Btrfs: fix leaking block group on balance
[safe/jmp/linux-2.6] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include <linux/falloc.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "volumes.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "ref-cache.h"
53 #include "compression.h"
54
55 struct btrfs_iget_args {
56         u64 ino;
57         struct btrfs_root *root;
58 };
59
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_bit_radix_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
79         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
80         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
81         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
82         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
83         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
84         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
85 };
86
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89 static noinline int cow_file_range(struct inode *inode,
90                                    struct page *locked_page,
91                                    u64 start, u64 end, int *page_started,
92                                    unsigned long *nr_written, int unlock);
93
94 /*
95  * a very lame attempt at stopping writes when the FS is 85% full.  There
96  * are countless ways this is incorrect, but it is better than nothing.
97  */
98 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
99                            int for_del)
100 {
101         u64 total;
102         u64 used;
103         u64 thresh;
104         unsigned long flags;
105         int ret = 0;
106
107         spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
108         total = btrfs_super_total_bytes(&root->fs_info->super_copy);
109         used = btrfs_super_bytes_used(&root->fs_info->super_copy);
110         if (for_del)
111                 thresh = total * 90;
112         else
113                 thresh = total * 85;
114
115         do_div(thresh, 100);
116
117         if (used + root->fs_info->delalloc_bytes + num_required > thresh)
118                 ret = -ENOSPC;
119         spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
120         return ret;
121 }
122
123 /*
124  * this does all the hard work for inserting an inline extent into
125  * the btree.  The caller should have done a btrfs_drop_extents so that
126  * no overlapping inline items exist in the btree
127  */
128 static int noinline insert_inline_extent(struct btrfs_trans_handle *trans,
129                                 struct btrfs_root *root, struct inode *inode,
130                                 u64 start, size_t size, size_t compressed_size,
131                                 struct page **compressed_pages)
132 {
133         struct btrfs_key key;
134         struct btrfs_path *path;
135         struct extent_buffer *leaf;
136         struct page *page = NULL;
137         char *kaddr;
138         unsigned long ptr;
139         struct btrfs_file_extent_item *ei;
140         int err = 0;
141         int ret;
142         size_t cur_size = size;
143         size_t datasize;
144         unsigned long offset;
145         int use_compress = 0;
146
147         if (compressed_size && compressed_pages) {
148                 use_compress = 1;
149                 cur_size = compressed_size;
150         }
151
152         path = btrfs_alloc_path(); if (!path)
153                 return -ENOMEM;
154
155         btrfs_set_trans_block_group(trans, inode);
156
157         key.objectid = inode->i_ino;
158         key.offset = start;
159         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
160         inode_add_bytes(inode, size);
161         datasize = btrfs_file_extent_calc_inline_size(cur_size);
162
163         inode_add_bytes(inode, size);
164         ret = btrfs_insert_empty_item(trans, root, path, &key,
165                                       datasize);
166         BUG_ON(ret);
167         if (ret) {
168                 err = ret;
169                 printk("got bad ret %d\n", ret);
170                 goto fail;
171         }
172         leaf = path->nodes[0];
173         ei = btrfs_item_ptr(leaf, path->slots[0],
174                             struct btrfs_file_extent_item);
175         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
176         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
177         btrfs_set_file_extent_encryption(leaf, ei, 0);
178         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
179         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
180         ptr = btrfs_file_extent_inline_start(ei);
181
182         if (use_compress) {
183                 struct page *cpage;
184                 int i = 0;
185                 while(compressed_size > 0) {
186                         cpage = compressed_pages[i];
187                         cur_size = min_t(unsigned long, compressed_size,
188                                        PAGE_CACHE_SIZE);
189
190                         kaddr = kmap(cpage);
191                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
192                         kunmap(cpage);
193
194                         i++;
195                         ptr += cur_size;
196                         compressed_size -= cur_size;
197                 }
198                 btrfs_set_file_extent_compression(leaf, ei,
199                                                   BTRFS_COMPRESS_ZLIB);
200         } else {
201                 page = find_get_page(inode->i_mapping,
202                                      start >> PAGE_CACHE_SHIFT);
203                 btrfs_set_file_extent_compression(leaf, ei, 0);
204                 kaddr = kmap_atomic(page, KM_USER0);
205                 offset = start & (PAGE_CACHE_SIZE - 1);
206                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
207                 kunmap_atomic(kaddr, KM_USER0);
208                 page_cache_release(page);
209         }
210         btrfs_mark_buffer_dirty(leaf);
211         btrfs_free_path(path);
212
213         BTRFS_I(inode)->disk_i_size = inode->i_size;
214         btrfs_update_inode(trans, root, inode);
215         return 0;
216 fail:
217         btrfs_free_path(path);
218         return err;
219 }
220
221
222 /*
223  * conditionally insert an inline extent into the file.  This
224  * does the checks required to make sure the data is small enough
225  * to fit as an inline extent.
226  */
227 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
228                                  struct btrfs_root *root,
229                                  struct inode *inode, u64 start, u64 end,
230                                  size_t compressed_size,
231                                  struct page **compressed_pages)
232 {
233         u64 isize = i_size_read(inode);
234         u64 actual_end = min(end + 1, isize);
235         u64 inline_len = actual_end - start;
236         u64 aligned_end = (end + root->sectorsize - 1) &
237                         ~((u64)root->sectorsize - 1);
238         u64 hint_byte;
239         u64 data_len = inline_len;
240         int ret;
241
242         if (compressed_size)
243                 data_len = compressed_size;
244
245         if (start > 0 ||
246             actual_end >= PAGE_CACHE_SIZE ||
247             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
248             (!compressed_size &&
249             (actual_end & (root->sectorsize - 1)) == 0) ||
250             end + 1 < isize ||
251             data_len > root->fs_info->max_inline) {
252                 return 1;
253         }
254
255         ret = btrfs_drop_extents(trans, root, inode, start,
256                                  aligned_end, start, &hint_byte);
257         BUG_ON(ret);
258
259         if (isize > actual_end)
260                 inline_len = min_t(u64, isize, actual_end);
261         ret = insert_inline_extent(trans, root, inode, start,
262                                    inline_len, compressed_size,
263                                    compressed_pages);
264         BUG_ON(ret);
265         btrfs_drop_extent_cache(inode, start, aligned_end, 0);
266         return 0;
267 }
268
269 struct async_extent {
270         u64 start;
271         u64 ram_size;
272         u64 compressed_size;
273         struct page **pages;
274         unsigned long nr_pages;
275         struct list_head list;
276 };
277
278 struct async_cow {
279         struct inode *inode;
280         struct btrfs_root *root;
281         struct page *locked_page;
282         u64 start;
283         u64 end;
284         struct list_head extents;
285         struct btrfs_work work;
286 };
287
288 static noinline int add_async_extent(struct async_cow *cow,
289                                      u64 start, u64 ram_size,
290                                      u64 compressed_size,
291                                      struct page **pages,
292                                      unsigned long nr_pages)
293 {
294         struct async_extent *async_extent;
295
296         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
297         async_extent->start = start;
298         async_extent->ram_size = ram_size;
299         async_extent->compressed_size = compressed_size;
300         async_extent->pages = pages;
301         async_extent->nr_pages = nr_pages;
302         list_add_tail(&async_extent->list, &cow->extents);
303         return 0;
304 }
305
306 /*
307  * we create compressed extents in two phases.  The first
308  * phase compresses a range of pages that have already been
309  * locked (both pages and state bits are locked).
310  *
311  * This is done inside an ordered work queue, and the compression
312  * is spread across many cpus.  The actual IO submission is step
313  * two, and the ordered work queue takes care of making sure that
314  * happens in the same order things were put onto the queue by
315  * writepages and friends.
316  *
317  * If this code finds it can't get good compression, it puts an
318  * entry onto the work queue to write the uncompressed bytes.  This
319  * makes sure that both compressed inodes and uncompressed inodes
320  * are written in the same order that pdflush sent them down.
321  */
322 static noinline int compress_file_range(struct inode *inode,
323                                         struct page *locked_page,
324                                         u64 start, u64 end,
325                                         struct async_cow *async_cow,
326                                         int *num_added)
327 {
328         struct btrfs_root *root = BTRFS_I(inode)->root;
329         struct btrfs_trans_handle *trans;
330         u64 num_bytes;
331         u64 orig_start;
332         u64 disk_num_bytes;
333         u64 blocksize = root->sectorsize;
334         u64 actual_end;
335         int ret = 0;
336         struct page **pages = NULL;
337         unsigned long nr_pages;
338         unsigned long nr_pages_ret = 0;
339         unsigned long total_compressed = 0;
340         unsigned long total_in = 0;
341         unsigned long max_compressed = 128 * 1024;
342         unsigned long max_uncompressed = 128 * 1024;
343         int i;
344         int will_compress;
345
346         orig_start = start;
347
348 again:
349         will_compress = 0;
350         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
351         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
352
353         actual_end = min_t(u64, i_size_read(inode), end + 1);
354         total_compressed = actual_end - start;
355
356         /* we want to make sure that amount of ram required to uncompress
357          * an extent is reasonable, so we limit the total size in ram
358          * of a compressed extent to 128k.  This is a crucial number
359          * because it also controls how easily we can spread reads across
360          * cpus for decompression.
361          *
362          * We also want to make sure the amount of IO required to do
363          * a random read is reasonably small, so we limit the size of
364          * a compressed extent to 128k.
365          */
366         total_compressed = min(total_compressed, max_uncompressed);
367         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
368         num_bytes = max(blocksize,  num_bytes);
369         disk_num_bytes = num_bytes;
370         total_in = 0;
371         ret = 0;
372
373         /*
374          * we do compression for mount -o compress and when the
375          * inode has not been flagged as nocompress.  This flag can
376          * change at any time if we discover bad compression ratios.
377          */
378         if (!btrfs_test_flag(inode, NOCOMPRESS) &&
379             btrfs_test_opt(root, COMPRESS)) {
380                 WARN_ON(pages);
381                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
382
383                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
384                                                 total_compressed, pages,
385                                                 nr_pages, &nr_pages_ret,
386                                                 &total_in,
387                                                 &total_compressed,
388                                                 max_compressed);
389
390                 if (!ret) {
391                         unsigned long offset = total_compressed &
392                                 (PAGE_CACHE_SIZE - 1);
393                         struct page *page = pages[nr_pages_ret - 1];
394                         char *kaddr;
395
396                         /* zero the tail end of the last page, we might be
397                          * sending it down to disk
398                          */
399                         if (offset) {
400                                 kaddr = kmap_atomic(page, KM_USER0);
401                                 memset(kaddr + offset, 0,
402                                        PAGE_CACHE_SIZE - offset);
403                                 kunmap_atomic(kaddr, KM_USER0);
404                         }
405                         will_compress = 1;
406                 }
407         }
408         if (start == 0) {
409                 trans = btrfs_join_transaction(root, 1);
410                 BUG_ON(!trans);
411                 btrfs_set_trans_block_group(trans, inode);
412
413                 /* lets try to make an inline extent */
414                 if (ret || total_in < (actual_end - start)) {
415                         /* we didn't compress the entire range, try
416                          * to make an uncompressed inline extent.
417                          */
418                         ret = cow_file_range_inline(trans, root, inode,
419                                                     start, end, 0, NULL);
420                 } else {
421                         /* try making a compressed inline extent */
422                         ret = cow_file_range_inline(trans, root, inode,
423                                                     start, end,
424                                                     total_compressed, pages);
425                 }
426                 btrfs_end_transaction(trans, root);
427                 if (ret == 0) {
428                         /*
429                          * inline extent creation worked, we don't need
430                          * to create any more async work items.  Unlock
431                          * and free up our temp pages.
432                          */
433                         extent_clear_unlock_delalloc(inode,
434                                                      &BTRFS_I(inode)->io_tree,
435                                                      start, end, NULL, 1, 0,
436                                                      0, 1, 1, 1);
437                         ret = 0;
438                         goto free_pages_out;
439                 }
440         }
441
442         if (will_compress) {
443                 /*
444                  * we aren't doing an inline extent round the compressed size
445                  * up to a block size boundary so the allocator does sane
446                  * things
447                  */
448                 total_compressed = (total_compressed + blocksize - 1) &
449                         ~(blocksize - 1);
450
451                 /*
452                  * one last check to make sure the compression is really a
453                  * win, compare the page count read with the blocks on disk
454                  */
455                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
456                         ~(PAGE_CACHE_SIZE - 1);
457                 if (total_compressed >= total_in) {
458                         will_compress = 0;
459                 } else {
460                         disk_num_bytes = total_compressed;
461                         num_bytes = total_in;
462                 }
463         }
464         if (!will_compress && pages) {
465                 /*
466                  * the compression code ran but failed to make things smaller,
467                  * free any pages it allocated and our page pointer array
468                  */
469                 for (i = 0; i < nr_pages_ret; i++) {
470                         WARN_ON(pages[i]->mapping);
471                         page_cache_release(pages[i]);
472                 }
473                 kfree(pages);
474                 pages = NULL;
475                 total_compressed = 0;
476                 nr_pages_ret = 0;
477
478                 /* flag the file so we don't compress in the future */
479                 btrfs_set_flag(inode, NOCOMPRESS);
480         }
481         if (will_compress) {
482                 *num_added += 1;
483
484                 /* the async work queues will take care of doing actual
485                  * allocation on disk for these compressed pages,
486                  * and will submit them to the elevator.
487                  */
488                 add_async_extent(async_cow, start, num_bytes,
489                                  total_compressed, pages, nr_pages_ret);
490
491                 if (start + num_bytes < end) {
492                         start += num_bytes;
493                         pages = NULL;
494                         cond_resched();
495                         goto again;
496                 }
497         } else {
498                 /*
499                  * No compression, but we still need to write the pages in
500                  * the file we've been given so far.  redirty the locked
501                  * page if it corresponds to our extent and set things up
502                  * for the async work queue to run cow_file_range to do
503                  * the normal delalloc dance
504                  */
505                 if (page_offset(locked_page) >= start &&
506                     page_offset(locked_page) <= end) {
507                         __set_page_dirty_nobuffers(locked_page);
508                         /* unlocked later on in the async handlers */
509                 }
510                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
511                 *num_added += 1;
512         }
513
514 out:
515         return 0;
516
517 free_pages_out:
518         for (i = 0; i < nr_pages_ret; i++) {
519                 WARN_ON(pages[i]->mapping);
520                 page_cache_release(pages[i]);
521         }
522         if (pages)
523                 kfree(pages);
524
525         goto out;
526 }
527
528 /*
529  * phase two of compressed writeback.  This is the ordered portion
530  * of the code, which only gets called in the order the work was
531  * queued.  We walk all the async extents created by compress_file_range
532  * and send them down to the disk.
533  */
534 static noinline int submit_compressed_extents(struct inode *inode,
535                                               struct async_cow *async_cow)
536 {
537         struct async_extent *async_extent;
538         u64 alloc_hint = 0;
539         struct btrfs_trans_handle *trans;
540         struct btrfs_key ins;
541         struct extent_map *em;
542         struct btrfs_root *root = BTRFS_I(inode)->root;
543         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
544         struct extent_io_tree *io_tree;
545         int ret;
546
547         if (list_empty(&async_cow->extents))
548                 return 0;
549
550         trans = btrfs_join_transaction(root, 1);
551
552         while(!list_empty(&async_cow->extents)) {
553                 async_extent = list_entry(async_cow->extents.next,
554                                           struct async_extent, list);
555                 list_del(&async_extent->list);
556
557                 io_tree = &BTRFS_I(inode)->io_tree;
558
559                 /* did the compression code fall back to uncompressed IO? */
560                 if (!async_extent->pages) {
561                         int page_started = 0;
562                         unsigned long nr_written = 0;
563
564                         lock_extent(io_tree, async_extent->start,
565                                     async_extent->start + async_extent->ram_size - 1,
566                                     GFP_NOFS);
567
568                         /* allocate blocks */
569                         cow_file_range(inode, async_cow->locked_page,
570                                        async_extent->start,
571                                        async_extent->start +
572                                        async_extent->ram_size - 1,
573                                        &page_started, &nr_written, 0);
574
575                         /*
576                          * if page_started, cow_file_range inserted an
577                          * inline extent and took care of all the unlocking
578                          * and IO for us.  Otherwise, we need to submit
579                          * all those pages down to the drive.
580                          */
581                         if (!page_started)
582                                 extent_write_locked_range(io_tree,
583                                                   inode, async_extent->start,
584                                                   async_extent->start +
585                                                   async_extent->ram_size - 1,
586                                                   btrfs_get_extent,
587                                                   WB_SYNC_ALL);
588                         kfree(async_extent);
589                         cond_resched();
590                         continue;
591                 }
592
593                 lock_extent(io_tree, async_extent->start,
594                             async_extent->start + async_extent->ram_size - 1,
595                             GFP_NOFS);
596                 /*
597                  * here we're doing allocation and writeback of the
598                  * compressed pages
599                  */
600                 btrfs_drop_extent_cache(inode, async_extent->start,
601                                         async_extent->start +
602                                         async_extent->ram_size - 1, 0);
603
604                 ret = btrfs_reserve_extent(trans, root,
605                                            async_extent->compressed_size,
606                                            async_extent->compressed_size,
607                                            0, alloc_hint,
608                                            (u64)-1, &ins, 1);
609                 BUG_ON(ret);
610                 em = alloc_extent_map(GFP_NOFS);
611                 em->start = async_extent->start;
612                 em->len = async_extent->ram_size;
613                 em->orig_start = em->start;
614
615                 em->block_start = ins.objectid;
616                 em->block_len = ins.offset;
617                 em->bdev = root->fs_info->fs_devices->latest_bdev;
618                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
619                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
620
621                 while(1) {
622                         spin_lock(&em_tree->lock);
623                         ret = add_extent_mapping(em_tree, em);
624                         spin_unlock(&em_tree->lock);
625                         if (ret != -EEXIST) {
626                                 free_extent_map(em);
627                                 break;
628                         }
629                         btrfs_drop_extent_cache(inode, async_extent->start,
630                                                 async_extent->start +
631                                                 async_extent->ram_size - 1, 0);
632                 }
633
634                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
635                                                ins.objectid,
636                                                async_extent->ram_size,
637                                                ins.offset,
638                                                BTRFS_ORDERED_COMPRESSED);
639                 BUG_ON(ret);
640
641                 btrfs_end_transaction(trans, root);
642
643                 /*
644                  * clear dirty, set writeback and unlock the pages.
645                  */
646                 extent_clear_unlock_delalloc(inode,
647                                              &BTRFS_I(inode)->io_tree,
648                                              async_extent->start,
649                                              async_extent->start +
650                                              async_extent->ram_size - 1,
651                                              NULL, 1, 1, 0, 1, 1, 0);
652
653                 ret = btrfs_submit_compressed_write(inode,
654                                          async_extent->start,
655                                          async_extent->ram_size,
656                                          ins.objectid,
657                                          ins.offset, async_extent->pages,
658                                          async_extent->nr_pages);
659
660                 BUG_ON(ret);
661                 trans = btrfs_join_transaction(root, 1);
662                 alloc_hint = ins.objectid + ins.offset;
663                 kfree(async_extent);
664                 cond_resched();
665         }
666
667         btrfs_end_transaction(trans, root);
668         return 0;
669 }
670
671 /*
672  * when extent_io.c finds a delayed allocation range in the file,
673  * the call backs end up in this code.  The basic idea is to
674  * allocate extents on disk for the range, and create ordered data structs
675  * in ram to track those extents.
676  *
677  * locked_page is the page that writepage had locked already.  We use
678  * it to make sure we don't do extra locks or unlocks.
