Btrfs: Lower contention on the csum mutex
[safe/jmp/linux-2.6] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48
49 struct btrfs_iget_args {
50         u64 ino;
51         struct btrfs_root *root;
52 };
53
54 static struct inode_operations btrfs_dir_inode_operations;
55 static struct inode_operations btrfs_symlink_inode_operations;
56 static struct inode_operations btrfs_dir_ro_inode_operations;
57 static struct inode_operations btrfs_special_inode_operations;
58 static struct inode_operations btrfs_file_inode_operations;
59 static struct address_space_operations btrfs_aops;
60 static struct address_space_operations btrfs_symlink_aops;
61 static struct file_operations btrfs_dir_file_operations;
62 static struct extent_io_ops btrfs_extent_io_ops;
63
64 static struct kmem_cache *btrfs_inode_cachep;
65 struct kmem_cache *btrfs_trans_handle_cachep;
66 struct kmem_cache *btrfs_transaction_cachep;
67 struct kmem_cache *btrfs_bit_radix_cachep;
68 struct kmem_cache *btrfs_path_cachep;
69
70 #define S_SHIFT 12
71 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
72         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
73         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
74         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
75         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
76         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
77         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
78         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
79 };
80
81 static void btrfs_truncate(struct inode *inode);
82
83 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
84                            int for_del)
85 {
86         u64 total;
87         u64 used;
88         u64 thresh;
89         unsigned long flags;
90         int ret = 0;
91
92         spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
93         total = btrfs_super_total_bytes(&root->fs_info->super_copy);
94         used = btrfs_super_bytes_used(&root->fs_info->super_copy);
95         if (for_del)
96                 thresh = total * 90;
97         else
98                 thresh = total * 85;
99
100         do_div(thresh, 100);
101
102         if (used + root->fs_info->delalloc_bytes + num_required > thresh)
103                 ret = -ENOSPC;
104         spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
105         return ret;
106 }
107
108 static int cow_file_range(struct inode *inode, u64 start, u64 end)
109 {
110         struct btrfs_root *root = BTRFS_I(inode)->root;
111         struct btrfs_trans_handle *trans;
112         u64 alloc_hint = 0;
113         u64 num_bytes;
114         u64 cur_alloc_size;
115         u64 blocksize = root->sectorsize;
116         u64 orig_num_bytes;
117         struct btrfs_key ins;
118         struct extent_map *em;
119         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
120         int ret = 0;
121
122         trans = btrfs_join_transaction(root, 1);
123         BUG_ON(!trans);
124         btrfs_set_trans_block_group(trans, inode);
125
126         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
127         num_bytes = max(blocksize,  num_bytes);
128         orig_num_bytes = num_bytes;
129
130         if (alloc_hint == EXTENT_MAP_INLINE)
131                 goto out;
132
133         BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy));
134         mutex_lock(&BTRFS_I(inode)->extent_mutex);
135         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1);
136         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
137
138         while(num_bytes > 0) {
139                 cur_alloc_size = min(num_bytes, root->fs_info->max_extent);
140                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
141                                            root->sectorsize, 0, 0,
142                                            (u64)-1, &ins, 1);
143                 if (ret) {
144                         WARN_ON(1);
145                         goto out;
146                 }
147                 em = alloc_extent_map(GFP_NOFS);
148                 em->start = start;
149                 em->len = ins.offset;
150                 em->block_start = ins.objectid;
151                 em->bdev = root->fs_info->fs_devices->latest_bdev;
152                 mutex_lock(&BTRFS_I(inode)->extent_mutex);
153                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
154                 while(1) {
155                         spin_lock(&em_tree->lock);
156                         ret = add_extent_mapping(em_tree, em);
157                         spin_unlock(&em_tree->lock);
158                         if (ret != -EEXIST) {
159                                 free_extent_map(em);
160                                 break;
161                         }
162                         btrfs_drop_extent_cache(inode, start,
163                                                 start + ins.offset - 1);
164                 }
165                 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
166
167                 cur_alloc_size = ins.offset;
168                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
169                                                ins.offset, 0);
170                 BUG_ON(ret);
171                 if (num_bytes < cur_alloc_size) {
172                         printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes,
173                                cur_alloc_size);
174                         break;
175                 }
176                 num_bytes -= cur_alloc_size;
177                 alloc_hint = ins.objectid + ins.offset;
178                 start += cur_alloc_size;
179         }
180 out:
181         btrfs_end_transaction(trans, root);
182         return ret;
183 }
184
185 static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end)
186 {
187         u64 extent_start;
188         u64 extent_end;
189         u64 bytenr;
190         u64 loops = 0;
191         u64 total_fs_bytes;
192         struct btrfs_root *root = BTRFS_I(inode)->root;
193         struct btrfs_block_group_cache *block_group;
194         struct btrfs_trans_handle *trans;
195         struct extent_buffer *leaf;
196         int found_type;
197         struct btrfs_path *path;
198         struct btrfs_file_extent_item *item;
199         int ret;
200         int err = 0;
201         struct btrfs_key found_key;
202
203         total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
204         path = btrfs_alloc_path();
205         BUG_ON(!path);
206         trans = btrfs_join_transaction(root, 1);
207         BUG_ON(!trans);
208 again:
209         ret = btrfs_lookup_file_extent(NULL, root, path,
210                                        inode->i_ino, start, 0);
211         if (ret < 0) {
212                 err = ret;
213                 goto out;
214         }
215
216         if (ret != 0) {
217                 if (path->slots[0] == 0)
218                         goto not_found;
219                 path->slots[0]--;
220         }
221
222         leaf = path->nodes[0];
223         item = btrfs_item_ptr(leaf, path->slots[0],
224                               struct btrfs_file_extent_item);
225
226         /* are we inside the extent that was found? */
227         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
228         found_type = btrfs_key_type(&found_key);
229         if (found_key.objectid != inode->i_ino ||
230             found_type != BTRFS_EXTENT_DATA_KEY)
231                 goto not_found;
232
233         found_type = btrfs_file_extent_type(leaf, item);
234         extent_start = found_key.offset;
235         if (found_type == BTRFS_FILE_EXTENT_REG) {
236                 u64 extent_num_bytes;
237
238                 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
239                 extent_end = extent_start + extent_num_bytes;
240                 err = 0;
241
242                 if (loops && start != extent_start)
243                         goto not_found;
244
245                 if (start < extent_start || start >= extent_end)
246                         goto not_found;
247
248                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
249                 if (bytenr == 0)
250                         goto not_found;
251
252                 if (btrfs_cross_ref_exists(trans, root, &found_key, bytenr))
253                         goto not_found;
254                 /*
255                  * we may be called by the resizer, make sure we're inside
256                  * the limits of the FS
257                  */
258                 block_group = btrfs_lookup_block_group(root->fs_info,
259                                                        bytenr);
260                 if (!block_group || block_group->ro)
261                         goto not_found;
262
263                 bytenr += btrfs_file_extent_offset(leaf, item);
264                 extent_num_bytes = min(end + 1, extent_end) - start;
265                 ret = btrfs_add_ordered_extent(inode, start, bytenr,
266                                                 extent_num_bytes, 1);
267                 if (ret) {
268                         err = ret;
269                         goto out;
270                 }
271
272                 btrfs_release_path(root, path);
273                 start = extent_end;
274                 if (start <= end) {
275                         loops++;
276                         goto again;
277                 }
278         } else {
279 not_found:
280                 btrfs_end_transaction(trans, root);
281                 btrfs_free_path(path);
282                 return cow_file_range(inode, start, end);
283         }
284 out:
285         WARN_ON(err);
286         btrfs_end_transaction(trans, root);
287         btrfs_free_path(path);
288         return err;
289 }
290
291 static int run_delalloc_range(struct inode *inode, u64 start, u64 end)
292 {
293         struct btrfs_root *root = BTRFS_I(inode)->root;
294         int ret;
295
296         if (btrfs_test_opt(root, NODATACOW) ||
297             btrfs_test_flag(inode, NODATACOW))
298                 ret = run_delalloc_nocow(inode, start, end);
299         else
300                 ret = cow_file_range(inode, start, end);
301
302         return ret;
303 }
304
305 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
306                        unsigned long old, unsigned long bits)
307 {
308         unsigned long flags;
309         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
310                 struct btrfs_root *root = BTRFS_I(inode)->root;
311                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
312                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
313                 root->fs_info->delalloc_bytes += end - start + 1;
314                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
315                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
316                                       &root->fs_info->delalloc_inodes);
317                 }
318                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
319         }
320         return 0;
321 }
322
323 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
324                          unsigned long old, unsigned long bits)
325 {
326         if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
327                 struct btrfs_root *root = BTRFS_I(inode)->root;
328                 unsigned long flags;
329
330                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
331                 if (end - start + 1 > root->fs_info->delalloc_bytes) {
332                         printk("warning: delalloc account %Lu %Lu\n",
333                                end - start + 1, root->fs_info->delalloc_bytes);
334                         root->fs_info->delalloc_bytes = 0;
335                         BTRFS_I(inode)->delalloc_bytes = 0;
336                 } else {
337                         root->fs_info->delalloc_bytes -= end - start + 1;
338                         BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
339                 }
340                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
341                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
342                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
343                 }
344                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
345         }
346         return 0;
347 }
348
349 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
350                          size_t size, struct bio *bio)
351 {
352         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
353         struct btrfs_mapping_tree *map_tree;
354         u64 logical = bio->bi_sector << 9;
355         u64 length = 0;
356         u64 map_length;
357         int ret;
358
359         length = bio->bi_size;
360         map_tree = &root->fs_info->mapping_tree;
361         map_length = length;
362         ret = btrfs_map_block(map_tree, READ, logical,
363                               &map_length, NULL, 0);
364
365         if (map_length < length + size) {
366                 return 1;
367         }
368         return 0;
369 }
370
371 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
372                           int mirror_num)
373 {
374         struct btrfs_root *root = BTRFS_I(inode)->root;
375         int ret = 0;
376
377         ret = btrfs_csum_one_bio(root, inode, bio);
378         BUG_ON(ret);
379
380         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
381 }
382
383 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
384                           int mirror_num)
385 {
386         struct btrfs_root *root = BTRFS_I(inode)->root;
387         int ret = 0;
388
389         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
390         BUG_ON(ret);
391
392         if (!(rw & (1 << BIO_RW))) {
393                 goto mapit;
394         }
395
396         if (btrfs_test_opt(root, NODATASUM) ||
397             btrfs_test_flag(inode, NODATASUM)) {
398                 goto mapit;
399         }
400
401         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
402                                    inode, rw, bio, mirror_num,
403                                    __btrfs_submit_bio_hook);
404 mapit:
405         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
406 }
407
408 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
409                              struct inode *inode, u64 file_offset,
410                              struct list_head *list)
411 {
412         struct list_head *cur;
413         struct btrfs_ordered_sum *sum;
414
415         btrfs_set_trans_block_group(trans, inode);
416         list_for_each(cur, list) {
417                 sum = list_entry(cur, struct btrfs_ordered_sum, list);
418                 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
419                                        inode, sum);
420         }
421         return 0;
422 }
423
424 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
425 {
426         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
427                                    GFP_NOFS);
428 }
429
430 struct btrfs_writepage_fixup {
431         struct page *page;
432         struct btrfs_work work;
433 };
434
435 /* see btrfs_writepage_start_hook for details on why this is required */
436 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
437 {
438         struct btrfs_writepage_fixup *fixup;
439         struct btrfs_ordered_extent *ordered;
440         struct page *page;
441         struct inode *inode;
442         u64 page_start;
443         u64 page_end;
444
445         fixup = container_of(work, struct btrfs_writepage_fixup, work);
446         page = fixup->page;
447 again:
448         lock_page(page);
449         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
450                 ClearPageChecked(page);
451                 goto out_page;
452         }
453
454         inode = page->mapping->host;
455         page_start = page_offset(page);
456         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
457
458         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
459
460         /* already ordered? We're done */
461         if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
462                              EXTENT_ORDERED, 0)) {
463                 goto out;
464         }
465
466         ordered = btrfs_lookup_ordered_extent(inode, page_start);
467         if (ordered) {
468                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
469                               page_end, GFP_NOFS);
470                 unlock_page(page);
471                 btrfs_start_ordered_extent(inode, ordered, 1);
472                 goto again;
473         }
474
475         btrfs_set_extent_delalloc(inode, page_start, page_end);
476         ClearPageChecked(page);
477 out:
478         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
479 out_page:
480         unlock_page(page);
481         page_cache_release(page);
482 }
483
484 /*
485  * There are a few paths in the higher layers of the kernel that directly
486  * set the page dirty bit without asking the filesystem if it is a
487  * good idea.  This causes problems because we want to make sure COW
488  * properly happens and the data=ordered rules are followed.
489  *
490  * In our case any range that doesn't have the EXTENT_ORDERED bit set
491  * hasn't been properly setup for IO.  We kick off an async process
492  * to fix it up.  The async helper will wait for ordered extents, set
493  * the delalloc bit and make it safe to write the page.
