Btrfs: remove unneeded total_trans
[safe/jmp/linux-2.6] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "ref-cache.h"
29 #include "tree-log.h"
30
31 extern struct kmem_cache *btrfs_trans_handle_cachep;
32 extern struct kmem_cache *btrfs_transaction_cachep;
33
34 #define BTRFS_ROOT_TRANS_TAG 0
35
36 static noinline void put_transaction(struct btrfs_transaction *transaction)
37 {
38         WARN_ON(transaction->use_count == 0);
39         transaction->use_count--;
40         if (transaction->use_count == 0) {
41                 list_del_init(&transaction->list);
42                 memset(transaction, 0, sizeof(*transaction));
43                 kmem_cache_free(btrfs_transaction_cachep, transaction);
44         }
45 }
46
47 /*
48  * either allocate a new transaction or hop into the existing one
49  */
50 static noinline int join_transaction(struct btrfs_root *root)
51 {
52         struct btrfs_transaction *cur_trans;
53         cur_trans = root->fs_info->running_transaction;
54         if (!cur_trans) {
55                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
56                                              GFP_NOFS);
57                 BUG_ON(!cur_trans);
58                 root->fs_info->generation++;
59                 root->fs_info->last_alloc = 0;
60                 root->fs_info->last_data_alloc = 0;
61                 cur_trans->num_writers = 1;
62                 cur_trans->num_joined = 0;
63                 cur_trans->transid = root->fs_info->generation;
64                 init_waitqueue_head(&cur_trans->writer_wait);
65                 init_waitqueue_head(&cur_trans->commit_wait);
66                 cur_trans->in_commit = 0;
67                 cur_trans->blocked = 0;
68                 cur_trans->use_count = 1;
69                 cur_trans->commit_done = 0;
70                 cur_trans->start_time = get_seconds();
71                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
72                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
73                 extent_io_tree_init(&cur_trans->dirty_pages,
74                                      root->fs_info->btree_inode->i_mapping,
75                                      GFP_NOFS);
76                 spin_lock(&root->fs_info->new_trans_lock);
77                 root->fs_info->running_transaction = cur_trans;
78                 spin_unlock(&root->fs_info->new_trans_lock);
79         } else {
80                 cur_trans->num_writers++;
81                 cur_trans->num_joined++;
82         }
83
84         return 0;
85 }
86
87 /*
88  * this does all the record keeping required to make sure that a
89  * reference counted root is properly recorded in a given transaction.
90  * This is required to make sure the old root from before we joined the transaction
91  * is deleted when the transaction commits
92  */
93 noinline int btrfs_record_root_in_trans(struct btrfs_root *root)
94 {
95         struct btrfs_dirty_root *dirty;
96         u64 running_trans_id = root->fs_info->running_transaction->transid;
97         if (root->ref_cows && root->last_trans < running_trans_id) {
98                 WARN_ON(root == root->fs_info->extent_root);
99                 if (root->root_item.refs != 0) {
100                         radix_tree_tag_set(&root->fs_info->fs_roots_radix,
101                                    (unsigned long)root->root_key.objectid,
102                                    BTRFS_ROOT_TRANS_TAG);
103
104                         dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
105                         BUG_ON(!dirty);
106                         dirty->root = kmalloc(sizeof(*dirty->root), GFP_NOFS);
107                         BUG_ON(!dirty->root);
108                         dirty->latest_root = root;
109                         INIT_LIST_HEAD(&dirty->list);
110
111                         root->commit_root = btrfs_root_node(root);
112
113                         memcpy(dirty->root, root, sizeof(*root));
114                         spin_lock_init(&dirty->root->node_lock);
115                         spin_lock_init(&dirty->root->list_lock);
116                         mutex_init(&dirty->root->objectid_mutex);
117                         mutex_init(&dirty->root->log_mutex);
118                         INIT_LIST_HEAD(&dirty->root->dead_list);
119                         dirty->root->node = root->commit_root;
120                         dirty->root->commit_root = NULL;
121
122                         spin_lock(&root->list_lock);
123                         list_add(&dirty->root->dead_list, &root->dead_list);
124                         spin_unlock(&root->list_lock);
125
126                         root->dirty_root = dirty;
127                 } else {
128                         WARN_ON(1);
129                 }
130                 root->last_trans = running_trans_id;
131         }
132         return 0;
133 }
134
135 /* wait for commit against the current transaction to become unblocked
136  * when this is done, it is safe to start a new transaction, but the current
137  * transaction might not be fully on disk.
