Btrfs: Fix streaming read performance with checksumming on
[safe/jmp/linux-2.6] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48
49 struct btrfs_iget_args {
50         u64 ino;
51         struct btrfs_root *root;
52 };
53
54 static struct inode_operations btrfs_dir_inode_operations;
55 static struct inode_operations btrfs_symlink_inode_operations;
56 static struct inode_operations btrfs_dir_ro_inode_operations;
57 static struct inode_operations btrfs_special_inode_operations;
58 static struct inode_operations btrfs_file_inode_operations;
59 static struct address_space_operations btrfs_aops;
60 static struct address_space_operations btrfs_symlink_aops;
61 static struct file_operations btrfs_dir_file_operations;
62 static struct extent_io_ops btrfs_extent_io_ops;
63
64 static struct kmem_cache *btrfs_inode_cachep;
65 struct kmem_cache *btrfs_trans_handle_cachep;
66 struct kmem_cache *btrfs_transaction_cachep;
67 struct kmem_cache *btrfs_bit_radix_cachep;
68 struct kmem_cache *btrfs_path_cachep;
69
70 #define S_SHIFT 12
71 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
72         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
73         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
74         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
75         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
76         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
77         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
78         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
79 };
80
81 static void btrfs_truncate(struct inode *inode);
82
83 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
84                            int for_del)
85 {
86         u64 total;
87         u64 used;
88         u64 thresh;
89         unsigned long flags;
90         int ret = 0;
91
92         spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
93         total = btrfs_super_total_bytes(&root->fs_info->super_copy);
94         used = btrfs_super_bytes_used(&root->fs_info->super_copy);
95         if (for_del)
96                 thresh = total * 90;
97         else
98                 thresh = total * 85;
99
100         do_div(thresh, 100);
101
102         if (used + root->fs_info->delalloc_bytes + num_required > thresh)
103                 ret = -ENOSPC;
104         spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
105         return ret;
106 }
107
108 static int cow_file_range(struct inode *inode, u64 start, u64 end)
109 {
110         struct btrfs_root *root = BTRFS_I(inode)->root;
111         struct btrfs_trans_handle *trans;
112         u64 alloc_hint = 0;
113         u64 num_bytes;
114         u64 cur_alloc_size;
115         u64 blocksize = root->sectorsize;
116         u64 orig_num_bytes;
117         struct btrfs_key ins;
118         struct extent_map *em;
119         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
120         int ret = 0;
121
122         trans = btrfs_join_transaction(root, 1);
123         BUG_ON(!trans);
124         btrfs_set_trans_block_group(trans, inode);
125
126         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
127         num_bytes = max(blocksize,  num_bytes);
128         orig_num_bytes = num_bytes;
129
130         if (alloc_hint == EXTENT_MAP_INLINE)
131                 goto out;
132
133         BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy));
134         mutex_lock(&BTRFS_I(inode)->extent_mutex);
135         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1);
136         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
137
138         while(num_bytes > 0) {
139                 cur_alloc_size = min(num_bytes, root->fs_info->max_extent);
140                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
141                                            root->sectorsize, 0, 0,
142                                            (u64)-1, &ins, 1);
143                 if (ret) {
144                         WARN_ON(1);
145                         goto out;
146                 }
147                 em = alloc_extent_map(GFP_NOFS);
148                 em->start = start;
149                 em->len = ins.offset;
150                 em->block_start = ins.objectid;
151                 em->bdev = root->fs_info->fs_devices->latest_bdev;
152                 mutex_lock(&BTRFS_I(inode)->extent_mutex);
153                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
154                 while(1) {
155                         spin_lock(&em_tree->lock);
156                         ret = add_extent_mapping(em_tree, em);
157                         spin_unlock(&em_tree->lock);
158                         if (ret != -EEXIST) {
159                                 free_extent_map(em);
160                                 break;
161                         }
162                         btrfs_drop_extent_cache(inode, start,
163                                                 start + ins.offset - 1);
164                 }
165                 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
166
167                 cur_alloc_size = ins.offset;
168                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
169                                                ins.offset);
170                 BUG_ON(ret);
171                 if (num_bytes < cur_alloc_size) {
172                         printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes,
173                                cur_alloc_size);
174                         break;
175                 }
176                 num_bytes -= cur_alloc_size;
177                 alloc_hint = ins.objectid + ins.offset;
178                 start += cur_alloc_size;
179         }
180 out:
181         btrfs_end_transaction(trans, root);
182         return ret;
183 }
184
185 static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end)
186 {
187         u64 extent_start;
188         u64 extent_end;
189         u64 bytenr;
190         u64 cow_end;
191         u64 loops = 0;
192         u64 total_fs_bytes;
193         struct btrfs_root *root = BTRFS_I(inode)->root;
194         struct btrfs_block_group_cache *block_group;
195         struct extent_buffer *leaf;
196         int found_type;
197         struct btrfs_path *path;
198         struct btrfs_file_extent_item *item;
199         int ret;
200         int err;
201         struct btrfs_key found_key;
202
203         total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
204         path = btrfs_alloc_path();
205         BUG_ON(!path);
206 again:
207         ret = btrfs_lookup_file_extent(NULL, root, path,
208                                        inode->i_ino, start, 0);
209         if (ret < 0) {
210                 btrfs_free_path(path);
211                 return ret;
212         }
213
214         cow_end = end;
215         if (ret != 0) {
216                 if (path->slots[0] == 0)
217                         goto not_found;
218                 path->slots[0]--;
219         }
220
221         leaf = path->nodes[0];
222         item = btrfs_item_ptr(leaf, path->slots[0],
223                               struct btrfs_file_extent_item);
224
225         /* are we inside the extent that was found? */
226         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
227         found_type = btrfs_key_type(&found_key);
228         if (found_key.objectid != inode->i_ino ||
229             found_type != BTRFS_EXTENT_DATA_KEY)
230                 goto not_found;
231
232         found_type = btrfs_file_extent_type(leaf, item);
233         extent_start = found_key.offset;
234         if (found_type == BTRFS_FILE_EXTENT_REG) {
235                 u64 extent_num_bytes;
236
237                 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
238                 extent_end = extent_start + extent_num_bytes;
239                 err = 0;
240
241                 if (loops && start != extent_start)
242                         goto not_found;
243
244                 if (start < extent_start || start >= extent_end)
245                         goto not_found;
246
247                 cow_end = min(end, extent_end - 1);
248                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
249                 if (bytenr == 0)
250                         goto not_found;
251
252                 if (btrfs_cross_ref_exists(root, &found_key, bytenr))
253                         goto not_found;
254                 /*
255                  * we may be called by the resizer, make sure we're inside
256                  * the limits of the FS
257                  */
258                 block_group = btrfs_lookup_block_group(root->fs_info,
259                                                        bytenr);
260                 if (!block_group || block_group->ro)
261                         goto not_found;
262
263                 start = extent_end;
264         } else {
265                 goto not_found;
266         }
267 loop:
268         if (start > end) {
269                 btrfs_free_path(path);
270                 return 0;
271         }
272         btrfs_release_path(root, path);
273         loops++;
274         goto again;
275
276 not_found:
277         btrfs_release_path(root, path);
278         cow_file_range(inode, start, end);
279         start = end + 1;
280         goto loop;
281 }
282
283 static int run_delalloc_range(struct inode *inode, u64 start, u64 end)
284 {
285         struct btrfs_root *root = BTRFS_I(inode)->root;
286         int ret;
287
288         if (btrfs_test_opt(root, NODATACOW) ||
289             btrfs_test_flag(inode, NODATACOW))
290                 ret = run_delalloc_nocow(inode, start, end);
291         else
292                 ret = cow_file_range(inode, start, end);
293
294         return ret;
295 }
296
297 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
298                        unsigned long old, unsigned long bits)
299 {
300         unsigned long flags;
301         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
302                 struct btrfs_root *root = BTRFS_I(inode)->root;
303                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
304                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
305                 root->fs_info->delalloc_bytes += end - start + 1;
306                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
307         }
308         return 0;
309 }
310
311 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
312                          unsigned long old, unsigned long bits)
313 {
314         if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
315                 struct btrfs_root *root = BTRFS_I(inode)->root;
316                 unsigned long flags;
317
318                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
319                 if (end - start + 1 > root->fs_info->delalloc_bytes) {
320                         printk("warning: delalloc account %Lu %Lu\n",
321                                end - start + 1, root->fs_info->delalloc_bytes);
322                         root->fs_info->delalloc_bytes = 0;
323                         BTRFS_I(inode)->delalloc_bytes = 0;
324                 } else {
325                         root->fs_info->delalloc_bytes -= end - start + 1;
326                         BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
327                 }
328                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
329         }
330         return 0;
331 }
332
333 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
334                          size_t size, struct bio *bio)
335 {
336         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
337         struct btrfs_mapping_tree *map_tree;
338         u64 logical = bio->bi_sector << 9;
339         u64 length = 0;
340         u64 map_length;
341         int ret;
342
343         length = bio->bi_size;
344         map_tree = &root->fs_info->mapping_tree;
345         map_length = length;
346         ret = btrfs_map_block(map_tree, READ, logical,
347                               &map_length, NULL, 0);
348
349         if (map_length < length + size) {
350                 return 1;
351         }
352         return 0;
353 }
354
355 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
356                           int mirror_num)
357 {
358         struct btrfs_root *root = BTRFS_I(inode)->root;
359         int ret = 0;
360
361         ret = btrfs_csum_one_bio(root, inode, bio);
362         BUG_ON(ret);
363
364         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
365 }
366
367 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
368                           int mirror_num)
369 {
370         struct btrfs_root *root = BTRFS_I(inode)->root;
371         int ret = 0;
372
373         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
374         BUG_ON(ret);
375
376         if (!(rw & (1 << BIO_RW))) {
377                 if (!btrfs_test_opt(root, NODATASUM) &&
378                     !btrfs_test_flag(inode, NODATASUM)) {
379                         btrfs_lookup_bio_sums(root, inode, bio);
380                 }
381                 goto mapit;
382         }
383
384         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
385                                    inode, rw, bio, mirror_num,
386                                    __btrfs_submit_bio_hook);
387 mapit:
388         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
389 }
390
391 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
392                              struct inode *inode, u64 file_offset,
393                              struct list_head *list)
394 {
395         struct list_head *cur;
396         struct btrfs_ordered_sum *sum;
397
398         btrfs_set_trans_block_group(trans, inode);
399         list_for_each(cur, list) {
400                 sum = list_entry(cur, struct btrfs_ordered_sum, list);
401                 mutex_lock(&BTRFS_I(inode)->csum_mutex);
402                 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
403                                        inode, sum);
404                 mutex_unlock(&BTRFS_I(inode)->csum_mutex);
405         }
406         return 0;
407 }
408
409 struct btrfs_writepage_fixup {
410         struct page *page;
411         struct btrfs_work work;
412 };
413
414 /* see btrfs_writepage_start_hook for details on why this is required */
415 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
416 {
417         struct btrfs_writepage_fixup *fixup;
418         struct btrfs_ordered_extent *ordered;
419         struct page *page;
420         struct inode *inode;
421         u64 page_start;
422         u64 page_end;
423
424         fixup = container_of(work, struct btrfs_writepage_fixup, work);
425         page = fixup->page;
426 again:
427         lock_page(page);
428         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
429                 ClearPageChecked(page);
430                 goto out_page;
431         }
432
433         inode = page->mapping->host;
434         page_start = page_offset(page);
435         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
436
437         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
438
439         /* already ordered? We're done */
440         if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
441                              EXTENT_ORDERED, 0)) {
442                 goto out;
443         }
444
445         ordered = btrfs_lookup_ordered_extent(inode, page_start);
446         if (ordered) {
447                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
448                               page_end, GFP_NOFS);
449                 unlock_page(page);
450                 btrfs_start_ordered_extent(inode, ordered, 1);
451                 goto again;
452         }
453
454         set_extent_delalloc(&BTRFS_I(inode)->io_tree, page_start, page_end,
455                             GFP_NOFS);
456         ClearPageChecked(page);
457 out:
458         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
459 out_page:
460         unlock_page(page);
461         page_cache_release(page);
462 }
463
464 /*
465  * There are a few paths in the higher layers of the kernel that directly
466  * set the page dirty bit without asking the filesystem if it is a
467  * good idea.  This causes problems because we want to make sure COW
468  * properly happens and the data=ordered rules are followed.
469  *
470  * In our case any range that doesn't have the EXTENT_ORDERED bit set
471  * hasn't been properly setup for IO.  We kick off an async process
472  * to fix it up.  The async helper will wait for ordered extents, set
473  * the delalloc bit and make it safe to write the page.
