pending bios for a device so we don't get a large
128  * number of procs sending bios down to the same device.  This greatly
129  * improves the schedulers ability to collect and merge the bios.
130  *
131  * But, it also turns into a long list of bios to process and that is sure
132  * to eventually make the worker thread block.  The solution here is to
133  * make some progress and then put this work struct back at the end of
134  * the list if the block device is congested.  This way, multiple devices
135  * can make progress from a single worker thread.
136  */
137 int run_scheduled_bios(struct btrfs_device *device)
138 {
139         struct bio *pending;
140         struct backing_dev_info *bdi;
141         struct bio *tail;
142         struct bio *cur;
143         int again = 0;
144         unsigned long num_run = 0;
145
146         bdi = device->bdev->bd_inode->i_mapping->backing_dev_info;
147 loop:
148         spin_lock(&device->io_lock);
149
150         /* take all the bios off the list at once and process them
151          * later on (without the lock held).  But, remember the
152          * tail and other pointers so the bios can be properly reinserted
153          * into the list if we hit congestion
154          */
155         pending = device->pending_bios;
156         tail = device->pending_bio_tail;
157         WARN_ON(pending && !tail);
158         device->pending_bios = NULL;
159         device->pending_bio_tail = NULL;
160
161         /*
162          * if pending was null this time around, no bios need processing
163          * at all and we can stop.  Otherwise it'll loop back up again
164          * and do an additional check so no bios are missed.
165          *
166          * device->running_pending is used to synchronize with the
167          * schedule_bio code.
168          */
169         if (pending) {
170                 again = 1;
171                 device->running_pending = 1;
172         } else {
173                 again = 0;
174                 device->running_pending = 0;
175         }
176         spin_unlock(&device->io_lock);
177
178         while(pending) {
179                 cur = pending;
180                 pending = pending->bi_next;
181                 cur->bi_next = NULL;
182                 atomic_dec(&device->dev_root->fs_info->nr_async_bios);
183
184                 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
185                 bio_get(cur);
186                 submit_bio(cur->bi_rw, cur);
187                 bio_put(cur);
188                 num_run++;
189
190                 /*
191                  * we made progress, there is more work to do and the bdi
192                  * is now congested.  Back off and let other work structs
193                  * run instead
194                  */
195                 if (pending && bdi_write_congested(bdi)) {
196                         struct bio *old_head;
197
198                         spin_lock(&device->io_lock);
199
200                         old_head = device->pending_bios;
201                         device->pending_bios = pending;
202                         if (device->pending_bio_tail)
203                                 tail->bi_next = old_head;
204                         else
205                                 device->pending_bio_tail = tail;
206
207                         spin_unlock(&device->io_lock);
208                         btrfs_requeue_work(&device->work);
209                         goto done;
210                 }
211         }
212         if (again)
213                 goto loop;
214 done:
215         return 0;
216 }
217
218 void pending_bios_fn(struct btrfs_work *work)
219 {
220         struct btrfs_device *device;
221
222         device = container_of(work, struct btrfs_device, work);
223         run_scheduled_bios(device);
224 }
225
226 static int device_list_add(const char *path,
227                            struct btrfs_super_block *disk_super,
228                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
229 {
230         struct btrfs_device *device;
231         struct btrfs_fs_devices *fs_devices;
232         u64 found_transid = btrfs_super_generation(disk_super);
233
234         fs_devices = find_fsid(disk_super->fsid);
235         if (!fs_devices) {
236                 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
237                 if (!fs_devices)
238                         return -ENOMEM;
239                 INIT_LIST_HEAD(&fs_devices->devices);
240                 INIT_LIST_HEAD(&fs_devices->alloc_list);
241                 list_add(&fs_devices->list, &fs_uuids);
242                 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
243                 fs_devices->latest_devid = devid;
244                 fs_devices->latest_trans = found_transid;
245                 device = NULL;
246         } else {
247                 device = __find_device(&fs_devices->devices, devid,
248                                        disk_super->dev_item.uuid);
249         }
250         if (!device) {
251                 device = kzalloc(sizeof(*device), GFP_NOFS);
252                 if (!device) {
253                         /* we can safely leave the fs_devices entry around */
254                         return -ENOMEM;
255                 }
256                 device->devid = devid;
257                 device->work.func = pending_bios_fn;
258                 memcpy(device->uuid, disk_super->dev_item.uuid,
259                        BTRFS_UUID_SIZE);
260                 device->barriers = 1;
261                 spin_lock_init(&device->io_lock);
262                 device->name = kstrdup(path, GFP_NOFS);
263                 if (!device->name) {
264                         kfree(device);
265                         return -ENOMEM;
266                 }
267                 list_add(&device->dev_list, &fs_devices->devices);
268                 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
269                 fs_devices->num_devices++;
270         }
271
272         if (found_transid > fs_devices->latest_trans) {
273                 fs_devices->latest_devid = devid;
274                 fs_devices->latest_trans = found_transid;
275         }
276         *fs_devices_ret = fs_devices;
277         return 0;
278 }
279
280 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
281 {
282         struct list_head *head = &fs_devices->devices;
283         struct list_head *cur;
284         struct btrfs_device *device;
285
286         mutex_lock(&uuid_mutex);
287 again:
288         list_for_each(cur, head) {
289                 device = list_entry(cur, struct btrfs_device, dev_list);
290                 if (!device->in_fs_metadata) {
291                         struct block_device *bdev;
292                         list_del(&device->dev_list);
293                         list_del(&device->dev_alloc_list);
294                         fs_devices->num_devices--;
295                         if (device->bdev) {
296                                 bdev = device->bdev;
297                                 fs_devices->open_devices--;
298                                 mutex_unlock(&uuid_mutex);
299                                 close_bdev_excl(bdev);
300                                 mutex_lock(&uuid_mutex);
301                         }
302                         kfree(device->name);
303                         kfree(device);
304                         goto again;
305                 }
306         }
307         mutex_unlock(&uuid_mutex);
308         return 0;
309 }
310
311 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
312 {
313         struct list_head *head = &fs_devices->devices;
314         struct list_head *cur;
315         struct btrfs_device *device;
316
317         mutex_lock(&uuid_mutex);
318         list_for_each(cur, head) {
319                 device = list_entry(cur, struct btrfs_device, dev_list);
320                 if (device->bdev) {
321                         close_bdev_excl(device->bdev);
322                         fs_devices->open_devices--;
323                 }
324                 device->bdev = NULL;
325                 device->in_fs_metadata = 0;
326         }
327         fs_devices->mounted = 0;
328         mutex_unlock(&uuid_mutex);
329         return 0;
330 }
331
332 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
333                        int flags, void *holder)
334 {
335         struct block_device *bdev;
336         struct list_head *head = &fs_devices->devices;
337         struct list_head *cur;
338         struct btrfs_device *device;
339         struct block_device *latest_bdev = NULL;
340         struct buffer_head *bh;
341         struct btrfs_super_block *disk_super;
342         u64 latest_devid = 0;
343         u64 latest_transid = 0;
344         u64 transid;
345         u64 devid;
346         int ret = 0;
347
348         mutex_lock(&uuid_mutex);
349         if (fs_devices->mounted)
350                 goto out;
351
352         list_for_each(cur, head) {
353                 device = list_entry(cur, struct btrfs_device, dev_list);
354                 if (device->bdev)
355                         continue;
356
357                 if (!device->name)
358                         continue;
359
360                 bdev = open_bdev_excl(device->name, flags, holder);
361
362                 if (IS_ERR(bdev)) {
363                         printk("open %s failed\n", device->name);
364                         goto error;
365                 }
366                 set_blocksize(bdev, 4096);
367
368                 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
369                 if (!bh)
370                         goto error_close;
371
372                 disk_super = (struct btrfs_super_block *)bh->b_data;
373                 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
374                     sizeof(disk_super->magic)))
375                         goto error_brelse;
376
377                 devid = le64_to_cpu(disk_super->dev_item.devid);
378                 if (devid != device->devid)
379                         goto error_brelse;
380
381                 transid = btrfs_super_generation(disk_super);
382                 if (!latest_transid || transid > latest_transid) {
383                         latest_devid = devid;
384                         latest_transid = transid;
385                         latest_bdev = bdev;
386                 }
387
388                 device->bdev = bdev;
389                 device->in_fs_metadata = 0;
390                 fs_devices->open_devices++;
391                 continue;
392
393 error_brelse:
394                 brelse(bh);
395 error_close:
396                 close_bdev_excl(bdev);
397 error:
398                 continue;
399         }
400         if (fs_devices->open_devices == 0) {
401                 ret = -EIO;
402                 goto out;
403         }
404         fs_devices->mounted = 1;
405         fs_devices->latest_bdev = latest_bdev;
406         fs_devices->latest_devid = latest_devid;
407         fs_devices->latest_trans = latest_transid;
408 out:
409         mutex_unlock(&uuid_mutex);
410         return ret;
411 }
412
413 int btrfs_scan_one_device(const char *path, int flags, void *holder,
414                           struct btrfs_fs_devices **fs_devices_ret)
415 {
416         struct btrfs_super_block *disk_super;
417         struct block_device *bdev;
418         struct buffer_head *bh;
419         int ret;
420         u64 devid;
421         u64 transid;
422
423         mutex_lock(&uuid_mutex);
424
425         bdev = open_bdev_excl(path, flags, holder);
426
427         if (IS_ERR(bdev)) {
428                 ret = PTR_ERR(bdev);
429                 goto error;
430         }
431
432         ret = set_blocksize(bdev, 4096);
433         if (ret)
434                 goto error_close;
435         bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
436         if (!bh) {
437                 ret = -EIO;
438                 goto error_close;
439         }
440         disk_super = (struct btrfs_super_block *)bh->b_data;
441         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