138  */
139 static void wait_current_trans(struct btrfs_root *root)
140 {
141         struct btrfs_transaction *cur_trans;
142
143         cur_trans = root->fs_info->running_transaction;
144         if (cur_trans && cur_trans->blocked) {
145                 DEFINE_WAIT(wait);
146                 cur_trans->use_count++;
147                 while(1) {
148                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
149                                         TASK_UNINTERRUPTIBLE);
150                         if (cur_trans->blocked) {
151                                 mutex_unlock(&root->fs_info->trans_mutex);
152                                 schedule();
153                                 mutex_lock(&root->fs_info->trans_mutex);
154                                 finish_wait(&root->fs_info->transaction_wait,
155                                             &wait);
156                         } else {
157                                 finish_wait(&root->fs_info->transaction_wait,
158                                             &wait);
159                                 break;
160                         }
161                 }
162                 put_transaction(cur_trans);
163         }
164 }
165
166 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
167                                              int num_blocks, int wait)
168 {
169         struct btrfs_trans_handle *h =
170                 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
171         int ret;
172
173         mutex_lock(&root->fs_info->trans_mutex);
174         if (!root->fs_info->log_root_recovering &&
175             ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
176                 wait_current_trans(root);
177         ret = join_transaction(root);
178         BUG_ON(ret);
179
180         btrfs_record_root_in_trans(root);
181         h->transid = root->fs_info->running_transaction->transid;
182         h->transaction = root->fs_info->running_transaction;
183         h->blocks_reserved = num_blocks;
184         h->blocks_used = 0;
185         h->block_group = NULL;
186         h->alloc_exclude_nr = 0;
187         h->alloc_exclude_start = 0;
188         root->fs_info->running_transaction->use_count++;
189         mutex_unlock(&root->fs_info->trans_mutex);
190         return h;
191 }
192
193 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
194                                                    int num_blocks)
195 {
196         return start_transaction(root, num_blocks, 1);
197 }
198 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
199                                                    int num_blocks)
200 {
201         return start_transaction(root, num_blocks, 0);
202 }
203
204 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
205                                                          int num_blocks)
206 {
207         return start_transaction(r, num_blocks, 2);
208 }
209
210 /* wait for a transaction commit to be fully complete */
211 static noinline int wait_for_commit(struct btrfs_root *root,
212                                     struct btrfs_transaction *commit)
213 {
214         DEFINE_WAIT(wait);
215         mutex_lock(&root->fs_info->trans_mutex);
216         while(!commit->commit_done) {
217                 prepare_to_wait(&commit->commit_wait, &wait,
218                                 TASK_UNINTERRUPTIBLE);
219                 if (commit->commit_done)
220                         break;
221                 mutex_unlock(&root->fs_info->trans_mutex);
222                 schedule();
223                 mutex_lock(&root->fs_info->trans_mutex);
224         }
225         mutex_unlock(&root->fs_info->trans_mutex);
226         finish_wait(&commit->commit_wait, &wait);
227         return 0;
228 }
229
230 /*
231  * rate limit against the drop_snapshot code.  This helps to slow down new operations
232  * if the drop_snapshot code isn't able to keep up.
233  */
234 static void throttle_on_drops(struct btrfs_root *root)
235 {
236         struct btrfs_fs_info *info = root->fs_info;
237         int harder_count = 0;
238
239 harder:
240         if (atomic_read(&info->throttles)) {
241                 DEFINE_WAIT(wait);
242                 int thr;
243                 thr = atomic_read(&info->throttle_gen);
244
245                 do {
246                         prepare_to_wait(&info->transaction_throttle,
247                                         &wait, TASK_UNINTERRUPTIBLE);
248                         if (!atomic_read(&info->throttles)) {
249                                 finish_wait(&info->transaction_throttle, &wait);
250                                 break;
251                         }
252                         schedule();
253                         finish_wait(&info->transaction_throttle, &wait);
254                 } while (thr == atomic_read(&info->throttle_gen));
255                 harder_count++;
256
257                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
258                     harder_count < 2)
259                         goto harder;
260
261                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
262                     harder_count < 10)
263                         goto harder;
264
265                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
266                     harder_count < 20)
267                         goto harder;
268         }
269 }
270
271 void btrfs_throttle(struct btrfs_root *root)
272 {
273         mutex_lock(&root->fs_info->trans_mutex);
274         if (!root->fs_info->open_ioctl_trans)
275                 wait_current_trans(root);
276         mutex_unlock(&root->fs_info->trans_mutex);
277
278         throttle_on_drops(root);
279 }
280
281 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
