Btrfs: Add fallocate support v2
[safe/jmp/linux-2.6] / fs / btrfs / tree-log.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "locking.h"
24 #include "print-tree.h"
25 #include "compat.h"
26
27 /* magic values for the inode_only field in btrfs_log_inode:
28  *
29  * LOG_INODE_ALL means to log everything
30  * LOG_INODE_EXISTS means to log just enough to recreate the inode
31  * during log replay
32  */
33 #define LOG_INODE_ALL 0
34 #define LOG_INODE_EXISTS 1
35
36 /*
37  * stages for the tree walking.  The first
38  * stage (0) is to only pin down the blocks we find
39  * the second stage (1) is to make sure that all the inodes
40  * we find in the log are created in the subvolume.
41  *
42  * The last stage is to deal with directories and links and extents
43  * and all the other fun semantics
44  */
45 #define LOG_WALK_PIN_ONLY 0
46 #define LOG_WALK_REPLAY_INODES 1
47 #define LOG_WALK_REPLAY_ALL 2
48
49 static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
50                              struct btrfs_root *root, struct inode *inode,
51                              int inode_only);
52
53 /*
54  * tree logging is a special write ahead log used to make sure that
55  * fsyncs and O_SYNCs can happen without doing full tree commits.
56  *
57  * Full tree commits are expensive because they require commonly
58  * modified blocks to be recowed, creating many dirty pages in the
59  * extent tree an 4x-6x higher write load than ext3.
60  *
61  * Instead of doing a tree commit on every fsync, we use the
62  * key ranges and transaction ids to find items for a given file or directory
63  * that have changed in this transaction.  Those items are copied into
64  * a special tree (one per subvolume root), that tree is written to disk
65  * and then the fsync is considered complete.
66  *
67  * After a crash, items are copied out of the log-tree back into the
68  * subvolume tree.  Any file data extents found are recorded in the extent
69  * allocation tree, and the log-tree freed.
70  *
71  * The log tree is read three times, once to pin down all the extents it is
72  * using in ram and once, once to create all the inodes logged in the tree
73  * and once to do all the other items.
74  */
75
76 /*
77  * btrfs_add_log_tree adds a new per-subvolume log tree into the
78  * tree of log tree roots.  This must be called with a tree log transaction
79  * running (see start_log_trans).
80  */
81 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
82                       struct btrfs_root *root)
83 {
84         struct btrfs_key key;
85         struct btrfs_root_item root_item;
86         struct btrfs_inode_item *inode_item;
87         struct extent_buffer *leaf;
88         struct btrfs_root *new_root = root;
89         int ret;
90         u64 objectid = root->root_key.objectid;
91
92         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
93                                       BTRFS_TREE_LOG_OBJECTID,
94                                       trans->transid, 0, 0, 0);
95         if (IS_ERR(leaf)) {
96                 ret = PTR_ERR(leaf);
97                 return ret;
98         }
99
100         btrfs_set_header_nritems(leaf, 0);
101         btrfs_set_header_level(leaf, 0);
102         btrfs_set_header_bytenr(leaf, leaf->start);
103         btrfs_set_header_generation(leaf, trans->transid);
104         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
105
106         write_extent_buffer(leaf, root->fs_info->fsid,
107                             (unsigned long)btrfs_header_fsid(leaf),
108                             BTRFS_FSID_SIZE);
109         btrfs_mark_buffer_dirty(leaf);
110
111         inode_item = &root_item.inode;
112         memset(inode_item, 0, sizeof(*inode_item));
113         inode_item->generation = cpu_to_le64(1);
114         inode_item->size = cpu_to_le64(3);
115         inode_item->nlink = cpu_to_le32(1);
116         inode_item->nbytes = cpu_to_le64(root->leafsize);
117         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
118
119         btrfs_set_root_bytenr(&root_item, leaf->start);
120         btrfs_set_root_generation(&root_item, trans->transid);
121         btrfs_set_root_level(&root_item, 0);
122         btrfs_set_root_refs(&root_item, 0);
123         btrfs_set_root_used(&root_item, 0);
124
125         memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
126         root_item.drop_level = 0;
127
128         btrfs_tree_unlock(leaf);
129         free_extent_buffer(leaf);
130         leaf = NULL;
131
132         btrfs_set_root_dirid(&root_item, 0);
133
134         key.objectid = BTRFS_TREE_LOG_OBJECTID;
135         key.offset = objectid;
136         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
137         ret = btrfs_insert_root(trans, root->fs_info->log_root_tree, &key,
138                                 &root_item);
139         if (ret)
140                 goto fail;
141
142         new_root = btrfs_read_fs_root_no_radix(root->fs_info->log_root_tree,
143                                                &key);
144         BUG_ON(!new_root);
145
146         WARN_ON(root->log_root);
147         root->log_root = new_root;
148
149         /*
150          * log trees do not get reference counted because they go away
151          * before a real commit is actually done.  They do store pointers
152          * to file data extents, and those reference counts still get
153          * updated (along with back refs to the log tree).
154          */
155         new_root->ref_cows = 0;
156         new_root->last_trans = trans->transid;
157 fail:
158         return ret;
159 }
160
161 /*
162  * start a sub transaction and setup the log tree
163  * this increments the log tree writer count to make the people
164  * syncing the tree wait for us to finish
165  */
166 static int start_log_trans(struct btrfs_trans_handle *trans,
167                            struct btrfs_root *root)
168 {
169         int ret;
170         mutex_lock(&root->fs_info->tree_log_mutex);
171         if (!root->fs_info->log_root_tree) {
172                 ret = btrfs_init_log_root_tree(trans, root->fs_info);
173                 BUG_ON(ret);
174         }
175         if (!root->log_root) {
176                 ret = btrfs_add_log_tree(trans, root);
177                 BUG_ON(ret);
178         }
179         atomic_inc(&root->fs_info->tree_log_writers);
180         root->fs_info->tree_log_batch++;
181         mutex_unlock(&root->fs_info->tree_log_mutex);
182         return 0;
183 }
184
185 /*
186  * returns 0 if there was a log transaction running and we were able
187  * to join, or returns -ENOENT if there were not transactions
188  * in progress
189  */
190 static int join_running_log_trans(struct btrfs_root *root)
191 {
192         int ret = -ENOENT;
193
194         smp_mb();
195         if (!root->log_root)
196                 return -ENOENT;
197
198         mutex_lock(&root->fs_info->tree_log_mutex);
199         if (root->log_root) {
200                 ret = 0;
201                 atomic_inc(&root->fs_info->tree_log_writers);
202                 root->fs_info->tree_log_batch++;
203         }
204         mutex_unlock(&root->fs_info->tree_log_mutex);
205         return ret;
206 }
207
208 /*
209  * indicate we're done making changes to the log tree
210  * and wake up anyone waiting to do a sync
211  */
212 static int end_log_trans(struct btrfs_root *root)
213 {
214         atomic_dec(&root->fs_info->tree_log_writers);
215         smp_mb();
216         if (waitqueue_active(&root->fs_info->tree_log_wait))
217                 wake_up(&root->fs_info->tree_log_wait);
218         return 0;
219 }
220
221
222 /*
223  * the walk control struct is used to pass state down the chain when
224  * processing the log tree.  The stage field tells us which part
225  * of the log tree processing we are currently doing.  The others
226  * are state fields used for that specific part
227  */
228 struct walk_control {
229         /* should we free the extent on disk when done?  This is used
230          * at transaction commit time while freeing a log tree
231          */
232         int free;
233
234         /* should we write out the extent buffer?  This is used
235          * while flushing the log tree to disk during a sync
236          */
237         int write;
238
239         /* should we wait for the extent buffer io to finish?  Also used
240          * while flushing the log tree to disk for a sync
241          */
242         int wait;
243
244         /* pin only walk, we record which extents on disk belong to the
245          * log trees
246          */
247         int pin;
248
249         /* what stage of the replay code we're currently in */
250         int stage;
251
252         /* the root we are currently replaying */
253         struct btrfs_root *replay_dest;
254
255         /* the trans handle for the current replay */
256         struct btrfs_trans_handle *trans;
257
258         /* the function that gets used to process blocks we find in the
259          * tree.  Note the extent_buffer might not be up to date when it is
260          * passed in, and it must be checked or read if you need the data
261          * inside it
262          */
263         int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
264                             struct walk_control *wc, u64 gen);
265 };
266
267 /*
268  * process_func used to pin down extents, write them or wait on them
269  */
270 static int process_one_buffer(struct btrfs_root *log,
271                               struct extent_buffer *eb,
272                               struct walk_control *wc, u64 gen)
273 {
274         if (wc->pin) {
275                 mutex_lock(&log->fs_info->pinned_mutex);
276                 btrfs_update_pinned_extents(log->fs_info->extent_root,
277                                             eb->start, eb->len, 1);
278                 mutex_unlock(&log->fs_info->pinned_mutex);
279         }
280
281         if (btrfs_buffer_uptodate(eb, gen)) {
282                 if (wc->write)
283                         btrfs_write_tree_block(eb);
284                 if (wc->wait)
285                         btrfs_wait_tree_block_writeback(eb);
286         }
287         return 0;
288 }
289
290 /*
291  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
292  * to the src data we are copying out.
293  *
294  * root is the tree we are copying into, and path is a scratch
295  * path for use in this function (it should be released on entry and
296  * will be released on exit).
297  *
298  * If the key is already in the destination tree the existing item is
299  * overwritten.  If the existing item isn't big enough, it is extended.
300  * If it is too large, it is truncated.
301  *
302  * If the key isn't in the destination yet, a new item is inserted.
303  */
304 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
305                                    struct btrfs_root *root,
306                                    struct btrfs_path *path,
307                                    struct extent_buffer *eb, int slot,
308                                    struct btrfs_key *key)
309 {
310         int ret;
311         u32 item_size;
312         u64 saved_i_size = 0;
313         int save_old_i_size = 0;
314         unsigned long src_ptr;
315         unsigned long dst_ptr;
316         int overwrite_root = 0;
317
318         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
319                 overwrite_root = 1;
320
321         item_size = btrfs_item_size_nr(eb, slot);
322         src_ptr = btrfs_item_ptr_offset(eb, slot);
323
324         /* look for the key in the destination tree */
325         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
326         if (ret == 0) {
327                 char *src_copy;
328                 char *dst_copy;
329                 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
330                                                   path->slots[0]);
331                 if (dst_size != item_size)
332                         goto insert;
333
334                 if (item_size == 0) {
335                         btrfs_release_path(root, path);
336                         return 0;
337                 }
338                 dst_copy = kmalloc(item_size, GFP_NOFS);
339                 src_copy = kmalloc(item_size, GFP_NOFS);
340
341                 read_extent_buffer(eb, src_copy, src_ptr, item_size);
342
343                 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
344                 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
345                                    item_size);
346                 ret = memcmp(dst_copy, src_copy, item_size);
347
348                 kfree(dst_copy);
349                 kfree(src_copy);
350                 /*
351                  * they have the same contents, just return, this saves
352                  * us from cowing blocks in the destination tree and doing
353                  * extra writes that may not have been done by a previous
354                  * sync
355                  */
356                 if (ret == 0) {
357                         btrfs_release_path(root, path);
358                         return 0;
359                 }
360
361         }
362 insert:
363         btrfs_release_path(root, path);
364         /* try to insert the key into the destination tree */
365         ret = btrfs_insert_empty_item(trans, root, path,
366                                       key, item_size);
367
368         /* make sure any existing item is the correct size */
369         if (ret == -EEXIST) {
370                 u32 found_size;
371                 found_size = btrfs_item_size_nr(path->nodes[0],
372                                                 path->slots[0]);
373                 if (found_size > item_size) {
374                         btrfs_truncate_item(trans, root, path, item_size, 1);
375                 } else if (found_size < item_size) {
376                         ret = btrfs_del_item(trans, root,
377                                              path);
378                         BUG_ON(ret);
379
380                         btrfs_release_path(root, path);
381                         ret = btrfs_insert_empty_item(trans,
382                                   root, path, key, item_size);
383                         BUG_ON(ret);
384                 }
385         } else if (ret) {
386                 BUG();
387         }
388         dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
389                                         path->slots[0]);
390
391         /* don't overwrite an existing inode if the generation number
392          * was logged as zero.  This is done when the tree logging code
393          * is just logging an inode to make sure it exists after recovery.