442             sizeof(disk_super->magic))) {
443                 ret = -EINVAL;
444                 goto error_brelse;
445         }
446         devid = le64_to_cpu(disk_super->dev_item.devid);
447         transid = btrfs_super_generation(disk_super);
448         if (disk_super->label[0])
449                 printk("device label %s ", disk_super->label);
450         else {
451                 /* FIXME, make a readl uuid parser */
452                 printk("device fsid %llx-%llx ",
453                        *(unsigned long long *)disk_super->fsid,
454                        *(unsigned long long *)(disk_super->fsid + 8));
455         }
456         printk("devid %Lu transid %Lu %s\n", devid, transid, path);
457         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
458
459 error_brelse:
460         brelse(bh);
461 error_close:
462         close_bdev_excl(bdev);
463 error:
464         mutex_unlock(&uuid_mutex);
465         return ret;
466 }
467
468 /*
469  * this uses a pretty simple search, the expectation is that it is
470  * called very infrequently and that a given device has a small number
471  * of extents
472  */
473 static int find_free_dev_extent(struct btrfs_trans_handle *trans,
474                                 struct btrfs_device *device,
475                                 struct btrfs_path *path,
476                                 u64 num_bytes, u64 *start)
477 {
478         struct btrfs_key key;
479         struct btrfs_root *root = device->dev_root;
480         struct btrfs_dev_extent *dev_extent = NULL;
481         u64 hole_size = 0;
482         u64 last_byte = 0;
483         u64 search_start = 0;
484         u64 search_end = device->total_bytes;
485         int ret;
486         int slot = 0;
487         int start_found;
488         struct extent_buffer *l;
489
490         start_found = 0;
491         path->reada = 2;
492
493         /* FIXME use last free of some kind */
494
495         /* we don't want to overwrite the superblock on the drive,
496          * so we make sure to start at an offset of at least 1MB
497          */
498         search_start = max((u64)1024 * 1024, search_start);
499
500         if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
501                 search_start = max(root->fs_info->alloc_start, search_start);
502
503         key.objectid = device->devid;
504         key.offset = search_start;
505         key.type = BTRFS_DEV_EXTENT_KEY;
506         ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
507         if (ret < 0)
508                 goto error;
509         ret = btrfs_previous_item(root, path, 0, key.type);
510         if (ret < 0)
511                 goto error;
512         l = path->nodes[0];
513         btrfs_item_key_to_cpu(l, &key, path->slots[0]);
514         while (1) {
515                 l = path->nodes[0];
516                 slot = path->slots[0];
517                 if (slot >= btrfs_header_nritems(l)) {
518                         ret = btrfs_next_leaf(root, path);
519                         if (ret == 0)
520                                 continue;
521                         if (ret < 0)
522                                 goto error;
523 no_more_items:
524                         if (!start_found) {
525                                 if (search_start >= search_end) {
526                                         ret = -ENOSPC;
527                                         goto error;
528                                 }
529                                 *start = search_start;
530                                 start_found = 1;
531                                 goto check_pending;
532                         }
533                         *start = last_byte > search_start ?
534                                 last_byte : search_start;
535                         if (search_end <= *start) {
536                                 ret = -ENOSPC;
537                                 goto error;
538                         }
539                         goto check_pending;
540                 }
541                 btrfs_item_key_to_cpu(l, &key, slot);
542
543                 if (key.objectid < device->devid)
544                         goto next;
545
546                 if (key.objectid > device->devid)
547                         goto no_more_items;
548
549                 if (key.offset >= search_start && key.offset > last_byte &&
550                     start_found) {
551                         if (last_byte < search_start)
552                                 last_byte = search_start;
553                         hole_size = key.offset - last_byte;
554                         if (key.offset > last_byte &&
555                             hole_size >= num_bytes) {
556                                 *start = last_byte;
557                                 goto check_pending;
558                         }
559                 }
560                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
561                         goto next;
562                 }
563
564                 start_found = 1;
565                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
566                 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
567 next:
568                 path->slots[0]++;
569                 cond_resched();
570         }
571 check_pending:
572         /* we have to make sure we didn't find an extent that has already
573          * been allocated by the map tree or the original allocation
574          */
575         btrfs_release_path(root, path);
576         BUG_ON(*start < search_start);
577
578         if (*start + num_bytes > search_end) {
579                 ret = -ENOSPC;
580                 goto error;
581         }
582         /* check for pending inserts here */
583         return 0;
584
585 error:
586         btrfs_release_path(root, path);
587         return ret;
588 }
589
590 int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
591                           struct btrfs_device *device,
592                           u64 start)
593 {
594         int ret;
595         struct btrfs_path *path;
596         struct btrfs_root *root = device->dev_root;
597         struct btrfs_key key;
598         struct btrfs_key found_key;
599         struct extent_buffer *leaf = NULL;
600         struct btrfs_dev_extent *extent = NULL;
601
602         path = btrfs_alloc_path();
603         if (!path)
604                 return -ENOMEM;
605
606         key.objectid = device->devid;
607         key.offset = start;
608         key.type = BTRFS_DEV_EXTENT_KEY;
609
610         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
611         if (ret > 0) {
612                 ret = btrfs_previous_item(root, path, key.objectid,
613                                           BTRFS_DEV_EXTENT_KEY);
614                 BUG_ON(ret);
615                 leaf = path->nodes[0];
616                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
617                 extent = btrfs_item_ptr(leaf, path->slots[0],
618                                         struct btrfs_dev_extent);
619                 BUG_ON(found_key.offset > start || found_key.offset +
620                        btrfs_dev_extent_length(leaf, extent) < start);
621                 ret = 0;
622         } else if (ret == 0) {
623                 leaf = path->nodes[0];
624                 extent = btrfs_item_ptr(leaf, path->slots[0],
625                                         struct btrfs_dev_extent);
626         }
627         BUG_ON(ret);
628
629         if (device->bytes_used > 0)
630                 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
631         ret = btrfs_del_item(trans, root, path);
632         BUG_ON(ret);
633
634         btrfs_free_path(path);
635         return ret;
636 }
637
638 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
639                            struct btrfs_device *device,
640                            u64 chunk_tree, u64 chunk_objectid,
641                            u64 chunk_offset,
642                            u64 num_bytes, u64 *start)
643 {
644         int ret;
645         struct btrfs_path *path;
646         struct btrfs_root *root = device->dev_root;
647         struct btrfs_dev_extent *extent;
648         struct extent_buffer *leaf;
649         struct btrfs_key key;
650
651         WARN_ON(!device->in_fs_metadata);
652         path = btrfs_alloc_path();
653         if (!path)
654                 return -ENOMEM;
655
656         ret = find_free_dev_extent(trans, device, path, num_bytes, start);
657         if (ret) {
658                 goto err;
659         }
660
661         key.objectid = device->devid;
662         key.offset = *start;
663         key.type = BTRFS_DEV_EXTENT_KEY;
664         ret = btrfs_insert_empty_item(trans, root, path, &key,
665                                       sizeof(*extent));
666         BUG_ON(ret);
667
668         leaf = path->nodes[0];
669         extent = btrfs_item_ptr(leaf, path->slots[0],
670                                 struct btrfs_dev_extent);
671         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
672         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
673         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
674
675         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
676                     (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
677                     BTRFS_UUID_SIZE);
678
679         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
680         btrfs_mark_buffer_dirty(leaf);
681 err:
682         btrfs_free_path(path);
683         return ret;
684 }
685
686 static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
687 {
688         struct btrfs_path *path;
689         int ret;
690         struct btrfs_key key;
691         struct btrfs_chunk *chunk;
692         struct btrfs_key found_key;
693
694         path = btrfs_alloc_path();
695         BUG_ON(!path);
696
697         key.objectid = objectid;
698         key.offset = (u64)-1;
699         key.type = BTRFS_CHUNK_ITEM_KEY;
700
701         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
702         if (ret < 0)
703                 goto error;
704
705         BUG_ON(ret == 0);
706
707         ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
708         if (ret) {
709                 *offset = 0;
710         } else {
711                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
712                                       path->slots[0]);
713                 if (found_key.objectid != objectid)
714                         *offset = 0;
715                 else {
716                         chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
717                                                struct btrfs_chunk);
718                         *offset = found_key.offset +
719                                 btrfs_chunk_length(path->nodes[0], chunk);
720                 }
721         }
722         ret = 0;
723 error:
724         btrfs_free_path(path);
725         return ret;
726 }
727
728 static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
729                            u64 *objectid)
730 {
731         int ret;
732         struct btrfs_key key;
733         struct btrfs_key found_key;
734
735         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
736         key.type = BTRFS_DEV_ITEM_KEY;
737         key.offset = (u64)-1;
738
739         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
740         if (ret < 0)
741                 goto error;
742
743         BUG_ON(ret == 0);
744
745         ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
746                                   BTRFS_DEV_ITEM_KEY);
747         if (ret) {
748                 *objectid = 1;
749         } else {
750                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
751                                       path->slots[0]);
752                 *objectid = found_key.offset + 1;
753         }
754         ret = 0;
755 error:
756         btrfs_release_path(root, path);
757         return ret;
758 }
759
760 /*
