Btrfs: zero page past end of inline file items
[safe/jmp/linux-2.6] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53
54 struct btrfs_iget_args {
55         u64 ino;
56         struct btrfs_root *root;
57 };
58
59 static struct inode_operations btrfs_dir_inode_operations;
60 static struct inode_operations btrfs_symlink_inode_operations;
61 static struct inode_operations btrfs_dir_ro_inode_operations;
62 static struct inode_operations btrfs_special_inode_operations;
63 static struct inode_operations btrfs_file_inode_operations;
64 static struct address_space_operations btrfs_aops;
65 static struct address_space_operations btrfs_symlink_aops;
66 static struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
77         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
78         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
79         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
80         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
81         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
82         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
83 };
84
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88                                    struct page *locked_page,
89                                    u64 start, u64 end, int *page_started,
90                                    unsigned long *nr_written, int unlock);
91
92 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
93 {
94         int err;
95
96         err = btrfs_init_acl(inode, dir);
97         if (!err)
98                 err = btrfs_xattr_security_init(inode, dir);
99         return err;
100 }
101
102 /*
103  * this does all the hard work for inserting an inline extent into
104  * the btree.  The caller should have done a btrfs_drop_extents so that
105  * no overlapping inline items exist in the btree
106  */
107 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
108                                 struct btrfs_root *root, struct inode *inode,
109                                 u64 start, size_t size, size_t compressed_size,
110                                 struct page **compressed_pages)
111 {
112         struct btrfs_key key;
113         struct btrfs_path *path;
114         struct extent_buffer *leaf;
115         struct page *page = NULL;
116         char *kaddr;
117         unsigned long ptr;
118         struct btrfs_file_extent_item *ei;
119         int err = 0;
120         int ret;
121         size_t cur_size = size;
122         size_t datasize;
123         unsigned long offset;
124         int use_compress = 0;
125
126         if (compressed_size && compressed_pages) {
127                 use_compress = 1;
128                 cur_size = compressed_size;
129         }
130
131         path = btrfs_alloc_path();
132         if (!path)
133                 return -ENOMEM;
134
135         path->leave_spinning = 1;
136         btrfs_set_trans_block_group(trans, inode);
137
138         key.objectid = inode->i_ino;
139         key.offset = start;
140         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
141         datasize = btrfs_file_extent_calc_inline_size(cur_size);
142
143         inode_add_bytes(inode, size);
144         ret = btrfs_insert_empty_item(trans, root, path, &key,
145                                       datasize);
146         BUG_ON(ret);
147         if (ret) {
148                 err = ret;
149                 goto fail;
150         }
151         leaf = path->nodes[0];
152         ei = btrfs_item_ptr(leaf, path->slots[0],
153                             struct btrfs_file_extent_item);
154         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156         btrfs_set_file_extent_encryption(leaf, ei, 0);
157         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159         ptr = btrfs_file_extent_inline_start(ei);
160
161         if (use_compress) {
162                 struct page *cpage;
163                 int i = 0;
164                 while (compressed_size > 0) {
165                         cpage = compressed_pages[i];
166                         cur_size = min_t(unsigned long, compressed_size,
167                                        PAGE_CACHE_SIZE);
168
169                         kaddr = kmap_atomic(cpage, KM_USER0);
170                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
171                         kunmap_atomic(kaddr, KM_USER0);
172
173                         i++;
174                         ptr += cur_size;
175                         compressed_size -= cur_size;
176                 }
177                 btrfs_set_file_extent_compression(leaf, ei,
178                                                   BTRFS_COMPRESS_ZLIB);
179         } else {
180                 page = find_get_page(inode->i_mapping,
181                                      start >> PAGE_CACHE_SHIFT);
182                 btrfs_set_file_extent_compression(leaf, ei, 0);
183                 kaddr = kmap_atomic(page, KM_USER0);
184                 offset = start & (PAGE_CACHE_SIZE - 1);
185                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
186                 kunmap_atomic(kaddr, KM_USER0);
187                 page_cache_release(page);
188         }
189         btrfs_mark_buffer_dirty(leaf);
190         btrfs_free_path(path);
191
192         BTRFS_I(inode)->disk_i_size = inode->i_size;
193         btrfs_update_inode(trans, root, inode);
194         return 0;
195 fail:
196         btrfs_free_path(path);
197         return err;
198 }
199
200
201 /*
202  * conditionally insert an inline extent into the file.  This
203  * does the checks required to make sure the data is small enough
204  * to fit as an inline extent.
205  */
206 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
207                                  struct btrfs_root *root,
208                                  struct inode *inode, u64 start, u64 end,
209                                  size_t compressed_size,
210                                  struct page **compressed_pages)
211 {
212         u64 isize = i_size_read(inode);
213         u64 actual_end = min(end + 1, isize);
214         u64 inline_len = actual_end - start;
215         u64 aligned_end = (end + root->sectorsize - 1) &
216                         ~((u64)root->sectorsize - 1);
217         u64 hint_byte;
218         u64 data_len = inline_len;
219         int ret;
220
221         if (compressed_size)
222                 data_len = compressed_size;
223
224         if (start > 0 ||
225             actual_end >= PAGE_CACHE_SIZE ||
226             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
227             (!compressed_size &&
228             (actual_end & (root->sectorsize - 1)) == 0) ||
229             end + 1 < isize ||
230             data_len > root->fs_info->max_inline) {
231                 return 1;
232         }
233
234         ret = btrfs_drop_extents(trans, root, inode, start,
235                                  aligned_end, aligned_end, start,
236                                  &hint_byte, 1);
237         BUG_ON(ret);
238
239         if (isize > actual_end)
240                 inline_len = min_t(u64, isize, actual_end);
241         ret = insert_inline_extent(trans, root, inode, start,
242                                    inline_len, compressed_size,
243                                    compressed_pages);
244         BUG_ON(ret);
245         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
246         return 0;
247 }
248
249 struct async_extent {
250         u64 start;
251         u64 ram_size;
252         u64 compressed_size;
253         struct page **pages;
254         unsigned long nr_pages;
255         struct list_head list;
256 };
257
258 struct async_cow {
259         struct inode *inode;
260         struct btrfs_root *root;
261         struct page *locked_page;
262         u64 start;
263         u64 end;
264         struct list_head extents;
265         struct btrfs_work work;
266 };
267
268 static noinline int add_async_extent(struct async_cow *cow,
269                                      u64 start, u64 ram_size,
270                                      u64 compressed_size,
271                                      struct page **pages,
272                                      unsigned long nr_pages)
273 {
274         struct async_extent *async_extent;
275
276         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
277         async_extent->start = start;
278         async_extent->ram_size = ram_size;
279         async_extent->compressed_size = compressed_size;
280         async_extent->pages = pages;
281         async_extent->nr_pages = nr_pages;
282         list_add_tail(&async_extent->list, &cow->extents);
283         return 0;
284 }
285
286 /*
287  * we create compressed extents in two phases.  The first
288  * phase compresses a range of pages that have already been
289  * locked (both pages and state bits are locked).
290  *
291  * This is done inside an ordered work queue, and the compression
292  * is spread across many cpus.  The actual IO submission is step
293  * two, and the ordered work queue takes care of making sure that
294  * happens in the same order things were put onto the queue by
295  * writepages and friends.
296  *
297  * If this code finds it can't get good compression, it puts an
298  * entry onto the work queue to write the uncompressed bytes.  This
299  * makes sure that both compressed inodes and uncompressed inodes
300  * are written in the same order that pdflush sent them down.
301  */
302 static noinline int compress_file_range(struct inode *inode,
303                                         struct page *locked_page,
304                                         u64 start, u64 end,
305                                         struct async_cow *async_cow,
306                                         int *num_added)
307 {
308         struct btrfs_root *root = BTRFS_I(inode)->root;
309         struct btrfs_trans_handle *trans;
310         u64 num_bytes;
311         u64 orig_start;
312         u64 disk_num_bytes;
313         u64 blocksize = root->sectorsize;
314         u64 actual_end;
315         u64 isize = i_size_read(inode);
316         int ret = 0;
317         struct page **pages = NULL;
318         unsigned long nr_pages;
319         unsigned long nr_pages_ret = 0;
320         unsigned long total_compressed = 0;
321         unsigned long total_in = 0;
322         unsigned long max_compressed = 128 * 1024;
323         unsigned long max_uncompressed = 128 * 1024;
324         int i;
325         int will_compress;
326
327         orig_start = start;
328
329         actual_end = min_t(u64, isize, end + 1);
330 again:
331         will_compress = 0;
332         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
333         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
334
335         /*
336          * we don't want to send crud past the end of i_size through
337          * compression, that's just a waste of CPU time.  So, if the
338          * end of the file is before the start of our current
339          * requested range of bytes, we bail out to the uncompressed
340          * cleanup code that can deal with all of this.
341          *
342          * It isn't really the fastest way to fix things, but this is a
343          * very uncommon corner.
344          */
345         if (actual_end <= start)
346                 goto cleanup_and_bail_uncompressed;
347
348         total_compressed = actual_end - start;
349
350         /* we want to make sure that amount of ram required to uncompress
351          * an extent is reasonable, so we limit the total size in ram
352          * of a compressed extent to 128k.  This is a crucial number
353          * because it also controls how easily we can spread reads across
354          * cpus for decompression.
355          *
356          * We also want to make sure the amount of IO required to do
357          * a random read is reasonably small, so we limit the size of
358          * a compressed extent to 128k.
359          */
360         total_compressed = min(total_compressed, max_uncompressed);
361         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
362         num_bytes = max(blocksize,  num_bytes);
363         disk_num_bytes = num_bytes;
364         total_in = 0;
365         ret = 0;
366
367         /*
368          * we do compression for mount -o compress and when the
369          * inode has not been flagged as nocompress.  This flag can
370          * change at any time if we discover bad compression ratios.
371          */
372         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
373             btrfs_test_opt(root, COMPRESS)) {
374                 WARN_ON(pages);
375                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
376
377                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
378                                                 total_compressed, pages,
379                                                 nr_pages, &nr_pages_ret,
380                                                 &total_in,
381                                                 &total_compressed,
382                                                 max_compressed);
383
384                 if (!ret) {
385                         unsigned long offset = total_compressed &
386                                 (PAGE_CACHE_SIZE - 1);
387                         struct page *page = pages[nr_pages_ret - 1];
388                         char *kaddr;
389
390                         /* zero the tail end of the last page, we might be
391                          * sending it down to disk
392                          */
393                         if (offset) {
394                                 kaddr = kmap_atomic(page, KM_USER0);
395                                 memset(kaddr + offset, 0,
396                                        PAGE_CACHE_SIZE - offset);
397                                 kunmap_atomic(kaddr, KM_USER0);
398                         }
399                         will_compress = 1;
400                 }
401         }
402         if (start == 0) {
403                 trans = btrfs_join_transaction(root, 1);
404                 BUG_ON(!trans);
405                 btrfs_set_trans_block_group(trans, inode);
406
407                 /* lets try to make an inline extent */
408                 if (ret || total_in < (actual_end - start)) {
409                         /* we didn't compress the entire range, try
410                          * to make an uncompressed inline extent.
411                          */
412                         ret = cow_file_range_inline(trans, root, inode,
413                                                     start, end, 0, NULL);
414                 } else {
415                         /* try making a compressed inline extent */
416                         ret = cow_file_range_inline(trans, root, inode,
417                                                     start, end,
418                                                     total_compressed, pages);
419                 }
420                 btrfs_end_transaction(trans, root);
421                 if (ret == 0) {
422                         /*
423                          * inline extent creation worked, we don't need
424                          * to create any more async work items.  Unlock
425                          * and free up our temp pages.
426                          */
427                         extent_clear_unlock_delalloc(inode,
428                                                      &BTRFS_I(inode)->io_tree,
429                                                      start, end, NULL, 1, 0,
430                                                      0, 1, 1, 1, 0);
431                         ret = 0;
432                         goto free_pages_out;
433                 }
434         }
435
436         if (will_compress) {
437                 /*
438                  * we aren't doing an inline extent round the compressed size
439                  * up to a block size boundary so the allocator does sane
440                  * things
441                  */
442                 total_compressed = (total_compressed + blocksize - 1) &
443                         ~(blocksize - 1);
444
445                 /*
446                  * one last check to make sure the compression is really a
447                  * win, compare the page count read with the blocks on disk
448                  */
449                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
450                         ~(PAGE_CACHE_SIZE - 1);
451                 if (total_compressed >= total_in) {
452                         will_compress = 0;
453                 } else {
454                         disk_num_bytes = total_compressed;
455                         num_bytes = total_in;
456                 }
457         }
458         if (!will_compress && pages) {
459                 /*
460                  * the compression code ran but failed to make things smaller,
461                  * free any pages it allocated and our page pointer array
462                  */
463                 for (i = 0; i < nr_pages_ret; i++) {
464                         WARN_ON(pages[i]->mapping);
465                         page_cache_release(pages[i]);
466                 }
467                 kfree(pages);
468                 pages = NULL;
469                 total_compressed = 0;
470                 nr_pages_ret = 0;
471
472                 /* flag the file so we don't compress in the future */
473                 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
474         }
475         if (will_compress) {
476                 *num_added += 1;
477
478                 /* the async work queues will take care of doing actual
479                  * allocation on disk for these compressed pages,
480                  * and will submit them to the elevator.
481                  */
482                 add_async_extent(async_cow, start, num_bytes,
483                                  total_compressed, pages, nr_pages_ret);
484
485                 if (start + num_bytes < end && start + num_bytes < actual_end) {
486                         start += num_bytes;
487                         pages = NULL;
488                         cond_resched();
489                         goto again;
490                 }
491         } else {
492 cleanup_and_bail_uncompressed:
493                 /*
494                  * No compression, but we still need to write the pages in
495                  * the file we've been given so far.  redirty the locked
496                  * page if it corresponds to our extent and set things up
497                  * for the async work queue to run cow_file_range to do
498                  * the normal delalloc dance
499                  */
500                 if (page_offset(locked_page) >= start &&
501                     page_offset(locked_page) <= end) {
502                         __set_page_dirty_nobuffers(locked_page);
503                         /* unlocked later on in the async handlers */
504                 }
505                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
506                 *num_added += 1;
507         }
508
509 out:
510         return 0;
511
512 free_pages_out:
513         for (i = 0; i < nr_pages_ret; i++) {
514                 WARN_ON(pages[i]->mapping);
515                 page_cache_release(pages[i]);
516         }
517         kfree(pages);
518
519         goto out;
520 }
521
522 /*
523  * phase two of compressed writeback.  This is the ordered portion
524  * of the code, which only gets called in the order the work was
525  * queued.  We walk all the async extents created by compress_file_range
526  * and send them down to the disk.
527  */
528 static noinline int submit_compressed_extents(struct inode *inode,
529                                               struct async_cow *async_cow)
530 {
531         struct async_extent *async_extent;
532         u64 alloc_hint = 0;
533         struct btrfs_trans_handle *trans;
534         struct btrfs_key ins;
535         struct extent_map *em;
536         struct btrfs_root *root = BTRFS_I(inode)->root;
537         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538         struct extent_io_tree *io_tree;
539         int ret;
540
541         if (list_empty(&async_cow->extents))
542                 return 0;
543
544         trans = btrfs_join_transaction(root, 1);
545
546         while (!list_empty(&async_cow->extents)) {
547                 async_extent = list_entry(async_cow->extents.next,
548                                           struct async_extent, list);
549                 list_del(&async_extent->list);
550
551                 io_tree = &BTRFS_I(inode)->io_tree;
552
553                 /* did the compression code fall back to uncompressed IO? */
554                 if (!async_extent->pages) {
555                         int page_started = 0;
556                         unsigned long nr_written = 0;
557
558                         lock_extent(io_tree, async_extent->start,
559                                     async_extent->start +
560                                     async_extent->ram_size - 1, GFP_NOFS);
561
562                         /* allocate blocks */
563                         cow_file_range(inode, async_cow->locked_page,
564                                        async_extent->start,
565                                        async_extent->start +
566                                        async_extent->ram_size - 1,
567                                        &page_started, &nr_written, 0);
568
569                         /*
570                          * if page_started, cow_file_range inserted an
571                          * inline extent and took care of all the unlocking
572                          * and IO for us.  Otherwise, we need to submit
573                          * all those pages down to the drive.
574                          */
575                         if (!page_started)
576                                 extent_write_locked_range(io_tree,
577                                                   inode, async_extent->start,
578                                                   async_extent->start +
579                                                   async_extent->ram_size - 1,
580                                                   btrfs_get_extent,
581                                                   WB_SYNC_ALL);
582                         kfree(async_extent);
583                         cond_resched();
584                         continue;
585                 }
586
587                 lock_extent(io_tree, async_extent->start,
588                             async_extent->start + async_extent->ram_size - 1,
589                             GFP_NOFS);
590                 /*
591                  * here we're doing allocation and writeback of the
592                  * compressed pages
593                  */
594                 btrfs_drop_extent_cache(inode, async_extent->start,
595                                         async_extent->start +
596                                         async_extent->ram_size - 1, 0);
597
598                 ret = btrfs_reserve_extent(trans, root,
599                                            async_extent->compressed_size,
600                                            async_extent->compressed_size,
601                                            0, alloc_hint,
602                                            (u64)-1, &ins, 1);
603                 BUG_ON(ret);
604                 em = alloc_extent_map(GFP_NOFS);
605                 em->start = async_extent->start;
606                 em->len = async_extent->ram_size;
607                 em->orig_start = em->start;
608
609                 em->block_start = ins.objectid;
610                 em->block_len = ins.offset;
611                 em->bdev = root->fs_info->fs_devices->latest_bdev;
612                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
613                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
614
615                 while (1) {
616                         write_lock(&em_tree->lock);
617                         ret = add_extent_mapping(em_tree, em);
618                         write_unlock(&em_tree->lock);
619                         if (ret != -EEXIST) {
620                                 free_extent_map(em);
621                                 break;
622                         }
623                         btrfs_drop_extent_cache(inode, async_extent->start,
624                                                 async_extent->start +
625                                                 async_extent->ram_size - 1, 0);
626                 }
627
628                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
629                                                ins.objectid,
630                                                async_extent->ram_size,
631                                                ins.offset,
632                                                BTRFS_ORDERED_COMPRESSED);
633                 BUG_ON(ret);
634
635                 btrfs_end_transaction(trans, root);
636
637                 /*
638                  * clear dirty, set writeback and unlock the pages.
639                  */
640                 extent_clear_unlock_delalloc(inode,
641                                              &BTRFS_I(inode)->io_tree,
642                                              async_extent->start,
643                                              async_extent->start +
644                                              async_extent->ram_size - 1,
645                                              NULL, 1, 1, 0, 1, 1, 0, 0);
646
647                 ret = btrfs_submit_compressed_write(inode,
648                                     async_extent->start,
649                                     async_extent->ram_size,
650                                     ins.objectid,
651                                     ins.offset, async_extent->pages,
652                                     async_extent->nr_pages);
653
654                 BUG_ON(ret);
655                 trans = btrfs_join_transaction(root, 1);
656                 alloc_hint = ins.objectid + ins.offset;
657                 kfree(async_extent);
658                 cond_resched();
659         }
660
661         btrfs_end_transaction(trans, root);
662         return 0;
663 }
664
665 /*
666  * when extent_io.c finds a delayed allocation range in the file,
667  * the call backs end up in this code.  The basic idea is to
668  * allocate extents on disk for the range, and create ordered data structs
669  * in ram to track those extents.
670  *
671  * locked_page is the page that writepage had locked already.  We use
672  * it to make sure we don't do extra locks or unlocks.
673  *
674  * *page_started is set to one if we unlock locked_page and do everything
675  * required to start IO on it.  It may be clean and already done with
676  * IO when we return.