494  */
495 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
496 {
497         struct inode *inode = page->mapping->host;
498         struct btrfs_writepage_fixup *fixup;
499         struct btrfs_root *root = BTRFS_I(inode)->root;
500         int ret;
501
502         ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
503                              EXTENT_ORDERED, 0);
504         if (ret)
505                 return 0;
506
507         if (PageChecked(page))
508                 return -EAGAIN;
509
510         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
511         if (!fixup)
512                 return -EAGAIN;
513
514         SetPageChecked(page);
515         page_cache_get(page);
516         fixup->work.func = btrfs_writepage_fixup_worker;
517         fixup->page = page;
518         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
519         return -EAGAIN;
520 }
521
522 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
523 {
524         struct btrfs_root *root = BTRFS_I(inode)->root;
525         struct btrfs_trans_handle *trans;
526         struct btrfs_ordered_extent *ordered_extent;
527         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
528         u64 alloc_hint = 0;
529         struct list_head list;
530         struct btrfs_key ins;
531         int ret;
532
533         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
534         if (!ret)
535                 return 0;
536
537         trans = btrfs_join_transaction(root, 1);
538
539         ordered_extent = btrfs_lookup_ordered_extent(inode, start);
540         BUG_ON(!ordered_extent);
541         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
542                 goto nocow;
543
544         lock_extent(io_tree, ordered_extent->file_offset,
545                     ordered_extent->file_offset + ordered_extent->len - 1,
546                     GFP_NOFS);
547
548         INIT_LIST_HEAD(&list);
549
550         ins.objectid = ordered_extent->start;
551         ins.offset = ordered_extent->len;
552         ins.type = BTRFS_EXTENT_ITEM_KEY;
553
554         ret = btrfs_alloc_reserved_extent(trans, root, root->root_key.objectid,
555                                           trans->transid, inode->i_ino,
556                                           ordered_extent->file_offset, &ins);
557         BUG_ON(ret);
558
559         mutex_lock(&BTRFS_I(inode)->extent_mutex);
560
561         ret = btrfs_drop_extents(trans, root, inode,
562                                  ordered_extent->file_offset,
563                                  ordered_extent->file_offset +
564                                  ordered_extent->len,
565                                  ordered_extent->file_offset, &alloc_hint);
566         BUG_ON(ret);
567         ret = btrfs_insert_file_extent(trans, root, inode->i_ino,
568                                        ordered_extent->file_offset,
569                                        ordered_extent->start,
570                                        ordered_extent->len,
571                                        ordered_extent->len, 0);
572         BUG_ON(ret);
573
574         btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
575                                 ordered_extent->file_offset +
576                                 ordered_extent->len - 1);
577         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
578
579         inode->i_blocks += ordered_extent->len >> 9;
580         unlock_extent(io_tree, ordered_extent->file_offset,
581                     ordered_extent->file_offset + ordered_extent->len - 1,
582                     GFP_NOFS);
583 nocow:
584         add_pending_csums(trans, inode, ordered_extent->file_offset,
585                           &ordered_extent->list);
586
587         btrfs_ordered_update_i_size(inode, ordered_extent);
588         btrfs_remove_ordered_extent(inode, ordered_extent);
589
590         /* once for us */
591         btrfs_put_ordered_extent(ordered_extent);
592         /* once for the tree */
593         btrfs_put_ordered_extent(ordered_extent);
594
595         btrfs_update_inode(trans, root, inode);
596         btrfs_end_transaction(trans, root);
597         return 0;
598 }
599
600 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
601                                 struct extent_state *state, int uptodate)
602 {
603         return btrfs_finish_ordered_io(page->mapping->host, start, end);
604 }
605
606 int btrfs_readpage_io_hook(struct page *page, u64 start, u64 end)
607 {
608         int ret = 0;
609         struct inode *inode = page->mapping->host;
610         struct btrfs_root *root = BTRFS_I(inode)->root;
611         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
612         struct btrfs_csum_item *item;
613         struct btrfs_path *path = NULL;
614         u32 csum;
615
616         if (btrfs_test_opt(root, NODATASUM) ||
617             btrfs_test_flag(inode, NODATASUM))
618                 return 0;
619
620         /*
621          * It is possible there is an ordered extent that has
622          * not yet finished for this range in the file.  If so,
623          * that extent will have a csum cached, and it will insert
624          * the sum after all the blocks in the extent are fully
625          * on disk.  So, look for an ordered extent and use the
626          * sum if found.  We have to do this before looking in the
627          * btree because csum items are pre-inserted based on
628          * the file size.  btrfs_lookup_csum might find an item
629          * that still hasn't been fully filled.
630          */
631         ret = btrfs_find_ordered_sum(inode, start, &csum);
632         if (ret == 0)
633                 goto found;
634
635         ret = 0;
636         path = btrfs_alloc_path();
637         item = btrfs_lookup_csum(NULL, root, path, inode->i_ino, start, 0);
638         if (IS_ERR(item)) {
639                 ret = PTR_ERR(item);
640                 /* a csum that isn't present is a preallocated region. */
641                 if (ret == -ENOENT || ret == -EFBIG)
642                         ret = 0;
643                 csum = 0;
644                 printk("no csum found for inode %lu start %Lu\n", inode->i_ino,
645                        start);
646                 goto out;
647         }
648         read_extent_buffer(path->nodes[0], &csum, (unsigned long)item,
649                            BTRFS_CRC32_SIZE);
650 found:
651         set_state_private(io_tree, start, csum);
652 out:
653         if (path)
654                 btrfs_free_path(path);
655         return ret;
656 }
657
658 struct io_failure_record {
659         struct page *page;
660         u64 start;
661         u64 len;
662         u64 logical;
663         int last_mirror;
664 };
665
666 int btrfs_io_failed_hook(struct bio *failed_bio,
667                          struct page *page, u64 start, u64 end,
668                          struct extent_state *state)
669 {
670         struct io_failure_record *failrec = NULL;
671         u64 private;
672         struct extent_map *em;
673         struct inode *inode = page->mapping->host;
674         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
675         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
676         struct bio *bio;
677         int num_copies;
678         int ret;
679         int rw;
680         u64 logical;
681
682         ret = get_state_private(failure_tree, start, &private);
683         if (ret) {
684                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
685                 if (!failrec)
686                         return -ENOMEM;
687                 failrec->start = start;
688                 failrec->len = end - start + 1;
689                 failrec->last_mirror = 0;
690
691                 spin_lock(&em_tree->lock);
692                 em = lookup_extent_mapping(em_tree, start, failrec->len);
693                 if (em->start > start || em->start + em->len < start) {
694                         free_extent_map(em);
695                         em = NULL;
696                 }
697                 spin_unlock(&em_tree->lock);
698
699                 if (!em || IS_ERR(em)) {
700                         kfree(failrec);
701                         return -EIO;
702                 }
703                 logical = start - em->start;
704                 logical = em->block_start + logical;
705                 failrec->logical = logical;
706                 free_extent_map(em);
707                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
708                                 EXTENT_DIRTY, GFP_NOFS);
709                 set_state_private(failure_tree, start,
710                                  (u64)(unsigned long)failrec);
711         } else {
712                 failrec = (struct io_failure_record *)(unsigned long)private;
713         }
714         num_copies = btrfs_num_copies(
715                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
716                               failrec->logical, failrec->len);
717         failrec->last_mirror++;
718         if (!state) {
719                 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
720                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
721                                                     failrec->start,
722                                                     EXTENT_LOCKED);
723                 if (state && state->start != failrec->start)
724                         state = NULL;
725                 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
726         }
727         if (!state || failrec->last_mirror > num_copies) {
728                 set_state_private(failure_tree, failrec->start, 0);
729                 clear_extent_bits(failure_tree, failrec->start,
730                                   failrec->start + failrec->len - 1,
731                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
732                 kfree(failrec);
733                 return -EIO;
734         }
735         bio = bio_alloc(GFP_NOFS, 1);
736         bio->bi_private = state;
737         bio->bi_end_io = failed_bio->bi_end_io;
738         bio->bi_sector = failrec->logical >> 9;
739         bio->bi_bdev = failed_bio->bi_bdev;
740         bio->bi_size = 0;
741         bio_add_page(bio, page, failrec->len, start - page_offset(page));
742         if (failed_bio->bi_rw & (1 << BIO_RW))
743                 rw = WRITE;
744         else
745                 rw = READ;
746
747         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
748                                                       failrec->last_mirror);
749         return 0;
750 }
751
752 int btrfs_clean_io_failures(struct inode *inode, u64 start)
753 {
754         u64 private;
755         u64 private_failure;
756         struct io_failure_record *failure;
757         int ret;
758
759         private = 0;
760         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
761                              (u64)-1, 1, EXTENT_DIRTY)) {
762                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
763                                         start, &private_failure);
764                 if (ret == 0) {
765                         failure = (struct io_failure_record *)(unsigned long)
766                                    private_failure;
767                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
768                                           failure->start, 0);
769                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
770                                           failure->start,
771                                           failure->start + failure->len - 1,
772                                           EXTENT_DIRTY | EXTENT_LOCKED,
773                                           GFP_NOFS);
774                         kfree(failure);
775                 }
776         }
777         return 0;
778 }
779
780 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
781                                struct extent_state *state)
782 {
783         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
784         struct inode *inode = page->mapping->host;
785         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
786         char *kaddr;
787         u64 private = ~(u32)0;
788         int ret;
789         struct btrfs_root *root = BTRFS_I(inode)->root;
790         u32 csum = ~(u32)0;
791         unsigned long flags;
792
793         if (btrfs_test_opt(root, NODATASUM) ||
794             btrfs_test_flag(inode, NODATASUM))
795                 return 0;
796         if (state && state->start == start) {
797                 private = state->private;
798                 ret = 0;
799         } else {
800                 ret = get_state_private(io_tree, start, &private);
801         }
802         local_irq_save(flags);
803         kaddr = kmap_atomic(page, KM_IRQ0);
804         if (ret) {
805                 goto zeroit;
806         }
807         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
808         btrfs_csum_final(csum, (char *)&csum);
809         if (csum != private) {
810                 goto zeroit;
811         }
812         kunmap_atomic(kaddr, KM_IRQ0);
813         local_irq_restore(flags);
814
815         /* if the io failure tree for this inode is non-empty,
816          * check to see if we've recovered from a failed IO
817          */
818         btrfs_clean_io_failures(inode, start);
819         return 0;
820
821 zeroit:
822         printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
823                page->mapping->host->i_ino, (unsigned long long)start, csum,
824                private);
825         memset(kaddr + offset, 1, end - start + 1);
826         flush_dcache_page(page);
827         kunmap_atomic(kaddr, KM_IRQ0);
828         local_irq_restore(flags);
829         if (private == 0)
830                 return 0;
831         return -EIO;
832 }
833
834 /*
835  * This creates an orphan entry for the given inode in case something goes
836  * wrong in the middle of an unlink/truncate.
837  */
838 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
839 {
840         struct btrfs_root *root = BTRFS_I(inode)->root;
841         int ret = 0;
842
843         spin_lock(&root->list_lock);
844
845         /* already on the orphan list, we're good */
846         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
847                 spin_unlock(&root->list_lock);
848                 return 0;
849         }
850
851         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
852
853         spin_unlock(&root->list_lock);
854
855         /*
856          * insert an orphan item to track this unlinked/truncated file
857          */
858         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
859
860         return ret;
861 }
862
863 /*
864  * We have done the truncate/delete so we can go ahead and remove the orphan
865  * item for this particular inode.
866  */
867 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
868 {
869         struct btrfs_root *root = BTRFS_I(inode)->root;
870         int ret = 0;
871
872         spin_lock(&root->list_lock);
873
874         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
875                 spin_unlock(&root->list_lock);
876                 return 0;
877         }
878
879         list_del_init(&BTRFS_I(inode)->i_orphan);
880         if (!trans) {
881                 spin_unlock(&root->list_lock);
882                 return 0;
883         }
884
885         spin_unlock(&root->list_lock);
886
887         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
888
889         return ret;
890 }
891
892 /*
893  * this cleans up any orphans that may be left on the list from the last use
894  * of this root.
895  */
896 void btrfs_orphan_cleanup(struct btrfs_root *root)
897 {
898         struct btrfs_path *path;
899         struct extent_buffer *leaf;
900         struct btrfs_item *item;
901         struct btrfs_key key, found_key;
902         struct btrfs_trans_handle *trans;
903         struct inode *inode;
904         int ret = 0, nr_unlink = 0, nr_truncate = 0;
905
906         /* don't do orphan cleanup if the fs is readonly. */
907         if (root->inode->i_sb->s_flags & MS_RDONLY)
908                 return;
909
910         path = btrfs_alloc_path();
911         if (!path)
912                 return;
913         path->reada = -1;
914
915         key.objectid = BTRFS_ORPHAN_OBJECTID;
916         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
917         key.offset = (u64)-1;
918
919         trans = btrfs_start_transaction(root, 1);
920         btrfs_set_trans_block_group(trans, root->inode);
921
922         while (1) {
923                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
924                 if (ret < 0) {
925                         printk(KERN_ERR "Error searching slot for orphan: %d"
926                                "\n", ret);
927                         break;
928                 }
929
930                 /*
931                  * if ret == 0 means we found what we were searching for, which
932                  * is weird, but possible, so only screw with path if we didnt
933                  * find the key and see if we have stuff that matches
934                  */
935                 if (ret > 0) {
936                         if (path->slots[0] == 0)
937                                 break;
938                         path->slots[0]--;
939                 }
940
941                 /* pull out the item */
942                 leaf = path->nodes[0];
943                 item = btrfs_item_nr(leaf, path->slots[0]);
944                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
945
946                 /* make sure the item matches what we want */
947                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
948                         break;
949                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
950                         break;
951
952                 /* release the path since we're done with it */
953                 btrfs_release_path(root, path);
954
955                 /*
956                  * this is where we are basically btrfs_lookup, without the
957                  * crossing root thing.  we store the inode number in the
958                  * offset of the orphan item.
