Btrfs: Fix typo in clear_state_cb
[safe/jmp/linux-2.6] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/buffer_head.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/version.h>
24 #include <asm/div64.h>
25 #include "compat.h"
26 #include "ctree.h"
27 #include "extent_map.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "print-tree.h"
31 #include "volumes.h"
32 #include "async-thread.h"
33
34 struct map_lookup {
35         u64 type;
36         int io_align;
37         int io_width;
38         int stripe_len;
39         int sector_size;
40         int num_stripes;
41         int sub_stripes;
42         struct btrfs_bio_stripe stripes[];
43 };
44
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46                                 struct btrfs_root *root,
47                                 struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49
50 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
51                             (sizeof(struct btrfs_bio_stripe) * (n)))
52
53 static DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55
56 void btrfs_lock_volumes(void)
57 {
58         mutex_lock(&uuid_mutex);
59 }
60
61 void btrfs_unlock_volumes(void)
62 {
63         mutex_unlock(&uuid_mutex);
64 }
65
66 static void lock_chunks(struct btrfs_root *root)
67 {
68         mutex_lock(&root->fs_info->chunk_mutex);
69 }
70
71 static void unlock_chunks(struct btrfs_root *root)
72 {
73         mutex_unlock(&root->fs_info->chunk_mutex);
74 }
75
76 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
77 {
78         struct btrfs_device *device;
79         WARN_ON(fs_devices->opened);
80         while (!list_empty(&fs_devices->devices)) {
81                 device = list_entry(fs_devices->devices.next,
82                                     struct btrfs_device, dev_list);
83                 list_del(&device->dev_list);
84                 kfree(device->name);
85                 kfree(device);
86         }
87         kfree(fs_devices);
88 }
89
90 int btrfs_cleanup_fs_uuids(void)
91 {
92         struct btrfs_fs_devices *fs_devices;
93
94         while (!list_empty(&fs_uuids)) {
95                 fs_devices = list_entry(fs_uuids.next,
96                                         struct btrfs_fs_devices, list);
97                 list_del(&fs_devices->list);
98                 free_fs_devices(fs_devices);
99         }
100         return 0;
101 }
102
103 static noinline struct btrfs_device *__find_device(struct list_head *head,
104                                                    u64 devid, u8 *uuid)
105 {
106         struct btrfs_device *dev;
107         struct list_head *cur;
108
109         list_for_each(cur, head) {
110                 dev = list_entry(cur, struct btrfs_device, dev_list);
111                 if (dev->devid == devid &&
112                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
113                         return dev;
114                 }
115         }
116         return NULL;
117 }
118
119 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
120 {
121         struct list_head *cur;
122         struct btrfs_fs_devices *fs_devices;
123
124         list_for_each(cur, &fs_uuids) {
125                 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
126                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
127                         return fs_devices;
128         }
129         return NULL;
130 }
131
132 /*
133  * we try to collect pending bios for a device so we don't get a large
134  * number of procs sending bios down to the same device.  This greatly
135  * improves the schedulers ability to collect and merge the bios.
136  *
137  * But, it also turns into a long list of bios to process and that is sure
138  * to eventually make the worker thread block.  The solution here is to
139  * make some progress and then put this work struct back at the end of
140  * the list if the block device is congested.  This way, multiple devices
141  * can make progress from a single worker thread.
142  */
143 static int noinline run_scheduled_bios(struct btrfs_device *device)
144 {
145         struct bio *pending;
146         struct backing_dev_info *bdi;
147         struct btrfs_fs_info *fs_info;
148         struct bio *tail;
149         struct bio *cur;
150         int again = 0;
151         unsigned long num_run = 0;
152         unsigned long limit;
153
154         bdi = device->bdev->bd_inode->i_mapping->backing_dev_info;
155         fs_info = device->dev_root->fs_info;
156         limit = btrfs_async_submit_limit(fs_info);
157         limit = limit * 2 / 3;
158
159 loop:
160         spin_lock(&device->io_lock);
161
162         /* take all the bios off the list at once and process them
163          * later on (without the lock held).  But, remember the
164          * tail and other pointers so the bios can be properly reinserted
165          * into the list if we hit congestion
166          */
167         pending = device->pending_bios;
168         tail = device->pending_bio_tail;
169         WARN_ON(pending && !tail);
170         device->pending_bios = NULL;
171         device->pending_bio_tail = NULL;
172
173         /*
174          * if pending was null this time around, no bios need processing
175          * at all and we can stop.  Otherwise it'll loop back up again
176          * and do an additional check so no bios are missed.
177          *
178          * device->running_pending is used to synchronize with the
179          * schedule_bio code.
180          */
181         if (pending) {
182                 again = 1;
183                 device->running_pending = 1;
184         } else {
185                 again = 0;
186                 device->running_pending = 0;
187         }
188         spin_unlock(&device->io_lock);
189
190         while(pending) {
191                 cur = pending;
192                 pending = pending->bi_next;
193                 cur->bi_next = NULL;
194                 atomic_dec(&fs_info->nr_async_bios);
195
196                 if (atomic_read(&fs_info->nr_async_bios) < limit &&
197                     waitqueue_active(&fs_info->async_submit_wait))
198                         wake_up(&fs_info->async_submit_wait);
199
200                 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
201                 bio_get(cur);
202                 submit_bio(cur->bi_rw, cur);
203                 bio_put(cur);
204                 num_run++;
205
206                 /*
207                  * we made progress, there is more work to do and the bdi
208                  * is now congested.  Back off and let other work structs
209                  * run instead
210                  */
211                 if (pending && bdi_write_congested(bdi) &&
212                     fs_info->fs_devices->open_devices > 1) {
213                         struct bio *old_head;
214
215                         spin_lock(&device->io_lock);
216
217                         old_head = device->pending_bios;
218                         device->pending_bios = pending;
219                         if (device->pending_bio_tail)
220                                 tail->bi_next = old_head;
221                         else
222                                 device->pending_bio_tail = tail;
223
224                         spin_unlock(&device->io_lock);
225                         btrfs_requeue_work(&device->work);
226                         goto done;
227                 }
228         }
229         if (again)
230                 goto loop;
231 done:
232         return 0;
233 }
234
235 static void pending_bios_fn(struct btrfs_work *work)
236 {
237         struct btrfs_device *device;
238
239         device = container_of(work, struct btrfs_device, work);
240         run_scheduled_bios(device);
241 }
242
243 static noinline int device_list_add(const char *path,
244                            struct btrfs_super_block *disk_super,
245                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
246 {
247         struct btrfs_device *device;
248         struct btrfs_fs_devices *fs_devices;
249         u64 found_transid = btrfs_super_generation(disk_super);
250
251         fs_devices = find_fsid(disk_super->fsid);
252         if (!fs_devices) {
253                 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
254                 if (!fs_devices)
255                         return -ENOMEM;
256                 INIT_LIST_HEAD(&fs_devices->devices);
257                 INIT_LIST_HEAD(&fs_devices->alloc_list);
258                 list_add(&fs_devices->list, &fs_uuids);
259                 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
260                 fs_devices->latest_devid = devid;
261                 fs_devices->latest_trans = found_transid;
262                 device = NULL;
263         } else {
264                 device = __find_device(&fs_devices->devices, devid,
265                                        disk_super->dev_item.uuid);
266         }
267         if (!device) {
268                 if (fs_devices->opened)
269                         return -EBUSY;
270
271                 device = kzalloc(sizeof(*device), GFP_NOFS);
272                 if (!device) {
273                         /* we can safely leave the fs_devices entry around */
274                         return -ENOMEM;
275                 }
276                 device->devid = devid;
277                 device->work.func = pending_bios_fn;
278                 memcpy(device->uuid, disk_super->dev_item.uuid,
279                        BTRFS_UUID_SIZE);
280                 device->barriers = 1;
281                 spin_lock_init(&device->io_lock);
282                 device->name = kstrdup(path, GFP_NOFS);
283                 if (!device->name) {
284                         kfree(device);
285                         return -ENOMEM;
286                 }
287                 INIT_LIST_HEAD(&device->dev_alloc_list);
288                 list_add(&device->dev_list, &fs_devices->devices);
289                 device->fs_devices = fs_devices;
290                 fs_devices->num_devices++;
291         }
292
293         if (found_transid > fs_devices->latest_trans) {
294                 fs_devices->latest_devid = devid;
295                 fs_devices->latest_trans = found_transid;
296         }
297         *fs_devices_ret = fs_devices;
298         return 0;
299 }
300
301 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
302 {
303         struct btrfs_fs_devices *fs_devices;
304         struct btrfs_device *device;
305         struct btrfs_device *orig_dev;
306
307         fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
308         if (!fs_devices)
309                 return ERR_PTR(-ENOMEM);
310
311         INIT_LIST_HEAD(&fs_devices->devices);
312         INIT_LIST_HEAD(&fs_devices->alloc_list);
313         INIT_LIST_HEAD(&fs_devices->list);
314         fs_devices->latest_devid = orig->latest_devid;
315         fs_devices->latest_trans = orig->latest_trans;
316         memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
317
318         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
319                 device = kzalloc(sizeof(*device), GFP_NOFS);
320                 if (!device)
321                         goto error;
322
323                 device->name = kstrdup(orig_dev->name, GFP_NOFS);
324                 if (!device->name)
325                         goto error;
326
327                 device->devid = orig_dev->devid;
328                 device->work.func = pending_bios_fn;
329                 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
330                 device->barriers = 1;
331                 spin_lock_init(&device->io_lock);
332                 INIT_LIST_HEAD(&device->dev_list);
333                 INIT_LIST_HEAD(&device->dev_alloc_list);
334
335                 list_add(&device->dev_list, &fs_devices->devices);
336                 device->fs_devices = fs_devices;
337                 fs_devices->num_devices++;
338         }
339         return fs_devices;
340 error:
341         free_fs_devices(fs_devices);
342         return ERR_PTR(-ENOMEM);
343 }
344
345 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
346 {
347         struct list_head *tmp;
348         struct list_head *cur;
349         struct btrfs_device *device;
350
351         mutex_lock(&uuid_mutex);
352 again:
353         list_for_each_safe(cur, tmp, &fs_devices->devices) {
354                 device = list_entry(cur, struct btrfs_device, dev_list);
355                 if (device->in_fs_metadata)
356                         continue;
357
358                 if (device->bdev) {
359                         close_bdev_exclusive(device->bdev, device->mode);
360                         device->bdev = NULL;
361                         fs_devices->open_devices--;
362                 }
363                 if (device->writeable) {
364                         list_del_init(&device->dev_alloc_list);
365                         device->writeable = 0;
366                         fs_devices->rw_devices--;
367                 }
368                 list_del_init(&device->dev_list);
369                 fs_devices->num_devices--;
370                 kfree(device->name);
371                 kfree(device);
372         }
373
374         if (fs_devices->seed) {
375                 fs_devices = fs_devices->seed;
376                 goto again;
377         }
378
379         mutex_unlock(&uuid_mutex);
380         return 0;
381 }
382
383 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
384 {
385         struct list_head *cur;
386         struct btrfs_device *device;
387
388         if (--fs_devices->opened > 0)
389                 return 0;
390
391         list_for_each(cur, &fs_devices->devices) {
392                 device = list_entry(cur, struct btrfs_device, dev_list);
393                 if (device->bdev) {
394                         close_bdev_exclusive(device->bdev, device->mode);
395                         fs_devices->open_devices--;
396                 }
397                 if (device->writeable) {
398                         list_del_init(&device->dev_alloc_list);
399                         fs_devices->rw_devices--;
400                 }
401
402                 device->bdev = NULL;
403                 device->writeable = 0;
404                 device->in_fs_metadata = 0;
405         }
406         WARN_ON(fs_devices->open_devices);
407         WARN_ON(fs_devices->rw_devices);
408         fs_devices->opened = 0;
409         fs_devices->seeding = 0;
410
411         return 0;
412 }
413
414 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
415 {
416         struct btrfs_fs_devices *seed_devices = NULL;
417         int ret;
418
419         mutex_lock(&uuid_mutex);