474  */
475 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
476 {
477         struct inode *inode = page->mapping->host;
478         struct btrfs_writepage_fixup *fixup;
479         struct btrfs_root *root = BTRFS_I(inode)->root;
480         int ret;
481
482         ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
483                              EXTENT_ORDERED, 0);
484         if (ret)
485                 return 0;
486
487         if (PageChecked(page))
488                 return -EAGAIN;
489
490         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
491         if (!fixup)
492                 return -EAGAIN;
493
494         SetPageChecked(page);
495         page_cache_get(page);
496         fixup->work.func = btrfs_writepage_fixup_worker;
497         fixup->page = page;
498         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
499         return -EAGAIN;
500 }
501
502 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
503 {
504         struct btrfs_root *root = BTRFS_I(inode)->root;
505         struct btrfs_trans_handle *trans;
506         struct btrfs_ordered_extent *ordered_extent;
507         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
508         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
509         struct extent_map *em;
510         struct extent_map *em_orig;
511         u64 alloc_hint = 0;
512         u64 clear_start;
513         u64 clear_end;
514         struct list_head list;
515         struct btrfs_key ins;
516         struct rb_node *rb;
517         int ret;
518
519         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
520         if (!ret)
521                 return 0;
522
523         trans = btrfs_join_transaction(root, 1);
524
525         ordered_extent = btrfs_lookup_ordered_extent(inode, start);
526         BUG_ON(!ordered_extent);
527
528         lock_extent(io_tree, ordered_extent->file_offset,
529                     ordered_extent->file_offset + ordered_extent->len - 1,
530                     GFP_NOFS);
531
532         INIT_LIST_HEAD(&list);
533
534         ins.objectid = ordered_extent->start;
535         ins.offset = ordered_extent->len;
536         ins.type = BTRFS_EXTENT_ITEM_KEY;
537
538         ret = btrfs_alloc_reserved_extent(trans, root, root->root_key.objectid,
539                                           trans->transid, inode->i_ino,
540                                           ordered_extent->file_offset, &ins);
541         BUG_ON(ret);
542
543         mutex_lock(&BTRFS_I(inode)->extent_mutex);
544
545         spin_lock(&em_tree->lock);
546         clear_start = ordered_extent->file_offset;
547         clear_end = ordered_extent->file_offset + ordered_extent->len;
548         em = lookup_extent_mapping(em_tree, clear_start,
549                                    ordered_extent->len);
550         em_orig = em;
551         while(em && clear_start < extent_map_end(em) && clear_end > em->start) {
552                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
553                 rb = rb_next(&em->rb_node);
554                 if (!rb)
555                         break;
556                 em = rb_entry(rb, struct extent_map, rb_node);
557         }
558         free_extent_map(em_orig);
559         spin_unlock(&em_tree->lock);
560
561         ret = btrfs_drop_extents(trans, root, inode,
562                                  ordered_extent->file_offset,
563                                  ordered_extent->file_offset +
564                                  ordered_extent->len,
565                                  ordered_extent->file_offset, &alloc_hint);
566         BUG_ON(ret);
567         ret = btrfs_insert_file_extent(trans, root, inode->i_ino,
568                                        ordered_extent->file_offset,
569                                        ordered_extent->start,
570                                        ordered_extent->len,
571                                        ordered_extent->len, 0);
572         BUG_ON(ret);
573
574         btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
575                                 ordered_extent->file_offset +
576                                 ordered_extent->len - 1);
577         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
578
579         inode->i_blocks += ordered_extent->len >> 9;
580         unlock_extent(io_tree, ordered_extent->file_offset,
581                     ordered_extent->file_offset + ordered_extent->len - 1,
582                     GFP_NOFS);
583         add_pending_csums(trans, inode, ordered_extent->file_offset,
584                           &ordered_extent->list);
585
586         btrfs_ordered_update_i_size(inode, ordered_extent);
587         btrfs_remove_ordered_extent(inode, ordered_extent);
588
589         /* once for us */
590         btrfs_put_ordered_extent(ordered_extent);
591         /* once for the tree */
592         btrfs_put_ordered_extent(ordered_extent);
593
594         btrfs_update_inode(trans, root, inode);
595         btrfs_end_transaction(trans, root);
596         return 0;
597 }
598
599 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
600                                 struct extent_state *state, int uptodate)
601 {
602         return btrfs_finish_ordered_io(page->mapping->host, start, end);
603 }
604
605 struct io_failure_record {
606         struct page *page;
607         u64 start;
608         u64 len;
609         u64 logical;
610         int last_mirror;
611 };
612
613 int btrfs_io_failed_hook(struct bio *failed_bio,
614                          struct page *page, u64 start, u64 end,
615                          struct extent_state *state)
616 {
617         struct io_failure_record *failrec = NULL;
618         u64 private;
619         struct extent_map *em;
620         struct inode *inode = page->mapping->host;
621         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
622         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
623         struct bio *bio;
624         int num_copies;
625         int ret;
626         int rw;
627         u64 logical;
628
629         ret = get_state_private(failure_tree, start, &private);
630         if (ret) {
631                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
632                 if (!failrec)
633                         return -ENOMEM;
634                 failrec->start = start;
635                 failrec->len = end - start + 1;
636                 failrec->last_mirror = 0;
637
638                 spin_lock(&em_tree->lock);
639                 em = lookup_extent_mapping(em_tree, start, failrec->len);
640                 if (em->start > start || em->start + em->len < start) {
641                         free_extent_map(em);
642                         em = NULL;
643                 }
644                 spin_unlock(&em_tree->lock);
645
646                 if (!em || IS_ERR(em)) {
647                         kfree(failrec);
648                         return -EIO;
649                 }
650                 logical = start - em->start;
651                 logical = em->block_start + logical;
652                 failrec->logical = logical;
653                 free_extent_map(em);
654                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
655                                 EXTENT_DIRTY, GFP_NOFS);
656                 set_state_private(failure_tree, start,
657                                  (u64)(unsigned long)failrec);
658         } else {
659                 failrec = (struct io_failure_record *)(unsigned long)private;
660         }
661         num_copies = btrfs_num_copies(
662                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
663                               failrec->logical, failrec->len);
664         failrec->last_mirror++;
665         if (!state) {
666                 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
667                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
668                                                     failrec->start,
669                                                     EXTENT_LOCKED);
670                 if (state && state->start != failrec->start)
671                         state = NULL;
672                 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
673         }
674         if (!state || failrec->last_mirror > num_copies) {
675                 set_state_private(failure_tree, failrec->start, 0);
676                 clear_extent_bits(failure_tree, failrec->start,
677                                   failrec->start + failrec->len - 1,
678                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
679                 kfree(failrec);
680                 return -EIO;
681         }
682         bio = bio_alloc(GFP_NOFS, 1);
683         bio->bi_private = state;
684         bio->bi_end_io = failed_bio->bi_end_io;
685         bio->bi_sector = failrec->logical >> 9;
686         bio->bi_bdev = failed_bio->bi_bdev;
687         bio->bi_size = 0;
688         bio_add_page(bio, page, failrec->len, start - page_offset(page));
689         if (failed_bio->bi_rw & (1 << BIO_RW))
690                 rw = WRITE;
691         else
692                 rw = READ;
693
694         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
695                                                       failrec->last_mirror);
696         return 0;
697 }
698
699 int btrfs_clean_io_failures(struct inode *inode, u64 start)
700 {
701         u64 private;
702         u64 private_failure;
703         struct io_failure_record *failure;
704         int ret;
705
706         private = 0;
707         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
708                              (u64)-1, 1, EXTENT_DIRTY)) {
709                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
710                                         start, &private_failure);
711                 if (ret == 0) {
712                         failure = (struct io_failure_record *)(unsigned long)
713                                    private_failure;
714                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
715                                           failure->start, 0);
716                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
717                                           failure->start,
718                                           failure->start + failure->len - 1,
719                                           EXTENT_DIRTY | EXTENT_LOCKED,
720                                           GFP_NOFS);
721                         kfree(failure);
722                 }
723         }
724         return 0;
725 }
726
727 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
728                                struct extent_state *state)
729 {
730         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
731         struct inode *inode = page->mapping->host;
732         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
733         char *kaddr;
734         u64 private = ~(u32)0;
735         int ret;
736         struct btrfs_root *root = BTRFS_I(inode)->root;
737         u32 csum = ~(u32)0;
738         unsigned long flags;
739
740         if (btrfs_test_opt(root, NODATASUM) ||
741             btrfs_test_flag(inode, NODATASUM))
742                 return 0;
743         if (state && state->start == start) {
744                 private = state->private;
745                 ret = 0;
746         } else {
747                 ret = get_state_private(io_tree, start, &private);
748         }
749         local_irq_save(flags);
750         kaddr = kmap_atomic(page, KM_IRQ0);
751         if (ret) {
752                 goto zeroit;
753         }
754         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
755         btrfs_csum_final(csum, (char *)&csum);
756         if (csum != private) {
757                 goto zeroit;
758         }
759         kunmap_atomic(kaddr, KM_IRQ0);
760         local_irq_restore(flags);
761
762         /* if the io failure tree for this inode is non-empty,
763          * check to see if we've recovered from a failed IO
764          */
765         btrfs_clean_io_failures(inode, start);
766         return 0;
767
768 zeroit:
769         printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
770                page->mapping->host->i_ino, (unsigned long long)start, csum,
771                private);
772         memset(kaddr + offset, 1, end - start + 1);
773         flush_dcache_page(page);
774         kunmap_atomic(kaddr, KM_IRQ0);
775         local_irq_restore(flags);
776         if (private == 0)
777                 return 0;
778         return -EIO;
779 }
780
781 /*
782  * This creates an orphan entry for the given inode in case something goes
783  * wrong in the middle of an unlink/truncate.
784  */
785 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
786 {
787         struct btrfs_root *root = BTRFS_I(inode)->root;
788         int ret = 0;
789
790         spin_lock(&root->list_lock);
791
792         /* already on the orphan list, we're good */
793         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
794                 spin_unlock(&root->list_lock);
795                 return 0;
796         }
797
798         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
799
800         spin_unlock(&root->list_lock);
801
802         /*
803          * insert an orphan item to track this unlinked/truncated file
804          */
805         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
806
807         return ret;
808 }
809
810 /*
811  * We have done the truncate/delete so we can go ahead and remove the orphan
812  * item for this particular inode.
813  */
814 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
815 {
816         struct btrfs_root *root = BTRFS_I(inode)->root;
817         int ret = 0;
818
819         spin_lock(&root->list_lock);
820
821         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
822                 spin_unlock(&root->list_lock);
823                 return 0;
824         }
825
826         list_del_init(&BTRFS_I(inode)->i_orphan);
827         if (!trans) {
828                 spin_unlock(&root->list_lock);
829                 return 0;
830         }
831
832         spin_unlock(&root->list_lock);
833
834         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
835
836         return ret;
837 }
838
839 /*
840  * this cleans up any orphans that may be left on the list from the last use
841  * of this root.
842  */
843 void btrfs_orphan_cleanup(struct btrfs_root *root)
844 {
845         struct btrfs_path *path;
846         struct extent_buffer *leaf;
847         struct btrfs_item *item;
848         struct btrfs_key key, found_key;
849         struct btrfs_trans_handle *trans;
850         struct inode *inode;
851         int ret = 0, nr_unlink = 0, nr_truncate = 0;
852
853         /* don't do orphan cleanup if the fs is readonly. */
854         if (root->inode->i_sb->s_flags & MS_RDONLY)
855                 return;
856
857         path = btrfs_alloc_path();
858         if (!path)
859                 return;
860         path->reada = -1;
861
862         key.objectid = BTRFS_ORPHAN_OBJECTID;
863         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
864         key.offset = (u64)-1;
865
866         trans = btrfs_start_transaction(root, 1);
867         btrfs_set_trans_block_group(trans, root->inode);
868
869         while (1) {
870                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
871                 if (ret < 0) {
872                         printk(KERN_ERR "Error searching slot for orphan: %d"
873                                "\n", ret);
874                         break;
875                 }
876
877                 /*
878                  * if ret == 0 means we found what we were searching for, which
879                  * is weird, but possible, so only screw with path if we didnt
880                  * find the key and see if we have stuff that matches
881                  */
882                 if (ret > 0) {
883                         if (path->slots[0] == 0)
884                                 break;
885                         path->slots[0]--;
886                 }
887
888                 /* pull out the item */
889                 leaf = path->nodes[0];
890                 item = btrfs_item_nr(leaf, path->slots[0]);
891                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
892
893                 /* make sure the item matches what we want */
894                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
895                         break;
896                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
897                         break;
898
899                 /* release the path since we're done with it */
900                 btrfs_release_path(root, path);
901
902                 /*
903                  * this is where we are basically btrfs_lookup, without the
904                  * crossing root thing.  we store the inode number in the
905                  * offset of the orphan item.
