Btrfs: Avoid calling into the FS for the final iput on fake root inodes
[safe/jmp/linux-2.6] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48
49 struct btrfs_iget_args {
50         u64 ino;
51         struct btrfs_root *root;
52 };
53
54 static struct inode_operations btrfs_dir_inode_operations;
55 static struct inode_operations btrfs_symlink_inode_operations;
56 static struct inode_operations btrfs_dir_ro_inode_operations;
57 static struct inode_operations btrfs_special_inode_operations;
58 static struct inode_operations btrfs_file_inode_operations;
59 static struct address_space_operations btrfs_aops;
60 static struct address_space_operations btrfs_symlink_aops;
61 static struct file_operations btrfs_dir_file_operations;
62 static struct extent_io_ops btrfs_extent_io_ops;
63
64 static struct kmem_cache *btrfs_inode_cachep;
65 struct kmem_cache *btrfs_trans_handle_cachep;
66 struct kmem_cache *btrfs_transaction_cachep;
67 struct kmem_cache *btrfs_bit_radix_cachep;
68 struct kmem_cache *btrfs_path_cachep;
69
70 #define S_SHIFT 12
71 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
72         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
73         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
74         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
75         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
76         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
77         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
78         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
79 };
80
81 static void btrfs_truncate(struct inode *inode);
82
83 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
84                            int for_del)
85 {
86         u64 total;
87         u64 used;
88         u64 thresh;
89         unsigned long flags;
90         int ret = 0;
91
92         spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
93         total = btrfs_super_total_bytes(&root->fs_info->super_copy);
94         used = btrfs_super_bytes_used(&root->fs_info->super_copy);
95         if (for_del)
96                 thresh = total * 90;
97         else
98                 thresh = total * 85;
99
100         do_div(thresh, 100);
101
102         if (used + root->fs_info->delalloc_bytes + num_required > thresh)
103                 ret = -ENOSPC;
104         spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
105         return ret;
106 }
107
108 static int cow_file_range(struct inode *inode, u64 start, u64 end)
109 {
110         struct btrfs_root *root = BTRFS_I(inode)->root;
111         struct btrfs_trans_handle *trans;
112         u64 alloc_hint = 0;
113         u64 num_bytes;
114         u64 cur_alloc_size;
115         u64 blocksize = root->sectorsize;
116         u64 orig_num_bytes;
117         struct btrfs_key ins;
118         struct extent_map *em;
119         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
120         int ret = 0;
121
122         trans = btrfs_join_transaction(root, 1);
123         BUG_ON(!trans);
124         btrfs_set_trans_block_group(trans, inode);
125
126         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
127         num_bytes = max(blocksize,  num_bytes);
128         orig_num_bytes = num_bytes;
129
130         if (alloc_hint == EXTENT_MAP_INLINE)
131                 goto out;
132
133         BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy));
134         mutex_lock(&BTRFS_I(inode)->extent_mutex);
135         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1);
136         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
137
138         while(num_bytes > 0) {
139                 cur_alloc_size = min(num_bytes, root->fs_info->max_extent);
140                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
141                                            root->sectorsize, 0, 0,
142                                            (u64)-1, &ins, 1);
143                 if (ret) {
144                         WARN_ON(1);
145                         goto out;
146                 }
147                 em = alloc_extent_map(GFP_NOFS);
148                 em->start = start;
149                 em->len = ins.offset;
150                 em->block_start = ins.objectid;
151                 em->bdev = root->fs_info->fs_devices->latest_bdev;
152                 mutex_lock(&BTRFS_I(inode)->extent_mutex);
153                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
154                 while(1) {
155                         spin_lock(&em_tree->lock);
156                         ret = add_extent_mapping(em_tree, em);
157                         spin_unlock(&em_tree->lock);
158                         if (ret != -EEXIST) {
159                                 free_extent_map(em);
160                                 break;
161                         }
162                         btrfs_drop_extent_cache(inode, start,
163                                                 start + ins.offset - 1);
164                 }
165                 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
166
167                 cur_alloc_size = ins.offset;
168                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
169                                                ins.offset, 0);
170                 BUG_ON(ret);
171                 if (num_bytes < cur_alloc_size) {
172                         printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes,
173                                cur_alloc_size);
174                         break;
175                 }
176                 num_bytes -= cur_alloc_size;
177                 alloc_hint = ins.objectid + ins.offset;
178                 start += cur_alloc_size;
179         }
180 out:
181         btrfs_end_transaction(trans, root);
182         return ret;
183 }
184