420         ret = __btrfs_close_devices(fs_devices);
421         if (!fs_devices->opened) {
422                 seed_devices = fs_devices->seed;
423                 fs_devices->seed = NULL;
424         }
425         mutex_unlock(&uuid_mutex);
426
427         while (seed_devices) {
428                 fs_devices = seed_devices;
429                 seed_devices = fs_devices->seed;
430                 __btrfs_close_devices(fs_devices);
431                 free_fs_devices(fs_devices);
432         }
433         return ret;
434 }
435
436 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
437                                 fmode_t flags, void *holder)
438 {
439         struct block_device *bdev;
440         struct list_head *head = &fs_devices->devices;
441         struct list_head *cur;
442         struct btrfs_device *device;
443         struct block_device *latest_bdev = NULL;
444         struct buffer_head *bh;
445         struct btrfs_super_block *disk_super;
446         u64 latest_devid = 0;
447         u64 latest_transid = 0;
448         u64 devid;
449         int seeding = 1;
450         int ret = 0;
451
452         list_for_each(cur, head) {
453                 device = list_entry(cur, struct btrfs_device, dev_list);
454                 if (device->bdev)
455                         continue;
456                 if (!device->name)
457                         continue;
458
459                 bdev = open_bdev_exclusive(device->name, flags, holder);
460                 if (IS_ERR(bdev)) {
461                         printk("open %s failed\n", device->name);
462                         goto error;
463                 }
464                 set_blocksize(bdev, 4096);
465
466                 bh = btrfs_read_dev_super(bdev);
467                 if (!bh)
468                         goto error_close;
469
470                 disk_super = (struct btrfs_super_block *)bh->b_data;
471                 devid = le64_to_cpu(disk_super->dev_item.devid);
472                 if (devid != device->devid)
473                         goto error_brelse;
474
475                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
476                            BTRFS_UUID_SIZE))
477                         goto error_brelse;
478
479                 device->generation = btrfs_super_generation(disk_super);
480                 if (!latest_transid || device->generation > latest_transid) {
481                         latest_devid = devid;
482                         latest_transid = device->generation;
483                         latest_bdev = bdev;
484                 }
485
486                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
487                         device->writeable = 0;
488                 } else {
489                         device->writeable = !bdev_read_only(bdev);
490                         seeding = 0;
491                 }
492
493                 device->bdev = bdev;
494                 device->in_fs_metadata = 0;
495                 device->mode = flags;
496
497                 fs_devices->open_devices++;
498                 if (device->writeable) {
499                         fs_devices->rw_devices++;
500                         list_add(&device->dev_alloc_list,
501                                  &fs_devices->alloc_list);
502                 }
503                 continue;
504
505 error_brelse:
506                 brelse(bh);
507 error_close:
508                 close_bdev_exclusive(bdev, FMODE_READ);
509 error:
510                 continue;
511         }
512         if (fs_devices->open_devices == 0) {
513                 ret = -EIO;
514                 goto out;
515         }
516         fs_devices->seeding = seeding;
517         fs_devices->opened = 1;
518         fs_devices->latest_bdev = latest_bdev;
519         fs_devices->latest_devid = latest_devid;
520         fs_devices->latest_trans = latest_transid;
521         fs_devices->total_rw_bytes = 0;
522 out:
523         return ret;
524 }
525
526 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
527                        fmode_t flags, void *holder)
528 {
529         int ret;
530
531         mutex_lock(&uuid_mutex);
532         if (fs_devices->opened) {
533                 fs_devices->opened++;
534                 ret = 0;
535         } else {
536                 ret = __btrfs_open_devices(fs_devices, flags, holder);
537         }
538         mutex_unlock(&uuid_mutex);
539         return ret;
540 }
541
542 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
543                           struct btrfs_fs_devices **fs_devices_ret)
544 {
545         struct btrfs_super_block *disk_super;
546         struct block_device *bdev;
547         struct buffer_head *bh;
548         int ret;
549         u64 devid;
550         u64 transid;
551
552         mutex_lock(&uuid_mutex);
553
554         bdev = open_bdev_exclusive(path, flags, holder);
555
556         if (IS_ERR(bdev)) {
557                 ret = PTR_ERR(bdev);
558                 goto error;
559         }
560
561         ret = set_blocksize(bdev, 4096);
562         if (ret)
563                 goto error_close;
564         bh = btrfs_read_dev_super(bdev);
565         if (!bh) {
566                 ret = -EIO;
567                 goto error_close;
568         }
569         disk_super = (struct btrfs_super_block *)bh->b_data;
570         devid = le64_to_cpu(disk_super->dev_item.devid);
571         transid = btrfs_super_generation(disk_super);
572         if (disk_super->label[0])
573                 printk("device label %s ", disk_super->label);
574         else {
575                 /* FIXME, make a readl uuid parser */
576                 printk("device fsid %llx-%llx ",
577                        *(unsigned long long *)disk_super->fsid,
578                        *(unsigned long long *)(disk_super->fsid + 8));
579         }
580         printk("devid %Lu transid %Lu %s\n", devid, transid, path);
581         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
582
583         brelse(bh);
584 error_close:
585         close_bdev_exclusive(bdev, flags);
586 error:
587         mutex_unlock(&uuid_mutex);
588         return ret;
589 }
590
591 /*
592  * this uses a pretty simple search, the expectation is that it is
593  * called very infrequently and that a given device has a small number
594  * of extents
595  */
596 static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans,
597                                          struct btrfs_device *device,
598                                          u64 num_bytes, u64 *start)
599 {
600         struct btrfs_key key;
601         struct btrfs_root *root = device->dev_root;
602         struct btrfs_dev_extent *dev_extent = NULL;
603         struct btrfs_path *path;
604         u64 hole_size = 0;
605         u64 last_byte = 0;
606         u64 search_start = 0;
607         u64 search_end = device->total_bytes;
608         int ret;
609         int slot = 0;
610         int start_found;
611         struct extent_buffer *l;
612
613         path = btrfs_alloc_path();
614         if (!path)
615                 return -ENOMEM;
616         path->reada = 2;
617         start_found = 0;
618
619         /* FIXME use last free of some kind */
620
621         /* we don't want to overwrite the superblock on the drive,
622          * so we make sure to start at an offset of at least 1MB
623          */
624         search_start = max((u64)1024 * 1024, search_start);
625
626         if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
627                 search_start = max(root->fs_info->alloc_start, search_start);
628
629         key.objectid = device->devid;
630         key.offset = search_start;
631         key.type = BTRFS_DEV_EXTENT_KEY;
632         ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
633         if (ret < 0)
634                 goto error;
635         ret = btrfs_previous_item(root, path, 0, key.type);
636         if (ret < 0)
637                 goto error;
638         l = path->nodes[0];
639         btrfs_item_key_to_cpu(l, &key, path->slots[0]);
640         while (1) {
641                 l = path->nodes[0];
642                 slot = path->slots[0];
643                 if (slot >= btrfs_header_nritems(l)) {
644                         ret = btrfs_next_leaf(root, path);
645                         if (ret == 0)
646                                 continue;
647                         if (ret < 0)
648                                 goto error;
649 no_more_items:
650                         if (!start_found) {
651                                 if (search_start >= search_end) {
652                                         ret = -ENOSPC;
653                                         goto error;
654                                 }
655                                 *start = search_start;
656                                 start_found = 1;
657                                 goto check_pending;
658                         }
659                         *start = last_byte > search_start ?
660                                 last_byte : search_start;
661                         if (search_end <= *start) {
662                                 ret = -ENOSPC;
663                                 goto error;
664                         }
665                         goto check_pending;
666                 }
667                 btrfs_item_key_to_cpu(l, &key, slot);
668
669                 if (key.objectid < device->devid)
670                         goto next;
671
672                 if (key.objectid > device->devid)
673                         goto no_more_items;
674
675                 if (key.offset >= search_start && key.offset > last_byte &&
676                     start_found) {
677                         if (last_byte < search_start)
678                                 last_byte = search_start;
679                         hole_size = key.offset - last_byte;
680                         if (key.offset > last_byte &&
681                             hole_size >= num_bytes) {
682                                 *start = last_byte;
683                                 goto check_pending;
684                         }
685                 }
686                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
687                         goto next;
688                 }
689
690                 start_found = 1;
691                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
692                 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
693 next:
694                 path->slots[0]++;
695                 cond_resched();
696         }
697 check_pending:
698         /* we have to make sure we didn't find an extent that has already
699          * been allocated by the map tree or the original allocation
700          */
701         BUG_ON(*start < search_start);
702
703         if (*start + num_bytes > search_end) {
704                 ret = -ENOSPC;
705                 goto error;
706         }
707         /* check for pending inserts here */
708         ret = 0;
709
710 error:
711         btrfs_free_path(path);
712         return ret;
713 }
714
715 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
716                           struct btrfs_device *device,
717                           u64 start)
718 {
719         int ret;
720         struct btrfs_path *path;
721         struct btrfs_root *root = device->dev_root;
722         struct btrfs_key key;
723         struct btrfs_key found_key;
724         struct extent_buffer *leaf = NULL;
725         struct btrfs_dev_extent *extent = NULL;
726
727         path = btrfs_alloc_path();
728         if (!path)
729                 return -ENOMEM;
730
731         key.objectid = device->devid;
732         key.offset = start;
733         key.type = BTRFS_DEV_EXTENT_KEY;
734
735         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
736         if (ret > 0) {
737                 ret = btrfs_previous_item(root, path, key.objectid,
738                                           BTRFS_DEV_EXTENT_KEY);
739                 BUG_ON(ret);
740                 leaf = path->nodes[0];
741                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
742                 extent = btrfs_item_ptr(leaf, path->slots[0],
743                                         struct btrfs_dev_extent);
744                 BUG_ON(found_key.offset > start || found_key.offset +
745                        btrfs_dev_extent_length(leaf, extent) < start);
746                 ret = 0;
747         } else if (ret == 0) {
748                 leaf = path->nodes[0];
749                 extent = btrfs_item_ptr(leaf, path->slots[0],
750                                         struct btrfs_dev_extent);
751         }
752         BUG_ON(ret);
753
754         if (device->bytes_used > 0)
755                 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
756         ret = btrfs_del_item(trans, root, path);
757         BUG_ON(ret);
758
759         btrfs_free_path(path);
760         return ret;
761 }
762
763 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
764                            struct btrfs_device *device,
765                            u64 chunk_tree, u64 chunk_objectid,
766                            u64 chunk_offset, u64 start, u64 num_bytes)
767 {
768         int ret;
769         struct btrfs_path *path;
770         struct btrfs_root *root = device->dev_root;
771         struct btrfs_dev_extent *extent;
772         struct extent_buffer *leaf;
773         struct btrfs_key key;
774
775         WARN_ON(!device->in_fs_metadata);
776         path = btrfs_alloc_path();
777         if (!path)
778                 return -ENOMEM;
779
780         key.objectid = device->devid;
781         key.offset = start;
782         key.type = BTRFS_DEV_EXTENT_KEY;
783         ret = btrfs_insert_empty_item(trans, root, path, &key,
784                                       sizeof(*extent));
785         BUG_ON(ret);
786
787         leaf = path->nodes[0];
788         extent = btrfs_item_ptr(leaf, path->slots[0],
789                                 struct btrfs_dev_extent);
790         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
791         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
792         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
793
794         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
795                     (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
796                     BTRFS_UUID_SIZE);
797
798         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
799         btrfs_mark_buffer_dirty(leaf);
800         btrfs_free_path(path);
801         return ret;
802 }
803
804 static noinline int find_next_chunk(struct btrfs_root *root,