906                  */
907                 inode = btrfs_iget_locked(root->inode->i_sb,
908                                           found_key.offset, root);
909                 if (!inode)
910                         break;
911
912                 if (inode->i_state & I_NEW) {
913                         BTRFS_I(inode)->root = root;
914
915                         /* have to set the location manually */
916                         BTRFS_I(inode)->location.objectid = inode->i_ino;
917                         BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
918                         BTRFS_I(inode)->location.offset = 0;
919
920                         btrfs_read_locked_inode(inode);
921                         unlock_new_inode(inode);
922                 }
923
924                 /*
925                  * add this inode to the orphan list so btrfs_orphan_del does
926                  * the proper thing when we hit it
927                  */
928                 spin_lock(&root->list_lock);
929                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
930                 spin_unlock(&root->list_lock);
931
932                 /*
933                  * if this is a bad inode, means we actually succeeded in
934                  * removing the inode, but not the orphan record, which means
935                  * we need to manually delete the orphan since iput will just
936                  * do a destroy_inode
937                  */
938                 if (is_bad_inode(inode)) {
939                         btrfs_orphan_del(trans, inode);
940                         iput(inode);
941                         continue;
942                 }
943
944                 /* if we have links, this was a truncate, lets do that */
945                 if (inode->i_nlink) {
946                         nr_truncate++;
947                         btrfs_truncate(inode);
948                 } else {
949                         nr_unlink++;
950                 }
951
952                 /* this will do delete_inode and everything for us */
953                 iput(inode);
954         }
955
956         if (nr_unlink)
957                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
958         if (nr_truncate)
959                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
960
961         btrfs_free_path(path);
962         btrfs_end_transaction(trans, root);
963 }
964
965 void btrfs_read_locked_inode(struct inode *inode)
966 {
967         struct btrfs_path *path;
968         struct extent_buffer *leaf;
969         struct btrfs_inode_item *inode_item;
970         struct btrfs_timespec *tspec;
971         struct btrfs_root *root = BTRFS_I(inode)->root;
972         struct btrfs_key location;
973         u64 alloc_group_block;
974         u32 rdev;
975         int ret;
976
977         path = btrfs_alloc_path();
978         BUG_ON(!path);
979         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
980
981         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
982         if (ret)
983                 goto make_bad;
984
985         leaf = path->nodes[0];
986         inode_item = btrfs_item_ptr(leaf, path->slots[0],
987                                     struct btrfs_inode_item);
988
989         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
990         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
991         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
992         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
993         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
994
995         tspec = btrfs_inode_atime(inode_item);
996         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
997         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
998
999         tspec = btrfs_inode_mtime(inode_item);
1000         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1001         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1002
1003         tspec = btrfs_inode_ctime(inode_item);
1004         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1005         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1006
1007         inode->i_blocks = btrfs_inode_nblocks(leaf, inode_item);
1008         inode->i_generation = btrfs_inode_generation(leaf, inode_item);
1009         inode->i_rdev = 0;
1010         rdev = btrfs_inode_rdev(leaf, inode_item);
1011
1012         BTRFS_I(inode)->index_cnt = (u64)-1;
1013
1014         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1015         BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1016                                                        alloc_group_block);
1017         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1018         if (!BTRFS_I(inode)->block_group) {
1019                 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1020                                                  NULL, 0,
1021                                                  BTRFS_BLOCK_GROUP_METADATA, 0);
1022         }
1023         btrfs_free_path(path);
1024         inode_item = NULL;
1025
1026         switch (inode->i_mode & S_IFMT) {
1027         case S_IFREG:
1028                 inode->i_mapping->a_ops = &btrfs_aops;
1029                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1030                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1031                 inode->i_fop = &btrfs_file_operations;
1032                 inode->i_op = &btrfs_file_inode_operations;
1033                 break;
1034         case S_IFDIR:
1035                 inode->i_fop = &btrfs_dir_file_operations;
1036                 if (root == root->fs_info->tree_root)
1037                         inode->i_op = &btrfs_dir_ro_inode_operations;
1038                 else
1039                         inode->i_op = &btrfs_dir_inode_operations;
1040                 break;
1041         case S_IFLNK:
1042                 inode->i_op = &btrfs_symlink_inode_operations;
1043                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1044                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1045                 break;
1046         default:
1047                 init_special_inode(inode, inode->i_mode, rdev);
1048                 break;
1049         }
1050         return;
1051
1052 make_bad:
1053         btrfs_free_path(path);
1054         make_bad_inode(inode);
1055 }
1056
1057 static void fill_inode_item(struct extent_buffer *leaf,
1058                             struct btrfs_inode_item *item,
1059                             struct inode *inode)
1060 {
1061         btrfs_set_inode_uid(leaf, item, inode->i_uid);
1062         btrfs_set_inode_gid(leaf, item, inode->i_gid);
1063         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1064         btrfs_set_inode_mode(leaf, item, inode->i_mode);
1065         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1066
1067         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1068                                inode->i_atime.tv_sec);
1069         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1070                                 inode->i_atime.tv_nsec);
1071
1072         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1073                                inode->i_mtime.tv_sec);
1074         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1075                                 inode->i_mtime.tv_nsec);
1076
1077         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1078                                inode->i_ctime.tv_sec);
1079         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1080                                 inode->i_ctime.tv_nsec);
1081
1082         btrfs_set_inode_nblocks(leaf, item, inode->i_blocks);
1083         btrfs_set_inode_generation(leaf, item, inode->i_generation);
1084         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1085         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1086         btrfs_set_inode_block_group(leaf, item,
1087                                     BTRFS_I(inode)->block_group->key.objectid);
1088 }
1089
1090 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1091                               struct btrfs_root *root,
1092                               struct inode *inode)
1093 {
1094         struct btrfs_inode_item *inode_item;
1095         struct btrfs_path *path;
1096         struct extent_buffer *leaf;
1097         int ret;
1098
1099         path = btrfs_alloc_path();
1100         BUG_ON(!path);
1101         ret = btrfs_lookup_inode(trans, root, path,
1102                                  &BTRFS_I(inode)->location, 1);
1103         if (ret) {
1104                 if (ret > 0)
1105                         ret = -ENOENT;
1106                 goto failed;
1107         }
1108
1109         leaf = path->nodes[0];
1110         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1111                                   struct btrfs_inode_item);
1112
1113         fill_inode_item(leaf, inode_item, inode);
1114         btrfs_mark_buffer_dirty(leaf);
1115         btrfs_set_inode_last_trans(trans, inode);
1116         ret = 0;
1117 failed:
1118         btrfs_free_path(path);
1119         return ret;
1120 }
1121
1122
1123 static int btrfs_unlink_trans(struct btrfs_trans_handle *trans,
1124                               struct btrfs_root *root,
1125                               struct inode *dir,
1126                               struct dentry *dentry)
1127 {
1128         struct btrfs_path *path;
1129         const char *name = dentry->d_name.name;
1130         int name_len = dentry->d_name.len;
1131         int ret = 0;
1132         struct extent_buffer *leaf;
1133         struct btrfs_dir_item *di;
1134         struct btrfs_key key;
1135         u64 index;
1136
1137         path = btrfs_alloc_path();
1138         if (!path) {
1139                 ret = -ENOMEM;
1140                 goto err;
1141         }
1142
1143         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1144                                     name, name_len, -1);
1145         if (IS_ERR(di)) {
1146                 ret = PTR_ERR(di);
1147                 goto err;
1148         }
1149         if (!di) {
1150                 ret = -ENOENT;
1151                 goto err;
1152         }
1153         leaf = path->nodes[0];
1154         btrfs_dir_item_key_to_cpu(leaf, di, &key);
1155         ret = btrfs_delete_one_dir_name(trans, root, path, di);
1156         if (ret)
1157                 goto err;
1158         btrfs_release_path(root, path);
1159
1160         ret = btrfs_del_inode_ref(trans, root, name, name_len,
1161                                   dentry->d_inode->i_ino,
1162                                   dentry->d_parent->d_inode->i_ino, &index);
1163         if (ret) {
1164                 printk("failed to delete reference to %.*s, "
1165                        "inode %lu parent %lu\n", name_len, name,
1166                        dentry->d_inode->i_ino,
1167                        dentry->d_parent->d_inode->i_ino);
1168                 goto err;
1169         }
1170
1171         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1172                                          index, name, name_len, -1);
1173         if (IS_ERR(di)) {
1174                 ret = PTR_ERR(di);
1175                 goto err;
1176         }
1177         if (!di) {
1178                 ret = -ENOENT;
1179                 goto err;
1180         }
1181         ret = btrfs_delete_one_dir_name(trans, root, path, di);
1182         btrfs_release_path(root, path);
1183
1184         dentry->d_inode->i_ctime = dir->i_ctime;
1185 err:
1186         btrfs_free_path(path);
1187         if (!ret) {
1188                 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1189                 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1190                 btrfs_update_inode(trans, root, dir);
1191 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1192                 dentry->d_inode->i_nlink--;
1193 #else
1194                 drop_nlink(dentry->d_inode);
1195 #endif
1196                 ret = btrfs_update_inode(trans, root, dentry->d_inode);
1197                 dir->i_sb->s_dirt = 1;
1198         }
1199         return ret;
1200 }
1201
1202 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1203 {
1204         struct btrfs_root *root;
1205         struct btrfs_trans_handle *trans;
1206         struct inode *inode = dentry->d_inode;
1207         int ret;
1208         unsigned long nr = 0;
1209
1210         root = BTRFS_I(dir)->root;
1211
1212         ret = btrfs_check_free_space(root, 1, 1);
1213         if (ret)
1214                 goto fail;
1215
1216         trans = btrfs_start_transaction(root, 1);
1217
1218         btrfs_set_trans_block_group(trans, dir);
1219         ret = btrfs_unlink_trans(trans, root, dir, dentry);
1220
1221         if (inode->i_nlink == 0)
1222                 ret = btrfs_orphan_add(trans, inode);
1223
1224         nr = trans->blocks_used;
1225
1226         btrfs_end_transaction_throttle(trans, root);
1227 fail:
1228         btrfs_btree_balance_dirty(root, nr);
1229         return ret;
1230 }
1231
1232 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1233 {
1234         struct inode *inode = dentry->d_inode;
1235         int err = 0;
1236         int ret;
1237         struct btrfs_root *root = BTRFS_I(dir)->root;
1238         struct btrfs_trans_handle *trans;
1239         unsigned long nr = 0;
1240
1241         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1242                 return -ENOTEMPTY;
1243         }
1244
1245         ret = btrfs_check_free_space(root, 1, 1);
1246         if (ret)
1247                 goto fail;
1248
1249         trans = btrfs_start_transaction(root, 1);
1250         btrfs_set_trans_block_group(trans, dir);
1251
1252         err = btrfs_orphan_add(trans, inode);
1253         if (err)
1254                 goto fail_trans;
1255
1256         /* now the directory is empty */
1257         err = btrfs_unlink_trans(trans, root, dir, dentry);
1258         if (!err) {
1259                 btrfs_i_size_write(inode, 0);
1260         }
1261
1262 fail_trans:
1263         nr = trans->blocks_used;
1264         ret = btrfs_end_transaction_throttle(trans, root);
1265 fail:
1266         btrfs_btree_balance_dirty(root, nr);
1267
1268         if (ret && !err)
1269                 err = ret;
1270         return err;
1271 }
1272
1273 /*
1274  * this can truncate away extent items, csum items and directory items.
1275  * It starts at a high offset and removes keys until it can't find
1276  * any higher than i_size.
1277  *
1278  * csum items that cross the new i_size are truncated to the new size
1279  * as well.
1280  *
1281  * min_type is the minimum key type to truncate down to.  If set to 0, this
1282  * will kill all the items on this inode, including the INODE_ITEM_KEY.
1283  */
1284 static int btrfs_truncate_in_trans(struct btrfs_trans_handle *trans,
1285                                    struct btrfs_root *root,
1286                                    struct inode *inode,
1287                                    u32 min_type)
1288 {
1289         int ret;
1290         struct btrfs_path *path;
1291         struct btrfs_key key;
1292         struct btrfs_key found_key;
1293         u32 found_type;
1294         struct extent_buffer *leaf;
1295         struct btrfs_file_extent_item *fi;
1296         u64 extent_start = 0;
1297         u64 extent_num_bytes = 0;
1298         u64 item_end = 0;
1299         u64 root_gen = 0;
1300         u64 root_owner = 0;
1301         int found_extent;
1302         int del_item;
1303         int pending_del_nr = 0;
1304         int pending_del_slot = 0;
1305         int extent_type = -1;
1306         u64 mask = root->sectorsize - 1;
1307
1308         btrfs_drop_extent_cache(inode, inode->i_size & (~mask), (u64)-1);
1309         path = btrfs_alloc_path();
1310         path->reada = -1;
1311         BUG_ON(!path);
1312
1313         /* FIXME, add redo link to tree so we don't leak on crash */
1314         key.objectid = inode->i_ino;
1315         key.offset = (u64)-1;
1316         key.type = (u8)-1;
1317
1318         btrfs_init_path(path);
1319 search_again:
1320         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1321         if (ret < 0) {
1322                 goto error;
1323         }
1324         if (ret > 0) {
1325                 BUG_ON(path->slots[0] == 0);
1326                 path->slots[0]--;
1327         }
1328
1329         while(1) {
1330                 fi = NULL;
1331                 leaf = path->nodes[0];
1332                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1333                 found_type = btrfs_key_type(&found_key);
1334
1335                 if (found_key.objectid != inode->i_ino)
1336                         break;
1337
1338                 if (found_type < min_type)
1339                         break;
1340
1341                 item_end = found_key.offset;
1342                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
1343                         fi = btrfs_item_ptr(leaf, path->slots[0],
1344                                             struct btrfs_file_extent_item);
1345                         extent_type = btrfs_file_extent_type(leaf, fi);
1346                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1347                                 item_end +=
1348                                     btrfs_file_extent_num_bytes(leaf, fi);
1349                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1350                                 struct btrfs_item *item = btrfs_item_nr(leaf,
1351                                                                 path->slots[0]);
1352                                 item_end += btrfs_file_extent_inline_len(leaf,
1353                                                                          item);
1354                         }
1355                         item_end--;
1356                 }
1357                 if (found_type == BTRFS_CSUM_ITEM_KEY) {
1358                         ret = btrfs_csum_truncate(trans, root, path,
1359                                                   inode->i_size);
1360                         BUG_ON(ret);
1361                 }
1362                 if (item_end < inode->i_size) {
1363                         if (found_type == BTRFS_DIR_ITEM_KEY) {
1364                                 found_type = BTRFS_INODE_ITEM_KEY;
1365                         } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
1366                                 found_type = BTRFS_CSUM_ITEM_KEY;
1367                         } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
1368                                 found_type = BTRFS_XATTR_ITEM_KEY;
1369                         } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
1370                                 found_type = BTRFS_INODE_REF_KEY;
1371                         } else if (found_type) {
1372                                 found_type--;
1373                         } else {
1374                                 break;
1375                         }
1376                         btrfs_set_key_type(&key, found_type);
1377                         goto next;
1378                 }
1379                 if (found_key.offset >= inode->i_size)
1380                         del_item = 1;
1381                 else
1382                         del_item = 0;
1383                 found_extent = 0;
1384
1385                 /* FIXME, shrink the extent if the ref count is only 1 */
1386                 if (found_type != BTRFS_EXTENT_DATA_KEY)
1387                         goto delete;
1388
1389                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1390                         u64 num_dec;
1391                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
1392                         if (!del_item) {
1393                                 u64 orig_num_bytes =
1394                                         btrfs_file_extent_num_bytes(leaf, fi);
1395                                 extent_num_bytes = inode->i_size -
1396                                         found_key.offset + root->sectorsize - 1;
1397                                 extent_num_bytes = extent_num_bytes &
1398                                         ~((u64)root->sectorsize - 1);
1399                                 btrfs_set_file_extent_num_bytes(leaf, fi,
1400                                                          extent_num_bytes);
1401                                 num_dec = (orig_num_bytes -
1402                                            extent_num_bytes);
1403                                 if (extent_start != 0)
1404                                         dec_i_blocks(inode, num_dec);
1405                                 btrfs_mark_buffer_dirty(leaf);
1406                         } else {
1407                                 extent_num_bytes =
1408                                         btrfs_file_extent_disk_num_bytes(leaf,
1409                                                                          fi);
1410                                 /* FIXME blocksize != 4096 */
1411                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
1412                                 if (extent_start != 0) {
1413                                         found_extent = 1;
1414                                         dec_i_blocks(inode, num_dec);
1415                                 }
1416                                 root_gen = btrfs_header_generation(leaf);
1417                                 root_owner = btrfs_header_owner(leaf);
1418                         }
1419                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1420                         if (!del_item) {
1421                                 u32 newsize = inode->i_size - found_key.offset;
1422                                 dec_i_blocks(inode, item_end + 1 -
1423                                             found_key.offset - newsize);
1424                                 newsize =
1425                                     btrfs_file_extent_calc_inline_size(newsize);
1426                                 ret = btrfs_truncate_item(trans, root, path,
1427                                                           newsize, 1);
1428                                 BUG_ON(ret);
1429                         } else {
1430                                 dec_i_blocks(inode, item_end + 1 -
1431                                              found_key.offset);
1432                         }
1433                 }
1434 delete:
1435                 if (del_item) {
1436                         if (!pending_del_nr) {
1437                                 /* no pending yet, add ourselves */
1438                                 pending_del_slot = path->slots[0];
1439                                 pending_del_nr = 1;
1440                         } else if (pending_del_nr &&
1441                                    path->slots[0] + 1 == pending_del_slot) {
1442                                 /* hop on the pending chunk */
1443                                 pending_del_nr++;
1444                                 pending_del_slot = path->slots[0];
1445                         } else {
1446                                 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
1447                         }
1448                 } else {
1449                         break;
1450                 }
1451                 if (found_extent) {
1452                         ret = btrfs_free_extent(trans, root, extent_start,
1453                                                 extent_num_bytes,
1454                                                 root_owner,
1455                                                 root_gen, inode->i_ino,
1456                                                 found_key.offset, 0);
1457                         BUG_ON(ret);
1458                 }
1459 next:
1460                 if (path->slots[0] == 0) {
1461                         if (pending_del_nr)
1462                                 goto del_pending;
1463                         btrfs_release_path(root, path);
1464                         goto search_again;
1465                 }
1466
1467                 path->slots[0]--;
1468                 if (pending_del_nr &&
1469                     path->slots[0] + 1 != pending_del_slot) {
1470                         struct btrfs_key debug;
1471 del_pending:
1472                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
1473                                               pending_del_slot);
1474                         ret = btrfs_del_items(trans, root, path,
1475                                               pending_del_slot,
1476                                               pending_del_nr);
1477                         BUG_ON(ret);
1478                         pending_del_nr = 0;
1479                         btrfs_release_path(root, path);
1480                         goto search_again;
1481                 }
1482         }
1483         ret = 0;
1484 error:
1485         if (pending_del_nr) {
1486                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
1487                                       pending_del_nr);
1488         }
1489         btrfs_free_path(path);
1490         inode->i_sb->s_dirt = 1;
1491         return ret;
1492 }
1493
1494 /*
1495  * taken from block_truncate_page, but does cow as it zeros out
1496  * any bytes left in the last page in the file.