185 static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end)
186 {
187         u64 extent_start;
188         u64 extent_end;
189         u64 bytenr;
190         u64 loops = 0;
191         u64 total_fs_bytes;
192         struct btrfs_root *root = BTRFS_I(inode)->root;
193         struct btrfs_block_group_cache *block_group;
194         struct btrfs_trans_handle *trans;
195         struct extent_buffer *leaf;
196         int found_type;
197         struct btrfs_path *path;
198         struct btrfs_file_extent_item *item;
199         int ret;
200         int err = 0;
201         struct btrfs_key found_key;
202
203         total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
204         path = btrfs_alloc_path();
205         BUG_ON(!path);
206         trans = btrfs_join_transaction(root, 1);
207         BUG_ON(!trans);
208 again:
209         ret = btrfs_lookup_file_extent(NULL, root, path,
210                                        inode->i_ino, start, 0);
211         if (ret < 0) {
212                 err = ret;
213                 goto out;
214         }
215
216         if (ret != 0) {
217                 if (path->slots[0] == 0)
218                         goto not_found;
219                 path->slots[0]--;
220         }
221
222         leaf = path->nodes[0];
223         item = btrfs_item_ptr(leaf, path->slots[0],
224                               struct btrfs_file_extent_item);
225
226         /* are we inside the extent that was found? */
227         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
228         found_type = btrfs_key_type(&found_key);
229         if (found_key.objectid != inode->i_ino ||
230             found_type != BTRFS_EXTENT_DATA_KEY)
231                 goto not_found;
232
233         found_type = btrfs_file_extent_type(leaf, item);
234         extent_start = found_key.offset;
235         if (found_type == BTRFS_FILE_EXTENT_REG) {
236                 u64 extent_num_bytes;
237
238                 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
239                 extent_end = extent_start + extent_num_bytes;
240                 err = 0;
241
242                 if (loops && start != extent_start)
243                         goto not_found;
244
245                 if (start < extent_start || start >= extent_end)
246                         goto not_found;
247
248                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
249                 if (bytenr == 0)
250                         goto not_found;
251
252                 if (btrfs_cross_ref_exists(trans, root, &found_key, bytenr))
253                         goto not_found;
254                 /*
255                  * we may be called by the resizer, make sure we're inside
256                  * the limits of the FS
257                  */
258                 block_group = btrfs_lookup_block_group(root->fs_info,
259                                                        bytenr);
260                 if (!block_group || block_group->ro)
261                         goto not_found;
262
263                 bytenr += btrfs_file_extent_offset(leaf, item);
264                 extent_num_bytes = min(end + 1, extent_end) - start;
265                 ret = btrfs_add_ordered_extent(inode, start, bytenr,
266                                                 extent_num_bytes, 1);
267                 if (ret) {
268                         err = ret;
269                         goto out;
270                 }
271
272                 btrfs_release_path(root, path);
273                 start = extent_end;
274                 if (start <= end) {
275                         loops++;
276                         goto again;
277                 }
278         } else {
279 not_found:
280                 btrfs_end_transaction(trans, root);
281                 btrfs_free_path(path);
282                 return cow_file_range(inode, start, end);
283         }
284 out:
285         WARN_ON(err);
286         btrfs_end_transaction(trans, root);
287         btrfs_free_path(path);
288         return err;
289 }
290
291 static int run_delalloc_range(struct inode *inode, u64 start, u64 end)
292 {
293         struct btrfs_root *root = BTRFS_I(inode)->root;
294         int ret;
295
296         if (btrfs_test_opt(root, NODATACOW) ||
297             btrfs_test_flag(inode, NODATACOW))
298                 ret = run_delalloc_nocow(inode, start, end);
299         else
300                 ret = cow_file_range(inode, start, end);
301
302         return ret;
303 }
304
305 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
306                        unsigned long old, unsigned long bits)
307 {
308         unsigned long flags;
309         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
310                 struct btrfs_root *root = BTRFS_I(inode)->root;
311                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
312                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
313                 root->fs_info->delalloc_bytes += end - start + 1;
314                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
315                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
316                                       &root->fs_info->delalloc_inodes);
317                 }
318                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
319         }
320         return 0;
321 }
322
323 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
324                          unsigned long old, unsigned long bits)
325 {
326         if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
327                 struct btrfs_root *root = BTRFS_I(inode)->root;
328                 unsigned long flags;
329
330                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
331                 if (end - start + 1 > root->fs_info->delalloc_bytes) {