805                                     u64 objectid, u64 *offset)
806 {
807         struct btrfs_path *path;
808         int ret;
809         struct btrfs_key key;
810         struct btrfs_chunk *chunk;
811         struct btrfs_key found_key;
812
813         path = btrfs_alloc_path();
814         BUG_ON(!path);
815
816         key.objectid = objectid;
817         key.offset = (u64)-1;
818         key.type = BTRFS_CHUNK_ITEM_KEY;
819
820         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
821         if (ret < 0)
822                 goto error;
823
824         BUG_ON(ret == 0);
825
826         ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
827         if (ret) {
828                 *offset = 0;
829         } else {
830                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
831                                       path->slots[0]);
832                 if (found_key.objectid != objectid)
833                         *offset = 0;
834                 else {
835                         chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
836                                                struct btrfs_chunk);
837                         *offset = found_key.offset +
838                                 btrfs_chunk_length(path->nodes[0], chunk);
839                 }
840         }
841         ret = 0;
842 error:
843         btrfs_free_path(path);
844         return ret;
845 }
846
847 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
848 {
849         int ret;
850         struct btrfs_key key;
851         struct btrfs_key found_key;
852         struct btrfs_path *path;
853
854         root = root->fs_info->chunk_root;
855
856         path = btrfs_alloc_path();
857         if (!path)
858                 return -ENOMEM;
859
860         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
861         key.type = BTRFS_DEV_ITEM_KEY;
862         key.offset = (u64)-1;
863
864         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
865         if (ret < 0)
866                 goto error;
867
868         BUG_ON(ret == 0);
869
870         ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
871                                   BTRFS_DEV_ITEM_KEY);
872         if (ret) {
873                 *objectid = 1;
874         } else {
875                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
876                                       path->slots[0]);
877                 *objectid = found_key.offset + 1;
878         }
879         ret = 0;
880 error:
881         btrfs_free_path(path);
882         return ret;
883 }
884
885 /*
886  * the device information is stored in the chunk root
887  * the btrfs_device struct should be fully filled in
888  */
889 int btrfs_add_device(struct btrfs_trans_handle *trans,
890                      struct btrfs_root *root,
891                      struct btrfs_device *device)
892 {
893         int ret;
894         struct btrfs_path *path;
895         struct btrfs_dev_item *dev_item;
896         struct extent_buffer *leaf;
897         struct btrfs_key key;
898         unsigned long ptr;
899
900         root = root->fs_info->chunk_root;
901
902         path = btrfs_alloc_path();
903         if (!path)
904                 return -ENOMEM;
905
906         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
907         key.type = BTRFS_DEV_ITEM_KEY;
908         key.offset = device->devid;
909
910         ret = btrfs_insert_empty_item(trans, root, path, &key,
911                                       sizeof(*dev_item));
912         if (ret)
913                 goto out;
914
915         leaf = path->nodes[0];
916         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
917
918         btrfs_set_device_id(leaf, dev_item, device->devid);
919         btrfs_set_device_generation(leaf, dev_item, 0);
920         btrfs_set_device_type(leaf, dev_item, device->type);
921         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
922         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
923         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
924         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
925         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
926         btrfs_set_device_group(leaf, dev_item, 0);
927         btrfs_set_device_seek_speed(leaf, dev_item, 0);
928         btrfs_set_device_bandwidth(leaf, dev_item, 0);
929         btrfs_set_device_start_offset(leaf, dev_item, 0);
930
931         ptr = (unsigned long)btrfs_device_uuid(dev_item);
932         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
933         ptr = (unsigned long)btrfs_device_fsid(dev_item);
934         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
935         btrfs_mark_buffer_dirty(leaf);
936
937         ret = 0;
938 out:
939         btrfs_free_path(path);
940         return ret;
941 }
942
943 static int btrfs_rm_dev_item(struct btrfs_root *root,
944                              struct btrfs_device *device)
945 {
946         int ret;
947         struct btrfs_path *path;
948         struct btrfs_key key;
949         struct btrfs_trans_handle *trans;
950
951         root = root->fs_info->chunk_root;
952
953         path = btrfs_alloc_path();
954         if (!path)
955                 return -ENOMEM;
956
957         trans = btrfs_start_transaction(root, 1);
958         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
959         key.type = BTRFS_DEV_ITEM_KEY;
960         key.offset = device->devid;
961         lock_chunks(root);
962
963         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
964         if (ret < 0)
965                 goto out;
966
967         if (ret > 0) {
968                 ret = -ENOENT;
969                 goto out;
970         }
971
972         ret = btrfs_del_item(trans, root, path);
973         if (ret)
974                 goto out;
975 out:
976         btrfs_free_path(path);
977         unlock_chunks(root);
978         btrfs_commit_transaction(trans, root);
979         return ret;
980 }
981
982 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
983 {
984         struct btrfs_device *device;
985         struct btrfs_device *next_device;
986         struct block_device *bdev;
987         struct buffer_head *bh = NULL;
988         struct btrfs_super_block *disk_super;
989         u64 all_avail;
990         u64 devid;
991         u64 num_devices;
992         u8 *dev_uuid;
993         int ret = 0;
994
995         mutex_lock(&uuid_mutex);
996         mutex_lock(&root->fs_info->volume_mutex);
997
998         all_avail = root->fs_info->avail_data_alloc_bits |
999                 root->fs_info->avail_system_alloc_bits |
1000                 root->fs_info->avail_metadata_alloc_bits;
1001
1002         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1003             root->fs_info->fs_devices->rw_devices <= 4) {
1004                 printk("btrfs: unable to go below four devices on raid10\n");
1005                 ret = -EINVAL;
1006                 goto out;
1007         }
1008
1009         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1010             root->fs_info->fs_devices->rw_devices <= 2) {
1011                 printk("btrfs: unable to go below two devices on raid1\n");
1012                 ret = -EINVAL;
1013                 goto out;
1014         }
1015
1016         if (strcmp(device_path, "missing") == 0) {
1017                 struct list_head *cur;
1018                 struct list_head *devices;
1019                 struct btrfs_device *tmp;
1020
1021                 device = NULL;
1022                 devices = &root->fs_info->fs_devices->devices;
1023                 list_for_each(cur, devices) {
1024                         tmp = list_entry(cur, struct btrfs_device, dev_list);
1025                         if (tmp->in_fs_metadata && !tmp->bdev) {
1026                                 device = tmp;
1027                                 break;
1028                         }
1029                 }
1030                 bdev = NULL;
1031                 bh = NULL;
1032                 disk_super = NULL;
1033                 if (!device) {
1034                         printk("btrfs: no missing devices found to remove\n");
1035                         goto out;
1036                 }
1037         } else {
1038                 bdev = open_bdev_exclusive(device_path, FMODE_READ,
1039                                       root->fs_info->bdev_holder);
1040                 if (IS_ERR(bdev)) {
1041                         ret = PTR_ERR(bdev);
1042                         goto out;
1043                 }
1044
1045                 set_blocksize(bdev, 4096);
1046                 bh = btrfs_read_dev_super(bdev);
1047                 if (!bh) {
1048                         ret = -EIO;
1049                         goto error_close;
1050                 }
1051                 disk_super = (struct btrfs_super_block *)bh->b_data;
1052                 devid = le64_to_cpu(disk_super->dev_item.devid);
1053                 dev_uuid = disk_super->dev_item.uuid;
1054                 device = btrfs_find_device(root, devid, dev_uuid,
1055                                            disk_super->fsid);
1056                 if (!device) {
1057                         ret = -ENOENT;
1058                         goto error_brelse;
1059                 }
1060         }
1061
1062         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1063                 printk("btrfs: unable to remove the only writeable device\n");
1064                 ret = -EINVAL;
1065                 goto error_brelse;
1066         }
1067
1068         if (device->writeable) {
1069                 list_del_init(&device->dev_alloc_list);
1070                 root->fs_info->fs_devices->rw_devices--;
1071         }
1072
1073         ret = btrfs_shrink_device(device, 0);
1074         if (ret)
1075                 goto error_brelse;
1076
1077         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1078         if (ret)
1079                 goto error_brelse;
1080
1081         device->in_fs_metadata = 0;
1082         list_del_init(&device->dev_list);
1083         device->fs_devices->num_devices--;
1084
1085         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1086                                  struct btrfs_device, dev_list);
1087         if (device->bdev == root->fs_info->sb->s_bdev)
1088                 root->fs_info->sb->s_bdev = next_device->bdev;
1089         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1090                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1091
1092         if (device->bdev) {
1093                 close_bdev_exclusive(device->bdev, device->mode);
1094                 device->bdev = NULL;
1095                 device->fs_devices->open_devices--;
1096         }
1097
1098         num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1099         btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1100
1101         if (device->fs_devices->open_devices == 0) {
1102                 struct btrfs_fs_devices *fs_devices;
1103                 fs_devices = root->fs_info->fs_devices;
1104                 while (fs_devices) {
1105                         if (fs_devices->seed == device->fs_devices)
1106                                 break;
1107                         fs_devices = fs_devices->seed;
1108                 }
1109                 fs_devices->seed = device->fs_devices->seed;
1110                 device->fs_devices->seed = NULL;
1111                 __btrfs_close_devices(device->fs_devices);
1112                 free_fs_devices(device->fs_devices);
1113         }
1114
1115         /*
1116          * at this point, the device is zero sized.  We want to
1117          * remove it from the devices list and zero out the old super
1118          */
1119         if (device->writeable) {
1120                 /* make sure this device isn't detected as part of
1121                  * the FS anymore
1122                  */
1123                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1124                 set_buffer_dirty(bh);
1125                 sync_dirty_buffer(bh);
1126         }
1127
1128         kfree(device->name);
1129         kfree(device);
1130         ret = 0;
1131
1132 error_brelse:
1133         brelse(bh);
1134 error_close:
1135         if (bdev)
1136                 close_bdev_exclusive(bdev, FMODE_READ);
1137 out:
1138         mutex_unlock(&root->fs_info->volume_mutex);
1139         mutex_unlock(&uuid_mutex);
1140         return ret;
1141 }
1142
1143 /*
1144  * does all the dirty work required for changing file system's UUID.
1145  */
1146 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1147                                 struct btrfs_root *root)
1148 {
1149         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1150         struct btrfs_fs_devices *old_devices;
1151         struct btrfs_fs_devices *seed_devices;
1152         struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1153         struct btrfs_device *device;
1154         u64 super_flags;
1155
1156         BUG_ON(!mutex_is_locked(&uuid_mutex));
1157         if (!fs_devices->seeding)
1158                 return -EINVAL;
1159
1160         seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1161         if (!seed_devices)
1162                 return -ENOMEM;
1163
1164         old_devices = clone_fs_devices(fs_devices);
1165         if (IS_ERR(old_devices)) {
1166                 kfree(seed_devices);
1167                 return PTR_ERR(old_devices);
1168         }
1169
1170         list_add(&old_devices->list, &fs_uuids);
1171
1172         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1173         seed_devices->opened = 1;
1174         INIT_LIST_HEAD(&seed_devices->devices);
1175         INIT_LIST_HEAD(&seed_devices->alloc_list);
1176         list_splice_init(&fs_devices->devices, &seed_devices->devices);
1177         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1178         list_for_each_entry(device, &seed_devices->devices, dev_list) {
1179                 device->fs_devices = seed_devices;
1180         }
1181
1182         fs_devices->seeding = 0;
1183         fs_devices->num_devices = 0;
1184         fs_devices->open_devices = 0;
1185         fs_devices->seed = seed_devices;
1186
1187         generate_random_uuid(fs_devices->fsid);
1188         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1189         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1190         super_flags = btrfs_super_flags(disk_super) &
1191                       ~BTRFS_SUPER_FLAG_SEEDING;
1192         btrfs_set_super_flags(disk_super, super_flags);
1193
1194         return 0;
1195 }
1196
1197 /*
1198  * strore the expected generation for seed devices in device items.