282                           struct btrfs_root *root, int throttle)
283 {
284         struct btrfs_transaction *cur_trans;
285         struct btrfs_fs_info *info = root->fs_info;
286
287         mutex_lock(&info->trans_mutex);
288         cur_trans = info->running_transaction;
289         WARN_ON(cur_trans != trans->transaction);
290         WARN_ON(cur_trans->num_writers < 1);
291         cur_trans->num_writers--;
292
293         if (waitqueue_active(&cur_trans->writer_wait))
294                 wake_up(&cur_trans->writer_wait);
295         put_transaction(cur_trans);
296         mutex_unlock(&info->trans_mutex);
297         memset(trans, 0, sizeof(*trans));
298         kmem_cache_free(btrfs_trans_handle_cachep, trans);
299
300         if (throttle)
301                 throttle_on_drops(root);
302
303         return 0;
304 }
305
306 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
307                           struct btrfs_root *root)
308 {
309         return __btrfs_end_transaction(trans, root, 0);
310 }
311
312 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
313                                    struct btrfs_root *root)
314 {
315         return __btrfs_end_transaction(trans, root, 1);
316 }
317
318 /*
319  * when btree blocks are allocated, they have some corresponding bits set for
320  * them in one of two extent_io trees.  This is used to make sure all of
321  * those extents are on disk for transaction or log commit
322  */
323 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
324                                         struct extent_io_tree *dirty_pages)
325 {
326         int ret;
327         int err = 0;
328         int werr = 0;
329         struct page *page;
330         struct inode *btree_inode = root->fs_info->btree_inode;
331         u64 start = 0;
332         u64 end;
333         unsigned long index;
334
335         while(1) {
336                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
337                                             EXTENT_DIRTY);
338                 if (ret)
339                         break;
340                 while(start <= end) {
341                         cond_resched();
342
343                         index = start >> PAGE_CACHE_SHIFT;
344                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
345                         page = find_get_page(btree_inode->i_mapping, index);
346                         if (!page)
347                                 continue;
348
349                         btree_lock_page_hook(page);
350                         if (!page->mapping) {
351                                 unlock_page(page);
352                                 page_cache_release(page);
353                                 continue;
354                         }
355
356                         if (PageWriteback(page)) {
357                                 if (PageDirty(page))
358                                         wait_on_page_writeback(page);
359                                 else {
360                                         unlock_page(page);
361                                         page_cache_release(page);
362                                         continue;
363                                 }
364                         }
365                         err = write_one_page(page, 0);
366                         if (err)
367                                 werr = err;
368                         page_cache_release(page);
369                 }
370         }
371         while(1) {
372                 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
373                                             EXTENT_DIRTY);
374                 if (ret)
375                         break;
376
377                 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
378                 while(start <= end) {
379                         index = start >> PAGE_CACHE_SHIFT;
380                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
381                         page = find_get_page(btree_inode->i_mapping, index);
382                         if (!page)
383                                 continue;
384                         if (PageDirty(page)) {
385                                 btree_lock_page_hook(page);
386                                 wait_on_page_writeback(page);
387                                 err = write_one_page(page, 0);
388                                 if (err)
389                                         werr = err;
390                         }
391                         wait_on_page_writeback(page);
392                         page_cache_release(page);
393                         cond_resched();
394                 }
395         }
396         if (err)
397                 werr = err;
398         return werr;
399 }
400
401 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
402                                      struct btrfs_root *root)
403 {
404         if (!trans || !trans->transaction) {
405                 struct inode *btree_inode;
406                 btree_inode = root->fs_info->btree_inode;
407                 return filemap_write_and_wait(btree_inode->i_mapping);
408         }
409         return btrfs_write_and_wait_marked_extents(root,
410                                            &trans->transaction->dirty_pages);
411 }
412
413 /*
414  * this is used to update the root pointer in the tree of tree roots.
415  *
416  * But, in the case of the extent allocation tree, updating the root
417  * pointer may allocate blocks which may change the root of the extent
418  * allocation tree.
419  *
420  * So, this loops and repeats and makes sure the cowonly root didn't
421  * change while the root pointer was being updated in the metadata.