959                  */
960                 inode = btrfs_iget_locked(root->inode->i_sb,
961                                           found_key.offset, root);
962                 if (!inode)
963                         break;
964
965                 if (inode->i_state & I_NEW) {
966                         BTRFS_I(inode)->root = root;
967
968                         /* have to set the location manually */
969                         BTRFS_I(inode)->location.objectid = inode->i_ino;
970                         BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
971                         BTRFS_I(inode)->location.offset = 0;
972
973                         btrfs_read_locked_inode(inode);
974                         unlock_new_inode(inode);
975                 }
976
977                 /*
978                  * add this inode to the orphan list so btrfs_orphan_del does
979                  * the proper thing when we hit it
980                  */
981                 spin_lock(&root->list_lock);
982                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
983                 spin_unlock(&root->list_lock);
984
985                 /*
986                  * if this is a bad inode, means we actually succeeded in
987                  * removing the inode, but not the orphan record, which means
988                  * we need to manually delete the orphan since iput will just
989                  * do a destroy_inode
990                  */
991                 if (is_bad_inode(inode)) {
992                         btrfs_orphan_del(trans, inode);
993                         iput(inode);
994                         continue;
995                 }
996
997                 /* if we have links, this was a truncate, lets do that */
998                 if (inode->i_nlink) {
999                         nr_truncate++;
1000                         btrfs_truncate(inode);
1001                 } else {
1002                         nr_unlink++;
1003                 }
1004
1005                 /* this will do delete_inode and everything for us */
1006                 iput(inode);
1007         }
1008
1009         if (nr_unlink)
1010                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1011         if (nr_truncate)
1012                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1013
1014         btrfs_free_path(path);
1015         btrfs_end_transaction(trans, root);
1016 }
1017
1018 void btrfs_read_locked_inode(struct inode *inode)
1019 {
1020         struct btrfs_path *path;
1021         struct extent_buffer *leaf;
1022         struct btrfs_inode_item *inode_item;
1023         struct btrfs_timespec *tspec;
1024         struct btrfs_root *root = BTRFS_I(inode)->root;
1025         struct btrfs_key location;
1026         u64 alloc_group_block;
1027         u32 rdev;
1028         int ret;
1029
1030         path = btrfs_alloc_path();
1031         BUG_ON(!path);
1032         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1033
1034         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1035         if (ret)
1036                 goto make_bad;
1037
1038         leaf = path->nodes[0];
1039         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1040                                     struct btrfs_inode_item);
1041
1042         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1043         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1044         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1045         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1046         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1047
1048         tspec = btrfs_inode_atime(inode_item);
1049         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1050         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1051
1052         tspec = btrfs_inode_mtime(inode_item);
1053         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1054         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1055
1056         tspec = btrfs_inode_ctime(inode_item);
1057         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1058         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1059
1060         inode->i_blocks = btrfs_inode_nblocks(leaf, inode_item);
1061         inode->i_generation = btrfs_inode_generation(leaf, inode_item);
1062         inode->i_rdev = 0;
1063         rdev = btrfs_inode_rdev(leaf, inode_item);
1064
1065         BTRFS_I(inode)->index_cnt = (u64)-1;
1066
1067         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1068         BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1069                                                        alloc_group_block);
1070         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1071         if (!BTRFS_I(inode)->block_group) {
1072                 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1073                                                  NULL, 0,
1074                                                  BTRFS_BLOCK_GROUP_METADATA, 0);
1075         }
1076         btrfs_free_path(path);
1077         inode_item = NULL;
1078
1079         switch (inode->i_mode & S_IFMT) {
1080         case S_IFREG:
1081                 inode->i_mapping->a_ops = &btrfs_aops;
1082                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1083                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1084                 inode->i_fop = &btrfs_file_operations;
1085                 inode->i_op = &btrfs_file_inode_operations;
1086                 break;
1087         case S_IFDIR:
1088                 inode->i_fop = &btrfs_dir_file_operations;
1089                 if (root == root->fs_info->tree_root)
1090                         inode->i_op = &btrfs_dir_ro_inode_operations;
1091                 else
1092                         inode->i_op = &btrfs_dir_inode_operations;
1093                 break;
1094         case S_IFLNK:
1095                 inode->i_op = &btrfs_symlink_inode_operations;
1096                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1097                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1098                 break;
1099         default:
1100                 init_special_inode(inode, inode->i_mode, rdev);
1101                 break;
1102         }
1103         return;
1104
1105 make_bad:
1106         btrfs_free_path(path);
1107         make_bad_inode(inode);
1108 }
1109
1110 static void fill_inode_item(struct extent_buffer *leaf,
1111                             struct btrfs_inode_item *item,
1112                             struct inode *inode)
1113 {
1114         btrfs_set_inode_uid(leaf, item, inode->i_uid);
1115         btrfs_set_inode_gid(leaf, item, inode->i_gid);
1116         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1117         btrfs_set_inode_mode(leaf, item, inode->i_mode);
1118         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1119
1120         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1121                                inode->i_atime.tv_sec);
1122         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1123                                 inode->i_atime.tv_nsec);
1124
1125         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1126                                inode->i_mtime.tv_sec);
1127         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1128                                 inode->i_mtime.tv_nsec);
1129
1130         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1131                                inode->i_ctime.tv_sec);
1132         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1133                                 inode->i_ctime.tv_nsec);
1134
1135         btrfs_set_inode_nblocks(leaf, item, inode->i_blocks);
1136         btrfs_set_inode_generation(leaf, item, inode->i_generation);
1137         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1138         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1139         btrfs_set_inode_block_group(leaf, item,
1140                                     BTRFS_I(inode)->block_group->key.objectid);
1141 }
1142
1143 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1144                               struct btrfs_root *root,
1145                               struct inode *inode)
1146 {
1147         struct btrfs_inode_item *inode_item;
1148         struct btrfs_path *path;
1149         struct extent_buffer *leaf;
1150         int ret;
1151
1152         path = btrfs_alloc_path();
1153         BUG_ON(!path);
1154         ret = btrfs_lookup_inode(trans, root, path,
1155                                  &BTRFS_I(inode)->location, 1);
1156         if (ret) {
1157                 if (ret > 0)
1158                         ret = -ENOENT;
1159                 goto failed;
1160         }
1161
1162         leaf = path->nodes[0];
1163         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1164                                   struct btrfs_inode_item);
1165
1166         fill_inode_item(leaf, inode_item, inode);
1167         btrfs_mark_buffer_dirty(leaf);
1168         btrfs_set_inode_last_trans(trans, inode);
1169         ret = 0;
1170 failed:
1171         btrfs_free_path(path);
1172         return ret;
1173 }
1174
1175
1176 static int btrfs_unlink_trans(struct btrfs_trans_handle *trans,
1177                               struct btrfs_root *root,
1178                               struct inode *dir,
1179                               struct dentry *dentry)
1180 {
1181         struct btrfs_path *path;
1182         const char *name = dentry->d_name.name;
1183         int name_len = dentry->d_name.len;
1184         int ret = 0;
1185         struct extent_buffer *leaf;
1186         struct btrfs_dir_item *di;
1187         struct btrfs_key key;
1188         u64 index;
1189
1190         path = btrfs_alloc_path();
1191         if (!path) {
1192                 ret = -ENOMEM;
1193                 goto err;
1194         }
1195
1196         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1197                                     name, name_len, -1);
1198         if (IS_ERR(di)) {
1199                 ret = PTR_ERR(di);
1200                 goto err;
1201         }
1202         if (!di) {
1203                 ret = -ENOENT;
1204                 goto err;
1205         }
1206         leaf = path->nodes[0];
1207         btrfs_dir_item_key_to_cpu(leaf, di, &key);
1208         ret = btrfs_delete_one_dir_name(trans, root, path, di);
1209         if (ret)
1210                 goto err;
1211         btrfs_release_path(root, path);
1212
1213         ret = btrfs_del_inode_ref(trans, root, name, name_len,
1214                                   dentry->d_inode->i_ino,
1215                                   dentry->d_parent->d_inode->i_ino, &index);
1216         if (ret) {
1217                 printk("failed to delete reference to %.*s, "
1218                        "inode %lu parent %lu\n", name_len, name,
1219                        dentry->d_inode->i_ino,
1220                        dentry->d_parent->d_inode->i_ino);
1221                 goto err;
1222         }
1223
1224         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1225                                          index, name, name_len, -1);
1226         if (IS_ERR(di)) {
1227                 ret = PTR_ERR(di);
1228                 goto err;
1229         }
1230         if (!di) {
1231                 ret = -ENOENT;
1232                 goto err;
1233         }
1234         ret = btrfs_delete_one_dir_name(trans, root, path, di);
1235         btrfs_release_path(root, path);
1236
1237         dentry->d_inode->i_ctime = dir->i_ctime;
1238 err:
1239         btrfs_free_path(path);
1240         if (!ret) {
1241                 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1242                 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1243                 btrfs_update_inode(trans, root, dir);
1244 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1245                 dentry->d_inode->i_nlink--;
1246 #else
1247                 drop_nlink(dentry->d_inode);
1248 #endif
1249                 ret = btrfs_update_inode(trans, root, dentry->d_inode);
1250                 dir->i_sb->s_dirt = 1;
1251         }
1252         return ret;
1253 }
1254
1255 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1256 {
1257         struct btrfs_root *root;
1258         struct btrfs_trans_handle *trans;
1259         struct inode *inode = dentry->d_inode;
1260         int ret;
1261         unsigned long nr = 0;
1262
1263         root = BTRFS_I(dir)->root;
1264
1265         ret = btrfs_check_free_space(root, 1, 1);
1266         if (ret)
1267                 goto fail;
1268
1269         trans = btrfs_start_transaction(root, 1);
1270
1271         btrfs_set_trans_block_group(trans, dir);
1272         ret = btrfs_unlink_trans(trans, root, dir, dentry);
1273
1274         if (inode->i_nlink == 0)
1275                 ret = btrfs_orphan_add(trans, inode);
1276
1277         nr = trans->blocks_used;
1278
1279         btrfs_end_transaction_throttle(trans, root);
1280 fail:
1281         btrfs_btree_balance_dirty(root, nr);
1282         return ret;
1283 }
1284
1285 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1286 {
1287         struct inode *inode = dentry->d_inode;
1288         int err = 0;
1289         int ret;
1290         struct btrfs_root *root = BTRFS_I(dir)->root;
1291         struct btrfs_trans_handle *trans;
1292         unsigned long nr = 0;
1293
1294         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1295                 return -ENOTEMPTY;
1296         }
1297
1298         ret = btrfs_check_free_space(root, 1, 1);
1299         if (ret)
1300                 goto fail;
1301
1302         trans = btrfs_start_transaction(root, 1);
1303         btrfs_set_trans_block_group(trans, dir);
1304
1305         err = btrfs_orphan_add(trans, inode);
1306         if (err)
1307                 goto fail_trans;
1308
1309         /* now the directory is empty */
1310         err = btrfs_unlink_trans(trans, root, dir, dentry);
1311         if (!err) {
1312                 btrfs_i_size_write(inode, 0);
1313         }
1314
1315 fail_trans:
1316         nr = trans->blocks_used;
1317         ret = btrfs_end_transaction_throttle(trans, root);
1318 fail:
1319         btrfs_btree_balance_dirty(root, nr);
1320
1321         if (ret && !err)
1322                 err = ret;
1323         return err;
1324 }
1325
1326 /*
1327  * this can truncate away extent items, csum items and directory items.
1328  * It starts at a high offset and removes keys until it can't find
1329  * any higher than i_size.
1330  *
1331  * csum items that cross the new i_size are truncated to the new size
1332  * as well.
1333  *
1334  * min_type is the minimum key type to truncate down to.  If set to 0, this
1335  * will kill all the items on this inode, including the INODE_ITEM_KEY.
1336  */
1337 static int btrfs_truncate_in_trans(struct btrfs_trans_handle *trans,
1338                                    struct btrfs_root *root,
1339                                    struct inode *inode,
1340                                    u32 min_type)
1341 {
1342         int ret;
1343         struct btrfs_path *path;
1344         struct btrfs_key key;
1345         struct btrfs_key found_key;
1346         u32 found_type;
1347         struct extent_buffer *leaf;
1348         struct btrfs_file_extent_item *fi;
1349         u64 extent_start = 0;
1350         u64 extent_num_bytes = 0;
1351         u64 item_end = 0;
1352         u64 root_gen = 0;
1353         u64 root_owner = 0;
1354         int found_extent;
1355         int del_item;
1356         int pending_del_nr = 0;
1357         int pending_del_slot = 0;
1358         int extent_type = -1;
1359         u64 mask = root->sectorsize - 1;
1360
1361         btrfs_drop_extent_cache(inode, inode->i_size & (~mask), (u64)-1);
1362         path = btrfs_alloc_path();
1363         path->reada = -1;
1364         BUG_ON(!path);
1365
1366         /* FIXME, add redo link to tree so we don't leak on crash */
1367         key.objectid = inode->i_ino;
1368         key.offset = (u64)-1;
1369         key.type = (u8)-1;
1370
1371         btrfs_init_path(path);
1372 search_again:
1373         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1374         if (ret < 0) {
1375                 goto error;
1376         }
1377         if (ret > 0) {
1378                 BUG_ON(path->slots[0] == 0);
1379                 path->slots[0]--;
1380         }
1381
1382         while(1) {
1383                 fi = NULL;
1384                 leaf = path->nodes[0];
1385                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1386                 found_type = btrfs_key_type(&found_key);
1387
1388                 if (found_key.objectid != inode->i_ino)
1389                         break;
1390
1391                 if (found_type < min_type)
1392                         break;
1393
1394                 item_end = found_key.offset;
1395                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
1396                         fi = btrfs_item_ptr(leaf, path->slots[0],
1397                                             struct btrfs_file_extent_item);
1398                         extent_type = btrfs_file_extent_type(leaf, fi);
1399                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1400                                 item_end +=
1401                                     btrfs_file_extent_num_bytes(leaf, fi);
1402                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1403                                 struct btrfs_item *item = btrfs_item_nr(leaf,
1404                                                                 path->slots[0]);
1405                                 item_end += btrfs_file_extent_inline_len(leaf,
1406                                                                          item);
1407                         }
1408                         item_end--;
1409                 }
1410                 if (found_type == BTRFS_CSUM_ITEM_KEY) {
1411                         ret = btrfs_csum_truncate(trans, root, path,
1412                                                   inode->i_size);
1413                         BUG_ON(ret);
1414                 }
1415                 if (item_end < inode->i_size) {
1416                         if (found_type == BTRFS_DIR_ITEM_KEY) {
1417                                 found_type = BTRFS_INODE_ITEM_KEY;
1418                         } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
1419                                 found_type = BTRFS_CSUM_ITEM_KEY;
1420                         } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
1421                                 found_type = BTRFS_XATTR_ITEM_KEY;
1422                         } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
1423                                 found_type = BTRFS_INODE_REF_KEY;
1424                         } else if (found_type) {
1425                                 found_type--;
1426                         } else {
1427                                 break;
1428                         }
1429                         btrfs_set_key_type(&key, found_type);
1430                         goto next;
1431                 }
1432                 if (found_key.offset >= inode->i_size)
1433                         del_item = 1;
1434                 else
1435                         del_item = 0;
1436                 found_extent = 0;
1437
1438                 /* FIXME, shrink the extent if the ref count is only 1 */
1439                 if (found_type != BTRFS_EXTENT_DATA_KEY)
1440                         goto delete;
1441
1442                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1443                         u64 num_dec;
1444                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
1445                         if (!del_item) {
1446                                 u64 orig_num_bytes =
1447                                         btrfs_file_extent_num_bytes(leaf, fi);
1448                                 extent_num_bytes = inode->i_size -
1449                                         found_key.offset + root->sectorsize - 1;
1450                                 extent_num_bytes = extent_num_bytes &
1451                                         ~((u64)root->sectorsize - 1);
1452                                 btrfs_set_file_extent_num_bytes(leaf, fi,
1453                                                          extent_num_bytes);
1454                                 num_dec = (orig_num_bytes -
1455                                            extent_num_bytes);
1456                                 if (extent_start != 0)
1457                                         dec_i_blocks(inode, num_dec);
1458                                 btrfs_mark_buffer_dirty(leaf);
1459                         } else {
1460                                 extent_num_bytes =
1461                                         btrfs_file_extent_disk_num_bytes(leaf,
1462                                                                          fi);
1463                                 /* FIXME blocksize != 4096 */
1464                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
1465                                 if (extent_start != 0) {
1466                                         found_extent = 1;
1467                                         dec_i_blocks(inode, num_dec);
1468                                 }
1469                                 root_gen = btrfs_header_generation(leaf);
1470                                 root_owner = btrfs_header_owner(leaf);
1471                         }
1472                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1473                         if (!del_item) {
1474                                 u32 newsize = inode->i_size - found_key.offset;
1475                                 dec_i_blocks(inode, item_end + 1 -
1476                                             found_key.offset - newsize);
1477                                 newsize =
1478                                     btrfs_file_extent_calc_inline_size(newsize);
1479                                 ret = btrfs_truncate_item(trans, root, path,
1480                                                           newsize, 1);
1481                                 BUG_ON(ret);
1482                         } else {
1483                                 dec_i_blocks(inode, item_end + 1 -
1484                                              found_key.offset);
1485                         }
1486                 }
1487 delete:
1488                 if (del_item) {
1489                         if (!pending_del_nr) {
1490                                 /* no pending yet, add ourselves */
1491                                 pending_del_slot = path->slots[0];
1492                                 pending_del_nr = 1;
1493                         } else if (pending_del_nr &&
1494                                    path->slots[0] + 1 == pending_del_slot) {
1495                                 /* hop on the pending chunk */
1496                                 pending_del_nr++;
1497                                 pending_del_slot = path->slots[0];
1498                         } else {
1499                                 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
1500                         }
1501                 } else {
1502                         break;
1503                 }
1504                 if (found_extent) {
1505                         ret = btrfs_free_extent(trans, root, extent_start,
1506                                                 extent_num_bytes,
1507                                                 root_owner,
1508                                                 root_gen, inode->i_ino,
1509                                                 found_key.offset, 0);
1510                         BUG_ON(ret);
1511                 }
1512 next:
1513                 if (path->slots[0] == 0) {
1514                         if (pending_del_nr)
1515                                 goto del_pending;
1516                         btrfs_release_path(root, path);
1517                         goto search_again;
1518                 }
1519
1520                 path->slots[0]--;
1521                 if (pending_del_nr &&
1522                     path->slots[0] + 1 != pending_del_slot) {
1523                         struct btrfs_key debug;
1524 del_pending:
1525                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
1526                                               pending_del_slot);
1527                         ret = btrfs_del_items(trans, root, path,
1528                                               pending_del_slot,
1529                                               pending_del_nr);
1530                         BUG_ON(ret);
1531                         pending_del_nr = 0;
1532                         btrfs_release_path(root, path);
1533                         goto search_again;
1534                 }
1535         }
1536         ret = 0;
1537 error:
1538         if (pending_del_nr) {
1539                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
1540                                       pending_del_nr);
1541         }
1542         btrfs_free_path(path);
1543         inode->i_sb->s_dirt = 1;
1544         return ret;
1545 }
1546
1547 /*
1548  * taken from block_truncate_page, but does cow as it zeros out
1549  * any bytes left in the last page in the file.