679  *
680  * *page_started is set to one if we unlock locked_page and do everything
681  * required to start IO on it.  It may be clean and already done with
682  * IO when we return.
683  */
684 static noinline int cow_file_range(struct inode *inode,
685                                    struct page *locked_page,
686                                    u64 start, u64 end, int *page_started,
687                                    unsigned long *nr_written,
688                                    int unlock)
689 {
690         struct btrfs_root *root = BTRFS_I(inode)->root;
691         struct btrfs_trans_handle *trans;
692         u64 alloc_hint = 0;
693         u64 num_bytes;
694         unsigned long ram_size;
695         u64 disk_num_bytes;
696         u64 cur_alloc_size;
697         u64 blocksize = root->sectorsize;
698         u64 actual_end;
699         struct btrfs_key ins;
700         struct extent_map *em;
701         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
702         int ret = 0;
703
704         trans = btrfs_join_transaction(root, 1);
705         BUG_ON(!trans);
706         btrfs_set_trans_block_group(trans, inode);
707
708         actual_end = min_t(u64, i_size_read(inode), end + 1);
709
710         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
711         num_bytes = max(blocksize,  num_bytes);
712         disk_num_bytes = num_bytes;
713         ret = 0;
714
715         if (start == 0) {
716                 /* lets try to make an inline extent */
717                 ret = cow_file_range_inline(trans, root, inode,
718                                             start, end, 0, NULL);
719                 if (ret == 0) {
720                         extent_clear_unlock_delalloc(inode,
721                                                      &BTRFS_I(inode)->io_tree,
722                                                      start, end, NULL, 1, 1,
723                                                      1, 1, 1, 1);
724                         *nr_written = *nr_written +
725                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
726                         *page_started = 1;
727                         ret = 0;
728                         goto out;
729                 }
730         }
731
732         BUG_ON(disk_num_bytes >
733                btrfs_super_total_bytes(&root->fs_info->super_copy));
734
735         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
736
737         while(disk_num_bytes > 0) {
738                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
739                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
740                                            root->sectorsize, 0, alloc_hint,
741                                            (u64)-1, &ins, 1);
742                 if (ret) {
743                         BUG();
744                 }
745                 em = alloc_extent_map(GFP_NOFS);
746                 em->start = start;
747                 em->orig_start = em->start;
748
749                 ram_size = ins.offset;
750                 em->len = ins.offset;
751
752                 em->block_start = ins.objectid;
753                 em->block_len = ins.offset;
754                 em->bdev = root->fs_info->fs_devices->latest_bdev;
755                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
756
757                 while(1) {
758                         spin_lock(&em_tree->lock);
759                         ret = add_extent_mapping(em_tree, em);
760                         spin_unlock(&em_tree->lock);
761                         if (ret != -EEXIST) {
762                                 free_extent_map(em);
763                                 break;
764                         }
765                         btrfs_drop_extent_cache(inode, start,
766                                                 start + ram_size - 1, 0);
767                 }
768
769                 cur_alloc_size = ins.offset;
770                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771                                                ram_size, cur_alloc_size, 0);
772                 BUG_ON(ret);
773
774                 if (disk_num_bytes < cur_alloc_size) {
775                         printk("num_bytes %Lu cur_alloc %Lu\n", disk_num_bytes,
776                                cur_alloc_size);
777                         break;
778                 }
779                 /* we're not doing compressed IO, don't unlock the first
780                  * page (which the caller expects to stay locked), don't
781                  * clear any dirty bits and don't set any writeback bits
782                  */
783                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
784                                              start, start + ram_size - 1,
785                                              locked_page, unlock, 1,
786                                              1, 0, 0, 0);
787                 disk_num_bytes -= cur_alloc_size;
788                 num_bytes -= cur_alloc_size;
789                 alloc_hint = ins.objectid + ins.offset;
790                 start += cur_alloc_size;
791         }
792 out:
793         ret = 0;
794         btrfs_end_transaction(trans, root);
795
796         return ret;
797 }
798
799 /*
800  * work queue call back to started compression on a file and pages
801  */
802 static noinline void async_cow_start(struct btrfs_work *work)
803 {
804         struct async_cow *async_cow;
805         int num_added = 0;
806         async_cow = container_of(work, struct async_cow, work);
807
808         compress_file_range(async_cow->inode, async_cow->locked_page,
809                             async_cow->start, async_cow->end, async_cow,
810                             &num_added);
811         if (num_added == 0)
812                 async_cow->inode = NULL;
813 }
814
815 /*
816  * work queue call back to submit previously compressed pages
817  */
818 static noinline void async_cow_submit(struct btrfs_work *work)
819 {
820         struct async_cow *async_cow;
821         struct btrfs_root *root;
822         unsigned long nr_pages;
823
824         async_cow = container_of(work, struct async_cow, work);
825
826         root = async_cow->root;
827         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
828                 PAGE_CACHE_SHIFT;
829
830         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
831
832         if (atomic_read(&root->fs_info->async_delalloc_pages) <
833             5 * 1042 * 1024 &&
834             waitqueue_active(&root->fs_info->async_submit_wait))
835                 wake_up(&root->fs_info->async_submit_wait);
836
837         if (async_cow->inode) {
838                 submit_compressed_extents(async_cow->inode, async_cow);
839         }
840 }
841
842 static noinline void async_cow_free(struct btrfs_work *work)
843 {
844         struct async_cow *async_cow;
845         async_cow = container_of(work, struct async_cow, work);
846         kfree(async_cow);
847 }
848
849 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
850                                 u64 start, u64 end, int *page_started,
851                                 unsigned long *nr_written)
852 {
853         struct async_cow *async_cow;
854         struct btrfs_root *root = BTRFS_I(inode)->root;
855         unsigned long nr_pages;
856         u64 cur_end;
857         int limit = 10 * 1024 * 1042;
858
859         if (!btrfs_test_opt(root, COMPRESS)) {
860                 return cow_file_range(inode, locked_page, start, end,
861                                       page_started, nr_written, 1);
862         }
863
864         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
865                          EXTENT_DELALLOC, 1, 0, GFP_NOFS);
866         while(start < end) {
867                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
868                 async_cow->inode = inode;
869                 async_cow->root = root;
870                 async_cow->locked_page = locked_page;
871                 async_cow->start = start;
872
873                 if (btrfs_test_flag(inode, NOCOMPRESS))
874                         cur_end = end;
875                 else
876                         cur_end = min(end, start + 512 * 1024 - 1);
877
878                 async_cow->end = cur_end;
879                 INIT_LIST_HEAD(&async_cow->extents);
880
881                 async_cow->work.func = async_cow_start;
882                 async_cow->work.ordered_func = async_cow_submit;
883                 async_cow->work.ordered_free = async_cow_free;
884                 async_cow->work.flags = 0;
885
886                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
887                         PAGE_CACHE_SHIFT;
888                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
889
890                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
891                                    &async_cow->work);
892
893                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
894                         wait_event(root->fs_info->async_submit_wait,
895                            (atomic_read(&root->fs_info->async_delalloc_pages) <
896                             limit));
897                 }
898
899                 while(atomic_read(&root->fs_info->async_submit_draining) &&
900                       atomic_read(&root->fs_info->async_delalloc_pages)) {
901                         wait_event(root->fs_info->async_submit_wait,
902                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
903                            0));
904                 }
905
906                 *nr_written += nr_pages;
907                 start = cur_end + 1;
908         }
909         *page_started = 1;
910         return 0;
911 }
912
913 /*
914  * when nowcow writeback call back.  This checks for snapshots or COW copies
915  * of the extents that exist in the file, and COWs the file as required.
916  *
917  * If no cow copies or snapshots exist, we write directly to the existing
918  * blocks on disk
919  */
920 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
921                               u64 start, u64 end, int *page_started, int force,
922                               unsigned long *nr_written)
923 {
924         struct btrfs_root *root = BTRFS_I(inode)->root;
925         struct btrfs_trans_handle *trans;
926         struct extent_buffer *leaf;
927         struct btrfs_path *path;
928         struct btrfs_file_extent_item *fi;
929         struct btrfs_key found_key;
930         u64 cow_start;
931         u64 cur_offset;
932         u64 extent_end;
933         u64 disk_bytenr;
934         u64 num_bytes;
935         int extent_type;
936         int ret;
937         int type;
938         int nocow;
939         int check_prev = 1;
940
941         path = btrfs_alloc_path();
942         BUG_ON(!path);
943         trans = btrfs_join_transaction(root, 1);
944         BUG_ON(!trans);
945
946         cow_start = (u64)-1;
947         cur_offset = start;
948         while (1) {
949                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
950                                                cur_offset, 0);
951                 BUG_ON(ret < 0);
952                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
953                         leaf = path->nodes[0];
954                         btrfs_item_key_to_cpu(leaf, &found_key,
955                                               path->slots[0] - 1);
956                         if (found_key.objectid == inode->i_ino &&
957                             found_key.type == BTRFS_EXTENT_DATA_KEY)
958                                 path->slots[0]--;
959                 }
960                 check_prev = 0;
961 next_slot:
962                 leaf = path->nodes[0];
963                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
964                         ret = btrfs_next_leaf(root, path);
965                         if (ret < 0)
966                                 BUG_ON(1);
967                         if (ret > 0)
968                                 break;
969                         leaf = path->nodes[0];
970                 }
971
972                 nocow = 0;
973                 disk_bytenr = 0;
974                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
975
976                 if (found_key.objectid > inode->i_ino ||
977                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
978                     found_key.offset > end)
979                         break;
980
981                 if (found_key.offset > cur_offset) {
982                         extent_end = found_key.offset;
983                         goto out_check;
984                 }
985
986                 fi = btrfs_item_ptr(leaf, path->slots[0],
987                                     struct btrfs_file_extent_item);
988                 extent_type = btrfs_file_extent_type(leaf, fi);
989
990                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
991                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
992                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
993                         extent_end = found_key.offset +
994                                 btrfs_file_extent_num_bytes(leaf, fi);
995                         if (extent_end <= start) {
996                                 path->slots[0]++;
997                                 goto next_slot;
998                         }
999                         if (btrfs_file_extent_compression(leaf, fi) ||
1000                             btrfs_file_extent_encryption(leaf, fi) ||
1001                             btrfs_file_extent_other_encoding(leaf, fi))
1002                                 goto out_check;
1003                         if (disk_bytenr == 0)
1004                                 goto out_check;
1005                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1006                                 goto out_check;
1007                         if (btrfs_cross_ref_exist(trans, root, disk_bytenr))
1008                                 goto out_check;
1009                         if (btrfs_extent_readonly(root, disk_bytenr))
1010                                 goto out_check;
1011                         disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1012                         nocow = 1;
1013                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1014                         extent_end = found_key.offset +
1015                                 btrfs_file_extent_inline_len(leaf, fi);
1016                         extent_end = ALIGN(extent_end, root->sectorsize);
1017                 } else {
1018                         BUG_ON(1);
1019                 }
1020 out_check:
1021                 if (extent_end <= start) {
1022                         path->slots[0]++;
1023                         goto next_slot;
1024                 }
1025                 if (!nocow) {
1026                         if (cow_start == (u64)-1)
1027                                 cow_start = cur_offset;
1028                         cur_offset = extent_end;
1029                         if (cur_offset > end)
1030                                 break;
1031                         path->slots[0]++;
1032                         goto next_slot;
1033                 }
1034
1035                 btrfs_release_path(root, path);
1036                 if (cow_start != (u64)-1) {
1037                         ret = cow_file_range(inode, locked_page, cow_start,
1038                                         found_key.offset - 1, page_started,
1039                                         nr_written, 1);
1040                         BUG_ON(ret);
1041                         cow_start = (u64)-1;
1042                 }
1043
1044                 disk_bytenr += cur_offset - found_key.offset;
1045                 num_bytes = min(end + 1, extent_end) - cur_offset;
1046                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1047                         struct extent_map *em;
1048                         struct extent_map_tree *em_tree;
1049                         em_tree = &BTRFS_I(inode)->extent_tree;
1050                         em = alloc_extent_map(GFP_NOFS);
1051                         em->start = cur_offset;
1052                         em->orig_start = em->start;
1053                         em->len = num_bytes;
1054                         em->block_len = num_bytes;
1055                         em->block_start = disk_bytenr;
1056                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1057                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1058                         while (1) {
1059                                 spin_lock(&em_tree->lock);
1060                                 ret = add_extent_mapping(em_tree, em);
1061                                 spin_unlock(&em_tree->lock);
1062                                 if (ret != -EEXIST) {
1063                                         free_extent_map(em);
1064                                         break;
1065                                 }
1066                                 btrfs_drop_extent_cache(inode, em->start,
1067                                                 em->start + em->len - 1, 0);
1068                         }
1069                         type = BTRFS_ORDERED_PREALLOC;
1070                 } else {
1071                         type = BTRFS_ORDERED_NOCOW;
1072                 }
1073
1074                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1075                                                num_bytes, num_bytes, type);
1076                 BUG_ON(ret);
1077
1078                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1079                                         cur_offset, cur_offset + num_bytes - 1,
1080                                         locked_page, 1, 1, 1, 0, 0, 0);
1081                 cur_offset = extent_end;
1082                 if (cur_offset > end)
1083                         break;
1084         }
1085         btrfs_release_path(root, path);
1086
1087         if (cur_offset <= end && cow_start == (u64)-1)
1088                 cow_start = cur_offset;
1089         if (cow_start != (u64)-1) {
1090                 ret = cow_file_range(inode, locked_page, cow_start, end,
1091                                      page_started, nr_written, 1);
1092                 BUG_ON(ret);
1093         }
1094
1095         ret = btrfs_end_transaction(trans, root);
1096         BUG_ON(ret);
1097         btrfs_free_path(path);
1098         return 0;
1099 }
1100
1101 /*
1102  * extent_io.c call back to do delayed allocation processing
1103  */
1104 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1105                               u64 start, u64 end, int *page_started,
1106                               unsigned long *nr_written)
1107 {
1108         struct btrfs_root *root = BTRFS_I(inode)->root;
1109         int ret;
1110
1111         if (btrfs_test_opt(root, NODATACOW) ||
1112             btrfs_test_flag(inode, NODATACOW))
1113                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1114                                         page_started, 1, nr_written);
1115         else if (btrfs_test_flag(inode, PREALLOC))
1116                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1117                                         page_started, 0, nr_written);
1118         else
1119                 ret = cow_file_range_async(inode, locked_page, start, end,
1120                                      page_started, nr_written);
1121
1122         return ret;
1123 }
1124
1125 /*
1126  * extent_io.c set_bit_hook, used to track delayed allocation
1127  * bytes in this file, and to maintain the list of inodes that
1128  * have pending delalloc work to be done.
1129  */
1130 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1131                        unsigned long old, unsigned long bits)
1132 {
1133         unsigned long flags;
1134         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1135                 struct btrfs_root *root = BTRFS_I(inode)->root;
1136                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
1137                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1138                 root->fs_info->delalloc_bytes += end - start + 1;
1139                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1140                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1141                                       &root->fs_info->delalloc_inodes);
1142                 }
1143                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
1144         }
1145         return 0;
1146 }
1147
1148 /*
1149  * extent_io.c clear_bit_hook, see set_bit_hook for why
1150  */
1151 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1152                          unsigned long old, unsigned long bits)
1153 {
1154         if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1155                 struct btrfs_root *root = BTRFS_I(inode)->root;
1156                 unsigned long flags;
1157
1158                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
1159                 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1160                         printk("warning: delalloc account %Lu %Lu\n",
1161                                end - start + 1, root->fs_info->delalloc_bytes);
1162                         root->fs_info->delalloc_bytes = 0;
1163                         BTRFS_I(inode)->delalloc_bytes = 0;
1164                 } else {
1165                         root->fs_info->delalloc_bytes -= end - start + 1;
1166                         BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1167                 }
1168                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1169                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1170                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1171                 }
1172                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
1173         }
1174         return 0;
1175 }
1176
1177 /*
1178  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1179  * we don't create bios that span stripes or chunks
1180  */
1181 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1182                          size_t size, struct bio *bio,
1183                          unsigned long bio_flags)
1184 {
1185         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1186         struct btrfs_mapping_tree *map_tree;
1187         u64 logical = (u64)bio->bi_sector << 9;
1188         u64 length = 0;
1189         u64 map_length;
1190         int ret;
1191
1192         if (bio_flags & EXTENT_BIO_COMPRESSED)
1193                 return 0;
1194
1195         length = bio->bi_size;
1196         map_tree = &root->fs_info->mapping_tree;
1197         map_length = length;
1198         ret = btrfs_map_block(map_tree, READ, logical,
1199                               &map_length, NULL, 0);
1200
1201         if (map_length < length + size) {
1202                 return 1;
1203         }
1204         return 0;
1205 }
1206
1207 /*
1208  * in order to insert checksums into the metadata in large chunks,
1209  * we wait until bio submission time.   All the pages in the bio are
1210  * checksummed and sums are attached onto the ordered extent record.
1211  *
1212  * At IO completion time the cums attached on the ordered extent record
1213  * are inserted into the btree
1214  */
1215 static int __btrfs_submit_bio_start(struct inode *inode, int rw, struct bio *bio,
1216                           int mirror_num, unsigned long bio_flags)
1217 {
1218         struct btrfs_root *root = BTRFS_I(inode)->root;
1219         int ret = 0;
1220
1221         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1222         BUG_ON(ret);
1223         return 0;
1224 }
1225
1226 /*
1227  * in order to insert checksums into the metadata in large chunks,
1228  * we wait until bio submission time.   All the pages in the bio are
1229  * checksummed and sums are attached onto the ordered extent record.
1230  *
1231  * At IO completion time the cums attached on the ordered extent record
1232  * are inserted into the btree
1233  */
1234 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1235                           int mirror_num, unsigned long bio_flags)
1236 {
1237         struct btrfs_root *root = BTRFS_I(inode)->root;
1238         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1239 }
1240
1241 /*
1242  * extent_io.c submission hook. This does the right thing for csum calculation on write,
1243  * or reading the csums from the tree before a read
1244  */
1245 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1246                           int mirror_num, unsigned long bio_flags)
1247 {
1248         struct btrfs_root *root = BTRFS_I(inode)->root;
1249         int ret = 0;
1250         int skip_sum;
1251
1252         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1253         BUG_ON(ret);
1254
1255         skip_sum = btrfs_test_opt(root, NODATASUM) ||
1256                 btrfs_test_flag(inode, NODATASUM);
1257
1258         if (!(rw & (1 << BIO_RW))) {
1259                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1260                         return btrfs_submit_compressed_read(inode, bio,
1261                                                     mirror_num, bio_flags);
1262                 } else if (!skip_sum)
1263                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1264                 goto mapit;
1265         } else if (!skip_sum) {
1266                 /* we're doing a write, do the async checksumming */
1267                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1268                                    inode, rw, bio, mirror_num,
1269                                    bio_flags, __btrfs_submit_bio_start,
1270                                    __btrfs_submit_bio_done);
1271         }
1272
1273 mapit:
1274         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1275 }
1276
1277 /*
1278  * given a list of ordered sums record them in the inode.  This happens
1279  * at IO completion time based on sums calculated at bio submission time.
