Btrfs: walk compressed pages based on the nr_pages count instead of bytes
[safe/jmp/linux-2.6] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "compat.h"
50 #include "tree-log.h"
51 #include "ref-cache.h"
52 #include "compression.h"
53
54 struct btrfs_iget_args {
55         u64 ino;
56         struct btrfs_root *root;
57 };
58
59 static struct inode_operations btrfs_dir_inode_operations;
60 static struct inode_operations btrfs_symlink_inode_operations;
61 static struct inode_operations btrfs_dir_ro_inode_operations;
62 static struct inode_operations btrfs_special_inode_operations;
63 static struct inode_operations btrfs_file_inode_operations;
64 static struct address_space_operations btrfs_aops;
65 static struct address_space_operations btrfs_symlink_aops;
66 static struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_bit_radix_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74
75 #define S_SHIFT 12
76 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
77         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
78         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
79         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
80         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
81         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
82         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
83         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
84 };
85
86 static void btrfs_truncate(struct inode *inode);
87 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
88
89 /*
90  * a very lame attempt at stopping writes when the FS is 85% full.  There
91  * are countless ways this is incorrect, but it is better than nothing.
92  */
93 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
94                            int for_del)
95 {
96         u64 total;
97         u64 used;
98         u64 thresh;
99         unsigned long flags;
100         int ret = 0;
101
102         spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
103         total = btrfs_super_total_bytes(&root->fs_info->super_copy);
104         used = btrfs_super_bytes_used(&root->fs_info->super_copy);
105         if (for_del)
106                 thresh = total * 90;
107         else
108                 thresh = total * 85;
109
110         do_div(thresh, 100);
111
112         if (used + root->fs_info->delalloc_bytes + num_required > thresh)
113                 ret = -ENOSPC;
114         spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
115         return ret;
116 }
117
118 /*
119  * this does all the hard work for inserting an inline extent into
120  * the btree.  The caller should have done a btrfs_drop_extents so that
121  * no overlapping inline items exist in the btree
122  */
123 static int noinline insert_inline_extent(struct btrfs_trans_handle *trans,
124                                 struct btrfs_root *root, struct inode *inode,
125                                 u64 start, size_t size, size_t compressed_size,
126                                 struct page **compressed_pages)
127 {
128         struct btrfs_key key;
129         struct btrfs_path *path;
130         struct extent_buffer *leaf;
131         struct page *page = NULL;
132         char *kaddr;
133         unsigned long ptr;
134         struct btrfs_file_extent_item *ei;
135         int err = 0;
136         int ret;
137         size_t cur_size = size;
138         size_t datasize;
139         unsigned long offset;
140         int use_compress = 0;
141
142         if (compressed_size && compressed_pages) {
143                 use_compress = 1;
144                 cur_size = compressed_size;
145         }
146
147         path = btrfs_alloc_path(); if (!path)
148                 return -ENOMEM;
149
150         btrfs_set_trans_block_group(trans, inode);
151
152         key.objectid = inode->i_ino;
153         key.offset = start;
154         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
155         inode_add_bytes(inode, size);
156         datasize = btrfs_file_extent_calc_inline_size(cur_size);
157
158         inode_add_bytes(inode, size);
159         ret = btrfs_insert_empty_item(trans, root, path, &key,
160                                       datasize);
161         BUG_ON(ret);
162         if (ret) {
163                 err = ret;
164                 printk("got bad ret %d\n", ret);
165                 goto fail;
166         }
167         leaf = path->nodes[0];
168         ei = btrfs_item_ptr(leaf, path->slots[0],
169                             struct btrfs_file_extent_item);
170         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172         btrfs_set_file_extent_encryption(leaf, ei, 0);
173         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175         ptr = btrfs_file_extent_inline_start(ei);
176
177         if (use_compress) {
178                 struct page *cpage;
179                 int i = 0;
180                 while(compressed_size > 0) {
181                         cpage = compressed_pages[i];
182                         cur_size = min(compressed_size,
183                                        PAGE_CACHE_SIZE);
184
185                         kaddr = kmap(cpage);
186                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
187                         kunmap(cpage);
188
189                         i++;
190                         ptr += cur_size;
191                         compressed_size -= cur_size;
192                 }
193                 btrfs_set_file_extent_compression(leaf, ei,
194                                                   BTRFS_COMPRESS_ZLIB);
195         } else {
196                 page = find_get_page(inode->i_mapping,
197                                      start >> PAGE_CACHE_SHIFT);
198                 btrfs_set_file_extent_compression(leaf, ei, 0);
199                 kaddr = kmap_atomic(page, KM_USER0);
200                 offset = start & (PAGE_CACHE_SIZE - 1);
201                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
202                 kunmap_atomic(kaddr, KM_USER0);
203                 page_cache_release(page);
204         }
205         btrfs_mark_buffer_dirty(leaf);
206         btrfs_free_path(path);
207
208         BTRFS_I(inode)->disk_i_size = inode->i_size;
209         btrfs_update_inode(trans, root, inode);
210         return 0;
211 fail:
212         btrfs_free_path(path);
213         return err;
214 }
215
216
217 /*
218  * conditionally insert an inline extent into the file.  This
219  * does the checks required to make sure the data is small enough
220  * to fit as an inline extent.
221  */
222 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
223                                  struct btrfs_root *root,
224                                  struct inode *inode, u64 start, u64 end,
225                                  size_t compressed_size,
226                                  struct page **compressed_pages)
227 {
228         u64 isize = i_size_read(inode);
229         u64 actual_end = min(end + 1, isize);
230         u64 inline_len = actual_end - start;
231         u64 aligned_end = (end + root->sectorsize - 1) &
232                         ~((u64)root->sectorsize - 1);
233         u64 hint_byte;
234         u64 data_len = inline_len;
235         int ret;
236
237         if (compressed_size)
238                 data_len = compressed_size;
239
240         if (start > 0 ||
241             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
242             (!compressed_size &&
243             (actual_end & (root->sectorsize - 1)) == 0) ||
244             end + 1 < isize ||
245             data_len > root->fs_info->max_inline) {
246                 return 1;
247         }
248
249         mutex_lock(&BTRFS_I(inode)->extent_mutex);
250         ret = btrfs_drop_extents(trans, root, inode, start,
251                                  aligned_end, aligned_end, &hint_byte);
252         BUG_ON(ret);
253
254         if (isize > actual_end)
255                 inline_len = min_t(u64, isize, actual_end);
256         ret = insert_inline_extent(trans, root, inode, start,
257                                    inline_len, compressed_size,
258                                    compressed_pages);
259         BUG_ON(ret);
260         btrfs_drop_extent_cache(inode, start, aligned_end, 0);
261         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
262         return 0;
263 }
264
265 /*
266  * when extent_io.c finds a delayed allocation range in the file,
267  * the call backs end up in this code.  The basic idea is to
268  * allocate extents on disk for the range, and create ordered data structs
269  * in ram to track those extents.
270  *
271  * locked_page is the page that writepage had locked already.  We use
272  * it to make sure we don't do extra locks or unlocks.
273  *
274  * *page_started is set to one if we unlock locked_page and do everything
275  * required to start IO on it.  It may be clean and already done with
276  * IO when we return.
277  */
278 static int cow_file_range(struct inode *inode, struct page *locked_page,
279                           u64 start, u64 end, int *page_started)
280 {
281         struct btrfs_root *root = BTRFS_I(inode)->root;
282         struct btrfs_trans_handle *trans;
283         u64 alloc_hint = 0;
284         u64 num_bytes;
285         unsigned long ram_size;
286         u64 orig_start;
287         u64 disk_num_bytes;
288         u64 cur_alloc_size;
289         u64 blocksize = root->sectorsize;
290         u64 actual_end;
291         struct btrfs_key ins;
292         struct extent_map *em;
293         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
294         int ret = 0;
295         struct page **pages = NULL;
296         unsigned long nr_pages;
297         unsigned long nr_pages_ret = 0;
298         unsigned long total_compressed = 0;
299         unsigned long total_in = 0;
300         unsigned long max_compressed = 128 * 1024;
301         unsigned long max_uncompressed = 256 * 1024;
302         int i;
303         int will_compress;
304
305         trans = btrfs_join_transaction(root, 1);
306         BUG_ON(!trans);
307         btrfs_set_trans_block_group(trans, inode);
308         orig_start = start;
309
310         /*
311          * compression made this loop a bit ugly, but the basic idea is to
312          * compress some pages but keep the total size of the compressed
313          * extent relatively small.  If compression is off, this goto target
314          * is never used.
315          */
316 again:
317         will_compress = 0;
318         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
319         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
320
321         actual_end = min_t(u64, i_size_read(inode), end + 1);
322         total_compressed = actual_end - start;
323
324         /* we want to make sure that amount of ram required to uncompress
325          * an extent is reasonable, so we limit the total size in ram
326          * of a compressed extent to 256k
327          */
328         total_compressed = min(total_compressed, max_uncompressed);
329         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
330         num_bytes = max(blocksize,  num_bytes);
331         disk_num_bytes = num_bytes;
332         total_in = 0;
333         ret = 0;
334
335         /* we do compression for mount -o compress and when the
336          * inode has not been flagged as nocompress
337          */
338         if (!btrfs_test_flag(inode, NOCOMPRESS) &&
339             btrfs_test_opt(root, COMPRESS)) {
340                 WARN_ON(pages);
341                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
342
343                 /* we want to make sure the amount of IO required to satisfy
344                  * a random read is reasonably small, so we limit the size
345                  * of a compressed extent to 128k
346                  */
347                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
348                                                 total_compressed, pages,
349                                                 nr_pages, &nr_pages_ret,
350                                                 &total_in,
351                                                 &total_compressed,
352                                                 max_compressed);
353
354                 if (!ret) {
355                         unsigned long offset = total_compressed &
356                                 (PAGE_CACHE_SIZE - 1);
357                         struct page *page = pages[nr_pages_ret - 1];
358                         char *kaddr;
359
360                         /* zero the tail end of the last page, we might be
361                          * sending it down to disk
362                          */
363                         if (offset) {
364                                 kaddr = kmap_atomic(page, KM_USER0);
365                                 memset(kaddr + offset, 0,
366                                        PAGE_CACHE_SIZE - offset);
367                                 kunmap_atomic(kaddr, KM_USER0);
368                         }
369                         will_compress = 1;
370                 }
371         }
372         if (start == 0) {
373                 /* lets try to make an inline extent */
374                 if (ret || total_in < (end - start + 1)) {
375                         /* we didn't compress the entire range, try
376                          * to make an uncompressed inline extent.  This
377                          * is almost sure to fail, but maybe inline sizes
378                          * will get bigger later
379                          */
380                         ret = cow_file_range_inline(trans, root, inode,
381                                                     start, end, 0, NULL);
382                 } else {
383                         ret = cow_file_range_inline(trans, root, inode,
384                                                     start, end,
385                                                     total_compressed, pages);
386                 }
387                 if (ret == 0) {
388                         extent_clear_unlock_delalloc(inode,
389                                                      &BTRFS_I(inode)->io_tree,
390                                                      start, end, NULL,
391                                                      1, 1, 1);
392                         *page_started = 1;
393                         ret = 0;
394                         goto free_pages_out;
395                 }
396         }
397
398         if (will_compress) {
399                 /*
400                  * we aren't doing an inline extent round the compressed size
401                  * up to a block size boundary so the allocator does sane
402                  * things
403                  */
404                 total_compressed = (total_compressed + blocksize - 1) &
405                         ~(blocksize - 1);
406
407                 /*
408                  * one last check to make sure the compression is really a
409                  * win, compare the page count read with the blocks on disk
410                  */
411                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
412                         ~(PAGE_CACHE_SIZE - 1);
413                 if (total_compressed >= total_in) {
414                         will_compress = 0;
415                 } else {
416                         disk_num_bytes = total_compressed;
417                         num_bytes = total_in;
418                 }
419         }
420         if (!will_compress && pages) {
421                 /*
422                  * the compression code ran but failed to make things smaller,
423                  * free any pages it allocated and our page pointer array
424                  */
425                 for (i = 0; i < nr_pages_ret; i++) {
426                         page_cache_release(pages[i]);
427                 }
428                 kfree(pages);
429                 pages = NULL;
430                 total_compressed = 0;
431                 nr_pages_ret = 0;
432
433                 /* flag the file so we don't compress in the future */
434                 btrfs_set_flag(inode, NOCOMPRESS);
435         }
436
437         BUG_ON(disk_num_bytes >
438                btrfs_super_total_bytes(&root->fs_info->super_copy));
439
440         mutex_lock(&BTRFS_I(inode)->extent_mutex);
441         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
442         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
443
444         while(disk_num_bytes > 0) {
445                 unsigned long min_bytes;
446
447                 /*
448                  * the max size of a compressed extent is pretty small,
449                  * make the code a little less complex by forcing
450                  * the allocator to find a whole compressed extent at once
451                  */
452                 if (will_compress)
453                         min_bytes = disk_num_bytes;
454                 else
455                         min_bytes = root->sectorsize;
456
457                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
458                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
459                                            min_bytes, 0, alloc_hint,
460                                            (u64)-1, &ins, 1);
461                 if (ret) {
462                         WARN_ON(1);
463                         goto free_pages_out_fail;
464                 }
465                 em = alloc_extent_map(GFP_NOFS);
466                 em->start = start;
467
468                 if (will_compress) {
469                         ram_size = num_bytes;
470                         em->len = num_bytes;
471                 } else {
472                         /* ramsize == disk size */
473                         ram_size = ins.offset;
474                         em->len = ins.offset;
475                 }
476
477                 em->block_start = ins.objectid;
478                 em->block_len = ins.offset;
479                 em->bdev = root->fs_info->fs_devices->latest_bdev;
480
481                 mutex_lock(&BTRFS_I(inode)->extent_mutex);
482                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
483
484                 if (will_compress)
485                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
486
487                 while(1) {
488                         spin_lock(&em_tree->lock);
489                         ret = add_extent_mapping(em_tree, em);
490                         spin_unlock(&em_tree->lock);
491                         if (ret != -EEXIST) {
492                                 free_extent_map(em);
493                                 break;
494                         }
495                         btrfs_drop_extent_cache(inode, start,
496                                                 start + ram_size - 1, 0);
497                 }
498                 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
499
500                 cur_alloc_size = ins.offset;
501                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
502                                                ram_size, cur_alloc_size, 0,
503                                                will_compress);
504                 BUG_ON(ret);
505
506                 if (disk_num_bytes < cur_alloc_size) {
507                         printk("num_bytes %Lu cur_alloc %Lu\n", disk_num_bytes,
508                                cur_alloc_size);
509                         break;
510                 }
511
512                 if (will_compress) {
513                         /*
514                          * we're doing compression, we and we need to
515                          * submit the compressed extents down to the device.
516                          *
517                          * We lock down all the file pages, clearing their
518                          * dirty bits and setting them writeback.  Everyone
519                          * that wants to modify the page will wait on the
520                          * ordered extent above.
521                          *
522                          * The writeback bits on the file pages are
523                          * cleared when the compressed pages are on disk
524                          */
525                         btrfs_end_transaction(trans, root);
526
527                         if (start <= page_offset(locked_page) &&
528                             page_offset(locked_page) < start + ram_size) {
529                                 *page_started = 1;
530                         }
531
532                         extent_clear_unlock_delalloc(inode,
533                                                      &BTRFS_I(inode)->io_tree,
534                                                      start,
535                                                      start + ram_size - 1,
536                                                      NULL, 1, 1, 0);
537
538                         ret = btrfs_submit_compressed_write(inode, start,
539                                                  ram_size, ins.objectid,
540                                                  cur_alloc_size, pages,
541                                                  nr_pages_ret);
542
543                         BUG_ON(ret);
544                         trans = btrfs_join_transaction(root, 1);
545                         if (start + ram_size < end) {
546                                 start += ram_size;
547                                 alloc_hint = ins.objectid + ins.offset;
548                                 /* pages will be freed at end_bio time */
549                                 pages = NULL;
550                                 goto again;
551                         } else {
552                                 /* we've written everything, time to go */
553                                 break;
554                         }
555                 }
556                 /* we're not doing compressed IO, don't unlock the first
557                  * page (which the caller expects to stay locked), don't
558                  * clear any dirty bits and don't set any writeback bits
559                  */
560                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
561                                              start, start + ram_size - 1,
562                                              locked_page, 0, 0, 0);
563                 disk_num_bytes -= cur_alloc_size;
564                 num_bytes -= cur_alloc_size;
565                 alloc_hint = ins.objectid + ins.offset;
566                 start += cur_alloc_size;
567         }
568
569         ret = 0;
570 out:
571         btrfs_end_transaction(trans, root);
572
573         return ret;
574
575 free_pages_out_fail:
576         extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
577                                      start, end, locked_page, 0, 0, 0);
578 free_pages_out:
579         for (i = 0; i < nr_pages_ret; i++)
580                 page_cache_release(pages[i]);
581         if (pages)
582                 kfree(pages);
583
584         goto out;
585 }
586
587 /*
588  * when nowcow writeback call back.  This checks for snapshots or COW copies
589  * of the extents that exist in the file, and COWs the file as required.