1199  */
1200 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1201                                struct btrfs_root *root)
1202 {
1203         struct btrfs_path *path;
1204         struct extent_buffer *leaf;
1205         struct btrfs_dev_item *dev_item;
1206         struct btrfs_device *device;
1207         struct btrfs_key key;
1208         u8 fs_uuid[BTRFS_UUID_SIZE];
1209         u8 dev_uuid[BTRFS_UUID_SIZE];
1210         u64 devid;
1211         int ret;
1212
1213         path = btrfs_alloc_path();
1214         if (!path)
1215                 return -ENOMEM;
1216
1217         root = root->fs_info->chunk_root;
1218         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1219         key.offset = 0;
1220         key.type = BTRFS_DEV_ITEM_KEY;
1221
1222         while (1) {
1223                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1224                 if (ret < 0)
1225                         goto error;
1226
1227                 leaf = path->nodes[0];
1228 next_slot:
1229                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1230                         ret = btrfs_next_leaf(root, path);
1231                         if (ret > 0)
1232                                 break;
1233                         if (ret < 0)
1234                                 goto error;
1235                         leaf = path->nodes[0];
1236                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1237                         btrfs_release_path(root, path);
1238                         continue;
1239                 }
1240
1241                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1242                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1243                     key.type != BTRFS_DEV_ITEM_KEY)
1244                         break;
1245
1246                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1247                                           struct btrfs_dev_item);
1248                 devid = btrfs_device_id(leaf, dev_item);
1249                 read_extent_buffer(leaf, dev_uuid,
1250                                    (unsigned long)btrfs_device_uuid(dev_item),
1251                                    BTRFS_UUID_SIZE);
1252                 read_extent_buffer(leaf, fs_uuid,
1253                                    (unsigned long)btrfs_device_fsid(dev_item),
1254                                    BTRFS_UUID_SIZE);
1255                 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1256                 BUG_ON(!device);
1257
1258                 if (device->fs_devices->seeding) {
1259                         btrfs_set_device_generation(leaf, dev_item,
1260                                                     device->generation);
1261                         btrfs_mark_buffer_dirty(leaf);
1262                 }
1263
1264                 path->slots[0]++;
1265                 goto next_slot;
1266         }
1267         ret = 0;
1268 error:
1269         btrfs_free_path(path);
1270         return ret;
1271 }
1272
1273 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1274 {
1275         struct btrfs_trans_handle *trans;
1276         struct btrfs_device *device;
1277         struct block_device *bdev;
1278         struct list_head *cur;
1279         struct list_head *devices;
1280         struct super_block *sb = root->fs_info->sb;
1281         u64 total_bytes;
1282         int seeding_dev = 0;
1283         int ret = 0;
1284
1285         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1286                 return -EINVAL;
1287
1288         bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
1289         if (!bdev) {
1290                 return -EIO;
1291         }
1292
1293         if (root->fs_info->fs_devices->seeding) {
1294                 seeding_dev = 1;
1295                 down_write(&sb->s_umount);
1296                 mutex_lock(&uuid_mutex);
1297         }
1298
1299         filemap_write_and_wait(bdev->bd_inode->i_mapping);
1300         mutex_lock(&root->fs_info->volume_mutex);
1301
1302         devices = &root->fs_info->fs_devices->devices;
1303         list_for_each(cur, devices) {
1304                 device = list_entry(cur, struct btrfs_device, dev_list);
1305                 if (device->bdev == bdev) {
1306                         ret = -EEXIST;
1307                         goto error;
1308                 }
1309         }
1310
1311         device = kzalloc(sizeof(*device), GFP_NOFS);
1312         if (!device) {
1313                 /* we can safely leave the fs_devices entry around */
1314                 ret = -ENOMEM;
1315                 goto error;
1316         }
1317
1318         device->name = kstrdup(device_path, GFP_NOFS);
1319         if (!device->name) {
1320                 kfree(device);
1321                 ret = -ENOMEM;
1322                 goto error;
1323         }
1324
1325         ret = find_next_devid(root, &device->devid);
1326         if (ret) {
1327                 kfree(device);
1328                 goto error;
1329         }
1330
1331         trans = btrfs_start_transaction(root, 1);
1332         lock_chunks(root);
1333
1334         device->barriers = 1;
1335         device->writeable = 1;
1336         device->work.func = pending_bios_fn;
1337         generate_random_uuid(device->uuid);
1338         spin_lock_init(&device->io_lock);
1339         device->generation = trans->transid;
1340         device->io_width = root->sectorsize;
1341         device->io_align = root->sectorsize;
1342         device->sector_size = root->sectorsize;
1343         device->total_bytes = i_size_read(bdev->bd_inode);
1344         device->dev_root = root->fs_info->dev_root;
1345         device->bdev = bdev;
1346         device->in_fs_metadata = 1;
1347         device->mode = 0;
1348         set_blocksize(device->bdev, 4096);
1349
1350         if (seeding_dev) {
1351                 sb->s_flags &= ~MS_RDONLY;
1352                 ret = btrfs_prepare_sprout(trans, root);
1353                 BUG_ON(ret);
1354         }
1355
1356         device->fs_devices = root->fs_info->fs_devices;
1357         list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1358         list_add(&device->dev_alloc_list,
1359                  &root->fs_info->fs_devices->alloc_list);
1360         root->fs_info->fs_devices->num_devices++;
1361         root->fs_info->fs_devices->open_devices++;
1362         root->fs_info->fs_devices->rw_devices++;
1363         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1364
1365         total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1366         btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1367                                     total_bytes + device->total_bytes);
1368
1369         total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1370         btrfs_set_super_num_devices(&root->fs_info->super_copy,
1371                                     total_bytes + 1);
1372
1373         if (seeding_dev) {
1374                 ret = init_first_rw_device(trans, root, device);
1375                 BUG_ON(ret);
1376                 ret = btrfs_finish_sprout(trans, root);
1377                 BUG_ON(ret);
1378         } else {
1379                 ret = btrfs_add_device(trans, root, device);
1380         }
1381
1382         unlock_chunks(root);
1383         btrfs_commit_transaction(trans, root);
1384
1385         if (seeding_dev) {
1386                 mutex_unlock(&uuid_mutex);
1387                 up_write(&sb->s_umount);
1388
1389                 ret = btrfs_relocate_sys_chunks(root);
1390                 BUG_ON(ret);
1391         }
1392 out:
1393         mutex_unlock(&root->fs_info->volume_mutex);
1394         return ret;
1395 error:
1396         close_bdev_exclusive(bdev, 0);
1397         if (seeding_dev) {
1398                 mutex_unlock(&uuid_mutex);
1399                 up_write(&sb->s_umount);
1400         }
1401         goto out;
1402 }
1403
1404 static int noinline btrfs_update_device(struct btrfs_trans_handle *trans,
1405                                  struct btrfs_device *device)
1406 {
1407         int ret;
1408         struct btrfs_path *path;
1409         struct btrfs_root *root;
1410         struct btrfs_dev_item *dev_item;
1411         struct extent_buffer *leaf;
1412         struct btrfs_key key;
1413
1414         root = device->dev_root->fs_info->chunk_root;
1415
1416         path = btrfs_alloc_path();
1417         if (!path)
1418                 return -ENOMEM;
1419
1420         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1421         key.type = BTRFS_DEV_ITEM_KEY;
1422         key.offset = device->devid;
1423
1424         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1425         if (ret < 0)
1426                 goto out;
1427
1428         if (ret > 0) {
1429                 ret = -ENOENT;
1430                 goto out;
1431         }
1432
1433         leaf = path->nodes[0];
1434         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1435
1436         btrfs_set_device_id(leaf, dev_item, device->devid);
1437         btrfs_set_device_type(leaf, dev_item, device->type);
1438         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1439         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1440         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1441         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1442         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1443         btrfs_mark_buffer_dirty(leaf);
1444
1445 out:
1446         btrfs_free_path(path);
1447         return ret;
1448 }
1449
1450 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1451                       struct btrfs_device *device, u64 new_size)
1452 {
1453         struct btrfs_super_block *super_copy =
1454                 &device->dev_root->fs_info->super_copy;
1455         u64 old_total = btrfs_super_total_bytes(super_copy);
1456         u64 diff = new_size - device->total_bytes;
1457
1458         if (!device->writeable)
1459                 return -EACCES;
1460         if (new_size <= device->total_bytes)
1461                 return -EINVAL;
1462
1463         btrfs_set_super_total_bytes(super_copy, old_total + diff);
1464         device->fs_devices->total_rw_bytes += diff;
1465
1466         device->total_bytes = new_size;
1467         return btrfs_update_device(trans, device);
1468 }
1469
1470 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1471                       struct btrfs_device *device, u64 new_size)
1472 {
1473         int ret;
1474         lock_chunks(device->dev_root);
1475         ret = __btrfs_grow_device(trans, device, new_size);
1476         unlock_chunks(device->dev_root);
1477         return ret;
1478 }
1479
1480 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1481                             struct btrfs_root *root,
1482                             u64 chunk_tree, u64 chunk_objectid,
1483                             u64 chunk_offset)
1484 {
1485         int ret;
1486         struct btrfs_path *path;
1487         struct btrfs_key key;
1488
1489         root = root->fs_info->chunk_root;
1490         path = btrfs_alloc_path();
1491         if (!path)
1492                 return -ENOMEM;
1493
1494         key.objectid = chunk_objectid;
1495         key.offset = chunk_offset;
1496         key.type = BTRFS_CHUNK_ITEM_KEY;
1497
1498         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1499         BUG_ON(ret);
1500
1501         ret = btrfs_del_item(trans, root, path);
1502         BUG_ON(ret);
1503
1504         btrfs_free_path(path);
1505         return 0;
1506 }
1507
1508 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1509                         chunk_offset)
1510 {
1511         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1512         struct btrfs_disk_key *disk_key;
1513         struct btrfs_chunk *chunk;
1514         u8 *ptr;
1515         int ret = 0;
1516         u32 num_stripes;
1517         u32 array_size;
1518         u32 len = 0;
1519         u32 cur;
1520         struct btrfs_key key;
1521
1522         array_size = btrfs_super_sys_array_size(super_copy);
1523
1524         ptr = super_copy->sys_chunk_array;
1525         cur = 0;
1526
1527         while (cur < array_size) {
1528                 disk_key = (struct btrfs_disk_key *)ptr;
1529                 btrfs_disk_key_to_cpu(&key, disk_key);
1530
1531                 len = sizeof(*disk_key);
1532
1533                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1534                         chunk = (struct btrfs_chunk *)(ptr + len);
1535                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1536                         len += btrfs_chunk_item_size(num_stripes);
1537                 } else {
1538                         ret = -EIO;
1539                         break;
1540                 }
1541                 if (key.objectid == chunk_objectid &&
1542                     key.offset == chunk_offset) {
1543                         memmove(ptr, ptr + len, array_size - (cur + len));
1544                         array_size -= len;
1545                         btrfs_set_super_sys_array_size(super_copy, array_size);
1546                 } else {
1547                         ptr += len;
1548                         cur += len;
1549                 }
1550         }
1551         return ret;
1552 }
1553
1554 static int btrfs_relocate_chunk(struct btrfs_root *root,
1555                          u64 chunk_tree, u64 chunk_objectid,
1556                          u64 chunk_offset)
1557 {
1558         struct extent_map_tree *em_tree;
1559         struct btrfs_root *extent_root;
1560         struct btrfs_trans_handle *trans;
1561         struct extent_map *em;
1562         struct map_lookup *map;
1563         int ret;
1564         int i;
1565
1566         printk("btrfs relocating chunk %llu\n",
1567                (unsigned long long)chunk_offset);
1568         root = root->fs_info->chunk_root;
1569         extent_root = root->fs_info->extent_root;
1570         em_tree = &root->fs_info->mapping_tree.map_tree;
1571
1572         /* step one, relocate all the extents inside this chunk */
1573         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1574         BUG_ON(ret);
1575
1576         trans = btrfs_start_transaction(root, 1);
1577         BUG_ON(!trans);
1578
1579         lock_chunks(root);
1580
1581         /*
1582          * step two, delete the device extents and the
1583          * chunk tree entries
1584          */
1585         spin_lock(&em_tree->lock);
1586         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1587         spin_unlock(&em_tree->lock);
1588
1589         BUG_ON(em->start > chunk_offset ||
1590                em->start + em->len < chunk_offset);
1591         map = (struct map_lookup *)em->bdev;
1592
1593         for (i = 0; i < map->num_stripes; i++) {
1594                 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1595                                             map->stripes[i].physical);