394          *
395          * Also, don't overwrite i_size on directories during replay.
396          * log replay inserts and removes directory items based on the
397          * state of the tree found in the subvolume, and i_size is modified
398          * as it goes
399          */
400         if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
401                 struct btrfs_inode_item *src_item;
402                 struct btrfs_inode_item *dst_item;
403
404                 src_item = (struct btrfs_inode_item *)src_ptr;
405                 dst_item = (struct btrfs_inode_item *)dst_ptr;
406
407                 if (btrfs_inode_generation(eb, src_item) == 0)
408                         goto no_copy;
409
410                 if (overwrite_root &&
411                     S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
412                     S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
413                         save_old_i_size = 1;
414                         saved_i_size = btrfs_inode_size(path->nodes[0],
415                                                         dst_item);
416                 }
417         }
418
419         copy_extent_buffer(path->nodes[0], eb, dst_ptr,
420                            src_ptr, item_size);
421
422         if (save_old_i_size) {
423                 struct btrfs_inode_item *dst_item;
424                 dst_item = (struct btrfs_inode_item *)dst_ptr;
425                 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
426         }
427
428         /* make sure the generation is filled in */
429         if (key->type == BTRFS_INODE_ITEM_KEY) {
430                 struct btrfs_inode_item *dst_item;
431                 dst_item = (struct btrfs_inode_item *)dst_ptr;
432                 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
433                         btrfs_set_inode_generation(path->nodes[0], dst_item,
434                                                    trans->transid);
435                 }
436         }
437
438         if (overwrite_root &&
439             key->type == BTRFS_EXTENT_DATA_KEY) {
440                 int extent_type;
441                 struct btrfs_file_extent_item *fi;
442
443                 fi = (struct btrfs_file_extent_item *)dst_ptr;
444                 extent_type = btrfs_file_extent_type(path->nodes[0], fi);
445                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
446                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
447                         struct btrfs_key ins;
448                         ins.objectid = btrfs_file_extent_disk_bytenr(
449                                                         path->nodes[0], fi);
450                         ins.offset = btrfs_file_extent_disk_num_bytes(
451                                                         path->nodes[0], fi);
452                         ins.type = BTRFS_EXTENT_ITEM_KEY;
453
454                         /*
455                          * is this extent already allocated in the extent
456                          * allocation tree?  If so, just add a reference
457                          */
458                         ret = btrfs_lookup_extent(root, ins.objectid,
459                                                   ins.offset);
460                         if (ret == 0) {
461                                 ret = btrfs_inc_extent_ref(trans, root,
462                                                 ins.objectid, ins.offset,
463                                                 path->nodes[0]->start,
464                                                 root->root_key.objectid,
465                                                 trans->transid, key->objectid);
466                         } else {
467                                 /*
468                                  * insert the extent pointer in the extent
469                                  * allocation tree
470                                  */
471                                 ret = btrfs_alloc_logged_extent(trans, root,
472                                                 path->nodes[0]->start,
473                                                 root->root_key.objectid,
474                                                 trans->transid, key->objectid,
475                                                 &ins);
476                                 BUG_ON(ret);
477                         }
478                 }
479         }
480 no_copy:
481         btrfs_mark_buffer_dirty(path->nodes[0]);
482         btrfs_release_path(root, path);
483         return 0;
484 }
485
486 /*
487  * simple helper to read an inode off the disk from a given root
488  * This can only be called for subvolume roots and not for the log
489  */
490 static noinline struct inode *read_one_inode(struct btrfs_root *root,
491                                              u64 objectid)
492 {
493         struct inode *inode;
494         inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
495         if (inode->i_state & I_NEW) {
496                 BTRFS_I(inode)->root = root;
497                 BTRFS_I(inode)->location.objectid = objectid;
498                 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
499                 BTRFS_I(inode)->location.offset = 0;
500                 btrfs_read_locked_inode(inode);
501                 unlock_new_inode(inode);
502
503         }
504         if (is_bad_inode(inode)) {
505                 iput(inode);
506                 inode = NULL;
507         }
508         return inode;
509 }
510
511 /* replays a single extent in 'eb' at 'slot' with 'key' into the
512  * subvolume 'root'.  path is released on entry and should be released
513  * on exit.
514  *
515  * extents in the log tree have not been allocated out of the extent
516  * tree yet.  So, this completes the allocation, taking a reference
517  * as required if the extent already exists or creating a new extent
518  * if it isn't in the extent allocation tree yet.
519  *
520  * The extent is inserted into the file, dropping any existing extents
521  * from the file that overlap the new one.
522  */
523 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
524                                       struct btrfs_root *root,
525                                       struct btrfs_path *path,
526                                       struct extent_buffer *eb, int slot,
527                                       struct btrfs_key *key)
528 {
529         int found_type;
530         u64 mask = root->sectorsize - 1;
531         u64 extent_end;
532         u64 alloc_hint;
533         u64 start = key->offset;
534         struct btrfs_file_extent_item *item;
535         struct inode *inode = NULL;
536         unsigned long size;
537         int ret = 0;
538
539         item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
540         found_type = btrfs_file_extent_type(eb, item);
541
542         if (found_type == BTRFS_FILE_EXTENT_REG ||
543             found_type == BTRFS_FILE_EXTENT_PREALLOC)
544                 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
545         else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
546                 size = btrfs_file_extent_inline_len(eb, item);
547                 extent_end = (start + size + mask) & ~mask;
548         } else {
549                 ret = 0;
550                 goto out;
551         }
552
553         inode = read_one_inode(root, key->objectid);
554         if (!inode) {
555                 ret = -EIO;
556                 goto out;
557         }
558
559         /*
560          * first check to see if we already have this extent in the
561          * file.  This must be done before the btrfs_drop_extents run
562          * so we don't try to drop this extent.
563          */
564         ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
565                                        start, 0);
566
567         if (ret == 0 &&
568             (found_type == BTRFS_FILE_EXTENT_REG ||
569              found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
570                 struct btrfs_file_extent_item cmp1;
571                 struct btrfs_file_extent_item cmp2;
572                 struct btrfs_file_extent_item *existing;
573                 struct extent_buffer *leaf;
574
575                 leaf = path->nodes[0];
576                 existing = btrfs_item_ptr(leaf, path->slots[0],
577                                           struct btrfs_file_extent_item);
578
579                 read_extent_buffer(eb, &cmp1, (unsigned long)item,
580                                    sizeof(cmp1));
581                 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
582                                    sizeof(cmp2));
583
584                 /*
585                  * we already have a pointer to this exact extent,
586                  * we don't have to do anything
587                  */
588                 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
589                         btrfs_release_path(root, path);
590                         goto out;
591                 }
592         }
593         btrfs_release_path(root, path);
594
595         /* drop any overlapping extents */
596         ret = btrfs_drop_extents(trans, root, inode,
597                          start, extent_end, start, &alloc_hint);
598         BUG_ON(ret);
599
600         /* insert the extent */
601         ret = overwrite_item(trans, root, path, eb, slot, key);
602         BUG_ON(ret);
603
604         /* btrfs_drop_extents changes i_bytes & i_blocks, update it here */
605         inode_add_bytes(inode, extent_end - start);
606         btrfs_update_inode(trans, root, inode);
607 out:
608         if (inode)
609                 iput(inode);
610         return ret;
611 }
612
613 /*
614  * when cleaning up conflicts between the directory names in the
615  * subvolume, directory names in the log and directory names in the
616  * inode back references, we may have to unlink inodes from directories.
617  *
618  * This is a helper function to do the unlink of a specific directory
619  * item
620  */
621 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
622                                       struct btrfs_root *root,
623                                       struct btrfs_path *path,
624                                       struct inode *dir,
625                                       struct btrfs_dir_item *di)
626 {
627         struct inode *inode;
628         char *name;
629         int name_len;
630         struct extent_buffer *leaf;
631         struct btrfs_key location;
632         int ret;
633
634         leaf = path->nodes[0];
635
636         btrfs_dir_item_key_to_cpu(leaf, di, &location);
637         name_len = btrfs_dir_name_len(leaf, di);
638         name = kmalloc(name_len, GFP_NOFS);
639         read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
640         btrfs_release_path(root, path);
641
642         inode = read_one_inode(root, location.objectid);
643         BUG_ON(!inode);
644
645         btrfs_inc_nlink(inode);
646         ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
647         kfree(name);
648
649         iput(inode);
650         return ret;
651 }
652
653 /*
654  * helper function to see if a given name and sequence number found
655  * in an inode back reference are already in a directory and correctly
656  * point to this inode
657  */
658 static noinline int inode_in_dir(struct btrfs_root *root,
659                                  struct btrfs_path *path,
660                                  u64 dirid, u64 objectid, u64 index,
661                                  const char *name, int name_len)
662 {
663         struct btrfs_dir_item *di;
664         struct btrfs_key location;
665         int match = 0;
666
667         di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
668                                          index, name, name_len, 0);
669         if (di && !IS_ERR(di)) {
670                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
671                 if (location.objectid != objectid)
672                         goto out;
673         } else
674                 goto out;
675         btrfs_release_path(root, path);
676
677         di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
678         if (di && !IS_ERR(di)) {
679                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
680                 if (location.objectid != objectid)
681                         goto out;
682         } else
683                 goto out;
684         match = 1;
685 out:
686         btrfs_release_path(root, path);
687         return match;
688 }
689
690 /*
691  * helper function to check a log tree for a named back reference in
692  * an inode.  This is used to decide if a back reference that is
693  * found in the subvolume conflicts with what we find in the log.
694  *
695  * inode backreferences may have multiple refs in a single item,
696  * during replay we process one reference at a time, and we don't
697  * want to delete valid links to a file from the subvolume if that
698  * link is also in the log.
699  */
700 static noinline int backref_in_log(struct btrfs_root *log,
701                                    struct btrfs_key *key,
702                                    char *name, int namelen)
703 {
704         struct btrfs_path *path;
705         struct btrfs_inode_ref *ref;
706         unsigned long ptr;
707         unsigned long ptr_end;
708         unsigned long name_ptr;
709         int found_name_len;
710         int item_size;
711         int ret;
712         int match = 0;
713
714         path = btrfs_alloc_path();
715         ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
716         if (ret != 0)
717                 goto out;
718
719         item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
720         ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
721         ptr_end = ptr + item_size;
722         while (ptr < ptr_end) {
723                 ref = (struct btrfs_inode_ref *)ptr;
724                 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
725                 if (found_name_len == namelen) {
726                         name_ptr = (unsigned long)(ref + 1);
727                         ret = memcmp_extent_buffer(path->nodes[0], name,
728                                                    name_ptr, namelen);
729                         if (ret == 0) {
730                                 match = 1;
731                                 goto out;
732                         }
733                 }
734                 ptr = (unsigned long)(ref + 1) + found_name_len;
735         }
736 out:
737         btrfs_free_path(path);
738         return match;
739 }
740
741
742 /*
743  * replay one inode back reference item found in the log tree.
744  * eb, slot and key refer to the buffer and key found in the log tree.
745  * root is the destination we are replaying into, and path is for temp
746  * use by this function.  (it should be released on return).