1280  */
1281 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1282                              struct inode *inode, u64 file_offset,
1283                              struct list_head *list)
1284 {
1285         struct list_head *cur;
1286         struct btrfs_ordered_sum *sum;
1287
1288         btrfs_set_trans_block_group(trans, inode);
1289         list_for_each(cur, list) {
1290                 sum = list_entry(cur, struct btrfs_ordered_sum, list);
1291                 btrfs_csum_file_blocks(trans,
1292                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1293         }
1294         return 0;
1295 }
1296
1297 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1298 {
1299         if ((end & (PAGE_CACHE_SIZE - 1)) == 0) {
1300                 WARN_ON(1);
1301         }
1302         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1303                                    GFP_NOFS);
1304 }
1305
1306 /* see btrfs_writepage_start_hook for details on why this is required */
1307 struct btrfs_writepage_fixup {
1308         struct page *page;
1309         struct btrfs_work work;
1310 };
1311
1312 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1313 {
1314         struct btrfs_writepage_fixup *fixup;
1315         struct btrfs_ordered_extent *ordered;
1316         struct page *page;
1317         struct inode *inode;
1318         u64 page_start;
1319         u64 page_end;
1320
1321         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1322         page = fixup->page;
1323 again:
1324         lock_page(page);
1325         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1326                 ClearPageChecked(page);
1327                 goto out_page;
1328         }
1329
1330         inode = page->mapping->host;
1331         page_start = page_offset(page);
1332         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1333
1334         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1335
1336         /* already ordered? We're done */
1337         if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1338                              EXTENT_ORDERED, 0)) {
1339                 goto out;
1340         }
1341
1342         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1343         if (ordered) {
1344                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1345                               page_end, GFP_NOFS);
1346                 unlock_page(page);
1347                 btrfs_start_ordered_extent(inode, ordered, 1);
1348                 goto again;
1349         }
1350
1351         btrfs_set_extent_delalloc(inode, page_start, page_end);
1352         ClearPageChecked(page);
1353 out:
1354         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1355 out_page:
1356         unlock_page(page);
1357         page_cache_release(page);
1358 }
1359
1360 /*
1361  * There are a few paths in the higher layers of the kernel that directly
1362  * set the page dirty bit without asking the filesystem if it is a
1363  * good idea.  This causes problems because we want to make sure COW
1364  * properly happens and the data=ordered rules are followed.
1365  *
1366  * In our case any range that doesn't have the ORDERED bit set
1367  * hasn't been properly setup for IO.  We kick off an async process
1368  * to fix it up.  The async helper will wait for ordered extents, set
1369  * the delalloc bit and make it safe to write the page.
1370  */
1371 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1372 {
1373         struct inode *inode = page->mapping->host;
1374         struct btrfs_writepage_fixup *fixup;
1375         struct btrfs_root *root = BTRFS_I(inode)->root;
1376         int ret;
1377
1378         ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1379                              EXTENT_ORDERED, 0);
1380         if (ret)
1381                 return 0;
1382
1383         if (PageChecked(page))
1384                 return -EAGAIN;
1385
1386         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1387         if (!fixup)
1388                 return -EAGAIN;
1389
1390         SetPageChecked(page);
1391         page_cache_get(page);
1392         fixup->work.func = btrfs_writepage_fixup_worker;
1393         fixup->page = page;
1394         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1395         return -EAGAIN;
1396 }
1397
1398 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1399                                        struct inode *inode, u64 file_pos,
1400                                        u64 disk_bytenr, u64 disk_num_bytes,
1401                                        u64 num_bytes, u64 ram_bytes,
1402                                        u8 compression, u8 encryption,
1403                                        u16 other_encoding, int extent_type)
1404 {
1405         struct btrfs_root *root = BTRFS_I(inode)->root;
1406         struct btrfs_file_extent_item *fi;
1407         struct btrfs_path *path;
1408         struct extent_buffer *leaf;
1409         struct btrfs_key ins;
1410         u64 hint;
1411         int ret;
1412
1413         path = btrfs_alloc_path();
1414         BUG_ON(!path);
1415
1416         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1417                                  file_pos + num_bytes, file_pos, &hint);
1418         BUG_ON(ret);
1419
1420         ins.objectid = inode->i_ino;
1421         ins.offset = file_pos;
1422         ins.type = BTRFS_EXTENT_DATA_KEY;
1423         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1424         BUG_ON(ret);
1425         leaf = path->nodes[0];
1426         fi = btrfs_item_ptr(leaf, path->slots[0],
1427                             struct btrfs_file_extent_item);
1428         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1429         btrfs_set_file_extent_type(leaf, fi, extent_type);
1430         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1431         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1432         btrfs_set_file_extent_offset(leaf, fi, 0);
1433         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1434         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1435         btrfs_set_file_extent_compression(leaf, fi, compression);
1436         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1437         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1438         btrfs_mark_buffer_dirty(leaf);
1439
1440         inode_add_bytes(inode, num_bytes);
1441         btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1442
1443         ins.objectid = disk_bytenr;
1444         ins.offset = disk_num_bytes;
1445         ins.type = BTRFS_EXTENT_ITEM_KEY;
1446         ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1447                                           root->root_key.objectid,
1448                                           trans->transid, inode->i_ino, &ins);
1449         BUG_ON(ret);
1450
1451         btrfs_free_path(path);
1452         return 0;
1453 }
1454
1455 /* as ordered data IO finishes, this gets called so we can finish
1456  * an ordered extent if the range of bytes in the file it covers are
1457  * fully written.
1458  */
1459 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1460 {
1461         struct btrfs_root *root = BTRFS_I(inode)->root;
1462         struct btrfs_trans_handle *trans;
1463         struct btrfs_ordered_extent *ordered_extent;
1464         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1465         int compressed = 0;
1466         int ret;
1467
1468         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1469         if (!ret)
1470                 return 0;
1471
1472         trans = btrfs_join_transaction(root, 1);
1473
1474         ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1475         BUG_ON(!ordered_extent);
1476         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1477                 goto nocow;
1478
1479         lock_extent(io_tree, ordered_extent->file_offset,
1480                     ordered_extent->file_offset + ordered_extent->len - 1,
1481                     GFP_NOFS);
1482
1483         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1484                 compressed = 1;
1485         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1486                 BUG_ON(compressed);
1487                 ret = btrfs_mark_extent_written(trans, root, inode,
1488                                                 ordered_extent->file_offset,
1489                                                 ordered_extent->file_offset +
1490                                                 ordered_extent->len);
1491                 BUG_ON(ret);
1492         } else {
1493                 ret = insert_reserved_file_extent(trans, inode,
1494                                                 ordered_extent->file_offset,
1495                                                 ordered_extent->start,
1496                                                 ordered_extent->disk_len,
1497                                                 ordered_extent->len,
1498                                                 ordered_extent->len,
1499                                                 compressed, 0, 0,
1500                                                 BTRFS_FILE_EXTENT_REG);
1501                 BUG_ON(ret);
1502         }
1503         unlock_extent(io_tree, ordered_extent->file_offset,
1504                     ordered_extent->file_offset + ordered_extent->len - 1,
1505                     GFP_NOFS);
1506 nocow:
1507         add_pending_csums(trans, inode, ordered_extent->file_offset,
1508                           &ordered_extent->list);
1509
1510         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1511         btrfs_ordered_update_i_size(inode, ordered_extent);
1512         btrfs_update_inode(trans, root, inode);
1513         btrfs_remove_ordered_extent(inode, ordered_extent);
1514         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1515
1516         /* once for us */
1517         btrfs_put_ordered_extent(ordered_extent);
1518         /* once for the tree */
1519         btrfs_put_ordered_extent(ordered_extent);
1520
1521         btrfs_end_transaction(trans, root);
1522         return 0;
1523 }
1524
1525 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1526                                 struct extent_state *state, int uptodate)
1527 {
1528         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1529 }
1530
1531 /*
1532  * When IO fails, either with EIO or csum verification fails, we
1533  * try other mirrors that might have a good copy of the data.  This
1534  * io_failure_record is used to record state as we go through all the
1535  * mirrors.  If another mirror has good data, the page is set up to date
1536  * and things continue.  If a good mirror can't be found, the original
1537  * bio end_io callback is called to indicate things have failed.
1538  */
1539 struct io_failure_record {
1540         struct page *page;
1541         u64 start;
1542         u64 len;
1543         u64 logical;
1544         unsigned long bio_flags;
1545         int last_mirror;
1546 };
1547
1548 static int btrfs_io_failed_hook(struct bio *failed_bio,
1549                          struct page *page, u64 start, u64 end,
1550                          struct extent_state *state)
1551 {
1552         struct io_failure_record *failrec = NULL;
1553         u64 private;
1554         struct extent_map *em;
1555         struct inode *inode = page->mapping->host;
1556         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1557         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1558         struct bio *bio;
1559         int num_copies;
1560         int ret;
1561         int rw;
1562         u64 logical;
1563
1564         ret = get_state_private(failure_tree, start, &private);
1565         if (ret) {
1566                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1567                 if (!failrec)
1568                         return -ENOMEM;
1569                 failrec->start = start;
1570                 failrec->len = end - start + 1;
1571                 failrec->last_mirror = 0;
1572                 failrec->bio_flags = 0;
1573
1574                 spin_lock(&em_tree->lock);
1575                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1576                 if (em->start > start || em->start + em->len < start) {
1577                         free_extent_map(em);
1578                         em = NULL;
1579                 }
1580                 spin_unlock(&em_tree->lock);
1581
1582                 if (!em || IS_ERR(em)) {
1583                         kfree(failrec);
1584                         return -EIO;
1585                 }
1586                 logical = start - em->start;
1587                 logical = em->block_start + logical;
1588                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1589                         logical = em->block_start;
1590                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1591                 }
1592                 failrec->logical = logical;
1593                 free_extent_map(em);
1594                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1595                                 EXTENT_DIRTY, GFP_NOFS);
1596                 set_state_private(failure_tree, start,
1597                                  (u64)(unsigned long)failrec);
1598         } else {
1599                 failrec = (struct io_failure_record *)(unsigned long)private;
1600         }
1601         num_copies = btrfs_num_copies(
1602                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1603                               failrec->logical, failrec->len);
1604         failrec->last_mirror++;
1605         if (!state) {
1606                 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
1607                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1608                                                     failrec->start,
1609                                                     EXTENT_LOCKED);
1610                 if (state && state->start != failrec->start)
1611                         state = NULL;
1612                 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
1613         }
1614         if (!state || failrec->last_mirror > num_copies) {
1615                 set_state_private(failure_tree, failrec->start, 0);
1616                 clear_extent_bits(failure_tree, failrec->start,
1617                                   failrec->start + failrec->len - 1,
1618                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1619                 kfree(failrec);
1620                 return -EIO;
1621         }
1622         bio = bio_alloc(GFP_NOFS, 1);
1623         bio->bi_private = state;
1624         bio->bi_end_io = failed_bio->bi_end_io;
1625         bio->bi_sector = failrec->logical >> 9;
1626         bio->bi_bdev = failed_bio->bi_bdev;
1627         bio->bi_size = 0;
1628
1629         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1630         if (failed_bio->bi_rw & (1 << BIO_RW))
1631                 rw = WRITE;
1632         else
1633                 rw = READ;
1634
1635         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1636                                                       failrec->last_mirror,
1637                                                       failrec->bio_flags);
1638         return 0;
1639 }
1640
1641 /*
1642  * each time an IO finishes, we do a fast check in the IO failure tree
1643  * to see if we need to process or clean up an io_failure_record
1644  */
1645 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1646 {
1647         u64 private;
1648         u64 private_failure;
1649         struct io_failure_record *failure;
1650         int ret;
1651
1652         private = 0;
1653         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1654                              (u64)-1, 1, EXTENT_DIRTY)) {
1655                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1656                                         start, &private_failure);
1657                 if (ret == 0) {
1658                         failure = (struct io_failure_record *)(unsigned long)
1659                                    private_failure;
1660                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1661                                           failure->start, 0);
1662                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1663                                           failure->start,
1664                                           failure->start + failure->len - 1,
1665                                           EXTENT_DIRTY | EXTENT_LOCKED,
1666                                           GFP_NOFS);
1667                         kfree(failure);
1668                 }
1669         }
1670         return 0;
1671 }
1672
1673 /*
1674  * when reads are done, we need to check csums to verify the data is correct
1675  * if there's a match, we allow the bio to finish.  If not, we go through
1676  * the io_failure_record routines to find good copies
1677  */
1678 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1679                                struct extent_state *state)
1680 {
1681         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1682         struct inode *inode = page->mapping->host;
1683         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1684         char *kaddr;
1685         u64 private = ~(u32)0;
1686         int ret;
1687         struct btrfs_root *root = BTRFS_I(inode)->root;
1688         u32 csum = ~(u32)0;
1689         unsigned long flags;
1690
1691         if (PageChecked(page)) {
1692                 ClearPageChecked(page);
1693                 goto good;
1694         }
1695         if (btrfs_test_opt(root, NODATASUM) ||
1696             btrfs_test_flag(inode, NODATASUM))
1697                 return 0;
1698
1699         if (state && state->start == start) {
1700                 private = state->private;
1701                 ret = 0;
1702         } else {
1703                 ret = get_state_private(io_tree, start, &private);
1704         }
1705         local_irq_save(flags);
1706         kaddr = kmap_atomic(page, KM_IRQ0);
1707         if (ret) {
1708                 goto zeroit;
1709         }
1710         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1711         btrfs_csum_final(csum, (char *)&csum);
1712         if (csum != private) {
1713                 goto zeroit;
1714         }
1715         kunmap_atomic(kaddr, KM_IRQ0);
1716         local_irq_restore(flags);
1717 good:
1718         /* if the io failure tree for this inode is non-empty,
1719          * check to see if we've recovered from a failed IO
1720          */
1721         btrfs_clean_io_failures(inode, start);
1722         return 0;
1723
1724 zeroit:
1725         printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
1726                page->mapping->host->i_ino, (unsigned long long)start, csum,
1727                private);
1728         memset(kaddr + offset, 1, end - start + 1);
1729         flush_dcache_page(page);
1730         kunmap_atomic(kaddr, KM_IRQ0);
1731         local_irq_restore(flags);
1732         if (private == 0)
1733                 return 0;
1734         return -EIO;
1735 }
1736
1737 /*
1738  * This creates an orphan entry for the given inode in case something goes
1739  * wrong in the middle of an unlink/truncate.
1740  */
1741 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1742 {
1743         struct btrfs_root *root = BTRFS_I(inode)->root;
1744         int ret = 0;
1745
1746         spin_lock(&root->list_lock);
1747
1748         /* already on the orphan list, we're good */
1749         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1750                 spin_unlock(&root->list_lock);
1751                 return 0;
1752         }
1753
1754         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1755
1756         spin_unlock(&root->list_lock);
1757
1758         /*
1759          * insert an orphan item to track this unlinked/truncated file
1760          */
1761         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1762
1763         return ret;
1764 }
1765
1766 /*
1767  * We have done the truncate/delete so we can go ahead and remove the orphan
1768  * item for this particular inode.
1769  */
1770 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1771 {
1772         struct btrfs_root *root = BTRFS_I(inode)->root;
1773         int ret = 0;
1774
1775         spin_lock(&root->list_lock);
1776
1777         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1778                 spin_unlock(&root->list_lock);
1779                 return 0;
1780         }
1781
1782         list_del_init(&BTRFS_I(inode)->i_orphan);
1783         if (!trans) {
1784                 spin_unlock(&root->list_lock);
1785                 return 0;
1786         }
1787
1788         spin_unlock(&root->list_lock);
1789
1790         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1791
1792         return ret;
1793 }
1794
1795 /*
1796  * this cleans up any orphans that may be left on the list from the last use
1797  * of this root.
1798  */
1799 void btrfs_orphan_cleanup(struct btrfs_root *root)
1800 {
1801         struct btrfs_path *path;
1802         struct extent_buffer *leaf;
1803         struct btrfs_item *item;
1804         struct btrfs_key key, found_key;
1805         struct btrfs_trans_handle *trans;
1806         struct inode *inode;
1807         int ret = 0, nr_unlink = 0, nr_truncate = 0;
1808
1809         path = btrfs_alloc_path();
1810         if (!path)
1811                 return;
1812         path->reada = -1;
1813
1814         key.objectid = BTRFS_ORPHAN_OBJECTID;
1815         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1816         key.offset = (u64)-1;
1817
1818
1819         while (1) {
1820                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1821                 if (ret < 0) {
1822                         printk(KERN_ERR "Error searching slot for orphan: %d"
1823                                "\n", ret);
1824                         break;
1825                 }
1826
1827                 /*
1828                  * if ret == 0 means we found what we were searching for, which
1829                  * is weird, but possible, so only screw with path if we didnt
1830                  * find the key and see if we have stuff that matches
1831                  */
1832                 if (ret > 0) {
1833                         if (path->slots[0] == 0)
1834                                 break;
1835                         path->slots[0]--;
1836                 }
1837
1838                 /* pull out the item */
1839                 leaf = path->nodes[0];
1840                 item = btrfs_item_nr(leaf, path->slots[0]);
1841                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1842
1843                 /* make sure the item matches what we want */
1844                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1845                         break;
1846                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1847                         break;
1848
1849                 /* release the path since we're done with it */
1850                 btrfs_release_path(root, path);
1851
1852                 /*
1853                  * this is where we are basically btrfs_lookup, without the
1854                  * crossing root thing.  we store the inode number in the
1855                  * offset of the orphan item.