590  *
591  * If no cow copies or snapshots exist, we write directly to the existing
592  * blocks on disk
593  */
594 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
595                               u64 start, u64 end, int *page_started)
596 {
597         u64 extent_start;
598         u64 extent_end;
599         u64 bytenr;
600         u64 loops = 0;
601         u64 total_fs_bytes;
602         struct btrfs_root *root = BTRFS_I(inode)->root;
603         struct btrfs_block_group_cache *block_group;
604         struct btrfs_trans_handle *trans;
605         struct extent_buffer *leaf;
606         int found_type;
607         struct btrfs_path *path;
608         struct btrfs_file_extent_item *item;
609         int ret;
610         int err = 0;
611         struct btrfs_key found_key;
612
613         total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
614         path = btrfs_alloc_path();
615         BUG_ON(!path);
616         trans = btrfs_join_transaction(root, 1);
617         BUG_ON(!trans);
618 again:
619         ret = btrfs_lookup_file_extent(NULL, root, path,
620                                        inode->i_ino, start, 0);
621         if (ret < 0) {
622                 err = ret;
623                 goto out;
624         }
625
626         if (ret != 0) {
627                 if (path->slots[0] == 0)
628                         goto not_found;
629                 path->slots[0]--;
630         }
631
632         leaf = path->nodes[0];
633         item = btrfs_item_ptr(leaf, path->slots[0],
634                               struct btrfs_file_extent_item);
635
636         /* are we inside the extent that was found? */
637         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
638         found_type = btrfs_key_type(&found_key);
639         if (found_key.objectid != inode->i_ino ||
640             found_type != BTRFS_EXTENT_DATA_KEY)
641                 goto not_found;
642
643         found_type = btrfs_file_extent_type(leaf, item);
644         extent_start = found_key.offset;
645         if (found_type == BTRFS_FILE_EXTENT_REG) {
646                 u64 extent_num_bytes;
647
648                 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
649                 extent_end = extent_start + extent_num_bytes;
650                 err = 0;
651
652                 if (btrfs_file_extent_compression(leaf, item) ||
653                     btrfs_file_extent_encryption(leaf,item) ||
654                     btrfs_file_extent_other_encoding(leaf, item))
655                         goto not_found;
656
657                 if (loops && start != extent_start)
658                         goto not_found;
659
660                 if (start < extent_start || start >= extent_end)
661                         goto not_found;
662
663                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
664                 if (bytenr == 0)
665                         goto not_found;
666
667                 if (btrfs_cross_ref_exists(trans, root, &found_key, bytenr))
668                         goto not_found;
669                 /*
670                  * we may be called by the resizer, make sure we're inside
671                  * the limits of the FS
672                  */
673                 block_group = btrfs_lookup_block_group(root->fs_info,
674                                                        bytenr);
675                 if (!block_group || block_group->ro)
676                         goto not_found;
677
678                 bytenr += btrfs_file_extent_offset(leaf, item);
679                 extent_num_bytes = min(end + 1, extent_end) - start;
680                 ret = btrfs_add_ordered_extent(inode, start, bytenr,
681                                                 extent_num_bytes,
682                                                 extent_num_bytes, 1, 0);
683                 if (ret) {
684                         err = ret;
685                         goto out;
686                 }
687
688                 btrfs_release_path(root, path);
689                 start = extent_end;
690                 if (start <= end) {
691                         loops++;
692                         goto again;
693                 }
694         } else {
695 not_found:
696                 btrfs_end_transaction(trans, root);
697                 btrfs_free_path(path);
698                 return cow_file_range(inode, locked_page, start, end,
699                                       page_started);
700         }
701 out:
702         WARN_ON(err);
703         btrfs_end_transaction(trans, root);
704         btrfs_free_path(path);
705         return err;
706 }
707
708 /*
709  * extent_io.c call back to do delayed allocation processing
710  */
711 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
712                               u64 start, u64 end, int *page_started)
713 {
714         struct btrfs_root *root = BTRFS_I(inode)->root;
715         int ret;
716
717         if (btrfs_test_opt(root, NODATACOW) ||
718             btrfs_test_flag(inode, NODATACOW))
719                 ret = run_delalloc_nocow(inode, locked_page, start, end,
720                                          page_started);
721         else
722                 ret = cow_file_range(inode, locked_page, start, end,
723                                      page_started);
724
725         return ret;
726 }
727
728 /*
729  * extent_io.c set_bit_hook, used to track delayed allocation
730  * bytes in this file, and to maintain the list of inodes that
731  * have pending delalloc work to be done.
732  */
733 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
734                        unsigned long old, unsigned long bits)
735 {
736         unsigned long flags;
737         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
738                 struct btrfs_root *root = BTRFS_I(inode)->root;
739                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
740                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
741                 root->fs_info->delalloc_bytes += end - start + 1;
742                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
743                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
744                                       &root->fs_info->delalloc_inodes);
745                 }
746                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
747         }
748         return 0;
749 }
750
751 /*
752  * extent_io.c clear_bit_hook, see set_bit_hook for why
753  */
754 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
755                          unsigned long old, unsigned long bits)
756 {
757         if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
758                 struct btrfs_root *root = BTRFS_I(inode)->root;
759                 unsigned long flags;
760
761                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
762                 if (end - start + 1 > root->fs_info->delalloc_bytes) {
763                         printk("warning: delalloc account %Lu %Lu\n",
764                                end - start + 1, root->fs_info->delalloc_bytes);
765                         root->fs_info->delalloc_bytes = 0;
766                         BTRFS_I(inode)->delalloc_bytes = 0;
767                 } else {
768                         root->fs_info->delalloc_bytes -= end - start + 1;
769                         BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
770                 }
771                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
772                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
773                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
774                 }
775                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
776         }
777         return 0;
778 }
779
780 /*
781  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
782  * we don't create bios that span stripes or chunks
783  */
784 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
785                          size_t size, struct bio *bio,
786                          unsigned long bio_flags)
787 {
788         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
789         struct btrfs_mapping_tree *map_tree;
790         u64 logical = (u64)bio->bi_sector << 9;
791         u64 length = 0;
792         u64 map_length;
793         int ret;
794
795         length = bio->bi_size;
796         map_tree = &root->fs_info->mapping_tree;
797         map_length = length;
798         ret = btrfs_map_block(map_tree, READ, logical,
799                               &map_length, NULL, 0);
800
801         if (map_length < length + size) {
802                 return 1;
803         }
804         return 0;
805 }
806
807 /*
808  * in order to insert checksums into the metadata in large chunks,
809  * we wait until bio submission time.   All the pages in the bio are
810  * checksummed and sums are attached onto the ordered extent record.
811  *
812  * At IO completion time the cums attached on the ordered extent record
813  * are inserted into the btree
814  */
815 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
816                           int mirror_num, unsigned long bio_flags)
817 {
818         struct btrfs_root *root = BTRFS_I(inode)->root;
819         int ret = 0;
820
821         ret = btrfs_csum_one_bio(root, inode, bio);
822         BUG_ON(ret);
823
824         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
825 }
826
827 /*
828  * extent_io.c submission hook. This does the right thing for csum calculation on write,
829  * or reading the csums from the tree before a read
830  */
831 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
832                           int mirror_num, unsigned long bio_flags)
833 {
834         struct btrfs_root *root = BTRFS_I(inode)->root;
835         int ret = 0;
836
837         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
838         BUG_ON(ret);
839
840         if (btrfs_test_opt(root, NODATASUM) ||
841             btrfs_test_flag(inode, NODATASUM)) {
842                 goto mapit;
843         }
844
845         if (!(rw & (1 << BIO_RW))) {
846                 btrfs_lookup_bio_sums(root, inode, bio);
847
848                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
849                         return btrfs_submit_compressed_read(inode, bio,
850                                                     mirror_num, bio_flags);
851                 }
852
853                 goto mapit;
854         }
855         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
856                                    inode, rw, bio, mirror_num,
857                                    bio_flags, __btrfs_submit_bio_hook);
858 mapit:
859         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
860 }
861
862 /*
863  * given a list of ordered sums record them in the inode.  This happens
864  * at IO completion time based on sums calculated at bio submission time.
865  */
866 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
867                              struct inode *inode, u64 file_offset,
868                              struct list_head *list)
869 {
870         struct list_head *cur;
871         struct btrfs_ordered_sum *sum;
872
873         btrfs_set_trans_block_group(trans, inode);
874         list_for_each(cur, list) {
875                 sum = list_entry(cur, struct btrfs_ordered_sum, list);
876                 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
877                                        inode, sum);
878         }
879         return 0;
880 }
881
882 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
883 {
884         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
885                                    GFP_NOFS);
886 }
887
888 /* see btrfs_writepage_start_hook for details on why this is required */
889 struct btrfs_writepage_fixup {
890         struct page *page;
891         struct btrfs_work work;
892 };
893
894 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
895 {
896         struct btrfs_writepage_fixup *fixup;
897         struct btrfs_ordered_extent *ordered;
898         struct page *page;
899         struct inode *inode;
900         u64 page_start;
901         u64 page_end;
902
903         fixup = container_of(work, struct btrfs_writepage_fixup, work);
904         page = fixup->page;
905 again:
906         lock_page(page);
907         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
908                 ClearPageChecked(page);
909                 goto out_page;
910         }
911
912         inode = page->mapping->host;
913         page_start = page_offset(page);
914         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
915
916         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
917
918         /* already ordered? We're done */
919         if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
920                              EXTENT_ORDERED, 0)) {
921                 goto out;
922         }
923
924         ordered = btrfs_lookup_ordered_extent(inode, page_start);
925         if (ordered) {
926                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
927                               page_end, GFP_NOFS);
928                 unlock_page(page);
929                 btrfs_start_ordered_extent(inode, ordered, 1);
930                 goto again;
931         }
932
933         btrfs_set_extent_delalloc(inode, page_start, page_end);
934         ClearPageChecked(page);
935 out:
936         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
937 out_page:
938         unlock_page(page);
939         page_cache_release(page);
940 }
941
942 /*
943  * There are a few paths in the higher layers of the kernel that directly
944  * set the page dirty bit without asking the filesystem if it is a
945  * good idea.  This causes problems because we want to make sure COW
946  * properly happens and the data=ordered rules are followed.
947  *
948  * In our case any range that doesn't have the ORDERED bit set
949  * hasn't been properly setup for IO.  We kick off an async process
950  * to fix it up.  The async helper will wait for ordered extents, set
951  * the delalloc bit and make it safe to write the page.
952  */
953 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
954 {
955         struct inode *inode = page->mapping->host;
956         struct btrfs_writepage_fixup *fixup;
957         struct btrfs_root *root = BTRFS_I(inode)->root;
958         int ret;
959
960         ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
961                              EXTENT_ORDERED, 0);
962         if (ret)
963                 return 0;
964
965         if (PageChecked(page))
966                 return -EAGAIN;
967
968         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
969         if (!fixup)
970                 return -EAGAIN;
971
972         SetPageChecked(page);
973         page_cache_get(page);
974         fixup->work.func = btrfs_writepage_fixup_worker;
975         fixup->page = page;
976         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
977         return -EAGAIN;
978 }
979
980 /* as ordered data IO finishes, this gets called so we can finish
981  * an ordered extent if the range of bytes in the file it covers are
982  * fully written.
983  */
984 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
985 {
986         struct btrfs_root *root = BTRFS_I(inode)->root;
987         struct btrfs_trans_handle *trans;
988         struct btrfs_ordered_extent *ordered_extent;
989         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
990         struct btrfs_file_extent_item *extent_item;
991         struct btrfs_path *path = NULL;
992         struct extent_buffer *leaf;
993         u64 alloc_hint = 0;
994         struct list_head list;
995         struct btrfs_key ins;
996         int ret;
997
998         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
999         if (!ret)
1000                 return 0;
1001
1002         trans = btrfs_join_transaction(root, 1);
1003
1004         ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1005         BUG_ON(!ordered_extent);
1006         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1007                 goto nocow;
1008
1009         path = btrfs_alloc_path();
1010         BUG_ON(!path);
1011
1012         lock_extent(io_tree, ordered_extent->file_offset,
1013                     ordered_extent->file_offset + ordered_extent->len - 1,
1014                     GFP_NOFS);
1015
1016         INIT_LIST_HEAD(&list);
1017
1018         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1019
1020         ret = btrfs_drop_extents(trans, root, inode,
1021                                  ordered_extent->file_offset,
1022                                  ordered_extent->file_offset +
1023                                  ordered_extent->len,
1024                                  ordered_extent->file_offset, &alloc_hint);
1025         BUG_ON(ret);
1026
1027         ins.objectid = inode->i_ino;
1028         ins.offset = ordered_extent->file_offset;
1029         ins.type = BTRFS_EXTENT_DATA_KEY;
1030         ret = btrfs_insert_empty_item(trans, root, path, &ins,
1031                                       sizeof(*extent_item));
1032         BUG_ON(ret);
1033         leaf = path->nodes[0];
1034         extent_item = btrfs_item_ptr(leaf, path->slots[0],
1035                                      struct btrfs_file_extent_item);
1036         btrfs_set_file_extent_generation(leaf, extent_item, trans->transid);
1037         btrfs_set_file_extent_type(leaf, extent_item, BTRFS_FILE_EXTENT_REG);
1038         btrfs_set_file_extent_disk_bytenr(leaf, extent_item,
1039                                           ordered_extent->start);
1040         btrfs_set_file_extent_disk_num_bytes(leaf, extent_item,
1041                                              ordered_extent->disk_len);
1042         btrfs_set_file_extent_offset(leaf, extent_item, 0);
1043
1044         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1045                 btrfs_set_file_extent_compression(leaf, extent_item, 1);
1046         else
1047                 btrfs_set_file_extent_compression(leaf, extent_item, 0);
1048         btrfs_set_file_extent_encryption(leaf, extent_item, 0);
1049         btrfs_set_file_extent_other_encoding(leaf, extent_item, 0);
1050
1051         /* ram bytes = extent_num_bytes for now */
1052         btrfs_set_file_extent_num_bytes(leaf, extent_item,
1053                                         ordered_extent->len);
1054         btrfs_set_file_extent_ram_bytes(leaf, extent_item,
1055                                         ordered_extent->len);
1056         btrfs_mark_buffer_dirty(leaf);
1057
1058         btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
1059                                 ordered_extent->file_offset +
1060                                 ordered_extent->len - 1, 0);
1061         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1062
1063         ins.objectid = ordered_extent->start;
1064         ins.offset = ordered_extent->disk_len;
1065         ins.type = BTRFS_EXTENT_ITEM_KEY;
1066         ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1067                                           root->root_key.objectid,
1068                                           trans->transid, inode->i_ino, &ins);
1069         BUG_ON(ret);
1070         btrfs_release_path(root, path);
1071
1072         inode_add_bytes(inode, ordered_extent->len);
1073         unlock_extent(io_tree, ordered_extent->file_offset,
1074                     ordered_extent->file_offset + ordered_extent->len - 1,
1075                     GFP_NOFS);
1076 nocow:
1077         add_pending_csums(trans, inode, ordered_extent->file_offset,
1078                           &ordered_extent->list);
1079
1080         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1081         btrfs_ordered_update_i_size(inode, ordered_extent);
1082         btrfs_update_inode(trans, root, inode);
1083         btrfs_remove_ordered_extent(inode, ordered_extent);
1084         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1085
1086         /* once for us */
1087         btrfs_put_ordered_extent(ordered_extent);
1088         /* once for the tree */
1089         btrfs_put_ordered_extent(ordered_extent);
1090
1091         btrfs_end_transaction(trans, root);
1092         if (path)
1093                 btrfs_free_path(path);
1094         return 0;
1095 }
1096
1097 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1098                                 struct extent_state *state, int uptodate)
1099 {
1100         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1101 }
1102
1103 /*
1104  * When IO fails, either with EIO or csum verification fails, we
1105  * try other mirrors that might have a good copy of the data.  This
1106  * io_failure_record is used to record state as we go through all the
1107  * mirrors.  If another mirror has good data, the page is set up to date
1108  * and things continue.  If a good mirror can't be found, the original
1109  * bio end_io callback is called to indicate things have failed.