1596                 BUG_ON(ret);
1597
1598                 if (map->stripes[i].dev) {
1599                         ret = btrfs_update_device(trans, map->stripes[i].dev);
1600                         BUG_ON(ret);
1601                 }
1602         }
1603         ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1604                                chunk_offset);
1605
1606         BUG_ON(ret);
1607
1608         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1609                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1610                 BUG_ON(ret);
1611         }
1612
1613         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1614         BUG_ON(ret);
1615
1616         spin_lock(&em_tree->lock);
1617         remove_extent_mapping(em_tree, em);
1618         spin_unlock(&em_tree->lock);
1619
1620         kfree(map);
1621         em->bdev = NULL;
1622
1623         /* once for the tree */
1624         free_extent_map(em);
1625         /* once for us */
1626         free_extent_map(em);
1627
1628         unlock_chunks(root);
1629         btrfs_end_transaction(trans, root);
1630         return 0;
1631 }
1632
1633 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1634 {
1635         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1636         struct btrfs_path *path;
1637         struct extent_buffer *leaf;
1638         struct btrfs_chunk *chunk;
1639         struct btrfs_key key;
1640         struct btrfs_key found_key;
1641         u64 chunk_tree = chunk_root->root_key.objectid;
1642         u64 chunk_type;
1643         int ret;
1644
1645         path = btrfs_alloc_path();
1646         if (!path)
1647                 return -ENOMEM;
1648
1649         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1650         key.offset = (u64)-1;
1651         key.type = BTRFS_CHUNK_ITEM_KEY;
1652
1653         while (1) {
1654                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1655                 if (ret < 0)
1656                         goto error;
1657                 BUG_ON(ret == 0);
1658
1659                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1660                                           key.type);
1661                 if (ret < 0)
1662                         goto error;
1663                 if (ret > 0)
1664                         break;
1665
1666                 leaf = path->nodes[0];
1667                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1668
1669                 chunk = btrfs_item_ptr(leaf, path->slots[0],
1670                                        struct btrfs_chunk);
1671                 chunk_type = btrfs_chunk_type(leaf, chunk);
1672                 btrfs_release_path(chunk_root, path);
1673
1674                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1675                         ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1676                                                    found_key.objectid,
1677                                                    found_key.offset);
1678                         BUG_ON(ret);
1679                 }
1680
1681                 if (found_key.offset == 0)
1682                         break;
1683                 key.offset = found_key.offset - 1;
1684         }
1685         ret = 0;
1686 error:
1687         btrfs_free_path(path);
1688         return ret;
1689 }
1690
1691 static u64 div_factor(u64 num, int factor)
1692 {
1693         if (factor == 10)
1694                 return num;
1695         num *= factor;
1696         do_div(num, 10);
1697         return num;
1698 }
1699
1700 int btrfs_balance(struct btrfs_root *dev_root)
1701 {
1702         int ret;
1703         struct list_head *cur;
1704         struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1705         struct btrfs_device *device;
1706         u64 old_size;
1707         u64 size_to_free;
1708         struct btrfs_path *path;
1709         struct btrfs_key key;
1710         struct btrfs_chunk *chunk;
1711         struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1712         struct btrfs_trans_handle *trans;
1713         struct btrfs_key found_key;
1714
1715         if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
1716                 return -EROFS;
1717
1718         mutex_lock(&dev_root->fs_info->volume_mutex);
1719         dev_root = dev_root->fs_info->dev_root;
1720
1721         /* step one make some room on all the devices */
1722         list_for_each(cur, devices) {
1723                 device = list_entry(cur, struct btrfs_device, dev_list);
1724                 old_size = device->total_bytes;
1725                 size_to_free = div_factor(old_size, 1);
1726                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1727                 if (!device->writeable ||
1728                     device->total_bytes - device->bytes_used > size_to_free)
1729                         continue;
1730
1731                 ret = btrfs_shrink_device(device, old_size - size_to_free);
1732                 BUG_ON(ret);
1733
1734                 trans = btrfs_start_transaction(dev_root, 1);
1735                 BUG_ON(!trans);
1736
1737                 ret = btrfs_grow_device(trans, device, old_size);
1738                 BUG_ON(ret);
1739
1740                 btrfs_end_transaction(trans, dev_root);
1741         }
1742
1743         /* step two, relocate all the chunks */
1744         path = btrfs_alloc_path();
1745         BUG_ON(!path);
1746
1747         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1748         key.offset = (u64)-1;
1749         key.type = BTRFS_CHUNK_ITEM_KEY;
1750
1751         while(1) {
1752                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1753                 if (ret < 0)
1754                         goto error;
1755
1756                 /*
1757                  * this shouldn't happen, it means the last relocate
1758                  * failed
1759                  */
1760                 if (ret == 0)
1761                         break;
1762
1763                 ret = btrfs_previous_item(chunk_root, path, 0,
1764                                           BTRFS_CHUNK_ITEM_KEY);
1765                 if (ret)
1766                         break;
1767
1768                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1769                                       path->slots[0]);
1770                 if (found_key.objectid != key.objectid)
1771                         break;
1772
1773                 chunk = btrfs_item_ptr(path->nodes[0],
1774                                        path->slots[0],
1775                                        struct btrfs_chunk);
1776                 key.offset = found_key.offset;
1777                 /* chunk zero is special */
1778                 if (key.offset == 0)
1779                         break;
1780
1781                 btrfs_release_path(chunk_root, path);
1782                 ret = btrfs_relocate_chunk(chunk_root,
1783                                            chunk_root->root_key.objectid,
1784                                            found_key.objectid,
1785                                            found_key.offset);
1786                 BUG_ON(ret);
1787         }
1788         ret = 0;
1789 error:
1790         btrfs_free_path(path);
1791         mutex_unlock(&dev_root->fs_info->volume_mutex);
1792         return ret;
1793 }
1794
1795 /*
1796  * shrinking a device means finding all of the device extents past
1797  * the new size, and then following the back refs to the chunks.
1798  * The chunk relocation code actually frees the device extent
1799  */
1800 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1801 {
1802         struct btrfs_trans_handle *trans;
1803         struct btrfs_root *root = device->dev_root;
1804         struct btrfs_dev_extent *dev_extent = NULL;
1805         struct btrfs_path *path;
1806         u64 length;
1807         u64 chunk_tree;
1808         u64 chunk_objectid;
1809         u64 chunk_offset;
1810         int ret;
1811         int slot;
1812         struct extent_buffer *l;
1813         struct btrfs_key key;
1814         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1815         u64 old_total = btrfs_super_total_bytes(super_copy);
1816         u64 diff = device->total_bytes - new_size;
1817
1818         if (new_size >= device->total_bytes)
1819                 return -EINVAL;
1820
1821         path = btrfs_alloc_path();
1822         if (!path)
1823                 return -ENOMEM;
1824
1825         trans = btrfs_start_transaction(root, 1);
1826         if (!trans) {
1827                 ret = -ENOMEM;
1828                 goto done;
1829         }
1830
1831         path->reada = 2;
1832
1833         lock_chunks(root);
1834
1835         device->total_bytes = new_size;
1836         if (device->writeable)
1837                 device->fs_devices->total_rw_bytes -= diff;
1838         ret = btrfs_update_device(trans, device);
1839         if (ret) {
1840                 unlock_chunks(root);
1841                 btrfs_end_transaction(trans, root);
1842                 goto done;
1843         }
1844         WARN_ON(diff > old_total);
1845         btrfs_set_super_total_bytes(super_copy, old_total - diff);
1846         unlock_chunks(root);
1847         btrfs_end_transaction(trans, root);
1848
1849         key.objectid = device->devid;
1850         key.offset = (u64)-1;
1851         key.type = BTRFS_DEV_EXTENT_KEY;
1852
1853         while (1) {
1854                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1855                 if (ret < 0)
1856                         goto done;
1857
1858                 ret = btrfs_previous_item(root, path, 0, key.type);
1859                 if (ret < 0)
1860                         goto done;
1861                 if (ret) {
1862                         ret = 0;
1863                         goto done;
1864                 }
1865
1866                 l = path->nodes[0];
1867                 slot = path->slots[0];
1868                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
1869
1870                 if (key.objectid != device->devid)
1871                         goto done;
1872
1873                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1874                 length = btrfs_dev_extent_length(l, dev_extent);
1875
1876                 if (key.offset + length <= new_size)
1877                         goto done;
1878
1879                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1880                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1881                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1882                 btrfs_release_path(root, path);
1883
1884                 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
1885                                            chunk_offset);
1886                 if (ret)
1887                         goto done;
1888         }
1889
1890 done:
1891         btrfs_free_path(path);
1892         return ret;
1893 }
1894
1895 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
1896                            struct btrfs_root *root,
1897                            struct btrfs_key *key,
1898                            struct btrfs_chunk *chunk, int item_size)
1899 {
1900         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1901         struct btrfs_disk_key disk_key;
1902         u32 array_size;
1903         u8 *ptr;
1904
1905         array_size = btrfs_super_sys_array_size(super_copy);
1906         if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
1907                 return -EFBIG;
1908
1909         ptr = super_copy->sys_chunk_array + array_size;
1910         btrfs_cpu_key_to_disk(&disk_key, key);
1911         memcpy(ptr, &disk_key, sizeof(disk_key));
1912         ptr += sizeof(disk_key);
1913         memcpy(ptr, chunk, item_size);
1914         item_size += sizeof(disk_key);
1915         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
1916         return 0;
1917 }
1918
1919 static u64 noinline chunk_bytes_by_type(u64 type, u64 calc_size,
1920                                         int num_stripes, int sub_stripes)
1921 {
1922         if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
1923                 return calc_size;
1924         else if (type & BTRFS_BLOCK_GROUP_RAID10)
1925                 return calc_size * (num_stripes / sub_stripes);
1926         else
1927                 return calc_size * num_stripes;
1928 }
1929
1930 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
1931                                struct btrfs_root *extent_root,
1932                                struct map_lookup **map_ret,
1933                                u64 *num_bytes, u64 *stripe_size,
1934                                u64 start, u64 type)
1935 {
1936         struct btrfs_fs_info *info = extent_root->fs_info;
1937         struct btrfs_device *device = NULL;
1938         struct btrfs_fs_devices *fs_devices = info->fs_devices;
1939         struct list_head *cur;
1940         struct map_lookup *map = NULL;
1941         struct extent_map_tree *em_tree;
1942         struct extent_map *em;
1943         struct list_head private_devs;
1944         int min_stripe_size = 1 * 1024 * 1024;
1945         u64 calc_size = 1024 * 1024 * 1024;
1946         u64 max_chunk_size = calc_size;
1947         u64 min_free;
1948         u64 avail;
1949         u64 max_avail = 0;
1950         u64 dev_offset;
1951         int num_stripes = 1;
1952         int min_stripes = 1;
1953         int sub_stripes = 0;
1954         int looped = 0;
1955         int ret;
1956         int index;
1957         int stripe_len = 64 * 1024;
1958
1959         if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
1960             (type & BTRFS_BLOCK_GROUP_DUP)) {
1961                 WARN_ON(1);
1962                 type &= ~BTRFS_BLOCK_GROUP_DUP;
1963         }
1964         if (list_empty(&fs_devices->alloc_list))
1965                 return -ENOSPC;
1966
1967         if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
1968                 num_stripes = fs_devices->rw_devices;
1969                 min_stripes = 2;
1970         }
1971         if (type & (BTRFS_BLOCK_GROUP_DUP)) {
1972                 num_stripes = 2;
1973                 min_stripes = 2;
1974         }
1975         if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
1976                 num_stripes = min_t(u64, 2, fs_devices->rw_devices);
1977                 if (num_stripes < 2)
1978                         return -ENOSPC;
1979                 min_stripes = 2;
1980         }
1981         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
1982                 num_stripes = fs_devices->rw_devices;
1983                 if (num_stripes < 4)
1984                         return -ENOSPC;
1985                 num_stripes &= ~(u32)1;
1986                 sub_stripes = 2;
1987                 min_stripes = 4;