761  * the device information is stored in the chunk root
762  * the btrfs_device struct should be fully filled in
763  */
764 int btrfs_add_device(struct btrfs_trans_handle *trans,
765                      struct btrfs_root *root,
766                      struct btrfs_device *device)
767 {
768         int ret;
769         struct btrfs_path *path;
770         struct btrfs_dev_item *dev_item;
771         struct extent_buffer *leaf;
772         struct btrfs_key key;
773         unsigned long ptr;
774         u64 free_devid = 0;
775
776         root = root->fs_info->chunk_root;
777
778         path = btrfs_alloc_path();
779         if (!path)
780                 return -ENOMEM;
781
782         ret = find_next_devid(root, path, &free_devid);
783         if (ret)
784                 goto out;
785
786         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
787         key.type = BTRFS_DEV_ITEM_KEY;
788         key.offset = free_devid;
789
790         ret = btrfs_insert_empty_item(trans, root, path, &key,
791                                       sizeof(*dev_item));
792         if (ret)
793                 goto out;
794
795         leaf = path->nodes[0];
796         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
797
798         device->devid = free_devid;
799         btrfs_set_device_id(leaf, dev_item, device->devid);
800         btrfs_set_device_type(leaf, dev_item, device->type);
801         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
802         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
803         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
804         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
805         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
806         btrfs_set_device_group(leaf, dev_item, 0);
807         btrfs_set_device_seek_speed(leaf, dev_item, 0);
808         btrfs_set_device_bandwidth(leaf, dev_item, 0);
809
810         ptr = (unsigned long)btrfs_device_uuid(dev_item);
811         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
812         btrfs_mark_buffer_dirty(leaf);
813         ret = 0;
814
815 out:
816         btrfs_free_path(path);
817         return ret;
818 }
819
820 static int btrfs_rm_dev_item(struct btrfs_root *root,
821                              struct btrfs_device *device)
822 {
823         int ret;
824         struct btrfs_path *path;
825         struct block_device *bdev = device->bdev;
826         struct btrfs_device *next_dev;
827         struct btrfs_key key;
828         u64 total_bytes;
829         struct btrfs_fs_devices *fs_devices;
830         struct btrfs_trans_handle *trans;
831
832         root = root->fs_info->chunk_root;
833
834         path = btrfs_alloc_path();
835         if (!path)
836                 return -ENOMEM;
837
838         trans = btrfs_start_transaction(root, 1);
839         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
840         key.type = BTRFS_DEV_ITEM_KEY;
841         key.offset = device->devid;
842         lock_chunks(root);
843
844         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
845         if (ret < 0)
846                 goto out;
847
848         if (ret > 0) {
849                 ret = -ENOENT;
850                 goto out;
851         }
852
853         ret = btrfs_del_item(trans, root, path);
854         if (ret)
855                 goto out;
856
857         /*
858          * at this point, the device is zero sized.  We want to
859          * remove it from the devices list and zero out the old super
860          */
861         list_del_init(&device->dev_list);
862         list_del_init(&device->dev_alloc_list);
863         fs_devices = root->fs_info->fs_devices;
864
865         next_dev = list_entry(fs_devices->devices.next, struct btrfs_device,
866                               dev_list);
867         if (bdev == root->fs_info->sb->s_bdev)
868                 root->fs_info->sb->s_bdev = next_dev->bdev;
869         if (bdev == fs_devices->latest_bdev)
870                 fs_devices->latest_bdev = next_dev->bdev;
871
872         total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
873         btrfs_set_super_num_devices(&root->fs_info->super_copy,
874                                     total_bytes - 1);
875 out:
876         btrfs_free_path(path);
877         unlock_chunks(root);
878         btrfs_commit_transaction(trans, root);
879         return ret;
880 }
881
882 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
883 {
884         struct btrfs_device *device;
885         struct block_device *bdev;
886         struct buffer_head *bh = NULL;
887         struct btrfs_super_block *disk_super;
888         u64 all_avail;
889         u64 devid;
890         int ret = 0;
891
892         mutex_lock(&uuid_mutex);
893         mutex_lock(&root->fs_info->volume_mutex);
894
895         all_avail = root->fs_info->avail_data_alloc_bits |
896                 root->fs_info->avail_system_alloc_bits |
897                 root->fs_info->avail_metadata_alloc_bits;
898
899         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
900             btrfs_super_num_devices(&root->fs_info->super_copy) <= 4) {
901                 printk("btrfs: unable to go below four devices on raid10\n");
902                 ret = -EINVAL;
903                 goto out;
904         }
905
906         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
907             btrfs_super_num_devices(&root->fs_info->super_copy) <= 2) {
908                 printk("btrfs: unable to go below two devices on raid1\n");
909                 ret = -EINVAL;
910                 goto out;
911         }
912
913         if (strcmp(device_path, "missing") == 0) {
914                 struct list_head *cur;
915                 struct list_head *devices;
916                 struct btrfs_device *tmp;
917
918                 device = NULL;
919                 devices = &root->fs_info->fs_devices->devices;
920                 list_for_each(cur, devices) {
921                         tmp = list_entry(cur, struct btrfs_device, dev_list);
922                         if (tmp->in_fs_metadata && !tmp->bdev) {
923                                 device = tmp;
924                                 break;
925                         }
926                 }
927                 bdev = NULL;
928                 bh = NULL;
929                 disk_super = NULL;
930                 if (!device) {
931                         printk("btrfs: no missing devices found to remove\n");
932                         goto out;
933                 }
934
935         } else {
936                 bdev = open_bdev_excl(device_path, 0,
937                                       root->fs_info->bdev_holder);
938                 if (IS_ERR(bdev)) {
939                         ret = PTR_ERR(bdev);
940                         goto out;
941                 }
942
943                 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
944                 if (!bh) {
945                         ret = -EIO;
946                         goto error_close;
947                 }
948                 disk_super = (struct btrfs_super_block *)bh->b_data;
949                 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
950                     sizeof(disk_super->magic))) {
951                         ret = -ENOENT;
952                         goto error_brelse;
953                 }
954                 if (memcmp(disk_super->fsid, root->fs_info->fsid,
955                            BTRFS_FSID_SIZE)) {
956                         ret = -ENOENT;
957                         goto error_brelse;
958                 }
959                 devid = le64_to_cpu(disk_super->dev_item.devid);
960                 device = btrfs_find_device(root, devid, NULL);
961                 if (!device) {
962                         ret = -ENOENT;
963                         goto error_brelse;
964                 }
965
966         }
967         root->fs_info->fs_devices->num_devices--;
968         root->fs_info->fs_devices->open_devices--;
969
970         ret = btrfs_shrink_device(device, 0);
971         if (ret)
972                 goto error_brelse;
973
974
975         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
976         if (ret)
977                 goto error_brelse;
978
979         if (bh) {
980                 /* make sure this device isn't detected as part of
981                  * the FS anymore
982                  */
983                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
984                 set_buffer_dirty(bh);
985                 sync_dirty_buffer(bh);
986
987                 brelse(bh);
988         }
989
990         if (device->bdev) {
991                 /* one close for the device struct or super_block */
992                 close_bdev_excl(device->bdev);
993         }
994         if (bdev) {
995                 /* one close for us */
996                 close_bdev_excl(bdev);
997         }
998         kfree(device->name);
999         kfree(device);
1000         ret = 0;
1001         goto out;
1002
1003 error_brelse:
1004         brelse(bh);
1005 error_close:
1006         if (bdev)
1007                 close_bdev_excl(bdev);
1008 out:
1009         mutex_unlock(&root->fs_info->volume_mutex);
1010         mutex_unlock(&uuid_mutex);
1011         return ret;
1012 }
1013
1014 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1015 {
1016         struct btrfs_trans_handle *trans;
1017         struct btrfs_device *device;
1018         struct block_device *bdev;
1019         struct list_head *cur;
1020         struct list_head *devices;
1021         u64 total_bytes;
1022         int ret = 0;
1023
1024
1025         bdev = open_bdev_excl(device_path, 0, root->fs_info->bdev_holder);
1026         if (!bdev) {
1027                 return -EIO;
1028         }
1029
1030         mutex_lock(&root->fs_info->volume_mutex);
1031
1032         trans = btrfs_start_transaction(root, 1);
1033         lock_chunks(root);
1034         devices = &root->fs_info->fs_devices->devices;
1035         list_for_each(cur, devices) {
1036                 device = list_entry(cur, struct btrfs_device, dev_list);
1037                 if (device->bdev == bdev) {
1038                         ret = -EEXIST;
1039                         goto out;
1040                 }
1041         }
1042
1043         device = kzalloc(sizeof(*device), GFP_NOFS);
1044         if (!device) {
1045                 /* we can safely leave the fs_devices entry around */
1046                 ret = -ENOMEM;
1047                 goto out_close_bdev;
1048         }
1049
1050         device->barriers = 1;
1051         device->work.func = pending_bios_fn;
1052         generate_random_uuid(device->uuid);
1053         spin_lock_init(&device->io_lock);
1054         device->name = kstrdup(device_path, GFP_NOFS);
1055         if (!device->name) {
1056                 kfree(device);
1057                 goto out_close_bdev;
1058         }
1059         device->io_width = root->sectorsize;
1060         device->io_align = root->sectorsize;
1061         device->sector_size = root->sectorsize;
1062         device->total_bytes = i_size_read(bdev->bd_inode);
1063         device->dev_root = root->fs_info->dev_root;
1064         device->bdev = bdev;
1065         device->in_fs_metadata = 1;
1066
1067         ret = btrfs_add_device(trans, root, device);
1068         if (ret)
1069                 goto out_close_bdev;
1070
1071         total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1072         btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1073                                     total_bytes + device->total_bytes);
1074
1075         total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1076         btrfs_set_super_num_devices(&root->fs_info->super_copy,
1077                                     total_bytes + 1);
1078
1079         list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1080         list_add(&device->dev_alloc_list,
1081                  &root->fs_info->fs_devices->alloc_list);
1082         root->fs_info->fs_devices->num_devices++;
1083         root->fs_info->fs_devices->open_devices++;