747  */
748 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
749                                   struct btrfs_root *root,
750                                   struct btrfs_root *log,
751                                   struct btrfs_path *path,
752                                   struct extent_buffer *eb, int slot,
753                                   struct btrfs_key *key)
754 {
755         struct inode *dir;
756         int ret;
757         struct btrfs_key location;
758         struct btrfs_inode_ref *ref;
759         struct btrfs_dir_item *di;
760         struct inode *inode;
761         char *name;
762         int namelen;
763         unsigned long ref_ptr;
764         unsigned long ref_end;
765
766         location.objectid = key->objectid;
767         location.type = BTRFS_INODE_ITEM_KEY;
768         location.offset = 0;
769
770         /*
771          * it is possible that we didn't log all the parent directories
772          * for a given inode.  If we don't find the dir, just don't
773          * copy the back ref in.  The link count fixup code will take
774          * care of the rest
775          */
776         dir = read_one_inode(root, key->offset);
777         if (!dir)
778                 return -ENOENT;
779
780         inode = read_one_inode(root, key->objectid);
781         BUG_ON(!dir);
782
783         ref_ptr = btrfs_item_ptr_offset(eb, slot);
784         ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
785
786 again:
787         ref = (struct btrfs_inode_ref *)ref_ptr;
788
789         namelen = btrfs_inode_ref_name_len(eb, ref);
790         name = kmalloc(namelen, GFP_NOFS);
791         BUG_ON(!name);
792
793         read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
794
795         /* if we already have a perfect match, we're done */
796         if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
797                          btrfs_inode_ref_index(eb, ref),
798                          name, namelen)) {
799                 goto out;
800         }
801
802         /*
803          * look for a conflicting back reference in the metadata.
804          * if we find one we have to unlink that name of the file
805          * before we add our new link.  Later on, we overwrite any
806          * existing back reference, and we don't want to create
807          * dangling pointers in the directory.
808          */
809 conflict_again:
810         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
811         if (ret == 0) {
812                 char *victim_name;
813                 int victim_name_len;
814                 struct btrfs_inode_ref *victim_ref;
815                 unsigned long ptr;
816                 unsigned long ptr_end;
817                 struct extent_buffer *leaf = path->nodes[0];
818
819                 /* are we trying to overwrite a back ref for the root directory
820                  * if so, just jump out, we're done
821                  */
822                 if (key->objectid == key->offset)
823                         goto out_nowrite;
824
825                 /* check all the names in this back reference to see
826                  * if they are in the log.  if so, we allow them to stay
827                  * otherwise they must be unlinked as a conflict
828                  */
829                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
830                 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
831                 while(ptr < ptr_end) {
832                         victim_ref = (struct btrfs_inode_ref *)ptr;
833                         victim_name_len = btrfs_inode_ref_name_len(leaf,
834                                                                    victim_ref);
835                         victim_name = kmalloc(victim_name_len, GFP_NOFS);
836                         BUG_ON(!victim_name);
837
838                         read_extent_buffer(leaf, victim_name,
839                                            (unsigned long)(victim_ref + 1),
840                                            victim_name_len);
841
842                         if (!backref_in_log(log, key, victim_name,
843                                             victim_name_len)) {
844                                 btrfs_inc_nlink(inode);
845                                 btrfs_release_path(root, path);
846                                 ret = btrfs_unlink_inode(trans, root, dir,
847                                                          inode, victim_name,
848                                                          victim_name_len);
849                                 kfree(victim_name);
850                                 btrfs_release_path(root, path);
851                                 goto conflict_again;
852                         }
853                         kfree(victim_name);
854                         ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
855                 }
856                 BUG_ON(ret);
857         }
858         btrfs_release_path(root, path);
859
860         /* look for a conflicting sequence number */
861         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
862                                          btrfs_inode_ref_index(eb, ref),
863                                          name, namelen, 0);
864         if (di && !IS_ERR(di)) {
865                 ret = drop_one_dir_item(trans, root, path, dir, di);
866                 BUG_ON(ret);
867         }
868         btrfs_release_path(root, path);
869
870
871         /* look for a conflicting name */
872         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
873                                    name, namelen, 0);
874         if (di && !IS_ERR(di)) {
875                 ret = drop_one_dir_item(trans, root, path, dir, di);
876                 BUG_ON(ret);
877         }
878         btrfs_release_path(root, path);
879
880         /* insert our name */
881         ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
882                              btrfs_inode_ref_index(eb, ref));
883         BUG_ON(ret);
884
885         btrfs_update_inode(trans, root, inode);
886
887 out:
888         ref_ptr = (unsigned long)(ref + 1) + namelen;
889         kfree(name);
890         if (ref_ptr < ref_end)
891                 goto again;
892
893         /* finally write the back reference in the inode */
894         ret = overwrite_item(trans, root, path, eb, slot, key);
895         BUG_ON(ret);
896
897 out_nowrite:
898         btrfs_release_path(root, path);
899         iput(dir);
900         iput(inode);
901         return 0;
902 }
903
904 /*
905  * replay one csum item from the log tree into the subvolume 'root'
906  * eb, slot and key all refer to the log tree
907  * path is for temp use by this function and should be released on return
908  *
909  * This copies the checksums out of the log tree and inserts them into
910  * the subvolume.  Any existing checksums for this range in the file
911  * are overwritten, and new items are added where required.
912  *
913  * We keep this simple by reusing the btrfs_ordered_sum code from
914  * the data=ordered mode.  This basically means making a copy
915  * of all the checksums in ram, which we have to do anyway for kmap
916  * rules.
917  *
918  * The copy is then sent down to btrfs_csum_file_blocks, which
919  * does all the hard work of finding existing items in the file
920  * or adding new ones.
921  */
922 static noinline int replay_one_csum(struct btrfs_trans_handle *trans,
923                                       struct btrfs_root *root,
924                                       struct btrfs_path *path,
925                                       struct extent_buffer *eb, int slot,
926                                       struct btrfs_key *key)
927 {
928         int ret;
929         u32 item_size = btrfs_item_size_nr(eb, slot);
930         u64 cur_offset;
931         unsigned long file_bytes;
932         struct btrfs_ordered_sum *sums;
933         struct btrfs_sector_sum *sector_sum;
934         struct inode *inode;
935         unsigned long ptr;
936
937         file_bytes = (item_size / BTRFS_CRC32_SIZE) * root->sectorsize;
938         inode = read_one_inode(root, key->objectid);
939         if (!inode) {
940                 return -EIO;
941         }
942
943         sums = kzalloc(btrfs_ordered_sum_size(root, file_bytes), GFP_NOFS);
944         if (!sums) {
945                 iput(inode);
946                 return -ENOMEM;
947         }
948
949         INIT_LIST_HEAD(&sums->list);
950         sums->len = file_bytes;
951         sums->file_offset = key->offset;
952
953         /*
954          * copy all the sums into the ordered sum struct
955          */
956         sector_sum = sums->sums;
957         cur_offset = key->offset;
958         ptr = btrfs_item_ptr_offset(eb, slot);
959         while(item_size > 0) {
960                 sector_sum->offset = cur_offset;
961                 read_extent_buffer(eb, &sector_sum->sum, ptr, BTRFS_CRC32_SIZE);
962                 sector_sum++;
963                 item_size -= BTRFS_CRC32_SIZE;
964                 ptr += BTRFS_CRC32_SIZE;
965                 cur_offset += root->sectorsize;
966         }
967
968         /* let btrfs_csum_file_blocks add them into the file */
969         ret = btrfs_csum_file_blocks(trans, root, inode, sums);
970         BUG_ON(ret);
971         kfree(sums);
972         iput(inode);
973
974         return 0;
975 }
976 /*
977  * There are a few corners where the link count of the file can't
978  * be properly maintained during replay.  So, instead of adding
979  * lots of complexity to the log code, we just scan the backrefs
980  * for any file that has been through replay.
981  *
982  * The scan will update the link count on the inode to reflect the
983  * number of back refs found.  If it goes down to zero, the iput
984  * will free the inode.
985  */
986 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
987                                            struct btrfs_root *root,
988                                            struct inode *inode)
989 {
990         struct btrfs_path *path;
991         int ret;
992         struct btrfs_key key;
993         u64 nlink = 0;
994         unsigned long ptr;
995         unsigned long ptr_end;
996         int name_len;
997
998         key.objectid = inode->i_ino;
999         key.type = BTRFS_INODE_REF_KEY;
1000         key.offset = (u64)-1;
1001
1002         path = btrfs_alloc_path();
1003
1004         while(1) {
1005                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1006                 if (ret < 0)
1007                         break;
1008                 if (ret > 0) {
1009                         if (path->slots[0] == 0)
1010                                 break;
1011                         path->slots[0]--;
1012                 }
1013                 btrfs_item_key_to_cpu(path->nodes[0], &key,
1014                                       path->slots[0]);
1015                 if (key.objectid != inode->i_ino ||
1016                     key.type != BTRFS_INODE_REF_KEY)
1017                         break;
1018                 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1019                 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1020                                                    path->slots[0]);
1021                 while(ptr < ptr_end) {
1022                         struct btrfs_inode_ref *ref;
1023
1024                         ref = (struct btrfs_inode_ref *)ptr;
1025                         name_len = btrfs_inode_ref_name_len(path->nodes[0],
1026                                                             ref);
1027                         ptr = (unsigned long)(ref + 1) + name_len;
1028                         nlink++;
1029                 }
1030
1031                 if (key.offset == 0)
1032                         break;
1033                 key.offset--;
1034                 btrfs_release_path(root, path);
1035         }
1036         btrfs_free_path(path);
1037         if (nlink != inode->i_nlink) {
1038                 inode->i_nlink = nlink;
1039                 btrfs_update_inode(trans, root, inode);
1040         }
1041         BTRFS_I(inode)->index_cnt = (u64)-1;
1042
1043         return 0;
1044 }
1045
1046 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1047                                             struct btrfs_root *root,
1048                                             struct btrfs_path *path)
1049 {
1050         int ret;
1051         struct btrfs_key key;
1052         struct inode *inode;
1053
1054         key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1055         key.type = BTRFS_ORPHAN_ITEM_KEY;
1056         key.offset = (u64)-1;
1057         while(1) {
1058                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1059                 if (ret < 0)
1060                         break;
1061
1062                 if (ret == 1) {
1063                         if (path->slots[0] == 0)
1064                                 break;
1065                         path->slots[0]--;
1066                 }
1067
1068                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1069                 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1070                     key.type != BTRFS_ORPHAN_ITEM_KEY)
1071                         break;
1072
1073                 ret = btrfs_del_item(trans, root, path);
1074                 BUG_ON(ret);
1075
1076                 btrfs_release_path(root, path);
1077                 inode = read_one_inode(root, key.offset);
1078                 BUG_ON(!inode);
1079
1080                 ret = fixup_inode_link_count(trans, root, inode);
1081                 BUG_ON(ret);
1082
1083                 iput(inode);
1084
1085                 if (key.offset == 0)
1086                         break;
1087                 key.offset--;
1088         }
1089         btrfs_release_path(root, path);
1090         return 0;
1091 }
1092
1093
1094 /*
1095  * record a given inode in the fixup dir so we can check its link
1096  * count when replay is done.  The link count is incremented here
1097  * so the inode won't go away until we check it
1098  */
1099 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1100                                       struct btrfs_root *root,
1101                                       struct btrfs_path *path,
1102                                       u64 objectid)
1103 {
1104         struct btrfs_key key;
1105         int ret = 0;
1106         struct inode *inode;
1107
1108         inode = read_one_inode(root, objectid);
1109         BUG_ON(!inode);
1110
1111         key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1112         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1113         key.offset = objectid;
1114
1115         ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1116
1117         btrfs_release_path(root, path);
1118         if (ret == 0) {
1119                 btrfs_inc_nlink(inode);
1120                 btrfs_update_inode(trans, root, inode);
1121         } else if (ret == -EEXIST) {
1122                 ret = 0;
1123         } else {
1124                 BUG();
1125         }
1126         iput(inode);
1127
1128         return ret;
1129 }
1130
1131 /*
1132  * when replaying the log for a directory, we only insert names
1133  * for inodes that actually exist.  This means an fsync on a directory
1134  * does not implicitly fsync all the new files in it
1135  */
1136 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1137                                     struct btrfs_root *root,
1138                                     struct btrfs_path *path,
1139                                     u64 dirid, u64 index,
1140                                     char *name, int name_len, u8 type,
1141                                     struct btrfs_key *location)
1142 {
1143         struct inode *inode;
1144         struct inode *dir;
1145         int ret;
1146
1147         inode = read_one_inode(root, location->objectid);
1148         if (!inode)
1149                 return -ENOENT;
1150
1151         dir = read_one_inode(root, dirid);
1152         if (!dir) {
1153                 iput(inode);
1154                 return -EIO;
1155         }
1156         ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1157
1158         /* FIXME, put inode into FIXUP list */
1159
1160         iput(inode);
1161         iput(dir);
1162         return ret;
1163 }
1164
1165 /*
1166  * take a single entry in a log directory item and replay it into
1167  * the subvolume.