1110  */
1111 struct io_failure_record {
1112         struct page *page;
1113         u64 start;
1114         u64 len;
1115         u64 logical;
1116         int last_mirror;
1117 };
1118
1119 int btrfs_io_failed_hook(struct bio *failed_bio,
1120                          struct page *page, u64 start, u64 end,
1121                          struct extent_state *state)
1122 {
1123         struct io_failure_record *failrec = NULL;
1124         u64 private;
1125         struct extent_map *em;
1126         struct inode *inode = page->mapping->host;
1127         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1128         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1129         struct bio *bio;
1130         int num_copies;
1131         int ret;
1132         int rw;
1133         u64 logical;
1134         unsigned long bio_flags = 0;
1135
1136         ret = get_state_private(failure_tree, start, &private);
1137         if (ret) {
1138                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1139                 if (!failrec)
1140                         return -ENOMEM;
1141                 failrec->start = start;
1142                 failrec->len = end - start + 1;
1143                 failrec->last_mirror = 0;
1144
1145                 spin_lock(&em_tree->lock);
1146                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1147                 if (em->start > start || em->start + em->len < start) {
1148                         free_extent_map(em);
1149                         em = NULL;
1150                 }
1151                 spin_unlock(&em_tree->lock);
1152
1153                 if (!em || IS_ERR(em)) {
1154                         kfree(failrec);
1155                         return -EIO;
1156                 }
1157                 logical = start - em->start;
1158                 logical = em->block_start + logical;
1159                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1160                         bio_flags = EXTENT_BIO_COMPRESSED;
1161                 failrec->logical = logical;
1162                 free_extent_map(em);
1163                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1164                                 EXTENT_DIRTY, GFP_NOFS);
1165                 set_state_private(failure_tree, start,
1166                                  (u64)(unsigned long)failrec);
1167         } else {
1168                 failrec = (struct io_failure_record *)(unsigned long)private;
1169         }
1170         num_copies = btrfs_num_copies(
1171                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1172                               failrec->logical, failrec->len);
1173         failrec->last_mirror++;
1174         if (!state) {
1175                 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
1176                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1177                                                     failrec->start,
1178                                                     EXTENT_LOCKED);
1179                 if (state && state->start != failrec->start)
1180                         state = NULL;
1181                 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
1182         }
1183         if (!state || failrec->last_mirror > num_copies) {
1184                 set_state_private(failure_tree, failrec->start, 0);
1185                 clear_extent_bits(failure_tree, failrec->start,
1186                                   failrec->start + failrec->len - 1,
1187                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1188                 kfree(failrec);
1189                 return -EIO;
1190         }
1191         bio = bio_alloc(GFP_NOFS, 1);
1192         bio->bi_private = state;
1193         bio->bi_end_io = failed_bio->bi_end_io;
1194         bio->bi_sector = failrec->logical >> 9;
1195         bio->bi_bdev = failed_bio->bi_bdev;
1196         bio->bi_size = 0;
1197         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1198         if (failed_bio->bi_rw & (1 << BIO_RW))
1199                 rw = WRITE;
1200         else
1201                 rw = READ;
1202
1203         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1204                                                       failrec->last_mirror,
1205                                                       bio_flags);
1206         return 0;
1207 }
1208
1209 /*
1210  * each time an IO finishes, we do a fast check in the IO failure tree
1211  * to see if we need to process or clean up an io_failure_record
1212  */
1213 int btrfs_clean_io_failures(struct inode *inode, u64 start)
1214 {
1215         u64 private;
1216         u64 private_failure;
1217         struct io_failure_record *failure;
1218         int ret;
1219
1220         private = 0;
1221         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1222                              (u64)-1, 1, EXTENT_DIRTY)) {
1223                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1224                                         start, &private_failure);
1225                 if (ret == 0) {
1226                         failure = (struct io_failure_record *)(unsigned long)
1227                                    private_failure;
1228                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1229                                           failure->start, 0);
1230                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1231                                           failure->start,
1232                                           failure->start + failure->len - 1,
1233                                           EXTENT_DIRTY | EXTENT_LOCKED,
1234                                           GFP_NOFS);
1235                         kfree(failure);
1236                 }
1237         }
1238         return 0;
1239 }
1240
1241 /*
1242  * when reads are done, we need to check csums to verify the data is correct
1243  * if there's a match, we allow the bio to finish.  If not, we go through
1244  * the io_failure_record routines to find good copies
1245  */
1246 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1247                                struct extent_state *state)
1248 {
1249         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1250         struct inode *inode = page->mapping->host;
1251         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1252         char *kaddr;
1253         u64 private = ~(u32)0;
1254         int ret;
1255         struct btrfs_root *root = BTRFS_I(inode)->root;
1256         u32 csum = ~(u32)0;
1257         unsigned long flags;
1258
1259         if (btrfs_test_opt(root, NODATASUM) ||
1260             btrfs_test_flag(inode, NODATASUM))
1261                 return 0;
1262         if (state && state->start == start) {
1263                 private = state->private;
1264                 ret = 0;
1265         } else {
1266                 ret = get_state_private(io_tree, start, &private);
1267         }
1268         local_irq_save(flags);
1269         kaddr = kmap_atomic(page, KM_IRQ0);
1270         if (ret) {
1271                 goto zeroit;
1272         }
1273         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1274         btrfs_csum_final(csum, (char *)&csum);
1275         if (csum != private) {
1276                 goto zeroit;
1277         }
1278         kunmap_atomic(kaddr, KM_IRQ0);
1279         local_irq_restore(flags);
1280
1281         /* if the io failure tree for this inode is non-empty,
1282          * check to see if we've recovered from a failed IO
1283          */
1284         btrfs_clean_io_failures(inode, start);
1285         return 0;
1286
1287 zeroit:
1288         printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
1289                page->mapping->host->i_ino, (unsigned long long)start, csum,
1290                private);
1291         memset(kaddr + offset, 1, end - start + 1);
1292         flush_dcache_page(page);
1293         kunmap_atomic(kaddr, KM_IRQ0);
1294         local_irq_restore(flags);
1295         if (private == 0)
1296                 return 0;
1297         return -EIO;
1298 }
1299
1300 /*
1301  * This creates an orphan entry for the given inode in case something goes
1302  * wrong in the middle of an unlink/truncate.
1303  */
1304 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1305 {
1306         struct btrfs_root *root = BTRFS_I(inode)->root;
1307         int ret = 0;
1308
1309         spin_lock(&root->list_lock);
1310
1311         /* already on the orphan list, we're good */
1312         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1313                 spin_unlock(&root->list_lock);
1314                 return 0;
1315         }
1316
1317         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1318
1319         spin_unlock(&root->list_lock);
1320
1321         /*
1322          * insert an orphan item to track this unlinked/truncated file
1323          */
1324         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1325
1326         return ret;
1327 }
1328
1329 /*
1330  * We have done the truncate/delete so we can go ahead and remove the orphan
1331  * item for this particular inode.
1332  */
1333 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1334 {
1335         struct btrfs_root *root = BTRFS_I(inode)->root;
1336         int ret = 0;
1337
1338         spin_lock(&root->list_lock);
1339
1340         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1341                 spin_unlock(&root->list_lock);
1342                 return 0;
1343         }
1344
1345         list_del_init(&BTRFS_I(inode)->i_orphan);
1346         if (!trans) {
1347                 spin_unlock(&root->list_lock);
1348                 return 0;
1349         }
1350
1351         spin_unlock(&root->list_lock);
1352
1353         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1354
1355         return ret;
1356 }
1357
1358 /*
1359  * this cleans up any orphans that may be left on the list from the last use
1360  * of this root.
1361  */
1362 void btrfs_orphan_cleanup(struct btrfs_root *root)
1363 {
1364         struct btrfs_path *path;
1365         struct extent_buffer *leaf;
1366         struct btrfs_item *item;
1367         struct btrfs_key key, found_key;
1368         struct btrfs_trans_handle *trans;
1369         struct inode *inode;
1370         int ret = 0, nr_unlink = 0, nr_truncate = 0;
1371
1372         /* don't do orphan cleanup if the fs is readonly. */
1373         if (root->fs_info->sb->s_flags & MS_RDONLY)
1374                 return;
1375
1376         path = btrfs_alloc_path();
1377         if (!path)
1378                 return;
1379         path->reada = -1;
1380
1381         key.objectid = BTRFS_ORPHAN_OBJECTID;
1382         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1383         key.offset = (u64)-1;
1384
1385
1386         while (1) {
1387                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1388                 if (ret < 0) {
1389                         printk(KERN_ERR "Error searching slot for orphan: %d"
1390                                "\n", ret);
1391                         break;
1392                 }
1393
1394                 /*
1395                  * if ret == 0 means we found what we were searching for, which
1396                  * is weird, but possible, so only screw with path if we didnt
1397                  * find the key and see if we have stuff that matches
1398                  */
1399                 if (ret > 0) {
1400                         if (path->slots[0] == 0)
1401                                 break;
1402                         path->slots[0]--;
1403                 }
1404
1405                 /* pull out the item */
1406                 leaf = path->nodes[0];
1407                 item = btrfs_item_nr(leaf, path->slots[0]);
1408                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1409
1410                 /* make sure the item matches what we want */
1411                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1412                         break;
1413                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1414                         break;
1415
1416                 /* release the path since we're done with it */
1417                 btrfs_release_path(root, path);
1418
1419                 /*
1420                  * this is where we are basically btrfs_lookup, without the
1421                  * crossing root thing.  we store the inode number in the
1422                  * offset of the orphan item.
1423                  */
1424                 inode = btrfs_iget_locked(root->fs_info->sb,
1425                                           found_key.offset, root);
1426                 if (!inode)
1427                         break;
1428
1429                 if (inode->i_state & I_NEW) {
1430                         BTRFS_I(inode)->root = root;
1431
1432                         /* have to set the location manually */
1433                         BTRFS_I(inode)->location.objectid = inode->i_ino;
1434                         BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1435                         BTRFS_I(inode)->location.offset = 0;
1436
1437                         btrfs_read_locked_inode(inode);
1438                         unlock_new_inode(inode);
1439                 }
1440
1441                 /*
1442                  * add this inode to the orphan list so btrfs_orphan_del does
1443                  * the proper thing when we hit it
1444                  */
1445                 spin_lock(&root->list_lock);
1446                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1447                 spin_unlock(&root->list_lock);
1448
1449                 /*
1450                  * if this is a bad inode, means we actually succeeded in
1451                  * removing the inode, but not the orphan record, which means
1452                  * we need to manually delete the orphan since iput will just
1453                  * do a destroy_inode
1454                  */
1455                 if (is_bad_inode(inode)) {
1456                         trans = btrfs_start_transaction(root, 1);
1457                         btrfs_orphan_del(trans, inode);
1458                         btrfs_end_transaction(trans, root);
1459                         iput(inode);
1460                         continue;
1461                 }
1462
1463                 /* if we have links, this was a truncate, lets do that */
1464                 if (inode->i_nlink) {
1465                         nr_truncate++;
1466                         btrfs_truncate(inode);
1467                 } else {
1468                         nr_unlink++;
1469                 }
1470
1471                 /* this will do delete_inode and everything for us */
1472                 iput(inode);
1473         }
1474
1475         if (nr_unlink)
1476                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1477         if (nr_truncate)
1478                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1479
1480         btrfs_free_path(path);
1481 }
1482
1483 /*
1484  * read an inode from the btree into the in-memory inode
1485  */
1486 void btrfs_read_locked_inode(struct inode *inode)
1487 {
1488         struct btrfs_path *path;
1489         struct extent_buffer *leaf;
1490         struct btrfs_inode_item *inode_item;
1491         struct btrfs_timespec *tspec;
1492         struct btrfs_root *root = BTRFS_I(inode)->root;
1493         struct btrfs_key location;
1494         u64 alloc_group_block;
1495         u32 rdev;
1496         int ret;
1497
1498         path = btrfs_alloc_path();
1499         BUG_ON(!path);
1500         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1501
1502         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1503         if (ret)
1504                 goto make_bad;
1505
1506         leaf = path->nodes[0];
1507         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1508                                     struct btrfs_inode_item);
1509
1510         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1511         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1512         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1513         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1514         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1515
1516         tspec = btrfs_inode_atime(inode_item);
1517         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1518         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1519
1520         tspec = btrfs_inode_mtime(inode_item);
1521         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1522         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1523
1524         tspec = btrfs_inode_ctime(inode_item);
1525         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1526         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1527
1528         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
1529         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
1530         inode->i_generation = BTRFS_I(inode)->generation;
1531         inode->i_rdev = 0;
1532         rdev = btrfs_inode_rdev(leaf, inode_item);
1533
1534         BTRFS_I(inode)->index_cnt = (u64)-1;
1535
1536         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1537         BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1538                                                        alloc_group_block);
1539         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1540         if (!BTRFS_I(inode)->block_group) {
1541                 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1542                                                  NULL, 0,
1543                                                  BTRFS_BLOCK_GROUP_METADATA, 0);
1544         }
1545         btrfs_free_path(path);
1546         inode_item = NULL;
1547
1548         switch (inode->i_mode & S_IFMT) {
1549         case S_IFREG:
1550                 inode->i_mapping->a_ops = &btrfs_aops;
1551                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1552                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1553                 inode->i_fop = &btrfs_file_operations;
1554                 inode->i_op = &btrfs_file_inode_operations;
1555                 break;
1556         case S_IFDIR:
1557                 inode->i_fop = &btrfs_dir_file_operations;
1558                 if (root == root->fs_info->tree_root)
1559                         inode->i_op = &btrfs_dir_ro_inode_operations;
1560                 else
1561                         inode->i_op = &btrfs_dir_inode_operations;
1562                 break;
1563         case S_IFLNK:
1564                 inode->i_op = &btrfs_symlink_inode_operations;
1565                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1566                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1567                 break;
1568         default:
1569                 init_special_inode(inode, inode->i_mode, rdev);
1570                 break;
1571         }
1572         return;
1573
1574 make_bad:
1575         btrfs_free_path(path);
1576         make_bad_inode(inode);
1577 }
1578
1579 /*
1580  * given a leaf and an inode, copy the inode fields into the leaf
1581  */
1582 static void fill_inode_item(struct btrfs_trans_handle *trans,
1583                             struct extent_buffer *leaf,
1584                             struct btrfs_inode_item *item,
1585                             struct inode *inode)
1586 {
1587         btrfs_set_inode_uid(leaf, item, inode->i_uid);
1588         btrfs_set_inode_gid(leaf, item, inode->i_gid);
1589         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1590         btrfs_set_inode_mode(leaf, item, inode->i_mode);
1591         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1592
1593         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1594                                inode->i_atime.tv_sec);
1595         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1596                                 inode->i_atime.tv_nsec);
1597
1598         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1599                                inode->i_mtime.tv_sec);
1600         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1601                                 inode->i_mtime.tv_nsec);
1602
1603         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1604                                inode->i_ctime.tv_sec);
1605         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1606                                 inode->i_ctime.tv_nsec);
1607
1608         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
1609         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
1610         btrfs_set_inode_transid(leaf, item, trans->transid);
1611         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1612         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1613         btrfs_set_inode_block_group(leaf, item,
1614                                     BTRFS_I(inode)->block_group->key.objectid);
1615 }
1616
1617 /*
1618  * copy everything in the in-memory inode into the btree.
1619  */
1620 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1621                               struct btrfs_root *root,
1622                               struct inode *inode)
1623 {
1624         struct btrfs_inode_item *inode_item;
1625         struct btrfs_path *path;
1626         struct extent_buffer *leaf;
1627         int ret;
1628
1629         path = btrfs_alloc_path();
1630         BUG_ON(!path);
1631         ret = btrfs_lookup_inode(trans, root, path,
1632                                  &BTRFS_I(inode)->location, 1);
1633         if (ret) {
1634                 if (ret > 0)
1635                         ret = -ENOENT;
1636                 goto failed;
1637         }
1638
1639         leaf = path->nodes[0];
1640         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1641                                   struct btrfs_inode_item);
1642
1643         fill_inode_item(trans, leaf, inode_item, inode);
1644         btrfs_mark_buffer_dirty(leaf);
1645         btrfs_set_inode_last_trans(trans, inode);
1646         ret = 0;
1647 failed:
1648         btrfs_free_path(path);
1649         return ret;
1650 }
1651
1652
1653 /*
1654  * unlink helper that gets used here in inode.c and in the tree logging
1655  * recovery code.  It remove a link in a directory with a given name, and
1656  * also drops the back refs in the inode to the directory
1657  */
1658 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
1659                        struct btrfs_root *root,
1660                        struct inode *dir, struct inode *inode,
1661                        const char *name, int name_len)
1662 {
1663         struct btrfs_path *path;
1664         int ret = 0;
1665         struct extent_buffer *leaf;
1666         struct btrfs_dir_item *di;
1667         struct btrfs_key key;
1668         u64 index;
1669
1670         path = btrfs_alloc_path();
1671         if (!path) {
1672                 ret = -ENOMEM;
1673                 goto err;
1674         }
1675
1676         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1677                                     name, name_len, -1);
1678         if (IS_ERR(di)) {
1679                 ret = PTR_ERR(di);
1680                 goto err;
1681         }
1682         if (!di) {
1683                 ret = -ENOENT;
1684                 goto err;
1685         }
1686         leaf = path->nodes[0];
1687         btrfs_dir_item_key_to_cpu(leaf, di, &key);
1688         ret = btrfs_delete_one_dir_name(trans, root, path, di);
1689         if (ret)
1690                 goto err;
1691         btrfs_release_path(root, path);
1692
1693         ret = btrfs_del_inode_ref(trans, root, name, name_len,
1694                                   inode->i_ino,
1695                                   dir->i_ino, &index);
1696         if (ret) {
1697                 printk("failed to delete reference to %.*s, "
1698                        "inode %lu parent %lu\n", name_len, name,
1699                        inode->i_ino, dir->i_ino);
1700                 goto err;
1701         }
1702
1703         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1704                                          index, name, name_len, -1);
1705         if (IS_ERR(di)) {
1706                 ret = PTR_ERR(di);
1707                 goto err;
1708         }
1709         if (!di) {
1710                 ret = -ENOENT;
1711                 goto err;
1712         }
1713         ret = btrfs_delete_one_dir_name(trans, root, path, di);
1714         btrfs_release_path(root, path);
1715
1716         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
1717                                          inode, dir->i_ino);
1718         BUG_ON(ret != 0 && ret != -ENOENT);
1719         if (ret != -ENOENT)
1720                 BTRFS_I(dir)->log_dirty_trans = trans->transid;
1721
1722         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
1723                                            dir, index);
1724         BUG_ON(ret);
1725 err:
1726         btrfs_free_path(path);
1727         if (ret)
1728                 goto out;
1729
1730         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1731         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1732         btrfs_update_inode(trans, root, dir);
1733         btrfs_drop_nlink(inode);
1734         ret = btrfs_update_inode(trans, root, inode);
1735         dir->i_sb->s_dirt = 1;
1736 out:
1737         return ret;
1738 }
1739
1740 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1741 {
1742         struct btrfs_root *root;
1743         struct btrfs_trans_handle *trans;
1744         struct inode *inode = dentry->d_inode;
1745         int ret;
1746         unsigned long nr = 0;
1747
1748         root = BTRFS_I(dir)->root;
1749
1750         ret = btrfs_check_free_space(root, 1, 1);
1751         if (ret)
1752                 goto fail;
1753
1754         trans = btrfs_start_transaction(root, 1);
1755
1756         btrfs_set_trans_block_group(trans, dir);
1757         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1758                                  dentry->d_name.name, dentry->d_name.len);
1759
1760         if (inode->i_nlink == 0)
1761                 ret = btrfs_orphan_add(trans, inode);
1762
1763         nr = trans->blocks_used;
1764
1765         btrfs_end_transaction_throttle(trans, root);
1766 fail:
1767         btrfs_btree_balance_dirty(root, nr);
1768         return ret;
1769 }
1770
1771 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1772 {
1773         struct inode *inode = dentry->d_inode;
1774         int err = 0;
1775         int ret;
1776         struct btrfs_root *root = BTRFS_I(dir)->root;
1777         struct btrfs_trans_handle *trans;
1778         unsigned long nr = 0;
1779
1780         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1781                 return -ENOTEMPTY;
1782         }
1783
1784         ret = btrfs_check_free_space(root, 1, 1);
1785         if (ret)
1786                 goto fail;
1787
1788         trans = btrfs_start_transaction(root, 1);
1789         btrfs_set_trans_block_group(trans, dir);
1790
1791         err = btrfs_orphan_add(trans, inode);
1792         if (err)
1793                 goto fail_trans;
1794
1795         /* now the directory is empty */
1796         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1797                                  dentry->d_name.name, dentry->d_name.len);
1798         if (!err) {
1799                 btrfs_i_size_write(inode, 0);
1800         }
1801
1802 fail_trans:
1803         nr = trans->blocks_used;
1804         ret = btrfs_end_transaction_throttle(trans, root);
1805 fail:
1806         btrfs_btree_balance_dirty(root, nr);
1807
1808         if (ret && !err)
1809                 err = ret;
1810         return err;
1811 }
1812
1813 /*
1814  * when truncating bytes in a file, it is possible to avoid reading
1815  * the leaves that contain only checksum items.  This can be the
1816  * majority of the IO required to delete a large file, but it must
1817  * be done carefully.