677  */
678 static noinline int cow_file_range(struct inode *inode,
679                                    struct page *locked_page,
680                                    u64 start, u64 end, int *page_started,
681                                    unsigned long *nr_written,
682                                    int unlock)
683 {
684         struct btrfs_root *root = BTRFS_I(inode)->root;
685         struct btrfs_trans_handle *trans;
686         u64 alloc_hint = 0;
687         u64 num_bytes;
688         unsigned long ram_size;
689         u64 disk_num_bytes;
690         u64 cur_alloc_size;
691         u64 blocksize = root->sectorsize;
692         u64 actual_end;
693         u64 isize = i_size_read(inode);
694         struct btrfs_key ins;
695         struct extent_map *em;
696         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
697         int ret = 0;
698
699         trans = btrfs_join_transaction(root, 1);
700         BUG_ON(!trans);
701         btrfs_set_trans_block_group(trans, inode);
702
703         actual_end = min_t(u64, isize, end + 1);
704
705         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
706         num_bytes = max(blocksize,  num_bytes);
707         disk_num_bytes = num_bytes;
708         ret = 0;
709
710         if (start == 0) {
711                 /* lets try to make an inline extent */
712                 ret = cow_file_range_inline(trans, root, inode,
713                                             start, end, 0, NULL);
714                 if (ret == 0) {
715                         extent_clear_unlock_delalloc(inode,
716                                                      &BTRFS_I(inode)->io_tree,
717                                                      start, end, NULL, 1, 1,
718                                                      1, 1, 1, 1, 0);
719                         *nr_written = *nr_written +
720                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
721                         *page_started = 1;
722                         ret = 0;
723                         goto out;
724                 }
725         }
726
727         BUG_ON(disk_num_bytes >
728                btrfs_super_total_bytes(&root->fs_info->super_copy));
729
730         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
731
732         while (disk_num_bytes > 0) {
733                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
734                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
735                                            root->sectorsize, 0, alloc_hint,
736                                            (u64)-1, &ins, 1);
737                 BUG_ON(ret);
738
739                 em = alloc_extent_map(GFP_NOFS);
740                 em->start = start;
741                 em->orig_start = em->start;
742
743                 ram_size = ins.offset;
744                 em->len = ins.offset;
745
746                 em->block_start = ins.objectid;
747                 em->block_len = ins.offset;
748                 em->bdev = root->fs_info->fs_devices->latest_bdev;
749                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
750
751                 while (1) {
752                         write_lock(&em_tree->lock);
753                         ret = add_extent_mapping(em_tree, em);
754                         write_unlock(&em_tree->lock);
755                         if (ret != -EEXIST) {
756                                 free_extent_map(em);
757                                 break;
758                         }
759                         btrfs_drop_extent_cache(inode, start,
760                                                 start + ram_size - 1, 0);
761                 }
762
763                 cur_alloc_size = ins.offset;
764                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
765                                                ram_size, cur_alloc_size, 0);
766                 BUG_ON(ret);
767
768                 if (root->root_key.objectid ==
769                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
770                         ret = btrfs_reloc_clone_csums(inode, start,
771                                                       cur_alloc_size);
772                         BUG_ON(ret);
773                 }
774
775                 if (disk_num_bytes < cur_alloc_size)
776                         break;
777
778                 /* we're not doing compressed IO, don't unlock the first
779                  * page (which the caller expects to stay locked), don't
780                  * clear any dirty bits and don't set any writeback bits
781                  *
782                  * Do set the Private2 bit so we know this page was properly
783                  * setup for writepage
784                  */
785                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
786                                              start, start + ram_size - 1,
787                                              locked_page, unlock, 1,
788                                              1, 0, 0, 0, 1);
789                 disk_num_bytes -= cur_alloc_size;
790                 num_bytes -= cur_alloc_size;
791                 alloc_hint = ins.objectid + ins.offset;
792                 start += cur_alloc_size;
793         }
794 out:
795         ret = 0;
796         btrfs_end_transaction(trans, root);
797
798         return ret;
799 }
800
801 /*
802  * work queue call back to started compression on a file and pages
803  */
804 static noinline void async_cow_start(struct btrfs_work *work)
805 {
806         struct async_cow *async_cow;
807         int num_added = 0;
808         async_cow = container_of(work, struct async_cow, work);
809
810         compress_file_range(async_cow->inode, async_cow->locked_page,
811                             async_cow->start, async_cow->end, async_cow,
812                             &num_added);
813         if (num_added == 0)
814                 async_cow->inode = NULL;
815 }
816
817 /*
818  * work queue call back to submit previously compressed pages
819  */
820 static noinline void async_cow_submit(struct btrfs_work *work)
821 {
822         struct async_cow *async_cow;
823         struct btrfs_root *root;
824         unsigned long nr_pages;
825
826         async_cow = container_of(work, struct async_cow, work);
827
828         root = async_cow->root;
829         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
830                 PAGE_CACHE_SHIFT;
831
832         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
833
834         if (atomic_read(&root->fs_info->async_delalloc_pages) <
835             5 * 1042 * 1024 &&
836             waitqueue_active(&root->fs_info->async_submit_wait))
837                 wake_up(&root->fs_info->async_submit_wait);
838
839         if (async_cow->inode)
840                 submit_compressed_extents(async_cow->inode, async_cow);
841 }
842
843 static noinline void async_cow_free(struct btrfs_work *work)
844 {
845         struct async_cow *async_cow;
846         async_cow = container_of(work, struct async_cow, work);
847         kfree(async_cow);
848 }
849
850 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
851                                 u64 start, u64 end, int *page_started,
852                                 unsigned long *nr_written)
853 {
854         struct async_cow *async_cow;
855         struct btrfs_root *root = BTRFS_I(inode)->root;
856         unsigned long nr_pages;
857         u64 cur_end;
858         int limit = 10 * 1024 * 1042;
859
860         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
861                          EXTENT_DELALLOC, 1, 0, NULL, GFP_NOFS);
862         while (start < end) {
863                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
864                 async_cow->inode = inode;
865                 async_cow->root = root;
866                 async_cow->locked_page = locked_page;
867                 async_cow->start = start;
868
869                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
870                         cur_end = end;
871                 else
872                         cur_end = min(end, start + 512 * 1024 - 1);
873
874                 async_cow->end = cur_end;
875                 INIT_LIST_HEAD(&async_cow->extents);
876
877                 async_cow->work.func = async_cow_start;
878                 async_cow->work.ordered_func = async_cow_submit;
879                 async_cow->work.ordered_free = async_cow_free;
880                 async_cow->work.flags = 0;
881
882                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
883                         PAGE_CACHE_SHIFT;
884                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
885
886                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
887                                    &async_cow->work);
888
889                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
890                         wait_event(root->fs_info->async_submit_wait,
891                            (atomic_read(&root->fs_info->async_delalloc_pages) <
892                             limit));
893                 }
894
895                 while (atomic_read(&root->fs_info->async_submit_draining) &&
896                       atomic_read(&root->fs_info->async_delalloc_pages)) {
897                         wait_event(root->fs_info->async_submit_wait,
898                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
899                            0));
900                 }
901
902                 *nr_written += nr_pages;
903                 start = cur_end + 1;
904         }
905         *page_started = 1;
906         return 0;
907 }
908
909 static noinline int csum_exist_in_range(struct btrfs_root *root,
910                                         u64 bytenr, u64 num_bytes)
911 {
912         int ret;
913         struct btrfs_ordered_sum *sums;
914         LIST_HEAD(list);
915
916         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
917                                        bytenr + num_bytes - 1, &list);
918         if (ret == 0 && list_empty(&list))
919                 return 0;
920
921         while (!list_empty(&list)) {
922                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
923                 list_del(&sums->list);
924                 kfree(sums);
925         }
926         return 1;
927 }
928
929 /*
930  * when nowcow writeback call back.  This checks for snapshots or COW copies
931  * of the extents that exist in the file, and COWs the file as required.
932  *
933  * If no cow copies or snapshots exist, we write directly to the existing
934  * blocks on disk
935  */
936 static noinline int run_delalloc_nocow(struct inode *inode,
937                                        struct page *locked_page,
938                               u64 start, u64 end, int *page_started, int force,
939                               unsigned long *nr_written)
940 {
941         struct btrfs_root *root = BTRFS_I(inode)->root;
942         struct btrfs_trans_handle *trans;
943         struct extent_buffer *leaf;
944         struct btrfs_path *path;
945         struct btrfs_file_extent_item *fi;
946         struct btrfs_key found_key;
947         u64 cow_start;
948         u64 cur_offset;
949         u64 extent_end;
950         u64 extent_offset;
951         u64 disk_bytenr;
952         u64 num_bytes;
953         int extent_type;
954         int ret;
955         int type;
956         int nocow;
957         int check_prev = 1;
958
959         path = btrfs_alloc_path();
960         BUG_ON(!path);
961         trans = btrfs_join_transaction(root, 1);
962         BUG_ON(!trans);
963
964         cow_start = (u64)-1;
965         cur_offset = start;
966         while (1) {
967                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
968                                                cur_offset, 0);
969                 BUG_ON(ret < 0);
970                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
971                         leaf = path->nodes[0];
972                         btrfs_item_key_to_cpu(leaf, &found_key,
973                                               path->slots[0] - 1);
974                         if (found_key.objectid == inode->i_ino &&
975                             found_key.type == BTRFS_EXTENT_DATA_KEY)
976                                 path->slots[0]--;
977                 }
978                 check_prev = 0;
979 next_slot:
980                 leaf = path->nodes[0];
981                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
982                         ret = btrfs_next_leaf(root, path);
983                         if (ret < 0)
984                                 BUG_ON(1);
985                         if (ret > 0)
986                                 break;
987                         leaf = path->nodes[0];
988                 }
989
990                 nocow = 0;
991                 disk_bytenr = 0;
992                 num_bytes = 0;
993                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
994
995                 if (found_key.objectid > inode->i_ino ||
996                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
997                     found_key.offset > end)
998                         break;
999
1000                 if (found_key.offset > cur_offset) {
1001                         extent_end = found_key.offset;
1002                         goto out_check;
1003                 }
1004
1005                 fi = btrfs_item_ptr(leaf, path->slots[0],
1006                                     struct btrfs_file_extent_item);
1007                 extent_type = btrfs_file_extent_type(leaf, fi);
1008
1009                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1010                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1011                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1012                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1013                         extent_end = found_key.offset +
1014                                 btrfs_file_extent_num_bytes(leaf, fi);
1015                         if (extent_end <= start) {
1016                                 path->slots[0]++;
1017                                 goto next_slot;
1018                         }
1019                         if (disk_bytenr == 0)
1020                                 goto out_check;
1021                         if (btrfs_file_extent_compression(leaf, fi) ||
1022                             btrfs_file_extent_encryption(leaf, fi) ||
1023                             btrfs_file_extent_other_encoding(leaf, fi))
1024                                 goto out_check;
1025                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1026                                 goto out_check;
1027                         if (btrfs_extent_readonly(root, disk_bytenr))
1028                                 goto out_check;
1029                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1030                                                   found_key.offset -
1031                                                   extent_offset, disk_bytenr))
1032                                 goto out_check;
1033                         disk_bytenr += extent_offset;
1034                         disk_bytenr += cur_offset - found_key.offset;
1035                         num_bytes = min(end + 1, extent_end) - cur_offset;
1036                         /*
1037                          * force cow if csum exists in the range.
1038                          * this ensure that csum for a given extent are
1039                          * either valid or do not exist.
1040                          */
1041                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1042                                 goto out_check;
1043                         nocow = 1;
1044                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1045                         extent_end = found_key.offset +
1046                                 btrfs_file_extent_inline_len(leaf, fi);
1047                         extent_end = ALIGN(extent_end, root->sectorsize);
1048                 } else {
1049                         BUG_ON(1);
1050                 }
1051 out_check:
1052                 if (extent_end <= start) {
1053                         path->slots[0]++;
1054                         goto next_slot;
1055                 }
1056                 if (!nocow) {
1057                         if (cow_start == (u64)-1)
1058                                 cow_start = cur_offset;
1059                         cur_offset = extent_end;
1060                         if (cur_offset > end)
1061                                 break;
1062                         path->slots[0]++;
1063                         goto next_slot;
1064                 }
1065
1066                 btrfs_release_path(root, path);
1067                 if (cow_start != (u64)-1) {
1068                         ret = cow_file_range(inode, locked_page, cow_start,
1069                                         found_key.offset - 1, page_started,
1070                                         nr_written, 1);
1071                         BUG_ON(ret);
1072                         cow_start = (u64)-1;
1073                 }
1074
1075                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1076                         struct extent_map *em;
1077                         struct extent_map_tree *em_tree;
1078                         em_tree = &BTRFS_I(inode)->extent_tree;
1079                         em = alloc_extent_map(GFP_NOFS);
1080                         em->start = cur_offset;
1081                         em->orig_start = em->start;
1082                         em->len = num_bytes;
1083                         em->block_len = num_bytes;
1084                         em->block_start = disk_bytenr;
1085                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1086                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1087                         while (1) {
1088                                 write_lock(&em_tree->lock);
1089                                 ret = add_extent_mapping(em_tree, em);
1090                                 write_unlock(&em_tree->lock);
1091                                 if (ret != -EEXIST) {
1092                                         free_extent_map(em);
1093                                         break;
1094                                 }
1095                                 btrfs_drop_extent_cache(inode, em->start,
1096                                                 em->start + em->len - 1, 0);
1097                         }
1098                         type = BTRFS_ORDERED_PREALLOC;
1099                 } else {
1100                         type = BTRFS_ORDERED_NOCOW;
1101                 }
1102
1103                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1104                                                num_bytes, num_bytes, type);
1105                 BUG_ON(ret);
1106
1107                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1108                                         cur_offset, cur_offset + num_bytes - 1,
1109                                         locked_page, 1, 1, 1, 0, 0, 0, 1);
1110                 cur_offset = extent_end;
1111                 if (cur_offset > end)
1112                         break;
1113         }
1114         btrfs_release_path(root, path);
1115
1116         if (cur_offset <= end && cow_start == (u64)-1)
1117                 cow_start = cur_offset;
1118         if (cow_start != (u64)-1) {
1119                 ret = cow_file_range(inode, locked_page, cow_start, end,
1120                                      page_started, nr_written, 1);
1121                 BUG_ON(ret);
1122         }
1123
1124         ret = btrfs_end_transaction(trans, root);
1125         BUG_ON(ret);
1126         btrfs_free_path(path);
1127         return 0;
1128 }
1129
1130 /*
1131  * extent_io.c call back to do delayed allocation processing
1132  */
1133 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1134                               u64 start, u64 end, int *page_started,
1135                               unsigned long *nr_written)
1136 {
1137         int ret;
1138         struct btrfs_root *root = BTRFS_I(inode)->root;
1139
1140         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1141                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1142                                          page_started, 1, nr_written);
1143         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1144                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1145                                          page_started, 0, nr_written);
1146         else if (!btrfs_test_opt(root, COMPRESS))
1147                 ret = cow_file_range(inode, locked_page, start, end,
1148                                       page_started, nr_written, 1);
1149         else
1150                 ret = cow_file_range_async(inode, locked_page, start, end,
1151                                            page_started, nr_written);
1152         return ret;
1153 }
1154
1155 /*
1156  * extent_io.c set_bit_hook, used to track delayed allocation
1157  * bytes in this file, and to maintain the list of inodes that
1158  * have pending delalloc work to be done.
1159  */
1160 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1161                        unsigned long old, unsigned long bits)
1162 {
1163         /*
1164          * set_bit and clear bit hooks normally require _irqsave/restore
1165          * but in this case, we are only testeing for the DELALLOC
1166          * bit, which is only set or cleared with irqs on
1167          */
1168         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1169                 struct btrfs_root *root = BTRFS_I(inode)->root;
1170                 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1171                 spin_lock(&root->fs_info->delalloc_lock);
1172                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1173                 root->fs_info->delalloc_bytes += end - start + 1;
1174                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1175                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1176                                       &root->fs_info->delalloc_inodes);
1177                 }
1178                 spin_unlock(&root->fs_info->delalloc_lock);
1179         }
1180         return 0;
1181 }
1182
1183 /*
1184  * extent_io.c clear_bit_hook, see set_bit_hook for why
1185  */
1186 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1187                          unsigned long old, unsigned long bits)
1188 {
1189         /*
1190          * set_bit and clear bit hooks normally require _irqsave/restore
1191          * but in this case, we are only testeing for the DELALLOC
1192          * bit, which is only set or cleared with irqs on
1193          */
1194         if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1195                 struct btrfs_root *root = BTRFS_I(inode)->root;
1196
1197                 spin_lock(&root->fs_info->delalloc_lock);
1198                 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1199                         printk(KERN_INFO "btrfs warning: delalloc account "
1200                                "%llu %llu\n",
1201                                (unsigned long long)end - start + 1,
1202                                (unsigned long long)
1203                                root->fs_info->delalloc_bytes);
1204                         btrfs_delalloc_free_space(root, inode, (u64)-1);
1205                         root->fs_info->delalloc_bytes = 0;
1206                         BTRFS_I(inode)->delalloc_bytes = 0;
1207                 } else {
1208                         btrfs_delalloc_free_space(root, inode,
1209                                                   end - start + 1);
1210                         root->fs_info->delalloc_bytes -= end - start + 1;
1211                         BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1212                 }
1213                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1214                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1215                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1216                 }
1217                 spin_unlock(&root->fs_info->delalloc_lock);
1218         }
1219         return 0;
1220 }
1221
1222 /*
1223  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1224  * we don't create bios that span stripes or chunks
1225  */
1226 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1227                          size_t size, struct bio *bio,
1228                          unsigned long bio_flags)
1229 {
1230         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1231         struct btrfs_mapping_tree *map_tree;
1232         u64 logical = (u64)bio->bi_sector << 9;
1233         u64 length = 0;
1234         u64 map_length;
1235         int ret;
1236
1237         if (bio_flags & EXTENT_BIO_COMPRESSED)
1238                 return 0;
1239
1240         length = bio->bi_size;
1241         map_tree = &root->fs_info->mapping_tree;
1242         map_length = length;
1243         ret = btrfs_map_block(map_tree, READ, logical,
1244                               &map_length, NULL, 0);
1245
1246         if (map_length < length + size)
1247                 return 1;
1248         return 0;
1249 }
1250
1251 /*
1252  * in order to insert checksums into the metadata in large chunks,
1253  * we wait until bio submission time.   All the pages in the bio are
1254  * checksummed and sums are attached onto the ordered extent record.
1255  *
1256  * At IO completion time the cums attached on the ordered extent record
1257  * are inserted into the btree
1258  */
1259 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1260                                     struct bio *bio, int mirror_num,
1261                                     unsigned long bio_flags)
1262 {
1263         struct btrfs_root *root = BTRFS_I(inode)->root;
1264         int ret = 0;
1265
1266         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1267         BUG_ON(ret);
1268         return 0;
1269 }
1270
1271 /*
1272  * in order to insert checksums into the metadata in large chunks,
1273  * we wait until bio submission time.   All the pages in the bio are
1274  * checksummed and sums are attached onto the ordered extent record.
1275  *
1276  * At IO completion time the cums attached on the ordered extent record
1277  * are inserted into the btree
1278  */
1279 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1280                           int mirror_num, unsigned long bio_flags)
1281 {
1282         struct btrfs_root *root = BTRFS_I(inode)->root;
1283         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1284 }
1285
1286 /*
1287  * extent_io.c submission hook. This does the right thing for csum calculation
1288  * on write, or reading the csums from the tree before a read
1289  */
1290 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1291                           int mirror_num, unsigned long bio_flags)
1292 {
1293         struct btrfs_root *root = BTRFS_I(inode)->root;
1294         int ret = 0;
1295         int skip_sum;
1296
1297         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1298
1299         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1300         BUG_ON(ret);
1301
1302         if (!(rw & (1 << BIO_RW))) {
1303                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1304                         return btrfs_submit_compressed_read(inode, bio,
1305                                                     mirror_num, bio_flags);
1306                 } else if (!skip_sum)
1307                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1308                 goto mapit;
1309         } else if (!skip_sum) {
1310                 /* csum items have already been cloned */
1311                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1312                         goto mapit;
1313                 /* we're doing a write, do the async checksumming */
1314                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1315                                    inode, rw, bio, mirror_num,
1316                                    bio_flags, __btrfs_submit_bio_start,
1317                                    __btrfs_submit_bio_done);
1318         }
1319
1320 mapit:
1321         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1322 }
1323
1324 /*
1325  * given a list of ordered sums record them in the inode.  This happens
1326  * at IO completion time based on sums calculated at bio submission time.
1327  */
1328 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1329                              struct inode *inode, u64 file_offset,
1330                              struct list_head *list)
1331 {
1332         struct btrfs_ordered_sum *sum;
1333
1334         btrfs_set_trans_block_group(trans, inode);
1335
1336         list_for_each_entry(sum, list, list) {
1337                 btrfs_csum_file_blocks(trans,
1338                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1339         }
1340         return 0;
1341 }
1342
1343 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1344 {
1345         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1346                 WARN_ON(1);
1347         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1348                                    GFP_NOFS);
1349 }
1350
1351 /* see btrfs_writepage_start_hook for details on why this is required */
1352 struct btrfs_writepage_fixup {
1353         struct page *page;
1354         struct btrfs_work work;
1355 };
1356
1357 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1358 {
1359         struct btrfs_writepage_fixup *fixup;
1360         struct btrfs_ordered_extent *ordered;
1361         struct page *page;
1362         struct inode *inode;
1363         u64 page_start;
1364         u64 page_end;
1365
1366         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1367         page = fixup->page;
1368 again:
1369         lock_page(page);
1370         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1371                 ClearPageChecked(page);
1372                 goto out_page;
1373         }
1374
1375         inode = page->mapping->host;
1376         page_start = page_offset(page);
1377         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1378
1379         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1380
1381         /* already ordered? We're done */
1382         if (PagePrivate2(page))
1383                 goto out;
1384
1385         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1386         if (ordered) {
1387                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1388                               page_end, GFP_NOFS);
1389                 unlock_page(page);
1390                 btrfs_start_ordered_extent(inode, ordered, 1);
1391                 goto again;
1392         }
1393
1394         btrfs_set_extent_delalloc(inode, page_start, page_end);
1395         ClearPageChecked(page);
1396 out:
1397         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1398 out_page:
1399         unlock_page(page);
1400         page_cache_release(page);
1401 }
1402
1403 /*
1404  * There are a few paths in the higher layers of the kernel that directly
1405  * set the page dirty bit without asking the filesystem if it is a
1406  * good idea.  This causes problems because we want to make sure COW
1407  * properly happens and the data=ordered rules are followed.