1168  *
1169  * if a conflicting item exists in the subdirectory already,
1170  * the inode it points to is unlinked and put into the link count
1171  * fix up tree.
1172  *
1173  * If a name from the log points to a file or directory that does
1174  * not exist in the FS, it is skipped.  fsyncs on directories
1175  * do not force down inodes inside that directory, just changes to the
1176  * names or unlinks in a directory.
1177  */
1178 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1179                                     struct btrfs_root *root,
1180                                     struct btrfs_path *path,
1181                                     struct extent_buffer *eb,
1182                                     struct btrfs_dir_item *di,
1183                                     struct btrfs_key *key)
1184 {
1185         char *name;
1186         int name_len;
1187         struct btrfs_dir_item *dst_di;
1188         struct btrfs_key found_key;
1189         struct btrfs_key log_key;
1190         struct inode *dir;
1191         u8 log_type;
1192         int exists;
1193         int ret;
1194
1195         dir = read_one_inode(root, key->objectid);
1196         BUG_ON(!dir);
1197
1198         name_len = btrfs_dir_name_len(eb, di);
1199         name = kmalloc(name_len, GFP_NOFS);
1200         log_type = btrfs_dir_type(eb, di);
1201         read_extent_buffer(eb, name, (unsigned long)(di + 1),
1202                    name_len);
1203
1204         btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1205         exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1206         if (exists == 0)
1207                 exists = 1;
1208         else
1209                 exists = 0;
1210         btrfs_release_path(root, path);
1211
1212         if (key->type == BTRFS_DIR_ITEM_KEY) {
1213                 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1214                                        name, name_len, 1);
1215         }
1216         else if (key->type == BTRFS_DIR_INDEX_KEY) {
1217                 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1218                                                      key->objectid,
1219                                                      key->offset, name,
1220                                                      name_len, 1);
1221         } else {
1222                 BUG();
1223         }
1224         if (!dst_di || IS_ERR(dst_di)) {
1225                 /* we need a sequence number to insert, so we only
1226                  * do inserts for the BTRFS_DIR_INDEX_KEY types
1227                  */
1228                 if (key->type != BTRFS_DIR_INDEX_KEY)
1229                         goto out;
1230                 goto insert;
1231         }
1232
1233         btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1234         /* the existing item matches the logged item */
1235         if (found_key.objectid == log_key.objectid &&
1236             found_key.type == log_key.type &&
1237             found_key.offset == log_key.offset &&
1238             btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1239                 goto out;
1240         }
1241
1242         /*
1243          * don't drop the conflicting directory entry if the inode
1244          * for the new entry doesn't exist
1245          */
1246         if (!exists)
1247                 goto out;
1248
1249         ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1250         BUG_ON(ret);
1251
1252         if (key->type == BTRFS_DIR_INDEX_KEY)
1253                 goto insert;
1254 out:
1255         btrfs_release_path(root, path);
1256         kfree(name);
1257         iput(dir);
1258         return 0;
1259
1260 insert:
1261         btrfs_release_path(root, path);
1262         ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1263                               name, name_len, log_type, &log_key);
1264
1265         if (ret && ret != -ENOENT)
1266                 BUG();
1267         goto out;
1268 }
1269
1270 /*
1271  * find all the names in a directory item and reconcile them into
1272  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1273  * one name in a directory item, but the same code gets used for
1274  * both directory index types
1275  */
1276 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1277                                         struct btrfs_root *root,
1278                                         struct btrfs_path *path,
1279                                         struct extent_buffer *eb, int slot,
1280                                         struct btrfs_key *key)
1281 {
1282         int ret;
1283         u32 item_size = btrfs_item_size_nr(eb, slot);
1284         struct btrfs_dir_item *di;
1285         int name_len;
1286         unsigned long ptr;
1287         unsigned long ptr_end;
1288
1289         ptr = btrfs_item_ptr_offset(eb, slot);
1290         ptr_end = ptr + item_size;
1291         while(ptr < ptr_end) {
1292                 di = (struct btrfs_dir_item *)ptr;
1293                 name_len = btrfs_dir_name_len(eb, di);
1294                 ret = replay_one_name(trans, root, path, eb, di, key);
1295                 BUG_ON(ret);
1296                 ptr = (unsigned long)(di + 1);
1297                 ptr += name_len;
1298         }
1299         return 0;
1300 }
1301
1302 /*
1303  * directory replay has two parts.  There are the standard directory
1304  * items in the log copied from the subvolume, and range items
1305  * created in the log while the subvolume was logged.
1306  *
1307  * The range items tell us which parts of the key space the log
1308  * is authoritative for.  During replay, if a key in the subvolume
1309  * directory is in a logged range item, but not actually in the log
1310  * that means it was deleted from the directory before the fsync
1311  * and should be removed.
1312  */
1313 static noinline int find_dir_range(struct btrfs_root *root,
1314                                    struct btrfs_path *path,
1315                                    u64 dirid, int key_type,
1316                                    u64 *start_ret, u64 *end_ret)
1317 {
1318         struct btrfs_key key;
1319         u64 found_end;
1320         struct btrfs_dir_log_item *item;
1321         int ret;
1322         int nritems;
1323
1324         if (*start_ret == (u64)-1)
1325                 return 1;
1326
1327         key.objectid = dirid;
1328         key.type = key_type;
1329         key.offset = *start_ret;
1330
1331         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1332         if (ret < 0)
1333                 goto out;
1334         if (ret > 0) {
1335                 if (path->slots[0] == 0)
1336                         goto out;
1337                 path->slots[0]--;
1338         }
1339         if (ret != 0)
1340                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1341
1342         if (key.type != key_type || key.objectid != dirid) {
1343                 ret = 1;
1344                 goto next;
1345         }
1346         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1347                               struct btrfs_dir_log_item);
1348         found_end = btrfs_dir_log_end(path->nodes[0], item);
1349
1350         if (*start_ret >= key.offset && *start_ret <= found_end) {
1351                 ret = 0;
1352                 *start_ret = key.offset;
1353                 *end_ret = found_end;
1354                 goto out;
1355         }
1356         ret = 1;
1357 next:
1358         /* check the next slot in the tree to see if it is a valid item */
1359         nritems = btrfs_header_nritems(path->nodes[0]);
1360         if (path->slots[0] >= nritems) {
1361                 ret = btrfs_next_leaf(root, path);
1362                 if (ret)
1363                         goto out;
1364         } else {
1365                 path->slots[0]++;
1366         }
1367
1368         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1369
1370         if (key.type != key_type || key.objectid != dirid) {
1371                 ret = 1;
1372                 goto out;
1373         }
1374         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1375                               struct btrfs_dir_log_item);
1376         found_end = btrfs_dir_log_end(path->nodes[0], item);
1377         *start_ret = key.offset;
1378         *end_ret = found_end;
1379         ret = 0;
1380 out:
1381         btrfs_release_path(root, path);
1382         return ret;
1383 }
1384
1385 /*
1386  * this looks for a given directory item in the log.  If the directory
1387  * item is not in the log, the item is removed and the inode it points
1388  * to is unlinked
1389  */
1390 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1391                                       struct btrfs_root *root,
1392                                       struct btrfs_root *log,
1393                                       struct btrfs_path *path,
1394                                       struct btrfs_path *log_path,
1395                                       struct inode *dir,
1396                                       struct btrfs_key *dir_key)
1397 {
1398         int ret;
1399         struct extent_buffer *eb;
1400         int slot;
1401         u32 item_size;
1402         struct btrfs_dir_item *di;
1403         struct btrfs_dir_item *log_di;
1404         int name_len;
1405         unsigned long ptr;
1406         unsigned long ptr_end;
1407         char *name;
1408         struct inode *inode;
1409         struct btrfs_key location;
1410
1411 again:
1412         eb = path->nodes[0];
1413         slot = path->slots[0];
1414         item_size = btrfs_item_size_nr(eb, slot);
1415         ptr = btrfs_item_ptr_offset(eb, slot);
1416         ptr_end = ptr + item_size;
1417         while(ptr < ptr_end) {
1418                 di = (struct btrfs_dir_item *)ptr;
1419                 name_len = btrfs_dir_name_len(eb, di);
1420                 name = kmalloc(name_len, GFP_NOFS);
1421                 if (!name) {
1422                         ret = -ENOMEM;
1423                         goto out;
1424                 }
1425                 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1426                                   name_len);
1427                 log_di = NULL;
1428                 if (dir_key->type == BTRFS_DIR_ITEM_KEY) {
1429                         log_di = btrfs_lookup_dir_item(trans, log, log_path,
1430                                                        dir_key->objectid,
1431                                                        name, name_len, 0);
1432                 } else if (dir_key->type == BTRFS_DIR_INDEX_KEY) {
1433                         log_di = btrfs_lookup_dir_index_item(trans, log,
1434                                                      log_path,
1435                                                      dir_key->objectid,
1436                                                      dir_key->offset,
1437                                                      name, name_len, 0);
1438                 }
1439                 if (!log_di || IS_ERR(log_di)) {
1440                         btrfs_dir_item_key_to_cpu(eb, di, &location);
1441                         btrfs_release_path(root, path);
1442                         btrfs_release_path(log, log_path);
1443                         inode = read_one_inode(root, location.objectid);
1444                         BUG_ON(!inode);
1445
1446                         ret = link_to_fixup_dir(trans, root,
1447                                                 path, location.objectid);
1448                         BUG_ON(ret);
1449                         btrfs_inc_nlink(inode);
1450                         ret = btrfs_unlink_inode(trans, root, dir, inode,
1451                                                  name, name_len);
1452                         BUG_ON(ret);
1453                         kfree(name);
1454                         iput(inode);
1455
1456                         /* there might still be more names under this key
1457                          * check and repeat if required
1458                          */
1459                         ret = btrfs_search_slot(NULL, root, dir_key, path,
1460                                                 0, 0);
1461                         if (ret == 0)
1462                                 goto again;
1463                         ret = 0;
1464                         goto out;
1465                 }
1466                 btrfs_release_path(log, log_path);
1467                 kfree(name);
1468
1469                 ptr = (unsigned long)(di + 1);
1470                 ptr += name_len;
1471         }
1472         ret = 0;
1473 out:
1474         btrfs_release_path(root, path);
1475         btrfs_release_path(log, log_path);
1476         return ret;
1477 }
1478
1479 /*
1480  * deletion replay happens before we copy any new directory items
1481  * out of the log or out of backreferences from inodes.  It
1482  * scans the log to find ranges of keys that log is authoritative for,
1483  * and then scans the directory to find items in those ranges that are
1484  * not present in the log.
1485  *
1486  * Anything we don't find in the log is unlinked and removed from the
1487  * directory.