1818  *
1819  * The keys in the level just above the leaves are checked to make sure
1820  * the lowest key in a given leaf is a csum key, and starts at an offset
1821  * after the new  size.
1822  *
1823  * Then the key for the next leaf is checked to make sure it also has
1824  * a checksum item for the same file.  If it does, we know our target leaf
1825  * contains only checksum items, and it can be safely freed without reading
1826  * it.
1827  *
1828  * This is just an optimization targeted at large files.  It may do
1829  * nothing.  It will return 0 unless things went badly.
1830  */
1831 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
1832                                      struct btrfs_root *root,
1833                                      struct btrfs_path *path,
1834                                      struct inode *inode, u64 new_size)
1835 {
1836         struct btrfs_key key;
1837         int ret;
1838         int nritems;
1839         struct btrfs_key found_key;
1840         struct btrfs_key other_key;
1841         struct btrfs_leaf_ref *ref;
1842         u64 leaf_gen;
1843         u64 leaf_start;
1844
1845         path->lowest_level = 1;
1846         key.objectid = inode->i_ino;
1847         key.type = BTRFS_CSUM_ITEM_KEY;
1848         key.offset = new_size;
1849 again:
1850         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1851         if (ret < 0)
1852                 goto out;
1853
1854         if (path->nodes[1] == NULL) {
1855                 ret = 0;
1856                 goto out;
1857         }
1858         ret = 0;
1859         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
1860         nritems = btrfs_header_nritems(path->nodes[1]);
1861
1862         if (!nritems)
1863                 goto out;
1864
1865         if (path->slots[1] >= nritems)
1866                 goto next_node;
1867
1868         /* did we find a key greater than anything we want to delete? */
1869         if (found_key.objectid > inode->i_ino ||
1870            (found_key.objectid == inode->i_ino && found_key.type > key.type))
1871                 goto out;
1872
1873         /* we check the next key in the node to make sure the leave contains
1874          * only checksum items.  This comparison doesn't work if our
1875          * leaf is the last one in the node
1876          */
1877         if (path->slots[1] + 1 >= nritems) {
1878 next_node:
1879                 /* search forward from the last key in the node, this
1880                  * will bring us into the next node in the tree
1881                  */
1882                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
1883
1884                 /* unlikely, but we inc below, so check to be safe */
1885                 if (found_key.offset == (u64)-1)
1886                         goto out;
1887
1888                 /* search_forward needs a path with locks held, do the
1889                  * search again for the original key.  It is possible
1890                  * this will race with a balance and return a path that
1891                  * we could modify, but this drop is just an optimization
1892                  * and is allowed to miss some leaves.
1893                  */
1894                 btrfs_release_path(root, path);
1895                 found_key.offset++;
1896
1897                 /* setup a max key for search_forward */
1898                 other_key.offset = (u64)-1;
1899                 other_key.type = key.type;
1900                 other_key.objectid = key.objectid;
1901
1902                 path->keep_locks = 1;
1903                 ret = btrfs_search_forward(root, &found_key, &other_key,
1904                                            path, 0, 0);
1905                 path->keep_locks = 0;
1906                 if (ret || found_key.objectid != key.objectid ||
1907                     found_key.type != key.type) {
1908                         ret = 0;
1909                         goto out;
1910                 }
1911
1912                 key.offset = found_key.offset;
1913                 btrfs_release_path(root, path);
1914                 cond_resched();
1915                 goto again;
1916         }
1917
1918         /* we know there's one more slot after us in the tree,
1919          * read that key so we can verify it is also a checksum item
1920          */
1921         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
1922
1923         if (found_key.objectid < inode->i_ino)
1924                 goto next_key;
1925
1926         if (found_key.type != key.type || found_key.offset < new_size)
1927                 goto next_key;
1928
1929         /*
1930          * if the key for the next leaf isn't a csum key from this objectid,
1931          * we can't be sure there aren't good items inside this leaf.
1932          * Bail out
1933          */
1934         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
1935                 goto out;
1936
1937         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
1938         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
1939         /*
1940          * it is safe to delete this leaf, it contains only
1941          * csum items from this inode at an offset >= new_size
1942          */
1943         ret = btrfs_del_leaf(trans, root, path, leaf_start);
1944         BUG_ON(ret);
1945
1946         if (root->ref_cows && leaf_gen < trans->transid) {
1947                 ref = btrfs_alloc_leaf_ref(root, 0);
1948                 if (ref) {
1949                         ref->root_gen = root->root_key.offset;
1950                         ref->bytenr = leaf_start;
1951                         ref->owner = 0;
1952                         ref->generation = leaf_gen;
1953                         ref->nritems = 0;
1954
1955                         ret = btrfs_add_leaf_ref(root, ref, 0);
1956                         WARN_ON(ret);
1957                         btrfs_free_leaf_ref(root, ref);
1958                 } else {
1959                         WARN_ON(1);
1960                 }
1961         }
1962 next_key:
1963         btrfs_release_path(root, path);
1964
1965         if (other_key.objectid == inode->i_ino &&
1966             other_key.type == key.type && other_key.offset > key.offset) {
1967                 key.offset = other_key.offset;
1968                 cond_resched();
1969                 goto again;
1970         }
1971         ret = 0;
1972 out:
1973         /* fixup any changes we've made to the path */
1974         path->lowest_level = 0;
1975         path->keep_locks = 0;
1976         btrfs_release_path(root, path);
1977         return ret;
1978 }
1979
1980 /*
1981  * this can truncate away extent items, csum items and directory items.
1982  * It starts at a high offset and removes keys until it can't find
1983  * any higher than new_size
1984  *
1985  * csum items that cross the new i_size are truncated to the new size
1986  * as well.
1987  *
1988  * min_type is the minimum key type to truncate down to.  If set to 0, this
1989  * will kill all the items on this inode, including the INODE_ITEM_KEY.
1990  */
1991 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
1992                                         struct btrfs_root *root,
1993                                         struct inode *inode,
1994                                         u64 new_size, u32 min_type)
1995 {
1996         int ret;
1997         struct btrfs_path *path;
1998         struct btrfs_key key;
1999         struct btrfs_key found_key;
2000         u32 found_type;
2001         struct extent_buffer *leaf;
2002         struct btrfs_file_extent_item *fi;
2003         u64 extent_start = 0;
2004         u64 extent_num_bytes = 0;
2005         u64 item_end = 0;
2006         u64 root_gen = 0;
2007         u64 root_owner = 0;
2008         int found_extent;
2009         int del_item;
2010         int pending_del_nr = 0;
2011         int pending_del_slot = 0;
2012         int extent_type = -1;
2013         u64 mask = root->sectorsize - 1;
2014
2015         if (root->ref_cows)
2016                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2017         path = btrfs_alloc_path();
2018         path->reada = -1;
2019         BUG_ON(!path);
2020
2021         /* FIXME, add redo link to tree so we don't leak on crash */
2022         key.objectid = inode->i_ino;
2023         key.offset = (u64)-1;
2024         key.type = (u8)-1;
2025
2026         btrfs_init_path(path);
2027
2028         ret = drop_csum_leaves(trans, root, path, inode, new_size);
2029         BUG_ON(ret);
2030
2031 search_again:
2032         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2033         if (ret < 0) {
2034                 goto error;
2035         }
2036         if (ret > 0) {
2037                 /* there are no items in the tree for us to truncate, we're
2038                  * done
2039                  */
2040                 if (path->slots[0] == 0) {
2041                         ret = 0;
2042                         goto error;
2043                 }
2044                 path->slots[0]--;
2045         }
2046
2047         while(1) {
2048                 fi = NULL;
2049                 leaf = path->nodes[0];
2050                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2051                 found_type = btrfs_key_type(&found_key);
2052
2053                 if (found_key.objectid != inode->i_ino)
2054                         break;
2055
2056                 if (found_type < min_type)
2057                         break;
2058
2059                 item_end = found_key.offset;
2060                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2061                         fi = btrfs_item_ptr(leaf, path->slots[0],
2062                                             struct btrfs_file_extent_item);
2063                         extent_type = btrfs_file_extent_type(leaf, fi);
2064                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2065                                 item_end +=
2066                                     btrfs_file_extent_num_bytes(leaf, fi);
2067                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2068                                 item_end += btrfs_file_extent_inline_len(leaf,
2069                                                                          fi);
2070                         }
2071                         item_end--;
2072                 }
2073                 if (found_type == BTRFS_CSUM_ITEM_KEY) {
2074                         ret = btrfs_csum_truncate(trans, root, path,
2075                                                   new_size);
2076                         BUG_ON(ret);
2077                 }
2078                 if (item_end < new_size) {
2079                         if (found_type == BTRFS_DIR_ITEM_KEY) {
2080                                 found_type = BTRFS_INODE_ITEM_KEY;
2081                         } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
2082                                 found_type = BTRFS_CSUM_ITEM_KEY;
2083                         } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
2084                                 found_type = BTRFS_XATTR_ITEM_KEY;
2085                         } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
2086                                 found_type = BTRFS_INODE_REF_KEY;
2087                         } else if (found_type) {
2088                                 found_type--;
2089                         } else {
2090                                 break;
2091                         }
2092                         btrfs_set_key_type(&key, found_type);
2093                         goto next;
2094                 }
2095                 if (found_key.offset >= new_size)
2096                         del_item = 1;
2097                 else
2098                         del_item = 0;
2099                 found_extent = 0;
2100
2101                 /* FIXME, shrink the extent if the ref count is only 1 */
2102                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2103                         goto delete;
2104
2105                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2106                         u64 num_dec;
2107                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2108                         if (!del_item) {
2109                                 u64 orig_num_bytes =
2110                                         btrfs_file_extent_num_bytes(leaf, fi);
2111                                 extent_num_bytes = new_size -
2112                                         found_key.offset + root->sectorsize - 1;
2113                                 extent_num_bytes = extent_num_bytes &
2114                                         ~((u64)root->sectorsize - 1);
2115                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2116                                                          extent_num_bytes);
2117                                 num_dec = (orig_num_bytes -
2118                                            extent_num_bytes);
2119                                 if (root->ref_cows && extent_start != 0)
2120                                         inode_sub_bytes(inode, num_dec);
2121                                 btrfs_mark_buffer_dirty(leaf);
2122                         } else {
2123                                 extent_num_bytes =
2124                                         btrfs_file_extent_disk_num_bytes(leaf,
2125                                                                          fi);
2126                                 /* FIXME blocksize != 4096 */
2127                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2128                                 if (extent_start != 0) {
2129                                         found_extent = 1;
2130                                         if (root->ref_cows)
2131                                                 inode_sub_bytes(inode, num_dec);
2132                                 }
2133                                 root_gen = btrfs_header_generation(leaf);
2134                                 root_owner = btrfs_header_owner(leaf);
2135                         }
2136                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2137                         /*
2138                          * we can't truncate inline items that have had
2139                          * special encodings
2140                          */
2141                         if (!del_item &&
2142                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2143                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
2144                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2145                                 u32 size = new_size - found_key.offset;
2146
2147                                 if (root->ref_cows) {
2148                                         inode_sub_bytes(inode, item_end + 1 -
2149                                                         new_size);
2150                                 }
2151                                 size =
2152                                     btrfs_file_extent_calc_inline_size(size);
2153                                 ret = btrfs_truncate_item(trans, root, path,
2154                                                           size, 1);
2155                                 BUG_ON(ret);
2156                         } else if (root->ref_cows) {
2157                                 inode_sub_bytes(inode, item_end + 1 -
2158                                                 found_key.offset);
2159                         }
2160                 }
2161 delete:
2162                 if (del_item) {
2163                         if (!pending_del_nr) {
2164                                 /* no pending yet, add ourselves */
2165                                 pending_del_slot = path->slots[0];
2166                                 pending_del_nr = 1;
2167                         } else if (pending_del_nr &&
2168                                    path->slots[0] + 1 == pending_del_slot) {
2169                                 /* hop on the pending chunk */
2170                                 pending_del_nr++;
2171                                 pending_del_slot = path->slots[0];
2172                         } else {
2173                                 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
2174                         }
2175                 } else {
2176                         break;
2177                 }
2178                 if (found_extent) {
2179                         ret = btrfs_free_extent(trans, root, extent_start,
2180                                                 extent_num_bytes,
2181                                                 leaf->start, root_owner,
2182                                                 root_gen, inode->i_ino, 0);
2183                         BUG_ON(ret);
2184                 }
2185 next:
2186                 if (path->slots[0] == 0) {
2187                         if (pending_del_nr)
2188                                 goto del_pending;
2189                         btrfs_release_path(root, path);
2190                         goto search_again;
2191                 }
2192
2193                 path->slots[0]--;
2194                 if (pending_del_nr &&
2195                     path->slots[0] + 1 != pending_del_slot) {
2196                         struct btrfs_key debug;
2197 del_pending:
2198                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
2199                                               pending_del_slot);
2200                         ret = btrfs_del_items(trans, root, path,
2201                                               pending_del_slot,
2202                                               pending_del_nr);
2203                         BUG_ON(ret);
2204                         pending_del_nr = 0;
2205                         btrfs_release_path(root, path);
2206                         goto search_again;
2207                 }
2208         }
2209         ret = 0;
2210 error:
2211         if (pending_del_nr) {
2212                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2213                                       pending_del_nr);
2214         }
2215         btrfs_free_path(path);
2216         inode->i_sb->s_dirt = 1;
2217         return ret;
2218 }
2219
2220 /*
2221  * taken from block_truncate_page, but does cow as it zeros out
2222  * any bytes left in the last page in the file.