1084 out:
1085         unlock_chunks(root);
1086         btrfs_end_transaction(trans, root);
1087         mutex_unlock(&root->fs_info->volume_mutex);
1088
1089         return ret;
1090
1091 out_close_bdev:
1092         close_bdev_excl(bdev);
1093         goto out;
1094 }
1095
1096 int btrfs_update_device(struct btrfs_trans_handle *trans,
1097                         struct btrfs_device *device)
1098 {
1099         int ret;
1100         struct btrfs_path *path;
1101         struct btrfs_root *root;
1102         struct btrfs_dev_item *dev_item;
1103         struct extent_buffer *leaf;
1104         struct btrfs_key key;
1105
1106         root = device->dev_root->fs_info->chunk_root;
1107
1108         path = btrfs_alloc_path();
1109         if (!path)
1110                 return -ENOMEM;
1111
1112         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1113         key.type = BTRFS_DEV_ITEM_KEY;
1114         key.offset = device->devid;
1115
1116         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1117         if (ret < 0)
1118                 goto out;
1119
1120         if (ret > 0) {
1121                 ret = -ENOENT;
1122                 goto out;
1123         }
1124
1125         leaf = path->nodes[0];
1126         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1127
1128         btrfs_set_device_id(leaf, dev_item, device->devid);
1129         btrfs_set_device_type(leaf, dev_item, device->type);
1130         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1131         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1132         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1133         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1134         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1135         btrfs_mark_buffer_dirty(leaf);
1136
1137 out:
1138         btrfs_free_path(path);
1139         return ret;
1140 }
1141
1142 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1143                       struct btrfs_device *device, u64 new_size)
1144 {
1145         struct btrfs_super_block *super_copy =
1146                 &device->dev_root->fs_info->super_copy;
1147         u64 old_total = btrfs_super_total_bytes(super_copy);
1148         u64 diff = new_size - device->total_bytes;
1149
1150         btrfs_set_super_total_bytes(super_copy, old_total + diff);
1151         return btrfs_update_device(trans, device);
1152 }
1153
1154 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1155                       struct btrfs_device *device, u64 new_size)
1156 {
1157         int ret;
1158         lock_chunks(device->dev_root);
1159         ret = __btrfs_grow_device(trans, device, new_size);
1160         unlock_chunks(device->dev_root);
1161         return ret;
1162 }
1163
1164 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1165                             struct btrfs_root *root,
1166                             u64 chunk_tree, u64 chunk_objectid,
1167                             u64 chunk_offset)
1168 {
1169         int ret;
1170         struct btrfs_path *path;
1171         struct btrfs_key key;
1172
1173         root = root->fs_info->chunk_root;
1174         path = btrfs_alloc_path();
1175         if (!path)
1176                 return -ENOMEM;
1177
1178         key.objectid = chunk_objectid;
1179         key.offset = chunk_offset;
1180         key.type = BTRFS_CHUNK_ITEM_KEY;
1181
1182         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1183         BUG_ON(ret);
1184
1185         ret = btrfs_del_item(trans, root, path);
1186         BUG_ON(ret);
1187
1188         btrfs_free_path(path);
1189         return 0;
1190 }
1191
1192 int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1193                         chunk_offset)
1194 {
1195         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1196         struct btrfs_disk_key *disk_key;
1197         struct btrfs_chunk *chunk;
1198         u8 *ptr;
1199         int ret = 0;
1200         u32 num_stripes;
1201         u32 array_size;
1202         u32 len = 0;
1203         u32 cur;
1204         struct btrfs_key key;
1205
1206         array_size = btrfs_super_sys_array_size(super_copy);
1207
1208         ptr = super_copy->sys_chunk_array;
1209         cur = 0;
1210
1211         while (cur < array_size) {
1212                 disk_key = (struct btrfs_disk_key *)ptr;
1213                 btrfs_disk_key_to_cpu(&key, disk_key);
1214
1215                 len = sizeof(*disk_key);
1216
1217                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1218                         chunk = (struct btrfs_chunk *)(ptr + len);
1219                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1220                         len += btrfs_chunk_item_size(num_stripes);
1221                 } else {
1222                         ret = -EIO;
1223                         break;
1224                 }
1225                 if (key.objectid == chunk_objectid &&
1226                     key.offset == chunk_offset) {
1227                         memmove(ptr, ptr + len, array_size - (cur + len));
1228                         array_size -= len;
1229                         btrfs_set_super_sys_array_size(super_copy, array_size);
1230                 } else {
1231                         ptr += len;
1232                         cur += len;
1233                 }
1234         }
1235         return ret;
1236 }
1237
1238
1239 int btrfs_relocate_chunk(struct btrfs_root *root,
1240                          u64 chunk_tree, u64 chunk_objectid,
1241                          u64 chunk_offset)
1242 {
1243         struct extent_map_tree *em_tree;
1244         struct btrfs_root *extent_root;
1245         struct btrfs_trans_handle *trans;
1246         struct extent_map *em;
1247         struct map_lookup *map;
1248         int ret;
1249         int i;
1250
1251         printk("btrfs relocating chunk %llu\n",
1252                (unsigned long long)chunk_offset);
1253         root = root->fs_info->chunk_root;
1254         extent_root = root->fs_info->extent_root;
1255         em_tree = &root->fs_info->mapping_tree.map_tree;
1256
1257         /* step one, relocate all the extents inside this chunk */
1258         ret = btrfs_shrink_extent_tree(extent_root, chunk_offset);
1259         BUG_ON(ret);
1260
1261         trans = btrfs_start_transaction(root, 1);
1262         BUG_ON(!trans);
1263
1264         lock_chunks(root);
1265
1266         /*
1267          * step two, delete the device extents and the
1268          * chunk tree entries
1269          */
1270         spin_lock(&em_tree->lock);
1271         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1272         spin_unlock(&em_tree->lock);
1273
1274         BUG_ON(em->start > chunk_offset ||
1275                em->start + em->len < chunk_offset);
1276         map = (struct map_lookup *)em->bdev;
1277
1278         for (i = 0; i < map->num_stripes; i++) {
1279                 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1280                                             map->stripes[i].physical);
1281                 BUG_ON(ret);
1282
1283                 if (map->stripes[i].dev) {
1284                         ret = btrfs_update_device(trans, map->stripes[i].dev);
1285                         BUG_ON(ret);
1286                 }
1287         }
1288         ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1289                                chunk_offset);
1290
1291         BUG_ON(ret);
1292
1293         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1294                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1295                 BUG_ON(ret);
1296         }
1297
1298         spin_lock(&em_tree->lock);
1299         remove_extent_mapping(em_tree, em);
1300         kfree(map);
1301         em->bdev = NULL;
1302
1303         /* once for the tree */
1304         free_extent_map(em);
1305         spin_unlock(&em_tree->lock);
1306
1307         /* once for us */
1308         free_extent_map(em);
1309
1310         unlock_chunks(root);
1311         btrfs_end_transaction(trans, root);
1312         return 0;
1313 }
1314
1315 static u64 div_factor(u64 num, int factor)
1316 {
1317         if (factor == 10)
1318                 return num;
1319         num *= factor;
1320         do_div(num, 10);
1321         return num;
1322 }
1323
1324
1325 int btrfs_balance(struct btrfs_root *dev_root)
1326 {
1327         int ret;
1328         struct list_head *cur;
1329         struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1330         struct btrfs_device *device;
1331         u64 old_size;
1332         u64 size_to_free;
1333         struct btrfs_path *path;
1334         struct btrfs_key key;
1335         struct btrfs_chunk *chunk;
1336         struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1337         struct btrfs_trans_handle *trans;
1338         struct btrfs_key found_key;
1339
1340
1341         mutex_lock(&dev_root->fs_info->volume_mutex);
1342         dev_root = dev_root->fs_info->dev_root;
1343
1344         /* step one make some room on all the devices */
1345         list_for_each(cur, devices) {
1346                 device = list_entry(cur, struct btrfs_device, dev_list);
1347                 old_size = device->total_bytes;
1348                 size_to_free = div_factor(old_size, 1);
1349                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1350                 if (device->total_bytes - device->bytes_used > size_to_free)
1351                         continue;
1352
1353                 ret = btrfs_shrink_device(device, old_size - size_to_free);
1354                 BUG_ON(ret);
1355
1356                 trans = btrfs_start_transaction(dev_root, 1);
1357                 BUG_ON(!trans);
1358
1359                 ret = btrfs_grow_device(trans, device, old_size);
1360                 BUG_ON(ret);
1361
1362                 btrfs_end_transaction(trans, dev_root);
1363         }
1364
1365         /* step two, relocate all the chunks */
1366         path = btrfs_alloc_path();
1367         BUG_ON(!path);
1368
1369         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1370         key.offset = (u64)-1;
1371         key.type = BTRFS_CHUNK_ITEM_KEY;
1372
1373         while(1) {
1374                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1375                 if (ret < 0)
1376                         goto error;
1377
1378                 /*
1379                  * this shouldn't happen, it means the last relocate
1380                  * failed
1381                  */
1382                 if (ret == 0)
1383                         break;
1384
1385                 ret = btrfs_previous_item(chunk_root, path, 0,
1386                                           BTRFS_CHUNK_ITEM_KEY);
1387                 if (ret)
1388                         break;
1389
1390                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1391                                       path->slots[0]);
1392                 if (found_key.objectid != key.objectid)
1393                         break;
1394
1395                 chunk = btrfs_item_ptr(path->nodes[0],
1396                                        path->slots[0],
1397                                        struct btrfs_chunk);
1398                 key.offset = found_key.offset;
1399                 /* chunk zero is special */
1400                 if (key.offset == 0)
1401                         break;
1402
1403                 btrfs_release_path(chunk_root, path);
1404                 ret = btrfs_relocate_chunk(chunk_root,
1405                                            chunk_root->root_key.objectid,
1406                                            found_key.objectid,
1407                                            found_key.offset);
1408                 BUG_ON(ret);
1409         }
1410         ret = 0;
1411 error:
1412         btrfs_free_path(path);
1413         mutex_unlock(&dev_root->fs_info->volume_mutex);
1414         return ret;
1415 }
1416
1417 /*
1418  * shrinking a device means finding all of the device extents past
1419  * the new size, and then following the back refs to the chunks.