1988         }
1989
1990         if (type & BTRFS_BLOCK_GROUP_DATA) {
1991                 max_chunk_size = 10 * calc_size;
1992                 min_stripe_size = 64 * 1024 * 1024;
1993         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1994                 max_chunk_size = 4 * calc_size;
1995                 min_stripe_size = 32 * 1024 * 1024;
1996         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1997                 calc_size = 8 * 1024 * 1024;
1998                 max_chunk_size = calc_size * 2;
1999                 min_stripe_size = 1 * 1024 * 1024;
2000         }
2001
2002         /* we don't want a chunk larger than 10% of writeable space */
2003         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2004                              max_chunk_size);
2005
2006 again:
2007         if (!map || map->num_stripes != num_stripes) {
2008                 kfree(map);
2009                 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2010                 if (!map)
2011                         return -ENOMEM;
2012                 map->num_stripes = num_stripes;
2013         }
2014
2015         if (calc_size * num_stripes > max_chunk_size) {
2016                 calc_size = max_chunk_size;
2017                 do_div(calc_size, num_stripes);
2018                 do_div(calc_size, stripe_len);
2019                 calc_size *= stripe_len;
2020         }
2021         /* we don't want tiny stripes */
2022         calc_size = max_t(u64, min_stripe_size, calc_size);
2023
2024         do_div(calc_size, stripe_len);
2025         calc_size *= stripe_len;
2026
2027         cur = fs_devices->alloc_list.next;
2028         index = 0;
2029
2030         if (type & BTRFS_BLOCK_GROUP_DUP)
2031                 min_free = calc_size * 2;
2032         else
2033                 min_free = calc_size;
2034
2035         /*
2036          * we add 1MB because we never use the first 1MB of the device, unless
2037          * we've looped, then we are likely allocating the maximum amount of
2038          * space left already
2039          */
2040         if (!looped)
2041                 min_free += 1024 * 1024;
2042
2043         INIT_LIST_HEAD(&private_devs);
2044         while(index < num_stripes) {
2045                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2046                 BUG_ON(!device->writeable);
2047                 if (device->total_bytes > device->bytes_used)
2048                         avail = device->total_bytes - device->bytes_used;
2049                 else
2050                         avail = 0;
2051                 cur = cur->next;
2052
2053                 if (device->in_fs_metadata && avail >= min_free) {
2054                         ret = find_free_dev_extent(trans, device,
2055                                                    min_free, &dev_offset);
2056                         if (ret == 0) {
2057                                 list_move_tail(&device->dev_alloc_list,
2058                                                &private_devs);
2059                                 map->stripes[index].dev = device;
2060                                 map->stripes[index].physical = dev_offset;
2061                                 index++;
2062                                 if (type & BTRFS_BLOCK_GROUP_DUP) {
2063                                         map->stripes[index].dev = device;
2064                                         map->stripes[index].physical =
2065                                                 dev_offset + calc_size;
2066                                         index++;
2067                                 }
2068                         }
2069                 } else if (device->in_fs_metadata && avail > max_avail)
2070                         max_avail = avail;
2071                 if (cur == &fs_devices->alloc_list)
2072                         break;
2073         }
2074         list_splice(&private_devs, &fs_devices->alloc_list);
2075         if (index < num_stripes) {
2076                 if (index >= min_stripes) {
2077                         num_stripes = index;
2078                         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2079                                 num_stripes /= sub_stripes;
2080                                 num_stripes *= sub_stripes;
2081                         }
2082                         looped = 1;
2083                         goto again;
2084                 }
2085                 if (!looped && max_avail > 0) {
2086                         looped = 1;
2087                         calc_size = max_avail;
2088                         goto again;
2089                 }
2090                 kfree(map);
2091                 return -ENOSPC;
2092         }
2093         map->sector_size = extent_root->sectorsize;
2094         map->stripe_len = stripe_len;
2095         map->io_align = stripe_len;
2096         map->io_width = stripe_len;
2097         map->type = type;
2098         map->num_stripes = num_stripes;
2099         map->sub_stripes = sub_stripes;
2100
2101         *map_ret = map;
2102         *stripe_size = calc_size;
2103         *num_bytes = chunk_bytes_by_type(type, calc_size,
2104                                          num_stripes, sub_stripes);
2105
2106         em = alloc_extent_map(GFP_NOFS);
2107         if (!em) {
2108                 kfree(map);
2109                 return -ENOMEM;
2110         }
2111         em->bdev = (struct block_device *)map;
2112         em->start = start;
2113         em->len = *num_bytes;
2114         em->block_start = 0;
2115         em->block_len = em->len;
2116
2117         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2118         spin_lock(&em_tree->lock);
2119         ret = add_extent_mapping(em_tree, em);
2120         spin_unlock(&em_tree->lock);
2121         BUG_ON(ret);
2122         free_extent_map(em);
2123
2124         ret = btrfs_make_block_group(trans, extent_root, 0, type,
2125                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2126                                      start, *num_bytes);
2127         BUG_ON(ret);
2128
2129         index = 0;
2130         while (index < map->num_stripes) {
2131                 device = map->stripes[index].dev;
2132                 dev_offset = map->stripes[index].physical;
2133
2134                 ret = btrfs_alloc_dev_extent(trans, device,
2135                                 info->chunk_root->root_key.objectid,
2136                                 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2137                                 start, dev_offset, calc_size);
2138                 BUG_ON(ret);
2139                 index++;
2140         }
2141
2142         return 0;
2143 }
2144
2145 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2146                                 struct btrfs_root *extent_root,
2147                                 struct map_lookup *map, u64 chunk_offset,
2148                                 u64 chunk_size, u64 stripe_size)
2149 {
2150         u64 dev_offset;
2151         struct btrfs_key key;
2152         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2153         struct btrfs_device *device;
2154         struct btrfs_chunk *chunk;
2155         struct btrfs_stripe *stripe;
2156         size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2157         int index = 0;
2158         int ret;
2159
2160         chunk = kzalloc(item_size, GFP_NOFS);
2161         if (!chunk)
2162                 return -ENOMEM;
2163
2164         index = 0;
2165         while (index < map->num_stripes) {
2166                 device = map->stripes[index].dev;
2167                 device->bytes_used += stripe_size;
2168                 ret = btrfs_update_device(trans, device);
2169                 BUG_ON(ret);
2170                 index++;
2171         }
2172
2173         index = 0;
2174         stripe = &chunk->stripe;
2175         while (index < map->num_stripes) {
2176                 device = map->stripes[index].dev;
2177                 dev_offset = map->stripes[index].physical;
2178
2179                 btrfs_set_stack_stripe_devid(stripe, device->devid);
2180                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2181                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2182                 stripe++;
2183                 index++;
2184         }
2185
2186         btrfs_set_stack_chunk_length(chunk, chunk_size);
2187         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2188         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2189         btrfs_set_stack_chunk_type(chunk, map->type);
2190         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2191         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2192         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2193         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2194         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2195
2196         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2197         key.type = BTRFS_CHUNK_ITEM_KEY;
2198         key.offset = chunk_offset;
2199
2200         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2201         BUG_ON(ret);
2202
2203         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2204                 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2205                                              item_size);
2206                 BUG_ON(ret);
2207         }
2208         kfree(chunk);
2209         return 0;
2210 }
2211
2212 /*
2213  * Chunk allocation falls into two parts. The first part does works
2214  * that make the new allocated chunk useable, but not do any operation
2215  * that modifies the chunk tree. The second part does the works that
2216  * require modifying the chunk tree. This division is important for the
2217  * bootstrap process of adding storage to a seed btrfs.
2218  */
2219 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2220                       struct btrfs_root *extent_root, u64 type)
2221 {
2222         u64 chunk_offset;
2223         u64 chunk_size;
2224         u64 stripe_size;
2225         struct map_lookup *map;
2226         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2227         int ret;
2228
2229         ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2230                               &chunk_offset);
2231         if (ret)
2232                 return ret;
2233
2234         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2235                                   &stripe_size, chunk_offset, type);
2236         if (ret)
2237                 return ret;
2238
2239         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2240                                    chunk_size, stripe_size);
2241         BUG_ON(ret);
2242         return 0;
2243 }
2244
2245 static int noinline init_first_rw_device(struct btrfs_trans_handle *trans,
2246                                          struct btrfs_root *root,
2247                                          struct btrfs_device *device)
2248 {
2249         u64 chunk_offset;
2250         u64 sys_chunk_offset;
2251         u64 chunk_size;
2252         u64 sys_chunk_size;
2253         u64 stripe_size;
2254         u64 sys_stripe_size;
2255         u64 alloc_profile;
2256         struct map_lookup *map;
2257         struct map_lookup *sys_map;
2258         struct btrfs_fs_info *fs_info = root->fs_info;
2259         struct btrfs_root *extent_root = fs_info->extent_root;
2260         int ret;
2261
2262         ret = find_next_chunk(fs_info->chunk_root,
2263                               BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2264         BUG_ON(ret);
2265
2266         alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2267                         (fs_info->metadata_alloc_profile &
2268                          fs_info->avail_metadata_alloc_bits);
2269         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2270
2271         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2272                                   &stripe_size, chunk_offset, alloc_profile);
2273         BUG_ON(ret);
2274
2275         sys_chunk_offset = chunk_offset + chunk_size;
2276
2277         alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2278                         (fs_info->system_alloc_profile &
2279                          fs_info->avail_system_alloc_bits);
2280         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2281
2282         ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2283                                   &sys_chunk_size, &sys_stripe_size,
2284                                   sys_chunk_offset, alloc_profile);
2285         BUG_ON(ret);
2286
2287         ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2288         BUG_ON(ret);
2289
2290         /*
2291          * Modifying chunk tree needs allocating new blocks from both
2292          * system block group and metadata block group. So we only can
2293          * do operations require modifying the chunk tree after both
2294          * block groups were created.
2295          */
2296         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2297                                    chunk_size, stripe_size);
2298         BUG_ON(ret);
2299
2300         ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2301                                    sys_chunk_offset, sys_chunk_size,
2302                                    sys_stripe_size);
2303         BUG_ON(ret);
2304         return 0;
2305 }
2306
2307 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2308 {
2309         struct extent_map *em;
2310         struct map_lookup *map;
2311         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2312         int readonly = 0;
2313         int i;
2314
2315         spin_lock(&map_tree->map_tree.lock);
2316         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2317         spin_unlock(&map_tree->map_tree.lock);
2318         if (!em)
2319                 return 1;
2320
2321         map = (struct map_lookup *)em->bdev;
2322         for (i = 0; i < map->num_stripes; i++) {
2323                 if (!map->stripes[i].dev->writeable) {
2324                         readonly = 1;
2325                         break;
2326                 }
2327         }
2328         free_extent_map(em);
2329         return readonly;
2330 }
2331
2332 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2333 {
2334         extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2335 }
2336
2337 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2338 {
2339         struct extent_map *em;
2340
2341         while(1) {
2342                 spin_lock(&tree->map_tree.lock);
2343                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2344                 if (em)
2345                         remove_extent_mapping(&tree->map_tree, em);
2346                 spin_unlock(&tree->map_tree.lock);
2347                 if (!em)