422  */
423 static int update_cowonly_root(struct btrfs_trans_handle *trans,
424                                struct btrfs_root *root)
425 {
426         int ret;
427         u64 old_root_bytenr;
428         struct btrfs_root *tree_root = root->fs_info->tree_root;
429
430         btrfs_extent_post_op(trans, root);
431         btrfs_write_dirty_block_groups(trans, root);
432         btrfs_extent_post_op(trans, root);
433
434         while(1) {
435                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
436                 if (old_root_bytenr == root->node->start)
437                         break;
438                 btrfs_set_root_bytenr(&root->root_item,
439                                        root->node->start);
440                 btrfs_set_root_level(&root->root_item,
441                                      btrfs_header_level(root->node));
442                 btrfs_set_root_generation(&root->root_item, trans->transid);
443
444                 btrfs_extent_post_op(trans, root);
445
446                 ret = btrfs_update_root(trans, tree_root,
447                                         &root->root_key,
448                                         &root->root_item);
449                 BUG_ON(ret);
450                 btrfs_write_dirty_block_groups(trans, root);
451                 btrfs_extent_post_op(trans, root);
452         }
453         return 0;
454 }
455
456 /*
457  * update all the cowonly tree roots on disk
458  */
459 int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans,
460                             struct btrfs_root *root)
461 {
462         struct btrfs_fs_info *fs_info = root->fs_info;
463         struct list_head *next;
464         struct extent_buffer *eb;
465
466         btrfs_extent_post_op(trans, fs_info->tree_root);
467
468         eb = btrfs_lock_root_node(fs_info->tree_root);
469         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb, 0);
470         btrfs_tree_unlock(eb);
471         free_extent_buffer(eb);
472
473         btrfs_extent_post_op(trans, fs_info->tree_root);
474
475         while(!list_empty(&fs_info->dirty_cowonly_roots)) {
476                 next = fs_info->dirty_cowonly_roots.next;
477                 list_del_init(next);
478                 root = list_entry(next, struct btrfs_root, dirty_list);
479
480                 update_cowonly_root(trans, root);
481         }
482         return 0;
483 }
484
485 /*
486  * dead roots are old snapshots that need to be deleted.  This allocates
487  * a dirty root struct and adds it into the list of dead roots that need to
488  * be deleted
489  */
490 int btrfs_add_dead_root(struct btrfs_root *root, struct btrfs_root *latest)
491 {
492         struct btrfs_dirty_root *dirty;
493
494         dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
495         if (!dirty)
496                 return -ENOMEM;
497         dirty->root = root;
498         dirty->latest_root = latest;
499
500         mutex_lock(&root->fs_info->trans_mutex);
501         list_add(&dirty->list, &latest->fs_info->dead_roots);
502         mutex_unlock(&root->fs_info->trans_mutex);
503         return 0;
504 }
505
506 /*
507  * at transaction commit time we need to schedule the old roots for
508  * deletion via btrfs_drop_snapshot.  This runs through all the
509  * reference counted roots that were modified in the current
510  * transaction and puts them into the drop list
511  */
512 static noinline int add_dirty_roots(struct btrfs_trans_handle *trans,
513                                     struct radix_tree_root *radix,
514                                     struct list_head *list)
515 {
516         struct btrfs_dirty_root *dirty;
517         struct btrfs_root *gang[8];
518         struct btrfs_root *root;
519         int i;
520         int ret;
521         int err = 0;
522         u32 refs;
523
524         while(1) {
525                 ret = radix_tree_gang_lookup_tag(radix, (void **)gang, 0,
526                                                  ARRAY_SIZE(gang),
527                                                  BTRFS_ROOT_TRANS_TAG);
528                 if (ret == 0)
529                         break;
530                 for (i = 0; i < ret; i++) {
531                         root = gang[i];
532                         radix_tree_tag_clear(radix,
533                                      (unsigned long)root->root_key.objectid,
534                                      BTRFS_ROOT_TRANS_TAG);
535
536                         BUG_ON(!root->ref_tree);
537                         dirty = root->dirty_root;
538
539                         btrfs_free_log(trans, root);
540                         btrfs_free_reloc_root(trans, root);
541
542                         if (root->commit_root == root->node) {
543                                 WARN_ON(root->node->start !=
544                                         btrfs_root_bytenr(&root->root_item));
545
546                                 free_extent_buffer(root->commit_root);
547                                 root->commit_root = NULL;
548                                 root->dirty_root = NULL;
549
550                                 spin_lock(&root->list_lock);
551                                 list_del_init(&dirty->root->dead_list);
552                                 spin_unlock(&root->list_lock);
553
554                                 kfree(dirty->root);
555                                 kfree(dirty);
556
557                                 /* make sure to update the root on disk
558                                  * so we get any updates to the block used
559                                  * counts
560                                  */
561                                 err = btrfs_update_root(trans,
562                                                 root->fs_info->tree_root,
563                                                 &root->root_key,
564                                                 &root->root_item);
565                                 continue;
566                         }
567
568                         memset(&root->root_item.drop_progress, 0,
569                                sizeof(struct btrfs_disk_key));
570                         root->root_item.drop_level = 0;
571                         root->commit_root = NULL;
572                         root->dirty_root = NULL;
573                         root->root_key.offset = root->fs_info->generation;
574                         btrfs_set_root_bytenr(&root->root_item,
575                                               root->node->start);
576                         btrfs_set_root_level(&root->root_item,
577                                              btrfs_header_level(root->node));
578                         btrfs_set_root_generation(&root->root_item,
579                                                   root->root_key.offset);
580
581                         err = btrfs_insert_root(trans, root->fs_info->tree_root,
582                                                 &root->root_key,
583                                                 &root->root_item);
584                         if (err)
585                                 break;
586
587                         refs = btrfs_root_refs(&dirty->root->root_item);
588                         btrfs_set_root_refs(&dirty->root->root_item, refs - 1);
589                         err = btrfs_update_root(trans, root->fs_info->tree_root,
590                                                 &dirty->root->root_key,
591                                                 &dirty->root->root_item);
592
593                         BUG_ON(err);
594                         if (refs == 1) {
595                                 list_add(&dirty->list, list);
596                         } else {
597                                 WARN_ON(1);
598                                 free_extent_buffer(dirty->root->node);
599                                 kfree(dirty->root);
600                                 kfree(dirty);
601                         }
602                 }
603         }
604         return err;
605 }
606
607 /*
608  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
609  * otherwise every leaf in the btree is read and defragged.