1550  */
1551 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
1552 {
1553         struct inode *inode = mapping->host;
1554         struct btrfs_root *root = BTRFS_I(inode)->root;
1555         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1556         struct btrfs_ordered_extent *ordered;
1557         char *kaddr;
1558         u32 blocksize = root->sectorsize;
1559         pgoff_t index = from >> PAGE_CACHE_SHIFT;
1560         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1561         struct page *page;
1562         int ret = 0;
1563         u64 page_start;
1564         u64 page_end;
1565
1566         if ((offset & (blocksize - 1)) == 0)
1567                 goto out;
1568
1569         ret = -ENOMEM;
1570 again:
1571         page = grab_cache_page(mapping, index);
1572         if (!page)
1573                 goto out;
1574
1575         page_start = page_offset(page);
1576         page_end = page_start + PAGE_CACHE_SIZE - 1;
1577
1578         if (!PageUptodate(page)) {
1579                 ret = btrfs_readpage(NULL, page);
1580                 lock_page(page);
1581                 if (page->mapping != mapping) {
1582                         unlock_page(page);
1583                         page_cache_release(page);
1584                         goto again;
1585                 }
1586                 if (!PageUptodate(page)) {
1587                         ret = -EIO;
1588                         goto out_unlock;
1589                 }
1590         }
1591         wait_on_page_writeback(page);
1592
1593         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
1594         set_page_extent_mapped(page);
1595
1596         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1597         if (ordered) {
1598                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1599                 unlock_page(page);
1600                 page_cache_release(page);
1601                 btrfs_start_ordered_extent(inode, ordered, 1);
1602                 btrfs_put_ordered_extent(ordered);
1603                 goto again;
1604         }
1605
1606         btrfs_set_extent_delalloc(inode, page_start, page_end);
1607         ret = 0;
1608         if (offset != PAGE_CACHE_SIZE) {
1609                 kaddr = kmap(page);
1610                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1611                 flush_dcache_page(page);
1612                 kunmap(page);
1613         }
1614         ClearPageChecked(page);
1615         set_page_dirty(page);
1616         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1617
1618 out_unlock:
1619         unlock_page(page);
1620         page_cache_release(page);
1621 out:
1622         return ret;
1623 }
1624
1625 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
1626 {
1627         struct inode *inode = dentry->d_inode;
1628         int err;
1629
1630         err = inode_change_ok(inode, attr);
1631         if (err)
1632                 return err;
1633
1634         if (S_ISREG(inode->i_mode) &&
1635             attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
1636                 struct btrfs_trans_handle *trans;
1637                 struct btrfs_root *root = BTRFS_I(inode)->root;
1638                 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1639
1640                 u64 mask = root->sectorsize - 1;
1641                 u64 hole_start = (inode->i_size + mask) & ~mask;
1642                 u64 block_end = (attr->ia_size + mask) & ~mask;
1643                 u64 hole_size;
1644                 u64 alloc_hint = 0;
1645
1646                 if (attr->ia_size <= hole_start)
1647                         goto out;
1648
1649                 err = btrfs_check_free_space(root, 1, 0);
1650                 if (err)
1651                         goto fail;
1652
1653                 btrfs_truncate_page(inode->i_mapping, inode->i_size);
1654
1655                 hole_size = block_end - hole_start;
1656                 btrfs_wait_ordered_range(inode, hole_start, hole_size);
1657                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1658
1659                 trans = btrfs_start_transaction(root, 1);
1660                 btrfs_set_trans_block_group(trans, inode);
1661                 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1662                 err = btrfs_drop_extents(trans, root, inode,
1663                                          hole_start, block_end, hole_start,
1664                                          &alloc_hint);
1665
1666                 if (alloc_hint != EXTENT_MAP_INLINE) {
1667                         err = btrfs_insert_file_extent(trans, root,
1668                                                        inode->i_ino,
1669                                                        hole_start, 0, 0,
1670                                                        hole_size, 0);
1671                         btrfs_drop_extent_cache(inode, hole_start,
1672                                                 (u64)-1);
1673                         btrfs_check_file(root, inode);
1674                 }
1675                 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1676                 btrfs_end_transaction(trans, root);
1677                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1678                 if (err)
1679                         return err;
1680         }
1681 out:
1682         err = inode_setattr(inode, attr);
1683
1684         if (!err && ((attr->ia_valid & ATTR_MODE)))
1685                 err = btrfs_acl_chmod(inode);
1686 fail:
1687         return err;
1688 }
1689
1690 void btrfs_delete_inode(struct inode *inode)
1691 {
1692         struct btrfs_trans_handle *trans;
1693         struct btrfs_root *root = BTRFS_I(inode)->root;
1694         unsigned long nr;
1695         int ret;
1696
1697         truncate_inode_pages(&inode->i_data, 0);
1698         if (is_bad_inode(inode)) {
1699                 btrfs_orphan_del(NULL, inode);
1700                 goto no_delete;
1701         }
1702         btrfs_wait_ordered_range(inode, 0, (u64)-1);
1703
1704         btrfs_i_size_write(inode, 0);
1705         trans = btrfs_start_transaction(root, 1);
1706
1707         btrfs_set_trans_block_group(trans, inode);
1708         ret = btrfs_truncate_in_trans(trans, root, inode, 0);
1709         if (ret) {
1710                 btrfs_orphan_del(NULL, inode);
1711                 goto no_delete_lock;
1712         }
1713
1714         btrfs_orphan_del(trans, inode);
1715
1716         nr = trans->blocks_used;
1717         clear_inode(inode);
1718
1719         btrfs_end_transaction(trans, root);
1720         btrfs_btree_balance_dirty(root, nr);
1721         return;
1722
1723 no_delete_lock:
1724         nr = trans->blocks_used;
1725         btrfs_end_transaction(trans, root);
1726         btrfs_btree_balance_dirty(root, nr);
1727 no_delete:
1728         clear_inode(inode);
1729 }
1730
1731 /*
1732  * this returns the key found in the dir entry in the location pointer.
1733  * If no dir entries were found, location->objectid is 0.
1734  */
1735 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
1736                                struct btrfs_key *location)
1737 {
1738         const char *name = dentry->d_name.name;
1739         int namelen = dentry->d_name.len;
1740         struct btrfs_dir_item *di;
1741         struct btrfs_path *path;
1742         struct btrfs_root *root = BTRFS_I(dir)->root;
1743         int ret = 0;
1744
1745         if (namelen == 1 && strcmp(name, ".") == 0) {
1746                 location->objectid = dir->i_ino;
1747                 location->type = BTRFS_INODE_ITEM_KEY;
1748                 location->offset = 0;
1749                 return 0;
1750         }
1751         path = btrfs_alloc_path();
1752         BUG_ON(!path);
1753
1754         if (namelen == 2 && strcmp(name, "..") == 0) {
1755                 struct btrfs_key key;
1756                 struct extent_buffer *leaf;
1757                 int slot;
1758
1759                 key.objectid = dir->i_ino;
1760                 key.offset = (u64)-1;
1761                 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1762                 if (ret < 0 || path->slots[0] == 0)
1763                         goto out_err;
1764                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1765                 BUG_ON(ret == 0);
1766                 ret = 0;
1767                 leaf = path->nodes[0];
1768                 slot = path->slots[0] - 1;
1769
1770                 btrfs_item_key_to_cpu(leaf, &key, slot);
1771                 if (key.objectid != dir->i_ino ||
1772                     key.type != BTRFS_INODE_REF_KEY) {
1773                         goto out_err;
1774                 }
1775                 location->objectid = key.offset;
1776                 location->type = BTRFS_INODE_ITEM_KEY;
1777                 location->offset = 0;
1778                 goto out;
1779         }
1780
1781         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
1782                                     namelen, 0);
1783         if (IS_ERR(di))
1784                 ret = PTR_ERR(di);
1785         if (!di || IS_ERR(di)) {
1786                 goto out_err;
1787         }
1788         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
1789 out:
1790         btrfs_free_path(path);
1791         return ret;
1792 out_err:
1793         location->objectid = 0;
1794         goto out;
1795 }
1796
1797 /*
1798  * when we hit a tree root in a directory, the btrfs part of the inode
1799  * needs to be changed to reflect the root directory of the tree root.  This
1800  * is kind of like crossing a mount point.
1801  */
1802 static int fixup_tree_root_location(struct btrfs_root *root,
1803                              struct btrfs_key *location,
1804                              struct btrfs_root **sub_root,
1805                              struct dentry *dentry)
1806 {
1807         struct btrfs_root_item *ri;
1808
1809         if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
1810                 return 0;
1811         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1812                 return 0;
1813
1814         *sub_root = btrfs_read_fs_root(root->fs_info, location,
1815                                         dentry->d_name.name,
1816                                         dentry->d_name.len);
1817         if (IS_ERR(*sub_root))
1818                 return PTR_ERR(*sub_root);
1819
1820         ri = &(*sub_root)->root_item;
1821         location->objectid = btrfs_root_dirid(ri);
1822         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
1823         location->offset = 0;
1824
1825         return 0;
1826 }
1827
1828 static int btrfs_init_locked_inode(struct inode *inode, void *p)
1829 {
1830         struct btrfs_iget_args *args = p;
1831         inode->i_ino = args->ino;
1832         BTRFS_I(inode)->root = args->root;
1833         BTRFS_I(inode)->delalloc_bytes = 0;
1834         inode->i_mapping->writeback_index = 0;
1835         BTRFS_I(inode)->disk_i_size = 0;
1836         BTRFS_I(inode)->index_cnt = (u64)-1;
1837         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
1838         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
1839                              inode->i_mapping, GFP_NOFS);
1840         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
1841                              inode->i_mapping, GFP_NOFS);
1842         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
1843         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
1844         mutex_init(&BTRFS_I(inode)->csum_mutex);
1845         mutex_init(&BTRFS_I(inode)->extent_mutex);
1846         return 0;
1847 }
1848
1849 static int btrfs_find_actor(struct inode *inode, void *opaque)
1850 {
1851         struct btrfs_iget_args *args = opaque;
1852         return (args->ino == inode->i_ino &&
1853                 args->root == BTRFS_I(inode)->root);
1854 }
1855
1856 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
1857                             u64 root_objectid)
1858 {
1859         struct btrfs_iget_args args;
1860         args.ino = objectid;
1861         args.root = btrfs_lookup_fs_root(btrfs_sb(s)->fs_info, root_objectid);
1862
1863         if (!args.root)
1864                 return NULL;
1865
1866         return ilookup5(s, objectid, btrfs_find_actor, (void *)&args);
1867 }
1868
1869 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
1870                                 struct btrfs_root *root)
1871 {
1872         struct inode *inode;
1873         struct btrfs_iget_args args;
1874         args.ino = objectid;
1875         args.root = root;
1876
1877         inode = iget5_locked(s, objectid, btrfs_find_actor,
1878                              btrfs_init_locked_inode,
1879                              (void *)&args);
1880         return inode;
1881 }
1882
1883 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
1884                                    struct nameidata *nd)
1885 {
1886         struct inode * inode;
1887         struct btrfs_inode *bi = BTRFS_I(dir);
1888         struct btrfs_root *root = bi->root;
1889         struct btrfs_root *sub_root = root;
1890         struct btrfs_key location;
1891         int ret, do_orphan = 0;
1892
1893         if (dentry->d_name.len > BTRFS_NAME_LEN)
1894                 return ERR_PTR(-ENAMETOOLONG);
1895
1896         ret = btrfs_inode_by_name(dir, dentry, &location);
1897
1898         if (ret < 0)
1899                 return ERR_PTR(ret);
1900
1901         inode = NULL;
1902         if (location.objectid) {
1903                 ret = fixup_tree_root_location(root, &location, &sub_root,
1904                                                 dentry);
1905                 if (ret < 0)
1906                         return ERR_PTR(ret);
1907                 if (ret > 0)
1908                         return ERR_PTR(-ENOENT);
1909
1910                 inode = btrfs_iget_locked(dir->i_sb, location.objectid,
1911                                           sub_root);
1912                 if (!inode)
1913                         return ERR_PTR(-EACCES);
1914                 if (inode->i_state & I_NEW) {
1915                         /* the inode and parent dir are two different roots */
1916                         if (sub_root != root) {
1917                                 igrab(inode);
1918                                 sub_root->inode = inode;
1919                                 do_orphan = 1;
1920                         }
1921                         BTRFS_I(inode)->root = sub_root;
1922                         memcpy(&BTRFS_I(inode)->location, &location,
1923                                sizeof(location));
1924                         btrfs_read_locked_inode(inode);
1925                         unlock_new_inode(inode);
1926                 }
1927         }
1928
1929         if (unlikely(do_orphan))
1930                 btrfs_orphan_cleanup(sub_root);
1931
1932         return d_splice_alias(inode, dentry);
1933 }
1934
1935 static unsigned char btrfs_filetype_table[] = {
1936         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
1937 };
1938
1939 static int btrfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
1940 {
1941         struct inode *inode = filp->f_dentry->d_inode;
1942         struct btrfs_root *root = BTRFS_I(inode)->root;
1943         struct btrfs_item *item;
1944         struct btrfs_dir_item *di;
1945         struct btrfs_key key;
1946         struct btrfs_key found_key;
1947         struct btrfs_path *path;
1948         int ret;
1949         u32 nritems;
1950         struct extent_buffer *leaf;
1951         int slot;
1952         int advance;
1953         unsigned char d_type;
1954         int over = 0;
1955         u32 di_cur;
1956         u32 di_total;
1957         u32 di_len;
1958         int key_type = BTRFS_DIR_INDEX_KEY;
1959         char tmp_name[32];
1960         char *name_ptr;
1961         int name_len;
1962
1963         /* FIXME, use a real flag for deciding about the key type */
1964         if (root->fs_info->tree_root == root)
1965                 key_type = BTRFS_DIR_ITEM_KEY;
1966
1967         /* special case for "." */
1968         if (filp->f_pos == 0) {
1969                 over = filldir(dirent, ".", 1,