1408  *
1409  * In our case any range that doesn't have the ORDERED bit set
1410  * hasn't been properly setup for IO.  We kick off an async process
1411  * to fix it up.  The async helper will wait for ordered extents, set
1412  * the delalloc bit and make it safe to write the page.
1413  */
1414 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1415 {
1416         struct inode *inode = page->mapping->host;
1417         struct btrfs_writepage_fixup *fixup;
1418         struct btrfs_root *root = BTRFS_I(inode)->root;
1419
1420         /* this page is properly in the ordered list */
1421         if (TestClearPagePrivate2(page))
1422                 return 0;
1423
1424         if (PageChecked(page))
1425                 return -EAGAIN;
1426
1427         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1428         if (!fixup)
1429                 return -EAGAIN;
1430
1431         SetPageChecked(page);
1432         page_cache_get(page);
1433         fixup->work.func = btrfs_writepage_fixup_worker;
1434         fixup->page = page;
1435         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1436         return -EAGAIN;
1437 }
1438
1439 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1440                                        struct inode *inode, u64 file_pos,
1441                                        u64 disk_bytenr, u64 disk_num_bytes,
1442                                        u64 num_bytes, u64 ram_bytes,
1443                                        u64 locked_end,
1444                                        u8 compression, u8 encryption,
1445                                        u16 other_encoding, int extent_type)
1446 {
1447         struct btrfs_root *root = BTRFS_I(inode)->root;
1448         struct btrfs_file_extent_item *fi;
1449         struct btrfs_path *path;
1450         struct extent_buffer *leaf;
1451         struct btrfs_key ins;
1452         u64 hint;
1453         int ret;
1454
1455         path = btrfs_alloc_path();
1456         BUG_ON(!path);
1457
1458         path->leave_spinning = 1;
1459
1460         /*
1461          * we may be replacing one extent in the tree with another.
1462          * The new extent is pinned in the extent map, and we don't want
1463          * to drop it from the cache until it is completely in the btree.
1464          *
1465          * So, tell btrfs_drop_extents to leave this extent in the cache.
1466          * the caller is expected to unpin it and allow it to be merged
1467          * with the others.
1468          */
1469         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1470                                  file_pos + num_bytes, locked_end,
1471                                  file_pos, &hint, 0);
1472         BUG_ON(ret);
1473
1474         ins.objectid = inode->i_ino;
1475         ins.offset = file_pos;
1476         ins.type = BTRFS_EXTENT_DATA_KEY;
1477         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1478         BUG_ON(ret);
1479         leaf = path->nodes[0];
1480         fi = btrfs_item_ptr(leaf, path->slots[0],
1481                             struct btrfs_file_extent_item);
1482         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1483         btrfs_set_file_extent_type(leaf, fi, extent_type);
1484         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1485         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1486         btrfs_set_file_extent_offset(leaf, fi, 0);
1487         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1488         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1489         btrfs_set_file_extent_compression(leaf, fi, compression);
1490         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1491         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1492
1493         btrfs_unlock_up_safe(path, 1);
1494         btrfs_set_lock_blocking(leaf);
1495
1496         btrfs_mark_buffer_dirty(leaf);
1497
1498         inode_add_bytes(inode, num_bytes);
1499
1500         ins.objectid = disk_bytenr;
1501         ins.offset = disk_num_bytes;
1502         ins.type = BTRFS_EXTENT_ITEM_KEY;
1503         ret = btrfs_alloc_reserved_file_extent(trans, root,
1504                                         root->root_key.objectid,
1505                                         inode->i_ino, file_pos, &ins);
1506         BUG_ON(ret);
1507         btrfs_free_path(path);
1508
1509         return 0;
1510 }
1511
1512 /*
1513  * helper function for btrfs_finish_ordered_io, this
1514  * just reads in some of the csum leaves to prime them into ram
1515  * before we start the transaction.  It limits the amount of btree
1516  * reads required while inside the transaction.
1517  */
1518 static noinline void reada_csum(struct btrfs_root *root,
1519                                 struct btrfs_path *path,
1520                                 struct btrfs_ordered_extent *ordered_extent)
1521 {
1522         struct btrfs_ordered_sum *sum;
1523         u64 bytenr;
1524
1525         sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1526                          list);
1527         bytenr = sum->sums[0].bytenr;
1528
1529         /*
1530          * we don't care about the results, the point of this search is
1531          * just to get the btree leaves into ram
1532          */
1533         btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1534 }
1535
1536 /* as ordered data IO finishes, this gets called so we can finish
1537  * an ordered extent if the range of bytes in the file it covers are
1538  * fully written.
1539  */
1540 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1541 {
1542         struct btrfs_root *root = BTRFS_I(inode)->root;
1543         struct btrfs_trans_handle *trans;
1544         struct btrfs_ordered_extent *ordered_extent = NULL;
1545         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1546         struct btrfs_path *path;
1547         int compressed = 0;
1548         int ret;
1549
1550         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1551         if (!ret)
1552                 return 0;
1553
1554         /*
1555          * before we join the transaction, try to do some of our IO.
1556          * This will limit the amount of IO that we have to do with
1557          * the transaction running.  We're unlikely to need to do any
1558          * IO if the file extents are new, the disk_i_size checks
1559          * covers the most common case.
1560          */
1561         if (start < BTRFS_I(inode)->disk_i_size) {
1562                 path = btrfs_alloc_path();
1563                 if (path) {
1564                         ret = btrfs_lookup_file_extent(NULL, root, path,
1565                                                        inode->i_ino,
1566                                                        start, 0);
1567                         ordered_extent = btrfs_lookup_ordered_extent(inode,
1568                                                                      start);
1569                         if (!list_empty(&ordered_extent->list)) {
1570                                 btrfs_release_path(root, path);
1571                                 reada_csum(root, path, ordered_extent);
1572                         }
1573                         btrfs_free_path(path);
1574                 }
1575         }
1576
1577         trans = btrfs_join_transaction(root, 1);
1578
1579         if (!ordered_extent)
1580                 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1581         BUG_ON(!ordered_extent);
1582         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1583                 goto nocow;
1584
1585         lock_extent(io_tree, ordered_extent->file_offset,
1586                     ordered_extent->file_offset + ordered_extent->len - 1,
1587                     GFP_NOFS);
1588
1589         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1590                 compressed = 1;
1591         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1592                 BUG_ON(compressed);
1593                 ret = btrfs_mark_extent_written(trans, root, inode,
1594                                                 ordered_extent->file_offset,
1595                                                 ordered_extent->file_offset +
1596                                                 ordered_extent->len);
1597                 BUG_ON(ret);
1598         } else {
1599                 ret = insert_reserved_file_extent(trans, inode,
1600                                                 ordered_extent->file_offset,
1601                                                 ordered_extent->start,
1602                                                 ordered_extent->disk_len,
1603                                                 ordered_extent->len,
1604                                                 ordered_extent->len,
1605                                                 ordered_extent->file_offset +
1606                                                 ordered_extent->len,
1607                                                 compressed, 0, 0,
1608                                                 BTRFS_FILE_EXTENT_REG);
1609                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1610                                    ordered_extent->file_offset,
1611                                    ordered_extent->len);
1612                 BUG_ON(ret);
1613         }
1614         unlock_extent(io_tree, ordered_extent->file_offset,
1615                     ordered_extent->file_offset + ordered_extent->len - 1,
1616                     GFP_NOFS);
1617 nocow:
1618         add_pending_csums(trans, inode, ordered_extent->file_offset,
1619                           &ordered_extent->list);
1620
1621         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1622         btrfs_ordered_update_i_size(inode, ordered_extent);
1623         btrfs_update_inode(trans, root, inode);
1624         btrfs_remove_ordered_extent(inode, ordered_extent);
1625         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1626
1627         /* once for us */
1628         btrfs_put_ordered_extent(ordered_extent);
1629         /* once for the tree */
1630         btrfs_put_ordered_extent(ordered_extent);
1631
1632         btrfs_end_transaction(trans, root);
1633         return 0;
1634 }
1635
1636 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1637                                 struct extent_state *state, int uptodate)
1638 {
1639         ClearPagePrivate2(page);
1640         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1641 }
1642
1643 /*
1644  * When IO fails, either with EIO or csum verification fails, we
1645  * try other mirrors that might have a good copy of the data.  This
1646  * io_failure_record is used to record state as we go through all the
1647  * mirrors.  If another mirror has good data, the page is set up to date
1648  * and things continue.  If a good mirror can't be found, the original
1649  * bio end_io callback is called to indicate things have failed.
1650  */
1651 struct io_failure_record {
1652         struct page *page;
1653         u64 start;
1654         u64 len;
1655         u64 logical;
1656         unsigned long bio_flags;
1657         int last_mirror;
1658 };
1659
1660 static int btrfs_io_failed_hook(struct bio *failed_bio,
1661                          struct page *page, u64 start, u64 end,
1662                          struct extent_state *state)
1663 {
1664         struct io_failure_record *failrec = NULL;
1665         u64 private;
1666         struct extent_map *em;
1667         struct inode *inode = page->mapping->host;
1668         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1669         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1670         struct bio *bio;
1671         int num_copies;
1672         int ret;
1673         int rw;
1674         u64 logical;
1675
1676         ret = get_state_private(failure_tree, start, &private);
1677         if (ret) {
1678                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1679                 if (!failrec)
1680                         return -ENOMEM;
1681                 failrec->start = start;
1682                 failrec->len = end - start + 1;
1683                 failrec->last_mirror = 0;
1684                 failrec->bio_flags = 0;
1685
1686                 read_lock(&em_tree->lock);
1687                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1688                 if (em->start > start || em->start + em->len < start) {
1689                         free_extent_map(em);
1690                         em = NULL;
1691                 }
1692                 read_unlock(&em_tree->lock);
1693
1694                 if (!em || IS_ERR(em)) {
1695                         kfree(failrec);
1696                         return -EIO;
1697                 }
1698                 logical = start - em->start;
1699                 logical = em->block_start + logical;
1700                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1701                         logical = em->block_start;
1702                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1703                 }
1704                 failrec->logical = logical;
1705                 free_extent_map(em);
1706                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1707                                 EXTENT_DIRTY, GFP_NOFS);
1708                 set_state_private(failure_tree, start,
1709                                  (u64)(unsigned long)failrec);
1710         } else {
1711                 failrec = (struct io_failure_record *)(unsigned long)private;
1712         }
1713         num_copies = btrfs_num_copies(
1714                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1715                               failrec->logical, failrec->len);
1716         failrec->last_mirror++;
1717         if (!state) {
1718                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1719                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1720                                                     failrec->start,
1721                                                     EXTENT_LOCKED);
1722                 if (state && state->start != failrec->start)
1723                         state = NULL;
1724                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1725         }
1726         if (!state || failrec->last_mirror > num_copies) {
1727                 set_state_private(failure_tree, failrec->start, 0);
1728                 clear_extent_bits(failure_tree, failrec->start,
1729                                   failrec->start + failrec->len - 1,
1730                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1731                 kfree(failrec);
1732                 return -EIO;
1733         }
1734         bio = bio_alloc(GFP_NOFS, 1);
1735         bio->bi_private = state;
1736         bio->bi_end_io = failed_bio->bi_end_io;
1737         bio->bi_sector = failrec->logical >> 9;
1738         bio->bi_bdev = failed_bio->bi_bdev;
1739         bio->bi_size = 0;
1740
1741         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1742         if (failed_bio->bi_rw & (1 << BIO_RW))
1743                 rw = WRITE;
1744         else
1745                 rw = READ;
1746
1747         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1748                                                       failrec->last_mirror,
1749                                                       failrec->bio_flags);
1750         return 0;
1751 }
1752
1753 /*
1754  * each time an IO finishes, we do a fast check in the IO failure tree
1755  * to see if we need to process or clean up an io_failure_record
1756  */
1757 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1758 {
1759         u64 private;
1760         u64 private_failure;
1761         struct io_failure_record *failure;
1762         int ret;
1763
1764         private = 0;
1765         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1766                              (u64)-1, 1, EXTENT_DIRTY)) {
1767                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1768                                         start, &private_failure);
1769                 if (ret == 0) {
1770                         failure = (struct io_failure_record *)(unsigned long)
1771                                    private_failure;
1772                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1773                                           failure->start, 0);
1774                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1775                                           failure->start,
1776                                           failure->start + failure->len - 1,
1777                                           EXTENT_DIRTY | EXTENT_LOCKED,
1778                                           GFP_NOFS);
1779                         kfree(failure);
1780                 }
1781         }
1782         return 0;
1783 }
1784
1785 /*
1786  * when reads are done, we need to check csums to verify the data is correct
1787  * if there's a match, we allow the bio to finish.  If not, we go through
1788  * the io_failure_record routines to find good copies
1789  */
1790 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1791                                struct extent_state *state)
1792 {
1793         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1794         struct inode *inode = page->mapping->host;
1795         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1796         char *kaddr;
1797         u64 private = ~(u32)0;
1798         int ret;
1799         struct btrfs_root *root = BTRFS_I(inode)->root;
1800         u32 csum = ~(u32)0;
1801
1802         if (PageChecked(page)) {
1803                 ClearPageChecked(page);
1804                 goto good;
1805         }
1806
1807         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1808                 return 0;
1809
1810         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1811             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1812                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1813                                   GFP_NOFS);
1814                 return 0;
1815         }
1816
1817         if (state && state->start == start) {
1818                 private = state->private;
1819                 ret = 0;
1820         } else {
1821                 ret = get_state_private(io_tree, start, &private);
1822         }
1823         kaddr = kmap_atomic(page, KM_USER0);
1824         if (ret)
1825                 goto zeroit;
1826
1827         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1828         btrfs_csum_final(csum, (char *)&csum);
1829         if (csum != private)
1830                 goto zeroit;
1831
1832         kunmap_atomic(kaddr, KM_USER0);
1833 good:
1834         /* if the io failure tree for this inode is non-empty,
1835          * check to see if we've recovered from a failed IO
1836          */
1837         btrfs_clean_io_failures(inode, start);
1838         return 0;
1839
1840 zeroit:
1841         if (printk_ratelimit()) {
1842                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1843                        "private %llu\n", page->mapping->host->i_ino,
1844                        (unsigned long long)start, csum,
1845                        (unsigned long long)private);
1846         }
1847         memset(kaddr + offset, 1, end - start + 1);
1848         flush_dcache_page(page);
1849         kunmap_atomic(kaddr, KM_USER0);
1850         if (private == 0)
1851                 return 0;
1852         return -EIO;
1853 }
1854
1855 /*
1856  * This creates an orphan entry for the given inode in case something goes
1857  * wrong in the middle of an unlink/truncate.
1858  */
1859 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1860 {
1861         struct btrfs_root *root = BTRFS_I(inode)->root;
1862         int ret = 0;
1863
1864         spin_lock(&root->list_lock);
1865
1866         /* already on the orphan list, we're good */
1867         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1868                 spin_unlock(&root->list_lock);
1869                 return 0;
1870         }
1871
1872         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1873
1874         spin_unlock(&root->list_lock);
1875
1876         /*
1877          * insert an orphan item to track this unlinked/truncated file
1878          */
1879         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1880
1881         return ret;
1882 }
1883
1884 /*
1885  * We have done the truncate/delete so we can go ahead and remove the orphan
1886  * item for this particular inode.
1887  */
1888 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1889 {
1890         struct btrfs_root *root = BTRFS_I(inode)->root;
1891         int ret = 0;
1892
1893         spin_lock(&root->list_lock);
1894
1895         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1896                 spin_unlock(&root->list_lock);
1897                 return 0;
1898         }
1899
1900         list_del_init(&BTRFS_I(inode)->i_orphan);
1901         if (!trans) {
1902                 spin_unlock(&root->list_lock);
1903                 return 0;
1904         }
1905
1906         spin_unlock(&root->list_lock);
1907
1908         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1909
1910         return ret;
1911 }
1912
1913 /*
1914  * this cleans up any orphans that may be left on the list from the last use
1915  * of this root.
1916  */
1917 void btrfs_orphan_cleanup(struct btrfs_root *root)
1918 {
1919         struct btrfs_path *path;
1920         struct extent_buffer *leaf;
1921         struct btrfs_item *item;
1922         struct btrfs_key key, found_key;
1923         struct btrfs_trans_handle *trans;
1924         struct inode *inode;
1925         int ret = 0, nr_unlink = 0, nr_truncate = 0;
1926
1927         path = btrfs_alloc_path();
1928         if (!path)
1929                 return;
1930         path->reada = -1;
1931
1932         key.objectid = BTRFS_ORPHAN_OBJECTID;
1933         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1934         key.offset = (u64)-1;
1935
1936
1937         while (1) {
1938                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1939                 if (ret < 0) {
1940                         printk(KERN_ERR "Error searching slot for orphan: %d"
1941                                "\n", ret);
1942                         break;
1943                 }
1944
1945                 /*
1946                  * if ret == 0 means we found what we were searching for, which
1947                  * is weird, but possible, so only screw with path if we didnt
1948                  * find the key and see if we have stuff that matches
1949                  */
1950                 if (ret > 0) {
1951                         if (path->slots[0] == 0)
1952                                 break;
1953                         path->slots[0]--;
1954                 }
1955
1956                 /* pull out the item */
1957                 leaf = path->nodes[0];
1958                 item = btrfs_item_nr(leaf, path->slots[0]);
1959                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1960
1961                 /* make sure the item matches what we want */
1962                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1963                         break;
1964                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1965                         break;
1966
1967                 /* release the path since we're done with it */
1968                 btrfs_release_path(root, path);
1969
1970                 /*
1971                  * this is where we are basically btrfs_lookup, without the
1972                  * crossing root thing.  we store the inode number in the
1973                  * offset of the orphan item.
1974                  */
1975                 found_key.objectid = found_key.offset;
1976                 found_key.type = BTRFS_INODE_ITEM_KEY;
1977                 found_key.offset = 0;
1978                 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
1979                 if (IS_ERR(inode))
1980                         break;
1981
1982                 /*
1983                  * add this inode to the orphan list so btrfs_orphan_del does
1984                  * the proper thing when we hit it
1985                  */
1986                 spin_lock(&root->list_lock);
1987                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1988                 spin_unlock(&root->list_lock);
1989
1990                 /*
1991                  * if this is a bad inode, means we actually succeeded in
1992                  * removing the inode, but not the orphan record, which means
1993                  * we need to manually delete the orphan since iput will just
1994                  * do a destroy_inode
1995                  */
1996                 if (is_bad_inode(inode)) {
1997                         trans = btrfs_start_transaction(root, 1);
1998                         btrfs_orphan_del(trans, inode);
1999                         btrfs_end_transaction(trans, root);
2000                         iput(inode);
2001                         continue;
2002                 }
2003
2004                 /* if we have links, this was a truncate, lets do that */
2005                 if (inode->i_nlink) {
2006                         nr_truncate++;
2007                         btrfs_truncate(inode);
2008                 } else {
2009                         nr_unlink++;
2010                 }
2011
2012                 /* this will do delete_inode and everything for us */
2013                 iput(inode);
2014         }
2015
2016         if (nr_unlink)
2017                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2018         if (nr_truncate)
2019                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2020
2021         btrfs_free_path(path);
2022 }
2023
2024 /*
2025  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2026  * don't find any xattrs, we know there can't be any acls.