610  */
611 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
612 {
613         struct btrfs_fs_info *info = root->fs_info;
614         int ret;
615         struct btrfs_trans_handle *trans;
616         unsigned long nr;
617
618         smp_mb();
619         if (root->defrag_running)
620                 return 0;
621         trans = btrfs_start_transaction(root, 1);
622         while (1) {
623                 root->defrag_running = 1;
624                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
625                 nr = trans->blocks_used;
626                 btrfs_end_transaction(trans, root);
627                 btrfs_btree_balance_dirty(info->tree_root, nr);
628                 cond_resched();
629
630                 trans = btrfs_start_transaction(root, 1);
631                 if (root->fs_info->closing || ret != -EAGAIN)
632                         break;
633         }
634         root->defrag_running = 0;
635         smp_mb();
636         btrfs_end_transaction(trans, root);
637         return 0;
638 }
639
640 /*
641  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
642  * all of them
643  */
644 static noinline int drop_dirty_roots(struct btrfs_root *tree_root,
645                                      struct list_head *list)
646 {
647         struct btrfs_dirty_root *dirty;
648         struct btrfs_trans_handle *trans;
649         unsigned long nr;
650         u64 num_bytes;
651         u64 bytes_used;
652         u64 max_useless;
653         int ret = 0;
654         int err;
655
656         while(!list_empty(list)) {
657                 struct btrfs_root *root;
658
659                 dirty = list_entry(list->prev, struct btrfs_dirty_root, list);
660                 list_del_init(&dirty->list);
661
662                 num_bytes = btrfs_root_used(&dirty->root->root_item);
663                 root = dirty->latest_root;
664                 atomic_inc(&root->fs_info->throttles);
665
666                 while(1) {
667                         trans = btrfs_start_transaction(tree_root, 1);
668                         mutex_lock(&root->fs_info->drop_mutex);
669                         ret = btrfs_drop_snapshot(trans, dirty->root);
670                         if (ret != -EAGAIN) {
671                                 break;
672                         }
673                         mutex_unlock(&root->fs_info->drop_mutex);
674
675                         err = btrfs_update_root(trans,
676                                         tree_root,
677                                         &dirty->root->root_key,
678                                         &dirty->root->root_item);
679                         if (err)
680                                 ret = err;
681                         nr = trans->blocks_used;
682                         ret = btrfs_end_transaction(trans, tree_root);
683                         BUG_ON(ret);
684
685                         btrfs_btree_balance_dirty(tree_root, nr);
686                         cond_resched();
687                 }
688                 BUG_ON(ret);
689                 atomic_dec(&root->fs_info->throttles);
690                 wake_up(&root->fs_info->transaction_throttle);
691
692                 num_bytes -= btrfs_root_used(&dirty->root->root_item);
693                 bytes_used = btrfs_root_used(&root->root_item);
694                 if (num_bytes) {
695                         btrfs_record_root_in_trans(root);
696                         btrfs_set_root_used(&root->root_item,
697                                             bytes_used - num_bytes);
698                 }
699
700                 ret = btrfs_del_root(trans, tree_root, &dirty->root->root_key);
701                 if (ret) {
702                         BUG();
703                         break;
704                 }
705                 mutex_unlock(&root->fs_info->drop_mutex);
706
707                 spin_lock(&root->list_lock);
708                 list_del_init(&dirty->root->dead_list);
709                 if (!list_empty(&root->dead_list)) {
710                         struct btrfs_root *oldest;
711                         oldest = list_entry(root->dead_list.prev,
712                                             struct btrfs_root, dead_list);
713                         max_useless = oldest->root_key.offset - 1;
714                 } else {
715                         max_useless = root->root_key.offset - 1;
716                 }
717                 spin_unlock(&root->list_lock);
718
719                 nr = trans->blocks_used;
720                 ret = btrfs_end_transaction(trans, tree_root);
721                 BUG_ON(ret);
722
723                 ret = btrfs_remove_leaf_refs(root, max_useless, 0);
724                 BUG_ON(ret);
725
726                 free_extent_buffer(dirty->root->node);
727                 kfree(dirty->root);
728                 kfree(dirty);
729
730                 btrfs_btree_balance_dirty(tree_root, nr);
731                 cond_resched();
732         }
733         return ret;
734 }
735
736 /*