332                         printk("warning: delalloc account %Lu %Lu\n",
333                                end - start + 1, root->fs_info->delalloc_bytes);
334                         root->fs_info->delalloc_bytes = 0;
335                         BTRFS_I(inode)->delalloc_bytes = 0;
336                 } else {
337                         root->fs_info->delalloc_bytes -= end - start + 1;
338                         BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
339                 }
340                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
341                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
342                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
343                 }
344                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
345         }
346         return 0;
347 }
348
349 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
350                          size_t size, struct bio *bio)
351 {
352         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
353         struct btrfs_mapping_tree *map_tree;
354         u64 logical = bio->bi_sector << 9;
355         u64 length = 0;
356         u64 map_length;
357         int ret;
358
359         length = bio->bi_size;
360         map_tree = &root->fs_info->mapping_tree;
361         map_length = length;
362         ret = btrfs_map_block(map_tree, READ, logical,
363                               &map_length, NULL, 0);
364
365         if (map_length < length + size) {
366                 return 1;
367         }
368         return 0;
369 }
370
371 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
372                           int mirror_num)
373 {
374         struct btrfs_root *root = BTRFS_I(inode)->root;
375         int ret = 0;
376
377         ret = btrfs_csum_one_bio(root, inode, bio);
378         BUG_ON(ret);
379
380         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
381 }
382
383 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
384                           int mirror_num)
385 {
386         struct btrfs_root *root = BTRFS_I(inode)->root;
387         int ret = 0;
388
389         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
390         BUG_ON(ret);
391
392         if (!(rw & (1 << BIO_RW))) {
393                 goto mapit;
394         }
395
396         if (btrfs_test_opt(root, NODATASUM) ||
397             btrfs_test_flag(inode, NODATASUM)) {
398                 goto mapit;
399         }
400
401         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
402                                    inode, rw, bio, mirror_num,
403                                    __btrfs_submit_bio_hook);
404 mapit:
405         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
406 }
407
408 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
409                              struct inode *inode, u64 file_offset,
410                              struct list_head *list)
411 {
412         struct list_head *cur;
413         struct btrfs_ordered_sum *sum;
414
415         btrfs_set_trans_block_group(trans, inode);
416         list_for_each(cur, list) {
417                 sum = list_entry(cur, struct btrfs_ordered_sum, list);
418                 mutex_lock(&BTRFS_I(inode)->csum_mutex);
419                 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
420                                        inode, sum);
421                 mutex_unlock(&BTRFS_I(inode)->csum_mutex);
422         }
423         return 0;
424 }
425
426 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
427 {
428         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
429                                    GFP_NOFS);
430 }
431
432 struct btrfs_writepage_fixup {
433         struct page *page;
434         struct btrfs_work work;
435 };
436
437 /* see btrfs_writepage_start_hook for details on why this is required */
438 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
439 {
440         struct btrfs_writepage_fixup *fixup;
441         struct btrfs_ordered_extent *ordered;
442         struct page *page;
443         struct inode *inode;
444         u64 page_start;
445         u64 page_end;
446
447         fixup = container_of(work, struct btrfs_writepage_fixup, work);
448         page = fixup->page;
449 again:
450         lock_page(page);
451         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
452                 ClearPageChecked(page);
453                 goto out_page;
454         }
455
456         inode = page->mapping->host;
457         page_start = page_offset(page);
458         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
459
460         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
461
462         /* already ordered? We're done */
463         if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
464                              EXTENT_ORDERED, 0)) {
465                 goto out;
466         }
467
468         ordered = btrfs_lookup_ordered_extent(inode, page_start);
469         if (ordered) {
470                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
471                               page_end, GFP_NOFS);
472                 unlock_page(page);
473                 btrfs_start_ordered_extent(inode, ordered, 1);
474                 goto again;
475         }
476
477         btrfs_set_extent_delalloc(inode, page_start, page_end);
478         ClearPageChecked(page);
479 out:
480         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
481 out_page:
482         unlock_page(page);
483         page_cache_release(page);
484 }
485
486 /*
487  * There are a few paths in the higher layers of the kernel that directly
488  * set the page dirty bit without asking the filesystem if it is a
489  * good idea.  This causes problems because we want to make sure COW
490  * properly happens and the data=ordered rules are followed.