1497  */
1498 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
1499 {
1500         struct inode *inode = mapping->host;
1501         struct btrfs_root *root = BTRFS_I(inode)->root;
1502         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1503         struct btrfs_ordered_extent *ordered;
1504         char *kaddr;
1505         u32 blocksize = root->sectorsize;
1506         pgoff_t index = from >> PAGE_CACHE_SHIFT;
1507         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1508         struct page *page;
1509         int ret = 0;
1510         u64 page_start;
1511         u64 page_end;
1512
1513         if ((offset & (blocksize - 1)) == 0)
1514                 goto out;
1515
1516         ret = -ENOMEM;
1517 again:
1518         page = grab_cache_page(mapping, index);
1519         if (!page)
1520                 goto out;
1521
1522         page_start = page_offset(page);
1523         page_end = page_start + PAGE_CACHE_SIZE - 1;
1524
1525         if (!PageUptodate(page)) {
1526                 ret = btrfs_readpage(NULL, page);
1527                 lock_page(page);
1528                 if (page->mapping != mapping) {
1529                         unlock_page(page);
1530                         page_cache_release(page);
1531                         goto again;
1532                 }
1533                 if (!PageUptodate(page)) {
1534                         ret = -EIO;
1535                         goto out_unlock;
1536                 }
1537         }
1538         wait_on_page_writeback(page);
1539
1540         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
1541         set_page_extent_mapped(page);
1542
1543         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1544         if (ordered) {
1545                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1546                 unlock_page(page);
1547                 page_cache_release(page);
1548                 btrfs_start_ordered_extent(inode, ordered, 1);
1549                 btrfs_put_ordered_extent(ordered);
1550                 goto again;
1551         }
1552
1553         set_extent_delalloc(&BTRFS_I(inode)->io_tree, page_start,
1554                             page_end, GFP_NOFS);
1555         ret = 0;
1556         if (offset != PAGE_CACHE_SIZE) {
1557                 kaddr = kmap(page);
1558                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1559                 flush_dcache_page(page);
1560                 kunmap(page);
1561         }
1562         ClearPageChecked(page);
1563         set_page_dirty(page);
1564         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1565
1566 out_unlock:
1567         unlock_page(page);
1568         page_cache_release(page);
1569 out:
1570         return ret;
1571 }
1572
1573 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
1574 {
1575         struct inode *inode = dentry->d_inode;
1576         int err;
1577
1578         err = inode_change_ok(inode, attr);
1579         if (err)
1580                 return err;
1581
1582         if (S_ISREG(inode->i_mode) &&
1583             attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
1584                 struct btrfs_trans_handle *trans;
1585                 struct btrfs_root *root = BTRFS_I(inode)->root;
1586                 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1587
1588                 u64 mask = root->sectorsize - 1;
1589                 u64 hole_start = (inode->i_size + mask) & ~mask;
1590                 u64 block_end = (attr->ia_size + mask) & ~mask;
1591                 u64 hole_size;
1592                 u64 alloc_hint = 0;
1593
1594                 if (attr->ia_size <= hole_start)
1595                         goto out;
1596
1597                 err = btrfs_check_free_space(root, 1, 0);
1598                 if (err)
1599                         goto fail;
1600
1601                 btrfs_truncate_page(inode->i_mapping, inode->i_size);
1602
1603                 hole_size = block_end - hole_start;
1604                 btrfs_wait_ordered_range(inode, hole_start, hole_size);
1605                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1606
1607                 trans = btrfs_start_transaction(root, 1);
1608                 btrfs_set_trans_block_group(trans, inode);
1609                 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1610                 err = btrfs_drop_extents(trans, root, inode,
1611                                          hole_start, block_end, hole_start,
1612                                          &alloc_hint);
1613
1614                 if (alloc_hint != EXTENT_MAP_INLINE) {
1615                         err = btrfs_insert_file_extent(trans, root,
1616                                                        inode->i_ino,
1617                                                        hole_start, 0, 0,
1618                                                        hole_size, 0);
1619                         btrfs_drop_extent_cache(inode, hole_start,
1620                                                 (u64)-1);
1621                         btrfs_check_file(root, inode);
1622                 }
1623                 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1624                 btrfs_end_transaction(trans, root);
1625                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1626                 if (err)
1627                         return err;
1628         }
1629 out:
1630         err = inode_setattr(inode, attr);
1631
1632         if (!err && ((attr->ia_valid & ATTR_MODE)))
1633                 err = btrfs_acl_chmod(inode);
1634 fail:
1635         return err;
1636 }
1637
1638 void btrfs_delete_inode(struct inode *inode)
1639 {
1640         struct btrfs_trans_handle *trans;
1641         struct btrfs_root *root = BTRFS_I(inode)->root;
1642         unsigned long nr;
1643         int ret;
1644
1645         truncate_inode_pages(&inode->i_data, 0);
1646         if (is_bad_inode(inode)) {
1647                 btrfs_orphan_del(NULL, inode);
1648                 goto no_delete;
1649         }
1650         btrfs_wait_ordered_range(inode, 0, (u64)-1);
1651
1652         btrfs_i_size_write(inode, 0);
1653         trans = btrfs_start_transaction(root, 1);
1654
1655         btrfs_set_trans_block_group(trans, inode);
1656         ret = btrfs_truncate_in_trans(trans, root, inode, 0);
1657         if (ret) {
1658                 btrfs_orphan_del(NULL, inode);
1659                 goto no_delete_lock;
1660         }
1661
1662         btrfs_orphan_del(trans, inode);
1663
1664         nr = trans->blocks_used;
1665         clear_inode(inode);
1666
1667         btrfs_end_transaction(trans, root);
1668         btrfs_btree_balance_dirty(root, nr);
1669         return;
1670
1671 no_delete_lock:
1672         nr = trans->blocks_used;
1673         btrfs_end_transaction(trans, root);
1674         btrfs_btree_balance_dirty(root, nr);
1675 no_delete:
1676         clear_inode(inode);
1677 }
1678
1679 /*
1680  * this returns the key found in the dir entry in the location pointer.
1681  * If no dir entries were found, location->objectid is 0.
1682  */
1683 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
1684                                struct btrfs_key *location)
1685 {
1686         const char *name = dentry->d_name.name;
1687         int namelen = dentry->d_name.len;
1688         struct btrfs_dir_item *di;
1689         struct btrfs_path *path;
1690         struct btrfs_root *root = BTRFS_I(dir)->root;
1691         int ret = 0;
1692
1693         if (namelen == 1 && strcmp(name, ".") == 0) {
1694                 location->objectid = dir->i_ino;
1695                 location->type = BTRFS_INODE_ITEM_KEY;
1696                 location->offset = 0;
1697                 return 0;
1698         }
1699         path = btrfs_alloc_path();
1700         BUG_ON(!path);
1701
1702         if (namelen == 2 && strcmp(name, "..") == 0) {
1703                 struct btrfs_key key;
1704                 struct extent_buffer *leaf;
1705                 int slot;
1706
1707                 key.objectid = dir->i_ino;
1708                 key.offset = (u64)-1;
1709                 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1710                 if (ret < 0 || path->slots[0] == 0)
1711                         goto out_err;
1712                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1713                 BUG_ON(ret == 0);
1714                 ret = 0;
1715                 leaf = path->nodes[0];
1716                 slot = path->slots[0] - 1;
1717
1718                 btrfs_item_key_to_cpu(leaf, &key, slot);
1719                 if (key.objectid != dir->i_ino ||
1720                     key.type != BTRFS_INODE_REF_KEY) {
1721                         goto out_err;
1722                 }
1723                 location->objectid = key.offset;
1724                 location->type = BTRFS_INODE_ITEM_KEY;
1725                 location->offset = 0;
1726                 goto out;
1727         }
1728
1729         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
1730                                     namelen, 0);
1731         if (IS_ERR(di))
1732                 ret = PTR_ERR(di);
1733         if (!di || IS_ERR(di)) {
1734                 goto out_err;
1735         }
1736         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
1737 out:
1738         btrfs_free_path(path);
1739         return ret;
1740 out_err:
1741         location->objectid = 0;
1742         goto out;
1743 }
1744
1745 /*
1746  * when we hit a tree root in a directory, the btrfs part of the inode
1747  * needs to be changed to reflect the root directory of the tree root.  This
1748  * is kind of like crossing a mount point.
1749  */
1750 static int fixup_tree_root_location(struct btrfs_root *root,
1751                              struct btrfs_key *location,
1752                              struct btrfs_root **sub_root,
1753                              struct dentry *dentry)
1754 {
1755         struct btrfs_root_item *ri;
1756
1757         if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
1758                 return 0;
1759         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1760                 return 0;
1761
1762         *sub_root = btrfs_read_fs_root(root->fs_info, location,
1763                                         dentry->d_name.name,
1764                                         dentry->d_name.len);
1765         if (IS_ERR(*sub_root))
1766                 return PTR_ERR(*sub_root);
1767
1768         ri = &(*sub_root)->root_item;
1769         location->objectid = btrfs_root_dirid(ri);
1770         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
1771         location->offset = 0;
1772
1773         return 0;
1774 }
1775
1776 static int btrfs_init_locked_inode(struct inode *inode, void *p)
1777 {
1778         struct btrfs_iget_args *args = p;
1779         inode->i_ino = args->ino;
1780         BTRFS_I(inode)->root = args->root;
1781         BTRFS_I(inode)->delalloc_bytes = 0;
1782         BTRFS_I(inode)->disk_i_size = 0;
1783         BTRFS_I(inode)->index_cnt = (u64)-1;
1784         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
1785         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
1786                              inode->i_mapping, GFP_NOFS);
1787         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
1788                              inode->i_mapping, GFP_NOFS);
1789         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
1790         mutex_init(&BTRFS_I(inode)->csum_mutex);
1791         mutex_init(&BTRFS_I(inode)->extent_mutex);
1792         return 0;
1793 }
1794
1795 static int btrfs_find_actor(struct inode *inode, void *opaque)
1796 {
1797         struct btrfs_iget_args *args = opaque;
1798         return (args->ino == inode->i_ino &&
1799                 args->root == BTRFS_I(inode)->root);
1800 }
1801
1802 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
1803                             u64 root_objectid)
1804 {
1805         struct btrfs_iget_args args;
1806         args.ino = objectid;
1807         args.root = btrfs_lookup_fs_root(btrfs_sb(s)->fs_info, root_objectid);
1808
1809         if (!args.root)
1810                 return NULL;
1811
1812         return ilookup5(s, objectid, btrfs_find_actor, (void *)&args);
1813 }
1814
1815 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
1816                                 struct btrfs_root *root)
1817 {
1818         struct inode *inode;
1819         struct btrfs_iget_args args;
1820         args.ino = objectid;
1821         args.root = root;
1822
1823         inode = iget5_locked(s, objectid, btrfs_find_actor,
1824                              btrfs_init_locked_inode,
1825                              (void *)&args);
1826         return inode;
1827 }
1828
1829 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
1830                                    struct nameidata *nd)
1831 {
1832         struct inode * inode;
1833         struct btrfs_inode *bi = BTRFS_I(dir);
1834         struct btrfs_root *root = bi->root;
1835         struct btrfs_root *sub_root = root;
1836         struct btrfs_key location;
1837         int ret, do_orphan = 0;
1838
1839         if (dentry->d_name.len > BTRFS_NAME_LEN)
1840                 return ERR_PTR(-ENAMETOOLONG);
1841
1842         ret = btrfs_inode_by_name(dir, dentry, &location);
1843
1844         if (ret < 0)
1845                 return ERR_PTR(ret);
1846
1847         inode = NULL;
1848         if (location.objectid) {
1849                 ret = fixup_tree_root_location(root, &location, &sub_root,
1850                                                 dentry);
1851                 if (ret < 0)
1852                         return ERR_PTR(ret);
1853                 if (ret > 0)
1854                         return ERR_PTR(-ENOENT);
1855
1856                 inode = btrfs_iget_locked(dir->i_sb, location.objectid,
1857                                           sub_root);
1858                 if (!inode)
1859                         return ERR_PTR(-EACCES);
1860                 if (inode->i_state & I_NEW) {
1861                         /* the inode and parent dir are two different roots */
1862                         if (sub_root != root) {
1863                                 igrab(inode);
1864                                 sub_root->inode = inode;
1865                                 do_orphan = 1;
1866                         }
1867                         BTRFS_I(inode)->root = sub_root;
1868                         memcpy(&BTRFS_I(inode)->location, &location,
1869                                sizeof(location));
1870                         btrfs_read_locked_inode(inode);
1871                         unlock_new_inode(inode);
1872                 }
1873         }
1874
1875         if (unlikely(do_orphan))
1876                 btrfs_orphan_cleanup(sub_root);
1877
1878         return d_splice_alias(inode, dentry);
1879 }
1880
1881 static unsigned char btrfs_filetype_table[] = {
1882         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
1883 };
1884
1885 static int btrfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
1886 {
1887         struct inode *inode = filp->f_dentry->d_inode;
1888         struct btrfs_root *root = BTRFS_I(inode)->root;
1889         struct btrfs_item *item;
1890         struct btrfs_dir_item *di;
1891         struct btrfs_key key;
1892         struct btrfs_key found_key;
1893         struct btrfs_path *path;
1894         int ret;
1895         u32 nritems;
1896         struct extent_buffer *leaf;
1897         int slot;
1898         int advance;
1899         unsigned char d_type;
1900         int over = 0;
1901         u32 di_cur;
1902         u32 di_total;
1903         u32 di_len;
1904         int key_type = BTRFS_DIR_INDEX_KEY;
1905         char tmp_name[32];
1906         char *name_ptr;
1907         int name_len;
1908
1909         /* FIXME, use a real flag for deciding about the key type */
1910         if (root->fs_info->tree_root == root)
1911                 key_type = BTRFS_DIR_ITEM_KEY;
1912
1913         /* special case for "." */
1914         if (filp->f_pos == 0) {