737  * new snapshots need to be created at a very specific time in the
738  * transaction commit.  This does the actual creation
739  */
740 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
741                                    struct btrfs_fs_info *fs_info,
742                                    struct btrfs_pending_snapshot *pending)
743 {
744         struct btrfs_key key;
745         struct btrfs_root_item *new_root_item;
746         struct btrfs_root *tree_root = fs_info->tree_root;
747         struct btrfs_root *root = pending->root;
748         struct extent_buffer *tmp;
749         struct extent_buffer *old;
750         int ret;
751         u64 objectid;
752
753         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
754         if (!new_root_item) {
755                 ret = -ENOMEM;
756                 goto fail;
757         }
758         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
759         if (ret)
760                 goto fail;
761
762         btrfs_record_root_in_trans(root);
763         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
764         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
765
766         key.objectid = objectid;
767         key.offset = trans->transid;
768         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
769
770         old = btrfs_lock_root_node(root);
771         btrfs_cow_block(trans, root, old, NULL, 0, &old, 0);
772
773         btrfs_copy_root(trans, root, old, &tmp, objectid);
774         btrfs_tree_unlock(old);
775         free_extent_buffer(old);
776
777         btrfs_set_root_bytenr(new_root_item, tmp->start);
778         btrfs_set_root_level(new_root_item, btrfs_header_level(tmp));
779         btrfs_set_root_generation(new_root_item, trans->transid);
780         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
781                                 new_root_item);
782         btrfs_tree_unlock(tmp);
783         free_extent_buffer(tmp);
784         if (ret)
785                 goto fail;
786
787         key.offset = (u64)-1;
788         memcpy(&pending->root_key, &key, sizeof(key));
789 fail:
790         kfree(new_root_item);
791         return ret;
792 }
793
794 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
795                                    struct btrfs_pending_snapshot *pending)
796 {
797         int ret;
798         int namelen;
799         u64 index = 0;
800         struct btrfs_trans_handle *trans;
801         struct inode *parent_inode;
802         struct inode *inode;
803         struct btrfs_root *parent_root;
804
805         parent_inode = pending->dentry->d_parent->d_inode;
806         parent_root = BTRFS_I(parent_inode)->root;
807         trans = btrfs_start_transaction(parent_root, 1);
808
809         /*
810          * insert the directory item
811          */
812         namelen = strlen(pending->name);
813         ret = btrfs_set_inode_index(parent_inode, &index);
814         ret = btrfs_insert_dir_item(trans, parent_root,
815                             pending->name, namelen,
816                             parent_inode->i_ino,
817                             &pending->root_key, BTRFS_FT_DIR, index);
818
819         if (ret)
820                 goto fail;
821
822         /* add the backref first */
823         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
824                                  pending->root_key.objectid,
825                                  BTRFS_ROOT_BACKREF_KEY,
826                                  parent_root->root_key.objectid,
827                                  parent_inode->i_ino, index, pending->name,
828                                  namelen);
829
830         BUG_ON(ret);
831
832         /* now add the forward ref */
833         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
834                                  parent_root->root_key.objectid,
835                                  BTRFS_ROOT_REF_KEY,
836                                  pending->root_key.objectid,
837                                  parent_inode->i_ino, index, pending->name,
838                                  namelen);
839
840         inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
841         d_instantiate(pending->dentry, inode);
842 fail:
843         btrfs_end_transaction(trans, fs_info->fs_root);
844         return ret;
845 }
846
847 /*
848  * create all the snapshots we've scheduled for creation
849  */
850 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
851                                              struct btrfs_fs_info *fs_info)
852 {
853         struct btrfs_pending_snapshot *pending;
854         struct list_head *head = &trans->transaction->pending_snapshots;
855         struct list_head *cur;
856         int ret;
857
858         list_for_each(cur, head) {
859                 pending = list_entry(cur, struct btrfs_pending_snapshot, list);
860                 ret = create_pending_snapshot(trans, fs_info, pending);
861                 BUG_ON(ret);
862         }
863         return 0;