2027  *
2028  * slot is the slot the inode is in, objectid is the objectid of the inode
2029  */
2030 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2031                                           int slot, u64 objectid)
2032 {
2033         u32 nritems = btrfs_header_nritems(leaf);
2034         struct btrfs_key found_key;
2035         int scanned = 0;
2036
2037         slot++;
2038         while (slot < nritems) {
2039                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2040
2041                 /* we found a different objectid, there must not be acls */
2042                 if (found_key.objectid != objectid)
2043                         return 0;
2044
2045                 /* we found an xattr, assume we've got an acl */
2046                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2047                         return 1;
2048
2049                 /*
2050                  * we found a key greater than an xattr key, there can't
2051                  * be any acls later on
2052                  */
2053                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2054                         return 0;
2055
2056                 slot++;
2057                 scanned++;
2058
2059                 /*
2060                  * it goes inode, inode backrefs, xattrs, extents,
2061                  * so if there are a ton of hard links to an inode there can
2062                  * be a lot of backrefs.  Don't waste time searching too hard,
2063                  * this is just an optimization
2064                  */
2065                 if (scanned >= 8)
2066                         break;
2067         }
2068         /* we hit the end of the leaf before we found an xattr or
2069          * something larger than an xattr.  We have to assume the inode
2070          * has acls
2071          */
2072         return 1;
2073 }
2074
2075 /*
2076  * read an inode from the btree into the in-memory inode
2077  */
2078 static void btrfs_read_locked_inode(struct inode *inode)
2079 {
2080         struct btrfs_path *path;
2081         struct extent_buffer *leaf;
2082         struct btrfs_inode_item *inode_item;
2083         struct btrfs_timespec *tspec;
2084         struct btrfs_root *root = BTRFS_I(inode)->root;
2085         struct btrfs_key location;
2086         int maybe_acls;
2087         u64 alloc_group_block;
2088         u32 rdev;
2089         int ret;
2090
2091         path = btrfs_alloc_path();
2092         BUG_ON(!path);
2093         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2094
2095         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2096         if (ret)
2097                 goto make_bad;
2098
2099         leaf = path->nodes[0];
2100         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2101                                     struct btrfs_inode_item);
2102
2103         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2104         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2105         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2106         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2107         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2108
2109         tspec = btrfs_inode_atime(inode_item);
2110         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2111         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2112
2113         tspec = btrfs_inode_mtime(inode_item);
2114         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2115         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2116
2117         tspec = btrfs_inode_ctime(inode_item);
2118         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2119         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2120
2121         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2122         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2123         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2124         inode->i_generation = BTRFS_I(inode)->generation;
2125         inode->i_rdev = 0;
2126         rdev = btrfs_inode_rdev(leaf, inode_item);
2127
2128         BTRFS_I(inode)->index_cnt = (u64)-1;
2129         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2130
2131         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2132
2133         /*
2134          * try to precache a NULL acl entry for files that don't have
2135          * any xattrs or acls
2136          */
2137         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2138         if (!maybe_acls) {
2139                 BTRFS_I(inode)->i_acl = NULL;
2140                 BTRFS_I(inode)->i_default_acl = NULL;
2141         }
2142
2143         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2144                                                 alloc_group_block, 0);
2145         btrfs_free_path(path);
2146         inode_item = NULL;
2147
2148         switch (inode->i_mode & S_IFMT) {
2149         case S_IFREG:
2150                 inode->i_mapping->a_ops = &btrfs_aops;
2151                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2152                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2153                 inode->i_fop = &btrfs_file_operations;
2154                 inode->i_op = &btrfs_file_inode_operations;
2155                 break;
2156         case S_IFDIR:
2157                 inode->i_fop = &btrfs_dir_file_operations;
2158                 if (root == root->fs_info->tree_root)
2159                         inode->i_op = &btrfs_dir_ro_inode_operations;
2160                 else
2161                         inode->i_op = &btrfs_dir_inode_operations;
2162                 break;
2163         case S_IFLNK:
2164                 inode->i_op = &btrfs_symlink_inode_operations;
2165                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2166                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2167                 break;
2168         default:
2169                 inode->i_op = &btrfs_special_inode_operations;
2170                 init_special_inode(inode, inode->i_mode, rdev);
2171                 break;
2172         }
2173
2174         btrfs_update_iflags(inode);
2175         return;
2176
2177 make_bad:
2178         btrfs_free_path(path);
2179         make_bad_inode(inode);
2180 }
2181
2182 /*
2183  * given a leaf and an inode, copy the inode fields into the leaf
2184  */
2185 static void fill_inode_item(struct btrfs_trans_handle *trans,
2186                             struct extent_buffer *leaf,
2187                             struct btrfs_inode_item *item,
2188                             struct inode *inode)
2189 {
2190         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2191         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2192         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2193         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2194         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2195
2196         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2197                                inode->i_atime.tv_sec);
2198         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2199                                 inode->i_atime.tv_nsec);
2200
2201         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2202                                inode->i_mtime.tv_sec);
2203         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2204                                 inode->i_mtime.tv_nsec);
2205
2206         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2207                                inode->i_ctime.tv_sec);
2208         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2209                                 inode->i_ctime.tv_nsec);
2210
2211         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2212         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2213         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2214         btrfs_set_inode_transid(leaf, item, trans->transid);
2215         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2216         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2217         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2218 }
2219
2220 /*
2221  * copy everything in the in-memory inode into the btree.
2222  */
2223 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2224                                 struct btrfs_root *root, struct inode *inode)
2225 {
2226         struct btrfs_inode_item *inode_item;
2227         struct btrfs_path *path;
2228         struct extent_buffer *leaf;
2229         int ret;
2230
2231         path = btrfs_alloc_path();
2232         BUG_ON(!path);
2233         path->leave_spinning = 1;
2234         ret = btrfs_lookup_inode(trans, root, path,
2235                                  &BTRFS_I(inode)->location, 1);
2236         if (ret) {
2237                 if (ret > 0)
2238                         ret = -ENOENT;
2239                 goto failed;
2240         }
2241
2242         btrfs_unlock_up_safe(path, 1);
2243         leaf = path->nodes[0];
2244         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2245                                   struct btrfs_inode_item);
2246
2247         fill_inode_item(trans, leaf, inode_item, inode);
2248         btrfs_mark_buffer_dirty(leaf);
2249         btrfs_set_inode_last_trans(trans, inode);
2250         ret = 0;
2251 failed:
2252         btrfs_free_path(path);
2253         return ret;
2254 }
2255
2256
2257 /*
2258  * unlink helper that gets used here in inode.c and in the tree logging
2259  * recovery code.  It remove a link in a directory with a given name, and
2260  * also drops the back refs in the inode to the directory
2261  */
2262 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2263                        struct btrfs_root *root,
2264                        struct inode *dir, struct inode *inode,
2265                        const char *name, int name_len)
2266 {
2267         struct btrfs_path *path;
2268         int ret = 0;
2269         struct extent_buffer *leaf;
2270         struct btrfs_dir_item *di;
2271         struct btrfs_key key;
2272         u64 index;
2273
2274         path = btrfs_alloc_path();
2275         if (!path) {
2276                 ret = -ENOMEM;
2277                 goto err;
2278         }
2279
2280         path->leave_spinning = 1;
2281         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2282                                     name, name_len, -1);
2283         if (IS_ERR(di)) {
2284                 ret = PTR_ERR(di);
2285                 goto err;
2286         }
2287         if (!di) {
2288                 ret = -ENOENT;
2289                 goto err;
2290         }
2291         leaf = path->nodes[0];
2292         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2293         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2294         if (ret)
2295                 goto err;
2296         btrfs_release_path(root, path);
2297
2298         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2299                                   inode->i_ino,
2300                                   dir->i_ino, &index);
2301         if (ret) {
2302                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2303                        "inode %lu parent %lu\n", name_len, name,
2304                        inode->i_ino, dir->i_ino);
2305                 goto err;
2306         }
2307
2308         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2309                                          index, name, name_len, -1);
2310         if (IS_ERR(di)) {
2311                 ret = PTR_ERR(di);
2312                 goto err;
2313         }
2314         if (!di) {
2315                 ret = -ENOENT;
2316                 goto err;
2317         }
2318         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2319         btrfs_release_path(root, path);
2320
2321         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2322                                          inode, dir->i_ino);
2323         BUG_ON(ret != 0 && ret != -ENOENT);
2324
2325         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2326                                            dir, index);
2327         BUG_ON(ret);
2328 err:
2329         btrfs_free_path(path);
2330         if (ret)
2331                 goto out;
2332
2333         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2334         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2335         btrfs_update_inode(trans, root, dir);
2336         btrfs_drop_nlink(inode);
2337         ret = btrfs_update_inode(trans, root, inode);
2338         dir->i_sb->s_dirt = 1;
2339 out:
2340         return ret;
2341 }
2342
2343 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2344 {
2345         struct btrfs_root *root;
2346         struct btrfs_trans_handle *trans;
2347         struct inode *inode = dentry->d_inode;
2348         int ret;
2349         unsigned long nr = 0;
2350
2351         root = BTRFS_I(dir)->root;
2352
2353         trans = btrfs_start_transaction(root, 1);
2354
2355         btrfs_set_trans_block_group(trans, dir);
2356
2357         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2358
2359         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2360                                  dentry->d_name.name, dentry->d_name.len);
2361
2362         if (inode->i_nlink == 0)
2363                 ret = btrfs_orphan_add(trans, inode);
2364
2365         nr = trans->blocks_used;
2366
2367         btrfs_end_transaction_throttle(trans, root);
2368         btrfs_btree_balance_dirty(root, nr);
2369         return ret;
2370 }
2371
2372 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2373 {
2374         struct inode *inode = dentry->d_inode;
2375         int err = 0;
2376         int ret;
2377         struct btrfs_root *root = BTRFS_I(dir)->root;
2378         struct btrfs_trans_handle *trans;
2379         unsigned long nr = 0;
2380
2381         /*
2382          * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2383          * the root of a subvolume or snapshot
2384          */
2385         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2386             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2387                 return -ENOTEMPTY;
2388         }
2389
2390         trans = btrfs_start_transaction(root, 1);
2391         btrfs_set_trans_block_group(trans, dir);
2392
2393         err = btrfs_orphan_add(trans, inode);
2394         if (err)
2395                 goto fail_trans;
2396
2397         /* now the directory is empty */
2398         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2399                                  dentry->d_name.name, dentry->d_name.len);
2400         if (!err)
2401                 btrfs_i_size_write(inode, 0);
2402
2403 fail_trans:
2404         nr = trans->blocks_used;
2405         ret = btrfs_end_transaction_throttle(trans, root);
2406         btrfs_btree_balance_dirty(root, nr);
2407
2408         if (ret && !err)
2409                 err = ret;
2410         return err;
2411 }
2412
2413 #if 0
2414 /*
2415  * when truncating bytes in a file, it is possible to avoid reading
2416  * the leaves that contain only checksum items.  This can be the
2417  * majority of the IO required to delete a large file, but it must
2418  * be done carefully.
2419  *
2420  * The keys in the level just above the leaves are checked to make sure
2421  * the lowest key in a given leaf is a csum key, and starts at an offset
2422  * after the new  size.
2423  *
2424  * Then the key for the next leaf is checked to make sure it also has
2425  * a checksum item for the same file.  If it does, we know our target leaf
2426  * contains only checksum items, and it can be safely freed without reading
2427  * it.
2428  *
2429  * This is just an optimization targeted at large files.  It may do
2430  * nothing.  It will return 0 unless things went badly.
2431  */
2432 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2433                                      struct btrfs_root *root,
2434                                      struct btrfs_path *path,
2435                                      struct inode *inode, u64 new_size)
2436 {
2437         struct btrfs_key key;
2438         int ret;
2439         int nritems;
2440         struct btrfs_key found_key;
2441         struct btrfs_key other_key;
2442         struct btrfs_leaf_ref *ref;
2443         u64 leaf_gen;
2444         u64 leaf_start;
2445
2446         path->lowest_level = 1;
2447         key.objectid = inode->i_ino;
2448         key.type = BTRFS_CSUM_ITEM_KEY;
2449         key.offset = new_size;
2450 again:
2451         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2452         if (ret < 0)
2453                 goto out;
2454
2455         if (path->nodes[1] == NULL) {
2456                 ret = 0;
2457                 goto out;
2458         }
2459         ret = 0;
2460         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2461         nritems = btrfs_header_nritems(path->nodes[1]);
2462
2463         if (!nritems)
2464                 goto out;
2465
2466         if (path->slots[1] >= nritems)
2467                 goto next_node;
2468
2469         /* did we find a key greater than anything we want to delete? */
2470         if (found_key.objectid > inode->i_ino ||
2471            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2472                 goto out;
2473
2474         /* we check the next key in the node to make sure the leave contains
2475          * only checksum items.  This comparison doesn't work if our
2476          * leaf is the last one in the node
2477          */
2478         if (path->slots[1] + 1 >= nritems) {
2479 next_node:
2480                 /* search forward from the last key in the node, this
2481                  * will bring us into the next node in the tree
2482                  */
2483                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2484
2485                 /* unlikely, but we inc below, so check to be safe */
2486                 if (found_key.offset == (u64)-1)
2487                         goto out;
2488
2489                 /* search_forward needs a path with locks held, do the
2490                  * search again for the original key.  It is possible
2491                  * this will race with a balance and return a path that
2492                  * we could modify, but this drop is just an optimization
2493                  * and is allowed to miss some leaves.
2494                  */
2495                 btrfs_release_path(root, path);
2496                 found_key.offset++;
2497
2498                 /* setup a max key for search_forward */
2499                 other_key.offset = (u64)-1;
2500                 other_key.type = key.type;
2501                 other_key.objectid = key.objectid;
2502
2503                 path->keep_locks = 1;
2504                 ret = btrfs_search_forward(root, &found_key, &other_key,
2505                                            path, 0, 0);
2506                 path->keep_locks = 0;
2507                 if (ret || found_key.objectid != key.objectid ||
2508                     found_key.type != key.type) {
2509                         ret = 0;
2510                         goto out;
2511                 }
2512
2513                 key.offset = found_key.offset;
2514                 btrfs_release_path(root, path);
2515                 cond_resched();
2516                 goto again;
2517         }
2518
2519         /* we know there's one more slot after us in the tree,
2520          * read that key so we can verify it is also a checksum item
2521          */
2522         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2523
2524         if (found_key.objectid < inode->i_ino)
2525                 goto next_key;
2526
2527         if (found_key.type != key.type || found_key.offset < new_size)
2528                 goto next_key;
2529
2530         /*
2531          * if the key for the next leaf isn't a csum key from this objectid,
2532          * we can't be sure there aren't good items inside this leaf.
2533          * Bail out
2534          */
2535         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2536                 goto out;
2537
2538         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2539         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2540         /*
2541          * it is safe to delete this leaf, it contains only
2542          * csum items from this inode at an offset >= new_size
2543          */
2544         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2545         BUG_ON(ret);
2546
2547         if (root->ref_cows && leaf_gen < trans->transid) {
2548                 ref = btrfs_alloc_leaf_ref(root, 0);
2549                 if (ref) {
2550                         ref->root_gen = root->root_key.offset;
2551                         ref->bytenr = leaf_start;
2552                         ref->owner = 0;
2553                         ref->generation = leaf_gen;
2554                         ref->nritems = 0;
2555
2556                         btrfs_sort_leaf_ref(ref);
2557
2558                         ret = btrfs_add_leaf_ref(root, ref, 0);
2559                         WARN_ON(ret);
2560                         btrfs_free_leaf_ref(root, ref);
2561                 } else {
2562                         WARN_ON(1);
2563                 }
2564         }
2565 next_key:
2566         btrfs_release_path(root, path);
2567
2568         if (other_key.objectid == inode->i_ino &&
2569             other_key.type == key.type && other_key.offset > key.offset) {
2570                 key.offset = other_key.offset;
2571                 cond_resched();
2572                 goto again;
2573         }
2574         ret = 0;
2575 out:
2576         /* fixup any changes we've made to the path */
2577         path->lowest_level = 0;
2578         path->keep_locks = 0;
2579         btrfs_release_path(root, path);
2580         return ret;
2581 }
2582
2583 #endif
2584
2585 /*
2586  * this can truncate away extent items, csum items and directory items.
2587  * It starts at a high offset and removes keys until it can't find
2588  * any higher than new_size
2589  *
2590  * csum items that cross the new i_size are truncated to the new size
2591  * as well.
2592  *
2593  * min_type is the minimum key type to truncate down to.  If set to 0, this
2594  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2595  */
2596 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2597                                         struct btrfs_root *root,
2598                                         struct inode *inode,
2599                                         u64 new_size, u32 min_type)
2600 {
2601         int ret;
2602         struct btrfs_path *path;
2603         struct btrfs_key key;
2604         struct btrfs_key found_key;
2605         u32 found_type = (u8)-1;
2606         struct extent_buffer *leaf;
2607         struct btrfs_file_extent_item *fi;
2608         u64 extent_start = 0;
2609         u64 extent_num_bytes = 0;
2610         u64 extent_offset = 0;
2611         u64 item_end = 0;
2612         int found_extent;
2613         int del_item;
2614         int pending_del_nr = 0;
2615         int pending_del_slot = 0;
2616         int extent_type = -1;
2617         int encoding;
2618         u64 mask = root->sectorsize - 1;
2619
2620         if (root->ref_cows)
2621                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2622         path = btrfs_alloc_path();
2623         BUG_ON(!path);
2624         path->reada = -1;
2625
2626         /* FIXME, add redo link to tree so we don't leak on crash */
2627         key.objectid = inode->i_ino;
2628         key.offset = (u64)-1;
2629         key.type = (u8)-1;
2630
2631 search_again:
2632         path->leave_spinning = 1;
2633         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2634         if (ret < 0)
2635                 goto error;
2636
2637         if (ret > 0) {
2638                 /* there are no items in the tree for us to truncate, we're
2639                  * done
2640                  */
2641                 if (path->slots[0] == 0) {
2642                         ret = 0;
2643                         goto error;
2644                 }
2645                 path->slots[0]--;
2646         }
2647
2648         while (1) {
2649                 fi = NULL;
2650                 leaf = path->nodes[0];
2651                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2652                 found_type = btrfs_key_type(&found_key);
2653                 encoding = 0;
2654
2655                 if (found_key.objectid != inode->i_ino)
2656                         break;
2657
2658                 if (found_type < min_type)
2659                         break;
2660
2661                 item_end = found_key.offset;
2662                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2663                         fi = btrfs_item_ptr(leaf, path->slots[0],
2664                                             struct btrfs_file_extent_item);
2665                         extent_type = btrfs_file_extent_type(leaf, fi);
2666                         encoding = btrfs_file_extent_compression(leaf, fi);
2667                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2668                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2669
2670                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2671                                 item_end +=
2672                                     btrfs_file_extent_num_bytes(leaf, fi);
2673                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2674                                 item_end += btrfs_file_extent_inline_len(leaf,
2675                                                                          fi);
2676                         }
2677                         item_end--;
2678                 }
2679                 if (item_end < new_size) {
2680                         if (found_type == BTRFS_DIR_ITEM_KEY)
2681                                 found_type = BTRFS_INODE_ITEM_KEY;
2682                         else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2683                                 found_type = BTRFS_EXTENT_DATA_KEY;
2684                         else if (found_type == BTRFS_EXTENT_DATA_KEY)
2685                                 found_type = BTRFS_XATTR_ITEM_KEY;
2686                         else if (found_type == BTRFS_XATTR_ITEM_KEY)
2687                                 found_type = BTRFS_INODE_REF_KEY;
2688                         else if (found_type)
2689                                 found_type--;
2690                         else
2691                                 break;
2692                         btrfs_set_key_type(&key, found_type);
2693                         goto next;
2694                 }
2695                 if (found_key.offset >= new_size)
2696                         del_item = 1;
2697                 else
2698                         del_item = 0;
2699                 found_extent = 0;
2700
2701                 /* FIXME, shrink the extent if the ref count is only 1 */
2702                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2703                         goto delete;
2704
2705                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2706                         u64 num_dec;
2707                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2708                         if (!del_item && !encoding) {
2709                                 u64 orig_num_bytes =
2710                                         btrfs_file_extent_num_bytes(leaf, fi);
2711                                 extent_num_bytes = new_size -
2712                                         found_key.offset + root->sectorsize - 1;
2713                                 extent_num_bytes = extent_num_bytes &
2714                                         ~((u64)root->sectorsize - 1);
2715                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2716                                                          extent_num_bytes);
2717                                 num_dec = (orig_num_bytes -
2718                                            extent_num_bytes);
2719                                 if (root->ref_cows && extent_start != 0)
2720                                         inode_sub_bytes(inode, num_dec);
2721                                 btrfs_mark_buffer_dirty(leaf);
2722                         } else {
2723                                 extent_num_bytes =
2724                                         btrfs_file_extent_disk_num_bytes(leaf,
2725                                                                          fi);
2726                                 extent_offset = found_key.offset -
2727                                         btrfs_file_extent_offset(leaf, fi);
2728
2729                                 /* FIXME blocksize != 4096 */
2730                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2731                                 if (extent_start != 0) {
2732                                         found_extent = 1;
2733                                         if (root->ref_cows)
2734                                                 inode_sub_bytes(inode, num_dec);
2735                                 }
2736                         }
2737                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2738                         /*
2739                          * we can't truncate inline items that have had
2740                          * special encodings
2741                          */
2742                         if (!del_item &&
2743                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2744                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
2745                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2746                                 u32 size = new_size - found_key.offset;
2747
2748                                 if (root->ref_cows) {
2749                                         inode_sub_bytes(inode, item_end + 1 -
2750                                                         new_size);
2751                                 }
2752                                 size =
2753                                     btrfs_file_extent_calc_inline_size(size);
2754                                 ret = btrfs_truncate_item(trans, root, path,
2755                                                           size, 1);
2756                                 BUG_ON(ret);
2757                         } else if (root->ref_cows) {
2758                                 inode_sub_bytes(inode, item_end + 1 -
2759                                                 found_key.offset);
2760                         }
2761                 }
2762 delete:
2763                 if (del_item) {
2764                         if (!pending_del_nr) {
2765                                 /* no pending yet, add ourselves */
2766                                 pending_del_slot = path->slots[0];
2767                                 pending_del_nr = 1;
2768                         } else if (pending_del_nr &&
2769                                    path->slots[0] + 1 == pending_del_slot) {
2770                                 /* hop on the pending chunk */
2771                                 pending_del_nr++;
2772                                 pending_del_slot = path->slots[0];
2773                         } else {
2774                                 BUG();
2775                         }
2776                 } else {
2777                         break;
2778                 }
2779                 if (found_extent && root->ref_cows) {
2780                         btrfs_set_path_blocking(path);
2781                         ret = btrfs_free_extent(trans, root, extent_start,
2782                                                 extent_num_bytes, 0,
2783                                                 btrfs_header_owner(leaf),
2784                                                 inode->i_ino, extent_offset);
2785                         BUG_ON(ret);
2786                 }
2787 next:
2788                 if (path->slots[0] == 0) {
2789                         if (pending_del_nr)
2790                                 goto del_pending;
2791                         btrfs_release_path(root, path);
2792                         if (found_type == BTRFS_INODE_ITEM_KEY)
2793                                 break;
2794                         goto search_again;
2795                 }
2796
2797                 path->slots[0]--;
2798                 if (pending_del_nr &&
2799                     path->slots[0] + 1 != pending_del_slot) {
2800                         struct btrfs_key debug;
2801 del_pending:
2802                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
2803                                               pending_del_slot);
2804                         ret = btrfs_del_items(trans, root, path,
2805                                               pending_del_slot,
2806                                               pending_del_nr);
2807                         BUG_ON(ret);
2808                         pending_del_nr = 0;
2809                         btrfs_release_path(root, path);
2810                         if (found_type == BTRFS_INODE_ITEM_KEY)
2811                                 break;
2812                         goto search_again;
2813                 }
2814         }
2815         ret = 0;
2816 error:
2817         if (pending_del_nr) {
2818                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2819                                       pending_del_nr);
2820         }
2821         btrfs_free_path(path);
2822         inode->i_sb->s_dirt = 1;
2823         return ret;
2824 }
2825
2826 /*
2827  * taken from block_truncate_page, but does cow as it zeros out
2828  * any bytes left in the last page in the file.