1915                 over = filldir(dirent, ".", 1,
1916                                1, inode->i_ino,
1917                                DT_DIR);
1918                 if (over)
1919                         return 0;
1920                 filp->f_pos = 1;
1921         }
1922
1923         key.objectid = inode->i_ino;
1924         path = btrfs_alloc_path();
1925         path->reada = 2;
1926
1927         /* special case for .., just use the back ref */
1928         if (filp->f_pos == 1) {
1929                 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1930                 key.offset = (u64)-1;
1931                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1932                 if (ret < 0 || path->slots[0] == 0) {
1933                         btrfs_release_path(root, path);
1934                         goto read_dir_items;
1935                 }
1936                 BUG_ON(ret == 0);
1937                 leaf = path->nodes[0];
1938                 slot = path->slots[0] - 1;
1939                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1940                 btrfs_release_path(root, path);
1941                 if (found_key.objectid != key.objectid ||
1942                     found_key.type != BTRFS_INODE_REF_KEY)
1943                         goto read_dir_items;
1944                 over = filldir(dirent, "..", 2,
1945                                2, found_key.offset, DT_DIR);
1946                 if (over)
1947                         goto nopos;
1948                 filp->f_pos = 2;
1949         }
1950
1951 read_dir_items:
1952         btrfs_set_key_type(&key, key_type);
1953         key.offset = filp->f_pos;
1954
1955         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1956         if (ret < 0)
1957                 goto err;
1958         advance = 0;
1959         while(1) {
1960                 leaf = path->nodes[0];
1961                 nritems = btrfs_header_nritems(leaf);
1962                 slot = path->slots[0];
1963                 if (advance || slot >= nritems) {
1964                         if (slot >= nritems -1) {
1965                                 ret = btrfs_next_leaf(root, path);
1966                                 if (ret)
1967                                         break;
1968                                 leaf = path->nodes[0];
1969                                 nritems = btrfs_header_nritems(leaf);
1970                                 slot = path->slots[0];
1971                         } else {
1972                                 slot++;
1973                                 path->slots[0]++;
1974                         }
1975                 }
1976                 advance = 1;
1977                 item = btrfs_item_nr(leaf, slot);
1978                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1979
1980                 if (found_key.objectid != key.objectid)
1981                         break;
1982                 if (btrfs_key_type(&found_key) != key_type)
1983                         break;
1984                 if (found_key.offset < filp->f_pos)
1985                         continue;
1986
1987                 filp->f_pos = found_key.offset;
1988                 advance = 1;
1989                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
1990                 di_cur = 0;
1991                 di_total = btrfs_item_size(leaf, item);
1992                 while(di_cur < di_total) {
1993                         struct btrfs_key location;
1994
1995                         name_len = btrfs_dir_name_len(leaf, di);
1996                         if (name_len < 32) {
1997                                 name_ptr = tmp_name;
1998                         } else {
1999                                 name_ptr = kmalloc(name_len, GFP_NOFS);
2000                                 BUG_ON(!name_ptr);
2001                         }
2002                         read_extent_buffer(leaf, name_ptr,
2003                                            (unsigned long)(di + 1), name_len);
2004
2005                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2006                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
2007                         over = filldir(dirent, name_ptr, name_len,
2008                                        found_key.offset,
2009                                        location.objectid,
2010                                        d_type);
2011
2012                         if (name_ptr != tmp_name)
2013                                 kfree(name_ptr);
2014
2015                         if (over)
2016                                 goto nopos;
2017                         di_len = btrfs_dir_name_len(leaf, di) +
2018                                 btrfs_dir_data_len(leaf, di) +sizeof(*di);
2019                         di_cur += di_len;
2020                         di = (struct btrfs_dir_item *)((char *)di + di_len);
2021                 }
2022         }
2023         if (key_type == BTRFS_DIR_INDEX_KEY)
2024                 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2025         else
2026                 filp->f_pos++;
2027 nopos:
2028         ret = 0;
2029 err:
2030         btrfs_free_path(path);
2031         return ret;
2032 }
2033
2034 int btrfs_write_inode(struct inode *inode, int wait)
2035 {
2036         struct btrfs_root *root = BTRFS_I(inode)->root;
2037         struct btrfs_trans_handle *trans;
2038         int ret = 0;
2039
2040         if (wait) {
2041                 trans = btrfs_join_transaction(root, 1);
2042                 btrfs_set_trans_block_group(trans, inode);
2043                 ret = btrfs_commit_transaction(trans, root);
2044         }
2045         return ret;
2046 }
2047
2048 /*
2049  * This is somewhat expensive, updating the tree every time the
2050  * inode changes.  But, it is most likely to find the inode in cache.
2051  * FIXME, needs more benchmarking...there are no reasons other than performance
2052  * to keep or drop this code.
2053  */
2054 void btrfs_dirty_inode(struct inode *inode)
2055 {
2056         struct btrfs_root *root = BTRFS_I(inode)->root;
2057         struct btrfs_trans_handle *trans;
2058
2059         trans = btrfs_join_transaction(root, 1);
2060         btrfs_set_trans_block_group(trans, inode);
2061         btrfs_update_inode(trans, root, inode);
2062         btrfs_end_transaction(trans, root);
2063 }
2064
2065 static int btrfs_set_inode_index_count(struct inode *inode)
2066 {
2067         struct btrfs_root *root = BTRFS_I(inode)->root;
2068         struct btrfs_key key, found_key;
2069         struct btrfs_path *path;
2070         struct extent_buffer *leaf;
2071         int ret;
2072
2073         key.objectid = inode->i_ino;
2074         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2075         key.offset = (u64)-1;
2076
2077         path = btrfs_alloc_path();
2078         if (!path)
2079                 return -ENOMEM;
2080
2081         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2082         if (ret < 0)
2083                 goto out;
2084         /* FIXME: we should be able to handle this */
2085         if (ret == 0)
2086                 goto out;
2087         ret = 0;
2088
2089         /*
2090          * MAGIC NUMBER EXPLANATION:
2091          * since we search a directory based on f_pos we have to start at 2
2092          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2093          * else has to start at 2
2094          */
2095         if (path->slots[0] == 0) {
2096                 BTRFS_I(inode)->index_cnt = 2;
2097                 goto out;
2098         }
2099
2100         path->slots[0]--;
2101
2102         leaf = path->nodes[0];
2103         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2104
2105         if (found_key.objectid != inode->i_ino ||
2106             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2107                 BTRFS_I(inode)->index_cnt = 2;
2108                 goto out;
2109         }
2110
2111         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2112 out:
2113         btrfs_free_path(path);
2114         return ret;
2115 }
2116
2117 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode)
2118 {
2119         int ret = 0;
2120
2121         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2122                 ret = btrfs_set_inode_index_count(dir);
2123                 if (ret)
2124                         return ret;
2125         }
2126
2127         BTRFS_I(inode)->index = BTRFS_I(dir)->index_cnt;
2128         BTRFS_I(dir)->index_cnt++;
2129
2130         return ret;
2131 }
2132
2133 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2134                                      struct btrfs_root *root,
2135                                      struct inode *dir,
2136                                      const char *name, int name_len,
2137                                      u64 ref_objectid,
2138                                      u64 objectid,
2139                                      struct btrfs_block_group_cache *group,
2140                                      int mode)
2141 {
2142         struct inode *inode;
2143         struct btrfs_inode_item *inode_item;
2144         struct btrfs_block_group_cache *new_inode_group;
2145         struct btrfs_key *location;
2146         struct btrfs_path *path;
2147         struct btrfs_inode_ref *ref;
2148         struct btrfs_key key[2];
2149         u32 sizes[2];
2150         unsigned long ptr;
2151         int ret;
2152         int owner;
2153
2154         path = btrfs_alloc_path();
2155         BUG_ON(!path);
2156
2157         inode = new_inode(root->fs_info->sb);
2158         if (!inode)
2159                 return ERR_PTR(-ENOMEM);
2160
2161         if (dir) {
2162                 ret = btrfs_set_inode_index(dir, inode);
2163                 if (ret)
2164                         return ERR_PTR(ret);
2165         } else {
2166                 BTRFS_I(inode)->index = 0;
2167         }
2168         /*
2169          * index_cnt is ignored for everything but a dir,
2170          * btrfs_get_inode_index_count has an explanation for the magic
2171          * number
2172          */
2173         BTRFS_I(inode)->index_cnt = 2;
2174
2175         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2176         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2177                              inode->i_mapping, GFP_NOFS);
2178         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2179                              inode->i_mapping, GFP_NOFS);
2180         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2181         mutex_init(&BTRFS_I(inode)->csum_mutex);
2182         mutex_init(&BTRFS_I(inode)->extent_mutex);
2183         BTRFS_I(inode)->delalloc_bytes = 0;
2184         BTRFS_I(inode)->disk_i_size = 0;
2185         BTRFS_I(inode)->root = root;
2186
2187         if (mode & S_IFDIR)
2188                 owner = 0;
2189         else
2190                 owner = 1;
2191         new_inode_group = btrfs_find_block_group(root, group, 0,
2192                                        BTRFS_BLOCK_GROUP_METADATA, owner);
2193         if (!new_inode_group) {
2194                 printk("find_block group failed\n");
2195                 new_inode_group = group;
2196         }
2197         BTRFS_I(inode)->block_group = new_inode_group;
2198         BTRFS_I(inode)->flags = 0;
2199
2200         key[0].objectid = objectid;
2201         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2202         key[0].offset = 0;
2203
2204         key[1].objectid = objectid;
2205         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2206         key[1].offset = ref_objectid;
2207
2208         sizes[0] = sizeof(struct btrfs_inode_item);
2209         sizes[1] = name_len + sizeof(*ref);
2210
2211         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2212         if (ret != 0)
2213                 goto fail;
2214
2215         if (objectid > root->highest_inode)
2216                 root->highest_inode = objectid;
2217
2218         inode->i_uid = current->fsuid;
2219         inode->i_gid = current->fsgid;
2220         inode->i_mode = mode;
2221         inode->i_ino = objectid;
2222         inode->i_blocks = 0;
2223         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2224         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2225                                   struct btrfs_inode_item);
2226         fill_inode_item(path->nodes[0], inode_item, inode);
2227
2228         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2229                              struct btrfs_inode_ref);
2230         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2231         btrfs_set_inode_ref_index(path->nodes[0], ref, BTRFS_I(inode)->index);
2232         ptr = (unsigned long)(ref + 1);
2233         write_extent_buffer(path->nodes[0], name, ptr, name_len);
2234
2235         btrfs_mark_buffer_dirty(path->nodes[0]);
2236         btrfs_free_path(path);
2237
2238         location = &BTRFS_I(inode)->location;
2239         location->objectid = objectid;
2240         location->offset = 0;
2241         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2242
2243         insert_inode_hash(inode);
2244         return inode;
2245 fail:
2246         if (dir)
2247                 BTRFS_I(dir)->index_cnt--;
2248         btrfs_free_path(path);
2249         return ERR_PTR(ret);
2250 }
2251
2252 static inline u8 btrfs_inode_type(struct inode *inode)
2253 {
2254         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2255 }
2256
2257 static int btrfs_add_link(struct btrfs_trans_handle *trans,
2258                             struct dentry *dentry, struct inode *inode,
2259                             int add_backref)
2260 {
2261         int ret;
2262         struct btrfs_key key;
2263         struct btrfs_root *root = BTRFS_I(dentry->d_parent->d_inode)->root;
2264         struct inode *parent_inode = dentry->d_parent->d_inode;
2265
2266         key.objectid = inode->i_ino;
2267         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
2268         key.offset = 0;
2269
2270         ret = btrfs_insert_dir_item(trans, root,
2271                                     dentry->d_name.name, dentry->d_name.len,
2272                                     dentry->d_parent->d_inode->i_ino,
2273                                     &key, btrfs_inode_type(inode),
2274                                     BTRFS_I(inode)->index);
2275         if (ret == 0) {
2276                 if (add_backref) {
2277                         ret = btrfs_insert_inode_ref(trans, root,
2278                                              dentry->d_name.name,
2279                                              dentry->d_name.len,
2280                                              inode->i_ino,
2281                                              parent_inode->i_ino,
2282                                              BTRFS_I(inode)->index);
2283                 }
2284                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
2285                                    dentry->d_name.len * 2);
2286                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
2287                 ret = btrfs_update_inode(trans, root,
2288                                          dentry->d_parent->d_inode);
2289         }
2290         return ret;
2291 }
2292
2293 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
2294                             struct dentry *dentry, struct inode *inode,
2295                             int backref)
2296 {
2297         int err = btrfs_add_link(trans, dentry, inode, backref);
2298         if (!err) {
2299                 d_instantiate(dentry, inode);
2300                 return 0;
2301         }
2302         if (err > 0)
2303                 err = -EEXIST;
2304         return err;
2305 }
2306
2307 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
2308                         int mode, dev_t rdev)
2309 {
2310         struct btrfs_trans_handle *trans;
2311         struct btrfs_root *root = BTRFS_I(dir)->root;
2312         struct inode *inode = NULL;
2313         int err;
2314         int drop_inode = 0;