864 }
865
866 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
867                                              struct btrfs_fs_info *fs_info)
868 {
869         struct btrfs_pending_snapshot *pending;
870         struct list_head *head = &trans->transaction->pending_snapshots;
871         int ret;
872
873         while(!list_empty(head)) {
874                 pending = list_entry(head->next,
875                                      struct btrfs_pending_snapshot, list);
876                 ret = finish_pending_snapshot(fs_info, pending);
877                 BUG_ON(ret);
878                 list_del(&pending->list);
879                 kfree(pending->name);
880                 kfree(pending);
881         }
882         return 0;
883 }
884
885 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
886                              struct btrfs_root *root)
887 {
888         unsigned long joined = 0;
889         unsigned long timeout = 1;
890         struct btrfs_transaction *cur_trans;
891         struct btrfs_transaction *prev_trans = NULL;
892         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
893         struct list_head dirty_fs_roots;
894         struct extent_io_tree *pinned_copy;
895         DEFINE_WAIT(wait);
896         int ret;
897
898         INIT_LIST_HEAD(&dirty_fs_roots);
899         mutex_lock(&root->fs_info->trans_mutex);
900         if (trans->transaction->in_commit) {
901                 cur_trans = trans->transaction;
902                 trans->transaction->use_count++;
903                 mutex_unlock(&root->fs_info->trans_mutex);
904                 btrfs_end_transaction(trans, root);
905
906                 ret = wait_for_commit(root, cur_trans);
907                 BUG_ON(ret);
908
909                 mutex_lock(&root->fs_info->trans_mutex);
910                 put_transaction(cur_trans);
911                 mutex_unlock(&root->fs_info->trans_mutex);
912
913                 return 0;
914         }
915
916         pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
917         if (!pinned_copy)
918                 return -ENOMEM;
919
920         extent_io_tree_init(pinned_copy,
921                              root->fs_info->btree_inode->i_mapping, GFP_NOFS);
922
923         trans->transaction->in_commit = 1;
924         trans->transaction->blocked = 1;
925         cur_trans = trans->transaction;
926         if (cur_trans->list.prev != &root->fs_info->trans_list) {
927                 prev_trans = list_entry(cur_trans->list.prev,
928                                         struct btrfs_transaction, list);
929                 if (!prev_trans->commit_done) {
930                         prev_trans->use_count++;
931                         mutex_unlock(&root->fs_info->trans_mutex);
932
933                         wait_for_commit(root, prev_trans);
934
935                         mutex_lock(&root->fs_info->trans_mutex);
936                         put_transaction(prev_trans);
937                 }
938         }
939
940         do {
941                 int snap_pending = 0;
942                 joined = cur_trans->num_joined;
943                 if (!list_empty(&trans->transaction->pending_snapshots))
944                         snap_pending = 1;
945
946                 WARN_ON(cur_trans != trans->transaction);
947                 prepare_to_wait(&cur_trans->writer_wait, &wait,
948                                 TASK_UNINTERRUPTIBLE);
949
950                 if (cur_trans->num_writers > 1)
951                         timeout = MAX_SCHEDULE_TIMEOUT;
952                 else
953                         timeout = 1;
954
955                 mutex_unlock(&root->fs_info->trans_mutex);
956
957                 if (snap_pending) {
958                         ret = btrfs_wait_ordered_extents(root, 1);
959                         BUG_ON(ret);
960                 }
961
962                 schedule_timeout(timeout);
963
964                 mutex_lock(&root->fs_info->trans_mutex);
965                 finish_wait(&cur_trans->writer_wait, &wait);
966         } while (cur_trans->num_writers > 1 ||
967                  (cur_trans->num_joined != joined));
968
969         ret = create_pending_snapshots(trans, root->fs_info);
970         BUG_ON(ret);
971
972         WARN_ON(cur_trans != trans->transaction);
973
974         /* btrfs_commit_tree_roots is responsible for getting the
975          * various roots consistent with each other.  Every pointer
976          * in the tree of tree roots has to point to the most up to date
977          * root for every subvolume and other tree.  So, we have to keep
978          * the tree logging code from jumping in and changing any
979          * of the trees.
980          *
981          * At this point in the commit, there can't be any tree-log
982          * writers, but a little lower down we drop the trans mutex
983          * and let new people in.  By holding the tree_log_mutex
984          * from now until after the super is written, we avoid races
985          * with the tree-log code.