1420  * The chunk relocation code actually frees the device extent
1421  */
1422 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1423 {
1424         struct btrfs_trans_handle *trans;
1425         struct btrfs_root *root = device->dev_root;
1426         struct btrfs_dev_extent *dev_extent = NULL;
1427         struct btrfs_path *path;
1428         u64 length;
1429         u64 chunk_tree;
1430         u64 chunk_objectid;
1431         u64 chunk_offset;
1432         int ret;
1433         int slot;
1434         struct extent_buffer *l;
1435         struct btrfs_key key;
1436         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1437         u64 old_total = btrfs_super_total_bytes(super_copy);
1438         u64 diff = device->total_bytes - new_size;
1439
1440
1441         path = btrfs_alloc_path();
1442         if (!path)
1443                 return -ENOMEM;
1444
1445         trans = btrfs_start_transaction(root, 1);
1446         if (!trans) {
1447                 ret = -ENOMEM;
1448                 goto done;
1449         }
1450
1451         path->reada = 2;
1452
1453         lock_chunks(root);
1454
1455         device->total_bytes = new_size;
1456         ret = btrfs_update_device(trans, device);
1457         if (ret) {
1458                 unlock_chunks(root);
1459                 btrfs_end_transaction(trans, root);
1460                 goto done;
1461         }
1462         WARN_ON(diff > old_total);
1463         btrfs_set_super_total_bytes(super_copy, old_total - diff);
1464         unlock_chunks(root);
1465         btrfs_end_transaction(trans, root);
1466
1467         key.objectid = device->devid;
1468         key.offset = (u64)-1;
1469         key.type = BTRFS_DEV_EXTENT_KEY;
1470
1471         while (1) {
1472                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1473                 if (ret < 0)
1474                         goto done;
1475
1476                 ret = btrfs_previous_item(root, path, 0, key.type);
1477                 if (ret < 0)
1478                         goto done;
1479                 if (ret) {
1480                         ret = 0;
1481                         goto done;
1482                 }
1483
1484                 l = path->nodes[0];
1485                 slot = path->slots[0];
1486                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
1487
1488                 if (key.objectid != device->devid)
1489                         goto done;
1490
1491                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1492                 length = btrfs_dev_extent_length(l, dev_extent);
1493
1494                 if (key.offset + length <= new_size)
1495                         goto done;
1496
1497                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1498                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1499                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1500                 btrfs_release_path(root, path);
1501
1502                 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
1503                                            chunk_offset);
1504                 if (ret)
1505                         goto done;
1506         }
1507
1508 done:
1509         btrfs_free_path(path);
1510         return ret;
1511 }
1512
1513 int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
1514                            struct btrfs_root *root,
1515                            struct btrfs_key *key,
1516                            struct btrfs_chunk *chunk, int item_size)
1517 {
1518         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1519         struct btrfs_disk_key disk_key;
1520         u32 array_size;
1521         u8 *ptr;
1522
1523         array_size = btrfs_super_sys_array_size(super_copy);
1524         if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
1525                 return -EFBIG;
1526
1527         ptr = super_copy->sys_chunk_array + array_size;
1528         btrfs_cpu_key_to_disk(&disk_key, key);
1529         memcpy(ptr, &disk_key, sizeof(disk_key));
1530         ptr += sizeof(disk_key);
1531         memcpy(ptr, chunk, item_size);
1532         item_size += sizeof(disk_key);
1533         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
1534         return 0;
1535 }
1536
1537 static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
1538                                int sub_stripes)
1539 {
1540         if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
1541                 return calc_size;
1542         else if (type & BTRFS_BLOCK_GROUP_RAID10)
1543                 return calc_size * (num_stripes / sub_stripes);
1544         else
1545                 return calc_size * num_stripes;
1546 }
1547
1548
1549 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
1550                       struct btrfs_root *extent_root, u64 *start,
1551                       u64 *num_bytes, u64 type)
1552 {
1553         u64 dev_offset;
1554         struct btrfs_fs_info *info = extent_root->fs_info;
1555         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
1556         struct btrfs_path *path;
1557         struct btrfs_stripe *stripes;
1558         struct btrfs_device *device = NULL;
1559         struct btrfs_chunk *chunk;
1560         struct list_head private_devs;
1561         struct list_head *dev_list;
1562         struct list_head *cur;
1563         struct extent_map_tree *em_tree;
1564         struct map_lookup *map;
1565         struct extent_map *em;
1566         int min_stripe_size = 1 * 1024 * 1024;
1567         u64 physical;
1568         u64 calc_size = 1024 * 1024 * 1024;
1569         u64 max_chunk_size = calc_size;
1570         u64 min_free;
1571         u64 avail;
1572         u64 max_avail = 0;
1573         u64 percent_max;
1574         int num_stripes = 1;
1575         int min_stripes = 1;
1576         int sub_stripes = 0;
1577         int looped = 0;
1578         int ret;
1579         int index;
1580         int stripe_len = 64 * 1024;
1581         struct btrfs_key key;
1582
1583         if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
1584             (type & BTRFS_BLOCK_GROUP_DUP)) {
1585                 WARN_ON(1);
1586                 type &= ~BTRFS_BLOCK_GROUP_DUP;
1587         }
1588         dev_list = &extent_root->fs_info->fs_devices->alloc_list;
1589         if (list_empty(dev_list))
1590                 return -ENOSPC;
1591
1592         if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
1593                 num_stripes = extent_root->fs_info->fs_devices->open_devices;
1594                 min_stripes = 2;
1595         }
1596         if (type & (BTRFS_BLOCK_GROUP_DUP)) {
1597                 num_stripes = 2;
1598                 min_stripes = 2;
1599         }
1600         if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
1601                 num_stripes = min_t(u64, 2,
1602                             extent_root->fs_info->fs_devices->open_devices);
1603                 if (num_stripes < 2)
1604                         return -ENOSPC;
1605                 min_stripes = 2;
1606         }
1607         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
1608                 num_stripes = extent_root->fs_info->fs_devices->open_devices;
1609                 if (num_stripes < 4)
1610                         return -ENOSPC;
1611                 num_stripes &= ~(u32)1;
1612                 sub_stripes = 2;
1613                 min_stripes = 4;
1614         }
1615
1616         if (type & BTRFS_BLOCK_GROUP_DATA) {
1617                 max_chunk_size = 10 * calc_size;
1618                 min_stripe_size = 64 * 1024 * 1024;
1619         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1620                 max_chunk_size = 4 * calc_size;
1621                 min_stripe_size = 32 * 1024 * 1024;
1622         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1623                 calc_size = 8 * 1024 * 1024;
1624                 max_chunk_size = calc_size * 2;
1625                 min_stripe_size = 1 * 1024 * 1024;
1626         }
1627
1628         path = btrfs_alloc_path();
1629         if (!path)
1630                 return -ENOMEM;
1631
1632         /* we don't want a chunk larger than 10% of the FS */
1633         percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
1634         max_chunk_size = min(percent_max, max_chunk_size);
1635
1636 again:
1637         if (calc_size * num_stripes > max_chunk_size) {
1638                 calc_size = max_chunk_size;
1639                 do_div(calc_size, num_stripes);
1640                 do_div(calc_size, stripe_len);
1641                 calc_size *= stripe_len;
1642         }
1643         /* we don't want tiny stripes */
1644         calc_size = max_t(u64, min_stripe_size, calc_size);
1645
1646         do_div(calc_size, stripe_len);
1647         calc_size *= stripe_len;
1648
1649         INIT_LIST_HEAD(&private_devs);
1650         cur = dev_list->next;
1651         index = 0;
1652
1653         if (type & BTRFS_BLOCK_GROUP_DUP)
1654                 min_free = calc_size * 2;
1655         else
1656                 min_free = calc_size;
1657
1658         /* we add 1MB because we never use the first 1MB of the device */
1659         min_free += 1024 * 1024;
1660
1661         /* build a private list of devices we will allocate from */
1662         while(index < num_stripes) {
1663                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
1664
1665                 if (device->total_bytes > device->bytes_used)
1666                         avail = device->total_bytes - device->bytes_used;
1667                 else
1668                         avail = 0;
1669                 cur = cur->next;
1670
1671                 if (device->in_fs_metadata && avail >= min_free) {
1672                         u64 ignored_start = 0;
1673                         ret = find_free_dev_extent(trans, device, path,
1674                                                    min_free,
1675                                                    &ignored_start);
1676                         if (ret == 0) {
1677                                 list_move_tail(&device->dev_alloc_list,
1678                                                &private_devs);
1679                                 index++;
1680                                 if (type & BTRFS_BLOCK_GROUP_DUP)
1681                                         index++;
1682                         }
1683                 } else if (device->in_fs_metadata && avail > max_avail)
1684                         max_avail = avail;
1685                 if (cur == dev_list)
1686                         break;
1687         }
1688         if (index < num_stripes) {
1689                 list_splice(&private_devs, dev_list);
1690                 if (index >= min_stripes) {
1691                         num_stripes = index;
1692                         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
1693                                 num_stripes /= sub_stripes;
1694                                 num_stripes *= sub_stripes;
1695                         }
1696                         looped = 1;
1697                         goto again;
1698                 }
1699                 if (!looped && max_avail > 0) {
1700                         looped = 1;