1856                  */
1857                 inode = btrfs_iget_locked(root->fs_info->sb,
1858                                           found_key.offset, root);
1859                 if (!inode)
1860                         break;
1861
1862                 if (inode->i_state & I_NEW) {
1863                         BTRFS_I(inode)->root = root;
1864
1865                         /* have to set the location manually */
1866                         BTRFS_I(inode)->location.objectid = inode->i_ino;
1867                         BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1868                         BTRFS_I(inode)->location.offset = 0;
1869
1870                         btrfs_read_locked_inode(inode);
1871                         unlock_new_inode(inode);
1872                 }
1873
1874                 /*
1875                  * add this inode to the orphan list so btrfs_orphan_del does
1876                  * the proper thing when we hit it
1877                  */
1878                 spin_lock(&root->list_lock);
1879                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1880                 spin_unlock(&root->list_lock);
1881
1882                 /*
1883                  * if this is a bad inode, means we actually succeeded in
1884                  * removing the inode, but not the orphan record, which means
1885                  * we need to manually delete the orphan since iput will just
1886                  * do a destroy_inode
1887                  */
1888                 if (is_bad_inode(inode)) {
1889                         trans = btrfs_start_transaction(root, 1);
1890                         btrfs_orphan_del(trans, inode);
1891                         btrfs_end_transaction(trans, root);
1892                         iput(inode);
1893                         continue;
1894                 }
1895
1896                 /* if we have links, this was a truncate, lets do that */
1897                 if (inode->i_nlink) {
1898                         nr_truncate++;
1899                         btrfs_truncate(inode);
1900                 } else {
1901                         nr_unlink++;
1902                 }
1903
1904                 /* this will do delete_inode and everything for us */
1905                 iput(inode);
1906         }
1907
1908         if (nr_unlink)
1909                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1910         if (nr_truncate)
1911                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1912
1913         btrfs_free_path(path);
1914 }
1915
1916 /*
1917  * read an inode from the btree into the in-memory inode
1918  */
1919 void btrfs_read_locked_inode(struct inode *inode)
1920 {
1921         struct btrfs_path *path;
1922         struct extent_buffer *leaf;
1923         struct btrfs_inode_item *inode_item;
1924         struct btrfs_timespec *tspec;
1925         struct btrfs_root *root = BTRFS_I(inode)->root;
1926         struct btrfs_key location;
1927         u64 alloc_group_block;
1928         u32 rdev;
1929         int ret;
1930
1931         path = btrfs_alloc_path();
1932         BUG_ON(!path);
1933         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1934
1935         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1936         if (ret)
1937                 goto make_bad;
1938
1939         leaf = path->nodes[0];
1940         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1941                                     struct btrfs_inode_item);
1942
1943         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1944         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1945         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1946         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1947         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1948
1949         tspec = btrfs_inode_atime(inode_item);
1950         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1951         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1952
1953         tspec = btrfs_inode_mtime(inode_item);
1954         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1955         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1956
1957         tspec = btrfs_inode_ctime(inode_item);
1958         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1959         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1960
1961         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
1962         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
1963         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
1964         inode->i_generation = BTRFS_I(inode)->generation;
1965         inode->i_rdev = 0;
1966         rdev = btrfs_inode_rdev(leaf, inode_item);
1967
1968         BTRFS_I(inode)->index_cnt = (u64)-1;
1969         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1970
1971         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1972         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
1973                                                 alloc_group_block, 0);
1974         btrfs_free_path(path);
1975         inode_item = NULL;
1976
1977         switch (inode->i_mode & S_IFMT) {
1978         case S_IFREG:
1979                 inode->i_mapping->a_ops = &btrfs_aops;
1980                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1981                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1982                 inode->i_fop = &btrfs_file_operations;
1983                 inode->i_op = &btrfs_file_inode_operations;
1984                 break;
1985         case S_IFDIR:
1986                 inode->i_fop = &btrfs_dir_file_operations;
1987                 if (root == root->fs_info->tree_root)
1988                         inode->i_op = &btrfs_dir_ro_inode_operations;
1989                 else
1990                         inode->i_op = &btrfs_dir_inode_operations;
1991                 break;
1992         case S_IFLNK:
1993                 inode->i_op = &btrfs_symlink_inode_operations;
1994                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1995                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1996                 break;
1997         default:
1998                 init_special_inode(inode, inode->i_mode, rdev);
1999                 break;
2000         }
2001         return;
2002
2003 make_bad:
2004         btrfs_free_path(path);
2005         make_bad_inode(inode);
2006 }
2007
2008 /*
2009  * given a leaf and an inode, copy the inode fields into the leaf
2010  */
2011 static void fill_inode_item(struct btrfs_trans_handle *trans,
2012                             struct extent_buffer *leaf,
2013                             struct btrfs_inode_item *item,
2014                             struct inode *inode)
2015 {
2016         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2017         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2018         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2019         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2020         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2021
2022         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2023                                inode->i_atime.tv_sec);
2024         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2025                                 inode->i_atime.tv_nsec);
2026
2027         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2028                                inode->i_mtime.tv_sec);
2029         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2030                                 inode->i_mtime.tv_nsec);
2031
2032         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2033                                inode->i_ctime.tv_sec);
2034         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2035                                 inode->i_ctime.tv_nsec);
2036
2037         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2038         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2039         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2040         btrfs_set_inode_transid(leaf, item, trans->transid);
2041         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2042         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2043         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2044 }
2045
2046 /*
2047  * copy everything in the in-memory inode into the btree.
2048  */
2049 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
2050                               struct btrfs_root *root,
2051                               struct inode *inode)
2052 {
2053         struct btrfs_inode_item *inode_item;
2054         struct btrfs_path *path;
2055         struct extent_buffer *leaf;
2056         int ret;
2057
2058         path = btrfs_alloc_path();
2059         BUG_ON(!path);
2060         ret = btrfs_lookup_inode(trans, root, path,
2061                                  &BTRFS_I(inode)->location, 1);
2062         if (ret) {
2063                 if (ret > 0)
2064                         ret = -ENOENT;
2065                 goto failed;
2066         }
2067
2068         leaf = path->nodes[0];
2069         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2070                                   struct btrfs_inode_item);
2071
2072         fill_inode_item(trans, leaf, inode_item, inode);
2073         btrfs_mark_buffer_dirty(leaf);
2074         btrfs_set_inode_last_trans(trans, inode);
2075         ret = 0;
2076 failed:
2077         btrfs_free_path(path);
2078         return ret;
2079 }
2080
2081
2082 /*
2083  * unlink helper that gets used here in inode.c and in the tree logging
2084  * recovery code.  It remove a link in a directory with a given name, and
2085  * also drops the back refs in the inode to the directory
2086  */
2087 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2088                        struct btrfs_root *root,
2089                        struct inode *dir, struct inode *inode,
2090                        const char *name, int name_len)
2091 {
2092         struct btrfs_path *path;
2093         int ret = 0;
2094         struct extent_buffer *leaf;
2095         struct btrfs_dir_item *di;
2096         struct btrfs_key key;
2097         u64 index;
2098
2099         path = btrfs_alloc_path();
2100         if (!path) {
2101                 ret = -ENOMEM;
2102                 goto err;
2103         }
2104
2105         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2106                                     name, name_len, -1);
2107         if (IS_ERR(di)) {
2108                 ret = PTR_ERR(di);
2109                 goto err;
2110         }
2111         if (!di) {
2112                 ret = -ENOENT;
2113                 goto err;
2114         }
2115         leaf = path->nodes[0];
2116         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2117         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2118         if (ret)
2119                 goto err;
2120         btrfs_release_path(root, path);
2121
2122         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2123                                   inode->i_ino,
2124                                   dir->i_ino, &index);
2125         if (ret) {
2126                 printk("failed to delete reference to %.*s, "
2127                        "inode %lu parent %lu\n", name_len, name,
2128                        inode->i_ino, dir->i_ino);
2129                 goto err;
2130         }
2131
2132         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2133                                          index, name, name_len, -1);
2134         if (IS_ERR(di)) {
2135                 ret = PTR_ERR(di);
2136                 goto err;
2137         }
2138         if (!di) {
2139                 ret = -ENOENT;
2140                 goto err;
2141         }
2142         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2143         btrfs_release_path(root, path);
2144
2145         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2146                                          inode, dir->i_ino);
2147         BUG_ON(ret != 0 && ret != -ENOENT);
2148         if (ret != -ENOENT)
2149                 BTRFS_I(dir)->log_dirty_trans = trans->transid;
2150
2151         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2152                                            dir, index);
2153         BUG_ON(ret);
2154 err:
2155         btrfs_free_path(path);
2156         if (ret)
2157                 goto out;
2158
2159         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2160         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2161         btrfs_update_inode(trans, root, dir);
2162         btrfs_drop_nlink(inode);
2163         ret = btrfs_update_inode(trans, root, inode);
2164         dir->i_sb->s_dirt = 1;
2165 out:
2166         return ret;
2167 }
2168
2169 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2170 {
2171         struct btrfs_root *root;
2172         struct btrfs_trans_handle *trans;
2173         struct inode *inode = dentry->d_inode;
2174         int ret;
2175         unsigned long nr = 0;
2176
2177         root = BTRFS_I(dir)->root;
2178
2179         ret = btrfs_check_free_space(root, 1, 1);
2180         if (ret)
2181                 goto fail;
2182
2183         trans = btrfs_start_transaction(root, 1);
2184
2185         btrfs_set_trans_block_group(trans, dir);
2186         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2187                                  dentry->d_name.name, dentry->d_name.len);
2188
2189         if (inode->i_nlink == 0)
2190                 ret = btrfs_orphan_add(trans, inode);
2191
2192         nr = trans->blocks_used;
2193
2194         btrfs_end_transaction_throttle(trans, root);
2195 fail:
2196         btrfs_btree_balance_dirty(root, nr);
2197         return ret;
2198 }
2199
2200 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2201 {
2202         struct inode *inode = dentry->d_inode;
2203         int err = 0;
2204         int ret;
2205         struct btrfs_root *root = BTRFS_I(dir)->root;
2206         struct btrfs_trans_handle *trans;
2207         unsigned long nr = 0;
2208
2209         /*
2210          * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2211          * the root of a subvolume or snapshot
2212          */
2213         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2214             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2215                 return -ENOTEMPTY;
2216         }
2217
2218         ret = btrfs_check_free_space(root, 1, 1);
2219         if (ret)
2220                 goto fail;
2221
2222         trans = btrfs_start_transaction(root, 1);
2223         btrfs_set_trans_block_group(trans, dir);
2224
2225         err = btrfs_orphan_add(trans, inode);
2226         if (err)
2227                 goto fail_trans;
2228
2229         /* now the directory is empty */
2230         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2231                                  dentry->d_name.name, dentry->d_name.len);
2232         if (!err) {
2233                 btrfs_i_size_write(inode, 0);
2234         }
2235
2236 fail_trans:
2237         nr = trans->blocks_used;
2238         ret = btrfs_end_transaction_throttle(trans, root);
2239 fail:
2240         btrfs_btree_balance_dirty(root, nr);
2241
2242         if (ret && !err)
2243                 err = ret;
2244         return err;
2245 }
2246
2247 #if 0
2248 /*
2249  * when truncating bytes in a file, it is possible to avoid reading
2250  * the leaves that contain only checksum items.  This can be the
2251  * majority of the IO required to delete a large file, but it must
2252  * be done carefully.
2253  *
2254  * The keys in the level just above the leaves are checked to make sure
2255  * the lowest key in a given leaf is a csum key, and starts at an offset
2256  * after the new  size.
2257  *
2258  * Then the key for the next leaf is checked to make sure it also has
2259  * a checksum item for the same file.  If it does, we know our target leaf
2260  * contains only checksum items, and it can be safely freed without reading
2261  * it.
2262  *
2263  * This is just an optimization targeted at large files.  It may do
2264  * nothing.  It will return 0 unless things went badly.
2265  */
2266 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2267                                      struct btrfs_root *root,
2268                                      struct btrfs_path *path,
2269                                      struct inode *inode, u64 new_size)
2270 {
2271         struct btrfs_key key;
2272         int ret;
2273         int nritems;
2274         struct btrfs_key found_key;
2275         struct btrfs_key other_key;
2276         struct btrfs_leaf_ref *ref;
2277         u64 leaf_gen;
2278         u64 leaf_start;
2279
2280         path->lowest_level = 1;
2281         key.objectid = inode->i_ino;
2282         key.type = BTRFS_CSUM_ITEM_KEY;
2283         key.offset = new_size;
2284 again:
2285         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2286         if (ret < 0)
2287                 goto out;
2288
2289         if (path->nodes[1] == NULL) {
2290                 ret = 0;
2291                 goto out;
2292         }
2293         ret = 0;
2294         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2295         nritems = btrfs_header_nritems(path->nodes[1]);
2296
2297         if (!nritems)
2298                 goto out;
2299
2300         if (path->slots[1] >= nritems)
2301                 goto next_node;
2302
2303         /* did we find a key greater than anything we want to delete? */
2304         if (found_key.objectid > inode->i_ino ||
2305            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2306                 goto out;
2307
2308         /* we check the next key in the node to make sure the leave contains
2309          * only checksum items.  This comparison doesn't work if our
2310          * leaf is the last one in the node
2311          */
2312         if (path->slots[1] + 1 >= nritems) {
2313 next_node:
2314                 /* search forward from the last key in the node, this
2315                  * will bring us into the next node in the tree
2316                  */
2317                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2318
2319                 /* unlikely, but we inc below, so check to be safe */
2320                 if (found_key.offset == (u64)-1)
2321                         goto out;
2322
2323                 /* search_forward needs a path with locks held, do the
2324                  * search again for the original key.  It is possible
2325                  * this will race with a balance and return a path that
2326                  * we could modify, but this drop is just an optimization
2327                  * and is allowed to miss some leaves.
2328                  */
2329                 btrfs_release_path(root, path);
2330                 found_key.offset++;
2331
2332                 /* setup a max key for search_forward */
2333                 other_key.offset = (u64)-1;
2334                 other_key.type = key.type;
2335                 other_key.objectid = key.objectid;
2336
2337                 path->keep_locks = 1;
2338                 ret = btrfs_search_forward(root, &found_key, &other_key,
2339                                            path, 0, 0);
2340                 path->keep_locks = 0;
2341                 if (ret || found_key.objectid != key.objectid ||
2342                     found_key.type != key.type) {
2343                         ret = 0;
2344                         goto out;
2345                 }
2346
2347                 key.offset = found_key.offset;
2348                 btrfs_release_path(root, path);
2349                 cond_resched();
2350                 goto again;
2351         }
2352
2353         /* we know there's one more slot after us in the tree,
2354          * read that key so we can verify it is also a checksum item
2355          */
2356         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2357
2358         if (found_key.objectid < inode->i_ino)
2359                 goto next_key;
2360
2361         if (found_key.type != key.type || found_key.offset < new_size)
2362                 goto next_key;
2363
2364         /*
2365          * if the key for the next leaf isn't a csum key from this objectid,
2366          * we can't be sure there aren't good items inside this leaf.
2367          * Bail out
2368          */
2369         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2370                 goto out;
2371
2372         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2373         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2374         /*
2375          * it is safe to delete this leaf, it contains only
2376          * csum items from this inode at an offset >= new_size
2377          */
2378         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2379         BUG_ON(ret);
2380
2381         if (root->ref_cows && leaf_gen < trans->transid) {
2382                 ref = btrfs_alloc_leaf_ref(root, 0);
2383                 if (ref) {
2384                         ref->root_gen = root->root_key.offset;
2385                         ref->bytenr = leaf_start;
2386                         ref->owner = 0;
2387                         ref->generation = leaf_gen;
2388                         ref->nritems = 0;
2389
2390                         ret = btrfs_add_leaf_ref(root, ref, 0);
2391                         WARN_ON(ret);
2392                         btrfs_free_leaf_ref(root, ref);
2393                 } else {
2394                         WARN_ON(1);
2395                 }
2396         }
2397 next_key:
2398         btrfs_release_path(root, path);
2399
2400         if (other_key.objectid == inode->i_ino &&
2401             other_key.type == key.type && other_key.offset > key.offset) {
2402                 key.offset = other_key.offset;
2403                 cond_resched();
2404                 goto again;
2405         }
2406         ret = 0;
2407 out:
2408         /* fixup any changes we've made to the path */
2409         path->lowest_level = 0;
2410         path->keep_locks = 0;
2411         btrfs_release_path(root, path);
2412         return ret;
2413 }
2414
2415 #endif
2416
2417 /*
2418  * this can truncate away extent items, csum items and directory items.
2419  * It starts at a high offset and removes keys until it can't find
2420  * any higher than new_size
2421  *
2422  * csum items that cross the new i_size are truncated to the new size
2423  * as well.
2424  *
2425  * min_type is the minimum key type to truncate down to.  If set to 0, this
2426  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2427  */
2428 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2429                                         struct btrfs_root *root,
2430                                         struct inode *inode,
2431                                         u64 new_size, u32 min_type)
2432 {
2433         int ret;
2434         struct btrfs_path *path;
2435         struct btrfs_key key;
2436         struct btrfs_key found_key;
2437         u32 found_type;
2438         struct extent_buffer *leaf;
2439         struct btrfs_file_extent_item *fi;
2440         u64 extent_start = 0;
2441         u64 extent_num_bytes = 0;
2442         u64 item_end = 0;
2443         u64 root_gen = 0;
2444         u64 root_owner = 0;
2445         int found_extent;
2446         int del_item;
2447         int pending_del_nr = 0;
2448         int pending_del_slot = 0;
2449         int extent_type = -1;
2450         int encoding;
2451         u64 mask = root->sectorsize - 1;
2452
2453         if (root->ref_cows)
2454                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2455         path = btrfs_alloc_path();
2456         path->reada = -1;
2457         BUG_ON(!path);
2458
2459         /* FIXME, add redo link to tree so we don't leak on crash */
2460         key.objectid = inode->i_ino;
2461         key.offset = (u64)-1;
2462         key.type = (u8)-1;
2463
2464         btrfs_init_path(path);
2465
2466 search_again:
2467         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2468         if (ret < 0) {
2469                 goto error;
2470         }
2471         if (ret > 0) {
2472                 /* there are no items in the tree for us to truncate, we're
2473                  * done
2474                  */
2475                 if (path->slots[0] == 0) {
2476                         ret = 0;
2477                         goto error;
2478                 }
2479                 path->slots[0]--;
2480         }
2481
2482         while(1) {
2483                 fi = NULL;
2484                 leaf = path->nodes[0];
2485                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2486                 found_type = btrfs_key_type(&found_key);
2487                 encoding = 0;
2488
2489                 if (found_key.objectid != inode->i_ino)
2490                         break;
2491
2492                 if (found_type < min_type)
2493                         break;
2494
2495                 item_end = found_key.offset;
2496                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2497                         fi = btrfs_item_ptr(leaf, path->slots[0],
2498                                             struct btrfs_file_extent_item);
2499                         extent_type = btrfs_file_extent_type(leaf, fi);
2500                         encoding = btrfs_file_extent_compression(leaf, fi);
2501                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2502                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2503
2504                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2505                                 item_end +=
2506                                     btrfs_file_extent_num_bytes(leaf, fi);
2507                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2508                                 item_end += btrfs_file_extent_inline_len(leaf,
2509                                                                          fi);
2510                         }
2511                         item_end--;
2512                 }
2513                 if (item_end < new_size) {
2514                         if (found_type == BTRFS_DIR_ITEM_KEY) {
2515                                 found_type = BTRFS_INODE_ITEM_KEY;
2516                         } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
2517                                 found_type = BTRFS_EXTENT_DATA_KEY;
2518                         } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
2519                                 found_type = BTRFS_XATTR_ITEM_KEY;
2520                         } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
2521                                 found_type = BTRFS_INODE_REF_KEY;
2522                         } else if (found_type) {
2523                                 found_type--;
2524                         } else {
2525                                 break;
2526                         }
2527                         btrfs_set_key_type(&key, found_type);
2528                         goto next;
2529                 }
2530                 if (found_key.offset >= new_size)
2531                         del_item = 1;
2532                 else
2533                         del_item = 0;
2534                 found_extent = 0;
2535
2536                 /* FIXME, shrink the extent if the ref count is only 1 */
2537                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2538                         goto delete;
2539
2540                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2541                         u64 num_dec;
2542                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2543                         if (!del_item && !encoding) {
2544                                 u64 orig_num_bytes =
2545                                         btrfs_file_extent_num_bytes(leaf, fi);
2546                                 extent_num_bytes = new_size -
2547                                         found_key.offset + root->sectorsize - 1;
2548                                 extent_num_bytes = extent_num_bytes &
2549                                         ~((u64)root->sectorsize - 1);
2550                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2551                                                          extent_num_bytes);
2552                                 num_dec = (orig_num_bytes -
2553                                            extent_num_bytes);
2554                                 if (root->ref_cows && extent_start != 0)
2555                                         inode_sub_bytes(inode, num_dec);
2556                                 btrfs_mark_buffer_dirty(leaf);
2557                         } else {
2558                                 extent_num_bytes =
2559                                         btrfs_file_extent_disk_num_bytes(leaf,
2560                                                                          fi);
2561                                 /* FIXME blocksize != 4096 */
2562                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2563                                 if (extent_start != 0) {
2564                                         found_extent = 1;
2565                                         if (root->ref_cows)
2566                                                 inode_sub_bytes(inode, num_dec);
2567                                 }
2568                                 root_gen = btrfs_header_generation(leaf);
2569                                 root_owner = btrfs_header_owner(leaf);
2570                         }
2571                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2572                         /*
2573                          * we can't truncate inline items that have had
2574                          * special encodings
2575                          */
2576                         if (!del_item &&
2577                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2578                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
2579                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2580                                 u32 size = new_size - found_key.offset;
2581
2582                                 if (root->ref_cows) {
2583                                         inode_sub_bytes(inode, item_end + 1 -
2584                                                         new_size);
2585                                 }
2586                                 size =
2587                                     btrfs_file_extent_calc_inline_size(size);
2588                                 ret = btrfs_truncate_item(trans, root, path,
2589                                                           size, 1);
2590                                 BUG_ON(ret);
2591                         } else if (root->ref_cows) {
2592                                 inode_sub_bytes(inode, item_end + 1 -
2593                                                 found_key.offset);
2594                         }
2595                 }
2596 delete:
2597                 if (del_item) {
2598                         if (!pending_del_nr) {
2599                                 /* no pending yet, add ourselves */
2600                                 pending_del_slot = path->slots[0];
2601                                 pending_del_nr = 1;
2602                         } else if (pending_del_nr &&
2603                                    path->slots[0] + 1 == pending_del_slot) {
2604                                 /* hop on the pending chunk */
2605                                 pending_del_nr++;
2606                                 pending_del_slot = path->slots[0];
2607                         } else {
2608                                 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
2609                         }
2610                 } else {
2611                         break;
2612                 }
2613                 if (found_extent) {
2614                         ret = btrfs_free_extent(trans, root, extent_start,
2615                                                 extent_num_bytes,
2616                                                 leaf->start, root_owner,
2617                                                 root_gen, inode->i_ino, 0);
2618                         BUG_ON(ret);
2619                 }
2620 next:
2621                 if (path->slots[0] == 0) {
2622                         if (pending_del_nr)
2623                                 goto del_pending;
2624                         btrfs_release_path(root, path);
2625                         goto search_again;
2626                 }
2627
2628                 path->slots[0]--;
2629                 if (pending_del_nr &&
2630                     path->slots[0] + 1 != pending_del_slot) {
2631                         struct btrfs_key debug;
2632 del_pending:
2633                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
2634                                               pending_del_slot);
2635                         ret = btrfs_del_items(trans, root, path,
2636                                               pending_del_slot,
2637                                               pending_del_nr);
2638                         BUG_ON(ret);
2639                         pending_del_nr = 0;
2640                         btrfs_release_path(root, path);
2641                         goto search_again;
2642                 }
2643         }
2644         ret = 0;
2645 error:
2646         if (pending_del_nr) {
2647                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2648                                       pending_del_nr);
2649         }
2650         btrfs_free_path(path);
2651         inode->i_sb->s_dirt = 1;
2652         return ret;
2653 }
2654
2655 /*
2656  * taken from block_truncate_page, but does cow as it zeros out
2657  * any bytes left in the last page in the file.