2348                         break;
2349                 kfree(em->bdev);
2350                 /* once for us */
2351                 free_extent_map(em);
2352                 /* once for the tree */
2353                 free_extent_map(em);
2354         }
2355 }
2356
2357 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2358 {
2359         struct extent_map *em;
2360         struct map_lookup *map;
2361         struct extent_map_tree *em_tree = &map_tree->map_tree;
2362         int ret;
2363
2364         spin_lock(&em_tree->lock);
2365         em = lookup_extent_mapping(em_tree, logical, len);
2366         spin_unlock(&em_tree->lock);
2367         BUG_ON(!em);
2368
2369         BUG_ON(em->start > logical || em->start + em->len < logical);
2370         map = (struct map_lookup *)em->bdev;
2371         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2372                 ret = map->num_stripes;
2373         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2374                 ret = map->sub_stripes;
2375         else
2376                 ret = 1;
2377         free_extent_map(em);
2378         return ret;
2379 }
2380
2381 static int find_live_mirror(struct map_lookup *map, int first, int num,
2382                             int optimal)
2383 {
2384         int i;
2385         if (map->stripes[optimal].dev->bdev)
2386                 return optimal;
2387         for (i = first; i < first + num; i++) {
2388                 if (map->stripes[i].dev->bdev)
2389                         return i;
2390         }
2391         /* we couldn't find one that doesn't fail.  Just return something
2392          * and the io error handling code will clean up eventually
2393          */
2394         return optimal;
2395 }
2396
2397 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2398                              u64 logical, u64 *length,
2399                              struct btrfs_multi_bio **multi_ret,
2400                              int mirror_num, struct page *unplug_page)
2401 {
2402         struct extent_map *em;
2403         struct map_lookup *map;
2404         struct extent_map_tree *em_tree = &map_tree->map_tree;
2405         u64 offset;
2406         u64 stripe_offset;
2407         u64 stripe_nr;
2408         int stripes_allocated = 8;
2409         int stripes_required = 1;
2410         int stripe_index;
2411         int i;
2412         int num_stripes;
2413         int max_errors = 0;
2414         struct btrfs_multi_bio *multi = NULL;
2415
2416         if (multi_ret && !(rw & (1 << BIO_RW))) {
2417                 stripes_allocated = 1;
2418         }
2419 again:
2420         if (multi_ret) {
2421                 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2422                                 GFP_NOFS);
2423                 if (!multi)
2424                         return -ENOMEM;
2425
2426                 atomic_set(&multi->error, 0);
2427         }
2428
2429         spin_lock(&em_tree->lock);
2430         em = lookup_extent_mapping(em_tree, logical, *length);
2431         spin_unlock(&em_tree->lock);
2432
2433         if (!em && unplug_page)
2434                 return 0;
2435
2436         if (!em) {
2437                 printk("unable to find logical %Lu len %Lu\n", logical, *length);
2438                 BUG();
2439         }
2440
2441         BUG_ON(em->start > logical || em->start + em->len < logical);
2442         map = (struct map_lookup *)em->bdev;
2443         offset = logical - em->start;
2444
2445         if (mirror_num > map->num_stripes)
2446                 mirror_num = 0;
2447
2448         /* if our multi bio struct is too small, back off and try again */
2449         if (rw & (1 << BIO_RW)) {
2450                 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2451                                  BTRFS_BLOCK_GROUP_DUP)) {
2452                         stripes_required = map->num_stripes;
2453                         max_errors = 1;
2454                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2455                         stripes_required = map->sub_stripes;
2456                         max_errors = 1;
2457                 }
2458         }
2459         if (multi_ret && rw == WRITE &&
2460             stripes_allocated < stripes_required) {
2461                 stripes_allocated = map->num_stripes;
2462                 free_extent_map(em);
2463                 kfree(multi);
2464                 goto again;
2465         }
2466         stripe_nr = offset;
2467         /*
2468          * stripe_nr counts the total number of stripes we have to stride
2469          * to get to this block
2470          */
2471         do_div(stripe_nr, map->stripe_len);
2472
2473         stripe_offset = stripe_nr * map->stripe_len;
2474         BUG_ON(offset < stripe_offset);
2475
2476         /* stripe_offset is the offset of this block in its stripe*/
2477         stripe_offset = offset - stripe_offset;
2478
2479         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2480                          BTRFS_BLOCK_GROUP_RAID10 |
2481                          BTRFS_BLOCK_GROUP_DUP)) {
2482                 /* we limit the length of each bio to what fits in a stripe */
2483                 *length = min_t(u64, em->len - offset,
2484                               map->stripe_len - stripe_offset);
2485         } else {
2486                 *length = em->len - offset;
2487         }
2488
2489         if (!multi_ret && !unplug_page)
2490                 goto out;
2491
2492         num_stripes = 1;
2493         stripe_index = 0;
2494         if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2495                 if (unplug_page || (rw & (1 << BIO_RW)))
2496                         num_stripes = map->num_stripes;
2497                 else if (mirror_num)
2498                         stripe_index = mirror_num - 1;
2499                 else {
2500                         stripe_index = find_live_mirror(map, 0,
2501                                             map->num_stripes,
2502                                             current->pid % map->num_stripes);
2503                 }
2504
2505         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2506                 if (rw & (1 << BIO_RW))
2507                         num_stripes = map->num_stripes;
2508                 else if (mirror_num)
2509                         stripe_index = mirror_num - 1;
2510
2511         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2512                 int factor = map->num_stripes / map->sub_stripes;
2513
2514                 stripe_index = do_div(stripe_nr, factor);
2515                 stripe_index *= map->sub_stripes;
2516
2517                 if (unplug_page || (rw & (1 << BIO_RW)))
2518                         num_stripes = map->sub_stripes;
2519                 else if (mirror_num)
2520                         stripe_index += mirror_num - 1;
2521                 else {
2522                         stripe_index = find_live_mirror(map, stripe_index,
2523                                               map->sub_stripes, stripe_index +
2524                                               current->pid % map->sub_stripes);
2525                 }
2526         } else {
2527                 /*
2528                  * after this do_div call, stripe_nr is the number of stripes
2529                  * on this device we have to walk to find the data, and
2530                  * stripe_index is the number of our device in the stripe array
2531                  */
2532                 stripe_index = do_div(stripe_nr, map->num_stripes);
2533         }
2534         BUG_ON(stripe_index >= map->num_stripes);
2535
2536         for (i = 0; i < num_stripes; i++) {
2537                 if (unplug_page) {
2538                         struct btrfs_device *device;
2539                         struct backing_dev_info *bdi;
2540
2541                         device = map->stripes[stripe_index].dev;
2542                         if (device->bdev) {
2543                                 bdi = blk_get_backing_dev_info(device->bdev);
2544                                 if (bdi->unplug_io_fn) {
2545                                         bdi->unplug_io_fn(bdi, unplug_page);
2546                                 }
2547                         }
2548                 } else {
2549                         multi->stripes[i].physical =
2550                                 map->stripes[stripe_index].physical +
2551                                 stripe_offset + stripe_nr * map->stripe_len;
2552                         multi->stripes[i].dev = map->stripes[stripe_index].dev;
2553                 }
2554                 stripe_index++;
2555         }
2556         if (multi_ret) {
2557                 *multi_ret = multi;
2558                 multi->num_stripes = num_stripes;
2559                 multi->max_errors = max_errors;
2560         }
2561 out:
2562         free_extent_map(em);
2563         return 0;
2564 }
2565
2566 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2567                       u64 logical, u64 *length,
2568                       struct btrfs_multi_bio **multi_ret, int mirror_num)
2569 {
2570         return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2571                                  mirror_num, NULL);
2572 }
2573
2574 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
2575                      u64 chunk_start, u64 physical, u64 devid,
2576                      u64 **logical, int *naddrs, int *stripe_len)
2577 {
2578         struct extent_map_tree *em_tree = &map_tree->map_tree;
2579         struct extent_map *em;
2580         struct map_lookup *map;
2581         u64 *buf;
2582         u64 bytenr;
2583         u64 length;
2584         u64 stripe_nr;
2585         int i, j, nr = 0;
2586
2587         spin_lock(&em_tree->lock);
2588         em = lookup_extent_mapping(em_tree, chunk_start, 1);
2589         spin_unlock(&em_tree->lock);
2590
2591         BUG_ON(!em || em->start != chunk_start);
2592         map = (struct map_lookup *)em->bdev;
2593
2594         length = em->len;
2595         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2596                 do_div(length, map->num_stripes / map->sub_stripes);
2597         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
2598                 do_div(length, map->num_stripes);
2599
2600         buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
2601         BUG_ON(!buf);
2602
2603         for (i = 0; i < map->num_stripes; i++) {
2604                 if (devid && map->stripes[i].dev->devid != devid)
2605                         continue;
2606                 if (map->stripes[i].physical > physical ||
2607                     map->stripes[i].physical + length <= physical)
2608                         continue;
2609
2610                 stripe_nr = physical - map->stripes[i].physical;
2611                 do_div(stripe_nr, map->stripe_len);
2612
2613                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2614                         stripe_nr = stripe_nr * map->num_stripes + i;
2615                         do_div(stripe_nr, map->sub_stripes);
2616                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2617                         stripe_nr = stripe_nr * map->num_stripes + i;
2618                 }
2619                 bytenr = chunk_start + stripe_nr * map->stripe_len;
2620                 WARN_ON(nr >= map->num_stripes);
2621                 for (j = 0; j < nr; j++) {
2622                         if (buf[j] == bytenr)
2623                                 break;
2624                 }
2625                 if (j == nr) {
2626                         WARN_ON(nr >= map->num_stripes);
2627                         buf[nr++] = bytenr;
2628                 }
2629         }
2630
2631         for (i = 0; i > nr; i++) {
2632                 struct btrfs_multi_bio *multi;
2633                 struct btrfs_bio_stripe *stripe;
2634                 int ret;
2635
2636                 length = 1;
2637                 ret = btrfs_map_block(map_tree, WRITE, buf[i],
2638                                       &length, &multi, 0);
2639                 BUG_ON(ret);
2640
2641                 stripe = multi->stripes;
2642                 for (j = 0; j < multi->num_stripes; j++) {
2643                         if (stripe->physical >= physical &&
2644                             physical < stripe->physical + length)
2645                                 break;
2646                 }
2647                 BUG_ON(j >= multi->num_stripes);
2648                 kfree(multi);
2649         }
2650
2651         *logical = buf;
2652         *naddrs = nr;
2653         *stripe_len = map->stripe_len;
2654
2655         free_extent_map(em);
2656         return 0;
2657 }
2658
2659 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2660                       u64 logical, struct page *page)
2661 {
2662         u64 length = PAGE_CACHE_SIZE;
2663         return __btrfs_map_block(map_tree, READ, logical, &length,
2664                                  NULL, 0, page);
2665 }
2666
2667 static void end_bio_multi_stripe(struct bio *bio, int err)
2668 {
2669         struct btrfs_multi_bio *multi = bio->bi_private;
2670         int is_orig_bio = 0;
2671
2672         if (err)
2673                 atomic_inc(&multi->error);
2674
2675         if (bio == multi->orig_bio)
2676                 is_orig_bio = 1;
2677
2678         if (atomic_dec_and_test(&multi->stripes_pending)) {
2679                 if (!is_orig_bio) {
2680                         bio_put(bio);
2681                         bio = multi->orig_bio;
2682                 }
2683                 bio->bi_private = multi->private;
2684                 bio->bi_end_io = multi->end_io;
2685                 /* only send an error to the higher layers if it is
2686                  * beyond the tolerance of the multi-bio
2687                  */
2688                 if (atomic_read(&multi->error) > multi->max_errors) {
2689                         err = -EIO;
2690                 } else if (err) {
2691                         /*
2692                          * this bio is actually up to date, we didn't
2693                          * go over the max number of errors
2694                          */
2695                         set_bit(BIO_UPTODATE, &bio->bi_flags);
2696                         err = 0;
2697                 }
2698                 kfree(multi);
2699
2700                 bio_endio(bio, err);
2701         } else if (!is_orig_bio) {
2702                 bio_put(bio);
2703         }
2704 }
2705
2706 struct async_sched {
2707         struct bio *bio;
2708         int rw;
2709         struct btrfs_fs_info *info;
2710         struct btrfs_work work;
2711 };
2712
2713 /*
2714  * see run_scheduled_bios for a description of why bios are collected for
2715  * async submit.
2716  *
2717  * This will add one bio to the pending list for a device and make sure
2718  * the work struct is scheduled.