1488  */
1489 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1490                                        struct btrfs_root *root,
1491                                        struct btrfs_root *log,
1492                                        struct btrfs_path *path,
1493                                        u64 dirid)
1494 {
1495         u64 range_start;
1496         u64 range_end;
1497         int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1498         int ret = 0;
1499         struct btrfs_key dir_key;
1500         struct btrfs_key found_key;
1501         struct btrfs_path *log_path;
1502         struct inode *dir;
1503
1504         dir_key.objectid = dirid;
1505         dir_key.type = BTRFS_DIR_ITEM_KEY;
1506         log_path = btrfs_alloc_path();
1507         if (!log_path)
1508                 return -ENOMEM;
1509
1510         dir = read_one_inode(root, dirid);
1511         /* it isn't an error if the inode isn't there, that can happen
1512          * because we replay the deletes before we copy in the inode item
1513          * from the log
1514          */
1515         if (!dir) {
1516                 btrfs_free_path(log_path);
1517                 return 0;
1518         }
1519 again:
1520         range_start = 0;
1521         range_end = 0;
1522         while(1) {
1523                 ret = find_dir_range(log, path, dirid, key_type,
1524                                      &range_start, &range_end);
1525                 if (ret != 0)
1526                         break;
1527
1528                 dir_key.offset = range_start;
1529                 while(1) {
1530                         int nritems;
1531                         ret = btrfs_search_slot(NULL, root, &dir_key, path,
1532                                                 0, 0);
1533                         if (ret < 0)
1534                                 goto out;
1535
1536                         nritems = btrfs_header_nritems(path->nodes[0]);
1537                         if (path->slots[0] >= nritems) {
1538                                 ret = btrfs_next_leaf(root, path);
1539                                 if (ret)
1540                                         break;
1541                         }
1542                         btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1543                                               path->slots[0]);
1544                         if (found_key.objectid != dirid ||
1545                             found_key.type != dir_key.type)
1546                                 goto next_type;
1547
1548                         if (found_key.offset > range_end)
1549                                 break;
1550
1551                         ret = check_item_in_log(trans, root, log, path,
1552                                                 log_path, dir, &found_key);
1553                         BUG_ON(ret);
1554                         if (found_key.offset == (u64)-1)
1555                                 break;
1556                         dir_key.offset = found_key.offset + 1;
1557                 }
1558                 btrfs_release_path(root, path);
1559                 if (range_end == (u64)-1)
1560                         break;
1561                 range_start = range_end + 1;
1562         }
1563
1564 next_type:
1565         ret = 0;
1566         if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1567                 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1568                 dir_key.type = BTRFS_DIR_INDEX_KEY;
1569                 btrfs_release_path(root, path);
1570                 goto again;
1571         }
1572 out:
1573         btrfs_release_path(root, path);
1574         btrfs_free_path(log_path);
1575         iput(dir);
1576         return ret;
1577 }
1578
1579 /*
1580  * the process_func used to replay items from the log tree.  This
1581  * gets called in two different stages.  The first stage just looks
1582  * for inodes and makes sure they are all copied into the subvolume.
1583  *
1584  * The second stage copies all the other item types from the log into
1585  * the subvolume.  The two stage approach is slower, but gets rid of
1586  * lots of complexity around inodes referencing other inodes that exist
1587  * only in the log (references come from either directory items or inode
1588  * back refs).
1589  */
1590 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1591                              struct walk_control *wc, u64 gen)
1592 {
1593         int nritems;
1594         struct btrfs_path *path;
1595         struct btrfs_root *root = wc->replay_dest;
1596         struct btrfs_key key;
1597         u32 item_size;
1598         int level;
1599         int i;
1600         int ret;
1601
1602         btrfs_read_buffer(eb, gen);
1603
1604         level = btrfs_header_level(eb);
1605
1606         if (level != 0)
1607                 return 0;
1608
1609         path = btrfs_alloc_path();
1610         BUG_ON(!path);
1611
1612         nritems = btrfs_header_nritems(eb);
1613         for (i = 0; i < nritems; i++) {
1614                 btrfs_item_key_to_cpu(eb, &key, i);
1615                 item_size = btrfs_item_size_nr(eb, i);
1616
1617                 /* inode keys are done during the first stage */
1618                 if (key.type == BTRFS_INODE_ITEM_KEY &&
1619                     wc->stage == LOG_WALK_REPLAY_INODES) {
1620                         struct inode *inode;
1621                         struct btrfs_inode_item *inode_item;
1622                         u32 mode;
1623
1624                         inode_item = btrfs_item_ptr(eb, i,
1625                                             struct btrfs_inode_item);
1626                         mode = btrfs_inode_mode(eb, inode_item);
1627                         if (S_ISDIR(mode)) {
1628                                 ret = replay_dir_deletes(wc->trans,
1629                                          root, log, path, key.objectid);
1630                                 BUG_ON(ret);
1631                         }
1632                         ret = overwrite_item(wc->trans, root, path,
1633                                              eb, i, &key);
1634                         BUG_ON(ret);
1635
1636                         /* for regular files, truncate away
1637                          * extents past the new EOF
1638                          */
1639                         if (S_ISREG(mode)) {
1640                                 inode = read_one_inode(root,
1641                                                        key.objectid);
1642                                 BUG_ON(!inode);
1643
1644                                 ret = btrfs_truncate_inode_items(wc->trans,
1645                                         root, inode, inode->i_size,
1646                                         BTRFS_EXTENT_DATA_KEY);
1647                                 BUG_ON(ret);
1648                                 iput(inode);
1649                         }
1650                         ret = link_to_fixup_dir(wc->trans, root,
1651                                                 path, key.objectid);
1652                         BUG_ON(ret);
1653                 }
1654                 if (wc->stage < LOG_WALK_REPLAY_ALL)
1655                         continue;
1656
1657                 /* these keys are simply copied */
1658                 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1659                         ret = overwrite_item(wc->trans, root, path,
1660                                              eb, i, &key);
1661                         BUG_ON(ret);
1662                 } else if (key.type == BTRFS_INODE_REF_KEY) {
1663                         ret = add_inode_ref(wc->trans, root, log, path,
1664                                             eb, i, &key);
1665                         BUG_ON(ret && ret != -ENOENT);
1666                 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1667                         ret = replay_one_extent(wc->trans, root, path,
1668                                                 eb, i, &key);
1669                         BUG_ON(ret);
1670                 } else if (key.type == BTRFS_CSUM_ITEM_KEY) {
1671                         ret = replay_one_csum(wc->trans, root, path,
1672                                               eb, i, &key);
1673                         BUG_ON(ret);
1674                 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1675                            key.type == BTRFS_DIR_INDEX_KEY) {
1676                         ret = replay_one_dir_item(wc->trans, root, path,
1677                                                   eb, i, &key);
1678                         BUG_ON(ret);
1679                 }
1680         }
1681         btrfs_free_path(path);
1682         return 0;
1683 }
1684
1685 static int noinline walk_down_log_tree(struct btrfs_trans_handle *trans,
1686                                    struct btrfs_root *root,
1687                                    struct btrfs_path *path, int *level,
1688                                    struct walk_control *wc)
1689 {
1690         u64 root_owner;
1691         u64 root_gen;
1692         u64 bytenr;
1693         u64 ptr_gen;
1694         struct extent_buffer *next;
1695         struct extent_buffer *cur;
1696         struct extent_buffer *parent;
1697         u32 blocksize;
1698         int ret = 0;
1699
1700         WARN_ON(*level < 0);
1701         WARN_ON(*level >= BTRFS_MAX_LEVEL);
1702
1703         while(*level > 0) {
1704                 WARN_ON(*level < 0);
1705                 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1706                 cur = path->nodes[*level];
1707
1708                 if (btrfs_header_level(cur) != *level)
1709                         WARN_ON(1);
1710
1711                 if (path->slots[*level] >=
1712                     btrfs_header_nritems(cur))
1713                         break;
1714
1715                 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1716                 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1717                 blocksize = btrfs_level_size(root, *level - 1);
1718
1719                 parent = path->nodes[*level];
1720                 root_owner = btrfs_header_owner(parent);
1721                 root_gen = btrfs_header_generation(parent);
1722
1723                 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1724
1725                 wc->process_func(root, next, wc, ptr_gen);
1726
1727                 if (*level == 1) {
1728                         path->slots[*level]++;
1729                         if (wc->free) {
1730                                 btrfs_read_buffer(next, ptr_gen);
1731
1732                                 btrfs_tree_lock(next);
1733                                 clean_tree_block(trans, root, next);
1734                                 btrfs_wait_tree_block_writeback(next);
1735                                 btrfs_tree_unlock(next);
1736
1737                                 ret = btrfs_drop_leaf_ref(trans, root, next);
1738                                 BUG_ON(ret);
1739
1740                                 WARN_ON(root_owner !=
1741                                         BTRFS_TREE_LOG_OBJECTID);
1742                                 ret = btrfs_free_reserved_extent(root,
1743                                                          bytenr, blocksize);
1744                                 BUG_ON(ret);
1745                         }
1746                         free_extent_buffer(next);
1747                         continue;
1748                 }
1749                 btrfs_read_buffer(next, ptr_gen);
1750
1751                 WARN_ON(*level <= 0);
1752                 if (path->nodes[*level-1])
1753                         free_extent_buffer(path->nodes[*level-1]);
1754                 path->nodes[*level-1] = next;
1755                 *level = btrfs_header_level(next);
1756                 path->slots[*level] = 0;
1757                 cond_resched();
1758         }
1759         WARN_ON(*level < 0);
1760         WARN_ON(*level >= BTRFS_MAX_LEVEL);
1761
1762         if (path->nodes[*level] == root->node) {
1763                 parent = path->nodes[*level];
1764         } else {
1765                 parent = path->nodes[*level + 1];
1766         }
1767         bytenr = path->nodes[*level]->start;
1768
1769         blocksize = btrfs_level_size(root, *level);
1770         root_owner = btrfs_header_owner(parent);
1771         root_gen = btrfs_header_generation(parent);
1772
1773         wc->process_func(root, path->nodes[*level], wc,
1774                          btrfs_header_generation(path->nodes[*level]));
1775
1776         if (wc->free) {
1777                 next = path->nodes[*level];
1778                 btrfs_tree_lock(next);
1779                 clean_tree_block(trans, root, next);
1780                 btrfs_wait_tree_block_writeback(next);
1781                 btrfs_tree_unlock(next);
1782
1783                 if (*level == 0) {
1784                         ret = btrfs_drop_leaf_ref(trans, root, next);
1785                         BUG_ON(ret);
1786                 }
1787                 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1788                 ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
1789                 BUG_ON(ret);
1790         }
1791         free_extent_buffer(path->nodes[*level]);
1792         path->nodes[*level] = NULL;
1793         *level += 1;
1794
1795         cond_resched();
1796         return 0;
1797 }
1798
1799 static int noinline walk_up_log_tree(struct btrfs_trans_handle *trans,
1800                                  struct btrfs_root *root,
1801                                  struct btrfs_path *path, int *level,
1802                                  struct walk_control *wc)
1803 {
1804         u64 root_owner;
1805         u64 root_gen;
1806         int i;
1807         int slot;
1808         int ret;
1809
1810         for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1811                 slot = path->slots[i];
1812                 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1813                         struct extent_buffer *node;
1814                         node = path->nodes[i];
1815                         path->slots[i]++;
1816                         *level = i;
1817                         WARN_ON(*level == 0);
1818                         return 0;
1819                 } else {
1820                         struct extent_buffer *parent;
1821                         if (path->nodes[*level] == root->node)
1822                                 parent = path->nodes[*level];
1823                         else
1824                                 parent = path->nodes[*level + 1];
1825
1826                         root_owner = btrfs_header_owner(parent);
1827                         root_gen = btrfs_header_generation(parent);
1828                         wc->process_func(root, path->nodes[*level], wc,
1829                                  btrfs_header_generation(path->nodes[*level]));
1830                         if (wc->free) {
1831                                 struct extent_buffer *next;
1832
1833                                 next = path->nodes[*level];
1834
1835                                 btrfs_tree_lock(next);
1836                                 clean_tree_block(trans, root, next);
1837                                 btrfs_wait_tree_block_writeback(next);
1838                                 btrfs_tree_unlock(next);
1839
1840                                 if (*level == 0) {
1841                                         ret = btrfs_drop_leaf_ref(trans, root,
1842                                                                   next);
1843                                         BUG_ON(ret);
1844                                 }
1845
1846                                 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1847                                 ret = btrfs_free_reserved_extent(root,
1848                                                 path->nodes[*level]->start,
1849                                                 path->nodes[*level]->len);
1850                                 BUG_ON(ret);
1851                         }
1852                         free_extent_buffer(path->nodes[*level]);
1853                         path->nodes[*level] = NULL;
1854                         *level = i + 1;
1855                 }
1856         }
1857         return 1;
1858 }
1859
1860 /*
1861  * drop the reference count on the tree rooted at 'snap'.  This traverses
1862  * the tree freeing any blocks that have a ref count of zero after being
1863  * decremented.