2829  */
2830 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2831 {
2832         struct inode *inode = mapping->host;
2833         struct btrfs_root *root = BTRFS_I(inode)->root;
2834         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2835         struct btrfs_ordered_extent *ordered;
2836         char *kaddr;
2837         u32 blocksize = root->sectorsize;
2838         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2839         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2840         struct page *page;
2841         int ret = 0;
2842         u64 page_start;
2843         u64 page_end;
2844
2845         if ((offset & (blocksize - 1)) == 0)
2846                 goto out;
2847
2848         ret = -ENOMEM;
2849 again:
2850         page = grab_cache_page(mapping, index);
2851         if (!page)
2852                 goto out;
2853
2854         page_start = page_offset(page);
2855         page_end = page_start + PAGE_CACHE_SIZE - 1;
2856
2857         if (!PageUptodate(page)) {
2858                 ret = btrfs_readpage(NULL, page);
2859                 lock_page(page);
2860                 if (page->mapping != mapping) {
2861                         unlock_page(page);
2862                         page_cache_release(page);
2863                         goto again;
2864                 }
2865                 if (!PageUptodate(page)) {
2866                         ret = -EIO;
2867                         goto out_unlock;
2868                 }
2869         }
2870         wait_on_page_writeback(page);
2871
2872         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2873         set_page_extent_mapped(page);
2874
2875         ordered = btrfs_lookup_ordered_extent(inode, page_start);
2876         if (ordered) {
2877                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2878                 unlock_page(page);
2879                 page_cache_release(page);
2880                 btrfs_start_ordered_extent(inode, ordered, 1);
2881                 btrfs_put_ordered_extent(ordered);
2882                 goto again;
2883         }
2884
2885         btrfs_set_extent_delalloc(inode, page_start, page_end);
2886         ret = 0;
2887         if (offset != PAGE_CACHE_SIZE) {
2888                 kaddr = kmap(page);
2889                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2890                 flush_dcache_page(page);
2891                 kunmap(page);
2892         }
2893         ClearPageChecked(page);
2894         set_page_dirty(page);
2895         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2896
2897 out_unlock:
2898         unlock_page(page);
2899         page_cache_release(page);
2900 out:
2901         return ret;
2902 }
2903
2904 int btrfs_cont_expand(struct inode *inode, loff_t size)
2905 {
2906         struct btrfs_trans_handle *trans;
2907         struct btrfs_root *root = BTRFS_I(inode)->root;
2908         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2909         struct extent_map *em;
2910         u64 mask = root->sectorsize - 1;
2911         u64 hole_start = (inode->i_size + mask) & ~mask;
2912         u64 block_end = (size + mask) & ~mask;
2913         u64 last_byte;
2914         u64 cur_offset;
2915         u64 hole_size;
2916         int err;
2917
2918         if (size <= hole_start)
2919                 return 0;
2920
2921         err = btrfs_check_metadata_free_space(root);
2922         if (err)
2923                 return err;
2924
2925         btrfs_truncate_page(inode->i_mapping, inode->i_size);
2926
2927         while (1) {
2928                 struct btrfs_ordered_extent *ordered;
2929                 btrfs_wait_ordered_range(inode, hole_start,
2930                                          block_end - hole_start);
2931                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2932                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2933                 if (!ordered)
2934                         break;
2935                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2936                 btrfs_put_ordered_extent(ordered);
2937         }
2938
2939         trans = btrfs_start_transaction(root, 1);
2940         btrfs_set_trans_block_group(trans, inode);
2941
2942         cur_offset = hole_start;
2943         while (1) {
2944                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2945                                 block_end - cur_offset, 0);
2946                 BUG_ON(IS_ERR(em) || !em);
2947                 last_byte = min(extent_map_end(em), block_end);
2948                 last_byte = (last_byte + mask) & ~mask;
2949                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2950                         u64 hint_byte = 0;
2951                         hole_size = last_byte - cur_offset;
2952                         err = btrfs_drop_extents(trans, root, inode,
2953                                                  cur_offset,
2954                                                  cur_offset + hole_size,
2955                                                  block_end,
2956                                                  cur_offset, &hint_byte, 1);
2957                         if (err)
2958                                 break;
2959                         err = btrfs_insert_file_extent(trans, root,
2960                                         inode->i_ino, cur_offset, 0,
2961                                         0, hole_size, 0, hole_size,
2962                                         0, 0, 0);
2963                         btrfs_drop_extent_cache(inode, hole_start,
2964                                         last_byte - 1, 0);
2965                 }
2966                 free_extent_map(em);
2967                 cur_offset = last_byte;
2968                 if (err || cur_offset >= block_end)
2969                         break;
2970         }
2971
2972         btrfs_end_transaction(trans, root);
2973         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2974         return err;
2975 }
2976
2977 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2978 {
2979         struct inode *inode = dentry->d_inode;
2980         int err;
2981
2982         err = inode_change_ok(inode, attr);
2983         if (err)
2984                 return err;
2985
2986         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
2987                 if (attr->ia_size > inode->i_size) {
2988                         err = btrfs_cont_expand(inode, attr->ia_size);
2989                         if (err)
2990                                 return err;
2991                 } else if (inode->i_size > 0 &&
2992                            attr->ia_size == 0) {
2993
2994                         /* we're truncating a file that used to have good
2995                          * data down to zero.  Make sure it gets into
2996                          * the ordered flush list so that any new writes
2997                          * get down to disk quickly.
2998                          */
2999                         BTRFS_I(inode)->ordered_data_close = 1;
3000                 }
3001         }
3002
3003         err = inode_setattr(inode, attr);
3004
3005         if (!err && ((attr->ia_valid & ATTR_MODE)))
3006                 err = btrfs_acl_chmod(inode);
3007         return err;
3008 }
3009
3010 void btrfs_delete_inode(struct inode *inode)
3011 {
3012         struct btrfs_trans_handle *trans;
3013         struct btrfs_root *root = BTRFS_I(inode)->root;
3014         unsigned long nr;
3015         int ret;
3016
3017         truncate_inode_pages(&inode->i_data, 0);
3018         if (is_bad_inode(inode)) {
3019                 btrfs_orphan_del(NULL, inode);
3020                 goto no_delete;
3021         }
3022         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3023
3024         btrfs_i_size_write(inode, 0);
3025         trans = btrfs_join_transaction(root, 1);
3026
3027         btrfs_set_trans_block_group(trans, inode);
3028         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3029         if (ret) {
3030                 btrfs_orphan_del(NULL, inode);
3031                 goto no_delete_lock;
3032         }
3033
3034         btrfs_orphan_del(trans, inode);
3035
3036         nr = trans->blocks_used;
3037         clear_inode(inode);
3038
3039         btrfs_end_transaction(trans, root);
3040         btrfs_btree_balance_dirty(root, nr);
3041         return;
3042
3043 no_delete_lock:
3044         nr = trans->blocks_used;
3045         btrfs_end_transaction(trans, root);
3046         btrfs_btree_balance_dirty(root, nr);
3047 no_delete:
3048         clear_inode(inode);
3049 }
3050
3051 /*
3052  * this returns the key found in the dir entry in the location pointer.
3053  * If no dir entries were found, location->objectid is 0.
3054  */
3055 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3056                                struct btrfs_key *location)
3057 {
3058         const char *name = dentry->d_name.name;
3059         int namelen = dentry->d_name.len;
3060         struct btrfs_dir_item *di;
3061         struct btrfs_path *path;
3062         struct btrfs_root *root = BTRFS_I(dir)->root;
3063         int ret = 0;
3064
3065         path = btrfs_alloc_path();
3066         BUG_ON(!path);
3067
3068         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3069                                     namelen, 0);
3070         if (IS_ERR(di))
3071                 ret = PTR_ERR(di);
3072
3073         if (!di || IS_ERR(di))
3074                 goto out_err;
3075
3076         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3077 out:
3078         btrfs_free_path(path);
3079         return ret;
3080 out_err:
3081         location->objectid = 0;
3082         goto out;
3083 }
3084
3085 /*
3086  * when we hit a tree root in a directory, the btrfs part of the inode
3087  * needs to be changed to reflect the root directory of the tree root.  This
3088  * is kind of like crossing a mount point.
3089  */
3090 static int fixup_tree_root_location(struct btrfs_root *root,
3091                              struct btrfs_key *location,
3092                              struct btrfs_root **sub_root,
3093                              struct dentry *dentry)
3094 {
3095         struct btrfs_root_item *ri;
3096
3097         if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
3098                 return 0;
3099         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
3100                 return 0;
3101
3102         *sub_root = btrfs_read_fs_root(root->fs_info, location,
3103                                         dentry->d_name.name,
3104                                         dentry->d_name.len);
3105         if (IS_ERR(*sub_root))
3106                 return PTR_ERR(*sub_root);
3107
3108         ri = &(*sub_root)->root_item;
3109         location->objectid = btrfs_root_dirid(ri);
3110         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3111         location->offset = 0;
3112
3113         return 0;
3114 }
3115
3116 static void inode_tree_add(struct inode *inode)
3117 {
3118         struct btrfs_root *root = BTRFS_I(inode)->root;
3119         struct btrfs_inode *entry;
3120         struct rb_node **p = &root->inode_tree.rb_node;
3121         struct rb_node *parent = NULL;
3122
3123         spin_lock(&root->inode_lock);
3124         while (*p) {
3125                 parent = *p;
3126                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3127
3128                 if (inode->i_ino < entry->vfs_inode.i_ino)
3129                         p = &(*p)->rb_left;
3130                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3131                         p = &(*p)->rb_right;
3132                 else {
3133                         WARN_ON(!(entry->vfs_inode.i_state &
3134                                   (I_WILL_FREE | I_FREEING | I_CLEAR)));
3135                         break;
3136                 }
3137         }
3138         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3139         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3140         spin_unlock(&root->inode_lock);
3141 }
3142
3143 static void inode_tree_del(struct inode *inode)
3144 {
3145         struct btrfs_root *root = BTRFS_I(inode)->root;
3146
3147         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3148                 spin_lock(&root->inode_lock);
3149                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3150                 spin_unlock(&root->inode_lock);
3151                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3152         }
3153 }
3154
3155 static noinline void init_btrfs_i(struct inode *inode)
3156 {
3157         struct btrfs_inode *bi = BTRFS_I(inode);
3158
3159         bi->i_acl = BTRFS_ACL_NOT_CACHED;
3160         bi->i_default_acl = BTRFS_ACL_NOT_CACHED;
3161
3162         bi->generation = 0;
3163         bi->sequence = 0;
3164         bi->last_trans = 0;
3165         bi->logged_trans = 0;
3166         bi->delalloc_bytes = 0;
3167         bi->reserved_bytes = 0;
3168         bi->disk_i_size = 0;
3169         bi->flags = 0;
3170         bi->index_cnt = (u64)-1;
3171         bi->last_unlink_trans = 0;
3172         bi->ordered_data_close = 0;
3173         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3174         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3175                              inode->i_mapping, GFP_NOFS);
3176         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3177                              inode->i_mapping, GFP_NOFS);
3178         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3179         INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3180         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3181         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3182         mutex_init(&BTRFS_I(inode)->extent_mutex);
3183         mutex_init(&BTRFS_I(inode)->log_mutex);
3184 }
3185
3186 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3187 {
3188         struct btrfs_iget_args *args = p;
3189         inode->i_ino = args->ino;
3190         init_btrfs_i(inode);
3191         BTRFS_I(inode)->root = args->root;
3192         btrfs_set_inode_space_info(args->root, inode);
3193         return 0;
3194 }
3195
3196 static int btrfs_find_actor(struct inode *inode, void *opaque)
3197 {
3198         struct btrfs_iget_args *args = opaque;
3199         return args->ino == inode->i_ino &&
3200                 args->root == BTRFS_I(inode)->root;
3201 }
3202
3203 static struct inode *btrfs_iget_locked(struct super_block *s,
3204                                        u64 objectid,
3205                                        struct btrfs_root *root)
3206 {
3207         struct inode *inode;
3208         struct btrfs_iget_args args;
3209         args.ino = objectid;
3210         args.root = root;
3211
3212         inode = iget5_locked(s, objectid, btrfs_find_actor,
3213                              btrfs_init_locked_inode,
3214                              (void *)&args);
3215         return inode;
3216 }
3217
3218 /* Get an inode object given its location and corresponding root.
3219  * Returns in *is_new if the inode was read from disk
3220  */
3221 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3222                          struct btrfs_root *root)
3223 {
3224         struct inode *inode;
3225
3226         inode = btrfs_iget_locked(s, location->objectid, root);
3227         if (!inode)
3228                 return ERR_PTR(-ENOMEM);
3229
3230         if (inode->i_state & I_NEW) {
3231                 BTRFS_I(inode)->root = root;
3232                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3233                 btrfs_read_locked_inode(inode);
3234
3235                 inode_tree_add(inode);
3236                 unlock_new_inode(inode);
3237         }
3238
3239         return inode;
3240 }
3241
3242 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3243 {
3244         struct inode *inode;
3245         struct btrfs_inode *bi = BTRFS_I(dir);
3246         struct btrfs_root *root = bi->root;
3247         struct btrfs_root *sub_root = root;
3248         struct btrfs_key location;
3249         int ret;
3250
3251         if (dentry->d_name.len > BTRFS_NAME_LEN)
3252                 return ERR_PTR(-ENAMETOOLONG);
3253
3254         ret = btrfs_inode_by_name(dir, dentry, &location);
3255
3256         if (ret < 0)
3257                 return ERR_PTR(ret);
3258
3259         inode = NULL;
3260         if (location.objectid) {
3261                 ret = fixup_tree_root_location(root, &location, &sub_root,
3262                                                 dentry);
3263                 if (ret < 0)
3264                         return ERR_PTR(ret);
3265                 if (ret > 0)
3266                         return ERR_PTR(-ENOENT);
3267                 inode = btrfs_iget(dir->i_sb, &location, sub_root);
3268                 if (IS_ERR(inode))
3269                         return ERR_CAST(inode);
3270         }
3271         return inode;
3272 }
3273
3274 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3275                                    struct nameidata *nd)
3276 {
3277         struct inode *inode;
3278
3279         if (dentry->d_name.len > BTRFS_NAME_LEN)
3280                 return ERR_PTR(-ENAMETOOLONG);
3281
3282         inode = btrfs_lookup_dentry(dir, dentry);
3283         if (IS_ERR(inode))
3284                 return ERR_CAST(inode);
3285
3286         return d_splice_alias(inode, dentry);
3287 }
3288
3289 static unsigned char btrfs_filetype_table[] = {
3290         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3291 };
3292
3293 static int btrfs_real_readdir(struct file *filp, void *dirent,
3294                               filldir_t filldir)
3295 {
3296         struct inode *inode = filp->f_dentry->d_inode;
3297         struct btrfs_root *root = BTRFS_I(inode)->root;
3298         struct btrfs_item *item;
3299         struct btrfs_dir_item *di;
3300         struct btrfs_key key;
3301         struct btrfs_key found_key;
3302         struct btrfs_path *path;
3303         int ret;
3304         u32 nritems;
3305         struct extent_buffer *leaf;
3306         int slot;
3307         int advance;
3308         unsigned char d_type;
3309         int over = 0;
3310         u32 di_cur;
3311         u32 di_total;
3312         u32 di_len;
3313         int key_type = BTRFS_DIR_INDEX_KEY;
3314         char tmp_name[32];
3315         char *name_ptr;
3316         int name_len;
3317
3318         /* FIXME, use a real flag for deciding about the key type */
3319         if (root->fs_info->tree_root == root)
3320                 key_type = BTRFS_DIR_ITEM_KEY;
3321
3322         /* special case for "." */
3323         if (filp->f_pos == 0) {
3324                 over = filldir(dirent, ".", 1,
3325                                1, inode->i_ino,
3326                                DT_DIR);
3327                 if (over)
3328                         return 0;
3329                 filp->f_pos = 1;
3330         }
3331         /* special case for .., just use the back ref */
3332         if (filp->f_pos == 1) {
3333                 u64 pino = parent_ino(filp->f_path.dentry);
3334                 over = filldir(dirent, "..", 2,
3335                                2, pino, DT_DIR);
3336                 if (over)
3337                         return 0;
3338                 filp->f_pos = 2;
3339         }
3340         path = btrfs_alloc_path();
3341         path->reada = 2;
3342
3343         btrfs_set_key_type(&key, key_type);
3344         key.offset = filp->f_pos;
3345         key.objectid = inode->i_ino;
3346
3347         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3348         if (ret < 0)
3349                 goto err;
3350         advance = 0;
3351
3352         while (1) {
3353                 leaf = path->nodes[0];
3354                 nritems = btrfs_header_nritems(leaf);
3355                 slot = path->slots[0];
3356                 if (advance || slot >= nritems) {
3357                         if (slot >= nritems - 1) {
3358                                 ret = btrfs_next_leaf(root, path);
3359                                 if (ret)
3360                                         break;
3361                                 leaf = path->nodes[0];
3362                                 nritems = btrfs_header_nritems(leaf);
3363                                 slot = path->slots[0];
3364                         } else {
3365                                 slot++;
3366                                 path->slots[0]++;
3367                         }
3368                 }
3369
3370                 advance = 1;
3371                 item = btrfs_item_nr(leaf, slot);
3372                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3373
3374                 if (found_key.objectid != key.objectid)
3375                         break;
3376                 if (btrfs_key_type(&found_key) != key_type)
3377                         break;
3378                 if (found_key.offset < filp->f_pos)
3379                         continue;
3380
3381                 filp->f_pos = found_key.offset;
3382
3383                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3384                 di_cur = 0;
3385                 di_total = btrfs_item_size(leaf, item);
3386
3387                 while (di_cur < di_total) {
3388                         struct btrfs_key location;
3389
3390                         name_len = btrfs_dir_name_len(leaf, di);
3391                         if (name_len <= sizeof(tmp_name)) {
3392                                 name_ptr = tmp_name;
3393                         } else {
3394                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3395                                 if (!name_ptr) {
3396                                         ret = -ENOMEM;
3397                                         goto err;
3398                                 }
3399                         }
3400                         read_extent_buffer(leaf, name_ptr,
3401                                            (unsigned long)(di + 1), name_len);
3402
3403                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3404                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3405
3406                         /* is this a reference to our own snapshot? If so
3407                          * skip it
3408                          */
3409                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3410                             location.objectid == root->root_key.objectid) {
3411                                 over = 0;
3412                                 goto skip;
3413                         }
3414                         over = filldir(dirent, name_ptr, name_len,
3415                                        found_key.offset, location.objectid,
3416                                        d_type);
3417
3418 skip:
3419                         if (name_ptr != tmp_name)
3420                                 kfree(name_ptr);
3421
3422                         if (over)
3423                                 goto nopos;
3424                         di_len = btrfs_dir_name_len(leaf, di) +
3425                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3426                         di_cur += di_len;
3427                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3428                 }
3429         }
3430
3431         /* Reached end of directory/root. Bump pos past the last item. */
3432         if (key_type == BTRFS_DIR_INDEX_KEY)
3433                 filp->f_pos = INT_LIMIT(off_t);
3434         else
3435                 filp->f_pos++;
3436 nopos:
3437         ret = 0;
3438 err:
3439         btrfs_free_path(path);
3440         return ret;
3441 }
3442
3443 int btrfs_write_inode(struct inode *inode, int wait)
3444 {
3445         struct btrfs_root *root = BTRFS_I(inode)->root;
3446         struct btrfs_trans_handle *trans;
3447         int ret = 0;
3448
3449         if (root->fs_info->btree_inode == inode)
3450                 return 0;
3451
3452         if (wait) {
3453                 trans = btrfs_join_transaction(root, 1);
3454                 btrfs_set_trans_block_group(trans, inode);
3455                 ret = btrfs_commit_transaction(trans, root);
3456         }
3457         return ret;
3458 }
3459
3460 /*
3461  * This is somewhat expensive, updating the tree every time the
3462  * inode changes.  But, it is most likely to find the inode in cache.