2223  */
2224 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2225 {
2226         struct inode *inode = mapping->host;
2227         struct btrfs_root *root = BTRFS_I(inode)->root;
2228         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2229         struct btrfs_ordered_extent *ordered;
2230         char *kaddr;
2231         u32 blocksize = root->sectorsize;
2232         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2233         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2234         struct page *page;
2235         int ret = 0;
2236         u64 page_start;
2237         u64 page_end;
2238
2239         if ((offset & (blocksize - 1)) == 0)
2240                 goto out;
2241
2242         ret = -ENOMEM;
2243 again:
2244         page = grab_cache_page(mapping, index);
2245         if (!page)
2246                 goto out;
2247
2248         page_start = page_offset(page);
2249         page_end = page_start + PAGE_CACHE_SIZE - 1;
2250
2251         if (!PageUptodate(page)) {
2252                 ret = btrfs_readpage(NULL, page);
2253                 lock_page(page);
2254                 if (page->mapping != mapping) {
2255                         unlock_page(page);
2256                         page_cache_release(page);
2257                         goto again;
2258                 }
2259                 if (!PageUptodate(page)) {
2260                         ret = -EIO;
2261                         goto out_unlock;
2262                 }
2263         }
2264         wait_on_page_writeback(page);
2265
2266         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2267         set_page_extent_mapped(page);
2268
2269         ordered = btrfs_lookup_ordered_extent(inode, page_start);
2270         if (ordered) {
2271                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2272                 unlock_page(page);
2273                 page_cache_release(page);
2274                 btrfs_start_ordered_extent(inode, ordered, 1);
2275                 btrfs_put_ordered_extent(ordered);
2276                 goto again;
2277         }
2278
2279         btrfs_set_extent_delalloc(inode, page_start, page_end);
2280         ret = 0;
2281         if (offset != PAGE_CACHE_SIZE) {
2282                 kaddr = kmap(page);
2283                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2284                 flush_dcache_page(page);
2285                 kunmap(page);
2286         }
2287         ClearPageChecked(page);
2288         set_page_dirty(page);
2289         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2290
2291 out_unlock:
2292         unlock_page(page);
2293         page_cache_release(page);
2294 out:
2295         return ret;
2296 }
2297
2298 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2299 {
2300         struct inode *inode = dentry->d_inode;
2301         int err;
2302
2303         err = inode_change_ok(inode, attr);
2304         if (err)
2305                 return err;
2306
2307         if (S_ISREG(inode->i_mode) &&
2308             attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2309                 struct btrfs_trans_handle *trans;
2310                 struct btrfs_root *root = BTRFS_I(inode)->root;
2311                 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2312
2313                 u64 mask = root->sectorsize - 1;
2314                 u64 hole_start = (inode->i_size + mask) & ~mask;
2315                 u64 block_end = (attr->ia_size + mask) & ~mask;
2316                 u64 hole_size;
2317                 u64 alloc_hint = 0;
2318
2319                 if (attr->ia_size <= hole_start)
2320                         goto out;
2321
2322                 err = btrfs_check_free_space(root, 1, 0);
2323                 if (err)
2324                         goto fail;
2325
2326                 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2327
2328                 hole_size = block_end - hole_start;
2329                 while(1) {
2330                         struct btrfs_ordered_extent *ordered;
2331                         btrfs_wait_ordered_range(inode, hole_start, hole_size);
2332
2333                         lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2334                         ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2335                         if (ordered) {
2336                                 unlock_extent(io_tree, hole_start,
2337                                               block_end - 1, GFP_NOFS);
2338                                 btrfs_put_ordered_extent(ordered);
2339                         } else {
2340                                 break;
2341                         }
2342                 }
2343
2344                 trans = btrfs_start_transaction(root, 1);
2345                 btrfs_set_trans_block_group(trans, inode);
2346                 mutex_lock(&BTRFS_I(inode)->extent_mutex);
2347                 err = btrfs_drop_extents(trans, root, inode,
2348                                          hole_start, block_end, hole_start,
2349                                          &alloc_hint);
2350
2351                 if (alloc_hint != EXTENT_MAP_INLINE) {
2352                         err = btrfs_insert_file_extent(trans, root,
2353                                                        inode->i_ino,
2354                                                        hole_start, 0, 0,
2355                                                        hole_size, 0, hole_size,
2356                                                        0, 0, 0);
2357                         btrfs_drop_extent_cache(inode, hole_start,
2358                                                 (u64)-1, 0);
2359                         btrfs_check_file(root, inode);
2360                 }
2361                 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
2362                 btrfs_end_transaction(trans, root);
2363                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2364                 if (err)
2365                         return err;
2366         }
2367 out:
2368         err = inode_setattr(inode, attr);
2369
2370         if (!err && ((attr->ia_valid & ATTR_MODE)))
2371                 err = btrfs_acl_chmod(inode);
2372 fail:
2373         return err;
2374 }
2375
2376 void btrfs_delete_inode(struct inode *inode)
2377 {
2378         struct btrfs_trans_handle *trans;
2379         struct btrfs_root *root = BTRFS_I(inode)->root;
2380         unsigned long nr;
2381         int ret;
2382
2383         truncate_inode_pages(&inode->i_data, 0);
2384         if (is_bad_inode(inode)) {
2385                 btrfs_orphan_del(NULL, inode);
2386                 goto no_delete;
2387         }
2388         btrfs_wait_ordered_range(inode, 0, (u64)-1);
2389
2390         btrfs_i_size_write(inode, 0);
2391         trans = btrfs_start_transaction(root, 1);
2392
2393         btrfs_set_trans_block_group(trans, inode);
2394         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2395         if (ret) {
2396                 btrfs_orphan_del(NULL, inode);
2397                 goto no_delete_lock;
2398         }
2399
2400         btrfs_orphan_del(trans, inode);
2401
2402         nr = trans->blocks_used;
2403         clear_inode(inode);
2404
2405         btrfs_end_transaction(trans, root);
2406         btrfs_btree_balance_dirty(root, nr);
2407         return;
2408
2409 no_delete_lock:
2410         nr = trans->blocks_used;
2411         btrfs_end_transaction(trans, root);
2412         btrfs_btree_balance_dirty(root, nr);
2413 no_delete:
2414         clear_inode(inode);
2415 }
2416
2417 /*
2418  * this returns the key found in the dir entry in the location pointer.
2419  * If no dir entries were found, location->objectid is 0.
2420  */
2421 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2422                                struct btrfs_key *location)
2423 {
2424         const char *name = dentry->d_name.name;
2425         int namelen = dentry->d_name.len;
2426         struct btrfs_dir_item *di;
2427         struct btrfs_path *path;
2428         struct btrfs_root *root = BTRFS_I(dir)->root;
2429         int ret = 0;
2430
2431         path = btrfs_alloc_path();
2432         BUG_ON(!path);
2433
2434         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2435                                     namelen, 0);
2436         if (IS_ERR(di))
2437                 ret = PTR_ERR(di);
2438         if (!di || IS_ERR(di)) {
2439                 goto out_err;
2440         }
2441         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2442 out:
2443         btrfs_free_path(path);
2444         return ret;
2445 out_err:
2446         location->objectid = 0;
2447         goto out;
2448 }
2449
2450 /*
2451  * when we hit a tree root in a directory, the btrfs part of the inode
2452  * needs to be changed to reflect the root directory of the tree root.  This
2453  * is kind of like crossing a mount point.
2454  */
2455 static int fixup_tree_root_location(struct btrfs_root *root,
2456                              struct btrfs_key *location,
2457                              struct btrfs_root **sub_root,
2458                              struct dentry *dentry)
2459 {
2460         struct btrfs_root_item *ri;
2461
2462         if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2463                 return 0;
2464         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2465                 return 0;
2466
2467         *sub_root = btrfs_read_fs_root(root->fs_info, location,
2468                                         dentry->d_name.name,
2469                                         dentry->d_name.len);
2470         if (IS_ERR(*sub_root))
2471                 return PTR_ERR(*sub_root);
2472
2473         ri = &(*sub_root)->root_item;
2474         location->objectid = btrfs_root_dirid(ri);
2475         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2476         location->offset = 0;
2477
2478         return 0;
2479 }
2480
2481 static noinline void init_btrfs_i(struct inode *inode)
2482 {
2483         struct btrfs_inode *bi = BTRFS_I(inode);
2484
2485         bi->i_acl = NULL;
2486         bi->i_default_acl = NULL;
2487
2488         bi->generation = 0;
2489         bi->last_trans = 0;
2490         bi->logged_trans = 0;
2491         bi->delalloc_bytes = 0;
2492         bi->disk_i_size = 0;
2493         bi->flags = 0;
2494         bi->index_cnt = (u64)-1;
2495         bi->log_dirty_trans = 0;
2496         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2497         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2498                              inode->i_mapping, GFP_NOFS);
2499         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2500                              inode->i_mapping, GFP_NOFS);
2501         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2502         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2503         mutex_init(&BTRFS_I(inode)->csum_mutex);
2504         mutex_init(&BTRFS_I(inode)->extent_mutex);
2505         mutex_init(&BTRFS_I(inode)->log_mutex);
2506 }
2507
2508 static int btrfs_init_locked_inode(struct inode *inode, void *p)
2509 {
2510         struct btrfs_iget_args *args = p;
2511         inode->i_ino = args->ino;
2512         init_btrfs_i(inode);
2513         BTRFS_I(inode)->root = args->root;
2514         return 0;
2515 }
2516
2517 static int btrfs_find_actor(struct inode *inode, void *opaque)
2518 {
2519         struct btrfs_iget_args *args = opaque;
2520         return (args->ino == inode->i_ino &&
2521                 args->root == BTRFS_I(inode)->root);
2522 }
2523
2524 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
2525                             struct btrfs_root *root, int wait)
2526 {
2527         struct inode *inode;
2528         struct btrfs_iget_args args;
2529         args.ino = objectid;
2530         args.root = root;
2531
2532         if (wait) {
2533                 inode = ilookup5(s, objectid, btrfs_find_actor,
2534                                  (void *)&args);
2535         } else {
2536                 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
2537                                         (void *)&args);
2538         }
2539         return inode;
2540 }
2541
2542 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
2543                                 struct btrfs_root *root)
2544 {
2545         struct inode *inode;
2546         struct btrfs_iget_args args;
2547         args.ino = objectid;
2548         args.root = root;
2549
2550         inode = iget5_locked(s, objectid, btrfs_find_actor,
2551                              btrfs_init_locked_inode,
2552                              (void *)&args);
2553         return inode;
2554 }
2555
2556 /* Get an inode object given its location and corresponding root.
2557  * Returns in *is_new if the inode was read from disk
2558  */
2559 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
2560                          struct btrfs_root *root, int *is_new)
2561 {
2562         struct inode *inode;
2563
2564         inode = btrfs_iget_locked(s, location->objectid, root);
2565         if (!inode)
2566                 return ERR_PTR(-EACCES);
2567
2568         if (inode->i_state & I_NEW) {
2569                 BTRFS_I(inode)->root = root;
2570                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
2571                 btrfs_read_locked_inode(inode);
2572                 unlock_new_inode(inode);
2573                 if (is_new)
2574                         *is_new = 1;
2575         } else {
2576                 if (is_new)
2577                         *is_new = 0;
2578         }
2579
2580         return inode;
2581 }
2582
2583 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
2584                                    struct nameidata *nd)
2585 {
2586         struct inode * inode;
2587         struct btrfs_inode *bi = BTRFS_I(dir);
2588         struct btrfs_root *root = bi->root;
2589         struct btrfs_root *sub_root = root;
2590         struct btrfs_key location;
2591         int ret, new, do_orphan = 0;
2592
2593         if (dentry->d_name.len > BTRFS_NAME_LEN)
2594                 return ERR_PTR(-ENAMETOOLONG);
2595
2596         ret = btrfs_inode_by_name(dir, dentry, &location);
2597
2598         if (ret < 0)
2599                 return ERR_PTR(ret);
2600
2601         inode = NULL;
2602         if (location.objectid) {
2603                 ret = fixup_tree_root_location(root, &location, &sub_root,
2604                                                 dentry);
2605                 if (ret < 0)
2606                         return ERR_PTR(ret);
2607                 if (ret > 0)
2608                         return ERR_PTR(-ENOENT);
2609                 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
2610                 if (IS_ERR(inode))
2611                         return ERR_CAST(inode);
2612
2613                 /* the inode and parent dir are two different roots */
2614                 if (new && root != sub_root) {
2615                         igrab(inode);
2616                         sub_root->inode = inode;
2617                         do_orphan = 1;
2618                 }
2619         }
2620
2621         if (unlikely(do_orphan))
2622                 btrfs_orphan_cleanup(sub_root);
2623
2624         return d_splice_alias(inode, dentry);
2625 }
2626
2627 static unsigned char btrfs_filetype_table[] = {
2628         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
2629 };
2630
2631 static int btrfs_real_readdir(struct file *filp, void *dirent,
2632                               filldir_t filldir)
2633 {
2634         struct inode *inode = filp->f_dentry->d_inode;
2635         struct btrfs_root *root = BTRFS_I(inode)->root;
2636         struct btrfs_item *item;
2637         struct btrfs_dir_item *di;
2638         struct btrfs_key key;
2639         struct btrfs_key found_key;
2640         struct btrfs_path *path;
2641         int ret;
2642         u32 nritems;
2643         struct extent_buffer *leaf;
2644         int slot;
2645         int advance;
2646         unsigned char d_type;
2647         int over = 0;
2648         u32 di_cur;
2649         u32 di_total;
2650         u32 di_len;
2651         int key_type = BTRFS_DIR_INDEX_KEY;
2652         char tmp_name[32];
2653         char *name_ptr;
2654         int name_len;
2655
2656         /* FIXME, use a real flag for deciding about the key type */
2657         if (root->fs_info->tree_root == root)
2658                 key_type = BTRFS_DIR_ITEM_KEY;
2659
2660         /* special case for "." */
2661         if (filp->f_pos == 0) {
2662                 over = filldir(dirent, ".", 1,
2663                                1, inode->i_ino,
2664                                DT_DIR);
2665                 if (over)
2666                         return 0;
2667                 filp->f_pos = 1;
2668         }
2669         /* special case for .., just use the back ref */
2670         if (filp->f_pos == 1) {
2671                 u64 pino = parent_ino(filp->f_path.dentry);
2672                 over = filldir(dirent, "..", 2,
2673                                2, pino, DT_DIR);
2674                 if (over)
2675                         return 0;
2676                 filp->f_pos = 2;
2677         }
2678
2679         path = btrfs_alloc_path();
2680         path->reada = 2;
2681
2682         btrfs_set_key_type(&key, key_type);
2683         key.offset = filp->f_pos;
2684         key.objectid = inode->i_ino;
2685
2686         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2687         if (ret < 0)
2688                 goto err;
2689         advance = 0;
2690
2691         while (1) {
2692                 leaf = path->nodes[0];
2693                 nritems = btrfs_header_nritems(leaf);
2694                 slot = path->slots[0];
2695                 if (advance || slot >= nritems) {
2696                         if (slot >= nritems - 1) {
2697                                 ret = btrfs_next_leaf(root, path);
2698                                 if (ret)
2699                                         break;
2700                                 leaf = path->nodes[0];
2701                                 nritems = btrfs_header_nritems(leaf);
2702                                 slot = path->slots[0];
2703                         } else {
2704                                 slot++;
2705                                 path->slots[0]++;
2706                         }
2707                 }
2708                 advance = 1;
2709                 item = btrfs_item_nr(leaf, slot);
2710                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2711
2712                 if (found_key.objectid != key.objectid)
2713                         break;
2714                 if (btrfs_key_type(&found_key) != key_type)
2715                         break;
2716                 if (found_key.offset < filp->f_pos)
2717                         continue;
2718
2719                 filp->f_pos = found_key.offset;
2720
2721                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2722                 di_cur = 0;
2723                 di_total = btrfs_item_size(leaf, item);
2724
2725                 while (di_cur < di_total) {
2726                         struct btrfs_key location;
2727
2728                         name_len = btrfs_dir_name_len(leaf, di);
2729                         if (name_len <= sizeof(tmp_name)) {
2730                                 name_ptr = tmp_name;
2731                         } else {
2732                                 name_ptr = kmalloc(name_len, GFP_NOFS);
2733                                 if (!name_ptr) {
2734                                         ret = -ENOMEM;
2735                                         goto err;
2736                                 }
2737                         }
2738                         read_extent_buffer(leaf, name_ptr,
2739                                            (unsigned long)(di + 1), name_len);
2740
2741                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2742                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
2743                         over = filldir(dirent, name_ptr, name_len,
2744                                        found_key.offset, location.objectid,
2745                                        d_type);
2746
2747                         if (name_ptr != tmp_name)
2748                                 kfree(name_ptr);
2749
2750                         if (over)
2751                                 goto nopos;
2752
2753                         di_len = btrfs_dir_name_len(leaf, di) +
2754                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
2755                         di_cur += di_len;
2756                         di = (struct btrfs_dir_item *)((char *)di + di_len);
2757                 }
2758         }
2759
2760         /* Reached end of directory/root. Bump pos past the last item. */
2761         if (key_type == BTRFS_DIR_INDEX_KEY)
2762                 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2763         else
2764                 filp->f_pos++;
2765 nopos:
2766         ret = 0;
2767 err:
2768         btrfs_free_path(path);
2769         return ret;
2770 }
2771
2772 int btrfs_write_inode(struct inode *inode, int wait)
2773 {
2774         struct btrfs_root *root = BTRFS_I(inode)->root;
2775         struct btrfs_trans_handle *trans;
2776         int ret = 0;
2777
2778         if (root->fs_info->closing > 1)
2779                 return 0;
2780
2781         if (wait) {
2782                 trans = btrfs_join_transaction(root, 1);
2783                 btrfs_set_trans_block_group(trans, inode);
2784                 ret = btrfs_commit_transaction(trans, root);
2785         }
2786         return ret;
2787 }
2788
2789 /*
2790  * This is somewhat expensive, updating the tree every time the
2791  * inode changes.  But, it is most likely to find the inode in cache.
2792  * FIXME, needs more benchmarking...there are no reasons other than performance
2793  * to keep or drop this code.