2658  */
2659 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2660 {
2661         struct inode *inode = mapping->host;
2662         struct btrfs_root *root = BTRFS_I(inode)->root;
2663         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2664         struct btrfs_ordered_extent *ordered;
2665         char *kaddr;
2666         u32 blocksize = root->sectorsize;
2667         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2668         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2669         struct page *page;
2670         int ret = 0;
2671         u64 page_start;
2672         u64 page_end;
2673
2674         if ((offset & (blocksize - 1)) == 0)
2675                 goto out;
2676
2677         ret = -ENOMEM;
2678 again:
2679         page = grab_cache_page(mapping, index);
2680         if (!page)
2681                 goto out;
2682
2683         page_start = page_offset(page);
2684         page_end = page_start + PAGE_CACHE_SIZE - 1;
2685
2686         if (!PageUptodate(page)) {
2687                 ret = btrfs_readpage(NULL, page);
2688                 lock_page(page);
2689                 if (page->mapping != mapping) {
2690                         unlock_page(page);
2691                         page_cache_release(page);
2692                         goto again;
2693                 }
2694                 if (!PageUptodate(page)) {
2695                         ret = -EIO;
2696                         goto out_unlock;
2697                 }
2698         }
2699         wait_on_page_writeback(page);
2700
2701         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2702         set_page_extent_mapped(page);
2703
2704         ordered = btrfs_lookup_ordered_extent(inode, page_start);
2705         if (ordered) {
2706                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2707                 unlock_page(page);
2708                 page_cache_release(page);
2709                 btrfs_start_ordered_extent(inode, ordered, 1);
2710                 btrfs_put_ordered_extent(ordered);
2711                 goto again;
2712         }
2713
2714         btrfs_set_extent_delalloc(inode, page_start, page_end);
2715         ret = 0;
2716         if (offset != PAGE_CACHE_SIZE) {
2717                 kaddr = kmap(page);
2718                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2719                 flush_dcache_page(page);
2720                 kunmap(page);
2721         }
2722         ClearPageChecked(page);
2723         set_page_dirty(page);
2724         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2725
2726 out_unlock:
2727         unlock_page(page);
2728         page_cache_release(page);
2729 out:
2730         return ret;
2731 }
2732
2733 int btrfs_cont_expand(struct inode *inode, loff_t size)
2734 {
2735         struct btrfs_trans_handle *trans;
2736         struct btrfs_root *root = BTRFS_I(inode)->root;
2737         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2738         struct extent_map *em;
2739         u64 mask = root->sectorsize - 1;
2740         u64 hole_start = (inode->i_size + mask) & ~mask;
2741         u64 block_end = (size + mask) & ~mask;
2742         u64 last_byte;
2743         u64 cur_offset;
2744         u64 hole_size;
2745         int err;
2746
2747         if (size <= hole_start)
2748                 return 0;
2749
2750         err = btrfs_check_free_space(root, 1, 0);
2751         if (err)
2752                 return err;
2753
2754         btrfs_truncate_page(inode->i_mapping, inode->i_size);
2755
2756         while (1) {
2757                 struct btrfs_ordered_extent *ordered;
2758                 btrfs_wait_ordered_range(inode, hole_start,
2759                                          block_end - hole_start);
2760                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2761                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2762                 if (!ordered)
2763                         break;
2764                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2765                 btrfs_put_ordered_extent(ordered);
2766         }
2767
2768         trans = btrfs_start_transaction(root, 1);
2769         btrfs_set_trans_block_group(trans, inode);
2770
2771         cur_offset = hole_start;
2772         while (1) {
2773                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2774                                 block_end - cur_offset, 0);
2775                 BUG_ON(IS_ERR(em) || !em);
2776                 last_byte = min(extent_map_end(em), block_end);
2777                 last_byte = (last_byte + mask) & ~mask;
2778                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2779                         u64 hint_byte = 0;
2780                         hole_size = last_byte - cur_offset;
2781                         err = btrfs_drop_extents(trans, root, inode,
2782                                                  cur_offset,
2783                                                  cur_offset + hole_size,
2784                                                  cur_offset, &hint_byte);
2785                         if (err)
2786                                 break;
2787                         err = btrfs_insert_file_extent(trans, root,
2788                                         inode->i_ino, cur_offset, 0,
2789                                         0, hole_size, 0, hole_size,
2790                                         0, 0, 0);
2791                         btrfs_drop_extent_cache(inode, hole_start,
2792                                         last_byte - 1, 0);
2793                 }
2794                 free_extent_map(em);
2795                 cur_offset = last_byte;
2796                 if (err || cur_offset >= block_end)
2797                         break;
2798         }
2799
2800         btrfs_end_transaction(trans, root);
2801         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2802         return err;
2803 }
2804
2805 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2806 {
2807         struct inode *inode = dentry->d_inode;
2808         int err;
2809
2810         err = inode_change_ok(inode, attr);
2811         if (err)
2812                 return err;
2813
2814         if (S_ISREG(inode->i_mode) &&
2815             attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2816                 err = btrfs_cont_expand(inode, attr->ia_size);
2817                 if (err)
2818                         return err;
2819         }
2820
2821         err = inode_setattr(inode, attr);
2822
2823         if (!err && ((attr->ia_valid & ATTR_MODE)))
2824                 err = btrfs_acl_chmod(inode);
2825         return err;
2826 }
2827
2828 void btrfs_delete_inode(struct inode *inode)
2829 {
2830         struct btrfs_trans_handle *trans;
2831         struct btrfs_root *root = BTRFS_I(inode)->root;
2832         unsigned long nr;
2833         int ret;
2834
2835         truncate_inode_pages(&inode->i_data, 0);
2836         if (is_bad_inode(inode)) {
2837                 btrfs_orphan_del(NULL, inode);
2838                 goto no_delete;
2839         }
2840         btrfs_wait_ordered_range(inode, 0, (u64)-1);
2841
2842         btrfs_i_size_write(inode, 0);
2843         trans = btrfs_start_transaction(root, 1);
2844
2845         btrfs_set_trans_block_group(trans, inode);
2846         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2847         if (ret) {
2848                 btrfs_orphan_del(NULL, inode);
2849                 goto no_delete_lock;
2850         }
2851
2852         btrfs_orphan_del(trans, inode);
2853
2854         nr = trans->blocks_used;
2855         clear_inode(inode);
2856
2857         btrfs_end_transaction(trans, root);
2858         btrfs_btree_balance_dirty(root, nr);
2859         return;
2860
2861 no_delete_lock:
2862         nr = trans->blocks_used;
2863         btrfs_end_transaction(trans, root);
2864         btrfs_btree_balance_dirty(root, nr);
2865 no_delete:
2866         clear_inode(inode);
2867 }
2868
2869 /*
2870  * this returns the key found in the dir entry in the location pointer.
2871  * If no dir entries were found, location->objectid is 0.
2872  */
2873 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2874                                struct btrfs_key *location)
2875 {
2876         const char *name = dentry->d_name.name;
2877         int namelen = dentry->d_name.len;
2878         struct btrfs_dir_item *di;
2879         struct btrfs_path *path;
2880         struct btrfs_root *root = BTRFS_I(dir)->root;
2881         int ret = 0;
2882
2883         path = btrfs_alloc_path();
2884         BUG_ON(!path);
2885
2886         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2887                                     namelen, 0);
2888         if (IS_ERR(di))
2889                 ret = PTR_ERR(di);
2890         if (!di || IS_ERR(di)) {
2891                 goto out_err;
2892         }
2893         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2894 out:
2895         btrfs_free_path(path);
2896         return ret;
2897 out_err:
2898         location->objectid = 0;
2899         goto out;
2900 }
2901
2902 /*
2903  * when we hit a tree root in a directory, the btrfs part of the inode
2904  * needs to be changed to reflect the root directory of the tree root.  This
2905  * is kind of like crossing a mount point.
2906  */
2907 static int fixup_tree_root_location(struct btrfs_root *root,
2908                              struct btrfs_key *location,
2909                              struct btrfs_root **sub_root,
2910                              struct dentry *dentry)
2911 {
2912         struct btrfs_root_item *ri;
2913
2914         if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2915                 return 0;
2916         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2917                 return 0;
2918
2919         *sub_root = btrfs_read_fs_root(root->fs_info, location,
2920                                         dentry->d_name.name,
2921                                         dentry->d_name.len);
2922         if (IS_ERR(*sub_root))
2923                 return PTR_ERR(*sub_root);
2924
2925         ri = &(*sub_root)->root_item;
2926         location->objectid = btrfs_root_dirid(ri);
2927         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2928         location->offset = 0;
2929
2930         return 0;
2931 }
2932
2933 static noinline void init_btrfs_i(struct inode *inode)
2934 {
2935         struct btrfs_inode *bi = BTRFS_I(inode);
2936
2937         bi->i_acl = NULL;
2938         bi->i_default_acl = NULL;
2939
2940         bi->generation = 0;
2941         bi->sequence = 0;
2942         bi->last_trans = 0;
2943         bi->logged_trans = 0;
2944         bi->delalloc_bytes = 0;
2945         bi->disk_i_size = 0;
2946         bi->flags = 0;
2947         bi->index_cnt = (u64)-1;
2948         bi->log_dirty_trans = 0;
2949         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2950         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2951                              inode->i_mapping, GFP_NOFS);
2952         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2953                              inode->i_mapping, GFP_NOFS);
2954         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2955         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2956         mutex_init(&BTRFS_I(inode)->extent_mutex);
2957         mutex_init(&BTRFS_I(inode)->log_mutex);
2958 }
2959
2960 static int btrfs_init_locked_inode(struct inode *inode, void *p)
2961 {
2962         struct btrfs_iget_args *args = p;
2963         inode->i_ino = args->ino;
2964         init_btrfs_i(inode);
2965         BTRFS_I(inode)->root = args->root;
2966         return 0;
2967 }
2968
2969 static int btrfs_find_actor(struct inode *inode, void *opaque)
2970 {
2971         struct btrfs_iget_args *args = opaque;
2972         return (args->ino == inode->i_ino &&
2973                 args->root == BTRFS_I(inode)->root);
2974 }
2975
2976 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
2977                             struct btrfs_root *root, int wait)
2978 {
2979         struct inode *inode;
2980         struct btrfs_iget_args args;
2981         args.ino = objectid;
2982         args.root = root;
2983
2984         if (wait) {
2985                 inode = ilookup5(s, objectid, btrfs_find_actor,
2986                                  (void *)&args);
2987         } else {
2988                 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
2989                                         (void *)&args);
2990         }
2991         return inode;
2992 }
2993
2994 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
2995                                 struct btrfs_root *root)
2996 {
2997         struct inode *inode;
2998         struct btrfs_iget_args args;
2999         args.ino = objectid;
3000         args.root = root;
3001
3002         inode = iget5_locked(s, objectid, btrfs_find_actor,
3003                              btrfs_init_locked_inode,
3004                              (void *)&args);
3005         return inode;
3006 }
3007
3008 /* Get an inode object given its location and corresponding root.
3009  * Returns in *is_new if the inode was read from disk
3010  */
3011 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3012                          struct btrfs_root *root, int *is_new)
3013 {
3014         struct inode *inode;
3015
3016         inode = btrfs_iget_locked(s, location->objectid, root);
3017         if (!inode)
3018                 return ERR_PTR(-EACCES);
3019
3020         if (inode->i_state & I_NEW) {
3021                 BTRFS_I(inode)->root = root;
3022                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3023                 btrfs_read_locked_inode(inode);
3024                 unlock_new_inode(inode);
3025                 if (is_new)
3026                         *is_new = 1;
3027         } else {
3028                 if (is_new)
3029                         *is_new = 0;
3030         }
3031
3032         return inode;
3033 }
3034
3035 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3036 {
3037         struct inode * inode;
3038         struct btrfs_inode *bi = BTRFS_I(dir);
3039         struct btrfs_root *root = bi->root;
3040         struct btrfs_root *sub_root = root;
3041         struct btrfs_key location;
3042         int ret, new;
3043
3044         if (dentry->d_name.len > BTRFS_NAME_LEN)
3045                 return ERR_PTR(-ENAMETOOLONG);
3046
3047         ret = btrfs_inode_by_name(dir, dentry, &location);
3048
3049         if (ret < 0)
3050                 return ERR_PTR(ret);
3051
3052         inode = NULL;
3053         if (location.objectid) {
3054                 ret = fixup_tree_root_location(root, &location, &sub_root,
3055                                                 dentry);
3056                 if (ret < 0)
3057                         return ERR_PTR(ret);
3058                 if (ret > 0)
3059                         return ERR_PTR(-ENOENT);
3060                 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3061                 if (IS_ERR(inode))
3062                         return ERR_CAST(inode);
3063         }
3064         return inode;
3065 }
3066
3067 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3068                                    struct nameidata *nd)
3069 {
3070         struct inode *inode;
3071
3072         if (dentry->d_name.len > BTRFS_NAME_LEN)
3073                 return ERR_PTR(-ENAMETOOLONG);
3074
3075         inode = btrfs_lookup_dentry(dir, dentry);
3076         if (IS_ERR(inode))
3077                 return ERR_CAST(inode);
3078
3079         return d_splice_alias(inode, dentry);
3080 }
3081
3082 static unsigned char btrfs_filetype_table[] = {
3083         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3084 };
3085
3086 static int btrfs_real_readdir(struct file *filp, void *dirent,
3087                               filldir_t filldir)
3088 {
3089         struct inode *inode = filp->f_dentry->d_inode;
3090         struct btrfs_root *root = BTRFS_I(inode)->root;
3091         struct btrfs_item *item;
3092         struct btrfs_dir_item *di;
3093         struct btrfs_key key;
3094         struct btrfs_key found_key;
3095         struct btrfs_path *path;
3096         int ret;
3097         u32 nritems;
3098         struct extent_buffer *leaf;
3099         int slot;
3100         int advance;
3101         unsigned char d_type;
3102         int over = 0;
3103         u32 di_cur;
3104         u32 di_total;
3105         u32 di_len;
3106         int key_type = BTRFS_DIR_INDEX_KEY;
3107         char tmp_name[32];
3108         char *name_ptr;
3109         int name_len;
3110
3111         /* FIXME, use a real flag for deciding about the key type */
3112         if (root->fs_info->tree_root == root)
3113                 key_type = BTRFS_DIR_ITEM_KEY;
3114
3115         /* special case for "." */
3116         if (filp->f_pos == 0) {
3117                 over = filldir(dirent, ".", 1,
3118                                1, inode->i_ino,
3119                                DT_DIR);
3120                 if (over)
3121                         return 0;
3122                 filp->f_pos = 1;
3123         }
3124         /* special case for .., just use the back ref */
3125         if (filp->f_pos == 1) {
3126                 u64 pino = parent_ino(filp->f_path.dentry);
3127                 over = filldir(dirent, "..", 2,
3128                                2, pino, DT_DIR);
3129                 if (over)
3130                         return 0;
3131                 filp->f_pos = 2;
3132         }
3133         path = btrfs_alloc_path();
3134         path->reada = 2;
3135
3136         btrfs_set_key_type(&key, key_type);
3137         key.offset = filp->f_pos;
3138         key.objectid = inode->i_ino;
3139
3140         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3141         if (ret < 0)
3142                 goto err;
3143         advance = 0;
3144
3145         while (1) {
3146                 leaf = path->nodes[0];
3147                 nritems = btrfs_header_nritems(leaf);
3148                 slot = path->slots[0];
3149                 if (advance || slot >= nritems) {
3150                         if (slot >= nritems - 1) {
3151                                 ret = btrfs_next_leaf(root, path);
3152                                 if (ret)
3153                                         break;
3154                                 leaf = path->nodes[0];
3155                                 nritems = btrfs_header_nritems(leaf);
3156                                 slot = path->slots[0];
3157                         } else {
3158                                 slot++;
3159                                 path->slots[0]++;
3160                         }
3161                 }
3162
3163                 advance = 1;
3164                 item = btrfs_item_nr(leaf, slot);
3165                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3166
3167                 if (found_key.objectid != key.objectid)
3168                         break;
3169                 if (btrfs_key_type(&found_key) != key_type)
3170                         break;
3171                 if (found_key.offset < filp->f_pos)
3172                         continue;
3173
3174                 filp->f_pos = found_key.offset;
3175
3176                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3177                 di_cur = 0;
3178                 di_total = btrfs_item_size(leaf, item);
3179
3180                 while (di_cur < di_total) {
3181                         struct btrfs_key location;
3182
3183                         name_len = btrfs_dir_name_len(leaf, di);
3184                         if (name_len <= sizeof(tmp_name)) {
3185                                 name_ptr = tmp_name;
3186                         } else {
3187                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3188                                 if (!name_ptr) {
3189                                         ret = -ENOMEM;
3190                                         goto err;
3191                                 }
3192                         }
3193                         read_extent_buffer(leaf, name_ptr,
3194                                            (unsigned long)(di + 1), name_len);
3195
3196                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3197                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3198
3199                         /* is this a reference to our own snapshot? If so
3200                          * skip it
3201                          */
3202                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3203                             location.objectid == root->root_key.objectid) {
3204                                 over = 0;
3205                                 goto skip;
3206                         }
3207                         over = filldir(dirent, name_ptr, name_len,
3208                                        found_key.offset, location.objectid,
3209                                        d_type);
3210
3211 skip:
3212                         if (name_ptr != tmp_name)
3213                                 kfree(name_ptr);
3214
3215                         if (over)
3216                                 goto nopos;
3217                         di_len = btrfs_dir_name_len(leaf, di) +
3218                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3219                         di_cur += di_len;
3220                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3221                 }
3222         }
3223
3224         /* Reached end of directory/root. Bump pos past the last item. */
3225         if (key_type == BTRFS_DIR_INDEX_KEY)
3226                 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
3227         else
3228                 filp->f_pos++;
3229 nopos:
3230         ret = 0;
3231 err:
3232         btrfs_free_path(path);
3233         return ret;
3234 }
3235
3236 int btrfs_write_inode(struct inode *inode, int wait)
3237 {
3238         struct btrfs_root *root = BTRFS_I(inode)->root;
3239         struct btrfs_trans_handle *trans;
3240         int ret = 0;
3241
3242         if (root->fs_info->btree_inode == inode)
3243                 return 0;
3244
3245         if (wait) {
3246                 trans = btrfs_join_transaction(root, 1);
3247                 btrfs_set_trans_block_group(trans, inode);
3248                 ret = btrfs_commit_transaction(trans, root);
3249         }
3250         return ret;
3251 }
3252
3253 /*
3254  * This is somewhat expensive, updating the tree every time the
3255  * inode changes.  But, it is most likely to find the inode in cache.