2315         u64 objectid;
2316         unsigned long nr = 0;
2317
2318         if (!new_valid_dev(rdev))
2319                 return -EINVAL;
2320
2321         err = btrfs_check_free_space(root, 1, 0);
2322         if (err)
2323                 goto fail;
2324
2325         trans = btrfs_start_transaction(root, 1);
2326         btrfs_set_trans_block_group(trans, dir);
2327
2328         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2329         if (err) {
2330                 err = -ENOSPC;
2331                 goto out_unlock;
2332         }
2333
2334         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2335                                 dentry->d_name.len,
2336                                 dentry->d_parent->d_inode->i_ino, objectid,
2337                                 BTRFS_I(dir)->block_group, mode);
2338         err = PTR_ERR(inode);
2339         if (IS_ERR(inode))
2340                 goto out_unlock;
2341
2342         err = btrfs_init_acl(inode, dir);
2343         if (err) {
2344                 drop_inode = 1;
2345                 goto out_unlock;
2346         }
2347
2348         btrfs_set_trans_block_group(trans, inode);
2349         err = btrfs_add_nondir(trans, dentry, inode, 0);
2350         if (err)
2351                 drop_inode = 1;
2352         else {
2353                 inode->i_op = &btrfs_special_inode_operations;
2354                 init_special_inode(inode, inode->i_mode, rdev);
2355                 btrfs_update_inode(trans, root, inode);
2356         }
2357         dir->i_sb->s_dirt = 1;
2358         btrfs_update_inode_block_group(trans, inode);
2359         btrfs_update_inode_block_group(trans, dir);
2360 out_unlock:
2361         nr = trans->blocks_used;
2362         btrfs_end_transaction_throttle(trans, root);
2363 fail:
2364         if (drop_inode) {
2365                 inode_dec_link_count(inode);
2366                 iput(inode);
2367         }
2368         btrfs_btree_balance_dirty(root, nr);
2369         return err;
2370 }
2371
2372 static int btrfs_create(struct inode *dir, struct dentry *dentry,
2373                         int mode, struct nameidata *nd)
2374 {
2375         struct btrfs_trans_handle *trans;
2376         struct btrfs_root *root = BTRFS_I(dir)->root;
2377         struct inode *inode = NULL;
2378         int err;
2379         int drop_inode = 0;
2380         unsigned long nr = 0;
2381         u64 objectid;
2382
2383         err = btrfs_check_free_space(root, 1, 0);
2384         if (err)
2385                 goto fail;
2386         trans = btrfs_start_transaction(root, 1);
2387         btrfs_set_trans_block_group(trans, dir);
2388
2389         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2390         if (err) {
2391                 err = -ENOSPC;
2392                 goto out_unlock;
2393         }
2394
2395         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2396                                 dentry->d_name.len,
2397                                 dentry->d_parent->d_inode->i_ino,
2398                                 objectid, BTRFS_I(dir)->block_group, mode);
2399         err = PTR_ERR(inode);
2400         if (IS_ERR(inode))
2401                 goto out_unlock;
2402
2403         err = btrfs_init_acl(inode, dir);
2404         if (err) {
2405                 drop_inode = 1;
2406                 goto out_unlock;
2407         }
2408
2409         btrfs_set_trans_block_group(trans, inode);
2410         err = btrfs_add_nondir(trans, dentry, inode, 0);
2411         if (err)
2412                 drop_inode = 1;
2413         else {
2414                 inode->i_mapping->a_ops = &btrfs_aops;
2415                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2416                 inode->i_fop = &btrfs_file_operations;
2417                 inode->i_op = &btrfs_file_inode_operations;
2418                 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2419                 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2420                                      inode->i_mapping, GFP_NOFS);
2421                 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2422                                      inode->i_mapping, GFP_NOFS);
2423                 mutex_init(&BTRFS_I(inode)->csum_mutex);
2424                 mutex_init(&BTRFS_I(inode)->extent_mutex);
2425                 BTRFS_I(inode)->delalloc_bytes = 0;
2426                 BTRFS_I(inode)->disk_i_size = 0;
2427                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2428                 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2429         }
2430         dir->i_sb->s_dirt = 1;
2431         btrfs_update_inode_block_group(trans, inode);
2432         btrfs_update_inode_block_group(trans, dir);
2433 out_unlock:
2434         nr = trans->blocks_used;
2435         btrfs_end_transaction_throttle(trans, root);
2436 fail:
2437         if (drop_inode) {
2438                 inode_dec_link_count(inode);
2439                 iput(inode);
2440         }
2441         btrfs_btree_balance_dirty(root, nr);
2442         return err;
2443 }
2444
2445 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
2446                       struct dentry *dentry)
2447 {
2448         struct btrfs_trans_handle *trans;
2449         struct btrfs_root *root = BTRFS_I(dir)->root;
2450         struct inode *inode = old_dentry->d_inode;
2451         unsigned long nr = 0;
2452         int err;
2453         int drop_inode = 0;
2454
2455         if (inode->i_nlink == 0)
2456                 return -ENOENT;
2457
2458 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
2459         inode->i_nlink++;
2460 #else
2461         inc_nlink(inode);
2462 #endif
2463         err = btrfs_check_free_space(root, 1, 0);
2464         if (err)
2465                 goto fail;
2466         err = btrfs_set_inode_index(dir, inode);
2467         if (err)
2468                 goto fail;
2469
2470         trans = btrfs_start_transaction(root, 1);
2471
2472         btrfs_set_trans_block_group(trans, dir);
2473         atomic_inc(&inode->i_count);
2474
2475         err = btrfs_add_nondir(trans, dentry, inode, 1);
2476
2477         if (err)
2478                 drop_inode = 1;
2479
2480         dir->i_sb->s_dirt = 1;
2481         btrfs_update_inode_block_group(trans, dir);
2482         err = btrfs_update_inode(trans, root, inode);
2483
2484         if (err)
2485                 drop_inode = 1;
2486
2487         nr = trans->blocks_used;
2488         btrfs_end_transaction_throttle(trans, root);
2489 fail:
2490         if (drop_inode) {
2491                 inode_dec_link_count(inode);
2492                 iput(inode);
2493         }
2494         btrfs_btree_balance_dirty(root, nr);
2495         return err;
2496 }
2497
2498 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2499 {
2500         struct inode *inode = NULL;
2501         struct btrfs_trans_handle *trans;
2502         struct btrfs_root *root = BTRFS_I(dir)->root;
2503         int err = 0;
2504         int drop_on_err = 0;
2505         u64 objectid = 0;
2506         unsigned long nr = 1;
2507
2508         err = btrfs_check_free_space(root, 1, 0);
2509         if (err)
2510                 goto out_unlock;
2511
2512         trans = btrfs_start_transaction(root, 1);
2513         btrfs_set_trans_block_group(trans, dir);
2514
2515         if (IS_ERR(trans)) {
2516                 err = PTR_ERR(trans);
2517                 goto out_unlock;
2518         }
2519
2520         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2521         if (err) {
2522                 err = -ENOSPC;
2523                 goto out_unlock;
2524         }
2525
2526         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2527                                 dentry->d_name.len,
2528                                 dentry->d_parent->d_inode->i_ino, objectid,
2529                                 BTRFS_I(dir)->block_group, S_IFDIR | mode);
2530         if (IS_ERR(inode)) {
2531                 err = PTR_ERR(inode);
2532                 goto out_fail;
2533         }
2534
2535         drop_on_err = 1;
2536
2537         err = btrfs_init_acl(inode, dir);
2538         if (err)
2539                 goto out_fail;
2540
2541         inode->i_op = &btrfs_dir_inode_operations;
2542         inode->i_fop = &btrfs_dir_file_operations;
2543         btrfs_set_trans_block_group(trans, inode);
2544
2545         btrfs_i_size_write(inode, 0);
2546         err = btrfs_update_inode(trans, root, inode);
2547         if (err)
2548                 goto out_fail;
2549
2550         err = btrfs_add_link(trans, dentry, inode, 0);
2551         if (err)
2552                 goto out_fail;
2553
2554         d_instantiate(dentry, inode);
2555         drop_on_err = 0;
2556         dir->i_sb->s_dirt = 1;
2557         btrfs_update_inode_block_group(trans, inode);
2558         btrfs_update_inode_block_group(trans, dir);
2559
2560 out_fail:
2561         nr = trans->blocks_used;
2562         btrfs_end_transaction_throttle(trans, root);
2563
2564 out_unlock:
2565         if (drop_on_err)
2566                 iput(inode);
2567         btrfs_btree_balance_dirty(root, nr);
2568         return err;
2569 }
2570
2571 static int merge_extent_mapping(struct extent_map_tree *em_tree,
2572                                 struct extent_map *existing,
2573                                 struct extent_map *em,
2574                                 u64 map_start, u64 map_len)
2575 {
2576         u64 start_diff;
2577
2578         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
2579         start_diff = map_start - em->start;
2580         em->start = map_start;
2581         em->len = map_len;
2582         if (em->block_start < EXTENT_MAP_LAST_BYTE)
2583                 em->block_start += start_diff;
2584         return add_extent_mapping(em_tree, em);
2585 }
2586
2587 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2588                                     size_t pg_offset, u64 start, u64 len,
2589                                     int create)
2590 {
2591         int ret;
2592         int err = 0;
2593         u64 bytenr;
2594         u64 extent_start = 0;
2595         u64 extent_end = 0;
2596         u64 objectid = inode->i_ino;
2597         u32 found_type;
2598         struct btrfs_path *path = NULL;
2599         struct btrfs_root *root = BTRFS_I(inode)->root;
2600         struct btrfs_file_extent_item *item;
2601         struct extent_buffer *leaf;
2602         struct btrfs_key found_key;
2603         struct extent_map *em = NULL;
2604         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2605         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2606         struct btrfs_trans_handle *trans = NULL;
2607
2608 again:
2609         spin_lock(&em_tree->lock);
2610         em = lookup_extent_mapping(em_tree, start, len);
2611         if (em)
2612                 em->bdev = root->fs_info->fs_devices->latest_bdev;
2613         spin_unlock(&em_tree->lock);
2614
2615         if (em) {
2616                 if (em->start > start || em->start + em->len <= start)
2617                         free_extent_map(em);
2618                 else if (em->block_start == EXTENT_MAP_INLINE && page)
2619                         free_extent_map(em);
2620                 else
2621                         goto out;
2622         }
2623         em = alloc_extent_map(GFP_NOFS);
2624         if (!em) {
2625                 err = -ENOMEM;
2626                 goto out;
2627         }
2628         em->bdev = root->fs_info->fs_devices->latest_bdev;
2629         em->start = EXTENT_MAP_HOLE;
2630         em->len = (u64)-1;
2631
2632         if (!path) {
2633                 path = btrfs_alloc_path();
2634                 BUG_ON(!path);
2635         }
2636
2637         ret = btrfs_lookup_file_extent(trans, root, path,
2638                                        objectid, start, trans != NULL);
2639         if (ret < 0) {
2640                 err = ret;
2641                 goto out;
2642         }
2643
2644         if (ret != 0) {
2645                 if (path->slots[0] == 0)
2646                         goto not_found;
2647                 path->slots[0]--;
2648         }
2649
2650         leaf = path->nodes[0];
2651         item = btrfs_item_ptr(leaf, path->slots[0],
2652                               struct btrfs_file_extent_item);
2653         /* are we inside the extent that was found? */
2654         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2655         found_type = btrfs_key_type(&found_key);
2656         if (found_key.objectid != objectid ||
2657             found_type != BTRFS_EXTENT_DATA_KEY) {
2658                 goto not_found;
2659         }
2660
2661         found_type = btrfs_file_extent_type(leaf, item);
2662         extent_start = found_key.offset;
2663         if (found_type == BTRFS_FILE_EXTENT_REG) {
2664                 extent_end = extent_start +
2665                        btrfs_file_extent_num_bytes(leaf, item);
2666                 err = 0;
2667                 if (start < extent_start || start >= extent_end) {
2668                         em->start = start;
2669                         if (start < extent_start) {
2670                                 if (start + len <= extent_start)
2671                                         goto not_found;
2672                                 em->len = extent_end - extent_start;
2673                         } else {
2674                                 em->len = len;
2675                         }
2676                         goto not_found_em;
2677                 }
2678                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
2679                 if (bytenr == 0) {
2680                         em->start = extent_start;
2681                         em->len = extent_end - extent_start;
2682                         em->block_start = EXTENT_MAP_HOLE;
2683                         goto insert;
2684                 }
2685                 bytenr += btrfs_file_extent_offset(leaf, item);
2686                 em->block_start = bytenr;
2687                 em->start = extent_start;
2688                 em->len = extent_end - extent_start;
2689                 goto insert;
2690         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
2691                 u64 page_start;
2692                 unsigned long ptr;
2693                 char *map;
2694                 size_t size;
2695                 size_t extent_offset;
2696                 size_t copy_size;
2697
2698                 size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf,
2699                                                     path->slots[0]));
2700                 extent_end = (extent_start + size + root->sectorsize - 1) &
2701                         ~((u64)root->sectorsize - 1);
2702                 if (start < extent_start || start >= extent_end) {
2703                         em->start = start;
2704                         if (start < extent_start) {
2705                                 if (start + len <= extent_start)
2706                                         goto not_found;
2707                                 em->len = extent_end - extent_start;
2708                         } else {
2709                                 em->len = len;
2710                         }
2711                         goto not_found_em;
2712                 }
2713                 em->block_start = EXTENT_MAP_INLINE;
2714
2715                 if (!page) {
2716                         em->start = extent_start;
2717                         em->len = size;
2718                         goto out;
2719                 }
2720
2721                 page_start = page_offset(page) + pg_offset;
2722                 extent_offset = page_start - extent_start;
2723                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
2724                                 size - extent_offset);
2725                 em->start = extent_start + extent_offset;
2726                 em->len = (copy_size + root->sectorsize - 1) &
2727                         ~((u64)root->sectorsize - 1);
2728                 map = kmap(page);