1701                         calc_size = max_avail;
1702                         goto again;
1703                 }
1704                 btrfs_free_path(path);
1705                 return -ENOSPC;
1706         }
1707         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1708         key.type = BTRFS_CHUNK_ITEM_KEY;
1709         ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
1710                               &key.offset);
1711         if (ret) {
1712                 btrfs_free_path(path);
1713                 return ret;
1714         }
1715
1716         chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
1717         if (!chunk) {
1718                 btrfs_free_path(path);
1719                 return -ENOMEM;
1720         }
1721
1722         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
1723         if (!map) {
1724                 kfree(chunk);
1725                 btrfs_free_path(path);
1726                 return -ENOMEM;
1727         }
1728         btrfs_free_path(path);
1729         path = NULL;
1730
1731         stripes = &chunk->stripe;
1732         *num_bytes = chunk_bytes_by_type(type, calc_size,
1733                                          num_stripes, sub_stripes);
1734
1735         index = 0;
1736         while(index < num_stripes) {
1737                 struct btrfs_stripe *stripe;
1738                 BUG_ON(list_empty(&private_devs));
1739                 cur = private_devs.next;
1740                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
1741
1742                 /* loop over this device again if we're doing a dup group */
1743                 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
1744                     (index == num_stripes - 1))
1745                         list_move_tail(&device->dev_alloc_list, dev_list);
1746
1747                 ret = btrfs_alloc_dev_extent(trans, device,
1748                              info->chunk_root->root_key.objectid,
1749                              BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
1750                              calc_size, &dev_offset);
1751                 BUG_ON(ret);
1752                 device->bytes_used += calc_size;
1753                 ret = btrfs_update_device(trans, device);
1754                 BUG_ON(ret);
1755
1756                 map->stripes[index].dev = device;
1757                 map->stripes[index].physical = dev_offset;
1758                 stripe = stripes + index;
1759                 btrfs_set_stack_stripe_devid(stripe, device->devid);
1760                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
1761                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
1762                 physical = dev_offset;
1763                 index++;
1764         }
1765         BUG_ON(!list_empty(&private_devs));
1766
1767         /* key was set above */
1768         btrfs_set_stack_chunk_length(chunk, *num_bytes);
1769         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
1770         btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
1771         btrfs_set_stack_chunk_type(chunk, type);
1772         btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
1773         btrfs_set_stack_chunk_io_align(chunk, stripe_len);
1774         btrfs_set_stack_chunk_io_width(chunk, stripe_len);
1775         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
1776         btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
1777         map->sector_size = extent_root->sectorsize;
1778         map->stripe_len = stripe_len;
1779         map->io_align = stripe_len;
1780         map->io_width = stripe_len;
1781         map->type = type;
1782         map->num_stripes = num_stripes;
1783         map->sub_stripes = sub_stripes;
1784
1785         ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
1786                                 btrfs_chunk_item_size(num_stripes));
1787         BUG_ON(ret);
1788         *start = key.offset;;
1789
1790         em = alloc_extent_map(GFP_NOFS);
1791         if (!em)
1792                 return -ENOMEM;
1793         em->bdev = (struct block_device *)map;
1794         em->start = key.offset;
1795         em->len = *num_bytes;
1796         em->block_start = 0;
1797
1798         if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1799                 ret = btrfs_add_system_chunk(trans, chunk_root, &key,
1800                                     chunk, btrfs_chunk_item_size(num_stripes));
1801                 BUG_ON(ret);
1802         }
1803         kfree(chunk);
1804
1805         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
1806         spin_lock(&em_tree->lock);
1807         ret = add_extent_mapping(em_tree, em);
1808         spin_unlock(&em_tree->lock);
1809         BUG_ON(ret);
1810         free_extent_map(em);
1811         return ret;
1812 }
1813
1814 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
1815 {
1816         extent_map_tree_init(&tree->map_tree, GFP_NOFS);
1817 }
1818
1819 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
1820 {
1821         struct extent_map *em;
1822
1823         while(1) {
1824                 spin_lock(&tree->map_tree.lock);
1825                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
1826                 if (em)
1827                         remove_extent_mapping(&tree->map_tree, em);
1828                 spin_unlock(&tree->map_tree.lock);
1829                 if (!em)
1830                         break;
1831                 kfree(em->bdev);
1832                 /* once for us */
1833                 free_extent_map(em);
1834                 /* once for the tree */
1835                 free_extent_map(em);
1836         }
1837 }
1838
1839 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
1840 {
1841         struct extent_map *em;
1842         struct map_lookup *map;
1843         struct extent_map_tree *em_tree = &map_tree->map_tree;
1844         int ret;
1845
1846         spin_lock(&em_tree->lock);
1847         em = lookup_extent_mapping(em_tree, logical, len);
1848         spin_unlock(&em_tree->lock);
1849         BUG_ON(!em);
1850
1851         BUG_ON(em->start > logical || em->start + em->len < logical);
1852         map = (struct map_lookup *)em->bdev;
1853         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
1854                 ret = map->num_stripes;
1855         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1856                 ret = map->sub_stripes;
1857         else
1858                 ret = 1;
1859         free_extent_map(em);
1860         return ret;
1861 }
1862
1863 static int find_live_mirror(struct map_lookup *map, int first, int num,
1864                             int optimal)
1865 {
1866         int i;
1867         if (map->stripes[optimal].dev->bdev)
1868                 return optimal;
1869         for (i = first; i < first + num; i++) {
1870                 if (map->stripes[i].dev->bdev)
1871                         return i;
1872         }
1873         /* we couldn't find one that doesn't fail.  Just return something
1874          * and the io error handling code will clean up eventually
1875          */
1876         return optimal;
1877 }
1878
1879 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1880                              u64 logical, u64 *length,
1881                              struct btrfs_multi_bio **multi_ret,
1882                              int mirror_num, struct page *unplug_page)
1883 {
1884         struct extent_map *em;
1885         struct map_lookup *map;
1886         struct extent_map_tree *em_tree = &map_tree->map_tree;
1887         u64 offset;
1888         u64 stripe_offset;
1889         u64 stripe_nr;
1890         int stripes_allocated = 8;
1891         int stripes_required = 1;
1892         int stripe_index;
1893         int i;
1894         int num_stripes;
1895         int max_errors = 0;
1896         struct btrfs_multi_bio *multi = NULL;
1897
1898         if (multi_ret && !(rw & (1 << BIO_RW))) {
1899                 stripes_allocated = 1;
1900         }
1901 again:
1902         if (multi_ret) {
1903                 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
1904                                 GFP_NOFS);
1905                 if (!multi)
1906                         return -ENOMEM;
1907
1908                 atomic_set(&multi->error, 0);
1909         }
1910
1911         spin_lock(&em_tree->lock);
1912         em = lookup_extent_mapping(em_tree, logical, *length);
1913         spin_unlock(&em_tree->lock);
1914
1915         if (!em && unplug_page)
1916                 return 0;
1917
1918         if (!em) {
1919                 printk("unable to find logical %Lu len %Lu\n", logical, *length);
1920                 BUG();
1921         }
1922
1923         BUG_ON(em->start > logical || em->start + em->len < logical);
1924         map = (struct map_lookup *)em->bdev;
1925         offset = logical - em->start;
1926
1927         if (mirror_num > map->num_stripes)
1928                 mirror_num = 0;
1929
1930         /* if our multi bio struct is too small, back off and try again */
1931         if (rw & (1 << BIO_RW)) {
1932                 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
1933                                  BTRFS_BLOCK_GROUP_DUP)) {
1934                         stripes_required = map->num_stripes;
1935                         max_errors = 1;
1936                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1937                         stripes_required = map->sub_stripes;
1938                         max_errors = 1;
1939                 }
1940         }
1941         if (multi_ret && rw == WRITE &&
1942             stripes_allocated < stripes_required) {
1943                 stripes_allocated = map->num_stripes;
1944                 free_extent_map(em);
1945                 kfree(multi);
1946                 goto again;
1947         }
1948         stripe_nr = offset;
1949         /*
1950          * stripe_nr counts the total number of stripes we have to stride
1951          * to get to this block
1952          */
1953         do_div(stripe_nr, map->stripe_len);
1954
1955         stripe_offset = stripe_nr * map->stripe_len;
1956         BUG_ON(offset < stripe_offset);
1957
1958         /* stripe_offset is the offset of this block in its stripe*/
1959         stripe_offset = offset - stripe_offset;
1960
1961         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
1962                          BTRFS_BLOCK_GROUP_RAID10 |
1963                          BTRFS_BLOCK_GROUP_DUP)) {
1964                 /* we limit the length of each bio to what fits in a stripe */
1965                 *length = min_t(u64, em->len - offset,
1966                               map->stripe_len - stripe_offset);
1967         } else {
1968                 *length = em->len - offset;
1969         }
1970
1971         if (!multi_ret && !unplug_page)
1972                 goto out;
1973
1974         num_stripes = 1;
1975         stripe_index = 0;
1976         if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1977                 if (unplug_page || (rw & (1 << BIO_RW)))
1978                         num_stripes = map->num_stripes;
1979                 else if (mirror_num)
1980                         stripe_index = mirror_num - 1;
1981                 else {