1864  */
1865 static int walk_log_tree(struct btrfs_trans_handle *trans,
1866                          struct btrfs_root *log, struct walk_control *wc)
1867 {
1868         int ret = 0;
1869         int wret;
1870         int level;
1871         struct btrfs_path *path;
1872         int i;
1873         int orig_level;
1874
1875         path = btrfs_alloc_path();
1876         BUG_ON(!path);
1877
1878         level = btrfs_header_level(log->node);
1879         orig_level = level;
1880         path->nodes[level] = log->node;
1881         extent_buffer_get(log->node);
1882         path->slots[level] = 0;
1883
1884         while(1) {
1885                 wret = walk_down_log_tree(trans, log, path, &level, wc);
1886                 if (wret > 0)
1887                         break;
1888                 if (wret < 0)
1889                         ret = wret;
1890
1891                 wret = walk_up_log_tree(trans, log, path, &level, wc);
1892                 if (wret > 0)
1893                         break;
1894                 if (wret < 0)
1895                         ret = wret;
1896         }
1897
1898         /* was the root node processed? if not, catch it here */
1899         if (path->nodes[orig_level]) {
1900                 wc->process_func(log, path->nodes[orig_level], wc,
1901                          btrfs_header_generation(path->nodes[orig_level]));
1902                 if (wc->free) {
1903                         struct extent_buffer *next;
1904
1905                         next = path->nodes[orig_level];
1906
1907                         btrfs_tree_lock(next);
1908                         clean_tree_block(trans, log, next);
1909                         btrfs_wait_tree_block_writeback(next);
1910                         btrfs_tree_unlock(next);
1911
1912                         if (orig_level == 0) {
1913                                 ret = btrfs_drop_leaf_ref(trans, log,
1914                                                           next);
1915                                 BUG_ON(ret);
1916                         }
1917                         WARN_ON(log->root_key.objectid !=
1918                                 BTRFS_TREE_LOG_OBJECTID);
1919                         ret = btrfs_free_reserved_extent(log, next->start,
1920                                                          next->len);
1921                         BUG_ON(ret);
1922                 }
1923         }
1924
1925         for (i = 0; i <= orig_level; i++) {
1926                 if (path->nodes[i]) {
1927                         free_extent_buffer(path->nodes[i]);
1928                         path->nodes[i] = NULL;
1929                 }
1930         }
1931         btrfs_free_path(path);
1932         if (wc->free)
1933                 free_extent_buffer(log->node);
1934         return ret;
1935 }
1936
1937 int wait_log_commit(struct btrfs_root *log)
1938 {
1939         DEFINE_WAIT(wait);
1940         u64 transid = log->fs_info->tree_log_transid;
1941
1942         do {
1943                 prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1944                                 TASK_UNINTERRUPTIBLE);
1945                 mutex_unlock(&log->fs_info->tree_log_mutex);
1946                 if (atomic_read(&log->fs_info->tree_log_commit))
1947                         schedule();
1948                 finish_wait(&log->fs_info->tree_log_wait, &wait);
1949                 mutex_lock(&log->fs_info->tree_log_mutex);
1950         } while(transid == log->fs_info->tree_log_transid &&
1951                 atomic_read(&log->fs_info->tree_log_commit));
1952         return 0;
1953 }
1954
1955 /*
1956  * btrfs_sync_log does sends a given tree log down to the disk and
1957  * updates the super blocks to record it.  When this call is done,
1958  * you know that any inodes previously logged are safely on disk
1959  */
1960 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1961                    struct btrfs_root *root)
1962 {
1963         int ret;
1964         unsigned long batch;
1965         struct btrfs_root *log = root->log_root;
1966
1967         mutex_lock(&log->fs_info->tree_log_mutex);
1968         if (atomic_read(&log->fs_info->tree_log_commit)) {
1969                 wait_log_commit(log);
1970                 goto out;
1971         }
1972         atomic_set(&log->fs_info->tree_log_commit, 1);
1973
1974         while(1) {
1975                 batch = log->fs_info->tree_log_batch;
1976                 mutex_unlock(&log->fs_info->tree_log_mutex);
1977                 schedule_timeout_uninterruptible(1);
1978                 mutex_lock(&log->fs_info->tree_log_mutex);
1979
1980                 while(atomic_read(&log->fs_info->tree_log_writers)) {
1981                         DEFINE_WAIT(wait);
1982                         prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1983                                         TASK_UNINTERRUPTIBLE);
1984                         mutex_unlock(&log->fs_info->tree_log_mutex);
1985                         if (atomic_read(&log->fs_info->tree_log_writers))
1986                                 schedule();
1987                         mutex_lock(&log->fs_info->tree_log_mutex);
1988                         finish_wait(&log->fs_info->tree_log_wait, &wait);
1989                 }
1990                 if (batch == log->fs_info->tree_log_batch)
1991                         break;
1992         }
1993
1994         ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages);
1995         BUG_ON(ret);
1996         ret = btrfs_write_and_wait_marked_extents(root->fs_info->log_root_tree,
1997                                &root->fs_info->log_root_tree->dirty_log_pages);
1998         BUG_ON(ret);
1999
2000         btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2001                                  log->fs_info->log_root_tree->node->start);
2002         btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2003                        btrfs_header_level(log->fs_info->log_root_tree->node));
2004
2005         write_ctree_super(trans, log->fs_info->tree_root);
2006         log->fs_info->tree_log_transid++;
2007         log->fs_info->tree_log_batch = 0;
2008         atomic_set(&log->fs_info->tree_log_commit, 0);
2009         smp_mb();
2010         if (waitqueue_active(&log->fs_info->tree_log_wait))
2011                 wake_up(&log->fs_info->tree_log_wait);
2012 out:
2013         mutex_unlock(&log->fs_info->tree_log_mutex);
2014         return 0;
2015
2016 }
2017
2018 /* * free all the extents used by the tree log.  This should be called
2019  * at commit time of the full transaction
2020  */
2021 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2022 {
2023         int ret;
2024         struct btrfs_root *log;
2025         struct key;
2026         u64 start;
2027         u64 end;
2028         struct walk_control wc = {
2029                 .free = 1,
2030                 .process_func = process_one_buffer
2031         };
2032
2033         if (!root->log_root)
2034                 return 0;
2035
2036         log = root->log_root;
2037         ret = walk_log_tree(trans, log, &wc);
2038         BUG_ON(ret);
2039
2040         while(1) {
2041                 ret = find_first_extent_bit(&log->dirty_log_pages,
2042                                     0, &start, &end, EXTENT_DIRTY);
2043                 if (ret)
2044                         break;
2045
2046                 clear_extent_dirty(&log->dirty_log_pages,
2047                                    start, end, GFP_NOFS);
2048         }
2049
2050         log = root->log_root;
2051         ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2052                              &log->root_key);
2053         BUG_ON(ret);
2054         root->log_root = NULL;
2055         kfree(root->log_root);
2056         return 0;
2057 }
2058
2059 /*
2060  * helper function to update the item for a given subvolumes log root
2061  * in the tree of log roots
2062  */
2063 static int update_log_root(struct btrfs_trans_handle *trans,
2064                            struct btrfs_root *log)
2065 {
2066         u64 bytenr = btrfs_root_bytenr(&log->root_item);
2067         int ret;
2068
2069         if (log->node->start == bytenr)
2070                 return 0;
2071
2072         btrfs_set_root_bytenr(&log->root_item, log->node->start);
2073         btrfs_set_root_generation(&log->root_item, trans->transid);
2074         btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
2075         ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2076                                 &log->root_key, &log->root_item);
2077         BUG_ON(ret);
2078         return ret;
2079 }
2080
2081 /*
2082  * If both a file and directory are logged, and unlinks or renames are
2083  * mixed in, we have a few interesting corners:
2084  *
2085  * create file X in dir Y
2086  * link file X to X.link in dir Y
2087  * fsync file X
2088  * unlink file X but leave X.link
2089  * fsync dir Y
2090  *
2091  * After a crash we would expect only X.link to exist.  But file X
2092  * didn't get fsync'd again so the log has back refs for X and X.link.
2093  *
2094  * We solve this by removing directory entries and inode backrefs from the
2095  * log when a file that was logged in the current transaction is
2096  * unlinked.  Any later fsync will include the updated log entries, and
2097  * we'll be able to reconstruct the proper directory items from backrefs.
2098  *
2099  * This optimizations allows us to avoid relogging the entire inode
2100  * or the entire directory.
2101  */
2102 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2103                                  struct btrfs_root *root,
2104                                  const char *name, int name_len,
2105                                  struct inode *dir, u64 index)
2106 {
2107         struct btrfs_root *log;
2108         struct btrfs_dir_item *di;
2109         struct btrfs_path *path;
2110         int ret;
2111         int bytes_del = 0;
2112
2113         if (BTRFS_I(dir)->logged_trans < trans->transid)
2114                 return 0;
2115
2116         ret = join_running_log_trans(root);
2117         if (ret)
2118                 return 0;
2119
2120         mutex_lock(&BTRFS_I(dir)->log_mutex);
2121
2122         log = root->log_root;
2123         path = btrfs_alloc_path();
2124         di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2125                                    name, name_len, -1);
2126         if (di && !IS_ERR(di)) {
2127                 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2128                 bytes_del += name_len;
2129                 BUG_ON(ret);
2130         }
2131         btrfs_release_path(log, path);
2132         di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2133                                          index, name, name_len, -1);
2134         if (di && !IS_ERR(di)) {
2135                 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2136                 bytes_del += name_len;
2137                 BUG_ON(ret);
2138         }
2139
2140         /* update the directory size in the log to reflect the names
2141          * we have removed
2142          */
2143         if (bytes_del) {
2144                 struct btrfs_key key;
2145
2146                 key.objectid = dir->i_ino;
2147                 key.offset = 0;
2148                 key.type = BTRFS_INODE_ITEM_KEY;
2149                 btrfs_release_path(log, path);
2150
2151                 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2152                 if (ret == 0) {
2153                         struct btrfs_inode_item *item;
2154                         u64 i_size;
2155
2156                         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2157                                               struct btrfs_inode_item);
2158                         i_size = btrfs_inode_size(path->nodes[0], item);
2159                         if (i_size > bytes_del)
2160                                 i_size -= bytes_del;
2161                         else
2162                                 i_size = 0;
2163                         btrfs_set_inode_size(path->nodes[0], item, i_size);
2164                         btrfs_mark_buffer_dirty(path->nodes[0]);
2165                 } else
2166                         ret = 0;
2167                 btrfs_release_path(log, path);
2168         }
2169
2170         btrfs_free_path(path);
2171         mutex_unlock(&BTRFS_I(dir)->log_mutex);
2172         end_log_trans(root);
2173
2174         return 0;
2175 }
2176
2177 /* see comments for btrfs_del_dir_entries_in_log */
2178 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2179                                struct btrfs_root *root,
2180                                const char *name, int name_len,
2181                                struct inode *inode, u64 dirid)
2182 {
2183         struct btrfs_root *log;
2184         u64 index;
2185         int ret;
2186
2187         if (BTRFS_I(inode)->logged_trans < trans->transid)
2188                 return 0;
2189
2190         ret = join_running_log_trans(root);
2191         if (ret)
2192                 return 0;
2193         log = root->log_root;
2194         mutex_lock(&BTRFS_I(inode)->log_mutex);
2195
2196         ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2197                                   dirid, &index);
2198         mutex_unlock(&BTRFS_I(inode)->log_mutex);
2199         end_log_trans(root);
2200
2201         return ret;
2202 }
2203
2204 /*
2205  * creates a range item in the log for 'dirid'.  first_offset and
2206  * last_offset tell us which parts of the key space the log should
2207  * be considered authoritative for.