2719  */
2720 static int noinline schedule_bio(struct btrfs_root *root,
2721                                  struct btrfs_device *device,
2722                                  int rw, struct bio *bio)
2723 {
2724         int should_queue = 1;
2725
2726         /* don't bother with additional async steps for reads, right now */
2727         if (!(rw & (1 << BIO_RW))) {
2728                 bio_get(bio);
2729                 submit_bio(rw, bio);
2730                 bio_put(bio);
2731                 return 0;
2732         }
2733
2734         /*
2735          * nr_async_bios allows us to reliably return congestion to the
2736          * higher layers.  Otherwise, the async bio makes it appear we have
2737          * made progress against dirty pages when we've really just put it
2738          * on a queue for later
2739          */
2740         atomic_inc(&root->fs_info->nr_async_bios);
2741         WARN_ON(bio->bi_next);
2742         bio->bi_next = NULL;
2743         bio->bi_rw |= rw;
2744
2745         spin_lock(&device->io_lock);
2746
2747         if (device->pending_bio_tail)
2748                 device->pending_bio_tail->bi_next = bio;
2749
2750         device->pending_bio_tail = bio;
2751         if (!device->pending_bios)
2752                 device->pending_bios = bio;
2753         if (device->running_pending)
2754                 should_queue = 0;
2755
2756         spin_unlock(&device->io_lock);
2757
2758         if (should_queue)
2759                 btrfs_queue_worker(&root->fs_info->submit_workers,
2760                                    &device->work);
2761         return 0;
2762 }
2763
2764 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
2765                   int mirror_num, int async_submit)
2766 {
2767         struct btrfs_mapping_tree *map_tree;
2768         struct btrfs_device *dev;
2769         struct bio *first_bio = bio;
2770         u64 logical = (u64)bio->bi_sector << 9;
2771         u64 length = 0;
2772         u64 map_length;
2773         struct btrfs_multi_bio *multi = NULL;
2774         int ret;
2775         int dev_nr = 0;
2776         int total_devs = 1;
2777
2778         length = bio->bi_size;
2779         map_tree = &root->fs_info->mapping_tree;
2780         map_length = length;
2781
2782         ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
2783                               mirror_num);
2784         BUG_ON(ret);
2785
2786         total_devs = multi->num_stripes;
2787         if (map_length < length) {
2788                 printk("mapping failed logical %Lu bio len %Lu "
2789                        "len %Lu\n", logical, length, map_length);
2790                 BUG();
2791         }
2792         multi->end_io = first_bio->bi_end_io;
2793         multi->private = first_bio->bi_private;
2794         multi->orig_bio = first_bio;
2795         atomic_set(&multi->stripes_pending, multi->num_stripes);
2796
2797         while(dev_nr < total_devs) {
2798                 if (total_devs > 1) {
2799                         if (dev_nr < total_devs - 1) {
2800                                 bio = bio_clone(first_bio, GFP_NOFS);
2801                                 BUG_ON(!bio);
2802                         } else {
2803                                 bio = first_bio;
2804                         }
2805                         bio->bi_private = multi;
2806                         bio->bi_end_io = end_bio_multi_stripe;
2807                 }
2808                 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
2809                 dev = multi->stripes[dev_nr].dev;
2810                 BUG_ON(rw == WRITE && !dev->writeable);
2811                 if (dev && dev->bdev) {
2812                         bio->bi_bdev = dev->bdev;
2813                         if (async_submit)
2814                                 schedule_bio(root, dev, rw, bio);
2815                         else
2816                                 submit_bio(rw, bio);
2817                 } else {
2818                         bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
2819                         bio->bi_sector = logical >> 9;
2820                         bio_endio(bio, -EIO);
2821                 }
2822                 dev_nr++;
2823         }
2824         if (total_devs == 1)
2825                 kfree(multi);
2826         return 0;
2827 }
2828
2829 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2830                                        u8 *uuid, u8 *fsid)
2831 {
2832         struct btrfs_device *device;
2833         struct btrfs_fs_devices *cur_devices;
2834
2835         cur_devices = root->fs_info->fs_devices;
2836         while (cur_devices) {
2837                 if (!fsid ||
2838                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
2839                         device = __find_device(&cur_devices->devices,
2840                                                devid, uuid);
2841                         if (device)
2842                                 return device;
2843                 }
2844                 cur_devices = cur_devices->seed;
2845         }
2846         return NULL;
2847 }
2848
2849 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
2850                                             u64 devid, u8 *dev_uuid)
2851 {
2852         struct btrfs_device *device;
2853         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2854
2855         device = kzalloc(sizeof(*device), GFP_NOFS);
2856         if (!device)
2857                 return NULL;
2858         list_add(&device->dev_list,
2859                  &fs_devices->devices);
2860         device->barriers = 1;
2861         device->dev_root = root->fs_info->dev_root;
2862         device->devid = devid;
2863         device->work.func = pending_bios_fn;
2864         device->fs_devices = fs_devices;
2865         fs_devices->num_devices++;
2866         spin_lock_init(&device->io_lock);
2867         INIT_LIST_HEAD(&device->dev_alloc_list);
2868         memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
2869         return device;
2870 }
2871
2872 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
2873                           struct extent_buffer *leaf,
2874                           struct btrfs_chunk *chunk)
2875 {
2876         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2877         struct map_lookup *map;
2878         struct extent_map *em;
2879         u64 logical;
2880         u64 length;
2881         u64 devid;
2882         u8 uuid[BTRFS_UUID_SIZE];
2883         int num_stripes;
2884         int ret;
2885         int i;
2886
2887         logical = key->offset;
2888         length = btrfs_chunk_length(leaf, chunk);
2889
2890         spin_lock(&map_tree->map_tree.lock);
2891         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
2892         spin_unlock(&map_tree->map_tree.lock);
2893
2894         /* already mapped? */
2895         if (em && em->start <= logical && em->start + em->len > logical) {
2896                 free_extent_map(em);
2897                 return 0;
2898         } else if (em) {
2899                 free_extent_map(em);
2900         }
2901
2902         map = kzalloc(sizeof(*map), GFP_NOFS);
2903         if (!map)
2904                 return -ENOMEM;
2905
2906         em = alloc_extent_map(GFP_NOFS);
2907         if (!em)
2908                 return -ENOMEM;
2909         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2910         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2911         if (!map) {
2912                 free_extent_map(em);
2913                 return -ENOMEM;
2914         }
2915
2916         em->bdev = (struct block_device *)map;
2917         em->start = logical;
2918         em->len = length;
2919         em->block_start = 0;
2920         em->block_len = em->len;
2921
2922         map->num_stripes = num_stripes;
2923         map->io_width = btrfs_chunk_io_width(leaf, chunk);
2924         map->io_align = btrfs_chunk_io_align(leaf, chunk);
2925         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
2926         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
2927         map->type = btrfs_chunk_type(leaf, chunk);
2928         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
2929         for (i = 0; i < num_stripes; i++) {
2930                 map->stripes[i].physical =
2931                         btrfs_stripe_offset_nr(leaf, chunk, i);
2932                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
2933                 read_extent_buffer(leaf, uuid, (unsigned long)
2934                                    btrfs_stripe_dev_uuid_nr(chunk, i),
2935                                    BTRFS_UUID_SIZE);
2936                 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
2937                                                         NULL);
2938                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
2939                         kfree(map);
2940                         free_extent_map(em);
2941                         return -EIO;
2942                 }
2943                 if (!map->stripes[i].dev) {
2944                         map->stripes[i].dev =
2945                                 add_missing_dev(root, devid, uuid);
2946                         if (!map->stripes[i].dev) {
2947                                 kfree(map);
2948                                 free_extent_map(em);
2949                                 return -EIO;
2950                         }
2951                 }
2952                 map->stripes[i].dev->in_fs_metadata = 1;
2953         }
2954
2955         spin_lock(&map_tree->map_tree.lock);
2956         ret = add_extent_mapping(&map_tree->map_tree, em);
2957         spin_unlock(&map_tree->map_tree.lock);
2958         BUG_ON(ret);
2959         free_extent_map(em);
2960
2961         return 0;
2962 }
2963
2964 static int fill_device_from_item(struct extent_buffer *leaf,
2965                                  struct btrfs_dev_item *dev_item,
2966                                  struct btrfs_device *device)
2967 {
2968         unsigned long ptr;
2969
2970         device->devid = btrfs_device_id(leaf, dev_item);
2971         device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
2972         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
2973         device->type = btrfs_device_type(leaf, dev_item);
2974         device->io_align = btrfs_device_io_align(leaf, dev_item);
2975         device->io_width = btrfs_device_io_width(leaf, dev_item);
2976         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
2977
2978         ptr = (unsigned long)btrfs_device_uuid(dev_item);
2979         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2980
2981         return 0;
2982 }
2983
2984 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
2985 {
2986         struct btrfs_fs_devices *fs_devices;
2987         int ret;
2988
2989         mutex_lock(&uuid_mutex);
2990
2991         fs_devices = root->fs_info->fs_devices->seed;
2992         while (fs_devices) {
2993                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
2994                         ret = 0;
2995                         goto out;
2996                 }
2997                 fs_devices = fs_devices->seed;
2998         }
2999
3000         fs_devices = find_fsid(fsid);
3001         if (!fs_devices) {
3002                 ret = -ENOENT;
3003                 goto out;
3004         }
3005
3006         fs_devices = clone_fs_devices(fs_devices);
3007         if (IS_ERR(fs_devices)) {
3008                 ret = PTR_ERR(fs_devices);
3009                 goto out;
3010         }
3011
3012         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3013                                    root->fs_info->bdev_holder);
3014         if (ret)
3015                 goto out;
3016
3017         if (!fs_devices->seeding) {
3018                 __btrfs_close_devices(fs_devices);
3019                 free_fs_devices(fs_devices);
3020                 ret = -EINVAL;
3021                 goto out;
3022         }
3023
3024         fs_devices->seed = root->fs_info->fs_devices->seed;
3025         root->fs_info->fs_devices->seed = fs_devices;
3026 out:
3027         mutex_unlock(&uuid_mutex);
3028         return ret;
3029 }
3030
3031 static int read_one_dev(struct btrfs_root *root,
3032                         struct extent_buffer *leaf,
3033                         struct btrfs_dev_item *dev_item)
3034 {
3035         struct btrfs_device *device;
3036         u64 devid;
3037         int ret;
3038         u8 fs_uuid[BTRFS_UUID_SIZE];
3039         u8 dev_uuid[BTRFS_UUID_SIZE];
3040
3041         devid = btrfs_device_id(leaf, dev_item);
3042         read_extent_buffer(leaf, dev_uuid,
3043                            (unsigned long)btrfs_device_uuid(dev_item),
3044                            BTRFS_UUID_SIZE);
3045         read_extent_buffer(leaf, fs_uuid,
3046                            (unsigned long)btrfs_device_fsid(dev_item),
3047                            BTRFS_UUID_SIZE);
3048
3049         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3050                 ret = open_seed_devices(root, fs_uuid);
3051                 if (ret && !btrfs_test_opt(root, DEGRADED))
3052                         return ret;
3053         }
3054
3055         device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3056         if (!device || !device->bdev) {
3057                 if (!btrfs_test_opt(root, DEGRADED))
3058                         return -EIO;
3059
3060                 if (!device) {
3061                         printk("warning devid %Lu missing\n", devid);
3062                         device = add_missing_dev(root, devid, dev_uuid);
3063                         if (!device)
3064                                 return -ENOMEM;
3065                 }
3066         }
3067
3068         if (device->fs_devices != root->fs_info->fs_devices) {
3069                 BUG_ON(device->writeable);
3070                 if (device->generation !=
3071                     btrfs_device_generation(leaf, dev_item))
3072                         return -EINVAL;
3073         }
3074
3075         fill_device_from_item(leaf, dev_item, device);
3076         device->dev_root = root->fs_info->dev_root;
3077         device->in_fs_metadata = 1;
3078         if (device->writeable)
3079                 device->fs_devices->total_rw_bytes += device->total_bytes;
3080         ret = 0;
3081 #if 0
3082         ret = btrfs_open_device(device);
3083         if (ret) {
3084                 kfree(device);
3085         }
3086 #endif
3087         return ret;
3088 }
3089
3090 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3091 {
3092         struct btrfs_dev_item *dev_item;
3093
3094         dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3095                                                      dev_item);
3096         return read_one_dev(root, buf, dev_item);
3097 }
3098
3099 int btrfs_read_sys_array(struct btrfs_root *root)
3100 {
3101         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3102         struct extent_buffer *sb;
3103         struct btrfs_disk_key *disk_key;
3104         struct btrfs_chunk *chunk;
3105         u8 *ptr;
3106         unsigned long sb_ptr;
3107         int ret = 0;
3108         u32 num_stripes;
3109         u32 array_size;
3110         u32 len = 0;
3111         u32 cur;
3112         struct btrfs_key key;
3113
3114         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3115                                           BTRFS_SUPER_INFO_SIZE);
3116         if (!sb)
3117                 return -ENOMEM;
3118         btrfs_set_buffer_uptodate(sb);
3119         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3120         array_size = btrfs_super_sys_array_size(super_copy);
3121
3122         ptr = super_copy->sys_chunk_array;
3123         sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3124         cur = 0;
3125
3126         while (cur < array_size) {
3127                 disk_key = (struct btrfs_disk_key *)ptr;
3128                 btrfs_disk_key_to_cpu(&key, disk_key);
3129
3130                 len = sizeof(*disk_key); ptr += len;
3131                 sb_ptr += len;
3132                 cur += len;
3133
3134                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3135                         chunk = (struct btrfs_chunk *)sb_ptr;
3136                         ret = read_one_chunk(root, &key, sb, chunk);
3137                         if (ret)
3138                                 break;
3139                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3140                         len = btrfs_chunk_item_size(num_stripes);
3141                 } else {
3142                         ret = -EIO;
3143                         break;
3144                 }
3145                 ptr += len;
3146                 sb_ptr += len;
3147                 cur += len;
3148         }
3149         free_extent_buffer(sb);
3150         return ret;
3151 }
3152
3153 int btrfs_read_chunk_tree(struct btrfs_root *root)
3154 {
3155         struct btrfs_path *path;
3156         struct extent_buffer *leaf;
3157         struct btrfs_key key;
3158         struct btrfs_key found_key;
3159         int ret;
3160         int slot;
3161
3162         root = root->fs_info->chunk_root;
3163
3164         path = btrfs_alloc_path();
3165         if (!path)
3166                 return -ENOMEM;
3167
3168         /* first we search for all of the device items, and then we
3169          * read in all of the chunk items.  This way we can create chunk
3170          * mappings that reference all of the devices that are afound
3171          */
3172         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3173         key.offset = 0;
3174         key.type = 0;
3175 again:
3176         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3177         while(1) {
3178                 leaf = path->nodes[0];
3179                 slot = path->slots[0];
3180                 if (slot >= btrfs_header_nritems(leaf)) {
3181                         ret = btrfs_next_leaf(root, path);
3182                         if (ret == 0)
3183                                 continue;
3184                         if (ret < 0)
3185                                 goto error;
3186                         break;
3187                 }
3188                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3189                 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3190                         if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3191                                 break;
3192                         if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3193                                 struct btrfs_dev_item *dev_item;
3194                                 dev_item = btrfs_item_ptr(leaf, slot,
3195                                                   struct btrfs_dev_item);
3196                                 ret = read_one_dev(root, leaf, dev_item);
3197                                 if (ret)
3198                                         goto error;
3199                         }
3200                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3201                         struct btrfs_chunk *chunk;
3202                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3203                         ret = read_one_chunk(root, &found_key, leaf, chunk);
3204                         if (ret)
3205                                 goto error;
3206                 }
3207                 path->slots[0]++;
3208         }
3209         if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3210                 key.objectid = 0;
3211                 btrfs_release_path(root, path);
3212                 goto again;
3213         }
3214         ret = 0;
3215 error:
3216         btrfs_free_path(path);
3217         return ret;
3218 }