2729                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
2730                 if (create == 0 && !PageUptodate(page)) {
2731                         read_extent_buffer(leaf, map + pg_offset, ptr,
2732                                            copy_size);
2733                         flush_dcache_page(page);
2734                 } else if (create && PageUptodate(page)) {
2735                         if (!trans) {
2736                                 kunmap(page);
2737                                 free_extent_map(em);
2738                                 em = NULL;
2739                                 btrfs_release_path(root, path);
2740                                 trans = btrfs_join_transaction(root, 1);
2741                                 goto again;
2742                         }
2743                         write_extent_buffer(leaf, map + pg_offset, ptr,
2744                                             copy_size);
2745                         btrfs_mark_buffer_dirty(leaf);
2746                 }
2747                 kunmap(page);
2748                 set_extent_uptodate(io_tree, em->start,
2749                                     extent_map_end(em) - 1, GFP_NOFS);
2750                 goto insert;
2751         } else {
2752                 printk("unkknown found_type %d\n", found_type);
2753                 WARN_ON(1);
2754         }
2755 not_found:
2756         em->start = start;
2757         em->len = len;
2758 not_found_em:
2759         em->block_start = EXTENT_MAP_HOLE;
2760 insert:
2761         btrfs_release_path(root, path);
2762         if (em->start > start || extent_map_end(em) <= start) {
2763                 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
2764                 err = -EIO;
2765                 goto out;
2766         }
2767
2768         err = 0;
2769         spin_lock(&em_tree->lock);
2770         ret = add_extent_mapping(em_tree, em);
2771         /* it is possible that someone inserted the extent into the tree
2772          * while we had the lock dropped.  It is also possible that
2773          * an overlapping map exists in the tree
2774          */
2775         if (ret == -EEXIST) {
2776                 struct extent_map *existing;
2777
2778                 ret = 0;
2779
2780                 existing = lookup_extent_mapping(em_tree, start, len);
2781                 if (existing && (existing->start > start ||
2782                     existing->start + existing->len <= start)) {
2783                         free_extent_map(existing);
2784                         existing = NULL;
2785                 }
2786                 if (!existing) {
2787                         existing = lookup_extent_mapping(em_tree, em->start,
2788                                                          em->len);
2789                         if (existing) {
2790                                 err = merge_extent_mapping(em_tree, existing,
2791                                                            em, start,
2792                                                            root->sectorsize);
2793                                 free_extent_map(existing);
2794                                 if (err) {
2795                                         free_extent_map(em);
2796                                         em = NULL;
2797                                 }
2798                         } else {
2799                                 err = -EIO;
2800                                 printk("failing to insert %Lu %Lu\n",
2801                                        start, len);
2802                                 free_extent_map(em);
2803                                 em = NULL;
2804                         }
2805                 } else {
2806                         free_extent_map(em);
2807                         em = existing;
2808                         err = 0;
2809                 }
2810         }
2811         spin_unlock(&em_tree->lock);
2812 out:
2813         if (path)
2814                 btrfs_free_path(path);
2815         if (trans) {
2816                 ret = btrfs_end_transaction(trans, root);
2817                 if (!err) {
2818                         err = ret;
2819                 }
2820         }
2821         if (err) {
2822                 free_extent_map(em);
2823                 WARN_ON(1);
2824                 return ERR_PTR(err);
2825         }
2826         return em;
2827 }
2828
2829 #if 0 /* waiting for O_DIRECT reads */
2830 static int btrfs_get_block(struct inode *inode, sector_t iblock,
2831                         struct buffer_head *bh_result, int create)
2832 {
2833         struct extent_map *em;
2834         u64 start = (u64)iblock << inode->i_blkbits;
2835         struct btrfs_multi_bio *multi = NULL;
2836         struct btrfs_root *root = BTRFS_I(inode)->root;
2837         u64 len;
2838         u64 logical;
2839         u64 map_length;
2840         int ret = 0;
2841
2842         em = btrfs_get_extent(inode, NULL, 0, start, bh_result->b_size, 0);
2843
2844         if (!em || IS_ERR(em))
2845                 goto out;
2846
2847         if (em->start > start || em->start + em->len <= start) {
2848             goto out;
2849         }
2850
2851         if (em->block_start == EXTENT_MAP_INLINE) {
2852                 ret = -EINVAL;
2853                 goto out;
2854         }
2855
2856         len = em->start + em->len - start;
2857         len = min_t(u64, len, INT_LIMIT(typeof(bh_result->b_size)));
2858
2859         if (em->block_start == EXTENT_MAP_HOLE ||
2860             em->block_start == EXTENT_MAP_DELALLOC) {
2861                 bh_result->b_size = len;
2862                 goto out;
2863         }
2864
2865         logical = start - em->start;
2866         logical = em->block_start + logical;
2867
2868         map_length = len;
2869         ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
2870                               logical, &map_length, &multi, 0);
2871         BUG_ON(ret);
2872         bh_result->b_blocknr = multi->stripes[0].physical >> inode->i_blkbits;
2873         bh_result->b_size = min(map_length, len);
2874
2875         bh_result->b_bdev = multi->stripes[0].dev->bdev;
2876         set_buffer_mapped(bh_result);
2877         kfree(multi);
2878 out:
2879         free_extent_map(em);
2880         return ret;
2881 }
2882 #endif
2883
2884 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
2885                         const struct iovec *iov, loff_t offset,
2886                         unsigned long nr_segs)
2887 {
2888         return -EINVAL;
2889 #if 0
2890         struct file *file = iocb->ki_filp;
2891         struct inode *inode = file->f_mapping->host;
2892
2893         if (rw == WRITE)
2894                 return -EINVAL;
2895
2896         return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2897                                   offset, nr_segs, btrfs_get_block, NULL);
2898 #endif
2899 }
2900
2901 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
2902 {
2903         return extent_bmap(mapping, iblock, btrfs_get_extent);
2904 }
2905
2906 int btrfs_readpage(struct file *file, struct page *page)
2907 {
2908         struct extent_io_tree *tree;
2909         tree = &BTRFS_I(page->mapping->host)->io_tree;
2910         return extent_read_full_page(tree, page, btrfs_get_extent);
2911 }
2912
2913 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
2914 {
2915         struct extent_io_tree *tree;
2916
2917
2918         if (current->flags & PF_MEMALLOC) {
2919                 redirty_page_for_writepage(wbc, page);
2920                 unlock_page(page);
2921                 return 0;
2922         }
2923         tree = &BTRFS_I(page->mapping->host)->io_tree;
2924         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
2925 }
2926
2927 int btrfs_writepages(struct address_space *mapping,
2928                      struct writeback_control *wbc)
2929 {
2930         struct extent_io_tree *tree;
2931         tree = &BTRFS_I(mapping->host)->io_tree;
2932         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
2933 }
2934
2935 static int
2936 btrfs_readpages(struct file *file, struct address_space *mapping,
2937                 struct list_head *pages, unsigned nr_pages)
2938 {
2939         struct extent_io_tree *tree;
2940         tree = &BTRFS_I(mapping->host)->io_tree;
2941         return extent_readpages(tree, mapping, pages, nr_pages,
2942                                 btrfs_get_extent);
2943 }
2944 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
2945 {
2946         struct extent_io_tree *tree;
2947         struct extent_map_tree *map;
2948         int ret;
2949
2950         tree = &BTRFS_I(page->mapping->host)->io_tree;
2951         map = &BTRFS_I(page->mapping->host)->extent_tree;
2952         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
2953         if (ret == 1) {
2954                 ClearPagePrivate(page);
2955                 set_page_private(page, 0);
2956                 page_cache_release(page);
2957         }
2958         return ret;
2959 }
2960
2961 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
2962 {
2963         return __btrfs_releasepage(page, gfp_flags);
2964 }
2965
2966 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
2967 {
2968         struct extent_io_tree *tree;
2969         struct btrfs_ordered_extent *ordered;
2970         u64 page_start = page_offset(page);
2971         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2972
2973         wait_on_page_writeback(page);
2974         tree = &BTRFS_I(page->mapping->host)->io_tree;
2975         if (offset) {
2976                 btrfs_releasepage(page, GFP_NOFS);
2977                 return;
2978         }
2979
2980         lock_extent(tree, page_start, page_end, GFP_NOFS);
2981         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
2982                                            page_offset(page));
2983         if (ordered) {
2984                 /*
2985                  * IO on this page will never be started, so we need
2986                  * to account for any ordered extents now
2987                  */
2988                 clear_extent_bit(tree, page_start, page_end,
2989                                  EXTENT_DIRTY | EXTENT_DELALLOC |
2990                                  EXTENT_LOCKED, 1, 0, GFP_NOFS);
2991                 btrfs_finish_ordered_io(page->mapping->host,
2992                                         page_start, page_end);
2993                 btrfs_put_ordered_extent(ordered);
2994                 lock_extent(tree, page_start, page_end, GFP_NOFS);
2995         }
2996         clear_extent_bit(tree, page_start, page_end,
2997                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2998                  EXTENT_ORDERED,
2999                  1, 1, GFP_NOFS);
3000         __btrfs_releasepage(page, GFP_NOFS);
3001
3002         ClearPageChecked(page);
3003         if (PagePrivate(page)) {
3004                 ClearPagePrivate(page);
3005                 set_page_private(page, 0);
3006                 page_cache_release(page);
3007         }
3008 }
3009
3010 /*
3011  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3012  * called from a page fault handler when a page is first dirtied. Hence we must
3013  * be careful to check for EOF conditions here. We set the page up correctly
3014  * for a written page which means we get ENOSPC checking when writing into
3015  * holes and correct delalloc and unwritten extent mapping on filesystems that
3016  * support these features.
3017  *
3018  * We are not allowed to take the i_mutex here so we have to play games to
3019  * protect against truncate races as the page could now be beyond EOF.  Because
3020  * vmtruncate() writes the inode size before removing pages, once we have the
3021  * page lock we can determine safely if the page is beyond EOF. If it is not
3022  * beyond EOF, then the page is guaranteed safe against truncation until we
3023  * unlock the page.
3024  */
3025 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3026 {
3027         struct inode *inode = fdentry(vma->vm_file)->d_inode;
3028         struct btrfs_root *root = BTRFS_I(inode)->root;
3029         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3030         struct btrfs_ordered_extent *ordered;
3031         char *kaddr;
3032         unsigned long zero_start;
3033         loff_t size;
3034         int ret;
3035         u64 page_start;
3036         u64 page_end;
3037
3038         ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3039         if (ret)
3040                 goto out;
3041
3042         ret = -EINVAL;
3043 again:
3044         lock_page(page);
3045         size = i_size_read(inode);
3046         page_start = page_offset(page);
3047         page_end = page_start + PAGE_CACHE_SIZE - 1;
3048
3049         if ((page->mapping != inode->i_mapping) ||
3050             (page_start >= size)) {
3051                 /* page got truncated out from underneath us */
3052                 goto out_unlock;
3053         }
3054         wait_on_page_writeback(page);
3055
3056         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3057         set_page_extent_mapped(page);
3058
3059         /*
3060          * we can't set the delalloc bits if there are pending ordered
3061          * extents.  Drop our locks and wait for them to finish
3062          */
3063         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3064         if (ordered) {
3065                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3066                 unlock_page(page);
3067                 btrfs_start_ordered_extent(inode, ordered, 1);
3068                 btrfs_put_ordered_extent(ordered);
3069                 goto again;
3070         }
3071
3072         set_extent_delalloc(&BTRFS_I(inode)->io_tree, page_start,
3073                             page_end, GFP_NOFS);
3074         ret = 0;
3075
3076         /* page is wholly or partially inside EOF */
3077         if (page_start + PAGE_CACHE_SIZE > size)
3078                 zero_start = size & ~PAGE_CACHE_MASK;
3079         else
3080                 zero_start = PAGE_CACHE_SIZE;
3081
3082         if (zero_start != PAGE_CACHE_SIZE) {
3083                 kaddr = kmap(page);
3084                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3085                 flush_dcache_page(page);
3086                 kunmap(page);
3087         }
3088         ClearPageChecked(page);
3089         set_page_dirty(page);
3090         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3091
3092 out_unlock:
3093         unlock_page(page);
3094 out:
3095         return ret;
3096 }
3097
3098 static void btrfs_truncate(struct inode *inode)
3099 {
3100         struct btrfs_root *root = BTRFS_I(inode)->root;
3101         int ret;
3102         struct btrfs_trans_handle *trans;
3103         unsigned long nr;
3104         u64 mask = root->sectorsize - 1;
3105
3106         if (!S_ISREG(inode->i_mode))
3107                 return;
3108         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3109                 return;
3110
3111         btrfs_truncate_page(inode->i_mapping, inode->i_size);
3112         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3113
3114         trans = btrfs_start_transaction(root, 1);
3115         btrfs_set_trans_block_group(trans, inode);
3116         btrfs_i_size_write(inode, inode->i_size);
3117
3118         ret = btrfs_orphan_add(trans, inode);
3119         if (ret)
3120                 goto out;
3121         /* FIXME, add redo link to tree so we don't leak on crash */
3122         ret = btrfs_truncate_in_trans(trans, root, inode,
3123                                       BTRFS_EXTENT_DATA_KEY);
3124         btrfs_update_inode(trans, root, inode);
3125
3126         ret = btrfs_orphan_del(trans, inode);
3127         BUG_ON(ret);
3128
3129 out:
3130         nr = trans->blocks_used;
3131         ret = btrfs_end_transaction_throttle(trans, root);
3132         BUG_ON(ret);
3133         btrfs_btree_balance_dirty(root, nr);
3134 }
3135
3136 /*
3137  * Invalidate a single dcache entry at the root of the filesystem.
3138  * Needed after creation of snapshot or subvolume.