2208  */
2209 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2210                                        struct btrfs_root *log,
2211                                        struct btrfs_path *path,
2212                                        int key_type, u64 dirid,
2213                                        u64 first_offset, u64 last_offset)
2214 {
2215         int ret;
2216         struct btrfs_key key;
2217         struct btrfs_dir_log_item *item;
2218
2219         key.objectid = dirid;
2220         key.offset = first_offset;
2221         if (key_type == BTRFS_DIR_ITEM_KEY)
2222                 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2223         else
2224                 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2225         ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2226         BUG_ON(ret);
2227
2228         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2229                               struct btrfs_dir_log_item);
2230         btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2231         btrfs_mark_buffer_dirty(path->nodes[0]);
2232         btrfs_release_path(log, path);
2233         return 0;
2234 }
2235
2236 /*
2237  * log all the items included in the current transaction for a given
2238  * directory.  This also creates the range items in the log tree required
2239  * to replay anything deleted before the fsync
2240  */
2241 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2242                           struct btrfs_root *root, struct inode *inode,
2243                           struct btrfs_path *path,
2244                           struct btrfs_path *dst_path, int key_type,
2245                           u64 min_offset, u64 *last_offset_ret)
2246 {
2247         struct btrfs_key min_key;
2248         struct btrfs_key max_key;
2249         struct btrfs_root *log = root->log_root;
2250         struct extent_buffer *src;
2251         int ret;
2252         int i;
2253         int nritems;
2254         u64 first_offset = min_offset;
2255         u64 last_offset = (u64)-1;
2256
2257         log = root->log_root;
2258         max_key.objectid = inode->i_ino;
2259         max_key.offset = (u64)-1;
2260         max_key.type = key_type;
2261
2262         min_key.objectid = inode->i_ino;
2263         min_key.type = key_type;
2264         min_key.offset = min_offset;
2265
2266         path->keep_locks = 1;
2267
2268         ret = btrfs_search_forward(root, &min_key, &max_key,
2269                                    path, 0, trans->transid);
2270
2271         /*
2272          * we didn't find anything from this transaction, see if there
2273          * is anything at all
2274          */
2275         if (ret != 0 || min_key.objectid != inode->i_ino ||
2276             min_key.type != key_type) {
2277                 min_key.objectid = inode->i_ino;
2278                 min_key.type = key_type;
2279                 min_key.offset = (u64)-1;
2280                 btrfs_release_path(root, path);
2281                 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2282                 if (ret < 0) {
2283                         btrfs_release_path(root, path);
2284                         return ret;
2285                 }
2286                 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2287
2288                 /* if ret == 0 there are items for this type,
2289                  * create a range to tell us the last key of this type.
2290                  * otherwise, there are no items in this directory after
2291                  * *min_offset, and we create a range to indicate that.
2292                  */
2293                 if (ret == 0) {
2294                         struct btrfs_key tmp;
2295                         btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2296                                               path->slots[0]);
2297                         if (key_type == tmp.type) {
2298                                 first_offset = max(min_offset, tmp.offset) + 1;
2299                         }
2300                 }
2301                 goto done;
2302         }
2303
2304         /* go backward to find any previous key */
2305         ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2306         if (ret == 0) {
2307                 struct btrfs_key tmp;
2308                 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2309                 if (key_type == tmp.type) {
2310                         first_offset = tmp.offset;
2311                         ret = overwrite_item(trans, log, dst_path,
2312                                              path->nodes[0], path->slots[0],
2313                                              &tmp);
2314                 }
2315         }
2316         btrfs_release_path(root, path);
2317
2318         /* find the first key from this transaction again */
2319         ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2320         if (ret != 0) {
2321                 WARN_ON(1);
2322                 goto done;
2323         }
2324
2325         /*
2326          * we have a block from this transaction, log every item in it
2327          * from our directory
2328          */
2329         while(1) {
2330                 struct btrfs_key tmp;
2331                 src = path->nodes[0];
2332                 nritems = btrfs_header_nritems(src);
2333                 for (i = path->slots[0]; i < nritems; i++) {
2334                         btrfs_item_key_to_cpu(src, &min_key, i);
2335
2336                         if (min_key.objectid != inode->i_ino ||
2337                             min_key.type != key_type)
2338                                 goto done;
2339                         ret = overwrite_item(trans, log, dst_path, src, i,
2340                                              &min_key);
2341                         BUG_ON(ret);
2342                 }
2343                 path->slots[0] = nritems;
2344
2345                 /*
2346                  * look ahead to the next item and see if it is also
2347                  * from this directory and from this transaction
2348                  */
2349                 ret = btrfs_next_leaf(root, path);
2350                 if (ret == 1) {
2351                         last_offset = (u64)-1;
2352                         goto done;
2353                 }
2354                 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2355                 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2356                         last_offset = (u64)-1;
2357                         goto done;
2358                 }
2359                 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2360                         ret = overwrite_item(trans, log, dst_path,
2361                                              path->nodes[0], path->slots[0],
2362                                              &tmp);
2363
2364                         BUG_ON(ret);
2365                         last_offset = tmp.offset;
2366                         goto done;
2367                 }
2368         }
2369 done:
2370         *last_offset_ret = last_offset;
2371         btrfs_release_path(root, path);
2372         btrfs_release_path(log, dst_path);
2373
2374         /* insert the log range keys to indicate where the log is valid */
2375         ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2376                                  first_offset, last_offset);
2377         BUG_ON(ret);
2378         return 0;
2379 }
2380
2381 /*
2382  * logging directories is very similar to logging inodes, We find all the items
2383  * from the current transaction and write them to the log.
2384  *
2385  * The recovery code scans the directory in the subvolume, and if it finds a
2386  * key in the range logged that is not present in the log tree, then it means
2387  * that dir entry was unlinked during the transaction.
2388  *
2389  * In order for that scan to work, we must include one key smaller than
2390  * the smallest logged by this transaction and one key larger than the largest
2391  * key logged by this transaction.
2392  */
2393 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2394                           struct btrfs_root *root, struct inode *inode,
2395                           struct btrfs_path *path,
2396                           struct btrfs_path *dst_path)
2397 {
2398         u64 min_key;
2399         u64 max_key;
2400         int ret;
2401         int key_type = BTRFS_DIR_ITEM_KEY;
2402
2403 again:
2404         min_key = 0;
2405         max_key = 0;
2406         while(1) {
2407                 ret = log_dir_items(trans, root, inode, path,
2408                                     dst_path, key_type, min_key,
2409                                     &max_key);
2410                 BUG_ON(ret);
2411                 if (max_key == (u64)-1)
2412                         break;
2413                 min_key = max_key + 1;
2414         }
2415
2416         if (key_type == BTRFS_DIR_ITEM_KEY) {
2417                 key_type = BTRFS_DIR_INDEX_KEY;
2418                 goto again;
2419         }
2420         return 0;
2421 }
2422
2423 /*
2424  * a helper function to drop items from the log before we relog an
2425  * inode.  max_key_type indicates the highest item type to remove.
2426  * This cannot be run for file data extents because it does not
2427  * free the extents they point to.
2428  */
2429 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2430                                   struct btrfs_root *log,
2431                                   struct btrfs_path *path,
2432                                   u64 objectid, int max_key_type)
2433 {
2434         int ret;
2435         struct btrfs_key key;
2436         struct btrfs_key found_key;
2437
2438         key.objectid = objectid;
2439         key.type = max_key_type;
2440         key.offset = (u64)-1;
2441
2442         while(1) {
2443                 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2444
2445                 if (ret != 1)
2446                         break;
2447
2448                 if (path->slots[0] == 0)
2449                         break;
2450
2451                 path->slots[0]--;
2452                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2453                                       path->slots[0]);
2454
2455                 if (found_key.objectid != objectid)
2456                         break;
2457
2458                 ret = btrfs_del_item(trans, log, path);
2459                 BUG_ON(ret);
2460                 btrfs_release_path(log, path);
2461         }
2462         btrfs_release_path(log, path);
2463         return 0;
2464 }
2465
2466 static noinline int copy_items(struct btrfs_trans_handle *trans,
2467                                struct btrfs_root *log,
2468                                struct btrfs_path *dst_path,
2469                                struct extent_buffer *src,
2470                                int start_slot, int nr, int inode_only)
2471 {
2472         unsigned long src_offset;
2473         unsigned long dst_offset;
2474         struct btrfs_file_extent_item *extent;
2475         struct btrfs_inode_item *inode_item;
2476         int ret;
2477         struct btrfs_key *ins_keys;
2478         u32 *ins_sizes;
2479         char *ins_data;
2480         int i;
2481
2482         ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2483                            nr * sizeof(u32), GFP_NOFS);
2484         ins_sizes = (u32 *)ins_data;
2485         ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2486
2487         for (i = 0; i < nr; i++) {
2488                 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2489                 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2490         }
2491         ret = btrfs_insert_empty_items(trans, log, dst_path,
2492                                        ins_keys, ins_sizes, nr);
2493         BUG_ON(ret);
2494
2495         for (i = 0; i < nr; i++) {
2496                 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2497                                                    dst_path->slots[0]);
2498
2499                 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2500
2501                 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2502                                    src_offset, ins_sizes[i]);
2503
2504                 if (inode_only == LOG_INODE_EXISTS &&
2505                     ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2506                         inode_item = btrfs_item_ptr(dst_path->nodes[0],
2507                                                     dst_path->slots[0],
2508                                                     struct btrfs_inode_item);
2509                         btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2510
2511                         /* set the generation to zero so the recover code
2512                          * can tell the difference between an logging
2513                          * just to say 'this inode exists' and a logging
2514                          * to say 'update this inode with these values'
2515                          */
2516                         btrfs_set_inode_generation(dst_path->nodes[0],
2517                                                    inode_item, 0);
2518                 }
2519                 /* take a reference on file data extents so that truncates
2520                  * or deletes of this inode don't have to relog the inode
2521                  * again
2522                  */
2523                 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2524                         int found_type;
2525                         extent = btrfs_item_ptr(src, start_slot + i,
2526                                                 struct btrfs_file_extent_item);
2527
2528                         found_type = btrfs_file_extent_type(src, extent);
2529                         if (found_type == BTRFS_FILE_EXTENT_REG ||
2530                             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2531                                 u64 ds = btrfs_file_extent_disk_bytenr(src,
2532                                                                    extent);
2533                                 u64 dl = btrfs_file_extent_disk_num_bytes(src,
2534                                                                       extent);
2535                                 /* ds == 0 is a hole */
2536                                 if (ds != 0) {
2537                                         ret = btrfs_inc_extent_ref(trans, log,
2538                                                    ds, dl,
2539                                                    dst_path->nodes[0]->start,
2540                                                    BTRFS_TREE_LOG_OBJECTID,
2541                                                    trans->transid,
2542                                                    ins_keys[i].objectid);
2543                                         BUG_ON(ret);
2544                                 }
2545                         }
2546                 }
2547                 dst_path->slots[0]++;
2548         }
2549
2550         btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2551         btrfs_release_path(log, dst_path);
2552         kfree(ins_data);
2553         return 0;
2554 }
2555
2556 /* log a single inode in the tree log.