1970                                1, inode->i_ino,
1971                                DT_DIR);
1972                 if (over)
1973                         return 0;
1974                 filp->f_pos = 1;
1975         }
1976
1977         key.objectid = inode->i_ino;
1978         path = btrfs_alloc_path();
1979         path->reada = 2;
1980
1981         /* special case for .., just use the back ref */
1982         if (filp->f_pos == 1) {
1983                 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1984                 key.offset = (u64)-1;
1985                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1986                 if (ret < 0 || path->slots[0] == 0) {
1987                         btrfs_release_path(root, path);
1988                         goto read_dir_items;
1989                 }
1990                 BUG_ON(ret == 0);
1991                 leaf = path->nodes[0];
1992                 slot = path->slots[0] - 1;
1993                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1994                 btrfs_release_path(root, path);
1995                 if (found_key.objectid != key.objectid ||
1996                     found_key.type != BTRFS_INODE_REF_KEY)
1997                         goto read_dir_items;
1998                 over = filldir(dirent, "..", 2,
1999                                2, found_key.offset, DT_DIR);
2000                 if (over)
2001                         goto nopos;
2002                 filp->f_pos = 2;
2003         }
2004
2005 read_dir_items:
2006         btrfs_set_key_type(&key, key_type);
2007         key.offset = filp->f_pos;
2008
2009         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2010         if (ret < 0)
2011                 goto err;
2012         advance = 0;
2013         while(1) {
2014                 leaf = path->nodes[0];
2015                 nritems = btrfs_header_nritems(leaf);
2016                 slot = path->slots[0];
2017                 if (advance || slot >= nritems) {
2018                         if (slot >= nritems -1) {
2019                                 ret = btrfs_next_leaf(root, path);
2020                                 if (ret)
2021                                         break;
2022                                 leaf = path->nodes[0];
2023                                 nritems = btrfs_header_nritems(leaf);
2024                                 slot = path->slots[0];
2025                         } else {
2026                                 slot++;
2027                                 path->slots[0]++;
2028                         }
2029                 }
2030                 advance = 1;
2031                 item = btrfs_item_nr(leaf, slot);
2032                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2033
2034                 if (found_key.objectid != key.objectid)
2035                         break;
2036                 if (btrfs_key_type(&found_key) != key_type)
2037                         break;
2038                 if (found_key.offset < filp->f_pos)
2039                         continue;
2040
2041                 filp->f_pos = found_key.offset;
2042                 advance = 1;
2043                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2044                 di_cur = 0;
2045                 di_total = btrfs_item_size(leaf, item);
2046                 while(di_cur < di_total) {
2047                         struct btrfs_key location;
2048
2049                         name_len = btrfs_dir_name_len(leaf, di);
2050                         if (name_len < 32) {
2051                                 name_ptr = tmp_name;
2052                         } else {
2053                                 name_ptr = kmalloc(name_len, GFP_NOFS);
2054                                 BUG_ON(!name_ptr);
2055                         }
2056                         read_extent_buffer(leaf, name_ptr,
2057                                            (unsigned long)(di + 1), name_len);
2058
2059                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2060                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
2061                         over = filldir(dirent, name_ptr, name_len,
2062                                        found_key.offset,
2063                                        location.objectid,
2064                                        d_type);
2065
2066                         if (name_ptr != tmp_name)
2067                                 kfree(name_ptr);
2068
2069                         if (over)
2070                                 goto nopos;
2071                         di_len = btrfs_dir_name_len(leaf, di) +
2072                                 btrfs_dir_data_len(leaf, di) +sizeof(*di);
2073                         di_cur += di_len;
2074                         di = (struct btrfs_dir_item *)((char *)di + di_len);
2075                 }
2076         }
2077         if (key_type == BTRFS_DIR_INDEX_KEY)
2078                 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2079         else
2080                 filp->f_pos++;
2081 nopos:
2082         ret = 0;
2083 err:
2084         btrfs_free_path(path);
2085         return ret;
2086 }
2087
2088 int btrfs_write_inode(struct inode *inode, int wait)
2089 {
2090         struct btrfs_root *root = BTRFS_I(inode)->root;
2091         struct btrfs_trans_handle *trans;
2092         int ret = 0;
2093
2094         if (root->fs_info->closing > 1)
2095                 return 0;
2096
2097         if (wait) {
2098                 trans = btrfs_join_transaction(root, 1);
2099                 btrfs_set_trans_block_group(trans, inode);
2100                 ret = btrfs_commit_transaction(trans, root);
2101         }
2102         return ret;
2103 }
2104
2105 /*
2106  * This is somewhat expensive, updating the tree every time the
2107  * inode changes.  But, it is most likely to find the inode in cache.
2108  * FIXME, needs more benchmarking...there are no reasons other than performance
2109  * to keep or drop this code.
2110  */
2111 void btrfs_dirty_inode(struct inode *inode)
2112 {
2113         struct btrfs_root *root = BTRFS_I(inode)->root;
2114         struct btrfs_trans_handle *trans;
2115
2116         trans = btrfs_join_transaction(root, 1);
2117         btrfs_set_trans_block_group(trans, inode);
2118         btrfs_update_inode(trans, root, inode);
2119         btrfs_end_transaction(trans, root);
2120 }
2121
2122 static int btrfs_set_inode_index_count(struct inode *inode)
2123 {
2124         struct btrfs_root *root = BTRFS_I(inode)->root;
2125         struct btrfs_key key, found_key;
2126         struct btrfs_path *path;
2127         struct extent_buffer *leaf;
2128         int ret;
2129
2130         key.objectid = inode->i_ino;
2131         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2132         key.offset = (u64)-1;
2133
2134         path = btrfs_alloc_path();
2135         if (!path)
2136                 return -ENOMEM;
2137
2138         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2139         if (ret < 0)
2140                 goto out;
2141         /* FIXME: we should be able to handle this */
2142         if (ret == 0)
2143                 goto out;
2144         ret = 0;
2145
2146         /*
2147          * MAGIC NUMBER EXPLANATION:
2148          * since we search a directory based on f_pos we have to start at 2
2149          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2150          * else has to start at 2
2151          */
2152         if (path->slots[0] == 0) {
2153                 BTRFS_I(inode)->index_cnt = 2;
2154                 goto out;
2155         }
2156
2157         path->slots[0]--;
2158
2159         leaf = path->nodes[0];
2160         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2161
2162         if (found_key.objectid != inode->i_ino ||
2163             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2164                 BTRFS_I(inode)->index_cnt = 2;
2165                 goto out;
2166         }
2167
2168         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2169 out:
2170         btrfs_free_path(path);
2171         return ret;
2172 }
2173
2174 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
2175                                  u64 *index)
2176 {
2177         int ret = 0;
2178
2179         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2180                 ret = btrfs_set_inode_index_count(dir);
2181                 if (ret)
2182                         return ret;
2183         }
2184
2185         *index = BTRFS_I(dir)->index_cnt;
2186         BTRFS_I(dir)->index_cnt++;
2187
2188         return ret;
2189 }
2190
2191 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2192                                      struct btrfs_root *root,
2193                                      struct inode *dir,
2194                                      const char *name, int name_len,
2195                                      u64 ref_objectid,
2196                                      u64 objectid,
2197                                      struct btrfs_block_group_cache *group,
2198                                      int mode, u64 *index)
2199 {
2200         struct inode *inode;
2201         struct btrfs_inode_item *inode_item;
2202         struct btrfs_block_group_cache *new_inode_group;
2203         struct btrfs_key *location;
2204         struct btrfs_path *path;
2205         struct btrfs_inode_ref *ref;
2206         struct btrfs_key key[2];
2207         u32 sizes[2];
2208         unsigned long ptr;
2209         int ret;
2210         int owner;
2211
2212         path = btrfs_alloc_path();
2213         BUG_ON(!path);
2214
2215         inode = new_inode(root->fs_info->sb);
2216         if (!inode)
2217                 return ERR_PTR(-ENOMEM);
2218
2219         if (dir) {
2220                 ret = btrfs_set_inode_index(dir, inode, index);
2221                 if (ret)
2222                         return ERR_PTR(ret);
2223         }
2224         /*
2225          * index_cnt is ignored for everything but a dir,
2226          * btrfs_get_inode_index_count has an explanation for the magic
2227          * number
2228          */
2229         BTRFS_I(inode)->index_cnt = 2;
2230
2231         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2232         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2233                              inode->i_mapping, GFP_NOFS);
2234         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2235                              inode->i_mapping, GFP_NOFS);
2236         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2237         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2238         mutex_init(&BTRFS_I(inode)->csum_mutex);
2239         mutex_init(&BTRFS_I(inode)->extent_mutex);
2240         BTRFS_I(inode)->delalloc_bytes = 0;
2241         inode->i_mapping->writeback_index = 0;
2242         BTRFS_I(inode)->disk_i_size = 0;
2243         BTRFS_I(inode)->root = root;
2244
2245         if (mode & S_IFDIR)
2246                 owner = 0;
2247         else
2248                 owner = 1;
2249         new_inode_group = btrfs_find_block_group(root, group, 0,
2250                                        BTRFS_BLOCK_GROUP_METADATA, owner);
2251         if (!new_inode_group) {
2252                 printk("find_block group failed\n");
2253                 new_inode_group = group;
2254         }
2255         BTRFS_I(inode)->block_group = new_inode_group;
2256         BTRFS_I(inode)->flags = 0;
2257
2258         key[0].objectid = objectid;
2259         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2260         key[0].offset = 0;
2261
2262         key[1].objectid = objectid;
2263         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2264         key[1].offset = ref_objectid;
2265
2266         sizes[0] = sizeof(struct btrfs_inode_item);
2267         sizes[1] = name_len + sizeof(*ref);
2268
2269         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2270         if (ret != 0)
2271                 goto fail;
2272
2273         if (objectid > root->highest_inode)
2274                 root->highest_inode = objectid;
2275
2276         inode->i_uid = current->fsuid;
2277         inode->i_gid = current->fsgid;
2278         inode->i_mode = mode;
2279         inode->i_ino = objectid;
2280         inode->i_blocks = 0;
2281         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2282         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2283                                   struct btrfs_inode_item);
2284         fill_inode_item(path->nodes[0], inode_item, inode);
2285
2286         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2287                              struct btrfs_inode_ref);
2288         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2289         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
2290         ptr = (unsigned long)(ref + 1);
2291         write_extent_buffer(path->nodes[0], name, ptr, name_len);
2292
2293         btrfs_mark_buffer_dirty(path->nodes[0]);
2294         btrfs_free_path(path);
2295
2296         location = &BTRFS_I(inode)->location;
2297         location->objectid = objectid;
2298         location->offset = 0;
2299         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2300
2301         insert_inode_hash(inode);
2302         return inode;
2303 fail:
2304         if (dir)
2305                 BTRFS_I(dir)->index_cnt--;
2306         btrfs_free_path(path);
2307         return ERR_PTR(ret);
2308 }
2309
2310 static inline u8 btrfs_inode_type(struct inode *inode)
2311 {
2312         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2313 }
2314
2315 static int btrfs_add_link(struct btrfs_trans_handle *trans,
2316                             struct dentry *dentry, struct inode *inode,
2317                             int add_backref, u64 index)
2318 {
2319         int ret;
2320         struct btrfs_key key;
2321         struct btrfs_root *root = BTRFS_I(dentry->d_parent->d_inode)->root;
2322         struct inode *parent_inode = dentry->d_parent->d_inode;
2323
2324         key.objectid = inode->i_ino;
2325         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
2326         key.offset = 0;
2327
2328         ret = btrfs_insert_dir_item(trans, root,
2329                                     dentry->d_name.name, dentry->d_name.len,
2330                                     dentry->d_parent->d_inode->i_ino,
2331                                     &key, btrfs_inode_type(inode),
2332                                     index);
2333         if (ret == 0) {
2334                 if (add_backref) {
2335                         ret = btrfs_insert_inode_ref(trans, root,
2336                                              dentry->d_name.name,
2337                                              dentry->d_name.len,
2338                                              inode->i_ino,
2339                                              parent_inode->i_ino,
2340                                              index);
2341                 }
2342                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
2343                                    dentry->d_name.len * 2);
2344                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
2345                 ret = btrfs_update_inode(trans, root,
2346                                          dentry->d_parent->d_inode);
2347         }
2348         return ret;
2349 }
2350
2351 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
2352                             struct dentry *dentry, struct inode *inode,
2353                             int backref, u64 index)
2354 {
2355         int err = btrfs_add_link(trans, dentry, inode, backref, index);
2356         if (!err) {
2357                 d_instantiate(dentry, inode);
2358                 return 0;
2359         }
2360         if (err > 0)
2361                 err = -EEXIST;
2362         return err;
2363 }
2364
2365 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
2366                         int mode, dev_t rdev)
2367 {
2368         struct btrfs_trans_handle *trans;
2369         struct btrfs_root *root = BTRFS_I(dir)->root;
2370         struct inode *inode = NULL;
2371         int err;
2372         int drop_inode = 0;
2373         u64 objectid;