1982                         stripe_index = find_live_mirror(map, 0,
1983                                             map->num_stripes,
1984                                             current->pid % map->num_stripes);
1985                 }
1986
1987         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1988                 if (rw & (1 << BIO_RW))
1989                         num_stripes = map->num_stripes;
1990                 else if (mirror_num)
1991                         stripe_index = mirror_num - 1;
1992
1993         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1994                 int factor = map->num_stripes / map->sub_stripes;
1995
1996                 stripe_index = do_div(stripe_nr, factor);
1997                 stripe_index *= map->sub_stripes;
1998
1999                 if (unplug_page || (rw & (1 << BIO_RW)))
2000                         num_stripes = map->sub_stripes;
2001                 else if (mirror_num)
2002                         stripe_index += mirror_num - 1;
2003                 else {
2004                         stripe_index = find_live_mirror(map, stripe_index,
2005                                               map->sub_stripes, stripe_index +
2006                                               current->pid % map->sub_stripes);
2007                 }
2008         } else {
2009                 /*
2010                  * after this do_div call, stripe_nr is the number of stripes
2011                  * on this device we have to walk to find the data, and
2012                  * stripe_index is the number of our device in the stripe array
2013                  */
2014                 stripe_index = do_div(stripe_nr, map->num_stripes);
2015         }
2016         BUG_ON(stripe_index >= map->num_stripes);
2017
2018         for (i = 0; i < num_stripes; i++) {
2019                 if (unplug_page) {
2020                         struct btrfs_device *device;
2021                         struct backing_dev_info *bdi;
2022
2023                         device = map->stripes[stripe_index].dev;
2024                         if (device->bdev) {
2025                                 bdi = blk_get_backing_dev_info(device->bdev);
2026                                 if (bdi->unplug_io_fn) {
2027                                         bdi->unplug_io_fn(bdi, unplug_page);
2028                                 }
2029                         }
2030                 } else {
2031                         multi->stripes[i].physical =
2032                                 map->stripes[stripe_index].physical +
2033                                 stripe_offset + stripe_nr * map->stripe_len;
2034                         multi->stripes[i].dev = map->stripes[stripe_index].dev;
2035                 }
2036                 stripe_index++;
2037         }
2038         if (multi_ret) {
2039                 *multi_ret = multi;
2040                 multi->num_stripes = num_stripes;
2041                 multi->max_errors = max_errors;
2042         }
2043 out:
2044         free_extent_map(em);
2045         return 0;
2046 }
2047
2048 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2049                       u64 logical, u64 *length,
2050                       struct btrfs_multi_bio **multi_ret, int mirror_num)
2051 {
2052         return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2053                                  mirror_num, NULL);
2054 }
2055
2056 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2057                       u64 logical, struct page *page)
2058 {
2059         u64 length = PAGE_CACHE_SIZE;
2060         return __btrfs_map_block(map_tree, READ, logical, &length,
2061                                  NULL, 0, page);
2062 }
2063
2064
2065 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
2066 static void end_bio_multi_stripe(struct bio *bio, int err)
2067 #else
2068 static int end_bio_multi_stripe(struct bio *bio,
2069                                    unsigned int bytes_done, int err)
2070 #endif
2071 {
2072         struct btrfs_multi_bio *multi = bio->bi_private;
2073         int is_orig_bio = 0;
2074
2075 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2076         if (bio->bi_size)
2077                 return 1;
2078 #endif
2079         if (err)
2080                 atomic_inc(&multi->error);
2081
2082         if (bio == multi->orig_bio)
2083                 is_orig_bio = 1;
2084
2085         if (atomic_dec_and_test(&multi->stripes_pending)) {
2086                 if (!is_orig_bio) {
2087                         bio_put(bio);
2088                         bio = multi->orig_bio;
2089                 }
2090                 bio->bi_private = multi->private;
2091                 bio->bi_end_io = multi->end_io;
2092                 /* only send an error to the higher layers if it is
2093                  * beyond the tolerance of the multi-bio
2094                  */
2095                 if (atomic_read(&multi->error) > multi->max_errors) {
2096                         err = -EIO;
2097                 } else if (err) {
2098                         /*
2099                          * this bio is actually up to date, we didn't
2100                          * go over the max number of errors
2101                          */
2102                         set_bit(BIO_UPTODATE, &bio->bi_flags);
2103                         err = 0;
2104                 }
2105                 kfree(multi);
2106
2107 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2108                 bio_endio(bio, bio->bi_size, err);
2109 #else
2110                 bio_endio(bio, err);
2111 #endif
2112         } else if (!is_orig_bio) {
2113                 bio_put(bio);
2114         }
2115 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2116         return 0;
2117 #endif
2118 }
2119
2120 struct async_sched {
2121         struct bio *bio;
2122         int rw;
2123         struct btrfs_fs_info *info;
2124         struct btrfs_work work;
2125 };
2126
2127 /*
2128  * see run_scheduled_bios for a description of why bios are collected for
2129  * async submit.
2130  *
2131  * This will add one bio to the pending list for a device and make sure
2132  * the work struct is scheduled.
2133  */
2134 int schedule_bio(struct btrfs_root *root, struct btrfs_device *device,
2135                  int rw, struct bio *bio)
2136 {
2137         int should_queue = 1;
2138
2139         /* don't bother with additional async steps for reads, right now */
2140         if (!(rw & (1 << BIO_RW))) {
2141                 bio_get(bio);
2142                 submit_bio(rw, bio);
2143                 bio_put(bio);
2144                 return 0;
2145         }
2146
2147         /*
2148          * nr_async_bios allows us to reliably return congestion to the
2149          * higher layers.  Otherwise, the async bio makes it appear we have
2150          * made progress against dirty pages when we've really just put it
2151          * on a queue for later
2152          */
2153         atomic_inc(&root->fs_info->nr_async_bios);
2154         WARN_ON(bio->bi_next);
2155         bio->bi_next = NULL;
2156         bio->bi_rw |= rw;
2157
2158         spin_lock(&device->io_lock);
2159
2160         if (device->pending_bio_tail)
2161                 device->pending_bio_tail->bi_next = bio;
2162
2163         device->pending_bio_tail = bio;
2164         if (!device->pending_bios)
2165                 device->pending_bios = bio;
2166         if (device->running_pending)
2167                 should_queue = 0;
2168
2169         spin_unlock(&device->io_lock);
2170
2171         if (should_queue)
2172                 btrfs_queue_worker(&root->fs_info->submit_workers,
2173                                    &device->work);
2174         return 0;
2175 }
2176
2177 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
2178                   int mirror_num, int async_submit)
2179 {
2180         struct btrfs_mapping_tree *map_tree;
2181         struct btrfs_device *dev;
2182         struct bio *first_bio = bio;
2183         u64 logical = bio->bi_sector << 9;
2184         u64 length = 0;
2185         u64 map_length;
2186         struct btrfs_multi_bio *multi = NULL;
2187         int ret;
2188         int dev_nr = 0;
2189         int total_devs = 1;
2190
2191         length = bio->bi_size;
2192         map_tree = &root->fs_info->mapping_tree;
2193         map_length = length;
2194
2195         ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
2196                               mirror_num);
2197         BUG_ON(ret);
2198
2199         total_devs = multi->num_stripes;
2200         if (map_length < length) {
2201                 printk("mapping failed logical %Lu bio len %Lu "
2202                        "len %Lu\n", logical, length, map_length);
2203                 BUG();
2204         }
2205         multi->end_io = first_bio->bi_end_io;
2206         multi->private = first_bio->bi_private;
2207         multi->orig_bio = first_bio;
2208         atomic_set(&multi->stripes_pending, multi->num_stripes);
2209
2210         while(dev_nr < total_devs) {
2211                 if (total_devs > 1) {
2212                         if (dev_nr < total_devs - 1) {
2213                                 bio = bio_clone(first_bio, GFP_NOFS);
2214                                 BUG_ON(!bio);
2215                         } else {
2216                                 bio = first_bio;
2217                         }
2218                         bio->bi_private = multi;
2219                         bio->bi_end_io = end_bio_multi_stripe;
2220                 }
2221                 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
2222                 dev = multi->stripes[dev_nr].dev;
2223                 if (dev && dev->bdev) {
2224                         bio->bi_bdev = dev->bdev;
2225                         if (async_submit)
2226                                 schedule_bio(root, dev, rw, bio);
2227                         else
2228                                 submit_bio(rw, bio);
2229                 } else {
2230                         bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
2231                         bio->bi_sector = logical >> 9;
2232 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2233                         bio_endio(bio, bio->bi_size, -EIO);
2234 #else
2235                         bio_endio(bio, -EIO);
2236 #endif
2237                 }
2238                 dev_nr++;
2239         }
2240         if (total_devs == 1)
2241                 kfree(multi);
2242         return 0;
2243 }
2244
2245 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2246                                        u8 *uuid)
2247 {
2248         struct list_head *head = &root->fs_info->fs_devices->devices;
2249
2250         return __find_device(head, devid, uuid);
2251 }
2252
2253 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
2254                                             u64 devid, u8 *dev_uuid)
2255 {
2256         struct btrfs_device *device;
2257         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2258
2259         device = kzalloc(sizeof(*device), GFP_NOFS);
2260         list_add(&device->dev_list,
2261                  &fs_devices->devices);
2262         list_add(&device->dev_alloc_list,
2263                  &fs_devices->alloc_list);
2264         device->barriers = 1;