2794  */
2795 void btrfs_dirty_inode(struct inode *inode)
2796 {
2797         struct btrfs_root *root = BTRFS_I(inode)->root;
2798         struct btrfs_trans_handle *trans;
2799
2800         trans = btrfs_join_transaction(root, 1);
2801         btrfs_set_trans_block_group(trans, inode);
2802         btrfs_update_inode(trans, root, inode);
2803         btrfs_end_transaction(trans, root);
2804 }
2805
2806 /*
2807  * find the highest existing sequence number in a directory
2808  * and then set the in-memory index_cnt variable to reflect
2809  * free sequence numbers
2810  */
2811 static int btrfs_set_inode_index_count(struct inode *inode)
2812 {
2813         struct btrfs_root *root = BTRFS_I(inode)->root;
2814         struct btrfs_key key, found_key;
2815         struct btrfs_path *path;
2816         struct extent_buffer *leaf;
2817         int ret;
2818
2819         key.objectid = inode->i_ino;
2820         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2821         key.offset = (u64)-1;
2822
2823         path = btrfs_alloc_path();
2824         if (!path)
2825                 return -ENOMEM;
2826
2827         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2828         if (ret < 0)
2829                 goto out;
2830         /* FIXME: we should be able to handle this */
2831         if (ret == 0)
2832                 goto out;
2833         ret = 0;
2834
2835         /*
2836          * MAGIC NUMBER EXPLANATION:
2837          * since we search a directory based on f_pos we have to start at 2
2838          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2839          * else has to start at 2
2840          */
2841         if (path->slots[0] == 0) {
2842                 BTRFS_I(inode)->index_cnt = 2;
2843                 goto out;
2844         }
2845
2846         path->slots[0]--;
2847
2848         leaf = path->nodes[0];
2849         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2850
2851         if (found_key.objectid != inode->i_ino ||
2852             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2853                 BTRFS_I(inode)->index_cnt = 2;
2854                 goto out;
2855         }
2856
2857         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2858 out:
2859         btrfs_free_path(path);
2860         return ret;
2861 }
2862
2863 /*
2864  * helper to find a free sequence number in a given directory.  This current
2865  * code is very simple, later versions will do smarter things in the btree
2866  */
2867 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
2868                                  u64 *index)
2869 {
2870         int ret = 0;
2871
2872         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2873                 ret = btrfs_set_inode_index_count(dir);
2874                 if (ret) {
2875                         return ret;
2876                 }
2877         }
2878
2879         *index = BTRFS_I(dir)->index_cnt;
2880         BTRFS_I(dir)->index_cnt++;
2881
2882         return ret;
2883 }
2884
2885 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2886                                      struct btrfs_root *root,
2887                                      struct inode *dir,
2888                                      const char *name, int name_len,
2889                                      u64 ref_objectid,
2890                                      u64 objectid,
2891                                      struct btrfs_block_group_cache *group,
2892                                      int mode, u64 *index)
2893 {
2894         struct inode *inode;
2895         struct btrfs_inode_item *inode_item;
2896         struct btrfs_block_group_cache *new_inode_group;
2897         struct btrfs_key *location;
2898         struct btrfs_path *path;
2899         struct btrfs_inode_ref *ref;
2900         struct btrfs_key key[2];
2901         u32 sizes[2];
2902         unsigned long ptr;
2903         int ret;
2904         int owner;
2905
2906         path = btrfs_alloc_path();
2907         BUG_ON(!path);
2908
2909         inode = new_inode(root->fs_info->sb);
2910         if (!inode)
2911                 return ERR_PTR(-ENOMEM);
2912
2913         if (dir) {
2914                 ret = btrfs_set_inode_index(dir, inode, index);
2915                 if (ret)
2916                         return ERR_PTR(ret);
2917         }
2918         /*
2919          * index_cnt is ignored for everything but a dir,
2920          * btrfs_get_inode_index_count has an explanation for the magic
2921          * number
2922          */
2923         init_btrfs_i(inode);
2924         BTRFS_I(inode)->index_cnt = 2;
2925         BTRFS_I(inode)->root = root;
2926         BTRFS_I(inode)->generation = trans->transid;
2927
2928         if (mode & S_IFDIR)
2929                 owner = 0;
2930         else
2931                 owner = 1;
2932         new_inode_group = btrfs_find_block_group(root, group, 0,
2933                                        BTRFS_BLOCK_GROUP_METADATA, owner);
2934         if (!new_inode_group) {
2935                 printk("find_block group failed\n");
2936                 new_inode_group = group;
2937         }
2938         BTRFS_I(inode)->block_group = new_inode_group;
2939
2940         key[0].objectid = objectid;
2941         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2942         key[0].offset = 0;
2943
2944         key[1].objectid = objectid;
2945         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2946         key[1].offset = ref_objectid;
2947
2948         sizes[0] = sizeof(struct btrfs_inode_item);
2949         sizes[1] = name_len + sizeof(*ref);
2950
2951         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2952         if (ret != 0)
2953                 goto fail;
2954
2955         if (objectid > root->highest_inode)
2956                 root->highest_inode = objectid;
2957
2958         inode->i_uid = current->fsuid;
2959         inode->i_gid = current->fsgid;
2960         inode->i_mode = mode;
2961         inode->i_ino = objectid;
2962         inode_set_bytes(inode, 0);
2963         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2964         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2965                                   struct btrfs_inode_item);
2966         fill_inode_item(trans, path->nodes[0], inode_item, inode);
2967
2968         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2969                              struct btrfs_inode_ref);
2970         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2971         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
2972         ptr = (unsigned long)(ref + 1);
2973         write_extent_buffer(path->nodes[0], name, ptr, name_len);
2974
2975         btrfs_mark_buffer_dirty(path->nodes[0]);
2976         btrfs_free_path(path);
2977
2978         location = &BTRFS_I(inode)->location;
2979         location->objectid = objectid;
2980         location->offset = 0;
2981         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2982
2983         insert_inode_hash(inode);
2984         return inode;
2985 fail:
2986         if (dir)
2987                 BTRFS_I(dir)->index_cnt--;
2988         btrfs_free_path(path);
2989         return ERR_PTR(ret);
2990 }
2991
2992 static inline u8 btrfs_inode_type(struct inode *inode)
2993 {
2994         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2995 }
2996
2997 /*
2998  * utility function to add 'inode' into 'parent_inode' with
2999  * a give name and a given sequence number.
3000  * if 'add_backref' is true, also insert a backref from the
3001  * inode to the parent directory.
3002  */
3003 int btrfs_add_link(struct btrfs_trans_handle *trans,
3004                    struct inode *parent_inode, struct inode *inode,
3005                    const char *name, int name_len, int add_backref, u64 index)
3006 {
3007         int ret;
3008         struct btrfs_key key;
3009         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3010
3011         key.objectid = inode->i_ino;
3012         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3013         key.offset = 0;
3014
3015         ret = btrfs_insert_dir_item(trans, root, name, name_len,
3016                                     parent_inode->i_ino,
3017                                     &key, btrfs_inode_type(inode),
3018                                     index);
3019         if (ret == 0) {
3020                 if (add_backref) {
3021                         ret = btrfs_insert_inode_ref(trans, root,
3022                                                      name, name_len,
3023                                                      inode->i_ino,
3024                                                      parent_inode->i_ino,
3025                                                      index);
3026                 }
3027                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3028                                    name_len * 2);
3029                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3030                 ret = btrfs_update_inode(trans, root, parent_inode);
3031         }
3032         return ret;
3033 }
3034
3035 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3036                             struct dentry *dentry, struct inode *inode,
3037                             int backref, u64 index)
3038 {
3039         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3040                                  inode, dentry->d_name.name,
3041                                  dentry->d_name.len, backref, index);
3042         if (!err) {
3043                 d_instantiate(dentry, inode);
3044                 return 0;
3045         }
3046         if (err > 0)
3047                 err = -EEXIST;
3048         return err;
3049 }
3050
3051 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3052                         int mode, dev_t rdev)
3053 {
3054         struct btrfs_trans_handle *trans;
3055         struct btrfs_root *root = BTRFS_I(dir)->root;
3056         struct inode *inode = NULL;
3057         int err;
3058         int drop_inode = 0;
3059         u64 objectid;
3060         unsigned long nr = 0;
3061         u64 index = 0;
3062
3063         if (!new_valid_dev(rdev))
3064                 return -EINVAL;
3065
3066         err = btrfs_check_free_space(root, 1, 0);
3067         if (err)
3068                 goto fail;
3069
3070         trans = btrfs_start_transaction(root, 1);
3071         btrfs_set_trans_block_group(trans, dir);
3072
3073         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3074         if (err) {
3075                 err = -ENOSPC;
3076                 goto out_unlock;
3077         }
3078
3079         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3080                                 dentry->d_name.len,
3081                                 dentry->d_parent->d_inode->i_ino, objectid,
3082                                 BTRFS_I(dir)->block_group, mode, &index);
3083         err = PTR_ERR(inode);
3084         if (IS_ERR(inode))
3085                 goto out_unlock;
3086
3087         err = btrfs_init_acl(inode, dir);
3088         if (err) {
3089                 drop_inode = 1;
3090                 goto out_unlock;
3091         }
3092
3093         btrfs_set_trans_block_group(trans, inode);
3094         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3095         if (err)
3096                 drop_inode = 1;
3097         else {
3098                 inode->i_op = &btrfs_special_inode_operations;
3099                 init_special_inode(inode, inode->i_mode, rdev);
3100                 btrfs_update_inode(trans, root, inode);
3101         }
3102         dir->i_sb->s_dirt = 1;
3103         btrfs_update_inode_block_group(trans, inode);
3104         btrfs_update_inode_block_group(trans, dir);
3105 out_unlock:
3106         nr = trans->blocks_used;
3107         btrfs_end_transaction_throttle(trans, root);
3108 fail:
3109         if (drop_inode) {
3110                 inode_dec_link_count(inode);
3111                 iput(inode);
3112         }
3113         btrfs_btree_balance_dirty(root, nr);
3114         return err;
3115 }
3116
3117 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3118                         int mode, struct nameidata *nd)
3119 {
3120         struct btrfs_trans_handle *trans;
3121         struct btrfs_root *root = BTRFS_I(dir)->root;
3122         struct inode *inode = NULL;
3123         int err;
3124         int drop_inode = 0;
3125         unsigned long nr = 0;
3126         u64 objectid;
3127         u64 index = 0;
3128
3129         err = btrfs_check_free_space(root, 1, 0);
3130         if (err)
3131                 goto fail;
3132         trans = btrfs_start_transaction(root, 1);
3133         btrfs_set_trans_block_group(trans, dir);
3134
3135         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3136         if (err) {
3137                 err = -ENOSPC;
3138                 goto out_unlock;
3139         }
3140
3141         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3142                                 dentry->d_name.len,
3143                                 dentry->d_parent->d_inode->i_ino,
3144                                 objectid, BTRFS_I(dir)->block_group, mode,
3145                                 &index);
3146         err = PTR_ERR(inode);
3147         if (IS_ERR(inode))
3148                 goto out_unlock;
3149
3150         err = btrfs_init_acl(inode, dir);
3151         if (err) {
3152                 drop_inode = 1;
3153                 goto out_unlock;
3154         }
3155
3156         btrfs_set_trans_block_group(trans, inode);
3157         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3158         if (err)
3159                 drop_inode = 1;
3160         else {
3161                 inode->i_mapping->a_ops = &btrfs_aops;
3162                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3163                 inode->i_fop = &btrfs_file_operations;
3164                 inode->i_op = &btrfs_file_inode_operations;
3165                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3166         }
3167         dir->i_sb->s_dirt = 1;
3168         btrfs_update_inode_block_group(trans, inode);
3169         btrfs_update_inode_block_group(trans, dir);
3170 out_unlock:
3171         nr = trans->blocks_used;
3172         btrfs_end_transaction_throttle(trans, root);
3173 fail:
3174         if (drop_inode) {
3175                 inode_dec_link_count(inode);
3176                 iput(inode);
3177         }
3178         btrfs_btree_balance_dirty(root, nr);
3179         return err;
3180 }
3181
3182 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3183                       struct dentry *dentry)
3184 {
3185         struct btrfs_trans_handle *trans;
3186         struct btrfs_root *root = BTRFS_I(dir)->root;
3187         struct inode *inode = old_dentry->d_inode;
3188         u64 index;
3189         unsigned long nr = 0;
3190         int err;
3191         int drop_inode = 0;
3192
3193         if (inode->i_nlink == 0)
3194                 return -ENOENT;
3195
3196         btrfs_inc_nlink(inode);
3197         err = btrfs_check_free_space(root, 1, 0);
3198         if (err)
3199                 goto fail;
3200         err = btrfs_set_inode_index(dir, inode, &index);
3201         if (err)
3202                 goto fail;
3203
3204         trans = btrfs_start_transaction(root, 1);
3205
3206         btrfs_set_trans_block_group(trans, dir);
3207         atomic_inc(&inode->i_count);
3208
3209         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3210
3211         if (err)
3212                 drop_inode = 1;
3213
3214         dir->i_sb->s_dirt = 1;
3215         btrfs_update_inode_block_group(trans, dir);
3216         err = btrfs_update_inode(trans, root, inode);
3217
3218         if (err)
3219                 drop_inode = 1;
3220
3221         nr = trans->blocks_used;
3222         btrfs_end_transaction_throttle(trans, root);
3223 fail:
3224         if (drop_inode) {
3225                 inode_dec_link_count(inode);
3226                 iput(inode);
3227         }
3228         btrfs_btree_balance_dirty(root, nr);
3229         return err;
3230 }
3231
3232 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3233 {
3234         struct inode *inode = NULL;
3235         struct btrfs_trans_handle *trans;
3236         struct btrfs_root *root = BTRFS_I(dir)->root;
3237         int err = 0;
3238         int drop_on_err = 0;
3239         u64 objectid = 0;
3240         u64 index = 0;
3241         unsigned long nr = 1;
3242
3243         err = btrfs_check_free_space(root, 1, 0);
3244         if (err)
3245                 goto out_unlock;
3246
3247         trans = btrfs_start_transaction(root, 1);
3248         btrfs_set_trans_block_group(trans, dir);
3249
3250         if (IS_ERR(trans)) {
3251                 err = PTR_ERR(trans);
3252                 goto out_unlock;
3253         }
3254
3255         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3256         if (err) {
3257                 err = -ENOSPC;
3258                 goto out_unlock;
3259         }
3260
3261         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3262                                 dentry->d_name.len,
3263                                 dentry->d_parent->d_inode->i_ino, objectid,
3264                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3265                                 &index);
3266         if (IS_ERR(inode)) {
3267                 err = PTR_ERR(inode);
3268                 goto out_fail;
3269         }
3270
3271         drop_on_err = 1;
3272
3273         err = btrfs_init_acl(inode, dir);
3274         if (err)
3275                 goto out_fail;
3276
3277         inode->i_op = &btrfs_dir_inode_operations;
3278         inode->i_fop = &btrfs_dir_file_operations;
3279         btrfs_set_trans_block_group(trans, inode);
3280
3281         btrfs_i_size_write(inode, 0);
3282         err = btrfs_update_inode(trans, root, inode);
3283         if (err)
3284                 goto out_fail;
3285
3286         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3287                                  inode, dentry->d_name.name,
3288                                  dentry->d_name.len, 0, index);
3289         if (err)
3290                 goto out_fail;
3291
3292         d_instantiate(dentry, inode);
3293         drop_on_err = 0;
3294         dir->i_sb->s_dirt = 1;
3295         btrfs_update_inode_block_group(trans, inode);
3296         btrfs_update_inode_block_group(trans, dir);
3297
3298 out_fail:
3299         nr = trans->blocks_used;
3300         btrfs_end_transaction_throttle(trans, root);
3301
3302 out_unlock:
3303         if (drop_on_err)
3304                 iput(inode);
3305         btrfs_btree_balance_dirty(root, nr);
3306         return err;
3307 }
3308
3309 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3310  * and an extent that you want to insert, deal with overlap and insert
3311  * the new extent into the tree.
3312  */
3313 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3314                                 struct extent_map *existing,
3315                                 struct extent_map *em,
3316                                 u64 map_start, u64 map_len)
3317 {
3318         u64 start_diff;
3319
3320         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3321         start_diff = map_start - em->start;
3322         em->start = map_start;
3323         em->len = map_len;
3324         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3325             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3326                 em->block_start += start_diff;
3327                 em->block_len -= start_diff;
3328         }
3329         return add_extent_mapping(em_tree, em);
3330 }
3331
3332 static noinline int uncompress_inline(struct btrfs_path *path,
3333                                       struct inode *inode, struct page *page,
3334                                       size_t pg_offset, u64 extent_offset,
3335                                       struct btrfs_file_extent_item *item)
3336 {
3337         int ret;
3338         struct extent_buffer *leaf = path->nodes[0];
3339         char *tmp;
3340         size_t max_size;
3341         unsigned long inline_size;
3342         unsigned long ptr;
3343
3344         WARN_ON(pg_offset != 0);
3345         max_size = btrfs_file_extent_ram_bytes(leaf, item);
3346         inline_size = btrfs_file_extent_inline_item_len(leaf,
3347                                         btrfs_item_nr(leaf, path->slots[0]));
3348         tmp = kmalloc(inline_size, GFP_NOFS);
3349         ptr = btrfs_file_extent_inline_start(item);
3350
3351         read_extent_buffer(leaf, tmp, ptr, inline_size);
3352
3353         max_size = min(PAGE_CACHE_SIZE, max_size);
3354         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3355                                     inline_size, max_size);
3356         if (ret) {
3357                 char *kaddr = kmap_atomic(page, KM_USER0);
3358                 unsigned long copy_size = min_t(u64,
3359                                   PAGE_CACHE_SIZE - pg_offset,
3360                                   max_size - extent_offset);
3361                 memset(kaddr + pg_offset, 0, copy_size);
3362                 kunmap_atomic(kaddr, KM_USER0);
3363         }
3364         kfree(tmp);
3365         return 0;
3366 }
3367
3368 /*
3369  * a bit scary, this does extent mapping from logical file offset to the disk.
3370  * the ugly parts come from merging extents from the disk with the
3371  * in-ram representation.  This gets more complex because of the data=ordered code,
3372  * where the in-ram extents might be locked pending data=ordered completion.
3373  *
3374  * This also copies inline extents directly into the page.