2374         unsigned long nr = 0;
2375         u64 index = 0;
2376
2377         if (!new_valid_dev(rdev))
2378                 return -EINVAL;
2379
2380         err = btrfs_check_free_space(root, 1, 0);
2381         if (err)
2382                 goto fail;
2383
2384         trans = btrfs_start_transaction(root, 1);
2385         btrfs_set_trans_block_group(trans, dir);
2386
2387         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2388         if (err) {
2389                 err = -ENOSPC;
2390                 goto out_unlock;
2391         }
2392
2393         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2394                                 dentry->d_name.len,
2395                                 dentry->d_parent->d_inode->i_ino, objectid,
2396                                 BTRFS_I(dir)->block_group, mode, &index);
2397         err = PTR_ERR(inode);
2398         if (IS_ERR(inode))
2399                 goto out_unlock;
2400
2401         err = btrfs_init_acl(inode, dir);
2402         if (err) {
2403                 drop_inode = 1;
2404                 goto out_unlock;
2405         }
2406
2407         btrfs_set_trans_block_group(trans, inode);
2408         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2409         if (err)
2410                 drop_inode = 1;
2411         else {
2412                 inode->i_op = &btrfs_special_inode_operations;
2413                 init_special_inode(inode, inode->i_mode, rdev);
2414                 btrfs_update_inode(trans, root, inode);
2415         }
2416         dir->i_sb->s_dirt = 1;
2417         btrfs_update_inode_block_group(trans, inode);
2418         btrfs_update_inode_block_group(trans, dir);
2419 out_unlock:
2420         nr = trans->blocks_used;
2421         btrfs_end_transaction_throttle(trans, root);
2422 fail:
2423         if (drop_inode) {
2424                 inode_dec_link_count(inode);
2425                 iput(inode);
2426         }
2427         btrfs_btree_balance_dirty(root, nr);
2428         return err;
2429 }
2430
2431 static int btrfs_create(struct inode *dir, struct dentry *dentry,
2432                         int mode, struct nameidata *nd)
2433 {
2434         struct btrfs_trans_handle *trans;
2435         struct btrfs_root *root = BTRFS_I(dir)->root;
2436         struct inode *inode = NULL;
2437         int err;
2438         int drop_inode = 0;
2439         unsigned long nr = 0;
2440         u64 objectid;
2441         u64 index = 0;
2442
2443         err = btrfs_check_free_space(root, 1, 0);
2444         if (err)
2445                 goto fail;
2446         trans = btrfs_start_transaction(root, 1);
2447         btrfs_set_trans_block_group(trans, dir);
2448
2449         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2450         if (err) {
2451                 err = -ENOSPC;
2452                 goto out_unlock;
2453         }
2454
2455         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2456                                 dentry->d_name.len,
2457                                 dentry->d_parent->d_inode->i_ino,
2458                                 objectid, BTRFS_I(dir)->block_group, mode,
2459                                 &index);
2460         err = PTR_ERR(inode);
2461         if (IS_ERR(inode))
2462                 goto out_unlock;
2463
2464         err = btrfs_init_acl(inode, dir);
2465         if (err) {
2466                 drop_inode = 1;
2467                 goto out_unlock;
2468         }
2469
2470         btrfs_set_trans_block_group(trans, inode);
2471         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2472         if (err)
2473                 drop_inode = 1;
2474         else {
2475                 inode->i_mapping->a_ops = &btrfs_aops;
2476                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2477                 inode->i_fop = &btrfs_file_operations;
2478                 inode->i_op = &btrfs_file_inode_operations;
2479                 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2480                 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2481                                      inode->i_mapping, GFP_NOFS);
2482                 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2483                                      inode->i_mapping, GFP_NOFS);
2484                 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2485                 mutex_init(&BTRFS_I(inode)->csum_mutex);
2486                 mutex_init(&BTRFS_I(inode)->extent_mutex);
2487                 BTRFS_I(inode)->delalloc_bytes = 0;
2488                 BTRFS_I(inode)->disk_i_size = 0;
2489                 inode->i_mapping->writeback_index = 0;
2490                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2491                 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2492         }
2493         dir->i_sb->s_dirt = 1;
2494         btrfs_update_inode_block_group(trans, inode);
2495         btrfs_update_inode_block_group(trans, dir);
2496 out_unlock:
2497         nr = trans->blocks_used;
2498         btrfs_end_transaction_throttle(trans, root);
2499 fail:
2500         if (drop_inode) {
2501                 inode_dec_link_count(inode);
2502                 iput(inode);
2503         }
2504         btrfs_btree_balance_dirty(root, nr);
2505         return err;
2506 }
2507
2508 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
2509                       struct dentry *dentry)
2510 {
2511         struct btrfs_trans_handle *trans;
2512         struct btrfs_root *root = BTRFS_I(dir)->root;
2513         struct inode *inode = old_dentry->d_inode;
2514         u64 index;
2515         unsigned long nr = 0;
2516         int err;
2517         int drop_inode = 0;
2518
2519         if (inode->i_nlink == 0)
2520                 return -ENOENT;
2521
2522 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
2523         inode->i_nlink++;
2524 #else
2525         inc_nlink(inode);
2526 #endif
2527         err = btrfs_check_free_space(root, 1, 0);
2528         if (err)
2529                 goto fail;
2530         err = btrfs_set_inode_index(dir, inode, &index);
2531         if (err)
2532                 goto fail;
2533
2534         trans = btrfs_start_transaction(root, 1);
2535
2536         btrfs_set_trans_block_group(trans, dir);
2537         atomic_inc(&inode->i_count);
2538
2539         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
2540
2541         if (err)
2542                 drop_inode = 1;
2543
2544         dir->i_sb->s_dirt = 1;
2545         btrfs_update_inode_block_group(trans, dir);
2546         err = btrfs_update_inode(trans, root, inode);
2547
2548         if (err)
2549                 drop_inode = 1;
2550
2551         nr = trans->blocks_used;
2552         btrfs_end_transaction_throttle(trans, root);
2553 fail:
2554         if (drop_inode) {
2555                 inode_dec_link_count(inode);
2556                 iput(inode);
2557         }
2558         btrfs_btree_balance_dirty(root, nr);
2559         return err;
2560 }
2561
2562 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2563 {
2564         struct inode *inode = NULL;
2565         struct btrfs_trans_handle *trans;
2566         struct btrfs_root *root = BTRFS_I(dir)->root;
2567         int err = 0;
2568         int drop_on_err = 0;
2569         u64 objectid = 0;
2570         u64 index = 0;
2571         unsigned long nr = 1;
2572
2573         err = btrfs_check_free_space(root, 1, 0);
2574         if (err)
2575                 goto out_unlock;
2576
2577         trans = btrfs_start_transaction(root, 1);
2578         btrfs_set_trans_block_group(trans, dir);
2579
2580         if (IS_ERR(trans)) {
2581                 err = PTR_ERR(trans);
2582                 goto out_unlock;
2583         }
2584
2585         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2586         if (err) {
2587                 err = -ENOSPC;
2588                 goto out_unlock;
2589         }
2590
2591         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2592                                 dentry->d_name.len,
2593                                 dentry->d_parent->d_inode->i_ino, objectid,
2594                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
2595                                 &index);
2596         if (IS_ERR(inode)) {
2597                 err = PTR_ERR(inode);
2598                 goto out_fail;
2599         }
2600
2601         drop_on_err = 1;
2602
2603         err = btrfs_init_acl(inode, dir);
2604         if (err)
2605                 goto out_fail;
2606
2607         inode->i_op = &btrfs_dir_inode_operations;
2608         inode->i_fop = &btrfs_dir_file_operations;
2609         btrfs_set_trans_block_group(trans, inode);
2610
2611         btrfs_i_size_write(inode, 0);
2612         err = btrfs_update_inode(trans, root, inode);
2613         if (err)
2614                 goto out_fail;
2615
2616         err = btrfs_add_link(trans, dentry, inode, 0, index);
2617         if (err)
2618                 goto out_fail;
2619
2620         d_instantiate(dentry, inode);
2621         drop_on_err = 0;
2622         dir->i_sb->s_dirt = 1;
2623         btrfs_update_inode_block_group(trans, inode);
2624         btrfs_update_inode_block_group(trans, dir);
2625
2626 out_fail:
2627         nr = trans->blocks_used;
2628         btrfs_end_transaction_throttle(trans, root);
2629
2630 out_unlock:
2631         if (drop_on_err)
2632                 iput(inode);
2633         btrfs_btree_balance_dirty(root, nr);
2634         return err;
2635 }
2636
2637 static int merge_extent_mapping(struct extent_map_tree *em_tree,
2638                                 struct extent_map *existing,
2639                                 struct extent_map *em,
2640                                 u64 map_start, u64 map_len)
2641 {
2642         u64 start_diff;
2643
2644         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
2645         start_diff = map_start - em->start;
2646         em->start = map_start;
2647         em->len = map_len;
2648         if (em->block_start < EXTENT_MAP_LAST_BYTE)
2649                 em->block_start += start_diff;
2650         return add_extent_mapping(em_tree, em);
2651 }
2652
2653 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2654                                     size_t pg_offset, u64 start, u64 len,
2655                                     int create)
2656 {
2657         int ret;
2658         int err = 0;
2659         u64 bytenr;
2660         u64 extent_start = 0;
2661         u64 extent_end = 0;
2662         u64 objectid = inode->i_ino;
2663         u32 found_type;
2664         struct btrfs_path *path = NULL;
2665         struct btrfs_root *root = BTRFS_I(inode)->root;
2666         struct btrfs_file_extent_item *item;
2667         struct extent_buffer *leaf;
2668         struct btrfs_key found_key;
2669         struct extent_map *em = NULL;
2670         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2671         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2672         struct btrfs_trans_handle *trans = NULL;
2673
2674 again:
2675         spin_lock(&em_tree->lock);
2676         em = lookup_extent_mapping(em_tree, start, len);
2677         if (em)
2678                 em->bdev = root->fs_info->fs_devices->latest_bdev;
2679         spin_unlock(&em_tree->lock);
2680
2681         if (em) {
2682                 if (em->start > start || em->start + em->len <= start)
2683                         free_extent_map(em);
2684                 else if (em->block_start == EXTENT_MAP_INLINE && page)
2685                         free_extent_map(em);
2686                 else
2687                         goto out;
2688         }
2689         em = alloc_extent_map(GFP_NOFS);
2690         if (!em) {
2691                 err = -ENOMEM;
2692                 goto out;
2693         }
2694         em->bdev = root->fs_info->fs_devices->latest_bdev;
2695         em->start = EXTENT_MAP_HOLE;
2696         em->len = (u64)-1;
2697
2698         if (!path) {
2699                 path = btrfs_alloc_path();
2700                 BUG_ON(!path);
2701         }
2702
2703         ret = btrfs_lookup_file_extent(trans, root, path,
2704                                        objectid, start, trans != NULL);
2705         if (ret < 0) {
2706                 err = ret;
2707                 goto out;
2708         }
2709
2710         if (ret != 0) {
2711                 if (path->slots[0] == 0)
2712                         goto not_found;
2713                 path->slots[0]--;
2714         }
2715
2716         leaf = path->nodes[0];
2717         item = btrfs_item_ptr(leaf, path->slots[0],
2718                               struct btrfs_file_extent_item);
2719         /* are we inside the extent that was found? */
2720         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2721         found_type = btrfs_key_type(&found_key);
2722         if (found_key.objectid != objectid ||
2723             found_type != BTRFS_EXTENT_DATA_KEY) {
2724                 goto not_found;
2725         }
2726
2727         found_type = btrfs_file_extent_type(leaf, item);
2728         extent_start = found_key.offset;
2729         if (found_type == BTRFS_FILE_EXTENT_REG) {
2730                 extent_end = extent_start +
2731                        btrfs_file_extent_num_bytes(leaf, item);
2732                 err = 0;
2733                 if (start < extent_start || start >= extent_end) {
2734                         em->start = start;
2735                         if (start < extent_start) {
2736                                 if (start + len <= extent_start)
2737                                         goto not_found;
2738                                 em->len = extent_end - extent_start;
2739                         } else {
2740                                 em->len = len;
2741                         }
2742                         goto not_found_em;
2743                 }
2744                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
2745                 if (bytenr == 0) {
2746                         em->start = extent_start;
2747                         em->len = extent_end - extent_start;
2748                         em->block_start = EXTENT_MAP_HOLE;
2749                         goto insert;
2750                 }
2751                 bytenr += btrfs_file_extent_offset(leaf, item);
2752                 em->block_start = bytenr;
2753                 em->start = extent_start;
2754                 em->len = extent_end - extent_start;
2755                 goto insert;
2756         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
2757                 u64 page_start;
2758                 unsigned long ptr;
2759                 char *map;
2760                 size_t size;
2761                 size_t extent_offset;
2762                 size_t copy_size;
2763
2764                 size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf,
2765                                                     path->slots[0]));
2766                 extent_end = (extent_start + size + root->sectorsize - 1) &
2767                         ~((u64)root->sectorsize - 1);
2768                 if (start < extent_start || start >= extent_end) {
2769                         em->start = start;
2770                         if (start < extent_start) {
2771                                 if (start + len <= extent_start)
2772                                         goto not_found;
2773                                 em->len = extent_end - extent_start;
2774                         } else {
2775                                 em->len = len;
2776                         }
2777                         goto not_found_em;
2778                 }
2779                 em->block_start = EXTENT_MAP_INLINE;
2780
2781                 if (!page) {
2782                         em->start = extent_start;
2783                         em->len = size;
2784                         goto out;
2785                 }
2786
2787                 page_start = page_offset(page) + pg_offset;
2788                 extent_offset = page_start - extent_start;
2789                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
2790                                 size - extent_offset);
2791                 em->start = extent_start + extent_offset;