3256  * FIXME, needs more benchmarking...there are no reasons other than performance
3257  * to keep or drop this code.
3258  */
3259 void btrfs_dirty_inode(struct inode *inode)
3260 {
3261         struct btrfs_root *root = BTRFS_I(inode)->root;
3262         struct btrfs_trans_handle *trans;
3263
3264         trans = btrfs_join_transaction(root, 1);
3265         btrfs_set_trans_block_group(trans, inode);
3266         btrfs_update_inode(trans, root, inode);
3267         btrfs_end_transaction(trans, root);
3268 }
3269
3270 /*
3271  * find the highest existing sequence number in a directory
3272  * and then set the in-memory index_cnt variable to reflect
3273  * free sequence numbers
3274  */
3275 static int btrfs_set_inode_index_count(struct inode *inode)
3276 {
3277         struct btrfs_root *root = BTRFS_I(inode)->root;
3278         struct btrfs_key key, found_key;
3279         struct btrfs_path *path;
3280         struct extent_buffer *leaf;
3281         int ret;
3282
3283         key.objectid = inode->i_ino;
3284         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3285         key.offset = (u64)-1;
3286
3287         path = btrfs_alloc_path();
3288         if (!path)
3289                 return -ENOMEM;
3290
3291         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3292         if (ret < 0)
3293                 goto out;
3294         /* FIXME: we should be able to handle this */
3295         if (ret == 0)
3296                 goto out;
3297         ret = 0;
3298
3299         /*
3300          * MAGIC NUMBER EXPLANATION:
3301          * since we search a directory based on f_pos we have to start at 2
3302          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3303          * else has to start at 2
3304          */
3305         if (path->slots[0] == 0) {
3306                 BTRFS_I(inode)->index_cnt = 2;
3307                 goto out;
3308         }
3309
3310         path->slots[0]--;
3311
3312         leaf = path->nodes[0];
3313         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3314
3315         if (found_key.objectid != inode->i_ino ||
3316             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3317                 BTRFS_I(inode)->index_cnt = 2;
3318                 goto out;
3319         }
3320
3321         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3322 out:
3323         btrfs_free_path(path);
3324         return ret;
3325 }
3326
3327 /*
3328  * helper to find a free sequence number in a given directory.  This current
3329  * code is very simple, later versions will do smarter things in the btree
3330  */
3331 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3332 {
3333         int ret = 0;
3334
3335         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3336                 ret = btrfs_set_inode_index_count(dir);
3337                 if (ret) {
3338                         return ret;
3339                 }
3340         }
3341
3342         *index = BTRFS_I(dir)->index_cnt;
3343         BTRFS_I(dir)->index_cnt++;
3344
3345         return ret;
3346 }
3347
3348 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3349                                      struct btrfs_root *root,
3350                                      struct inode *dir,
3351                                      const char *name, int name_len,
3352                                      u64 ref_objectid, u64 objectid,
3353                                      u64 alloc_hint, int mode, u64 *index)
3354 {
3355         struct inode *inode;
3356         struct btrfs_inode_item *inode_item;
3357         struct btrfs_key *location;
3358         struct btrfs_path *path;
3359         struct btrfs_inode_ref *ref;
3360         struct btrfs_key key[2];
3361         u32 sizes[2];
3362         unsigned long ptr;
3363         int ret;
3364         int owner;
3365
3366         path = btrfs_alloc_path();
3367         BUG_ON(!path);
3368
3369         inode = new_inode(root->fs_info->sb);
3370         if (!inode)
3371                 return ERR_PTR(-ENOMEM);
3372
3373         if (dir) {
3374                 ret = btrfs_set_inode_index(dir, index);
3375                 if (ret)
3376                         return ERR_PTR(ret);
3377         }
3378         /*
3379          * index_cnt is ignored for everything but a dir,
3380          * btrfs_get_inode_index_count has an explanation for the magic
3381          * number
3382          */
3383         init_btrfs_i(inode);
3384         BTRFS_I(inode)->index_cnt = 2;
3385         BTRFS_I(inode)->root = root;
3386         BTRFS_I(inode)->generation = trans->transid;
3387
3388         if (mode & S_IFDIR)
3389                 owner = 0;
3390         else
3391                 owner = 1;
3392         BTRFS_I(inode)->block_group =
3393                         btrfs_find_block_group(root, 0, alloc_hint, owner);
3394
3395         key[0].objectid = objectid;
3396         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3397         key[0].offset = 0;
3398
3399         key[1].objectid = objectid;
3400         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3401         key[1].offset = ref_objectid;
3402
3403         sizes[0] = sizeof(struct btrfs_inode_item);
3404         sizes[1] = name_len + sizeof(*ref);
3405
3406         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3407         if (ret != 0)
3408                 goto fail;
3409
3410         if (objectid > root->highest_inode)
3411                 root->highest_inode = objectid;
3412
3413         inode->i_uid = current_fsuid();
3414         inode->i_gid = current_fsgid();
3415         inode->i_mode = mode;
3416         inode->i_ino = objectid;
3417         inode_set_bytes(inode, 0);
3418         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3419         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3420                                   struct btrfs_inode_item);
3421         fill_inode_item(trans, path->nodes[0], inode_item, inode);
3422
3423         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3424                              struct btrfs_inode_ref);
3425         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3426         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3427         ptr = (unsigned long)(ref + 1);
3428         write_extent_buffer(path->nodes[0], name, ptr, name_len);
3429
3430         btrfs_mark_buffer_dirty(path->nodes[0]);
3431         btrfs_free_path(path);
3432
3433         location = &BTRFS_I(inode)->location;
3434         location->objectid = objectid;
3435         location->offset = 0;
3436         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3437
3438         insert_inode_hash(inode);
3439         return inode;
3440 fail:
3441         if (dir)
3442                 BTRFS_I(dir)->index_cnt--;
3443         btrfs_free_path(path);
3444         return ERR_PTR(ret);
3445 }
3446
3447 static inline u8 btrfs_inode_type(struct inode *inode)
3448 {
3449         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3450 }
3451
3452 /*
3453  * utility function to add 'inode' into 'parent_inode' with
3454  * a give name and a given sequence number.
3455  * if 'add_backref' is true, also insert a backref from the
3456  * inode to the parent directory.
3457  */
3458 int btrfs_add_link(struct btrfs_trans_handle *trans,
3459                    struct inode *parent_inode, struct inode *inode,
3460                    const char *name, int name_len, int add_backref, u64 index)
3461 {
3462         int ret;
3463         struct btrfs_key key;
3464         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3465
3466         key.objectid = inode->i_ino;
3467         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3468         key.offset = 0;
3469
3470         ret = btrfs_insert_dir_item(trans, root, name, name_len,
3471                                     parent_inode->i_ino,
3472                                     &key, btrfs_inode_type(inode),
3473                                     index);
3474         if (ret == 0) {
3475                 if (add_backref) {
3476                         ret = btrfs_insert_inode_ref(trans, root,
3477                                                      name, name_len,
3478                                                      inode->i_ino,
3479                                                      parent_inode->i_ino,
3480                                                      index);
3481                 }
3482                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3483                                    name_len * 2);
3484                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3485                 ret = btrfs_update_inode(trans, root, parent_inode);
3486         }
3487         return ret;
3488 }
3489
3490 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3491                             struct dentry *dentry, struct inode *inode,
3492                             int backref, u64 index)
3493 {
3494         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3495                                  inode, dentry->d_name.name,
3496                                  dentry->d_name.len, backref, index);
3497         if (!err) {
3498                 d_instantiate(dentry, inode);
3499                 return 0;
3500         }
3501         if (err > 0)
3502                 err = -EEXIST;
3503         return err;
3504 }
3505
3506 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3507                         int mode, dev_t rdev)
3508 {
3509         struct btrfs_trans_handle *trans;
3510         struct btrfs_root *root = BTRFS_I(dir)->root;
3511         struct inode *inode = NULL;
3512         int err;
3513         int drop_inode = 0;
3514         u64 objectid;
3515         unsigned long nr = 0;
3516         u64 index = 0;
3517
3518         if (!new_valid_dev(rdev))
3519                 return -EINVAL;
3520
3521         err = btrfs_check_free_space(root, 1, 0);
3522         if (err)
3523                 goto fail;
3524
3525         trans = btrfs_start_transaction(root, 1);
3526         btrfs_set_trans_block_group(trans, dir);
3527
3528         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3529         if (err) {
3530                 err = -ENOSPC;
3531                 goto out_unlock;
3532         }
3533
3534         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3535                                 dentry->d_name.len,
3536                                 dentry->d_parent->d_inode->i_ino, objectid,
3537                                 BTRFS_I(dir)->block_group, mode, &index);
3538         err = PTR_ERR(inode);
3539         if (IS_ERR(inode))
3540                 goto out_unlock;
3541
3542         err = btrfs_init_acl(inode, dir);
3543         if (err) {
3544                 drop_inode = 1;
3545                 goto out_unlock;
3546         }
3547
3548         btrfs_set_trans_block_group(trans, inode);
3549         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3550         if (err)
3551                 drop_inode = 1;
3552         else {
3553                 inode->i_op = &btrfs_special_inode_operations;
3554                 init_special_inode(inode, inode->i_mode, rdev);
3555                 btrfs_update_inode(trans, root, inode);
3556         }
3557         dir->i_sb->s_dirt = 1;
3558         btrfs_update_inode_block_group(trans, inode);
3559         btrfs_update_inode_block_group(trans, dir);
3560 out_unlock:
3561         nr = trans->blocks_used;
3562         btrfs_end_transaction_throttle(trans, root);
3563 fail:
3564         if (drop_inode) {
3565                 inode_dec_link_count(inode);
3566                 iput(inode);
3567         }
3568         btrfs_btree_balance_dirty(root, nr);
3569         return err;
3570 }
3571
3572 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3573                         int mode, struct nameidata *nd)
3574 {
3575         struct btrfs_trans_handle *trans;
3576         struct btrfs_root *root = BTRFS_I(dir)->root;
3577         struct inode *inode = NULL;
3578         int err;
3579         int drop_inode = 0;
3580         unsigned long nr = 0;
3581         u64 objectid;
3582         u64 index = 0;
3583
3584         err = btrfs_check_free_space(root, 1, 0);
3585         if (err)
3586                 goto fail;
3587         trans = btrfs_start_transaction(root, 1);
3588         btrfs_set_trans_block_group(trans, dir);
3589
3590         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3591         if (err) {
3592                 err = -ENOSPC;
3593                 goto out_unlock;
3594         }
3595
3596         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3597                                 dentry->d_name.len,
3598                                 dentry->d_parent->d_inode->i_ino,
3599                                 objectid, BTRFS_I(dir)->block_group, mode,
3600                                 &index);
3601         err = PTR_ERR(inode);
3602         if (IS_ERR(inode))
3603                 goto out_unlock;
3604
3605         err = btrfs_init_acl(inode, dir);
3606         if (err) {
3607                 drop_inode = 1;
3608                 goto out_unlock;
3609         }
3610
3611         btrfs_set_trans_block_group(trans, inode);
3612         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3613         if (err)
3614                 drop_inode = 1;
3615         else {
3616                 inode->i_mapping->a_ops = &btrfs_aops;
3617                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3618                 inode->i_fop = &btrfs_file_operations;
3619                 inode->i_op = &btrfs_file_inode_operations;
3620                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3621         }
3622         dir->i_sb->s_dirt = 1;
3623         btrfs_update_inode_block_group(trans, inode);
3624         btrfs_update_inode_block_group(trans, dir);
3625 out_unlock:
3626         nr = trans->blocks_used;
3627         btrfs_end_transaction_throttle(trans, root);
3628 fail:
3629         if (drop_inode) {
3630                 inode_dec_link_count(inode);
3631                 iput(inode);
3632         }
3633         btrfs_btree_balance_dirty(root, nr);
3634         return err;
3635 }
3636
3637 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3638                       struct dentry *dentry)
3639 {
3640         struct btrfs_trans_handle *trans;
3641         struct btrfs_root *root = BTRFS_I(dir)->root;
3642         struct inode *inode = old_dentry->d_inode;
3643         u64 index;
3644         unsigned long nr = 0;
3645         int err;
3646         int drop_inode = 0;
3647
3648         if (inode->i_nlink == 0)
3649                 return -ENOENT;
3650
3651         btrfs_inc_nlink(inode);
3652         err = btrfs_check_free_space(root, 1, 0);
3653         if (err)
3654                 goto fail;
3655         err = btrfs_set_inode_index(dir, &index);
3656         if (err)
3657                 goto fail;
3658
3659         trans = btrfs_start_transaction(root, 1);
3660
3661         btrfs_set_trans_block_group(trans, dir);
3662         atomic_inc(&inode->i_count);
3663
3664         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3665
3666         if (err)
3667                 drop_inode = 1;
3668
3669         dir->i_sb->s_dirt = 1;
3670         btrfs_update_inode_block_group(trans, dir);
3671         err = btrfs_update_inode(trans, root, inode);
3672
3673         if (err)
3674                 drop_inode = 1;
3675
3676         nr = trans->blocks_used;
3677         btrfs_end_transaction_throttle(trans, root);
3678 fail:
3679         if (drop_inode) {
3680                 inode_dec_link_count(inode);
3681                 iput(inode);
3682         }
3683         btrfs_btree_balance_dirty(root, nr);
3684         return err;
3685 }
3686
3687 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3688 {
3689         struct inode *inode = NULL;
3690         struct btrfs_trans_handle *trans;
3691         struct btrfs_root *root = BTRFS_I(dir)->root;
3692         int err = 0;
3693         int drop_on_err = 0;
3694         u64 objectid = 0;
3695         u64 index = 0;
3696         unsigned long nr = 1;
3697
3698         err = btrfs_check_free_space(root, 1, 0);
3699         if (err)
3700                 goto out_unlock;
3701
3702         trans = btrfs_start_transaction(root, 1);
3703         btrfs_set_trans_block_group(trans, dir);
3704
3705         if (IS_ERR(trans)) {
3706                 err = PTR_ERR(trans);
3707                 goto out_unlock;
3708         }
3709
3710         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3711         if (err) {
3712                 err = -ENOSPC;
3713                 goto out_unlock;
3714         }
3715
3716         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3717                                 dentry->d_name.len,
3718                                 dentry->d_parent->d_inode->i_ino, objectid,
3719                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3720                                 &index);
3721         if (IS_ERR(inode)) {
3722                 err = PTR_ERR(inode);
3723                 goto out_fail;
3724         }
3725
3726         drop_on_err = 1;
3727
3728         err = btrfs_init_acl(inode, dir);
3729         if (err)
3730                 goto out_fail;
3731
3732         inode->i_op = &btrfs_dir_inode_operations;
3733         inode->i_fop = &btrfs_dir_file_operations;
3734         btrfs_set_trans_block_group(trans, inode);
3735
3736         btrfs_i_size_write(inode, 0);
3737         err = btrfs_update_inode(trans, root, inode);
3738         if (err)
3739                 goto out_fail;
3740
3741         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3742                                  inode, dentry->d_name.name,
3743                                  dentry->d_name.len, 0, index);
3744         if (err)
3745                 goto out_fail;
3746
3747         d_instantiate(dentry, inode);
3748         drop_on_err = 0;
3749         dir->i_sb->s_dirt = 1;
3750         btrfs_update_inode_block_group(trans, inode);
3751         btrfs_update_inode_block_group(trans, dir);
3752
3753 out_fail:
3754         nr = trans->blocks_used;
3755         btrfs_end_transaction_throttle(trans, root);
3756
3757 out_unlock:
3758         if (drop_on_err)
3759                 iput(inode);
3760         btrfs_btree_balance_dirty(root, nr);
3761         return err;
3762 }
3763
3764 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3765  * and an extent that you want to insert, deal with overlap and insert
3766  * the new extent into the tree.
3767  */
3768 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3769                                 struct extent_map *existing,
3770                                 struct extent_map *em,
3771                                 u64 map_start, u64 map_len)
3772 {
3773         u64 start_diff;
3774
3775         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3776         start_diff = map_start - em->start;
3777         em->start = map_start;
3778         em->len = map_len;
3779         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3780             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3781                 em->block_start += start_diff;
3782                 em->block_len -= start_diff;
3783         }
3784         return add_extent_mapping(em_tree, em);
3785 }
3786
3787 static noinline int uncompress_inline(struct btrfs_path *path,
3788                                       struct inode *inode, struct page *page,
3789                                       size_t pg_offset, u64 extent_offset,
3790                                       struct btrfs_file_extent_item *item)
3791 {
3792         int ret;
3793         struct extent_buffer *leaf = path->nodes[0];
3794         char *tmp;
3795         size_t max_size;
3796         unsigned long inline_size;
3797         unsigned long ptr;
3798
3799         WARN_ON(pg_offset != 0);
3800         max_size = btrfs_file_extent_ram_bytes(leaf, item);
3801         inline_size = btrfs_file_extent_inline_item_len(leaf,
3802                                         btrfs_item_nr(leaf, path->slots[0]));
3803         tmp = kmalloc(inline_size, GFP_NOFS);
3804         ptr = btrfs_file_extent_inline_start(item);
3805
3806         read_extent_buffer(leaf, tmp, ptr, inline_size);
3807
3808         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3809         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3810                                     inline_size, max_size);
3811         if (ret) {
3812                 char *kaddr = kmap_atomic(page, KM_USER0);
3813                 unsigned long copy_size = min_t(u64,
3814                                   PAGE_CACHE_SIZE - pg_offset,
3815                                   max_size - extent_offset);
3816                 memset(kaddr + pg_offset, 0, copy_size);
3817                 kunmap_atomic(kaddr, KM_USER0);
3818         }
3819         kfree(tmp);
3820         return 0;
3821 }
3822
3823 /*
3824  * a bit scary, this does extent mapping from logical file offset to the disk.
3825  * the ugly parts come from merging extents from the disk with the
3826  * in-ram representation.  This gets more complex because of the data=ordered code,
3827  * where the in-ram extents might be locked pending data=ordered completion.
3828  *
3829  * This also copies inline extents directly into the page.