986          */
987         mutex_lock(&root->fs_info->tree_log_mutex);
988         /*
989          * keep tree reloc code from adding new reloc trees
990          */
991         mutex_lock(&root->fs_info->tree_reloc_mutex);
992
993
994         ret = add_dirty_roots(trans, &root->fs_info->fs_roots_radix,
995                               &dirty_fs_roots);
996         BUG_ON(ret);
997
998         /* add_dirty_roots gets rid of all the tree log roots, it is now
999          * safe to free the root of tree log roots
1000          */
1001         btrfs_free_log_root_tree(trans, root->fs_info);
1002
1003         ret = btrfs_commit_tree_roots(trans, root);
1004         BUG_ON(ret);
1005
1006         cur_trans = root->fs_info->running_transaction;
1007         spin_lock(&root->fs_info->new_trans_lock);
1008         root->fs_info->running_transaction = NULL;
1009         spin_unlock(&root->fs_info->new_trans_lock);
1010         btrfs_set_super_generation(&root->fs_info->super_copy,
1011                                    cur_trans->transid);
1012         btrfs_set_super_root(&root->fs_info->super_copy,
1013                              root->fs_info->tree_root->node->start);
1014         btrfs_set_super_root_level(&root->fs_info->super_copy,
1015                            btrfs_header_level(root->fs_info->tree_root->node));
1016
1017         btrfs_set_super_chunk_root(&root->fs_info->super_copy,
1018                                    chunk_root->node->start);
1019         btrfs_set_super_chunk_root_level(&root->fs_info->super_copy,
1020                                          btrfs_header_level(chunk_root->node));
1021         btrfs_set_super_chunk_root_generation(&root->fs_info->super_copy,
1022                                 btrfs_header_generation(chunk_root->node));
1023
1024         if (!root->fs_info->log_root_recovering) {
1025                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1026                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1027         }
1028
1029         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1030                sizeof(root->fs_info->super_copy));
1031
1032         btrfs_copy_pinned(root, pinned_copy);
1033
1034         trans->transaction->blocked = 0;
1035         wake_up(&root->fs_info->transaction_throttle);
1036         wake_up(&root->fs_info->transaction_wait);
1037
1038         mutex_unlock(&root->fs_info->trans_mutex);
1039         ret = btrfs_write_and_wait_transaction(trans, root);
1040         BUG_ON(ret);
1041         write_ctree_super(trans, root);
1042
1043         /*
1044          * the super is written, we can safely allow the tree-loggers
1045          * to go about their business
1046          */
1047         mutex_unlock(&root->fs_info->tree_log_mutex);
1048
1049         btrfs_finish_extent_commit(trans, root, pinned_copy);
1050         kfree(pinned_copy);
1051
1052         btrfs_drop_dead_reloc_roots(root);
1053         mutex_unlock(&root->fs_info->tree_reloc_mutex);
1054
1055         /* do the directory inserts of any pending snapshot creations */
1056         finish_pending_snapshots(trans, root->fs_info);
1057
1058         mutex_lock(&root->fs_info->trans_mutex);
1059
1060         cur_trans->commit_done = 1;
1061         root->fs_info->last_trans_committed = cur_trans->transid;
1062         wake_up(&cur_trans->commit_wait);
1063
1064         put_transaction(cur_trans);
1065         put_transaction(cur_trans);
1066
1067         list_splice_init(&dirty_fs_roots, &root->fs_info->dead_roots);
1068         if (root->fs_info->closing)
1069                 list_splice_init(&root->fs_info->dead_roots, &dirty_fs_roots);
1070
1071         mutex_unlock(&root->fs_info->trans_mutex);
1072
1073         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1074
1075         if (root->fs_info->closing) {
1076                 drop_dirty_roots(root->fs_info->tree_root, &dirty_fs_roots);
1077         }
1078         return ret;
1079 }
1080
1081 /*
1082  * interface function to delete all the snapshots we have scheduled for deletion
1083  */
1084 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1085 {
1086         struct list_head dirty_roots;
1087         INIT_LIST_HEAD(&dirty_roots);
1088 again:
1089         mutex_lock(&root->fs_info->trans_mutex);
1090         list_splice_init(&root->fs_info->dead_roots, &dirty_roots);
1091         mutex_unlock(&root->fs_info->trans_mutex);
1092
1093         if (!list_empty(&dirty_roots)) {
1094                 drop_dirty_roots(root, &dirty_roots);
1095                 goto again;
1096         }
1097         return 0;
1098 }