2792                 em->len = (copy_size + root->sectorsize - 1) &
2793                         ~((u64)root->sectorsize - 1);
2794                 map = kmap(page);
2795                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
2796                 if (create == 0 && !PageUptodate(page)) {
2797                         read_extent_buffer(leaf, map + pg_offset, ptr,
2798                                            copy_size);
2799                         flush_dcache_page(page);
2800                 } else if (create && PageUptodate(page)) {
2801                         if (!trans) {
2802                                 kunmap(page);
2803                                 free_extent_map(em);
2804                                 em = NULL;
2805                                 btrfs_release_path(root, path);
2806                                 trans = btrfs_join_transaction(root, 1);
2807                                 goto again;
2808                         }
2809                         write_extent_buffer(leaf, map + pg_offset, ptr,
2810                                             copy_size);
2811                         btrfs_mark_buffer_dirty(leaf);
2812                 }
2813                 kunmap(page);
2814                 set_extent_uptodate(io_tree, em->start,
2815                                     extent_map_end(em) - 1, GFP_NOFS);
2816                 goto insert;
2817         } else {
2818                 printk("unkknown found_type %d\n", found_type);
2819                 WARN_ON(1);
2820         }
2821 not_found:
2822         em->start = start;
2823         em->len = len;
2824 not_found_em:
2825         em->block_start = EXTENT_MAP_HOLE;
2826 insert:
2827         btrfs_release_path(root, path);
2828         if (em->start > start || extent_map_end(em) <= start) {
2829                 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
2830                 err = -EIO;
2831                 goto out;
2832         }
2833
2834         err = 0;
2835         spin_lock(&em_tree->lock);
2836         ret = add_extent_mapping(em_tree, em);
2837         /* it is possible that someone inserted the extent into the tree
2838          * while we had the lock dropped.  It is also possible that
2839          * an overlapping map exists in the tree
2840          */
2841         if (ret == -EEXIST) {
2842                 struct extent_map *existing;
2843
2844                 ret = 0;
2845
2846                 existing = lookup_extent_mapping(em_tree, start, len);
2847                 if (existing && (existing->start > start ||
2848                     existing->start + existing->len <= start)) {
2849                         free_extent_map(existing);
2850                         existing = NULL;
2851                 }
2852                 if (!existing) {
2853                         existing = lookup_extent_mapping(em_tree, em->start,
2854                                                          em->len);
2855                         if (existing) {
2856                                 err = merge_extent_mapping(em_tree, existing,
2857                                                            em, start,
2858                                                            root->sectorsize);
2859                                 free_extent_map(existing);
2860                                 if (err) {
2861                                         free_extent_map(em);
2862                                         em = NULL;
2863                                 }
2864                         } else {
2865                                 err = -EIO;
2866                                 printk("failing to insert %Lu %Lu\n",
2867                                        start, len);
2868                                 free_extent_map(em);
2869                                 em = NULL;
2870                         }
2871                 } else {
2872                         free_extent_map(em);
2873                         em = existing;
2874                         err = 0;
2875                 }
2876         }
2877         spin_unlock(&em_tree->lock);
2878 out:
2879         if (path)
2880                 btrfs_free_path(path);
2881         if (trans) {
2882                 ret = btrfs_end_transaction(trans, root);
2883                 if (!err) {
2884                         err = ret;
2885                 }
2886         }
2887         if (err) {
2888                 free_extent_map(em);
2889                 WARN_ON(1);
2890                 return ERR_PTR(err);
2891         }
2892         return em;
2893 }
2894
2895 #if 0 /* waiting for O_DIRECT reads */
2896 static int btrfs_get_block(struct inode *inode, sector_t iblock,
2897                         struct buffer_head *bh_result, int create)
2898 {
2899         struct extent_map *em;
2900         u64 start = (u64)iblock << inode->i_blkbits;
2901         struct btrfs_multi_bio *multi = NULL;
2902         struct btrfs_root *root = BTRFS_I(inode)->root;
2903         u64 len;
2904         u64 logical;
2905         u64 map_length;
2906         int ret = 0;
2907
2908         em = btrfs_get_extent(inode, NULL, 0, start, bh_result->b_size, 0);
2909
2910         if (!em || IS_ERR(em))
2911                 goto out;
2912
2913         if (em->start > start || em->start + em->len <= start) {
2914             goto out;
2915         }
2916
2917         if (em->block_start == EXTENT_MAP_INLINE) {
2918                 ret = -EINVAL;
2919                 goto out;
2920         }
2921
2922         len = em->start + em->len - start;
2923         len = min_t(u64, len, INT_LIMIT(typeof(bh_result->b_size)));
2924
2925         if (em->block_start == EXTENT_MAP_HOLE ||
2926             em->block_start == EXTENT_MAP_DELALLOC) {
2927                 bh_result->b_size = len;
2928                 goto out;
2929         }
2930
2931         logical = start - em->start;
2932         logical = em->block_start + logical;
2933
2934         map_length = len;
2935         ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
2936                               logical, &map_length, &multi, 0);
2937         BUG_ON(ret);
2938         bh_result->b_blocknr = multi->stripes[0].physical >> inode->i_blkbits;
2939         bh_result->b_size = min(map_length, len);
2940
2941         bh_result->b_bdev = multi->stripes[0].dev->bdev;
2942         set_buffer_mapped(bh_result);
2943         kfree(multi);
2944 out:
2945         free_extent_map(em);
2946         return ret;
2947 }
2948 #endif
2949
2950 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
2951                         const struct iovec *iov, loff_t offset,
2952                         unsigned long nr_segs)
2953 {
2954         return -EINVAL;
2955 #if 0
2956         struct file *file = iocb->ki_filp;
2957         struct inode *inode = file->f_mapping->host;
2958
2959         if (rw == WRITE)
2960                 return -EINVAL;
2961
2962         return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2963                                   offset, nr_segs, btrfs_get_block, NULL);
2964 #endif
2965 }
2966
2967 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
2968 {
2969         return extent_bmap(mapping, iblock, btrfs_get_extent);
2970 }
2971
2972 int btrfs_readpage(struct file *file, struct page *page)
2973 {
2974         struct extent_io_tree *tree;
2975         tree = &BTRFS_I(page->mapping->host)->io_tree;
2976         return extent_read_full_page(tree, page, btrfs_get_extent);
2977 }
2978
2979 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
2980 {
2981         struct extent_io_tree *tree;
2982
2983
2984         if (current->flags & PF_MEMALLOC) {
2985                 redirty_page_for_writepage(wbc, page);
2986                 unlock_page(page);
2987                 return 0;
2988         }
2989         tree = &BTRFS_I(page->mapping->host)->io_tree;
2990         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
2991 }
2992
2993 int btrfs_writepages(struct address_space *mapping,
2994                      struct writeback_control *wbc)
2995 {
2996         struct extent_io_tree *tree;
2997         tree = &BTRFS_I(mapping->host)->io_tree;
2998         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
2999 }
3000
3001 static int
3002 btrfs_readpages(struct file *file, struct address_space *mapping,
3003                 struct list_head *pages, unsigned nr_pages)
3004 {
3005         struct extent_io_tree *tree;
3006         tree = &BTRFS_I(mapping->host)->io_tree;
3007         return extent_readpages(tree, mapping, pages, nr_pages,
3008                                 btrfs_get_extent);
3009 }
3010 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3011 {
3012         struct extent_io_tree *tree;
3013         struct extent_map_tree *map;
3014         int ret;
3015
3016         tree = &BTRFS_I(page->mapping->host)->io_tree;
3017         map = &BTRFS_I(page->mapping->host)->extent_tree;
3018         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
3019         if (ret == 1) {
3020                 ClearPagePrivate(page);
3021                 set_page_private(page, 0);
3022                 page_cache_release(page);
3023         }
3024         return ret;
3025 }
3026
3027 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3028 {
3029         return __btrfs_releasepage(page, gfp_flags);
3030 }
3031
3032 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
3033 {
3034         struct extent_io_tree *tree;
3035         struct btrfs_ordered_extent *ordered;
3036         u64 page_start = page_offset(page);
3037         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3038
3039         wait_on_page_writeback(page);
3040         tree = &BTRFS_I(page->mapping->host)->io_tree;
3041         if (offset) {
3042                 btrfs_releasepage(page, GFP_NOFS);
3043                 return;
3044         }
3045
3046         lock_extent(tree, page_start, page_end, GFP_NOFS);
3047         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3048                                            page_offset(page));
3049         if (ordered) {
3050                 /*
3051                  * IO on this page will never be started, so we need
3052                  * to account for any ordered extents now
3053                  */
3054                 clear_extent_bit(tree, page_start, page_end,
3055                                  EXTENT_DIRTY | EXTENT_DELALLOC |
3056                                  EXTENT_LOCKED, 1, 0, GFP_NOFS);
3057                 btrfs_finish_ordered_io(page->mapping->host,
3058                                         page_start, page_end);
3059                 btrfs_put_ordered_extent(ordered);
3060                 lock_extent(tree, page_start, page_end, GFP_NOFS);
3061         }
3062         clear_extent_bit(tree, page_start, page_end,
3063                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3064                  EXTENT_ORDERED,
3065                  1, 1, GFP_NOFS);
3066         __btrfs_releasepage(page, GFP_NOFS);
3067
3068         ClearPageChecked(page);
3069         if (PagePrivate(page)) {
3070                 ClearPagePrivate(page);
3071                 set_page_private(page, 0);
3072                 page_cache_release(page);
3073         }
3074 }
3075
3076 /*
3077  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3078  * called from a page fault handler when a page is first dirtied. Hence we must
3079  * be careful to check for EOF conditions here. We set the page up correctly
3080  * for a written page which means we get ENOSPC checking when writing into
3081  * holes and correct delalloc and unwritten extent mapping on filesystems that
3082  * support these features.
3083  *
3084  * We are not allowed to take the i_mutex here so we have to play games to
3085  * protect against truncate races as the page could now be beyond EOF.  Because
3086  * vmtruncate() writes the inode size before removing pages, once we have the
3087  * page lock we can determine safely if the page is beyond EOF. If it is not
3088  * beyond EOF, then the page is guaranteed safe against truncation until we
3089  * unlock the page.
3090  */
3091 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3092 {
3093         struct inode *inode = fdentry(vma->vm_file)->d_inode;
3094         struct btrfs_root *root = BTRFS_I(inode)->root;
3095         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3096         struct btrfs_ordered_extent *ordered;
3097         char *kaddr;
3098         unsigned long zero_start;
3099         loff_t size;
3100         int ret;
3101         u64 page_start;
3102         u64 page_end;
3103
3104         ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3105         if (ret)
3106                 goto out;
3107
3108         ret = -EINVAL;
3109 again:
3110         lock_page(page);
3111         size = i_size_read(inode);
3112         page_start = page_offset(page);
3113         page_end = page_start + PAGE_CACHE_SIZE - 1;
3114
3115         if ((page->mapping != inode->i_mapping) ||
3116             (page_start >= size)) {
3117                 /* page got truncated out from underneath us */
3118                 goto out_unlock;
3119         }
3120         wait_on_page_writeback(page);
3121
3122         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3123         set_page_extent_mapped(page);
3124
3125         /*
3126          * we can't set the delalloc bits if there are pending ordered
3127          * extents.  Drop our locks and wait for them to finish
3128          */
3129         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3130         if (ordered) {
3131                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3132                 unlock_page(page);
3133                 btrfs_start_ordered_extent(inode, ordered, 1);
3134                 btrfs_put_ordered_extent(ordered);
3135                 goto again;
3136         }
3137
3138         btrfs_set_extent_delalloc(inode, page_start, page_end);
3139         ret = 0;
3140
3141         /* page is wholly or partially inside EOF */
3142         if (page_start + PAGE_CACHE_SIZE > size)
3143                 zero_start = size & ~PAGE_CACHE_MASK;
3144         else
3145                 zero_start = PAGE_CACHE_SIZE;
3146
3147         if (zero_start != PAGE_CACHE_SIZE) {
3148                 kaddr = kmap(page);
3149                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3150                 flush_dcache_page(page);
3151                 kunmap(page);
3152         }
3153         ClearPageChecked(page);
3154         set_page_dirty(page);
3155         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3156
3157 out_unlock:
3158         unlock_page(page);
3159 out:
3160         return ret;
3161 }
3162
3163 static void btrfs_truncate(struct inode *inode)
3164 {
3165         struct btrfs_root *root = BTRFS_I(inode)->root;
3166         int ret;
3167         struct btrfs_trans_handle *trans;
3168         unsigned long nr;
3169         u64 mask = root->sectorsize - 1;
3170
3171         if (!S_ISREG(inode->i_mode))
3172                 return;
3173         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3174                 return;
3175
3176         btrfs_truncate_page(inode->i_mapping, inode->i_size);
3177         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3178
3179         trans = btrfs_start_transaction(root, 1);
3180         btrfs_set_trans_block_group(trans, inode);
3181         btrfs_i_size_write(inode, inode->i_size);
3182
3183         ret = btrfs_orphan_add(trans, inode);
3184         if (ret)
3185                 goto out;
3186         /* FIXME, add redo link to tree so we don't leak on crash */
3187         ret = btrfs_truncate_in_trans(trans, root, inode,
3188                                       BTRFS_EXTENT_DATA_KEY);
3189         btrfs_update_inode(trans, root, inode);
3190
3191         ret = btrfs_orphan_del(trans, inode);
3192         BUG_ON(ret);
3193
3194 out:
3195         nr = trans->blocks_used;
3196         ret = btrfs_end_transaction_throttle(trans, root);
3197         BUG_ON(ret);
3198         btrfs_btree_balance_dirty(root, nr);
3199 }
3200
3201 /*
3202  * Invalidate a single dcache entry at the root of the filesystem.
3203  * Needed after creation of snapshot or subvolume.