3830  */
3831 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3832                                     size_t pg_offset, u64 start, u64 len,
3833                                     int create)
3834 {
3835         int ret;
3836         int err = 0;
3837         u64 bytenr;
3838         u64 extent_start = 0;
3839         u64 extent_end = 0;
3840         u64 objectid = inode->i_ino;
3841         u32 found_type;
3842         struct btrfs_path *path = NULL;
3843         struct btrfs_root *root = BTRFS_I(inode)->root;
3844         struct btrfs_file_extent_item *item;
3845         struct extent_buffer *leaf;
3846         struct btrfs_key found_key;
3847         struct extent_map *em = NULL;
3848         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3849         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3850         struct btrfs_trans_handle *trans = NULL;
3851         int compressed;
3852
3853 again:
3854         spin_lock(&em_tree->lock);
3855         em = lookup_extent_mapping(em_tree, start, len);
3856         if (em)
3857                 em->bdev = root->fs_info->fs_devices->latest_bdev;
3858         spin_unlock(&em_tree->lock);
3859
3860         if (em) {
3861                 if (em->start > start || em->start + em->len <= start)
3862                         free_extent_map(em);
3863                 else if (em->block_start == EXTENT_MAP_INLINE && page)
3864                         free_extent_map(em);
3865                 else
3866                         goto out;
3867         }
3868         em = alloc_extent_map(GFP_NOFS);
3869         if (!em) {
3870                 err = -ENOMEM;
3871                 goto out;
3872         }
3873         em->bdev = root->fs_info->fs_devices->latest_bdev;
3874         em->start = EXTENT_MAP_HOLE;
3875         em->orig_start = EXTENT_MAP_HOLE;
3876         em->len = (u64)-1;
3877         em->block_len = (u64)-1;
3878
3879         if (!path) {
3880                 path = btrfs_alloc_path();
3881                 BUG_ON(!path);
3882         }
3883
3884         ret = btrfs_lookup_file_extent(trans, root, path,
3885                                        objectid, start, trans != NULL);
3886         if (ret < 0) {
3887                 err = ret;
3888                 goto out;
3889         }
3890
3891         if (ret != 0) {
3892                 if (path->slots[0] == 0)
3893                         goto not_found;
3894                 path->slots[0]--;
3895         }
3896
3897         leaf = path->nodes[0];
3898         item = btrfs_item_ptr(leaf, path->slots[0],
3899                               struct btrfs_file_extent_item);
3900         /* are we inside the extent that was found? */
3901         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3902         found_type = btrfs_key_type(&found_key);
3903         if (found_key.objectid != objectid ||
3904             found_type != BTRFS_EXTENT_DATA_KEY) {
3905                 goto not_found;
3906         }
3907
3908         found_type = btrfs_file_extent_type(leaf, item);
3909         extent_start = found_key.offset;
3910         compressed = btrfs_file_extent_compression(leaf, item);
3911         if (found_type == BTRFS_FILE_EXTENT_REG ||
3912             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3913                 extent_end = extent_start +
3914                        btrfs_file_extent_num_bytes(leaf, item);
3915         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3916                 size_t size;
3917                 size = btrfs_file_extent_inline_len(leaf, item);
3918                 extent_end = (extent_start + size + root->sectorsize - 1) &
3919                         ~((u64)root->sectorsize - 1);
3920         }
3921
3922         if (start >= extent_end) {
3923                 path->slots[0]++;
3924                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3925                         ret = btrfs_next_leaf(root, path);
3926                         if (ret < 0) {
3927                                 err = ret;
3928                                 goto out;
3929                         }
3930                         if (ret > 0)
3931                                 goto not_found;
3932                         leaf = path->nodes[0];
3933                 }
3934                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3935                 if (found_key.objectid != objectid ||
3936                     found_key.type != BTRFS_EXTENT_DATA_KEY)
3937                         goto not_found;
3938                 if (start + len <= found_key.offset)
3939                         goto not_found;
3940                 em->start = start;
3941                 em->len = found_key.offset - start;
3942                 goto not_found_em;
3943         }
3944
3945         if (found_type == BTRFS_FILE_EXTENT_REG ||
3946             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3947                 em->start = extent_start;
3948                 em->len = extent_end - extent_start;
3949                 em->orig_start = extent_start -
3950                                  btrfs_file_extent_offset(leaf, item);
3951                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
3952                 if (bytenr == 0) {
3953                         em->block_start = EXTENT_MAP_HOLE;
3954                         goto insert;
3955                 }
3956                 if (compressed) {
3957                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3958                         em->block_start = bytenr;
3959                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
3960                                                                          item);
3961                 } else {
3962                         bytenr += btrfs_file_extent_offset(leaf, item);
3963                         em->block_start = bytenr;
3964                         em->block_len = em->len;
3965                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
3966                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
3967                 }
3968                 goto insert;
3969         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3970                 unsigned long ptr;
3971                 char *map;
3972                 size_t size;
3973                 size_t extent_offset;
3974                 size_t copy_size;
3975
3976                 em->block_start = EXTENT_MAP_INLINE;
3977                 if (!page || create) {
3978                         em->start = extent_start;
3979                         em->len = extent_end - extent_start;
3980                         goto out;
3981                 }
3982
3983                 size = btrfs_file_extent_inline_len(leaf, item);
3984                 extent_offset = page_offset(page) + pg_offset - extent_start;
3985                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3986                                 size - extent_offset);
3987                 em->start = extent_start + extent_offset;
3988                 em->len = (copy_size + root->sectorsize - 1) &
3989                         ~((u64)root->sectorsize - 1);
3990                 em->orig_start = EXTENT_MAP_INLINE;
3991                 if (compressed)
3992                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3993                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
3994                 if (create == 0 && !PageUptodate(page)) {
3995                         if (btrfs_file_extent_compression(leaf, item) ==
3996                             BTRFS_COMPRESS_ZLIB) {
3997                                 ret = uncompress_inline(path, inode, page,
3998                                                         pg_offset,
3999                                                         extent_offset, item);
4000                                 BUG_ON(ret);
4001                         } else {
4002                                 map = kmap(page);
4003                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4004                                                    copy_size);
4005                                 kunmap(page);
4006                         }
4007                         flush_dcache_page(page);
4008                 } else if (create && PageUptodate(page)) {
4009                         if (!trans) {
4010                                 kunmap(page);
4011                                 free_extent_map(em);
4012                                 em = NULL;
4013                                 btrfs_release_path(root, path);
4014                                 trans = btrfs_join_transaction(root, 1);
4015                                 goto again;
4016                         }
4017                         map = kmap(page);
4018                         write_extent_buffer(leaf, map + pg_offset, ptr,
4019                                             copy_size);
4020                         kunmap(page);
4021                         btrfs_mark_buffer_dirty(leaf);
4022                 }
4023                 set_extent_uptodate(io_tree, em->start,
4024                                     extent_map_end(em) - 1, GFP_NOFS);
4025                 goto insert;
4026         } else {
4027                 printk("unkknown found_type %d\n", found_type);
4028                 WARN_ON(1);
4029         }
4030 not_found:
4031         em->start = start;
4032         em->len = len;
4033 not_found_em:
4034         em->block_start = EXTENT_MAP_HOLE;
4035         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4036 insert:
4037         btrfs_release_path(root, path);
4038         if (em->start > start || extent_map_end(em) <= start) {
4039                 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
4040                 err = -EIO;
4041                 goto out;
4042         }
4043
4044         err = 0;
4045         spin_lock(&em_tree->lock);
4046         ret = add_extent_mapping(em_tree, em);
4047         /* it is possible that someone inserted the extent into the tree
4048          * while we had the lock dropped.  It is also possible that
4049          * an overlapping map exists in the tree
4050          */
4051         if (ret == -EEXIST) {
4052                 struct extent_map *existing;
4053
4054                 ret = 0;
4055
4056                 existing = lookup_extent_mapping(em_tree, start, len);
4057                 if (existing && (existing->start > start ||
4058                     existing->start + existing->len <= start)) {
4059                         free_extent_map(existing);
4060                         existing = NULL;
4061                 }
4062                 if (!existing) {
4063                         existing = lookup_extent_mapping(em_tree, em->start,
4064                                                          em->len);
4065                         if (existing) {
4066                                 err = merge_extent_mapping(em_tree, existing,
4067                                                            em, start,
4068                                                            root->sectorsize);
4069                                 free_extent_map(existing);
4070                                 if (err) {
4071                                         free_extent_map(em);
4072                                         em = NULL;
4073                                 }
4074                         } else {
4075                                 err = -EIO;
4076                                 printk("failing to insert %Lu %Lu\n",
4077                                        start, len);
4078                                 free_extent_map(em);
4079                                 em = NULL;
4080                         }
4081                 } else {
4082                         free_extent_map(em);
4083                         em = existing;
4084                         err = 0;
4085                 }
4086         }
4087         spin_unlock(&em_tree->lock);
4088 out:
4089         if (path)
4090                 btrfs_free_path(path);
4091         if (trans) {
4092                 ret = btrfs_end_transaction(trans, root);
4093                 if (!err) {
4094                         err = ret;
4095                 }
4096         }
4097         if (err) {
4098                 free_extent_map(em);
4099                 WARN_ON(1);
4100                 return ERR_PTR(err);
4101         }
4102         return em;
4103 }
4104
4105 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4106                         const struct iovec *iov, loff_t offset,
4107                         unsigned long nr_segs)
4108 {
4109         return -EINVAL;
4110 }
4111
4112 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
4113 {
4114         return extent_bmap(mapping, iblock, btrfs_get_extent);
4115 }
4116
4117 int btrfs_readpage(struct file *file, struct page *page)
4118 {
4119         struct extent_io_tree *tree;
4120         tree = &BTRFS_I(page->mapping->host)->io_tree;
4121         return extent_read_full_page(tree, page, btrfs_get_extent);
4122 }
4123
4124 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4125 {
4126         struct extent_io_tree *tree;
4127
4128
4129         if (current->flags & PF_MEMALLOC) {
4130                 redirty_page_for_writepage(wbc, page);
4131                 unlock_page(page);
4132                 return 0;
4133         }
4134         tree = &BTRFS_I(page->mapping->host)->io_tree;
4135         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4136 }
4137
4138 int btrfs_writepages(struct address_space *mapping,
4139                      struct writeback_control *wbc)
4140 {
4141         struct extent_io_tree *tree;
4142
4143         tree = &BTRFS_I(mapping->host)->io_tree;
4144         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4145 }
4146
4147 static int
4148 btrfs_readpages(struct file *file, struct address_space *mapping,
4149                 struct list_head *pages, unsigned nr_pages)
4150 {
4151         struct extent_io_tree *tree;
4152         tree = &BTRFS_I(mapping->host)->io_tree;
4153         return extent_readpages(tree, mapping, pages, nr_pages,
4154                                 btrfs_get_extent);
4155 }
4156 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4157 {
4158         struct extent_io_tree *tree;
4159         struct extent_map_tree *map;
4160         int ret;
4161
4162         tree = &BTRFS_I(page->mapping->host)->io_tree;
4163         map = &BTRFS_I(page->mapping->host)->extent_tree;
4164         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4165         if (ret == 1) {
4166                 ClearPagePrivate(page);
4167                 set_page_private(page, 0);
4168                 page_cache_release(page);
4169         }
4170         return ret;
4171 }
4172
4173 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4174 {
4175         if (PageWriteback(page) || PageDirty(page))
4176                 return 0;
4177         return __btrfs_releasepage(page, gfp_flags);
4178 }
4179
4180 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4181 {
4182         struct extent_io_tree *tree;
4183         struct btrfs_ordered_extent *ordered;
4184         u64 page_start = page_offset(page);
4185         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4186
4187         wait_on_page_writeback(page);
4188         tree = &BTRFS_I(page->mapping->host)->io_tree;
4189         if (offset) {
4190                 btrfs_releasepage(page, GFP_NOFS);
4191                 return;
4192         }
4193
4194         lock_extent(tree, page_start, page_end, GFP_NOFS);
4195         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4196                                            page_offset(page));
4197         if (ordered) {
4198                 /*
4199                  * IO on this page will never be started, so we need
4200                  * to account for any ordered extents now
4201                  */
4202                 clear_extent_bit(tree, page_start, page_end,
4203                                  EXTENT_DIRTY | EXTENT_DELALLOC |
4204                                  EXTENT_LOCKED, 1, 0, GFP_NOFS);
4205                 btrfs_finish_ordered_io(page->mapping->host,
4206                                         page_start, page_end);
4207                 btrfs_put_ordered_extent(ordered);
4208                 lock_extent(tree, page_start, page_end, GFP_NOFS);
4209         }
4210         clear_extent_bit(tree, page_start, page_end,
4211                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4212                  EXTENT_ORDERED,
4213                  1, 1, GFP_NOFS);
4214         __btrfs_releasepage(page, GFP_NOFS);
4215
4216         ClearPageChecked(page);
4217         if (PagePrivate(page)) {
4218                 ClearPagePrivate(page);
4219                 set_page_private(page, 0);
4220                 page_cache_release(page);
4221         }
4222 }
4223
4224 /*
4225  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4226  * called from a page fault handler when a page is first dirtied. Hence we must
4227  * be careful to check for EOF conditions here. We set the page up correctly
4228  * for a written page which means we get ENOSPC checking when writing into
4229  * holes and correct delalloc and unwritten extent mapping on filesystems that
4230  * support these features.
4231  *
4232  * We are not allowed to take the i_mutex here so we have to play games to
4233  * protect against truncate races as the page could now be beyond EOF.  Because
4234  * vmtruncate() writes the inode size before removing pages, once we have the
4235  * page lock we can determine safely if the page is beyond EOF. If it is not
4236  * beyond EOF, then the page is guaranteed safe against truncation until we
4237  * unlock the page.
4238  */
4239 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4240 {
4241         struct inode *inode = fdentry(vma->vm_file)->d_inode;
4242         struct btrfs_root *root = BTRFS_I(inode)->root;
4243         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4244         struct btrfs_ordered_extent *ordered;
4245         char *kaddr;
4246         unsigned long zero_start;
4247         loff_t size;
4248         int ret;
4249         u64 page_start;
4250         u64 page_end;
4251
4252         ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
4253         if (ret)
4254                 goto out;
4255
4256         ret = -EINVAL;
4257 again:
4258         lock_page(page);
4259         size = i_size_read(inode);
4260         page_start = page_offset(page);
4261         page_end = page_start + PAGE_CACHE_SIZE - 1;
4262
4263         if ((page->mapping != inode->i_mapping) ||
4264             (page_start >= size)) {
4265                 /* page got truncated out from underneath us */
4266                 goto out_unlock;
4267         }
4268         wait_on_page_writeback(page);
4269
4270         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4271         set_page_extent_mapped(page);
4272
4273         /*
4274          * we can't set the delalloc bits if there are pending ordered
4275          * extents.  Drop our locks and wait for them to finish
4276          */
4277         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4278         if (ordered) {
4279                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4280                 unlock_page(page);
4281                 btrfs_start_ordered_extent(inode, ordered, 1);
4282                 btrfs_put_ordered_extent(ordered);
4283                 goto again;
4284         }
4285
4286         btrfs_set_extent_delalloc(inode, page_start, page_end);
4287         ret = 0;
4288
4289         /* page is wholly or partially inside EOF */
4290         if (page_start + PAGE_CACHE_SIZE > size)
4291                 zero_start = size & ~PAGE_CACHE_MASK;
4292         else
4293                 zero_start = PAGE_CACHE_SIZE;
4294
4295         if (zero_start != PAGE_CACHE_SIZE) {
4296                 kaddr = kmap(page);
4297                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4298                 flush_dcache_page(page);
4299                 kunmap(page);
4300         }
4301         ClearPageChecked(page);
4302         set_page_dirty(page);
4303         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4304
4305 out_unlock:
4306         unlock_page(page);
4307 out:
4308         return ret;
4309 }
4310
4311 static void btrfs_truncate(struct inode *inode)
4312 {
4313         struct btrfs_root *root = BTRFS_I(inode)->root;
4314         int ret;
4315         struct btrfs_trans_handle *trans;
4316         unsigned long nr;
4317         u64 mask = root->sectorsize - 1;
4318
4319         if (!S_ISREG(inode->i_mode))
4320                 return;
4321         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4322                 return;
4323
4324         btrfs_truncate_page(inode->i_mapping, inode->i_size);
4325         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4326
4327         trans = btrfs_start_transaction(root, 1);
4328         btrfs_set_trans_block_group(trans, inode);
4329         btrfs_i_size_write(inode, inode->i_size);
4330
4331         ret = btrfs_orphan_add(trans, inode);
4332         if (ret)
4333                 goto out;
4334         /* FIXME, add redo link to tree so we don't leak on crash */
4335         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4336                                       BTRFS_EXTENT_DATA_KEY);
4337         btrfs_update_inode(trans, root, inode);
4338
4339         ret = btrfs_orphan_del(trans, inode);
4340         BUG_ON(ret);
4341
4342 out:
4343         nr = trans->blocks_used;
4344         ret = btrfs_end_transaction_throttle(trans, root);
4345         BUG_ON(ret);
4346         btrfs_btree_balance_dirty(root, nr);
4347 }
4348
4349 /*
4350  * create a new subvolume directory/inode (helper for the ioctl).