491  *
492  * In our case any range that doesn't have the EXTENT_ORDERED bit set
493  * hasn't been properly setup for IO.  We kick off an async process
494  * to fix it up.  The async helper will wait for ordered extents, set
495  * the delalloc bit and make it safe to write the page.
496  */
497 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
498 {
499         struct inode *inode = page->mapping->host;
500         struct btrfs_writepage_fixup *fixup;
501         struct btrfs_root *root = BTRFS_I(inode)->root;
502         int ret;
503
504         ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
505                              EXTENT_ORDERED, 0);
506         if (ret)
507                 return 0;
508
509         if (PageChecked(page))
510                 return -EAGAIN;
511
512         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
513         if (!fixup)
514                 return -EAGAIN;
515
516         SetPageChecked(page);
517         page_cache_get(page);
518         fixup->work.func = btrfs_writepage_fixup_worker;
519         fixup->page = page;
520         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
521         return -EAGAIN;
522 }
523
524 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
525 {
526         struct btrfs_root *root = BTRFS_I(inode)->root;
527         struct btrfs_trans_handle *trans;
528         struct btrfs_ordered_extent *ordered_extent;
529         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
530         u64 alloc_hint = 0;
531         struct list_head list;
532         struct btrfs_key ins;
533         int ret;
534
535         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
536         if (!ret)
537                 return 0;
538
539         trans = btrfs_join_transaction(root, 1);
540
541         ordered_extent = btrfs_lookup_ordered_extent(inode, start);
542         BUG_ON(!ordered_extent);
543         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
544                 goto nocow;
545
546         lock_extent(io_tree, ordered_extent->file_offset,
547                     ordered_extent->file_offset + ordered_extent->len - 1,
548                     GFP_NOFS);
549
550         INIT_LIST_HEAD(&list);
551
552         ins.objectid = ordered_extent->start;
553         ins.offset = ordered_extent->len;
554         ins.type = BTRFS_EXTENT_ITEM_KEY;
555
556         ret = btrfs_alloc_reserved_extent(trans, root, root->root_key.objectid,
557                                           trans->transid, inode->i_ino,
558                                           ordered_extent->file_offset, &ins);
559         BUG_ON(ret);
560
561         mutex_lock(&BTRFS_I(inode)->extent_mutex);
562
563         ret = btrfs_drop_extents(trans, root, inode,
564                                  ordered_extent->file_offset,
565                                  ordered_extent->file_offset +
566                                  ordered_extent->len,
567                                  ordered_extent->file_offset, &alloc_hint);
568         BUG_ON(ret);
569         ret = btrfs_insert_file_extent(trans, root, inode->i_ino,
570                                        ordered_extent->file_offset,
571                                        ordered_extent->start,
572                                        ordered_extent->len,
573                                        ordered_extent->len, 0);
574         BUG_ON(ret);
575
576         btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
577                                 ordered_extent->file_offset +
578                                 ordered_extent->len - 1);
579         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
580
581         inode->i_blocks += ordered_extent->len >> 9;
582         unlock_extent(io_tree, ordered_extent->file_offset,
583                     ordered_extent->file_offset + ordered_extent->len - 1,
584                     GFP_NOFS);
585 nocow:
586         add_pending_csums(trans, inode, ordered_extent->file_offset,
587                           &ordered_extent->list);
588
589         btrfs_ordered_update_i_size(inode, ordered_extent);
590         btrfs_remove_ordered_extent(inode, ordered_extent);
591
592         /* once for us */
593         btrfs_put_ordered_extent(ordered_extent);
594         /* once for the tree */
595         btrfs_put_ordered_extent(ordered_extent);
596
597         btrfs_update_inode(trans, root, inode);
598         btrfs_end_transaction(trans, root);
599         return 0;
600 }
601
602 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
603                                 struct extent_state *state, int uptodate)
604 {
605         return btrfs_finish_ordered_io(page->mapping->host, start, end);
606 }
607
608 int btrfs_readpage_io_hook(struct page *page, u64 start, u64 end)
609 {
610         int ret = 0;
611         struct inode *inode = page->mapping->host;
612         struct btrfs_root *root = BTRFS_I(inode)->root;
613         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
614         struct btrfs_csum_item *item;
615         struct btrfs_path *path = NULL;
616         u32 csum;
617
618         if (btrfs_test_opt(root, NODATASUM) ||
619             btrfs_test_flag(inode, NODATASUM))
620                 return 0;
621
622         /*
623          * It is possible there is an ordered extent that has
624          * not yet finished for this range in the file.  If so,
625          * that extent will have a csum cached, and it will insert
626          * the sum after all the blocks in the extent are fully
627          * on disk.  So, look for an ordered extent and use the
628          * sum if found.  We have to do this before looking in the
629          * btree because csum items are pre-inserted based on
630          * the file size.  btrfs_lookup_csum might find an item
631          * that still hasn't been fully filled.