3463  * FIXME, needs more benchmarking...there are no reasons other than performance
3464  * to keep or drop this code.
3465  */
3466 void btrfs_dirty_inode(struct inode *inode)
3467 {
3468         struct btrfs_root *root = BTRFS_I(inode)->root;
3469         struct btrfs_trans_handle *trans;
3470
3471         trans = btrfs_join_transaction(root, 1);
3472         btrfs_set_trans_block_group(trans, inode);
3473         btrfs_update_inode(trans, root, inode);
3474         btrfs_end_transaction(trans, root);
3475 }
3476
3477 /*
3478  * find the highest existing sequence number in a directory
3479  * and then set the in-memory index_cnt variable to reflect
3480  * free sequence numbers
3481  */
3482 static int btrfs_set_inode_index_count(struct inode *inode)
3483 {
3484         struct btrfs_root *root = BTRFS_I(inode)->root;
3485         struct btrfs_key key, found_key;
3486         struct btrfs_path *path;
3487         struct extent_buffer *leaf;
3488         int ret;
3489
3490         key.objectid = inode->i_ino;
3491         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3492         key.offset = (u64)-1;
3493
3494         path = btrfs_alloc_path();
3495         if (!path)
3496                 return -ENOMEM;
3497
3498         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3499         if (ret < 0)
3500                 goto out;
3501         /* FIXME: we should be able to handle this */
3502         if (ret == 0)
3503                 goto out;
3504         ret = 0;
3505
3506         /*
3507          * MAGIC NUMBER EXPLANATION:
3508          * since we search a directory based on f_pos we have to start at 2
3509          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3510          * else has to start at 2
3511          */
3512         if (path->slots[0] == 0) {
3513                 BTRFS_I(inode)->index_cnt = 2;
3514                 goto out;
3515         }
3516
3517         path->slots[0]--;
3518
3519         leaf = path->nodes[0];
3520         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3521
3522         if (found_key.objectid != inode->i_ino ||
3523             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3524                 BTRFS_I(inode)->index_cnt = 2;
3525                 goto out;
3526         }
3527
3528         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3529 out:
3530         btrfs_free_path(path);
3531         return ret;
3532 }
3533
3534 /*
3535  * helper to find a free sequence number in a given directory.  This current
3536  * code is very simple, later versions will do smarter things in the btree
3537  */
3538 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3539 {
3540         int ret = 0;
3541
3542         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3543                 ret = btrfs_set_inode_index_count(dir);
3544                 if (ret)
3545                         return ret;
3546         }
3547
3548         *index = BTRFS_I(dir)->index_cnt;
3549         BTRFS_I(dir)->index_cnt++;
3550
3551         return ret;
3552 }
3553
3554 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3555                                      struct btrfs_root *root,
3556                                      struct inode *dir,
3557                                      const char *name, int name_len,
3558                                      u64 ref_objectid, u64 objectid,
3559                                      u64 alloc_hint, int mode, u64 *index)
3560 {
3561         struct inode *inode;
3562         struct btrfs_inode_item *inode_item;
3563         struct btrfs_key *location;
3564         struct btrfs_path *path;
3565         struct btrfs_inode_ref *ref;
3566         struct btrfs_key key[2];
3567         u32 sizes[2];
3568         unsigned long ptr;
3569         int ret;
3570         int owner;
3571
3572         path = btrfs_alloc_path();
3573         BUG_ON(!path);
3574
3575         inode = new_inode(root->fs_info->sb);
3576         if (!inode)
3577                 return ERR_PTR(-ENOMEM);
3578
3579         if (dir) {
3580                 ret = btrfs_set_inode_index(dir, index);
3581                 if (ret) {
3582                         iput(inode);
3583                         return ERR_PTR(ret);
3584                 }
3585         }
3586         /*
3587          * index_cnt is ignored for everything but a dir,
3588          * btrfs_get_inode_index_count has an explanation for the magic
3589          * number
3590          */
3591         init_btrfs_i(inode);
3592         BTRFS_I(inode)->index_cnt = 2;
3593         BTRFS_I(inode)->root = root;
3594         BTRFS_I(inode)->generation = trans->transid;
3595         btrfs_set_inode_space_info(root, inode);
3596
3597         if (mode & S_IFDIR)
3598                 owner = 0;
3599         else
3600                 owner = 1;
3601         BTRFS_I(inode)->block_group =
3602                         btrfs_find_block_group(root, 0, alloc_hint, owner);
3603
3604         key[0].objectid = objectid;
3605         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3606         key[0].offset = 0;
3607
3608         key[1].objectid = objectid;
3609         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3610         key[1].offset = ref_objectid;
3611
3612         sizes[0] = sizeof(struct btrfs_inode_item);
3613         sizes[1] = name_len + sizeof(*ref);
3614
3615         path->leave_spinning = 1;
3616         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3617         if (ret != 0)
3618                 goto fail;
3619
3620         if (objectid > root->highest_inode)
3621                 root->highest_inode = objectid;
3622
3623         inode->i_uid = current_fsuid();
3624
3625         if (dir && (dir->i_mode & S_ISGID)) {
3626                 inode->i_gid = dir->i_gid;
3627                 if (S_ISDIR(mode))
3628                         mode |= S_ISGID;
3629         } else
3630                 inode->i_gid = current_fsgid();
3631
3632         inode->i_mode = mode;
3633         inode->i_ino = objectid;
3634         inode_set_bytes(inode, 0);
3635         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3636         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3637                                   struct btrfs_inode_item);
3638         fill_inode_item(trans, path->nodes[0], inode_item, inode);
3639
3640         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3641                              struct btrfs_inode_ref);
3642         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3643         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3644         ptr = (unsigned long)(ref + 1);
3645         write_extent_buffer(path->nodes[0], name, ptr, name_len);
3646
3647         btrfs_mark_buffer_dirty(path->nodes[0]);
3648         btrfs_free_path(path);
3649
3650         location = &BTRFS_I(inode)->location;
3651         location->objectid = objectid;
3652         location->offset = 0;
3653         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3654
3655         btrfs_inherit_iflags(inode, dir);
3656
3657         if ((mode & S_IFREG)) {
3658                 if (btrfs_test_opt(root, NODATASUM))
3659                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
3660                 if (btrfs_test_opt(root, NODATACOW))
3661                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
3662         }
3663
3664         insert_inode_hash(inode);
3665         inode_tree_add(inode);
3666         return inode;
3667 fail:
3668         if (dir)
3669                 BTRFS_I(dir)->index_cnt--;
3670         btrfs_free_path(path);
3671         iput(inode);
3672         return ERR_PTR(ret);
3673 }
3674
3675 static inline u8 btrfs_inode_type(struct inode *inode)
3676 {
3677         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3678 }
3679
3680 /*
3681  * utility function to add 'inode' into 'parent_inode' with
3682  * a give name and a given sequence number.
3683  * if 'add_backref' is true, also insert a backref from the
3684  * inode to the parent directory.
3685  */
3686 int btrfs_add_link(struct btrfs_trans_handle *trans,
3687                    struct inode *parent_inode, struct inode *inode,
3688                    const char *name, int name_len, int add_backref, u64 index)
3689 {
3690         int ret;
3691         struct btrfs_key key;
3692         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3693
3694         key.objectid = inode->i_ino;
3695         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3696         key.offset = 0;
3697
3698         ret = btrfs_insert_dir_item(trans, root, name, name_len,
3699                                     parent_inode->i_ino,
3700                                     &key, btrfs_inode_type(inode),
3701                                     index);
3702         if (ret == 0) {
3703                 if (add_backref) {
3704                         ret = btrfs_insert_inode_ref(trans, root,
3705                                                      name, name_len,
3706                                                      inode->i_ino,
3707                                                      parent_inode->i_ino,
3708                                                      index);
3709                 }
3710                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3711                                    name_len * 2);
3712                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3713                 ret = btrfs_update_inode(trans, root, parent_inode);
3714         }
3715         return ret;
3716 }
3717
3718 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3719                             struct dentry *dentry, struct inode *inode,
3720                             int backref, u64 index)
3721 {
3722         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3723                                  inode, dentry->d_name.name,
3724                                  dentry->d_name.len, backref, index);
3725         if (!err) {
3726                 d_instantiate(dentry, inode);
3727                 return 0;
3728         }
3729         if (err > 0)
3730                 err = -EEXIST;
3731         return err;
3732 }
3733
3734 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3735                         int mode, dev_t rdev)
3736 {
3737         struct btrfs_trans_handle *trans;
3738         struct btrfs_root *root = BTRFS_I(dir)->root;
3739         struct inode *inode = NULL;
3740         int err;
3741         int drop_inode = 0;
3742         u64 objectid;
3743         unsigned long nr = 0;
3744         u64 index = 0;
3745
3746         if (!new_valid_dev(rdev))
3747                 return -EINVAL;
3748
3749         err = btrfs_check_metadata_free_space(root);
3750         if (err)
3751                 goto fail;
3752
3753         trans = btrfs_start_transaction(root, 1);
3754         btrfs_set_trans_block_group(trans, dir);
3755
3756         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3757         if (err) {
3758                 err = -ENOSPC;
3759                 goto out_unlock;
3760         }
3761
3762         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3763                                 dentry->d_name.len,
3764                                 dentry->d_parent->d_inode->i_ino, objectid,
3765                                 BTRFS_I(dir)->block_group, mode, &index);
3766         err = PTR_ERR(inode);
3767         if (IS_ERR(inode))
3768                 goto out_unlock;
3769
3770         err = btrfs_init_inode_security(inode, dir);
3771         if (err) {
3772                 drop_inode = 1;
3773                 goto out_unlock;
3774         }
3775
3776         btrfs_set_trans_block_group(trans, inode);
3777         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3778         if (err)
3779                 drop_inode = 1;
3780         else {
3781                 inode->i_op = &btrfs_special_inode_operations;
3782                 init_special_inode(inode, inode->i_mode, rdev);
3783                 btrfs_update_inode(trans, root, inode);
3784         }
3785         dir->i_sb->s_dirt = 1;
3786         btrfs_update_inode_block_group(trans, inode);
3787         btrfs_update_inode_block_group(trans, dir);
3788 out_unlock:
3789         nr = trans->blocks_used;
3790         btrfs_end_transaction_throttle(trans, root);
3791 fail:
3792         if (drop_inode) {
3793                 inode_dec_link_count(inode);
3794                 iput(inode);
3795         }
3796         btrfs_btree_balance_dirty(root, nr);
3797         return err;
3798 }
3799
3800 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3801                         int mode, struct nameidata *nd)
3802 {
3803         struct btrfs_trans_handle *trans;
3804         struct btrfs_root *root = BTRFS_I(dir)->root;
3805         struct inode *inode = NULL;
3806         int err;
3807         int drop_inode = 0;
3808         unsigned long nr = 0;
3809         u64 objectid;
3810         u64 index = 0;
3811
3812         err = btrfs_check_metadata_free_space(root);
3813         if (err)
3814                 goto fail;
3815         trans = btrfs_start_transaction(root, 1);
3816         btrfs_set_trans_block_group(trans, dir);
3817
3818         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3819         if (err) {
3820                 err = -ENOSPC;
3821                 goto out_unlock;
3822         }
3823
3824         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3825                                 dentry->d_name.len,
3826                                 dentry->d_parent->d_inode->i_ino,
3827                                 objectid, BTRFS_I(dir)->block_group, mode,
3828                                 &index);
3829         err = PTR_ERR(inode);
3830         if (IS_ERR(inode))
3831                 goto out_unlock;
3832
3833         err = btrfs_init_inode_security(inode, dir);
3834         if (err) {
3835                 drop_inode = 1;
3836                 goto out_unlock;
3837         }
3838
3839         btrfs_set_trans_block_group(trans, inode);
3840         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3841         if (err)
3842                 drop_inode = 1;
3843         else {
3844                 inode->i_mapping->a_ops = &btrfs_aops;
3845                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3846                 inode->i_fop = &btrfs_file_operations;
3847                 inode->i_op = &btrfs_file_inode_operations;
3848                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3849         }
3850         dir->i_sb->s_dirt = 1;
3851         btrfs_update_inode_block_group(trans, inode);
3852         btrfs_update_inode_block_group(trans, dir);
3853 out_unlock:
3854         nr = trans->blocks_used;
3855         btrfs_end_transaction_throttle(trans, root);
3856 fail:
3857         if (drop_inode) {
3858                 inode_dec_link_count(inode);
3859                 iput(inode);
3860         }
3861         btrfs_btree_balance_dirty(root, nr);
3862         return err;
3863 }
3864
3865 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3866                       struct dentry *dentry)
3867 {
3868         struct btrfs_trans_handle *trans;
3869         struct btrfs_root *root = BTRFS_I(dir)->root;
3870         struct inode *inode = old_dentry->d_inode;
3871         u64 index;
3872         unsigned long nr = 0;
3873         int err;
3874         int drop_inode = 0;
3875
3876         if (inode->i_nlink == 0)
3877                 return -ENOENT;
3878
3879         btrfs_inc_nlink(inode);
3880         err = btrfs_check_metadata_free_space(root);
3881         if (err)
3882                 goto fail;
3883         err = btrfs_set_inode_index(dir, &index);
3884         if (err)
3885                 goto fail;
3886
3887         trans = btrfs_start_transaction(root, 1);
3888
3889         btrfs_set_trans_block_group(trans, dir);
3890         atomic_inc(&inode->i_count);
3891
3892         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3893
3894         if (err)
3895                 drop_inode = 1;
3896
3897         dir->i_sb->s_dirt = 1;
3898         btrfs_update_inode_block_group(trans, dir);
3899         err = btrfs_update_inode(trans, root, inode);
3900
3901         if (err)
3902                 drop_inode = 1;
3903
3904         nr = trans->blocks_used;
3905
3906         btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
3907         btrfs_end_transaction_throttle(trans, root);
3908 fail:
3909         if (drop_inode) {
3910                 inode_dec_link_count(inode);
3911                 iput(inode);
3912         }
3913         btrfs_btree_balance_dirty(root, nr);
3914         return err;
3915 }
3916
3917 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3918 {
3919         struct inode *inode = NULL;
3920         struct btrfs_trans_handle *trans;
3921         struct btrfs_root *root = BTRFS_I(dir)->root;
3922         int err = 0;
3923         int drop_on_err = 0;
3924         u64 objectid = 0;
3925         u64 index = 0;
3926         unsigned long nr = 1;
3927
3928         err = btrfs_check_metadata_free_space(root);
3929         if (err)
3930                 goto out_unlock;
3931
3932         trans = btrfs_start_transaction(root, 1);
3933         btrfs_set_trans_block_group(trans, dir);
3934
3935         if (IS_ERR(trans)) {
3936                 err = PTR_ERR(trans);
3937                 goto out_unlock;
3938         }
3939
3940         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3941         if (err) {
3942                 err = -ENOSPC;
3943                 goto out_unlock;
3944         }
3945
3946         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3947                                 dentry->d_name.len,
3948                                 dentry->d_parent->d_inode->i_ino, objectid,
3949                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3950                                 &index);
3951         if (IS_ERR(inode)) {
3952                 err = PTR_ERR(inode);
3953                 goto out_fail;
3954         }
3955
3956         drop_on_err = 1;
3957
3958         err = btrfs_init_inode_security(inode, dir);
3959         if (err)
3960                 goto out_fail;
3961
3962         inode->i_op = &btrfs_dir_inode_operations;
3963         inode->i_fop = &btrfs_dir_file_operations;
3964         btrfs_set_trans_block_group(trans, inode);
3965
3966         btrfs_i_size_write(inode, 0);
3967         err = btrfs_update_inode(trans, root, inode);
3968         if (err)
3969                 goto out_fail;
3970
3971         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3972                                  inode, dentry->d_name.name,
3973                                  dentry->d_name.len, 0, index);
3974         if (err)
3975                 goto out_fail;
3976
3977         d_instantiate(dentry, inode);
3978         drop_on_err = 0;
3979         dir->i_sb->s_dirt = 1;
3980         btrfs_update_inode_block_group(trans, inode);
3981         btrfs_update_inode_block_group(trans, dir);
3982
3983 out_fail:
3984         nr = trans->blocks_used;
3985         btrfs_end_transaction_throttle(trans, root);
3986
3987 out_unlock:
3988         if (drop_on_err)
3989                 iput(inode);
3990         btrfs_btree_balance_dirty(root, nr);
3991         return err;
3992 }
3993
3994 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3995  * and an extent that you want to insert, deal with overlap and insert
3996  * the new extent into the tree.
3997  */
3998 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3999                                 struct extent_map *existing,
4000                                 struct extent_map *em,
4001                                 u64 map_start, u64 map_len)
4002 {
4003         u64 start_diff;
4004
4005         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4006         start_diff = map_start - em->start;
4007         em->start = map_start;
4008         em->len = map_len;
4009         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4010             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4011                 em->block_start += start_diff;
4012                 em->block_len -= start_diff;
4013         }
4014         return add_extent_mapping(em_tree, em);
4015 }
4016
4017 static noinline int uncompress_inline(struct btrfs_path *path,
4018                                       struct inode *inode, struct page *page,
4019                                       size_t pg_offset, u64 extent_offset,
4020                                       struct btrfs_file_extent_item *item)
4021 {
4022         int ret;
4023         struct extent_buffer *leaf = path->nodes[0];
4024         char *tmp;
4025         size_t max_size;
4026         unsigned long inline_size;
4027         unsigned long ptr;
4028
4029         WARN_ON(pg_offset != 0);
4030         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4031         inline_size = btrfs_file_extent_inline_item_len(leaf,
4032                                         btrfs_item_nr(leaf, path->slots[0]));
4033         tmp = kmalloc(inline_size, GFP_NOFS);
4034         ptr = btrfs_file_extent_inline_start(item);
4035
4036         read_extent_buffer(leaf, tmp, ptr, inline_size);
4037
4038         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4039         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4040                                     inline_size, max_size);
4041         if (ret) {
4042                 char *kaddr = kmap_atomic(page, KM_USER0);
4043                 unsigned long copy_size = min_t(u64,
4044                                   PAGE_CACHE_SIZE - pg_offset,
4045                                   max_size - extent_offset);
4046                 memset(kaddr + pg_offset, 0, copy_size);
4047                 kunmap_atomic(kaddr, KM_USER0);
4048         }
4049         kfree(tmp);
4050         return 0;
4051 }
4052
4053 /*
4054  * a bit scary, this does extent mapping from logical file offset to the disk.
4055  * the ugly parts come from merging extents from the disk with the in-ram
4056  * representation.  This gets more complex because of the data=ordered code,
4057  * where the in-ram extents might be locked pending data=ordered completion.
4058  *
4059  * This also copies inline extents directly into the page.