4351  */
4352 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4353                              struct btrfs_root *new_root, struct dentry *dentry,
4354                              u64 new_dirid, u64 alloc_hint)
4355 {
4356         struct inode *inode;
4357         int error;
4358         u64 index = 0;
4359
4360         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4361                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4362         if (IS_ERR(inode))
4363                 return PTR_ERR(inode);
4364         inode->i_op = &btrfs_dir_inode_operations;
4365         inode->i_fop = &btrfs_dir_file_operations;
4366
4367         inode->i_nlink = 1;
4368         btrfs_i_size_write(inode, 0);
4369
4370         error = btrfs_update_inode(trans, new_root, inode);
4371         if (error)
4372                 return error;
4373
4374         d_instantiate(dentry, inode);
4375         return 0;
4376 }
4377
4378 /* helper function for file defrag and space balancing.  This
4379  * forces readahead on a given range of bytes in an inode
4380  */
4381 unsigned long btrfs_force_ra(struct address_space *mapping,
4382                               struct file_ra_state *ra, struct file *file,
4383                               pgoff_t offset, pgoff_t last_index)
4384 {
4385         pgoff_t req_size = last_index - offset + 1;
4386
4387         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4388         return offset + req_size;
4389 }
4390
4391 struct inode *btrfs_alloc_inode(struct super_block *sb)
4392 {
4393         struct btrfs_inode *ei;
4394
4395         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4396         if (!ei)
4397                 return NULL;
4398         ei->last_trans = 0;
4399         ei->logged_trans = 0;
4400         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4401         ei->i_acl = BTRFS_ACL_NOT_CACHED;
4402         ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4403         INIT_LIST_HEAD(&ei->i_orphan);
4404         return &ei->vfs_inode;
4405 }
4406
4407 void btrfs_destroy_inode(struct inode *inode)
4408 {
4409         struct btrfs_ordered_extent *ordered;
4410         WARN_ON(!list_empty(&inode->i_dentry));
4411         WARN_ON(inode->i_data.nrpages);
4412
4413         if (BTRFS_I(inode)->i_acl &&
4414             BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4415                 posix_acl_release(BTRFS_I(inode)->i_acl);
4416         if (BTRFS_I(inode)->i_default_acl &&
4417             BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4418                 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4419
4420         spin_lock(&BTRFS_I(inode)->root->list_lock);
4421         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4422                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4423                        " list\n", inode->i_ino);
4424                 dump_stack();
4425         }
4426         spin_unlock(&BTRFS_I(inode)->root->list_lock);
4427
4428         while(1) {
4429                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4430                 if (!ordered)
4431                         break;
4432                 else {
4433                         printk("found ordered extent %Lu %Lu\n",
4434                                ordered->file_offset, ordered->len);
4435                         btrfs_remove_ordered_extent(inode, ordered);
4436                         btrfs_put_ordered_extent(ordered);
4437                         btrfs_put_ordered_extent(ordered);
4438                 }
4439         }
4440         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4441         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4442 }
4443
4444 static void init_once(void *foo)
4445 {
4446         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4447
4448         inode_init_once(&ei->vfs_inode);
4449 }
4450
4451 void btrfs_destroy_cachep(void)
4452 {
4453         if (btrfs_inode_cachep)
4454                 kmem_cache_destroy(btrfs_inode_cachep);
4455         if (btrfs_trans_handle_cachep)
4456                 kmem_cache_destroy(btrfs_trans_handle_cachep);
4457         if (btrfs_transaction_cachep)
4458                 kmem_cache_destroy(btrfs_transaction_cachep);
4459         if (btrfs_bit_radix_cachep)
4460                 kmem_cache_destroy(btrfs_bit_radix_cachep);
4461         if (btrfs_path_cachep)
4462                 kmem_cache_destroy(btrfs_path_cachep);
4463 }
4464
4465 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4466                                        unsigned long extra_flags,
4467                                        void (*ctor)(void *))
4468 {
4469         return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4470                                  SLAB_MEM_SPREAD | extra_flags), ctor);
4471 }
4472
4473 int btrfs_init_cachep(void)
4474 {
4475         btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4476                                           sizeof(struct btrfs_inode),
4477                                           0, init_once);
4478         if (!btrfs_inode_cachep)
4479                 goto fail;
4480         btrfs_trans_handle_cachep =
4481                         btrfs_cache_create("btrfs_trans_handle_cache",
4482                                            sizeof(struct btrfs_trans_handle),
4483                                            0, NULL);
4484         if (!btrfs_trans_handle_cachep)
4485                 goto fail;
4486         btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4487                                              sizeof(struct btrfs_transaction),
4488                                              0, NULL);
4489         if (!btrfs_transaction_cachep)
4490                 goto fail;
4491         btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4492                                          sizeof(struct btrfs_path),
4493                                          0, NULL);
4494         if (!btrfs_path_cachep)
4495                 goto fail;
4496         btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4497                                               SLAB_DESTROY_BY_RCU, NULL);
4498         if (!btrfs_bit_radix_cachep)
4499                 goto fail;
4500         return 0;
4501 fail:
4502         btrfs_destroy_cachep();
4503         return -ENOMEM;
4504 }
4505
4506 static int btrfs_getattr(struct vfsmount *mnt,
4507                          struct dentry *dentry, struct kstat *stat)
4508 {
4509         struct inode *inode = dentry->d_inode;
4510         generic_fillattr(inode, stat);
4511         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4512         stat->blksize = PAGE_CACHE_SIZE;
4513         stat->blocks = (inode_get_bytes(inode) +
4514                         BTRFS_I(inode)->delalloc_bytes) >> 9;
4515         return 0;
4516 }
4517
4518 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
4519                            struct inode * new_dir,struct dentry *new_dentry)
4520 {
4521         struct btrfs_trans_handle *trans;
4522         struct btrfs_root *root = BTRFS_I(old_dir)->root;
4523         struct inode *new_inode = new_dentry->d_inode;
4524         struct inode *old_inode = old_dentry->d_inode;
4525         struct timespec ctime = CURRENT_TIME;
4526         u64 index = 0;
4527         int ret;
4528
4529         /* we're not allowed to rename between subvolumes */
4530         if (BTRFS_I(old_inode)->root->root_key.objectid !=
4531             BTRFS_I(new_dir)->root->root_key.objectid)
4532                 return -EXDEV;
4533
4534         if (S_ISDIR(old_inode->i_mode) && new_inode &&
4535             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4536                 return -ENOTEMPTY;
4537         }
4538
4539         /* to rename a snapshot or subvolume, we need to juggle the
4540          * backrefs.  This isn't coded yet
4541          */
4542         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4543                 return -EXDEV;
4544
4545         ret = btrfs_check_free_space(root, 1, 0);
4546         if (ret)
4547                 goto out_unlock;
4548
4549         trans = btrfs_start_transaction(root, 1);
4550
4551         btrfs_set_trans_block_group(trans, new_dir);
4552
4553         btrfs_inc_nlink(old_dentry->d_inode);
4554         old_dir->i_ctime = old_dir->i_mtime = ctime;
4555         new_dir->i_ctime = new_dir->i_mtime = ctime;
4556         old_inode->i_ctime = ctime;
4557
4558         ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4559                                  old_dentry->d_name.name,
4560                                  old_dentry->d_name.len);
4561         if (ret)
4562                 goto out_fail;
4563
4564         if (new_inode) {
4565                 new_inode->i_ctime = CURRENT_TIME;
4566                 ret = btrfs_unlink_inode(trans, root, new_dir,
4567                                          new_dentry->d_inode,
4568                                          new_dentry->d_name.name,
4569                                          new_dentry->d_name.len);
4570                 if (ret)
4571                         goto out_fail;
4572                 if (new_inode->i_nlink == 0) {
4573                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4574                         if (ret)
4575                                 goto out_fail;
4576                 }
4577
4578         }
4579         ret = btrfs_set_inode_index(new_dir, &index);
4580         if (ret)
4581                 goto out_fail;
4582
4583         ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4584                              old_inode, new_dentry->d_name.name,
4585                              new_dentry->d_name.len, 1, index);
4586         if (ret)
4587                 goto out_fail;
4588
4589 out_fail:
4590         btrfs_end_transaction_throttle(trans, root);
4591 out_unlock:
4592         return ret;
4593 }
4594
4595 /*
4596  * some fairly slow code that needs optimization. This walks the list
4597  * of all the inodes with pending delalloc and forces them to disk.
4598  */
4599 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4600 {
4601         struct list_head *head = &root->fs_info->delalloc_inodes;
4602         struct btrfs_inode *binode;
4603         struct inode *inode;
4604         unsigned long flags;
4605
4606         if (root->fs_info->sb->s_flags & MS_RDONLY)
4607                 return -EROFS;
4608
4609         spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4610         while(!list_empty(head)) {
4611                 binode = list_entry(head->next, struct btrfs_inode,
4612                                     delalloc_inodes);
4613                 inode = igrab(&binode->vfs_inode);
4614                 if (!inode)
4615                         list_del_init(&binode->delalloc_inodes);
4616                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4617                 if (inode) {
4618                         filemap_flush(inode->i_mapping);
4619                         iput(inode);
4620                 }
4621                 cond_resched();
4622                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4623         }
4624         spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4625
4626         /* the filemap_flush will queue IO into the worker threads, but
4627          * we have to make sure the IO is actually started and that
4628          * ordered extents get created before we return
4629          */
4630         atomic_inc(&root->fs_info->async_submit_draining);
4631         while(atomic_read(&root->fs_info->nr_async_submits) ||
4632               atomic_read(&root->fs_info->async_delalloc_pages)) {
4633                 wait_event(root->fs_info->async_submit_wait,
4634                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4635                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4636         }
4637         atomic_dec(&root->fs_info->async_submit_draining);
4638         return 0;
4639 }
4640
4641 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4642                          const char *symname)
4643 {
4644         struct btrfs_trans_handle *trans;
4645         struct btrfs_root *root = BTRFS_I(dir)->root;
4646         struct btrfs_path *path;
4647         struct btrfs_key key;
4648         struct inode *inode = NULL;
4649         int err;
4650         int drop_inode = 0;
4651         u64 objectid;
4652         u64 index = 0 ;
4653         int name_len;
4654         int datasize;
4655         unsigned long ptr;
4656         struct btrfs_file_extent_item *ei;
4657         struct extent_buffer *leaf;
4658         unsigned long nr = 0;
4659
4660         name_len = strlen(symname) + 1;
4661         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4662                 return -ENAMETOOLONG;
4663
4664         err = btrfs_check_free_space(root, 1, 0);
4665         if (err)
4666                 goto out_fail;
4667
4668         trans = btrfs_start_transaction(root, 1);
4669         btrfs_set_trans_block_group(trans, dir);
4670
4671         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4672         if (err) {
4673                 err = -ENOSPC;
4674                 goto out_unlock;
4675         }
4676
4677         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4678                                 dentry->d_name.len,
4679                                 dentry->d_parent->d_inode->i_ino, objectid,
4680                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4681                                 &index);
4682         err = PTR_ERR(inode);
4683         if (IS_ERR(inode))
4684                 goto out_unlock;
4685
4686         err = btrfs_init_acl(inode, dir);
4687         if (err) {
4688                 drop_inode = 1;
4689                 goto out_unlock;
4690         }
4691
4692         btrfs_set_trans_block_group(trans, inode);
4693         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4694         if (err)
4695                 drop_inode = 1;
4696         else {
4697                 inode->i_mapping->a_ops = &btrfs_aops;
4698                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4699                 inode->i_fop = &btrfs_file_operations;
4700                 inode->i_op = &btrfs_file_inode_operations;
4701                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4702         }
4703         dir->i_sb->s_dirt = 1;
4704         btrfs_update_inode_block_group(trans, inode);
4705         btrfs_update_inode_block_group(trans, dir);
4706         if (drop_inode)
4707                 goto out_unlock;
4708
4709         path = btrfs_alloc_path();
4710         BUG_ON(!path);
4711         key.objectid = inode->i_ino;
4712         key.offset = 0;
4713         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4714         datasize = btrfs_file_extent_calc_inline_size(name_len);
4715         err = btrfs_insert_empty_item(trans, root, path, &key,
4716                                       datasize);
4717         if (err) {
4718                 drop_inode = 1;
4719                 goto out_unlock;
4720         }
4721         leaf = path->nodes[0];
4722         ei = btrfs_item_ptr(leaf, path->slots[0],
4723                             struct btrfs_file_extent_item);
4724         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4725         btrfs_set_file_extent_type(leaf, ei,
4726                                    BTRFS_FILE_EXTENT_INLINE);
4727         btrfs_set_file_extent_encryption(leaf, ei, 0);
4728         btrfs_set_file_extent_compression(leaf, ei, 0);
4729         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4730         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4731
4732         ptr = btrfs_file_extent_inline_start(ei);
4733         write_extent_buffer(leaf, symname, ptr, name_len);
4734         btrfs_mark_buffer_dirty(leaf);
4735         btrfs_free_path(path);
4736
4737         inode->i_op = &btrfs_symlink_inode_operations;
4738         inode->i_mapping->a_ops = &btrfs_symlink_aops;
4739         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4740         inode_set_bytes(inode, name_len);
4741         btrfs_i_size_write(inode, name_len - 1);
4742         err = btrfs_update_inode(trans, root, inode);
4743         if (err)
4744                 drop_inode = 1;
4745
4746 out_unlock:
4747         nr = trans->blocks_used;
4748         btrfs_end_transaction_throttle(trans, root);
4749 out_fail:
4750         if (drop_inode) {
4751                 inode_dec_link_count(inode);
4752                 iput(inode);
4753         }
4754         btrfs_btree_balance_dirty(root, nr);
4755         return err;
4756 }
4757
4758 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4759                                u64 alloc_hint, int mode)
4760 {
4761         struct btrfs_trans_handle *trans;
4762         struct btrfs_root *root = BTRFS_I(inode)->root;
4763         struct btrfs_key ins;
4764         u64 alloc_size;
4765         u64 cur_offset = start;
4766         u64 num_bytes = end - start;
4767         int ret = 0;
4768
4769         trans = btrfs_join_transaction(root, 1);
4770         BUG_ON(!trans);
4771         btrfs_set_trans_block_group(trans, inode);
4772
4773         while (num_bytes > 0) {
4774                 alloc_size = min(num_bytes, root->fs_info->max_extent);
4775                 ret = btrfs_reserve_extent(trans, root, alloc_size,
4776                                            root->sectorsize, 0, alloc_hint,
4777                                            (u64)-1, &ins, 1);
4778                 if (ret) {
4779                         WARN_ON(1);
4780                         goto out;
4781                 }
4782                 ret = insert_reserved_file_extent(trans, inode,
4783                                                   cur_offset, ins.objectid,
4784                                                   ins.offset, ins.offset,
4785                                                   ins.offset, 0, 0, 0,
4786                                                   BTRFS_FILE_EXTENT_PREALLOC);
4787                 BUG_ON(ret);
4788                 num_bytes -= ins.offset;
4789                 cur_offset += ins.offset;
4790                 alloc_hint = ins.objectid + ins.offset;
4791         }
4792 out:
4793         if (cur_offset > start) {
4794                 inode->i_ctime = CURRENT_TIME;
4795                 btrfs_set_flag(inode, PREALLOC);
4796                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4797                     cur_offset > i_size_read(inode))
4798                         btrfs_i_size_write(inode, cur_offset);
4799                 ret = btrfs_update_inode(trans, root, inode);
4800                 BUG_ON(ret);
4801         }
4802
4803         btrfs_end_transaction(trans, root);
4804         return ret;
4805 }
4806
4807 static long btrfs_fallocate(struct inode *inode, int mode,
4808                             loff_t offset, loff_t len)
4809 {
4810         u64 cur_offset;
4811         u64 last_byte;
4812         u64 alloc_start;
4813         u64 alloc_end;
4814         u64 alloc_hint = 0;
4815         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4816         struct extent_map *em;
4817         int ret;
4818
4819         alloc_start = offset & ~mask;
4820         alloc_end =  (offset + len + mask) & ~mask;
4821
4822         mutex_lock(&inode->i_mutex);
4823         if (alloc_start > inode->i_size) {
4824                 ret = btrfs_cont_expand(inode, alloc_start);
4825                 if (ret)
4826                         goto out;
4827         }
4828
4829         while (1) {
4830                 struct btrfs_ordered_extent *ordered;
4831                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4832                             alloc_end - 1, GFP_NOFS);
4833                 ordered = btrfs_lookup_first_ordered_extent(inode,
4834                                                             alloc_end - 1);
4835                 if (ordered &&
4836                     ordered->file_offset + ordered->len > alloc_start &&
4837                     ordered->file_offset < alloc_end) {
4838                         btrfs_put_ordered_extent(ordered);
4839                         unlock_extent(&BTRFS_I(inode)->io_tree,
4840                                       alloc_start, alloc_end - 1, GFP_NOFS);
4841                         btrfs_wait_ordered_range(inode, alloc_start,
4842                                                  alloc_end - alloc_start);
4843                 } else {
4844                         if (ordered)
4845                                 btrfs_put_ordered_extent(ordered);
4846                         break;
4847                 }
4848         }
4849
4850         cur_offset = alloc_start;
4851         while (1) {
4852                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4853                                       alloc_end - cur_offset, 0);
4854                 BUG_ON(IS_ERR(em) || !em);
4855                 last_byte = min(extent_map_end(em), alloc_end);
4856                 last_byte = (last_byte + mask) & ~mask;
4857                 if (em->block_start == EXTENT_MAP_HOLE) {
4858                         ret = prealloc_file_range(inode, cur_offset,
4859                                         last_byte, alloc_hint, mode);
4860                         if (ret < 0) {
4861                                 free_extent_map(em);
4862                                 break;
4863                         }
4864                 }
4865                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4866                         alloc_hint = em->block_start;
4867                 free_extent_map(em);
4868
4869                 cur_offset = last_byte;
4870                 if (cur_offset >= alloc_end) {
4871                         ret = 0;
4872                         break;
4873                 }
4874         }
4875         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4876                       GFP_NOFS);
4877 out:
4878         mutex_unlock(&inode->i_mutex);
4879         return ret;
4880 }
4881
4882 static int btrfs_set_page_dirty(struct page *page)
4883 {
4884         return __set_page_dirty_nobuffers(page);
4885 }
4886
4887 static int btrfs_permission(struct inode *inode, int mask)
4888 {
4889         if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4890                 return -EACCES;
4891         return generic_permission(inode, mask, btrfs_check_acl);
4892 }
4893
4894 static struct inode_operations btrfs_dir_inode_operations = {
4895         .getattr        = btrfs_getattr,
4896         .lookup         = btrfs_lookup,
4897         .create         = btrfs_create,
4898         .unlink         = btrfs_unlink,
4899         .link           = btrfs_link,
4900         .mkdir          = btrfs_mkdir,
4901         .rmdir          = btrfs_rmdir,
4902         .rename         = btrfs_rename,
4903         .symlink        = btrfs_symlink,
4904         .setattr        = btrfs_setattr,
4905         .mknod          = btrfs_mknod,
4906         .setxattr       = btrfs_setxattr,
4907         .getxattr       = btrfs_getxattr,
4908         .listxattr      = btrfs_listxattr,
4909         .removexattr    = btrfs_removexattr,
4910         .permission     = btrfs_permission,
4911 };
4912 static struct inode_operations btrfs_dir_ro_inode_operations = {
4913         .lookup         = btrfs_lookup,
4914         .permission     = btrfs_permission,
4915 };
4916 static struct file_operations btrfs_dir_file_operations = {
4917         .llseek         = generic_file_llseek,
4918         .read           = generic_read_dir,
4919         .readdir        = btrfs_real_readdir,
4920         .unlocked_ioctl = btrfs_ioctl,
4921 #ifdef CONFIG_COMPAT
4922         .compat_ioctl   = btrfs_ioctl,
4923 #endif
4924         .release        = btrfs_release_file,
4925         .fsync          = btrfs_sync_file,
4926 };
4927
4928 static struct extent_io_ops btrfs_extent_io_ops = {
4929         .fill_delalloc = run_delalloc_range,
4930         .submit_bio_hook = btrfs_submit_bio_hook,
4931         .merge_bio_hook = btrfs_merge_bio_hook,
4932         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4933         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
4934         .writepage_start_hook = btrfs_writepage_start_hook,
4935         .readpage_io_failed_hook = btrfs_io_failed_hook,
4936         .set_bit_hook = btrfs_set_bit_hook,
4937         .clear_bit_hook = btrfs_clear_bit_hook,
4938 };
4939
4940 static struct address_space_operations btrfs_aops = {
4941         .readpage       = btrfs_readpage,
4942         .writepage      = btrfs_writepage,
4943         .writepages     = btrfs_writepages,
4944         .readpages      = btrfs_readpages,
4945         .sync_page      = block_sync_page,
4946         .bmap           = btrfs_bmap,
4947         .direct_IO      = btrfs_direct_IO,
4948         .invalidatepage = btrfs_invalidatepage,
4949         .releasepage    = btrfs_releasepage,
4950         .set_page_dirty = btrfs_set_page_dirty,
4951 };
4952
4953 static struct address_space_operations btrfs_symlink_aops = {
4954         .readpage       = btrfs_readpage,
4955         .writepage      = btrfs_writepage,
4956         .invalidatepage = btrfs_invalidatepage,
4957         .releasepage    = btrfs_releasepage,
4958 };
4959
4960 static struct inode_operations btrfs_file_inode_operations = {
4961         .truncate       = btrfs_truncate,
4962         .getattr        = btrfs_getattr,
4963         .setattr        = btrfs_setattr,
4964         .setxattr       = btrfs_setxattr,
4965         .getxattr       = btrfs_getxattr,
4966         .listxattr      = btrfs_listxattr,
4967         .removexattr    = btrfs_removexattr,
4968         .permission     = btrfs_permission,
4969         .fallocate      = btrfs_fallocate,
4970 };
4971 static struct inode_operations btrfs_special_inode_operations = {
4972         .getattr        = btrfs_getattr,
4973         .setattr        = btrfs_setattr,
4974         .permission     = btrfs_permission,
4975         .setxattr       = btrfs_setxattr,
4976         .getxattr       = btrfs_getxattr,
4977         .listxattr      = btrfs_listxattr,
4978         .removexattr    = btrfs_removexattr,
4979 };
4980 static struct inode_operations btrfs_symlink_inode_operations = {
4981         .readlink       = generic_readlink,
4982         .follow_link    = page_follow_link_light,
4983         .put_link       = page_put_link,
4984         .permission     = btrfs_permission,
4985 };