632          */
633         ret = btrfs_find_ordered_sum(inode, start, &csum);
634         if (ret == 0)
635                 goto found;
636
637         ret = 0;
638         path = btrfs_alloc_path();
639         item = btrfs_lookup_csum(NULL, root, path, inode->i_ino, start, 0);
640         if (IS_ERR(item)) {
641                 ret = PTR_ERR(item);
642                 /* a csum that isn't present is a preallocated region. */
643                 if (ret == -ENOENT || ret == -EFBIG)
644                         ret = 0;
645                 csum = 0;
646                 printk("no csum found for inode %lu start %Lu\n", inode->i_ino,
647                        start);
648                 goto out;
649         }
650         read_extent_buffer(path->nodes[0], &csum, (unsigned long)item,
651                            BTRFS_CRC32_SIZE);
652 found:
653         set_state_private(io_tree, start, csum);
654 out:
655         if (path)
656                 btrfs_free_path(path);
657         return ret;
658 }
659
660 struct io_failure_record {
661         struct page *page;
662         u64 start;
663         u64 len;
664         u64 logical;
665         int last_mirror;
666 };
667
668 int btrfs_io_failed_hook(struct bio *failed_bio,
669                          struct page *page, u64 start, u64 end,
670                          struct extent_state *state)
671 {
672         struct io_failure_record *failrec = NULL;
673         u64 private;
674         struct extent_map *em;
675         struct inode *inode = page->mapping->host;
676         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
677         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
678         struct bio *bio;
679         int num_copies;
680         int ret;
681         int rw;
682         u64 logical;
683
684         ret = get_state_private(failure_tree, start, &private);
685         if (ret) {
686                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
687                 if (!failrec)
688                         return -ENOMEM;
689                 failrec->start = start;
690                 failrec->len = end - start + 1;
691                 failrec->last_mirror = 0;
692
693                 spin_lock(&em_tree->lock);
694                 em = lookup_extent_mapping(em_tree, start, failrec->len);
695                 if (em->start > start || em->start + em->len < start) {
696                         free_extent_map(em);
697                         em = NULL;
698                 }
699                 spin_unlock(&em_tree->lock);
700
701                 if (!em || IS_ERR(em)) {
702                         kfree(failrec);
703                         return -EIO;
704                 }
705                 logical = start - em->start;
706                 logical = em->block_start + logical;
707                 failrec->logical = logical;
708                 free_extent_map(em);
709                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
710                                 EXTENT_DIRTY, GFP_NOFS);
711                 set_state_private(failure_tree, start,
712                                  (u64)(unsigned long)failrec);
713         } else {
714                 failrec = (struct io_failure_record *)(unsigned long)private;
715         }
716         num_copies = btrfs_num_copies(
717                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
718                               failrec->logical, failrec->len);
719         failrec->last_mirror++;
720         if (!state) {
721                 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
722                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
723                                                     failrec->start,
724                                                     EXTENT_LOCKED);
725                 if (state && state->start != failrec->start)
726                         state = NULL;
727                 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
728         }
729         if (!state || failrec->last_mirror > num_copies) {
730                 set_state_private(failure_tree, failrec->start, 0);
731                 clear_extent_bits(failure_tree, failrec->start,
732                                   failrec->start + failrec->len - 1,
733                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
734                 kfree(failrec);
735                 return -EIO;
736         }
737         bio = bio_alloc(GFP_NOFS, 1);
738         bio->bi_private = state;
739         bio->bi_end_io = failed_bio->bi_end_io;
740         bio->bi_sector = failrec->logical >> 9;
741         bio->bi_bdev = failed_bio->bi_bdev;
742         bio->bi_size = 0;
743         bio_add_page(bio, page, failrec->len, start - page_offset(page));
744         if (failed_bio->bi_rw & (1 << BIO_RW))
745                 rw = WRITE;
746         else
747                 rw = READ;
748
749         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
750                                                       failrec->last_mirror);
751         return 0;
752 }
753