3204  */
3205 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3206                                   int namelen)
3207 {
3208         struct dentry *alias, *entry;
3209         struct qstr qstr;
3210
3211         alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3212         if (alias) {
3213                 qstr.name = name;
3214                 qstr.len = namelen;
3215                 /* change me if btrfs ever gets a d_hash operation */
3216                 qstr.hash = full_name_hash(qstr.name, qstr.len);
3217                 entry = d_lookup(alias, &qstr);
3218                 dput(alias);
3219                 if (entry) {
3220                         d_invalidate(entry);
3221                         dput(entry);
3222                 }
3223         }
3224 }
3225
3226 int btrfs_create_subvol_root(struct btrfs_root *new_root,
3227                 struct btrfs_trans_handle *trans, u64 new_dirid,
3228                 struct btrfs_block_group_cache *block_group)
3229 {
3230         struct inode *inode;
3231         u64 index = 0;
3232
3233         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3234                                 new_dirid, block_group, S_IFDIR | 0700, &index);
3235         if (IS_ERR(inode))
3236                 return PTR_ERR(inode);
3237         inode->i_op = &btrfs_dir_inode_operations;
3238         inode->i_fop = &btrfs_dir_file_operations;
3239         new_root->inode = inode;
3240
3241         inode->i_nlink = 1;
3242         btrfs_i_size_write(inode, 0);
3243
3244         return btrfs_update_inode(trans, new_root, inode);
3245 }
3246
3247 unsigned long btrfs_force_ra(struct address_space *mapping,
3248                               struct file_ra_state *ra, struct file *file,
3249                               pgoff_t offset, pgoff_t last_index)
3250 {
3251         pgoff_t req_size = last_index - offset + 1;
3252
3253 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3254         offset = page_cache_readahead(mapping, ra, file, offset, req_size);
3255         return offset;
3256 #else
3257         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3258         return offset + req_size;
3259 #endif
3260 }
3261
3262 struct inode *btrfs_alloc_inode(struct super_block *sb)
3263 {
3264         struct btrfs_inode *ei;
3265
3266         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3267         if (!ei)
3268                 return NULL;
3269         ei->last_trans = 0;
3270         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3271         ei->i_acl = BTRFS_ACL_NOT_CACHED;
3272         ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3273         INIT_LIST_HEAD(&ei->i_orphan);
3274         return &ei->vfs_inode;
3275 }
3276
3277 void btrfs_destroy_inode(struct inode *inode)
3278 {
3279         struct btrfs_ordered_extent *ordered;
3280         WARN_ON(!list_empty(&inode->i_dentry));
3281         WARN_ON(inode->i_data.nrpages);
3282
3283         if (BTRFS_I(inode)->i_acl &&
3284             BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3285                 posix_acl_release(BTRFS_I(inode)->i_acl);
3286         if (BTRFS_I(inode)->i_default_acl &&
3287             BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3288                 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3289
3290         spin_lock(&BTRFS_I(inode)->root->list_lock);
3291         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3292                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3293                        " list\n", inode->i_ino);
3294                 dump_stack();
3295         }
3296         spin_unlock(&BTRFS_I(inode)->root->list_lock);
3297
3298         while(1) {
3299                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3300                 if (!ordered)
3301                         break;
3302                 else {
3303                         printk("found ordered extent %Lu %Lu\n",
3304                                ordered->file_offset, ordered->len);
3305                         btrfs_remove_ordered_extent(inode, ordered);
3306                         btrfs_put_ordered_extent(ordered);
3307                         btrfs_put_ordered_extent(ordered);
3308                 }
3309         }
3310         btrfs_drop_extent_cache(inode, 0, (u64)-1);
3311         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
3312 }
3313
3314 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3315 static void init_once(void *foo)
3316 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3317 static void init_once(struct kmem_cache * cachep, void *foo)
3318 #else
3319 static void init_once(void * foo, struct kmem_cache * cachep,
3320                       unsigned long flags)
3321 #endif
3322 {
3323         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
3324
3325         inode_init_once(&ei->vfs_inode);
3326 }
3327
3328 void btrfs_destroy_cachep(void)
3329 {
3330         if (btrfs_inode_cachep)
3331                 kmem_cache_destroy(btrfs_inode_cachep);
3332         if (btrfs_trans_handle_cachep)
3333                 kmem_cache_destroy(btrfs_trans_handle_cachep);
3334         if (btrfs_transaction_cachep)
3335                 kmem_cache_destroy(btrfs_transaction_cachep);
3336         if (btrfs_bit_radix_cachep)
3337                 kmem_cache_destroy(btrfs_bit_radix_cachep);
3338         if (btrfs_path_cachep)
3339                 kmem_cache_destroy(btrfs_path_cachep);
3340 }
3341
3342 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
3343                                        unsigned long extra_flags,
3344 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3345                                        void (*ctor)(void *)
3346 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3347                                        void (*ctor)(struct kmem_cache *, void *)
3348 #else
3349                                        void (*ctor)(void *, struct kmem_cache *,
3350                                                     unsigned long)
3351 #endif
3352                                      )
3353 {
3354         return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
3355                                  SLAB_MEM_SPREAD | extra_flags), ctor
3356 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3357                                  ,NULL
3358 #endif
3359                                 );
3360 }
3361
3362 int btrfs_init_cachep(void)
3363 {
3364         btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
3365                                           sizeof(struct btrfs_inode),
3366                                           0, init_once);
3367         if (!btrfs_inode_cachep)
3368                 goto fail;
3369         btrfs_trans_handle_cachep =
3370                         btrfs_cache_create("btrfs_trans_handle_cache",
3371                                            sizeof(struct btrfs_trans_handle),
3372                                            0, NULL);
3373         if (!btrfs_trans_handle_cachep)
3374                 goto fail;
3375         btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
3376                                              sizeof(struct btrfs_transaction),
3377                                              0, NULL);
3378         if (!btrfs_transaction_cachep)
3379                 goto fail;
3380         btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
3381                                          sizeof(struct btrfs_path),
3382                                          0, NULL);
3383         if (!btrfs_path_cachep)
3384                 goto fail;
3385         btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
3386                                               SLAB_DESTROY_BY_RCU, NULL);
3387         if (!btrfs_bit_radix_cachep)
3388                 goto fail;
3389         return 0;
3390 fail:
3391         btrfs_destroy_cachep();
3392         return -ENOMEM;
3393 }
3394
3395 static int btrfs_getattr(struct vfsmount *mnt,
3396                          struct dentry *dentry, struct kstat *stat)
3397 {
3398         struct inode *inode = dentry->d_inode;
3399         generic_fillattr(inode, stat);
3400         stat->blksize = PAGE_CACHE_SIZE;
3401         stat->blocks = inode->i_blocks + (BTRFS_I(inode)->delalloc_bytes >> 9);
3402         return 0;
3403 }
3404
3405 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
3406                            struct inode * new_dir,struct dentry *new_dentry)
3407 {
3408         struct btrfs_trans_handle *trans;
3409         struct btrfs_root *root = BTRFS_I(old_dir)->root;
3410         struct inode *new_inode = new_dentry->d_inode;
3411         struct inode *old_inode = old_dentry->d_inode;
3412         struct timespec ctime = CURRENT_TIME;
3413         u64 index = 0;
3414         int ret;
3415
3416         if (S_ISDIR(old_inode->i_mode) && new_inode &&
3417             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
3418                 return -ENOTEMPTY;
3419         }
3420
3421         ret = btrfs_check_free_space(root, 1, 0);
3422         if (ret)
3423                 goto out_unlock;
3424
3425         trans = btrfs_start_transaction(root, 1);
3426
3427         btrfs_set_trans_block_group(trans, new_dir);
3428
3429         old_dentry->d_inode->i_nlink++;
3430         old_dir->i_ctime = old_dir->i_mtime = ctime;
3431         new_dir->i_ctime = new_dir->i_mtime = ctime;
3432         old_inode->i_ctime = ctime;
3433
3434         ret = btrfs_unlink_trans(trans, root, old_dir, old_dentry);
3435         if (ret)
3436                 goto out_fail;
3437
3438         if (new_inode) {
3439                 new_inode->i_ctime = CURRENT_TIME;
3440                 ret = btrfs_unlink_trans(trans, root, new_dir, new_dentry);
3441                 if (ret)
3442                         goto out_fail;
3443                 if (new_inode->i_nlink == 0) {
3444                         ret = btrfs_orphan_add(trans, new_inode);
3445                         if (ret)
3446                                 goto out_fail;
3447                 }
3448         }
3449         ret = btrfs_set_inode_index(new_dir, old_inode, &index);
3450         if (ret)
3451                 goto out_fail;
3452
3453         ret = btrfs_add_link(trans, new_dentry, old_inode, 1, index);
3454         if (ret)
3455                 goto out_fail;
3456
3457 out_fail:
3458         btrfs_end_transaction_throttle(trans, root);
3459 out_unlock:
3460         return ret;
3461 }
3462
3463 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
3464 {
3465         struct list_head *head = &root->fs_info->delalloc_inodes;
3466         struct btrfs_inode *binode;
3467         unsigned long flags;
3468
3469         spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3470         while(!list_empty(head)) {
3471                 binode = list_entry(head->next, struct btrfs_inode,
3472                                     delalloc_inodes);
3473                 atomic_inc(&binode->vfs_inode.i_count);
3474                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3475                 filemap_write_and_wait(binode->vfs_inode.i_mapping);
3476                 iput(&binode->vfs_inode);
3477                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3478         }
3479         spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3480         return 0;
3481 }
3482
3483 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
3484                          const char *symname)
3485 {
3486         struct btrfs_trans_handle *trans;
3487         struct btrfs_root *root = BTRFS_I(dir)->root;
3488         struct btrfs_path *path;
3489         struct btrfs_key key;
3490         struct inode *inode = NULL;
3491         int err;
3492         int drop_inode = 0;
3493         u64 objectid;
3494         u64 index = 0 ;
3495         int name_len;
3496         int datasize;
3497         unsigned long ptr;
3498         struct btrfs_file_extent_item *ei;
3499         struct extent_buffer *leaf;
3500         unsigned long nr = 0;
3501
3502         name_len = strlen(symname) + 1;
3503         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
3504                 return -ENAMETOOLONG;
3505
3506         err = btrfs_check_free_space(root, 1, 0);
3507         if (err)
3508                 goto out_fail;
3509
3510         trans = btrfs_start_transaction(root, 1);
3511         btrfs_set_trans_block_group(trans, dir);
3512
3513         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3514         if (err) {
3515                 err = -ENOSPC;
3516                 goto out_unlock;
3517         }
3518
3519         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3520                                 dentry->d_name.len,
3521                                 dentry->d_parent->d_inode->i_ino, objectid,
3522                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
3523                                 &index);
3524         err = PTR_ERR(inode);
3525         if (IS_ERR(inode))
3526                 goto out_unlock;
3527
3528         err = btrfs_init_acl(inode, dir);
3529         if (err) {
3530                 drop_inode = 1;
3531                 goto out_unlock;
3532         }
3533
3534         btrfs_set_trans_block_group(trans, inode);
3535         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3536         if (err)
3537                 drop_inode = 1;
3538         else {
3539                 inode->i_mapping->a_ops = &btrfs_aops;
3540                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3541                 inode->i_fop = &btrfs_file_operations;
3542                 inode->i_op = &btrfs_file_inode_operations;
3543                 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3544                 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3545                                      inode->i_mapping, GFP_NOFS);
3546                 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3547                                      inode->i_mapping, GFP_NOFS);
3548                 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3549                 mutex_init(&BTRFS_I(inode)->csum_mutex);
3550                 mutex_init(&BTRFS_I(inode)->extent_mutex);
3551                 BTRFS_I(inode)->delalloc_bytes = 0;
3552                 BTRFS_I(inode)->disk_i_size = 0;
3553                 inode->i_mapping->writeback_index = 0;
3554                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3555                 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3556         }
3557         dir->i_sb->s_dirt = 1;
3558         btrfs_update_inode_block_group(trans, inode);
3559         btrfs_update_inode_block_group(trans, dir);
3560         if (drop_inode)
3561                 goto out_unlock;
3562
3563         path = btrfs_alloc_path();
3564         BUG_ON(!path);
3565         key.objectid = inode->i_ino;
3566         key.offset = 0;
3567         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
3568         datasize = btrfs_file_extent_calc_inline_size(name_len);
3569         err = btrfs_insert_empty_item(trans, root, path, &key,
3570                                       datasize);
3571         if (err) {
3572                 drop_inode = 1;
3573                 goto out_unlock;
3574         }
3575         leaf = path->nodes[0];
3576         ei = btrfs_item_ptr(leaf, path->slots[0],
3577                             struct btrfs_file_extent_item);
3578         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
3579         btrfs_set_file_extent_type(leaf, ei,
3580                                    BTRFS_FILE_EXTENT_INLINE);
3581         ptr = btrfs_file_extent_inline_start(ei);
3582         write_extent_buffer(leaf, symname, ptr, name_len);
3583         btrfs_mark_buffer_dirty(leaf);
3584         btrfs_free_path(path);
3585
3586         inode->i_op = &btrfs_symlink_inode_operations;
3587         inode->i_mapping->a_ops = &btrfs_symlink_aops;
3588         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3589         btrfs_i_size_write(inode, name_len - 1);
3590         err = btrfs_update_inode(trans, root, inode);
3591         if (err)
3592                 drop_inode = 1;
3593
3594 out_unlock:
3595         nr = trans->blocks_used;
3596         btrfs_end_transaction_throttle(trans, root);
3597 out_fail:
3598         if (drop_inode) {
3599                 inode_dec_link_count(inode);
3600                 iput(inode);
3601         }
3602         btrfs_btree_balance_dirty(root, nr);
3603         return err;
3604 }
3605
3606 static int btrfs_set_page_dirty(struct page *page)
3607 {
3608         return __set_page_dirty_nobuffers(page);
3609 }
3610
3611 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3612 static int btrfs_permission(struct inode *inode, int mask)
3613 #else
3614 static int btrfs_permission(struct inode *inode, int mask,
3615                             struct nameidata *nd)
3616 #endif
3617 {
3618         if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
3619                 return -EACCES;
3620         return generic_permission(inode, mask, btrfs_check_acl);
3621 }
3622
3623 static struct inode_operations btrfs_dir_inode_operations = {
3624         .lookup         = btrfs_lookup,
3625         .create         = btrfs_create,
3626         .unlink         = btrfs_unlink,
3627         .link           = btrfs_link,
3628         .mkdir          = btrfs_mkdir,
3629         .rmdir          = btrfs_rmdir,
3630         .rename         = btrfs_rename,
3631         .symlink        = btrfs_symlink,
3632         .setattr        = btrfs_setattr,
3633         .mknod          = btrfs_mknod,
3634         .setxattr       = generic_setxattr,
3635         .getxattr       = generic_getxattr,
3636         .listxattr      = btrfs_listxattr,
3637         .removexattr    = generic_removexattr,
3638         .permission     = btrfs_permission,
3639 };
3640 static struct inode_operations btrfs_dir_ro_inode_operations = {
3641         .lookup         = btrfs_lookup,
3642         .permission     = btrfs_permission,
3643 };
3644 static struct file_operations btrfs_dir_file_operations = {
3645         .llseek         = generic_file_llseek,
3646         .read           = generic_read_dir,
3647         .readdir        = btrfs_readdir,
3648         .unlocked_ioctl = btrfs_ioctl,
3649 #ifdef CONFIG_COMPAT
3650         .compat_ioctl   = btrfs_ioctl,
3651 #endif
3652         .release        = btrfs_release_file,
3653 };
3654
3655 static struct extent_io_ops btrfs_extent_io_ops = {
3656         .fill_delalloc = run_delalloc_range,
3657         .submit_bio_hook = btrfs_submit_bio_hook,
3658         .merge_bio_hook = btrfs_merge_bio_hook,
3659         .readpage_io_hook = btrfs_readpage_io_hook,
3660         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
3661         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
3662         .writepage_start_hook = btrfs_writepage_start_hook,
3663         .readpage_io_failed_hook = btrfs_io_failed_hook,
3664         .set_bit_hook = btrfs_set_bit_hook,
3665         .clear_bit_hook = btrfs_clear_bit_hook,
3666 };
3667
3668 static struct address_space_operations btrfs_aops = {
3669         .readpage       = btrfs_readpage,
3670         .writepage      = btrfs_writepage,
3671         .writepages     = btrfs_writepages,
3672         .readpages      = btrfs_readpages,
3673         .sync_page      = block_sync_page,
3674         .bmap           = btrfs_bmap,
3675         .direct_IO      = btrfs_direct_IO,
3676         .invalidatepage = btrfs_invalidatepage,
3677         .releasepage    = btrfs_releasepage,
3678         .set_page_dirty = btrfs_set_page_dirty,
3679 };
3680
3681 static struct address_space_operations btrfs_symlink_aops = {
3682         .readpage       = btrfs_readpage,
3683         .writepage      = btrfs_writepage,
3684         .invalidatepage = btrfs_invalidatepage,
3685         .releasepage    = btrfs_releasepage,
3686 };
3687
3688 static struct inode_operations btrfs_file_inode_operations = {
3689         .truncate       = btrfs_truncate,
3690         .getattr        = btrfs_getattr,
3691         .setattr        = btrfs_setattr,
3692         .setxattr       = generic_setxattr,
3693         .getxattr       = generic_getxattr,
3694         .listxattr      = btrfs_listxattr,
3695         .removexattr    = generic_removexattr,
3696         .permission     = btrfs_permission,
3697 };
3698 static struct inode_operations btrfs_special_inode_operations = {
3699         .getattr        = btrfs_getattr,
3700         .setattr        = btrfs_setattr,
3701         .permission     = btrfs_permission,
3702         .setxattr       = generic_setxattr,
3703         .getxattr       = generic_getxattr,
3704         .listxattr      = btrfs_listxattr,
3705         .removexattr    = generic_removexattr,
3706 };
3707 static struct inode_operations btrfs_symlink_inode_operations = {
3708         .readlink       = generic_readlink,
3709         .follow_link    = page_follow_link_light,
3710         .put_link       = page_put_link,
3711         .permission     = btrfs_permission,
3712 };