4060  */
4061
4062 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4063                                     size_t pg_offset, u64 start, u64 len,
4064                                     int create)
4065 {
4066         int ret;
4067         int err = 0;
4068         u64 bytenr;
4069         u64 extent_start = 0;
4070         u64 extent_end = 0;
4071         u64 objectid = inode->i_ino;
4072         u32 found_type;
4073         struct btrfs_path *path = NULL;
4074         struct btrfs_root *root = BTRFS_I(inode)->root;
4075         struct btrfs_file_extent_item *item;
4076         struct extent_buffer *leaf;
4077         struct btrfs_key found_key;
4078         struct extent_map *em = NULL;
4079         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4080         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4081         struct btrfs_trans_handle *trans = NULL;
4082         int compressed;
4083
4084 again:
4085         read_lock(&em_tree->lock);
4086         em = lookup_extent_mapping(em_tree, start, len);
4087         if (em)
4088                 em->bdev = root->fs_info->fs_devices->latest_bdev;
4089         read_unlock(&em_tree->lock);
4090
4091         if (em) {
4092                 if (em->start > start || em->start + em->len <= start)
4093                         free_extent_map(em);
4094                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4095                         free_extent_map(em);
4096                 else
4097                         goto out;
4098         }
4099         em = alloc_extent_map(GFP_NOFS);
4100         if (!em) {
4101                 err = -ENOMEM;
4102                 goto out;
4103         }
4104         em->bdev = root->fs_info->fs_devices->latest_bdev;
4105         em->start = EXTENT_MAP_HOLE;
4106         em->orig_start = EXTENT_MAP_HOLE;
4107         em->len = (u64)-1;
4108         em->block_len = (u64)-1;
4109
4110         if (!path) {
4111                 path = btrfs_alloc_path();
4112                 BUG_ON(!path);
4113         }
4114
4115         ret = btrfs_lookup_file_extent(trans, root, path,
4116                                        objectid, start, trans != NULL);
4117         if (ret < 0) {
4118                 err = ret;
4119                 goto out;
4120         }
4121
4122         if (ret != 0) {
4123                 if (path->slots[0] == 0)
4124                         goto not_found;
4125                 path->slots[0]--;
4126         }
4127
4128         leaf = path->nodes[0];
4129         item = btrfs_item_ptr(leaf, path->slots[0],
4130                               struct btrfs_file_extent_item);
4131         /* are we inside the extent that was found? */
4132         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4133         found_type = btrfs_key_type(&found_key);
4134         if (found_key.objectid != objectid ||
4135             found_type != BTRFS_EXTENT_DATA_KEY) {
4136                 goto not_found;
4137         }
4138
4139         found_type = btrfs_file_extent_type(leaf, item);
4140         extent_start = found_key.offset;
4141         compressed = btrfs_file_extent_compression(leaf, item);
4142         if (found_type == BTRFS_FILE_EXTENT_REG ||
4143             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4144                 extent_end = extent_start +
4145                        btrfs_file_extent_num_bytes(leaf, item);
4146         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4147                 size_t size;
4148                 size = btrfs_file_extent_inline_len(leaf, item);
4149                 extent_end = (extent_start + size + root->sectorsize - 1) &
4150                         ~((u64)root->sectorsize - 1);
4151         }
4152
4153         if (start >= extent_end) {
4154                 path->slots[0]++;
4155                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4156                         ret = btrfs_next_leaf(root, path);
4157                         if (ret < 0) {
4158                                 err = ret;
4159                                 goto out;
4160                         }
4161                         if (ret > 0)
4162                                 goto not_found;
4163                         leaf = path->nodes[0];
4164                 }
4165                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4166                 if (found_key.objectid != objectid ||
4167                     found_key.type != BTRFS_EXTENT_DATA_KEY)
4168                         goto not_found;
4169                 if (start + len <= found_key.offset)
4170                         goto not_found;
4171                 em->start = start;
4172                 em->len = found_key.offset - start;
4173                 goto not_found_em;
4174         }
4175
4176         if (found_type == BTRFS_FILE_EXTENT_REG ||
4177             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4178                 em->start = extent_start;
4179                 em->len = extent_end - extent_start;
4180                 em->orig_start = extent_start -
4181                                  btrfs_file_extent_offset(leaf, item);
4182                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4183                 if (bytenr == 0) {
4184                         em->block_start = EXTENT_MAP_HOLE;
4185                         goto insert;
4186                 }
4187                 if (compressed) {
4188                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4189                         em->block_start = bytenr;
4190                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4191                                                                          item);
4192                 } else {
4193                         bytenr += btrfs_file_extent_offset(leaf, item);
4194                         em->block_start = bytenr;
4195                         em->block_len = em->len;
4196                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4197                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4198                 }
4199                 goto insert;
4200         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4201                 unsigned long ptr;
4202                 char *map;
4203                 size_t size;
4204                 size_t extent_offset;
4205                 size_t copy_size;
4206
4207                 em->block_start = EXTENT_MAP_INLINE;
4208                 if (!page || create) {
4209                         em->start = extent_start;
4210                         em->len = extent_end - extent_start;
4211                         goto out;
4212                 }
4213
4214                 size = btrfs_file_extent_inline_len(leaf, item);
4215                 extent_offset = page_offset(page) + pg_offset - extent_start;
4216                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4217                                 size - extent_offset);
4218                 em->start = extent_start + extent_offset;
4219                 em->len = (copy_size + root->sectorsize - 1) &
4220                         ~((u64)root->sectorsize - 1);
4221                 em->orig_start = EXTENT_MAP_INLINE;
4222                 if (compressed)
4223                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4224                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4225                 if (create == 0 && !PageUptodate(page)) {
4226                         if (btrfs_file_extent_compression(leaf, item) ==
4227                             BTRFS_COMPRESS_ZLIB) {
4228                                 ret = uncompress_inline(path, inode, page,
4229                                                         pg_offset,
4230                                                         extent_offset, item);
4231                                 BUG_ON(ret);
4232                         } else {
4233                                 map = kmap(page);
4234                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4235                                                    copy_size);
4236                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4237                                         memset(map + pg_offset + copy_size, 0,
4238                                                PAGE_CACHE_SIZE - pg_offset -
4239                                                copy_size);
4240                                 }
4241                                 kunmap(page);
4242                         }
4243                         flush_dcache_page(page);
4244                 } else if (create && PageUptodate(page)) {
4245                         if (!trans) {
4246                                 kunmap(page);
4247                                 free_extent_map(em);
4248                                 em = NULL;
4249                                 btrfs_release_path(root, path);
4250                                 trans = btrfs_join_transaction(root, 1);
4251                                 goto again;
4252                         }
4253                         map = kmap(page);
4254                         write_extent_buffer(leaf, map + pg_offset, ptr,
4255                                             copy_size);
4256                         kunmap(page);
4257                         btrfs_mark_buffer_dirty(leaf);
4258                 }
4259                 set_extent_uptodate(io_tree, em->start,
4260                                     extent_map_end(em) - 1, GFP_NOFS);
4261                 goto insert;
4262         } else {
4263                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4264                 WARN_ON(1);
4265         }
4266 not_found:
4267         em->start = start;
4268         em->len = len;
4269 not_found_em:
4270         em->block_start = EXTENT_MAP_HOLE;
4271         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4272 insert:
4273         btrfs_release_path(root, path);
4274         if (em->start > start || extent_map_end(em) <= start) {
4275                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4276                        "[%llu %llu]\n", (unsigned long long)em->start,
4277                        (unsigned long long)em->len,
4278                        (unsigned long long)start,
4279                        (unsigned long long)len);
4280                 err = -EIO;
4281                 goto out;
4282         }
4283
4284         err = 0;
4285         write_lock(&em_tree->lock);
4286         ret = add_extent_mapping(em_tree, em);
4287         /* it is possible that someone inserted the extent into the tree
4288          * while we had the lock dropped.  It is also possible that
4289          * an overlapping map exists in the tree
4290          */
4291         if (ret == -EEXIST) {
4292                 struct extent_map *existing;
4293
4294                 ret = 0;
4295
4296                 existing = lookup_extent_mapping(em_tree, start, len);
4297                 if (existing && (existing->start > start ||
4298                     existing->start + existing->len <= start)) {
4299                         free_extent_map(existing);
4300                         existing = NULL;
4301                 }
4302                 if (!existing) {
4303                         existing = lookup_extent_mapping(em_tree, em->start,
4304                                                          em->len);
4305                         if (existing) {
4306                                 err = merge_extent_mapping(em_tree, existing,
4307                                                            em, start,
4308                                                            root->sectorsize);
4309                                 free_extent_map(existing);
4310                                 if (err) {
4311                                         free_extent_map(em);
4312                                         em = NULL;
4313                                 }
4314                         } else {
4315                                 err = -EIO;
4316                                 free_extent_map(em);
4317                                 em = NULL;
4318                         }
4319                 } else {
4320                         free_extent_map(em);
4321                         em = existing;
4322                         err = 0;
4323                 }
4324         }
4325         write_unlock(&em_tree->lock);
4326 out:
4327         if (path)
4328                 btrfs_free_path(path);
4329         if (trans) {
4330                 ret = btrfs_end_transaction(trans, root);
4331                 if (!err)
4332                         err = ret;
4333         }
4334         if (err) {
4335                 free_extent_map(em);
4336                 return ERR_PTR(err);
4337         }
4338         return em;
4339 }
4340
4341 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4342                         const struct iovec *iov, loff_t offset,
4343                         unsigned long nr_segs)
4344 {
4345         return -EINVAL;
4346 }
4347
4348 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4349                 __u64 start, __u64 len)
4350 {
4351         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4352 }
4353
4354 int btrfs_readpage(struct file *file, struct page *page)
4355 {
4356         struct extent_io_tree *tree;
4357         tree = &BTRFS_I(page->mapping->host)->io_tree;
4358         return extent_read_full_page(tree, page, btrfs_get_extent);
4359 }
4360
4361 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4362 {
4363         struct extent_io_tree *tree;
4364
4365
4366         if (current->flags & PF_MEMALLOC) {
4367                 redirty_page_for_writepage(wbc, page);
4368                 unlock_page(page);
4369                 return 0;
4370         }
4371         tree = &BTRFS_I(page->mapping->host)->io_tree;
4372         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4373 }
4374
4375 int btrfs_writepages(struct address_space *mapping,
4376                      struct writeback_control *wbc)
4377 {
4378         struct extent_io_tree *tree;
4379
4380         tree = &BTRFS_I(mapping->host)->io_tree;
4381         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4382 }
4383
4384 static int
4385 btrfs_readpages(struct file *file, struct address_space *mapping,
4386                 struct list_head *pages, unsigned nr_pages)
4387 {
4388         struct extent_io_tree *tree;
4389         tree = &BTRFS_I(mapping->host)->io_tree;
4390         return extent_readpages(tree, mapping, pages, nr_pages,
4391                                 btrfs_get_extent);
4392 }
4393 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4394 {
4395         struct extent_io_tree *tree;
4396         struct extent_map_tree *map;
4397         int ret;
4398
4399         tree = &BTRFS_I(page->mapping->host)->io_tree;
4400         map = &BTRFS_I(page->mapping->host)->extent_tree;
4401         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4402         if (ret == 1) {
4403                 ClearPagePrivate(page);
4404                 set_page_private(page, 0);
4405                 page_cache_release(page);
4406         }
4407         return ret;
4408 }
4409
4410 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4411 {
4412         if (PageWriteback(page) || PageDirty(page))
4413                 return 0;
4414         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4415 }
4416
4417 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4418 {
4419         struct extent_io_tree *tree;
4420         struct btrfs_ordered_extent *ordered;
4421         u64 page_start = page_offset(page);
4422         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4423
4424
4425         /*
4426          * we have the page locked, so new writeback can't start,
4427          * and the dirty bit won't be cleared while we are here.
4428          *
4429          * Wait for IO on this page so that we can safely clear
4430          * the PagePrivate2 bit and do ordered accounting
4431          */
4432         wait_on_page_writeback(page);
4433
4434         tree = &BTRFS_I(page->mapping->host)->io_tree;
4435         if (offset) {
4436                 btrfs_releasepage(page, GFP_NOFS);
4437                 return;
4438         }
4439         lock_extent(tree, page_start, page_end, GFP_NOFS);
4440         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4441                                            page_offset(page));
4442         if (ordered) {
4443                 /*
4444                  * IO on this page will never be started, so we need
4445                  * to account for any ordered extents now
4446                  */
4447                 clear_extent_bit(tree, page_start, page_end,
4448                                  EXTENT_DIRTY | EXTENT_DELALLOC |
4449                                  EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
4450                 /*
4451                  * whoever cleared the private bit is responsible
4452                  * for the finish_ordered_io
4453                  */
4454                 if (TestClearPagePrivate2(page)) {
4455                         btrfs_finish_ordered_io(page->mapping->host,
4456                                                 page_start, page_end);
4457                 }
4458                 btrfs_put_ordered_extent(ordered);
4459                 lock_extent(tree, page_start, page_end, GFP_NOFS);
4460         }
4461         clear_extent_bit(tree, page_start, page_end,
4462                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
4463                  1, 1, NULL, GFP_NOFS);
4464         __btrfs_releasepage(page, GFP_NOFS);
4465
4466         ClearPageChecked(page);
4467         if (PagePrivate(page)) {
4468                 ClearPagePrivate(page);
4469                 set_page_private(page, 0);
4470                 page_cache_release(page);
4471         }
4472 }
4473
4474 /*
4475  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4476  * called from a page fault handler when a page is first dirtied. Hence we must
4477  * be careful to check for EOF conditions here. We set the page up correctly
4478  * for a written page which means we get ENOSPC checking when writing into
4479  * holes and correct delalloc and unwritten extent mapping on filesystems that
4480  * support these features.
4481  *
4482  * We are not allowed to take the i_mutex here so we have to play games to
4483  * protect against truncate races as the page could now be beyond EOF.  Because
4484  * vmtruncate() writes the inode size before removing pages, once we have the
4485  * page lock we can determine safely if the page is beyond EOF. If it is not
4486  * beyond EOF, then the page is guaranteed safe against truncation until we
4487  * unlock the page.
4488  */
4489 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4490 {
4491         struct page *page = vmf->page;
4492         struct inode *inode = fdentry(vma->vm_file)->d_inode;
4493         struct btrfs_root *root = BTRFS_I(inode)->root;
4494         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4495         struct btrfs_ordered_extent *ordered;
4496         char *kaddr;
4497         unsigned long zero_start;
4498         loff_t size;
4499         int ret;
4500         u64 page_start;
4501         u64 page_end;
4502
4503         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4504         if (ret) {
4505                 if (ret == -ENOMEM)
4506                         ret = VM_FAULT_OOM;
4507                 else /* -ENOSPC, -EIO, etc */
4508                         ret = VM_FAULT_SIGBUS;
4509                 goto out;
4510         }
4511
4512         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4513 again:
4514         lock_page(page);
4515         size = i_size_read(inode);
4516         page_start = page_offset(page);
4517         page_end = page_start + PAGE_CACHE_SIZE - 1;
4518
4519         if ((page->mapping != inode->i_mapping) ||
4520             (page_start >= size)) {
4521                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4522                 /* page got truncated out from underneath us */
4523                 goto out_unlock;
4524         }
4525         wait_on_page_writeback(page);
4526
4527         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4528         set_page_extent_mapped(page);
4529
4530         /*
4531          * we can't set the delalloc bits if there are pending ordered
4532          * extents.  Drop our locks and wait for them to finish
4533          */
4534         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4535         if (ordered) {
4536                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4537                 unlock_page(page);
4538                 btrfs_start_ordered_extent(inode, ordered, 1);
4539                 btrfs_put_ordered_extent(ordered);
4540                 goto again;
4541         }
4542
4543         btrfs_set_extent_delalloc(inode, page_start, page_end);
4544         ret = 0;
4545
4546         /* page is wholly or partially inside EOF */
4547         if (page_start + PAGE_CACHE_SIZE > size)
4548                 zero_start = size & ~PAGE_CACHE_MASK;
4549         else
4550                 zero_start = PAGE_CACHE_SIZE;
4551
4552         if (zero_start != PAGE_CACHE_SIZE) {
4553                 kaddr = kmap(page);
4554                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4555                 flush_dcache_page(page);
4556                 kunmap(page);
4557         }
4558         ClearPageChecked(page);
4559         set_page_dirty(page);
4560         SetPageUptodate(page);
4561
4562         BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
4563         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4564
4565 out_unlock:
4566         if (!ret)
4567                 return VM_FAULT_LOCKED;
4568         unlock_page(page);
4569 out:
4570         return ret;
4571 }
4572
4573 static void btrfs_truncate(struct inode *inode)
4574 {
4575         struct btrfs_root *root = BTRFS_I(inode)->root;
4576         int ret;
4577         struct btrfs_trans_handle *trans;
4578         unsigned long nr;
4579         u64 mask = root->sectorsize - 1;
4580
4581         if (!S_ISREG(inode->i_mode))
4582                 return;
4583         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4584                 return;
4585
4586         btrfs_truncate_page(inode->i_mapping, inode->i_size);
4587         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4588
4589         trans = btrfs_start_transaction(root, 1);
4590
4591         /*
4592          * setattr is responsible for setting the ordered_data_close flag,
4593          * but that is only tested during the last file release.  That
4594          * could happen well after the next commit, leaving a great big
4595          * window where new writes may get lost if someone chooses to write
4596          * to this file after truncating to zero
4597          *
4598          * The inode doesn't have any dirty data here, and so if we commit
4599          * this is a noop.  If someone immediately starts writing to the inode
4600          * it is very likely we'll catch some of their writes in this
4601          * transaction, and the commit will find this file on the ordered
4602          * data list with good things to send down.
4603          *
4604          * This is a best effort solution, there is still a window where
4605          * using truncate to replace the contents of the file will
4606          * end up with a zero length file after a crash.
4607          */
4608         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
4609                 btrfs_add_ordered_operation(trans, root, inode);
4610
4611         btrfs_set_trans_block_group(trans, inode);
4612         btrfs_i_size_write(inode, inode->i_size);
4613
4614         ret = btrfs_orphan_add(trans, inode);
4615         if (ret)
4616                 goto out;
4617         /* FIXME, add redo link to tree so we don't leak on crash */
4618         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4619                                       BTRFS_EXTENT_DATA_KEY);
4620         btrfs_update_inode(trans, root, inode);
4621
4622         ret = btrfs_orphan_del(trans, inode);
4623         BUG_ON(ret);
4624
4625 out:
4626         nr = trans->blocks_used;
4627         ret = btrfs_end_transaction_throttle(trans, root);
4628         BUG_ON(ret);
4629         btrfs_btree_balance_dirty(root, nr);
4630 }
4631
4632 /*
4633  * create a new subvolume directory/inode (helper for the ioctl).
4634  */
4635 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4636                              struct btrfs_root *new_root, struct dentry *dentry,
4637                              u64 new_dirid, u64 alloc_hint)
4638 {
4639         struct inode *inode;
4640         int error;
4641         u64 index = 0;
4642
4643         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4644                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4645         if (IS_ERR(inode))
4646                 return PTR_ERR(inode);
4647         inode->i_op = &btrfs_dir_inode_operations;
4648         inode->i_fop = &btrfs_dir_file_operations;
4649
4650         inode->i_nlink = 1;
4651         btrfs_i_size_write(inode, 0);
4652
4653         error = btrfs_update_inode(trans, new_root, inode);
4654         if (error)
4655                 return error;
4656
4657         d_instantiate(dentry, inode);
4658         return 0;
4659 }
4660
4661 /* helper function for file defrag and space balancing.  This
4662  * forces readahead on a given range of bytes in an inode
4663  */
4664 unsigned long btrfs_force_ra(struct address_space *mapping,
4665                               struct file_ra_state *ra, struct file *file,
4666                               pgoff_t offset, pgoff_t last_index)
4667 {
4668         pgoff_t req_size = last_index - offset + 1;
4669
4670         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4671         return offset + req_size;
4672 }
4673
4674 struct inode *btrfs_alloc_inode(struct super_block *sb)
4675 {
4676         struct btrfs_inode *ei;
4677
4678         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4679         if (!ei)
4680                 return NULL;
4681         ei->last_trans = 0;
4682         ei->logged_trans = 0;
4683         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4684         ei->i_acl = BTRFS_ACL_NOT_CACHED;
4685         ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4686         INIT_LIST_HEAD(&ei->i_orphan);
4687         INIT_LIST_HEAD(&ei->ordered_operations);
4688         return &ei->vfs_inode;
4689 }
4690
4691 void btrfs_destroy_inode(struct inode *inode)
4692 {
4693         struct btrfs_ordered_extent *ordered;
4694         struct btrfs_root *root = BTRFS_I(inode)->root;
4695
4696         WARN_ON(!list_empty(&inode->i_dentry));
4697         WARN_ON(inode->i_data.nrpages);
4698
4699         if (BTRFS_I(inode)->i_acl &&
4700             BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4701                 posix_acl_release(BTRFS_I(inode)->i_acl);
4702         if (BTRFS_I(inode)->i_default_acl &&
4703             BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4704                 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4705
4706         /*
4707          * Make sure we're properly removed from the ordered operation
4708          * lists.