3139  */
3140 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3141                                   int namelen)
3142 {
3143         struct dentry *alias, *entry;
3144         struct qstr qstr;
3145
3146         alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3147         if (alias) {
3148                 qstr.name = name;
3149                 qstr.len = namelen;
3150                 /* change me if btrfs ever gets a d_hash operation */
3151                 qstr.hash = full_name_hash(qstr.name, qstr.len);
3152                 entry = d_lookup(alias, &qstr);
3153                 dput(alias);
3154                 if (entry) {
3155                         d_invalidate(entry);
3156                         dput(entry);
3157                 }
3158         }
3159 }
3160
3161 int btrfs_create_subvol_root(struct btrfs_root *new_root,
3162                 struct btrfs_trans_handle *trans, u64 new_dirid,
3163                 struct btrfs_block_group_cache *block_group)
3164 {
3165         struct inode *inode;
3166
3167         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3168                                 new_dirid, block_group, S_IFDIR | 0700);
3169         if (IS_ERR(inode))
3170                 return PTR_ERR(inode);
3171         inode->i_op = &btrfs_dir_inode_operations;
3172         inode->i_fop = &btrfs_dir_file_operations;
3173         new_root->inode = inode;
3174
3175         inode->i_nlink = 1;
3176         btrfs_i_size_write(inode, 0);
3177
3178         return btrfs_update_inode(trans, new_root, inode);
3179 }
3180
3181 unsigned long btrfs_force_ra(struct address_space *mapping,
3182                               struct file_ra_state *ra, struct file *file,
3183                               pgoff_t offset, pgoff_t last_index)
3184 {
3185         pgoff_t req_size = last_index - offset + 1;
3186
3187 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3188         offset = page_cache_readahead(mapping, ra, file, offset, req_size);
3189         return offset;
3190 #else
3191         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3192         return offset + req_size;
3193 #endif
3194 }
3195
3196 struct inode *btrfs_alloc_inode(struct super_block *sb)
3197 {
3198         struct btrfs_inode *ei;
3199
3200         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3201         if (!ei)
3202                 return NULL;
3203         ei->last_trans = 0;
3204         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3205         ei->i_acl = BTRFS_ACL_NOT_CACHED;
3206         ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3207         INIT_LIST_HEAD(&ei->i_orphan);
3208         return &ei->vfs_inode;
3209 }
3210
3211 void btrfs_destroy_inode(struct inode *inode)
3212 {
3213         struct btrfs_ordered_extent *ordered;
3214         WARN_ON(!list_empty(&inode->i_dentry));
3215         WARN_ON(inode->i_data.nrpages);
3216
3217         if (BTRFS_I(inode)->i_acl &&
3218             BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3219                 posix_acl_release(BTRFS_I(inode)->i_acl);
3220         if (BTRFS_I(inode)->i_default_acl &&
3221             BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3222                 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3223
3224         spin_lock(&BTRFS_I(inode)->root->list_lock);
3225         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3226                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3227                        " list\n", inode->i_ino);
3228                 dump_stack();
3229         }
3230         spin_unlock(&BTRFS_I(inode)->root->list_lock);
3231
3232         while(1) {
3233                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3234                 if (!ordered)
3235                         break;
3236                 else {
3237                         printk("found ordered extent %Lu %Lu\n",
3238                                ordered->file_offset, ordered->len);
3239                         btrfs_remove_ordered_extent(inode, ordered);
3240                         btrfs_put_ordered_extent(ordered);
3241                         btrfs_put_ordered_extent(ordered);
3242                 }
3243         }
3244         btrfs_drop_extent_cache(inode, 0, (u64)-1);
3245         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
3246 }
3247
3248 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3249 static void init_once(void *foo)
3250 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3251 static void init_once(struct kmem_cache * cachep, void *foo)
3252 #else
3253 static void init_once(void * foo, struct kmem_cache * cachep,
3254                       unsigned long flags)
3255 #endif
3256 {
3257         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
3258
3259         inode_init_once(&ei->vfs_inode);
3260 }
3261
3262 void btrfs_destroy_cachep(void)
3263 {
3264         if (btrfs_inode_cachep)
3265                 kmem_cache_destroy(btrfs_inode_cachep);
3266         if (btrfs_trans_handle_cachep)
3267                 kmem_cache_destroy(btrfs_trans_handle_cachep);
3268         if (btrfs_transaction_cachep)
3269                 kmem_cache_destroy(btrfs_transaction_cachep);
3270         if (btrfs_bit_radix_cachep)
3271                 kmem_cache_destroy(btrfs_bit_radix_cachep);
3272         if (btrfs_path_cachep)
3273                 kmem_cache_destroy(btrfs_path_cachep);
3274 }
3275
3276 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
3277                                        unsigned long extra_flags,
3278 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3279                                        void (*ctor)(void *)
3280 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3281                                        void (*ctor)(struct kmem_cache *, void *)
3282 #else
3283                                        void (*ctor)(void *, struct kmem_cache *,
3284                                                     unsigned long)
3285 #endif
3286                                      )
3287 {
3288         return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
3289                                  SLAB_MEM_SPREAD | extra_flags), ctor
3290 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3291                                  ,NULL
3292 #endif
3293                                 );
3294 }
3295
3296 int btrfs_init_cachep(void)
3297 {
3298         btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
3299                                           sizeof(struct btrfs_inode),
3300                                           0, init_once);
3301         if (!btrfs_inode_cachep)
3302                 goto fail;
3303         btrfs_trans_handle_cachep =
3304                         btrfs_cache_create("btrfs_trans_handle_cache",
3305                                            sizeof(struct btrfs_trans_handle),
3306                                            0, NULL);
3307         if (!btrfs_trans_handle_cachep)
3308                 goto fail;
3309         btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
3310                                              sizeof(struct btrfs_transaction),
3311                                              0, NULL);
3312         if (!btrfs_transaction_cachep)
3313                 goto fail;
3314         btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
3315                                          sizeof(struct btrfs_path),
3316                                          0, NULL);
3317         if (!btrfs_path_cachep)
3318                 goto fail;
3319         btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
3320                                               SLAB_DESTROY_BY_RCU, NULL);
3321         if (!btrfs_bit_radix_cachep)
3322                 goto fail;
3323         return 0;
3324 fail:
3325         btrfs_destroy_cachep();
3326         return -ENOMEM;
3327 }
3328
3329 static int btrfs_getattr(struct vfsmount *mnt,
3330                          struct dentry *dentry, struct kstat *stat)
3331 {
3332         struct inode *inode = dentry->d_inode;
3333         generic_fillattr(inode, stat);
3334         stat->blksize = PAGE_CACHE_SIZE;
3335         stat->blocks = inode->i_blocks + (BTRFS_I(inode)->delalloc_bytes >> 9);
3336         return 0;
3337 }
3338
3339 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
3340                            struct inode * new_dir,struct dentry *new_dentry)
3341 {
3342         struct btrfs_trans_handle *trans;
3343         struct btrfs_root *root = BTRFS_I(old_dir)->root;
3344         struct inode *new_inode = new_dentry->d_inode;
3345         struct inode *old_inode = old_dentry->d_inode;
3346         struct timespec ctime = CURRENT_TIME;
3347         int ret;
3348
3349         if (S_ISDIR(old_inode->i_mode) && new_inode &&
3350             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
3351                 return -ENOTEMPTY;
3352         }
3353
3354         ret = btrfs_check_free_space(root, 1, 0);
3355         if (ret)
3356                 goto out_unlock;
3357
3358         trans = btrfs_start_transaction(root, 1);
3359
3360         btrfs_set_trans_block_group(trans, new_dir);
3361
3362         old_dentry->d_inode->i_nlink++;
3363         old_dir->i_ctime = old_dir->i_mtime = ctime;
3364         new_dir->i_ctime = new_dir->i_mtime = ctime;
3365         old_inode->i_ctime = ctime;
3366
3367         ret = btrfs_unlink_trans(trans, root, old_dir, old_dentry);
3368         if (ret)
3369                 goto out_fail;
3370
3371         if (new_inode) {
3372                 new_inode->i_ctime = CURRENT_TIME;
3373                 ret = btrfs_unlink_trans(trans, root, new_dir, new_dentry);
3374                 if (ret)
3375                         goto out_fail;
3376                 if (new_inode->i_nlink == 0) {
3377                         ret = btrfs_orphan_add(trans, new_inode);
3378                         if (ret)
3379                                 goto out_fail;
3380                 }
3381         }
3382         ret = btrfs_set_inode_index(new_dir, old_inode);
3383         if (ret)
3384                 goto out_fail;
3385
3386         ret = btrfs_add_link(trans, new_dentry, old_inode, 1);
3387         if (ret)
3388                 goto out_fail;
3389
3390 out_fail:
3391         btrfs_end_transaction_throttle(trans, root);
3392 out_unlock:
3393         return ret;
3394 }
3395
3396 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
3397                          const char *symname)
3398 {
3399         struct btrfs_trans_handle *trans;
3400         struct btrfs_root *root = BTRFS_I(dir)->root;
3401         struct btrfs_path *path;
3402         struct btrfs_key key;
3403         struct inode *inode = NULL;
3404         int err;
3405         int drop_inode = 0;
3406         u64 objectid;
3407         int name_len;
3408         int datasize;
3409         unsigned long ptr;
3410         struct btrfs_file_extent_item *ei;
3411         struct extent_buffer *leaf;
3412         unsigned long nr = 0;
3413
3414         name_len = strlen(symname) + 1;
3415         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
3416                 return -ENAMETOOLONG;
3417
3418         err = btrfs_check_free_space(root, 1, 0);
3419         if (err)
3420                 goto out_fail;
3421
3422         trans = btrfs_start_transaction(root, 1);
3423         btrfs_set_trans_block_group(trans, dir);
3424
3425         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3426         if (err) {
3427                 err = -ENOSPC;
3428                 goto out_unlock;
3429         }
3430
3431         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3432                                 dentry->d_name.len,
3433                                 dentry->d_parent->d_inode->i_ino, objectid,
3434                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO);
3435         err = PTR_ERR(inode);
3436         if (IS_ERR(inode))
3437                 goto out_unlock;
3438
3439         err = btrfs_init_acl(inode, dir);
3440         if (err) {
3441                 drop_inode = 1;
3442                 goto out_unlock;
3443         }
3444
3445         btrfs_set_trans_block_group(trans, inode);
3446         err = btrfs_add_nondir(trans, dentry, inode, 0);
3447         if (err)
3448                 drop_inode = 1;
3449         else {
3450                 inode->i_mapping->a_ops = &btrfs_aops;
3451                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3452                 inode->i_fop = &btrfs_file_operations;
3453                 inode->i_op = &btrfs_file_inode_operations;
3454                 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3455                 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3456                                      inode->i_mapping, GFP_NOFS);
3457                 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3458                                      inode->i_mapping, GFP_NOFS);
3459                 mutex_init(&BTRFS_I(inode)->csum_mutex);
3460                 mutex_init(&BTRFS_I(inode)->extent_mutex);
3461                 BTRFS_I(inode)->delalloc_bytes = 0;
3462                 BTRFS_I(inode)->disk_i_size = 0;
3463                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3464                 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3465         }
3466         dir->i_sb->s_dirt = 1;
3467         btrfs_update_inode_block_group(trans, inode);
3468         btrfs_update_inode_block_group(trans, dir);
3469         if (drop_inode)
3470                 goto out_unlock;
3471
3472         path = btrfs_alloc_path();
3473         BUG_ON(!path);
3474         key.objectid = inode->i_ino;
3475         key.offset = 0;
3476         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
3477         datasize = btrfs_file_extent_calc_inline_size(name_len);
3478         err = btrfs_insert_empty_item(trans, root, path, &key,
3479                                       datasize);
3480         if (err) {
3481                 drop_inode = 1;
3482                 goto out_unlock;
3483         }
3484         leaf = path->nodes[0];
3485         ei = btrfs_item_ptr(leaf, path->slots[0],
3486                             struct btrfs_file_extent_item);
3487         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
3488         btrfs_set_file_extent_type(leaf, ei,
3489                                    BTRFS_FILE_EXTENT_INLINE);
3490         ptr = btrfs_file_extent_inline_start(ei);
3491         write_extent_buffer(leaf, symname, ptr, name_len);
3492         btrfs_mark_buffer_dirty(leaf);
3493         btrfs_free_path(path);
3494
3495         inode->i_op = &btrfs_symlink_inode_operations;
3496         inode->i_mapping->a_ops = &btrfs_symlink_aops;
3497         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3498         btrfs_i_size_write(inode, name_len - 1);
3499         err = btrfs_update_inode(trans, root, inode);
3500         if (err)
3501                 drop_inode = 1;
3502
3503 out_unlock:
3504         nr = trans->blocks_used;
3505         btrfs_end_transaction_throttle(trans, root);
3506 out_fail:
3507         if (drop_inode) {
3508                 inode_dec_link_count(inode);
3509                 iput(inode);
3510         }
3511         btrfs_btree_balance_dirty(root, nr);
3512         return err;
3513 }
3514
3515 static int btrfs_set_page_dirty(struct page *page)
3516 {
3517         return __set_page_dirty_nobuffers(page);
3518 }
3519
3520 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3521 static int btrfs_permission(struct inode *inode, int mask)
3522 #else
3523 static int btrfs_permission(struct inode *inode, int mask,
3524                             struct nameidata *nd)
3525 #endif
3526 {
3527         if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
3528                 return -EACCES;
3529         return generic_permission(inode, mask, btrfs_check_acl);
3530 }
3531
3532 static struct inode_operations btrfs_dir_inode_operations = {
3533         .lookup         = btrfs_lookup,
3534         .create         = btrfs_create,
3535         .unlink         = btrfs_unlink,
3536         .link           = btrfs_link,
3537         .mkdir          = btrfs_mkdir,
3538         .rmdir          = btrfs_rmdir,
3539         .rename         = btrfs_rename,
3540         .symlink        = btrfs_symlink,
3541         .setattr        = btrfs_setattr,
3542         .mknod          = btrfs_mknod,
3543         .setxattr       = generic_setxattr,
3544         .getxattr       = generic_getxattr,
3545         .listxattr      = btrfs_listxattr,
3546         .removexattr    = generic_removexattr,
3547         .permission     = btrfs_permission,
3548 };
3549 static struct inode_operations btrfs_dir_ro_inode_operations = {
3550         .lookup         = btrfs_lookup,
3551         .permission     = btrfs_permission,
3552 };
3553 static struct file_operations btrfs_dir_file_operations = {
3554         .llseek         = generic_file_llseek,
3555         .read           = generic_read_dir,
3556         .readdir        = btrfs_readdir,
3557         .unlocked_ioctl = btrfs_ioctl,
3558 #ifdef CONFIG_COMPAT
3559         .compat_ioctl   = btrfs_ioctl,
3560 #endif
3561         .release        = btrfs_release_file,
3562 };
3563
3564 static struct extent_io_ops btrfs_extent_io_ops = {
3565         .fill_delalloc = run_delalloc_range,
3566         .submit_bio_hook = btrfs_submit_bio_hook,
3567         .merge_bio_hook = btrfs_merge_bio_hook,
3568         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
3569         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
3570         .writepage_start_hook = btrfs_writepage_start_hook,
3571         .readpage_io_failed_hook = btrfs_io_failed_hook,
3572         .set_bit_hook = btrfs_set_bit_hook,
3573         .clear_bit_hook = btrfs_clear_bit_hook,
3574 };
3575
3576 static struct address_space_operations btrfs_aops = {
3577         .readpage       = btrfs_readpage,
3578         .writepage      = btrfs_writepage,
3579         .writepages     = btrfs_writepages,
3580         .readpages      = btrfs_readpages,
3581         .sync_page      = block_sync_page,
3582         .bmap           = btrfs_bmap,
3583         .direct_IO      = btrfs_direct_IO,
3584         .invalidatepage = btrfs_invalidatepage,
3585         .releasepage    = btrfs_releasepage,
3586         .set_page_dirty = btrfs_set_page_dirty,
3587 };
3588
3589 static struct address_space_operations btrfs_symlink_aops = {
3590         .readpage       = btrfs_readpage,
3591         .writepage      = btrfs_writepage,
3592         .invalidatepage = btrfs_invalidatepage,
3593         .releasepage    = btrfs_releasepage,
3594 };
3595
3596 static struct inode_operations btrfs_file_inode_operations = {
3597         .truncate       = btrfs_truncate,
3598         .getattr        = btrfs_getattr,
3599         .setattr        = btrfs_setattr,
3600         .setxattr       = generic_setxattr,
3601         .getxattr       = generic_getxattr,
3602         .listxattr      = btrfs_listxattr,
3603         .removexattr    = generic_removexattr,
3604         .permission     = btrfs_permission,
3605 };
3606 static struct inode_operations btrfs_special_inode_operations = {
3607         .getattr        = btrfs_getattr,
3608         .setattr        = btrfs_setattr,
3609         .permission     = btrfs_permission,
3610         .setxattr       = generic_setxattr,
3611         .getxattr       = generic_getxattr,
3612         .listxattr      = btrfs_listxattr,
3613         .removexattr    = generic_removexattr,
3614 };
3615 static struct inode_operations btrfs_symlink_inode_operations = {
3616         .readlink       = generic_readlink,
3617         .follow_link    = page_follow_link_light,
3618         .put_link       = page_put_link,
3619         .permission     = btrfs_permission,
3620 };