754 int btrfs_clean_io_failures(struct inode *inode, u64 start)
755 {
756         u64 private;
757         u64 private_failure;
758         struct io_failure_record *failure;
759         int ret;
760
761         private = 0;
762         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
763                              (u64)-1, 1, EXTENT_DIRTY)) {
764                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
765                                         start, &private_failure);
766                 if (ret == 0) {
767                         failure = (struct io_failure_record *)(unsigned long)
768                                    private_failure;
769                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
770                                           failure->start, 0);
771                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
772                                           failure->start,
773                                           failure->start + failure->len - 1,
774                                           EXTENT_DIRTY | EXTENT_LOCKED,
775                                           GFP_NOFS);
776                         kfree(failure);
777                 }
778         }
779         return 0;
780 }
781
782 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
783                                struct extent_state *state)
784 {
785         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
786         struct inode *inode = page->mapping->host;
787         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
788         char *kaddr;
789         u64 private = ~(u32)0;
790         int ret;
791         struct btrfs_root *root = BTRFS_I(inode)->root;
792         u32 csum = ~(u32)0;
793         unsigned long flags;
794
795         if (btrfs_test_opt(root, NODATASUM) ||
796             btrfs_test_flag(inode, NODATASUM))
797                 return 0;
798         if (state && state->start == start) {
799                 private = state->private;
800                 ret = 0;
801         } else {
802                 ret = get_state_private(io_tree, start, &private);
803         }
804         local_irq_save(flags);
805         kaddr = kmap_atomic(page, KM_IRQ0);
806         if (ret) {
807                 goto zeroit;
808         }
809         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
810         btrfs_csum_final(csum, (char *)&csum);
811         if (csum != private) {
812                 goto zeroit;
813         }
814         kunmap_atomic(kaddr, KM_IRQ0);
815         local_irq_restore(flags);
816
817         /* if the io failure tree for this inode is non-empty,
818          * check to see if we've recovered from a failed IO
819          */
820         btrfs_clean_io_failures(inode, start);
821         return 0;
822
823 zeroit:
824         printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
825                page->mapping->host->i_ino, (unsigned long long)start, csum,
826                private);
827         memset(kaddr + offset, 1, end - start + 1);
828         flush_dcache_page(page);
829         kunmap_atomic(kaddr, KM_IRQ0);
830         local_irq_restore(flags);
831         if (private == 0)
832                 return 0;
833         return -EIO;
834 }
835
836 /*
837  * This creates an orphan entry for the given inode in case something goes
838  * wrong in the middle of an unlink/truncate.
839  */
840 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
841 {
842         struct btrfs_root *root = BTRFS_I(inode)->root;
843         int ret = 0;
844
845         spin_lock(&root->list_lock);
846
847         /* already on the orphan list, we're good */
848         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
849                 spin_unlock(&root->list_lock);
850                 return 0;
851         }
852
853         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
854
855         spin_unlock(&root->list_lock);
856
857         /*
858          * insert an orphan item to track this unlinked/truncated file
859          */
860         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
861
862         return ret;
863 }
864
865 /*
866  * We have done the truncate/delete so we can go ahead and remove the orphan
867  * item for this particular inode.
868  */
869 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
870 {
871         struct btrfs_root *root = BTRFS_I(inode)->root;
872         int ret = 0;
873
874         spin_lock(&root->list_lock);
875
876         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
877                 spin_unlock(&root->list_lock);
878                 return 0;
879         }
880
881         list_del_init(&BTRFS_I(inode)->i_orphan);
882         if (!trans) {
883                 spin_unlock(&root->list_lock);
884                 return 0;
885         }
886
887         spin_unlock(&root->list_lock);
888
889         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
890
891         return ret;
892 }
893
894 /*
895  * this cleans up any orphans that may be left on the list from the last use
896  * of this root.