3375  */
3376 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3377                                     size_t pg_offset, u64 start, u64 len,
3378                                     int create)
3379 {
3380         int ret;
3381         int err = 0;
3382         u64 bytenr;
3383         u64 extent_start = 0;
3384         u64 extent_end = 0;
3385         u64 objectid = inode->i_ino;
3386         u32 found_type;
3387         struct btrfs_path *path = NULL;
3388         struct btrfs_root *root = BTRFS_I(inode)->root;
3389         struct btrfs_file_extent_item *item;
3390         struct extent_buffer *leaf;
3391         struct btrfs_key found_key;
3392         struct extent_map *em = NULL;
3393         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3394         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3395         struct btrfs_trans_handle *trans = NULL;
3396         int compressed;
3397
3398 again:
3399         spin_lock(&em_tree->lock);
3400         em = lookup_extent_mapping(em_tree, start, len);
3401         if (em)
3402                 em->bdev = root->fs_info->fs_devices->latest_bdev;
3403         spin_unlock(&em_tree->lock);
3404
3405         if (em) {
3406                 if (em->start > start || em->start + em->len <= start)
3407                         free_extent_map(em);
3408                 else if (em->block_start == EXTENT_MAP_INLINE && page)
3409                         free_extent_map(em);
3410                 else
3411                         goto out;
3412         }
3413         em = alloc_extent_map(GFP_NOFS);
3414         if (!em) {
3415                 err = -ENOMEM;
3416                 goto out;
3417         }
3418         em->bdev = root->fs_info->fs_devices->latest_bdev;
3419         em->start = EXTENT_MAP_HOLE;
3420         em->len = (u64)-1;
3421         em->block_len = (u64)-1;
3422
3423         if (!path) {
3424                 path = btrfs_alloc_path();
3425                 BUG_ON(!path);
3426         }
3427
3428         ret = btrfs_lookup_file_extent(trans, root, path,
3429                                        objectid, start, trans != NULL);
3430         if (ret < 0) {
3431                 err = ret;
3432                 goto out;
3433         }
3434
3435         if (ret != 0) {
3436                 if (path->slots[0] == 0)
3437                         goto not_found;
3438                 path->slots[0]--;
3439         }
3440
3441         leaf = path->nodes[0];
3442         item = btrfs_item_ptr(leaf, path->slots[0],
3443                               struct btrfs_file_extent_item);
3444         /* are we inside the extent that was found? */
3445         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3446         found_type = btrfs_key_type(&found_key);
3447         if (found_key.objectid != objectid ||
3448             found_type != BTRFS_EXTENT_DATA_KEY) {
3449                 goto not_found;
3450         }
3451
3452         found_type = btrfs_file_extent_type(leaf, item);
3453         extent_start = found_key.offset;
3454         compressed = btrfs_file_extent_compression(leaf, item);
3455         if (found_type == BTRFS_FILE_EXTENT_REG) {
3456                 extent_end = extent_start +
3457                        btrfs_file_extent_num_bytes(leaf, item);
3458                 err = 0;
3459                 if (start < extent_start || start >= extent_end) {
3460                         em->start = start;
3461                         if (start < extent_start) {
3462                                 if (start + len <= extent_start)
3463                                         goto not_found;
3464                                 em->len = extent_end - extent_start;
3465                         } else {
3466                                 em->len = len;
3467                         }
3468                         goto not_found_em;
3469                 }
3470                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
3471                 if (bytenr == 0) {
3472                         em->start = extent_start;
3473                         em->len = extent_end - extent_start;
3474                         em->block_start = EXTENT_MAP_HOLE;
3475                         goto insert;
3476                 }
3477                 em->start = extent_start;
3478                 em->len = extent_end - extent_start;
3479                 if (compressed) {
3480                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3481                         em->block_start = bytenr;
3482                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
3483                                                                          item);
3484                 } else {
3485                         bytenr += btrfs_file_extent_offset(leaf, item);
3486                         em->block_start = bytenr;
3487                         em->block_len = em->len;
3488                 }
3489                 goto insert;
3490         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3491                 u64 page_start;
3492                 unsigned long ptr;
3493                 char *map;
3494                 size_t size;
3495                 size_t extent_offset;
3496                 size_t copy_size;
3497
3498                 size = btrfs_file_extent_inline_len(leaf, item);
3499                 extent_end = (extent_start + size + root->sectorsize - 1) &
3500                         ~((u64)root->sectorsize - 1);
3501                 if (start < extent_start || start >= extent_end) {
3502                         em->start = start;
3503                         if (start < extent_start) {
3504                                 if (start + len <= extent_start)
3505                                         goto not_found;
3506                                 em->len = extent_end - extent_start;
3507                         } else {
3508                                 em->len = len;
3509                         }
3510                         goto not_found_em;
3511                 }
3512                 em->block_start = EXTENT_MAP_INLINE;
3513
3514                 if (!page || create) {
3515                         em->start = extent_start;
3516                         em->len = (size + root->sectorsize - 1) &
3517                         ~((u64)root->sectorsize - 1);
3518                         goto out;
3519                 }
3520
3521                 page_start = page_offset(page) + pg_offset;
3522                 extent_offset = page_start - extent_start;
3523                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3524                                 size - extent_offset);
3525                 em->start = extent_start + extent_offset;
3526                 em->len = (copy_size + root->sectorsize - 1) &
3527                         ~((u64)root->sectorsize - 1);
3528                 if (compressed)
3529                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3530                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
3531                 if (create == 0 && !PageUptodate(page)) {
3532                         if (btrfs_file_extent_compression(leaf, item) ==
3533                             BTRFS_COMPRESS_ZLIB) {
3534                                 ret = uncompress_inline(path, inode, page,
3535                                                         pg_offset,
3536                                                         extent_offset, item);
3537                                 BUG_ON(ret);
3538                         } else {
3539                                 map = kmap(page);
3540                                 read_extent_buffer(leaf, map + pg_offset, ptr,
3541                                                    copy_size);
3542                                 kunmap(page);
3543                         }
3544                         flush_dcache_page(page);
3545                 } else if (create && PageUptodate(page)) {
3546                         if (!trans) {
3547                                 kunmap(page);
3548                                 free_extent_map(em);
3549                                 em = NULL;
3550                                 btrfs_release_path(root, path);
3551                                 trans = btrfs_join_transaction(root, 1);
3552                                 goto again;
3553                         }
3554                         map = kmap(page);
3555                         write_extent_buffer(leaf, map + pg_offset, ptr,
3556                                             copy_size);
3557                         kunmap(page);
3558                         btrfs_mark_buffer_dirty(leaf);
3559                 }
3560                 set_extent_uptodate(io_tree, em->start,
3561                                     extent_map_end(em) - 1, GFP_NOFS);
3562                 goto insert;
3563         } else {
3564                 printk("unkknown found_type %d\n", found_type);
3565                 WARN_ON(1);
3566         }
3567 not_found:
3568         em->start = start;
3569         em->len = len;
3570 not_found_em:
3571         em->block_start = EXTENT_MAP_HOLE;
3572 insert:
3573         btrfs_release_path(root, path);
3574         if (em->start > start || extent_map_end(em) <= start) {
3575                 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
3576                 err = -EIO;
3577                 goto out;
3578         }
3579
3580         err = 0;
3581         spin_lock(&em_tree->lock);
3582         ret = add_extent_mapping(em_tree, em);
3583         /* it is possible that someone inserted the extent into the tree
3584          * while we had the lock dropped.  It is also possible that
3585          * an overlapping map exists in the tree
3586          */
3587         if (ret == -EEXIST) {
3588                 struct extent_map *existing;
3589
3590                 ret = 0;
3591
3592                 existing = lookup_extent_mapping(em_tree, start, len);
3593                 if (existing && (existing->start > start ||
3594                     existing->start + existing->len <= start)) {
3595                         free_extent_map(existing);
3596                         existing = NULL;
3597                 }
3598                 if (!existing) {
3599                         existing = lookup_extent_mapping(em_tree, em->start,
3600                                                          em->len);
3601                         if (existing) {
3602                                 err = merge_extent_mapping(em_tree, existing,
3603                                                            em, start,
3604                                                            root->sectorsize);
3605                                 free_extent_map(existing);
3606                                 if (err) {
3607                                         free_extent_map(em);
3608                                         em = NULL;
3609                                 }
3610                         } else {
3611                                 err = -EIO;
3612                                 printk("failing to insert %Lu %Lu\n",
3613                                        start, len);
3614                                 free_extent_map(em);
3615                                 em = NULL;
3616                         }
3617                 } else {
3618                         free_extent_map(em);
3619                         em = existing;
3620                         err = 0;
3621                 }
3622         }
3623         spin_unlock(&em_tree->lock);
3624 out:
3625         if (path)
3626                 btrfs_free_path(path);
3627         if (trans) {
3628                 ret = btrfs_end_transaction(trans, root);
3629                 if (!err) {
3630                         err = ret;
3631                 }
3632         }
3633         if (err) {
3634                 free_extent_map(em);
3635                 WARN_ON(1);
3636                 return ERR_PTR(err);
3637         }
3638         return em;
3639 }
3640
3641 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
3642                         const struct iovec *iov, loff_t offset,
3643                         unsigned long nr_segs)
3644 {
3645         return -EINVAL;
3646 }
3647
3648 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
3649 {
3650         return extent_bmap(mapping, iblock, btrfs_get_extent);
3651 }
3652
3653 int btrfs_readpage(struct file *file, struct page *page)
3654 {
3655         struct extent_io_tree *tree;
3656         tree = &BTRFS_I(page->mapping->host)->io_tree;
3657         return extent_read_full_page(tree, page, btrfs_get_extent);
3658 }
3659
3660 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
3661 {
3662         struct extent_io_tree *tree;
3663
3664
3665         if (current->flags & PF_MEMALLOC) {
3666                 redirty_page_for_writepage(wbc, page);
3667                 unlock_page(page);
3668                 return 0;
3669         }
3670         tree = &BTRFS_I(page->mapping->host)->io_tree;
3671         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
3672 }
3673
3674 int btrfs_writepages(struct address_space *mapping,
3675                      struct writeback_control *wbc)
3676 {
3677         struct extent_io_tree *tree;
3678         tree = &BTRFS_I(mapping->host)->io_tree;
3679         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
3680 }
3681
3682 static int
3683 btrfs_readpages(struct file *file, struct address_space *mapping,
3684                 struct list_head *pages, unsigned nr_pages)
3685 {
3686         struct extent_io_tree *tree;
3687         tree = &BTRFS_I(mapping->host)->io_tree;
3688         return extent_readpages(tree, mapping, pages, nr_pages,
3689                                 btrfs_get_extent);
3690 }
3691 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3692 {
3693         struct extent_io_tree *tree;
3694         struct extent_map_tree *map;
3695         int ret;
3696
3697         tree = &BTRFS_I(page->mapping->host)->io_tree;
3698         map = &BTRFS_I(page->mapping->host)->extent_tree;
3699         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
3700         if (ret == 1) {
3701                 ClearPagePrivate(page);
3702                 set_page_private(page, 0);
3703                 page_cache_release(page);
3704         }
3705         return ret;
3706 }
3707
3708 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3709 {
3710         if (PageWriteback(page) || PageDirty(page))
3711                 return 0;
3712         return __btrfs_releasepage(page, gfp_flags);
3713 }
3714
3715 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
3716 {
3717         struct extent_io_tree *tree;
3718         struct btrfs_ordered_extent *ordered;
3719         u64 page_start = page_offset(page);
3720         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3721
3722         wait_on_page_writeback(page);
3723         tree = &BTRFS_I(page->mapping->host)->io_tree;
3724         if (offset) {
3725                 btrfs_releasepage(page, GFP_NOFS);
3726                 return;
3727         }
3728
3729         lock_extent(tree, page_start, page_end, GFP_NOFS);
3730         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3731                                            page_offset(page));
3732         if (ordered) {
3733                 /*
3734                  * IO on this page will never be started, so we need
3735                  * to account for any ordered extents now
3736                  */
3737                 clear_extent_bit(tree, page_start, page_end,
3738                                  EXTENT_DIRTY | EXTENT_DELALLOC |
3739                                  EXTENT_LOCKED, 1, 0, GFP_NOFS);
3740                 btrfs_finish_ordered_io(page->mapping->host,
3741                                         page_start, page_end);
3742                 btrfs_put_ordered_extent(ordered);
3743                 lock_extent(tree, page_start, page_end, GFP_NOFS);
3744         }
3745         clear_extent_bit(tree, page_start, page_end,
3746                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3747                  EXTENT_ORDERED,
3748                  1, 1, GFP_NOFS);
3749         __btrfs_releasepage(page, GFP_NOFS);
3750
3751         ClearPageChecked(page);
3752         if (PagePrivate(page)) {
3753                 ClearPagePrivate(page);
3754                 set_page_private(page, 0);
3755                 page_cache_release(page);
3756         }
3757 }
3758
3759 /*
3760  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3761  * called from a page fault handler when a page is first dirtied. Hence we must
3762  * be careful to check for EOF conditions here. We set the page up correctly
3763  * for a written page which means we get ENOSPC checking when writing into
3764  * holes and correct delalloc and unwritten extent mapping on filesystems that
3765  * support these features.
3766  *
3767  * We are not allowed to take the i_mutex here so we have to play games to
3768  * protect against truncate races as the page could now be beyond EOF.  Because
3769  * vmtruncate() writes the inode size before removing pages, once we have the
3770  * page lock we can determine safely if the page is beyond EOF. If it is not
3771  * beyond EOF, then the page is guaranteed safe against truncation until we
3772  * unlock the page.
3773  */
3774 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3775 {
3776         struct inode *inode = fdentry(vma->vm_file)->d_inode;
3777         struct btrfs_root *root = BTRFS_I(inode)->root;
3778         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3779         struct btrfs_ordered_extent *ordered;
3780         char *kaddr;
3781         unsigned long zero_start;
3782         loff_t size;
3783         int ret;
3784         u64 page_start;
3785         u64 page_end;
3786
3787         ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3788         if (ret)
3789                 goto out;
3790
3791         ret = -EINVAL;
3792 again:
3793         lock_page(page);
3794         size = i_size_read(inode);
3795         page_start = page_offset(page);
3796         page_end = page_start + PAGE_CACHE_SIZE - 1;
3797
3798         if ((page->mapping != inode->i_mapping) ||
3799             (page_start >= size)) {
3800                 /* page got truncated out from underneath us */
3801                 goto out_unlock;
3802         }
3803         wait_on_page_writeback(page);
3804
3805         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3806         set_page_extent_mapped(page);
3807
3808         /*
3809          * we can't set the delalloc bits if there are pending ordered
3810          * extents.  Drop our locks and wait for them to finish
3811          */
3812         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3813         if (ordered) {
3814                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3815                 unlock_page(page);
3816                 btrfs_start_ordered_extent(inode, ordered, 1);
3817                 btrfs_put_ordered_extent(ordered);
3818                 goto again;
3819         }
3820
3821         btrfs_set_extent_delalloc(inode, page_start, page_end);
3822         ret = 0;
3823
3824         /* page is wholly or partially inside EOF */
3825         if (page_start + PAGE_CACHE_SIZE > size)
3826                 zero_start = size & ~PAGE_CACHE_MASK;
3827         else
3828                 zero_start = PAGE_CACHE_SIZE;
3829
3830         if (zero_start != PAGE_CACHE_SIZE) {
3831                 kaddr = kmap(page);
3832                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3833                 flush_dcache_page(page);
3834                 kunmap(page);
3835         }
3836         ClearPageChecked(page);
3837         set_page_dirty(page);
3838         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3839
3840 out_unlock:
3841         unlock_page(page);
3842 out:
3843         return ret;
3844 }
3845
3846 static void btrfs_truncate(struct inode *inode)
3847 {
3848         struct btrfs_root *root = BTRFS_I(inode)->root;
3849         int ret;
3850         struct btrfs_trans_handle *trans;
3851         unsigned long nr;
3852         u64 mask = root->sectorsize - 1;
3853
3854         if (!S_ISREG(inode->i_mode))
3855                 return;
3856         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3857                 return;
3858
3859         btrfs_truncate_page(inode->i_mapping, inode->i_size);
3860         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3861
3862         trans = btrfs_start_transaction(root, 1);
3863         btrfs_set_trans_block_group(trans, inode);
3864         btrfs_i_size_write(inode, inode->i_size);
3865
3866         ret = btrfs_orphan_add(trans, inode);
3867         if (ret)
3868                 goto out;
3869         /* FIXME, add redo link to tree so we don't leak on crash */
3870         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
3871                                       BTRFS_EXTENT_DATA_KEY);
3872         btrfs_update_inode(trans, root, inode);
3873
3874         ret = btrfs_orphan_del(trans, inode);
3875         BUG_ON(ret);
3876
3877 out:
3878         nr = trans->blocks_used;
3879         ret = btrfs_end_transaction_throttle(trans, root);
3880         BUG_ON(ret);
3881         btrfs_btree_balance_dirty(root, nr);
3882 }
3883
3884 /*
3885  * Invalidate a single dcache entry at the root of the filesystem.
3886  * Needed after creation of snapshot or subvolume.
3887  */
3888 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3889                                   int namelen)
3890 {
3891         struct dentry *alias, *entry;
3892         struct qstr qstr;
3893
3894         alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3895         if (alias) {
3896                 qstr.name = name;
3897                 qstr.len = namelen;
3898                 /* change me if btrfs ever gets a d_hash operation */
3899                 qstr.hash = full_name_hash(qstr.name, qstr.len);
3900                 entry = d_lookup(alias, &qstr);
3901                 dput(alias);
3902                 if (entry) {
3903                         d_invalidate(entry);
3904                         dput(entry);
3905                 }
3906         }
3907 }
3908
3909 /*
3910  * create a new subvolume directory/inode (helper for the ioctl).