2265         device->dev_root = root->fs_info->dev_root;
2266         device->devid = devid;
2267         device->work.func = pending_bios_fn;
2268         fs_devices->num_devices++;
2269         spin_lock_init(&device->io_lock);
2270         memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
2271         return device;
2272 }
2273
2274
2275 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
2276                           struct extent_buffer *leaf,
2277                           struct btrfs_chunk *chunk)
2278 {
2279         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2280         struct map_lookup *map;
2281         struct extent_map *em;
2282         u64 logical;
2283         u64 length;
2284         u64 devid;
2285         u8 uuid[BTRFS_UUID_SIZE];
2286         int num_stripes;
2287         int ret;
2288         int i;
2289
2290         logical = key->offset;
2291         length = btrfs_chunk_length(leaf, chunk);
2292
2293         spin_lock(&map_tree->map_tree.lock);
2294         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
2295         spin_unlock(&map_tree->map_tree.lock);
2296
2297         /* already mapped? */
2298         if (em && em->start <= logical && em->start + em->len > logical) {
2299                 free_extent_map(em);
2300                 return 0;
2301         } else if (em) {
2302                 free_extent_map(em);
2303         }
2304
2305         map = kzalloc(sizeof(*map), GFP_NOFS);
2306         if (!map)
2307                 return -ENOMEM;
2308
2309         em = alloc_extent_map(GFP_NOFS);
2310         if (!em)
2311                 return -ENOMEM;
2312         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2313         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2314         if (!map) {
2315                 free_extent_map(em);
2316                 return -ENOMEM;
2317         }
2318
2319         em->bdev = (struct block_device *)map;
2320         em->start = logical;
2321         em->len = length;
2322         em->block_start = 0;
2323
2324         map->num_stripes = num_stripes;
2325         map->io_width = btrfs_chunk_io_width(leaf, chunk);
2326         map->io_align = btrfs_chunk_io_align(leaf, chunk);
2327         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
2328         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
2329         map->type = btrfs_chunk_type(leaf, chunk);
2330         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
2331         for (i = 0; i < num_stripes; i++) {
2332                 map->stripes[i].physical =
2333                         btrfs_stripe_offset_nr(leaf, chunk, i);
2334                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
2335                 read_extent_buffer(leaf, uuid, (unsigned long)
2336                                    btrfs_stripe_dev_uuid_nr(chunk, i),
2337                                    BTRFS_UUID_SIZE);
2338                 map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
2339
2340                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
2341                         kfree(map);
2342                         free_extent_map(em);
2343                         return -EIO;
2344                 }
2345                 if (!map->stripes[i].dev) {
2346                         map->stripes[i].dev =
2347                                 add_missing_dev(root, devid, uuid);
2348                         if (!map->stripes[i].dev) {
2349                                 kfree(map);
2350                                 free_extent_map(em);
2351                                 return -EIO;
2352                         }
2353                 }
2354                 map->stripes[i].dev->in_fs_metadata = 1;
2355         }
2356
2357         spin_lock(&map_tree->map_tree.lock);
2358         ret = add_extent_mapping(&map_tree->map_tree, em);
2359         spin_unlock(&map_tree->map_tree.lock);
2360         BUG_ON(ret);
2361         free_extent_map(em);
2362
2363         return 0;
2364 }
2365
2366 static int fill_device_from_item(struct extent_buffer *leaf,
2367                                  struct btrfs_dev_item *dev_item,
2368                                  struct btrfs_device *device)
2369 {
2370         unsigned long ptr;
2371
2372         device->devid = btrfs_device_id(leaf, dev_item);
2373         device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
2374         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
2375         device->type = btrfs_device_type(leaf, dev_item);
2376         device->io_align = btrfs_device_io_align(leaf, dev_item);
2377         device->io_width = btrfs_device_io_width(leaf, dev_item);
2378         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
2379
2380         ptr = (unsigned long)btrfs_device_uuid(dev_item);
2381         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2382
2383         return 0;
2384 }
2385
2386 static int read_one_dev(struct btrfs_root *root,
2387                         struct extent_buffer *leaf,
2388                         struct btrfs_dev_item *dev_item)
2389 {
2390         struct btrfs_device *device;
2391         u64 devid;
2392         int ret;
2393         u8 dev_uuid[BTRFS_UUID_SIZE];
2394
2395         devid = btrfs_device_id(leaf, dev_item);
2396         read_extent_buffer(leaf, dev_uuid,
2397                            (unsigned long)btrfs_device_uuid(dev_item),
2398                            BTRFS_UUID_SIZE);
2399         device = btrfs_find_device(root, devid, dev_uuid);
2400         if (!device) {
2401                 printk("warning devid %Lu missing\n", devid);
2402                 device = add_missing_dev(root, devid, dev_uuid);
2403                 if (!device)
2404                         return -ENOMEM;
2405         }
2406
2407         fill_device_from_item(leaf, dev_item, device);
2408         device->dev_root = root->fs_info->dev_root;
2409         device->in_fs_metadata = 1;
2410         ret = 0;
2411 #if 0
2412         ret = btrfs_open_device(device);
2413         if (ret) {
2414                 kfree(device);
2415         }
2416 #endif
2417         return ret;
2418 }
2419
2420 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
2421 {
2422         struct btrfs_dev_item *dev_item;
2423
2424         dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
2425                                                      dev_item);
2426         return read_one_dev(root, buf, dev_item);
2427 }
2428
2429 int btrfs_read_sys_array(struct btrfs_root *root)
2430 {
2431         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2432         struct extent_buffer *sb;
2433         struct btrfs_disk_key *disk_key;
2434         struct btrfs_chunk *chunk;
2435         u8 *ptr;
2436         unsigned long sb_ptr;
2437         int ret = 0;
2438         u32 num_stripes;
2439         u32 array_size;
2440         u32 len = 0;
2441         u32 cur;
2442         struct btrfs_key key;
2443
2444         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
2445                                           BTRFS_SUPER_INFO_SIZE);
2446         if (!sb)
2447                 return -ENOMEM;
2448         btrfs_set_buffer_uptodate(sb);
2449         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
2450         array_size = btrfs_super_sys_array_size(super_copy);
2451
2452         ptr = super_copy->sys_chunk_array;
2453         sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
2454         cur = 0;
2455
2456         while (cur < array_size) {
2457                 disk_key = (struct btrfs_disk_key *)ptr;
2458                 btrfs_disk_key_to_cpu(&key, disk_key);
2459
2460                 len = sizeof(*disk_key); ptr += len;
2461                 sb_ptr += len;
2462                 cur += len;
2463
2464                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2465                         chunk = (struct btrfs_chunk *)sb_ptr;
2466                         ret = read_one_chunk(root, &key, sb, chunk);
2467                         if (ret)
2468                                 break;
2469                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
2470                         len = btrfs_chunk_item_size(num_stripes);
2471                 } else {
2472                         ret = -EIO;
2473                         break;
2474                 }
2475                 ptr += len;
2476                 sb_ptr += len;
2477                 cur += len;
2478         }
2479         free_extent_buffer(sb);
2480         return ret;
2481 }
2482
2483 int btrfs_read_chunk_tree(struct btrfs_root *root)
2484 {
2485         struct btrfs_path *path;
2486         struct extent_buffer *leaf;
2487         struct btrfs_key key;
2488         struct btrfs_key found_key;
2489         int ret;
2490         int slot;
2491
2492         root = root->fs_info->chunk_root;
2493
2494         path = btrfs_alloc_path();
2495         if (!path)
2496                 return -ENOMEM;
2497
2498         /* first we search for all of the device items, and then we
2499          * read in all of the chunk items.  This way we can create chunk
2500          * mappings that reference all of the devices that are afound
2501          */
2502         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2503         key.offset = 0;
2504         key.type = 0;
2505 again:
2506         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2507         while(1) {
2508                 leaf = path->nodes[0];
2509                 slot = path->slots[0];
2510                 if (slot >= btrfs_header_nritems(leaf)) {
2511                         ret = btrfs_next_leaf(root, path);
2512                         if (ret == 0)
2513                                 continue;
2514                         if (ret < 0)
2515                                 goto error;
2516                         break;
2517                 }
2518                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2519                 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
2520                         if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
2521                                 break;
2522                         if (found_key.type == BTRFS_DEV_ITEM_KEY) {
2523                                 struct btrfs_dev_item *dev_item;
2524                                 dev_item = btrfs_item_ptr(leaf, slot,
2525                                                   struct btrfs_dev_item);
2526                                 ret = read_one_dev(root, leaf, dev_item);
2527                                 BUG_ON(ret);
2528                         }
2529                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
2530                         struct btrfs_chunk *chunk;
2531                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2532                         ret = read_one_chunk(root, &found_key, leaf, chunk);
2533                 }
2534                 path->slots[0]++;
2535         }
2536         if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
2537                 key.objectid = 0;
2538                 btrfs_release_path(root, path);
2539                 goto again;
2540         }
2541
2542         btrfs_free_path(path);
2543         ret = 0;
2544 error:
2545         return ret;
2546 }