4709          */
4710         smp_mb();
4711         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
4712                 spin_lock(&root->fs_info->ordered_extent_lock);
4713                 list_del_init(&BTRFS_I(inode)->ordered_operations);
4714                 spin_unlock(&root->fs_info->ordered_extent_lock);
4715         }
4716
4717         spin_lock(&root->list_lock);
4718         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4719                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4720                        " list\n", inode->i_ino);
4721                 dump_stack();
4722         }
4723         spin_unlock(&root->list_lock);
4724
4725         while (1) {
4726                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4727                 if (!ordered)
4728                         break;
4729                 else {
4730                         printk(KERN_ERR "btrfs found ordered "
4731                                "extent %llu %llu on inode cleanup\n",
4732                                (unsigned long long)ordered->file_offset,
4733                                (unsigned long long)ordered->len);
4734                         btrfs_remove_ordered_extent(inode, ordered);
4735                         btrfs_put_ordered_extent(ordered);
4736                         btrfs_put_ordered_extent(ordered);
4737                 }
4738         }
4739         inode_tree_del(inode);
4740         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4741         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4742 }
4743
4744 static void init_once(void *foo)
4745 {
4746         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4747
4748         inode_init_once(&ei->vfs_inode);
4749 }
4750
4751 void btrfs_destroy_cachep(void)
4752 {
4753         if (btrfs_inode_cachep)
4754                 kmem_cache_destroy(btrfs_inode_cachep);
4755         if (btrfs_trans_handle_cachep)
4756                 kmem_cache_destroy(btrfs_trans_handle_cachep);
4757         if (btrfs_transaction_cachep)
4758                 kmem_cache_destroy(btrfs_transaction_cachep);
4759         if (btrfs_path_cachep)
4760                 kmem_cache_destroy(btrfs_path_cachep);
4761 }
4762
4763 int btrfs_init_cachep(void)
4764 {
4765         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
4766                         sizeof(struct btrfs_inode), 0,
4767                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
4768         if (!btrfs_inode_cachep)
4769                 goto fail;
4770
4771         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
4772                         sizeof(struct btrfs_trans_handle), 0,
4773                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4774         if (!btrfs_trans_handle_cachep)
4775                 goto fail;
4776
4777         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
4778                         sizeof(struct btrfs_transaction), 0,
4779                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4780         if (!btrfs_transaction_cachep)
4781                 goto fail;
4782
4783         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
4784                         sizeof(struct btrfs_path), 0,
4785                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4786         if (!btrfs_path_cachep)
4787                 goto fail;
4788
4789         return 0;
4790 fail:
4791         btrfs_destroy_cachep();
4792         return -ENOMEM;
4793 }
4794
4795 static int btrfs_getattr(struct vfsmount *mnt,
4796                          struct dentry *dentry, struct kstat *stat)
4797 {
4798         struct inode *inode = dentry->d_inode;
4799         generic_fillattr(inode, stat);
4800         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4801         stat->blksize = PAGE_CACHE_SIZE;
4802         stat->blocks = (inode_get_bytes(inode) +
4803                         BTRFS_I(inode)->delalloc_bytes) >> 9;
4804         return 0;
4805 }
4806
4807 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4808                            struct inode *new_dir, struct dentry *new_dentry)
4809 {
4810         struct btrfs_trans_handle *trans;
4811         struct btrfs_root *root = BTRFS_I(old_dir)->root;
4812         struct inode *new_inode = new_dentry->d_inode;
4813         struct inode *old_inode = old_dentry->d_inode;
4814         struct timespec ctime = CURRENT_TIME;
4815         u64 index = 0;
4816         int ret;
4817
4818         /* we're not allowed to rename between subvolumes */
4819         if (BTRFS_I(old_inode)->root->root_key.objectid !=
4820             BTRFS_I(new_dir)->root->root_key.objectid)
4821                 return -EXDEV;
4822
4823         if (S_ISDIR(old_inode->i_mode) && new_inode &&
4824             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4825                 return -ENOTEMPTY;
4826         }
4827
4828         /* to rename a snapshot or subvolume, we need to juggle the
4829          * backrefs.  This isn't coded yet
4830          */
4831         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4832                 return -EXDEV;
4833
4834         ret = btrfs_check_metadata_free_space(root);
4835         if (ret)
4836                 goto out_unlock;
4837
4838         /*
4839          * we're using rename to replace one file with another.
4840          * and the replacement file is large.  Start IO on it now so
4841          * we don't add too much work to the end of the transaction
4842          */
4843         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
4844             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
4845                 filemap_flush(old_inode->i_mapping);
4846
4847         trans = btrfs_start_transaction(root, 1);
4848
4849         /*
4850          * make sure the inode gets flushed if it is replacing
4851          * something.
4852          */
4853         if (new_inode && new_inode->i_size &&
4854             old_inode && S_ISREG(old_inode->i_mode)) {
4855                 btrfs_add_ordered_operation(trans, root, old_inode);
4856         }
4857
4858         /*
4859          * this is an ugly little race, but the rename is required to make
4860          * sure that if we crash, the inode is either at the old name
4861          * or the new one.  pinning the log transaction lets us make sure
4862          * we don't allow a log commit to come in after we unlink the
4863          * name but before we add the new name back in.
4864          */
4865         btrfs_pin_log_trans(root);
4866
4867         btrfs_set_trans_block_group(trans, new_dir);
4868
4869         btrfs_inc_nlink(old_dentry->d_inode);
4870         old_dir->i_ctime = old_dir->i_mtime = ctime;
4871         new_dir->i_ctime = new_dir->i_mtime = ctime;
4872         old_inode->i_ctime = ctime;
4873
4874         if (old_dentry->d_parent != new_dentry->d_parent)
4875                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
4876
4877         ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4878                                  old_dentry->d_name.name,
4879                                  old_dentry->d_name.len);
4880         if (ret)
4881                 goto out_fail;
4882
4883         if (new_inode) {
4884                 new_inode->i_ctime = CURRENT_TIME;
4885                 ret = btrfs_unlink_inode(trans, root, new_dir,
4886                                          new_dentry->d_inode,
4887                                          new_dentry->d_name.name,
4888                                          new_dentry->d_name.len);
4889                 if (ret)
4890                         goto out_fail;
4891                 if (new_inode->i_nlink == 0) {
4892                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4893                         if (ret)
4894                                 goto out_fail;
4895                 }
4896
4897         }
4898         ret = btrfs_set_inode_index(new_dir, &index);
4899         if (ret)
4900                 goto out_fail;
4901
4902         ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4903                              old_inode, new_dentry->d_name.name,
4904                              new_dentry->d_name.len, 1, index);
4905         if (ret)
4906                 goto out_fail;
4907
4908         btrfs_log_new_name(trans, old_inode, old_dir,
4909                                        new_dentry->d_parent);
4910 out_fail:
4911
4912         /* this btrfs_end_log_trans just allows the current
4913          * log-sub transaction to complete
4914          */
4915         btrfs_end_log_trans(root);
4916         btrfs_end_transaction_throttle(trans, root);
4917 out_unlock:
4918         return ret;
4919 }
4920
4921 /*
4922  * some fairly slow code that needs optimization. This walks the list
4923  * of all the inodes with pending delalloc and forces them to disk.
4924  */
4925 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4926 {
4927         struct list_head *head = &root->fs_info->delalloc_inodes;
4928         struct btrfs_inode *binode;
4929         struct inode *inode;
4930
4931         if (root->fs_info->sb->s_flags & MS_RDONLY)
4932                 return -EROFS;
4933
4934         spin_lock(&root->fs_info->delalloc_lock);
4935         while (!list_empty(head)) {
4936                 binode = list_entry(head->next, struct btrfs_inode,
4937                                     delalloc_inodes);
4938                 inode = igrab(&binode->vfs_inode);
4939                 if (!inode)
4940                         list_del_init(&binode->delalloc_inodes);
4941                 spin_unlock(&root->fs_info->delalloc_lock);
4942                 if (inode) {
4943                         filemap_flush(inode->i_mapping);
4944                         iput(inode);
4945                 }
4946                 cond_resched();
4947                 spin_lock(&root->fs_info->delalloc_lock);
4948         }
4949         spin_unlock(&root->fs_info->delalloc_lock);
4950
4951         /* the filemap_flush will queue IO into the worker threads, but
4952          * we have to make sure the IO is actually started and that
4953          * ordered extents get created before we return
4954          */
4955         atomic_inc(&root->fs_info->async_submit_draining);
4956         while (atomic_read(&root->fs_info->nr_async_submits) ||
4957               atomic_read(&root->fs_info->async_delalloc_pages)) {
4958                 wait_event(root->fs_info->async_submit_wait,
4959                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4960                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4961         }
4962         atomic_dec(&root->fs_info->async_submit_draining);
4963         return 0;
4964 }
4965
4966 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4967                          const char *symname)
4968 {
4969         struct btrfs_trans_handle *trans;
4970         struct btrfs_root *root = BTRFS_I(dir)->root;
4971         struct btrfs_path *path;
4972         struct btrfs_key key;
4973         struct inode *inode = NULL;
4974         int err;
4975         int drop_inode = 0;
4976         u64 objectid;
4977         u64 index = 0 ;
4978         int name_len;
4979         int datasize;
4980         unsigned long ptr;
4981         struct btrfs_file_extent_item *ei;
4982         struct extent_buffer *leaf;
4983         unsigned long nr = 0;
4984
4985         name_len = strlen(symname) + 1;
4986         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4987                 return -ENAMETOOLONG;
4988
4989         err = btrfs_check_metadata_free_space(root);
4990         if (err)
4991                 goto out_fail;
4992
4993         trans = btrfs_start_transaction(root, 1);
4994         btrfs_set_trans_block_group(trans, dir);
4995
4996         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4997         if (err) {
4998                 err = -ENOSPC;
4999                 goto out_unlock;
5000         }
5001
5002         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5003                                 dentry->d_name.len,
5004                                 dentry->d_parent->d_inode->i_ino, objectid,
5005                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5006                                 &index);
5007         err = PTR_ERR(inode);
5008         if (IS_ERR(inode))
5009                 goto out_unlock;
5010
5011         err = btrfs_init_inode_security(inode, dir);
5012         if (err) {
5013                 drop_inode = 1;
5014                 goto out_unlock;
5015         }
5016
5017         btrfs_set_trans_block_group(trans, inode);
5018         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5019         if (err)
5020                 drop_inode = 1;
5021         else {
5022                 inode->i_mapping->a_ops = &btrfs_aops;
5023                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5024                 inode->i_fop = &btrfs_file_operations;
5025                 inode->i_op = &btrfs_file_inode_operations;
5026                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5027         }
5028         dir->i_sb->s_dirt = 1;
5029         btrfs_update_inode_block_group(trans, inode);
5030         btrfs_update_inode_block_group(trans, dir);
5031         if (drop_inode)
5032                 goto out_unlock;
5033
5034         path = btrfs_alloc_path();
5035         BUG_ON(!path);
5036         key.objectid = inode->i_ino;
5037         key.offset = 0;
5038         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5039         datasize = btrfs_file_extent_calc_inline_size(name_len);
5040         err = btrfs_insert_empty_item(trans, root, path, &key,
5041                                       datasize);
5042         if (err) {
5043                 drop_inode = 1;
5044                 goto out_unlock;
5045         }
5046         leaf = path->nodes[0];
5047         ei = btrfs_item_ptr(leaf, path->slots[0],
5048                             struct btrfs_file_extent_item);
5049         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5050         btrfs_set_file_extent_type(leaf, ei,
5051                                    BTRFS_FILE_EXTENT_INLINE);
5052         btrfs_set_file_extent_encryption(leaf, ei, 0);
5053         btrfs_set_file_extent_compression(leaf, ei, 0);
5054         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5055         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5056
5057         ptr = btrfs_file_extent_inline_start(ei);
5058         write_extent_buffer(leaf, symname, ptr, name_len);
5059         btrfs_mark_buffer_dirty(leaf);
5060         btrfs_free_path(path);
5061
5062         inode->i_op = &btrfs_symlink_inode_operations;
5063         inode->i_mapping->a_ops = &btrfs_symlink_aops;
5064         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5065         inode_set_bytes(inode, name_len);
5066         btrfs_i_size_write(inode, name_len - 1);
5067         err = btrfs_update_inode(trans, root, inode);
5068         if (err)
5069                 drop_inode = 1;
5070
5071 out_unlock:
5072         nr = trans->blocks_used;
5073         btrfs_end_transaction_throttle(trans, root);
5074 out_fail:
5075         if (drop_inode) {
5076                 inode_dec_link_count(inode);
5077                 iput(inode);
5078         }
5079         btrfs_btree_balance_dirty(root, nr);
5080         return err;
5081 }
5082
5083 static int prealloc_file_range(struct btrfs_trans_handle *trans,
5084                                struct inode *inode, u64 start, u64 end,
5085                                u64 locked_end, u64 alloc_hint, int mode)
5086 {
5087         struct btrfs_root *root = BTRFS_I(inode)->root;
5088         struct btrfs_key ins;
5089         u64 alloc_size;
5090         u64 cur_offset = start;
5091         u64 num_bytes = end - start;
5092         int ret = 0;
5093
5094         while (num_bytes > 0) {
5095                 alloc_size = min(num_bytes, root->fs_info->max_extent);
5096                 ret = btrfs_reserve_extent(trans, root, alloc_size,
5097                                            root->sectorsize, 0, alloc_hint,
5098                                            (u64)-1, &ins, 1);
5099                 if (ret) {
5100                         WARN_ON(1);
5101                         goto out;
5102                 }
5103                 ret = insert_reserved_file_extent(trans, inode,
5104                                                   cur_offset, ins.objectid,
5105                                                   ins.offset, ins.offset,
5106                                                   ins.offset, locked_end,
5107                                                   0, 0, 0,
5108                                                   BTRFS_FILE_EXTENT_PREALLOC);
5109                 BUG_ON(ret);
5110                 btrfs_drop_extent_cache(inode, cur_offset,
5111                                         cur_offset + ins.offset -1, 0);
5112                 num_bytes -= ins.offset;
5113                 cur_offset += ins.offset;
5114                 alloc_hint = ins.objectid + ins.offset;
5115         }
5116 out:
5117         if (cur_offset > start) {
5118                 inode->i_ctime = CURRENT_TIME;
5119                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5120                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5121                     cur_offset > i_size_read(inode))
5122                         btrfs_i_size_write(inode, cur_offset);
5123                 ret = btrfs_update_inode(trans, root, inode);
5124                 BUG_ON(ret);
5125         }
5126
5127         return ret;
5128 }
5129
5130 static long btrfs_fallocate(struct inode *inode, int mode,
5131                             loff_t offset, loff_t len)
5132 {
5133         u64 cur_offset;
5134         u64 last_byte;
5135         u64 alloc_start;
5136         u64 alloc_end;
5137         u64 alloc_hint = 0;
5138         u64 locked_end;
5139         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5140         struct extent_map *em;
5141         struct btrfs_trans_handle *trans;
5142         struct btrfs_root *root;
5143         int ret;
5144
5145         alloc_start = offset & ~mask;
5146         alloc_end =  (offset + len + mask) & ~mask;
5147
5148         /*
5149          * wait for ordered IO before we have any locks.  We'll loop again
5150          * below with the locks held.
5151          */
5152         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5153
5154         mutex_lock(&inode->i_mutex);
5155         if (alloc_start > inode->i_size) {
5156                 ret = btrfs_cont_expand(inode, alloc_start);
5157                 if (ret)
5158                         goto out;
5159         }
5160
5161         root = BTRFS_I(inode)->root;
5162
5163         ret = btrfs_check_data_free_space(root, inode,
5164                                           alloc_end - alloc_start);
5165         if (ret)
5166                 goto out;
5167
5168         locked_end = alloc_end - 1;
5169         while (1) {
5170                 struct btrfs_ordered_extent *ordered;
5171
5172                 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5173                 if (!trans) {
5174                         ret = -EIO;
5175                         goto out_free;
5176                 }
5177
5178                 /* the extent lock is ordered inside the running
5179                  * transaction
5180                  */
5181                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5182                             GFP_NOFS);
5183                 ordered = btrfs_lookup_first_ordered_extent(inode,
5184                                                             alloc_end - 1);
5185                 if (ordered &&
5186                     ordered->file_offset + ordered->len > alloc_start &&
5187                     ordered->file_offset < alloc_end) {
5188                         btrfs_put_ordered_extent(ordered);
5189                         unlock_extent(&BTRFS_I(inode)->io_tree,
5190                                       alloc_start, locked_end, GFP_NOFS);
5191                         btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5192
5193                         /*
5194                          * we can't wait on the range with the transaction
5195                          * running or with the extent lock held
5196                          */
5197                         btrfs_wait_ordered_range(inode, alloc_start,
5198                                                  alloc_end - alloc_start);
5199                 } else {
5200                         if (ordered)
5201                                 btrfs_put_ordered_extent(ordered);
5202                         break;
5203                 }
5204         }
5205
5206         cur_offset = alloc_start;
5207         while (1) {
5208                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5209                                       alloc_end - cur_offset, 0);
5210                 BUG_ON(IS_ERR(em) || !em);
5211                 last_byte = min(extent_map_end(em), alloc_end);
5212                 last_byte = (last_byte + mask) & ~mask;
5213                 if (em->block_start == EXTENT_MAP_HOLE) {
5214                         ret = prealloc_file_range(trans, inode, cur_offset,
5215                                         last_byte, locked_end + 1,
5216                                         alloc_hint, mode);
5217                         if (ret < 0) {
5218                                 free_extent_map(em);
5219                                 break;
5220                         }
5221                 }
5222                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5223                         alloc_hint = em->block_start;
5224                 free_extent_map(em);
5225
5226                 cur_offset = last_byte;
5227                 if (cur_offset >= alloc_end) {
5228                         ret = 0;
5229                         break;
5230                 }
5231         }
5232         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5233                       GFP_NOFS);
5234
5235         btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5236 out_free:
5237         btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
5238 out:
5239         mutex_unlock(&inode->i_mutex);
5240         return ret;
5241 }
5242
5243 static int btrfs_set_page_dirty(struct page *page)
5244 {
5245         return __set_page_dirty_nobuffers(page);
5246 }
5247
5248 static int btrfs_permission(struct inode *inode, int mask)
5249 {
5250         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5251                 return -EACCES;
5252         return generic_permission(inode, mask, btrfs_check_acl);
5253 }
5254
5255 static struct inode_operations btrfs_dir_inode_operations = {
5256         .getattr        = btrfs_getattr,
5257         .lookup         = btrfs_lookup,
5258         .create         = btrfs_create,
5259         .unlink         = btrfs_unlink,
5260         .link           = btrfs_link,
5261         .mkdir          = btrfs_mkdir,
5262         .rmdir          = btrfs_rmdir,
5263         .rename         = btrfs_rename,
5264         .symlink        = btrfs_symlink,
5265         .setattr        = btrfs_setattr,
5266         .mknod          = btrfs_mknod,
5267         .setxattr       = btrfs_setxattr,
5268         .getxattr       = btrfs_getxattr,
5269         .listxattr      = btrfs_listxattr,
5270         .removexattr    = btrfs_removexattr,
5271         .permission     = btrfs_permission,
5272 };
5273 static struct inode_operations btrfs_dir_ro_inode_operations = {
5274         .lookup         = btrfs_lookup,
5275         .permission     = btrfs_permission,
5276 };
5277 static struct file_operations btrfs_dir_file_operations = {
5278         .llseek         = generic_file_llseek,
5279         .read           = generic_read_dir,
5280         .readdir        = btrfs_real_readdir,
5281         .unlocked_ioctl = btrfs_ioctl,
5282 #ifdef CONFIG_COMPAT
5283         .compat_ioctl   = btrfs_ioctl,
5284 #endif
5285         .release        = btrfs_release_file,
5286         .fsync          = btrfs_sync_file,
5287 };
5288
5289 static struct extent_io_ops btrfs_extent_io_ops = {
5290         .fill_delalloc = run_delalloc_range,
5291         .submit_bio_hook = btrfs_submit_bio_hook,
5292         .merge_bio_hook = btrfs_merge_bio_hook,
5293         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5294         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5295         .writepage_start_hook = btrfs_writepage_start_hook,
5296         .readpage_io_failed_hook = btrfs_io_failed_hook,
5297         .set_bit_hook = btrfs_set_bit_hook,
5298         .clear_bit_hook = btrfs_clear_bit_hook,
5299 };
5300
5301 /*
5302  * btrfs doesn't support the bmap operation because swapfiles
5303  * use bmap to make a mapping of extents in the file.  They assume
5304  * these extents won't change over the life of the file and they
5305  * use the bmap result to do IO directly to the drive.
5306  *
5307  * the btrfs bmap call would return logical addresses that aren't
5308  * suitable for IO and they also will change frequently as COW
5309  * operations happen.  So, swapfile + btrfs == corruption.
5310  *
5311  * For now we're avoiding this by dropping bmap.
5312  */
5313 static struct address_space_operations btrfs_aops = {
5314         .readpage       = btrfs_readpage,
5315         .writepage      = btrfs_writepage,
5316         .writepages     = btrfs_writepages,
5317         .readpages      = btrfs_readpages,
5318         .sync_page      = block_sync_page,
5319         .direct_IO      = btrfs_direct_IO,
5320         .invalidatepage = btrfs_invalidatepage,
5321         .releasepage    = btrfs_releasepage,
5322         .set_page_dirty = btrfs_set_page_dirty,
5323 };
5324
5325 static struct address_space_operations btrfs_symlink_aops = {
5326         .readpage       = btrfs_readpage,
5327         .writepage      = btrfs_writepage,
5328         .invalidatepage = btrfs_invalidatepage,
5329         .releasepage    = btrfs_releasepage,
5330 };
5331
5332 static struct inode_operations btrfs_file_inode_operations = {
5333         .truncate       = btrfs_truncate,
5334         .getattr        = btrfs_getattr,
5335         .setattr        = btrfs_setattr,
5336         .setxattr       = btrfs_setxattr,
5337         .getxattr       = btrfs_getxattr,
5338         .listxattr      = btrfs_listxattr,
5339         .removexattr    = btrfs_removexattr,
5340         .permission     = btrfs_permission,
5341         .fallocate      = btrfs_fallocate,
5342         .fiemap         = btrfs_fiemap,
5343 };
5344 static struct inode_operations btrfs_special_inode_operations = {
5345         .getattr        = btrfs_getattr,
5346         .setattr        = btrfs_setattr,
5347         .permission     = btrfs_permission,
5348         .setxattr       = btrfs_setxattr,
5349         .getxattr       = btrfs_getxattr,
5350         .listxattr      = btrfs_listxattr,
5351         .removexattr    = btrfs_removexattr,
5352 };
5353 static struct inode_operations btrfs_symlink_inode_operations = {
5354         .readlink       = generic_readlink,
5355         .follow_link    = page_follow_link_light,
5356         .put_link       = page_put_link,
5357         .permission     = btrfs_permission,
5358         .setxattr       = btrfs_setxattr,
5359         .getxattr       = btrfs_getxattr,
5360         .listxattr      = btrfs_listxattr,
5361         .removexattr    = btrfs_removexattr,
5362 };