3911  */
3912 int btrfs_create_subvol_root(struct btrfs_root *new_root, struct dentry *dentry,
3913                 struct btrfs_trans_handle *trans, u64 new_dirid,
3914                 struct btrfs_block_group_cache *block_group)
3915 {
3916         struct inode *inode;
3917         int error;
3918         u64 index = 0;
3919
3920         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3921                                 new_dirid, block_group, S_IFDIR | 0700, &index);
3922         if (IS_ERR(inode))
3923                 return PTR_ERR(inode);
3924         inode->i_op = &btrfs_dir_inode_operations;
3925         inode->i_fop = &btrfs_dir_file_operations;
3926         new_root->inode = inode;
3927
3928         inode->i_nlink = 1;
3929         btrfs_i_size_write(inode, 0);
3930
3931         error = btrfs_update_inode(trans, new_root, inode);
3932         if (error)
3933                 return error;
3934
3935         d_instantiate(dentry, inode);
3936         return 0;
3937 }
3938
3939 /* helper function for file defrag and space balancing.  This
3940  * forces readahead on a given range of bytes in an inode
3941  */
3942 unsigned long btrfs_force_ra(struct address_space *mapping,
3943                               struct file_ra_state *ra, struct file *file,
3944                               pgoff_t offset, pgoff_t last_index)
3945 {
3946         pgoff_t req_size = last_index - offset + 1;
3947
3948         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3949         return offset + req_size;
3950 }
3951
3952 struct inode *btrfs_alloc_inode(struct super_block *sb)
3953 {
3954         struct btrfs_inode *ei;
3955
3956         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3957         if (!ei)
3958                 return NULL;
3959         ei->last_trans = 0;
3960         ei->logged_trans = 0;
3961         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3962         ei->i_acl = BTRFS_ACL_NOT_CACHED;
3963         ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3964         INIT_LIST_HEAD(&ei->i_orphan);
3965         return &ei->vfs_inode;
3966 }
3967
3968 void btrfs_destroy_inode(struct inode *inode)
3969 {
3970         struct btrfs_ordered_extent *ordered;
3971         WARN_ON(!list_empty(&inode->i_dentry));
3972         WARN_ON(inode->i_data.nrpages);
3973
3974         if (BTRFS_I(inode)->i_acl &&
3975             BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3976                 posix_acl_release(BTRFS_I(inode)->i_acl);
3977         if (BTRFS_I(inode)->i_default_acl &&
3978             BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3979                 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3980
3981         spin_lock(&BTRFS_I(inode)->root->list_lock);
3982         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3983                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3984                        " list\n", inode->i_ino);
3985                 dump_stack();
3986         }
3987         spin_unlock(&BTRFS_I(inode)->root->list_lock);
3988
3989         while(1) {
3990                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3991                 if (!ordered)
3992                         break;
3993                 else {
3994                         printk("found ordered extent %Lu %Lu\n",
3995                                ordered->file_offset, ordered->len);
3996                         btrfs_remove_ordered_extent(inode, ordered);
3997                         btrfs_put_ordered_extent(ordered);
3998                         btrfs_put_ordered_extent(ordered);
3999                 }
4000         }
4001         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4002         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4003 }
4004
4005 static void init_once(void *foo)
4006 {
4007         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4008
4009         inode_init_once(&ei->vfs_inode);
4010 }
4011
4012 void btrfs_destroy_cachep(void)
4013 {
4014         if (btrfs_inode_cachep)
4015                 kmem_cache_destroy(btrfs_inode_cachep);
4016         if (btrfs_trans_handle_cachep)
4017                 kmem_cache_destroy(btrfs_trans_handle_cachep);
4018         if (btrfs_transaction_cachep)
4019                 kmem_cache_destroy(btrfs_transaction_cachep);
4020         if (btrfs_bit_radix_cachep)
4021                 kmem_cache_destroy(btrfs_bit_radix_cachep);
4022         if (btrfs_path_cachep)
4023                 kmem_cache_destroy(btrfs_path_cachep);
4024 }
4025
4026 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4027                                        unsigned long extra_flags,
4028                                        void (*ctor)(void *))
4029 {
4030         return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4031                                  SLAB_MEM_SPREAD | extra_flags), ctor);
4032 }
4033
4034 int btrfs_init_cachep(void)
4035 {
4036         btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4037                                           sizeof(struct btrfs_inode),
4038                                           0, init_once);
4039         if (!btrfs_inode_cachep)
4040                 goto fail;
4041         btrfs_trans_handle_cachep =
4042                         btrfs_cache_create("btrfs_trans_handle_cache",
4043                                            sizeof(struct btrfs_trans_handle),
4044                                            0, NULL);
4045         if (!btrfs_trans_handle_cachep)
4046                 goto fail;
4047         btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4048                                              sizeof(struct btrfs_transaction),
4049                                              0, NULL);
4050         if (!btrfs_transaction_cachep)
4051                 goto fail;
4052         btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4053                                          sizeof(struct btrfs_path),
4054                                          0, NULL);
4055         if (!btrfs_path_cachep)
4056                 goto fail;
4057         btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4058                                               SLAB_DESTROY_BY_RCU, NULL);
4059         if (!btrfs_bit_radix_cachep)
4060                 goto fail;
4061         return 0;
4062 fail:
4063         btrfs_destroy_cachep();
4064         return -ENOMEM;
4065 }
4066
4067 static int btrfs_getattr(struct vfsmount *mnt,
4068                          struct dentry *dentry, struct kstat *stat)
4069 {
4070         struct inode *inode = dentry->d_inode;
4071         generic_fillattr(inode, stat);
4072         stat->blksize = PAGE_CACHE_SIZE;
4073         stat->blocks = (inode_get_bytes(inode) +
4074                         BTRFS_I(inode)->delalloc_bytes) >> 9;
4075         return 0;
4076 }
4077
4078 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
4079                            struct inode * new_dir,struct dentry *new_dentry)
4080 {
4081         struct btrfs_trans_handle *trans;
4082         struct btrfs_root *root = BTRFS_I(old_dir)->root;
4083         struct inode *new_inode = new_dentry->d_inode;
4084         struct inode *old_inode = old_dentry->d_inode;
4085         struct timespec ctime = CURRENT_TIME;
4086         u64 index = 0;
4087         int ret;
4088
4089         if (S_ISDIR(old_inode->i_mode) && new_inode &&
4090             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4091                 return -ENOTEMPTY;
4092         }
4093
4094         ret = btrfs_check_free_space(root, 1, 0);
4095         if (ret)
4096                 goto out_unlock;
4097
4098         trans = btrfs_start_transaction(root, 1);
4099
4100         btrfs_set_trans_block_group(trans, new_dir);
4101
4102         btrfs_inc_nlink(old_dentry->d_inode);
4103         old_dir->i_ctime = old_dir->i_mtime = ctime;
4104         new_dir->i_ctime = new_dir->i_mtime = ctime;
4105         old_inode->i_ctime = ctime;
4106
4107         ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4108                                  old_dentry->d_name.name,
4109                                  old_dentry->d_name.len);
4110         if (ret)
4111                 goto out_fail;
4112
4113         if (new_inode) {
4114                 new_inode->i_ctime = CURRENT_TIME;
4115                 ret = btrfs_unlink_inode(trans, root, new_dir,
4116                                          new_dentry->d_inode,
4117                                          new_dentry->d_name.name,
4118                                          new_dentry->d_name.len);
4119                 if (ret)
4120                         goto out_fail;
4121                 if (new_inode->i_nlink == 0) {
4122                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4123                         if (ret)
4124                                 goto out_fail;
4125                 }
4126
4127         }
4128         ret = btrfs_set_inode_index(new_dir, old_inode, &index);
4129         if (ret)
4130                 goto out_fail;
4131
4132         ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4133                              old_inode, new_dentry->d_name.name,
4134                              new_dentry->d_name.len, 1, index);
4135         if (ret)
4136                 goto out_fail;
4137
4138 out_fail:
4139         btrfs_end_transaction_throttle(trans, root);
4140 out_unlock:
4141         return ret;
4142 }
4143
4144 /*
4145  * some fairly slow code that needs optimization. This walks the list
4146  * of all the inodes with pending delalloc and forces them to disk.
4147  */
4148 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4149 {
4150         struct list_head *head = &root->fs_info->delalloc_inodes;
4151         struct btrfs_inode *binode;
4152         struct inode *inode;
4153         unsigned long flags;
4154
4155         spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4156         while(!list_empty(head)) {
4157                 binode = list_entry(head->next, struct btrfs_inode,
4158                                     delalloc_inodes);
4159                 inode = igrab(&binode->vfs_inode);
4160                 if (!inode)
4161                         list_del_init(&binode->delalloc_inodes);
4162                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4163                 if (inode) {
4164                         filemap_flush(inode->i_mapping);
4165                         iput(inode);
4166                 }
4167                 cond_resched();
4168                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4169         }
4170         spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4171
4172         /* the filemap_flush will queue IO into the worker threads, but
4173          * we have to make sure the IO is actually started and that
4174          * ordered extents get created before we return
4175          */
4176         atomic_inc(&root->fs_info->async_submit_draining);
4177         while(atomic_read(&root->fs_info->nr_async_submits)) {
4178                 wait_event(root->fs_info->async_submit_wait,
4179                    (atomic_read(&root->fs_info->nr_async_submits) == 0));
4180         }
4181         atomic_dec(&root->fs_info->async_submit_draining);
4182         return 0;
4183 }
4184
4185 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4186                          const char *symname)
4187 {
4188         struct btrfs_trans_handle *trans;
4189         struct btrfs_root *root = BTRFS_I(dir)->root;
4190         struct btrfs_path *path;
4191         struct btrfs_key key;
4192         struct inode *inode = NULL;
4193         int err;
4194         int drop_inode = 0;
4195         u64 objectid;
4196         u64 index = 0 ;
4197         int name_len;
4198         int datasize;
4199         unsigned long ptr;
4200         struct btrfs_file_extent_item *ei;
4201         struct extent_buffer *leaf;
4202         unsigned long nr = 0;
4203
4204         name_len = strlen(symname) + 1;
4205         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4206                 return -ENAMETOOLONG;
4207
4208         err = btrfs_check_free_space(root, 1, 0);
4209         if (err)
4210                 goto out_fail;
4211
4212         trans = btrfs_start_transaction(root, 1);
4213         btrfs_set_trans_block_group(trans, dir);
4214
4215         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4216         if (err) {
4217                 err = -ENOSPC;
4218                 goto out_unlock;
4219         }
4220
4221         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4222                                 dentry->d_name.len,
4223                                 dentry->d_parent->d_inode->i_ino, objectid,
4224                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4225                                 &index);
4226         err = PTR_ERR(inode);
4227         if (IS_ERR(inode))
4228                 goto out_unlock;
4229
4230         err = btrfs_init_acl(inode, dir);
4231         if (err) {
4232                 drop_inode = 1;
4233                 goto out_unlock;
4234         }
4235
4236         btrfs_set_trans_block_group(trans, inode);
4237         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4238         if (err)
4239                 drop_inode = 1;
4240         else {
4241                 inode->i_mapping->a_ops = &btrfs_aops;
4242                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4243                 inode->i_fop = &btrfs_file_operations;
4244                 inode->i_op = &btrfs_file_inode_operations;
4245                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4246         }
4247         dir->i_sb->s_dirt = 1;
4248         btrfs_update_inode_block_group(trans, inode);
4249         btrfs_update_inode_block_group(trans, dir);
4250         if (drop_inode)
4251                 goto out_unlock;
4252
4253         path = btrfs_alloc_path();
4254         BUG_ON(!path);
4255         key.objectid = inode->i_ino;
4256         key.offset = 0;
4257         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4258         datasize = btrfs_file_extent_calc_inline_size(name_len);
4259         err = btrfs_insert_empty_item(trans, root, path, &key,
4260                                       datasize);
4261         if (err) {
4262                 drop_inode = 1;
4263                 goto out_unlock;
4264         }
4265         leaf = path->nodes[0];
4266         ei = btrfs_item_ptr(leaf, path->slots[0],
4267                             struct btrfs_file_extent_item);
4268         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4269         btrfs_set_file_extent_type(leaf, ei,
4270                                    BTRFS_FILE_EXTENT_INLINE);
4271         btrfs_set_file_extent_encryption(leaf, ei, 0);
4272         btrfs_set_file_extent_compression(leaf, ei, 0);
4273         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4274         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4275
4276         ptr = btrfs_file_extent_inline_start(ei);
4277         write_extent_buffer(leaf, symname, ptr, name_len);
4278         btrfs_mark_buffer_dirty(leaf);
4279         btrfs_free_path(path);
4280
4281         inode->i_op = &btrfs_symlink_inode_operations;
4282         inode->i_mapping->a_ops = &btrfs_symlink_aops;
4283         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4284         btrfs_i_size_write(inode, name_len - 1);
4285         err = btrfs_update_inode(trans, root, inode);
4286         if (err)
4287                 drop_inode = 1;
4288
4289 out_unlock:
4290         nr = trans->blocks_used;
4291         btrfs_end_transaction_throttle(trans, root);
4292 out_fail:
4293         if (drop_inode) {
4294                 inode_dec_link_count(inode);
4295                 iput(inode);
4296         }
4297         btrfs_btree_balance_dirty(root, nr);
4298         return err;
4299 }
4300
4301 static int btrfs_set_page_dirty(struct page *page)
4302 {
4303         return __set_page_dirty_nobuffers(page);
4304 }
4305
4306 static int btrfs_permission(struct inode *inode, int mask)
4307 {
4308         if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4309                 return -EACCES;
4310         return generic_permission(inode, mask, btrfs_check_acl);
4311 }
4312
4313 static struct inode_operations btrfs_dir_inode_operations = {
4314         .lookup         = btrfs_lookup,
4315         .create         = btrfs_create,
4316         .unlink         = btrfs_unlink,
4317         .link           = btrfs_link,
4318         .mkdir          = btrfs_mkdir,
4319         .rmdir          = btrfs_rmdir,
4320         .rename         = btrfs_rename,
4321         .symlink        = btrfs_symlink,
4322         .setattr        = btrfs_setattr,
4323         .mknod          = btrfs_mknod,
4324         .setxattr       = btrfs_setxattr,
4325         .getxattr       = btrfs_getxattr,
4326         .listxattr      = btrfs_listxattr,
4327         .removexattr    = btrfs_removexattr,
4328         .permission     = btrfs_permission,
4329 };
4330 static struct inode_operations btrfs_dir_ro_inode_operations = {
4331         .lookup         = btrfs_lookup,
4332         .permission     = btrfs_permission,
4333 };
4334 static struct file_operations btrfs_dir_file_operations = {
4335         .llseek         = generic_file_llseek,
4336         .read           = generic_read_dir,
4337         .readdir        = btrfs_real_readdir,
4338         .unlocked_ioctl = btrfs_ioctl,
4339 #ifdef CONFIG_COMPAT
4340         .compat_ioctl   = btrfs_ioctl,
4341 #endif
4342         .release        = btrfs_release_file,
4343         .fsync          = btrfs_sync_file,
4344 };
4345
4346 static struct extent_io_ops btrfs_extent_io_ops = {
4347         .fill_delalloc = run_delalloc_range,
4348         .submit_bio_hook = btrfs_submit_bio_hook,
4349         .merge_bio_hook = btrfs_merge_bio_hook,
4350         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4351         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
4352         .writepage_start_hook = btrfs_writepage_start_hook,
4353         .readpage_io_failed_hook = btrfs_io_failed_hook,
4354         .set_bit_hook = btrfs_set_bit_hook,
4355         .clear_bit_hook = btrfs_clear_bit_hook,
4356 };
4357
4358 static struct address_space_operations btrfs_aops = {
4359         .readpage       = btrfs_readpage,
4360         .writepage      = btrfs_writepage,
4361         .writepages     = btrfs_writepages,
4362         .readpages      = btrfs_readpages,
4363         .sync_page      = block_sync_page,
4364         .bmap           = btrfs_bmap,
4365         .direct_IO      = btrfs_direct_IO,
4366         .invalidatepage = btrfs_invalidatepage,
4367         .releasepage    = btrfs_releasepage,
4368         .set_page_dirty = btrfs_set_page_dirty,
4369 };
4370
4371 static struct address_space_operations btrfs_symlink_aops = {
4372         .readpage       = btrfs_readpage,
4373         .writepage      = btrfs_writepage,
4374         .invalidatepage = btrfs_invalidatepage,
4375         .releasepage    = btrfs_releasepage,
4376 };
4377
4378 static struct inode_operations btrfs_file_inode_operations = {
4379         .truncate       = btrfs_truncate,
4380         .getattr        = btrfs_getattr,
4381         .setattr        = btrfs_setattr,
4382         .setxattr       = btrfs_setxattr,
4383         .getxattr       = btrfs_getxattr,
4384         .listxattr      = btrfs_listxattr,
4385         .removexattr    = btrfs_removexattr,
4386         .permission     = btrfs_permission,
4387 };
4388 static struct inode_operations btrfs_special_inode_operations = {
4389         .getattr        = btrfs_getattr,
4390         .setattr        = btrfs_setattr,
4391         .permission     = btrfs_permission,
4392         .setxattr       = btrfs_setxattr,
4393         .getxattr       = btrfs_getxattr,
4394         .listxattr      = btrfs_listxattr,
4395         .removexattr    = btrfs_removexattr,
4396 };
4397 static struct inode_operations btrfs_symlink_inode_operations = {
4398         .readlink       = generic_readlink,
4399         .follow_link    = page_follow_link_light,
4400         .put_link       = page_put_link,
4401         .permission     = btrfs_permission,
4402 };