2557  * At least one parent directory for this inode must exist in the tree
2558  * or be logged already.
2559  *
2560  * Any items from this inode changed by the current transaction are copied
2561  * to the log tree.  An extra reference is taken on any extents in this
2562  * file, allowing us to avoid a whole pile of corner cases around logging
2563  * blocks that have been removed from the tree.
2564  *
2565  * See LOG_INODE_ALL and related defines for a description of what inode_only
2566  * does.
2567  *
2568  * This handles both files and directories.
2569  */
2570 static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
2571                              struct btrfs_root *root, struct inode *inode,
2572                              int inode_only)
2573 {
2574         struct btrfs_path *path;
2575         struct btrfs_path *dst_path;
2576         struct btrfs_key min_key;
2577         struct btrfs_key max_key;
2578         struct btrfs_root *log = root->log_root;
2579         struct extent_buffer *src = NULL;
2580         u32 size;
2581         int ret;
2582         int nritems;
2583         int ins_start_slot = 0;
2584         int ins_nr;
2585
2586         log = root->log_root;
2587
2588         path = btrfs_alloc_path();
2589         dst_path = btrfs_alloc_path();
2590
2591         min_key.objectid = inode->i_ino;
2592         min_key.type = BTRFS_INODE_ITEM_KEY;
2593         min_key.offset = 0;
2594
2595         max_key.objectid = inode->i_ino;
2596         if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2597                 max_key.type = BTRFS_XATTR_ITEM_KEY;
2598         else
2599                 max_key.type = (u8)-1;
2600         max_key.offset = (u64)-1;
2601
2602         /*
2603          * if this inode has already been logged and we're in inode_only
2604          * mode, we don't want to delete the things that have already
2605          * been written to the log.
2606          *
2607          * But, if the inode has been through an inode_only log,
2608          * the logged_trans field is not set.  This allows us to catch
2609          * any new names for this inode in the backrefs by logging it
2610          * again
2611          */
2612         if (inode_only == LOG_INODE_EXISTS &&
2613             BTRFS_I(inode)->logged_trans == trans->transid) {
2614                 btrfs_free_path(path);
2615                 btrfs_free_path(dst_path);
2616                 goto out;
2617         }
2618         mutex_lock(&BTRFS_I(inode)->log_mutex);
2619
2620         /*
2621          * a brute force approach to making sure we get the most uptodate
2622          * copies of everything.
2623          */
2624         if (S_ISDIR(inode->i_mode)) {
2625                 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2626
2627                 if (inode_only == LOG_INODE_EXISTS)
2628                         max_key_type = BTRFS_XATTR_ITEM_KEY;
2629                 ret = drop_objectid_items(trans, log, path,
2630                                           inode->i_ino, max_key_type);
2631         } else {
2632                 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2633         }
2634         BUG_ON(ret);
2635         path->keep_locks = 1;
2636
2637         while(1) {
2638                 ins_nr = 0;
2639                 ret = btrfs_search_forward(root, &min_key, &max_key,
2640                                            path, 0, trans->transid);
2641                 if (ret != 0)
2642                         break;
2643 again:
2644                 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2645                 if (min_key.objectid != inode->i_ino)
2646                         break;
2647                 if (min_key.type > max_key.type)
2648                         break;
2649
2650                 src = path->nodes[0];
2651                 size = btrfs_item_size_nr(src, path->slots[0]);
2652                 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2653                         ins_nr++;
2654                         goto next_slot;
2655                 } else if (!ins_nr) {
2656                         ins_start_slot = path->slots[0];
2657                         ins_nr = 1;
2658                         goto next_slot;
2659                 }
2660
2661                 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2662                                  ins_nr, inode_only);
2663                 BUG_ON(ret);
2664                 ins_nr = 1;
2665                 ins_start_slot = path->slots[0];
2666 next_slot:
2667
2668                 nritems = btrfs_header_nritems(path->nodes[0]);
2669                 path->slots[0]++;
2670                 if (path->slots[0] < nritems) {
2671                         btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2672                                               path->slots[0]);
2673                         goto again;
2674                 }
2675                 if (ins_nr) {
2676                         ret = copy_items(trans, log, dst_path, src,
2677                                          ins_start_slot,
2678                                          ins_nr, inode_only);
2679                         BUG_ON(ret);
2680                         ins_nr = 0;
2681                 }
2682                 btrfs_release_path(root, path);
2683
2684                 if (min_key.offset < (u64)-1)
2685                         min_key.offset++;
2686                 else if (min_key.type < (u8)-1)
2687                         min_key.type++;
2688                 else if (min_key.objectid < (u64)-1)
2689                         min_key.objectid++;
2690                 else
2691                         break;
2692         }
2693         if (ins_nr) {
2694                 ret = copy_items(trans, log, dst_path, src,
2695                                  ins_start_slot,
2696                                  ins_nr, inode_only);
2697                 BUG_ON(ret);
2698                 ins_nr = 0;
2699         }
2700         WARN_ON(ins_nr);
2701         if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2702                 btrfs_release_path(root, path);
2703                 btrfs_release_path(log, dst_path);
2704                 BTRFS_I(inode)->log_dirty_trans = 0;
2705                 ret = log_directory_changes(trans, root, inode, path, dst_path);
2706                 BUG_ON(ret);
2707         }
2708         BTRFS_I(inode)->logged_trans = trans->transid;
2709         mutex_unlock(&BTRFS_I(inode)->log_mutex);
2710
2711         btrfs_free_path(path);
2712         btrfs_free_path(dst_path);
2713
2714         mutex_lock(&root->fs_info->tree_log_mutex);
2715         ret = update_log_root(trans, log);
2716         BUG_ON(ret);
2717         mutex_unlock(&root->fs_info->tree_log_mutex);
2718 out:
2719         return 0;
2720 }
2721
2722 int btrfs_log_inode(struct btrfs_trans_handle *trans,
2723                     struct btrfs_root *root, struct inode *inode,
2724                     int inode_only)
2725 {
2726         int ret;
2727
2728         start_log_trans(trans, root);
2729         ret = __btrfs_log_inode(trans, root, inode, inode_only);
2730         end_log_trans(root);
2731         return ret;
2732 }
2733
2734 /*
2735  * helper function around btrfs_log_inode to make sure newly created
2736  * parent directories also end up in the log.  A minimal inode and backref
2737  * only logging is done of any parent directories that are older than
2738  * the last committed transaction
2739  */
2740 int btrfs_log_dentry(struct btrfs_trans_handle *trans,
2741                     struct btrfs_root *root, struct dentry *dentry)
2742 {
2743         int inode_only = LOG_INODE_ALL;
2744         struct super_block *sb;
2745         int ret;
2746
2747         start_log_trans(trans, root);
2748         sb = dentry->d_inode->i_sb;
2749         while(1) {
2750                 ret = __btrfs_log_inode(trans, root, dentry->d_inode,
2751                                         inode_only);
2752                 BUG_ON(ret);
2753                 inode_only = LOG_INODE_EXISTS;
2754
2755                 dentry = dentry->d_parent;
2756                 if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb)
2757                         break;
2758
2759                 if (BTRFS_I(dentry->d_inode)->generation <=
2760                     root->fs_info->last_trans_committed)
2761                         break;
2762         }
2763         end_log_trans(root);
2764         return 0;
2765 }
2766
2767 /*
2768  * it is not safe to log dentry if the chunk root has added new
2769  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
2770  * If this returns 1, you must commit the transaction to safely get your
2771  * data on disk.
2772  */
2773 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2774                           struct btrfs_root *root, struct dentry *dentry)
2775 {
2776         u64 gen;
2777         gen = root->fs_info->last_trans_new_blockgroup;
2778         if (gen > root->fs_info->last_trans_committed)
2779                 return 1;
2780         else
2781                 return btrfs_log_dentry(trans, root, dentry);
2782 }
2783
2784 /*
2785  * should be called during mount to recover any replay any log trees
2786  * from the FS
2787  */
2788 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2789 {
2790         int ret;
2791         struct btrfs_path *path;
2792         struct btrfs_trans_handle *trans;
2793         struct btrfs_key key;
2794         struct btrfs_key found_key;
2795         struct btrfs_key tmp_key;
2796         struct btrfs_root *log;
2797         struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
2798         u64 highest_inode;
2799         struct walk_control wc = {
2800                 .process_func = process_one_buffer,
2801                 .stage = 0,
2802         };
2803
2804         fs_info->log_root_recovering = 1;
2805         path = btrfs_alloc_path();
2806         BUG_ON(!path);
2807
2808         trans = btrfs_start_transaction(fs_info->tree_root, 1);
2809
2810         wc.trans = trans;
2811         wc.pin = 1;
2812
2813         walk_log_tree(trans, log_root_tree, &wc);
2814
2815 again:
2816         key.objectid = BTRFS_TREE_LOG_OBJECTID;
2817         key.offset = (u64)-1;
2818         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
2819
2820         while(1) {
2821                 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
2822                 if (ret < 0)
2823                         break;
2824                 if (ret > 0) {
2825                         if (path->slots[0] == 0)
2826                                 break;
2827                         path->slots[0]--;
2828                 }
2829                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2830                                       path->slots[0]);
2831                 btrfs_release_path(log_root_tree, path);
2832                 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
2833                         break;
2834
2835                 log = btrfs_read_fs_root_no_radix(log_root_tree,
2836                                                   &found_key);
2837                 BUG_ON(!log);
2838
2839
2840                 tmp_key.objectid = found_key.offset;
2841                 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
2842                 tmp_key.offset = (u64)-1;
2843
2844                 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
2845
2846                 BUG_ON(!wc.replay_dest);
2847
2848                 btrfs_record_root_in_trans(wc.replay_dest);
2849                 ret = walk_log_tree(trans, log, &wc);
2850                 BUG_ON(ret);
2851
2852                 if (wc.stage == LOG_WALK_REPLAY_ALL) {
2853                         ret = fixup_inode_link_counts(trans, wc.replay_dest,
2854                                                       path);
2855                         BUG_ON(ret);
2856                 }
2857                 ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
2858                 if (ret == 0) {
2859                         wc.replay_dest->highest_inode = highest_inode;
2860                         wc.replay_dest->last_inode_alloc = highest_inode;
2861                 }
2862
2863                 key.offset = found_key.offset - 1;
2864                 free_extent_buffer(log->node);
2865                 kfree(log);
2866
2867                 if (found_key.offset == 0)
2868                         break;
2869         }
2870         btrfs_release_path(log_root_tree, path);
2871
2872         /* step one is to pin it all, step two is to replay just inodes */
2873         if (wc.pin) {
2874                 wc.pin = 0;
2875                 wc.process_func = replay_one_buffer;
2876                 wc.stage = LOG_WALK_REPLAY_INODES;
2877                 goto again;
2878         }
2879         /* step three is to replay everything */
2880         if (wc.stage < LOG_WALK_REPLAY_ALL) {
2881                 wc.stage++;
2882                 goto again;
2883         }
2884
2885         btrfs_free_path(path);
2886
2887         free_extent_buffer(log_root_tree->node);
2888         log_root_tree->log_root = NULL;
2889         fs_info->log_root_recovering = 0;
2890
2891         /* step 4: commit the transaction, which also unpins the blocks */
2892         btrfs_commit_transaction(trans, fs_info->tree_root);
2893
2894         kfree(log_root_tree);
2895         return 0;
2896 }