897  */
898 void btrfs_orphan_cleanup(struct btrfs_root *root)
899 {
900         struct btrfs_path *path;
901         struct extent_buffer *leaf;
902         struct btrfs_item *item;
903         struct btrfs_key key, found_key;
904         struct btrfs_trans_handle *trans;
905         struct inode *inode;
906         int ret = 0, nr_unlink = 0, nr_truncate = 0;
907
908         /* don't do orphan cleanup if the fs is readonly. */
909         if (root->inode->i_sb->s_flags & MS_RDONLY)
910                 return;
911
912         path = btrfs_alloc_path();
913         if (!path)
914                 return;
915         path->reada = -1;
916
917         key.objectid = BTRFS_ORPHAN_OBJECTID;
918         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
919         key.offset = (u64)-1;
920
921         trans = btrfs_start_transaction(root, 1);
922         btrfs_set_trans_block_group(trans, root->inode);
923
924         while (1) {
925                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
926                 if (ret < 0) {
927                         printk(KERN_ERR "Error searching slot for orphan: %d"
928                                "\n", ret);
929                         break;
930                 }
931
932                 /*
933                  * if ret == 0 means we found what we were searching for, which
934                  * is weird, but possible, so only screw with path if we didnt
935                  * find the key and see if we have stuff that matches
936                  */
937                 if (ret > 0) {
938                         if (path->slots[0] == 0)
939                                 break;
940                         path->slots[0]--;
941                 }
942
943                 /* pull out the item */
944                 leaf = path->nodes[0];
945                 item = btrfs_item_nr(leaf, path->slots[0]);
946                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
947
948                 /* make sure the item matches what we want */
949                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
950                         break;
951                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
952                         break;
953
954                 /* release the path since we're done with it */
955                 btrfs_release_path(root, path);
956
957                 /*
958                  * this is where we are basically btrfs_lookup, without the
959                  * crossing root thing.  we store the inode number in the
960                  * offset of the orphan item.
961                  */
962                 inode = btrfs_iget_locked(root->inode->i_sb,
963                                           found_key.offset, root);
964                 if (!inode)
965                         break;
966
967                 if (inode->i_state & I_NEW) {
968                         BTRFS_I(inode)->root = root;
969
970                         /* have to set the location manually */
971                         BTRFS_I(inode)->location.objectid = inode->i_ino;
972                         BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
973                         BTRFS_I(inode)->location.offset = 0;
974
975                         btrfs_read_locked_inode(inode);
976                         unlock_new_inode(inode);
977                 }
978
979                 /*
980                  * add this inode to the orphan list so btrfs_orphan_del does
981                  * the proper thing when we hit it
982                  */
983                 spin_lock(&root->list_lock);
984                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
985                 spin_unlock(&root->list_lock);
986
987                 /*
988                  * if this is a bad inode, means we actually succeeded in
989                  * removing the inode, but not the orphan record, which means
990                  * we need to manually delete the orphan since iput will just
991                  * do a destroy_inode
992                  */
993                 if (is_bad_inode(inode)) {
994                         btrfs_orphan_del(trans, inode);
995                         iput(inode);
996                         continue;
997                 }
998
999                 /* if we have links, this was a truncate, lets do that */
1000                 if (inode->i_nlink) {
1001                         nr_truncate++;
1002                         btrfs_truncate(inode);
1003                 } else {
1004                         nr_unlink++;
1005                 }
1006
1007                 /* this will do delete_inode and everything for us */
1008                 iput(inode);
1009         }
1010
1011         if (nr_unlink)
1012                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1013         if (nr_truncate)
1014                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1015
1016         btrfs_free_path(path);
1017         btrfs_end_transaction(trans, root);
1018 }
1019
1020 void btrfs_read_locked_inode(struct inode *inode)
1021 {
1022         struct btrfs_path *path;
1023         struct extent_buffer *leaf;
1024         struct btrfs_inode_item *inode_item;
1025         struct btrfs_timespec *tspec;
1026         struct btrfs_root *root = BTRFS_I(inode)->root;
1027         struct btrfs_key location;
1028         u64 alloc_group_block;
1029         u32 rdev;
1030         int ret;
1031
1032         path = btrfs_alloc_path();
1033         BUG_ON(!path);
1034         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1035
1036         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1037         if (ret)
1038                 goto make_bad;
1039
1040         leaf = path->nodes[0];
1041         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1042                                     struct btrfs_inode_item);
1043
1044         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1045         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1046         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1047         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1048         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1049
1050         tspec = btrfs_inode_atime(inode_item);
1051         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1052         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1053
1054         tspec = btrfs_inode_mtime(inode_item);
1055         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1056         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1057
1058         tspec = btrfs_inode_ctime(inode_item);
1059         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1060         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1061
1062         inode->i_blocks = btrfs_inode_nblocks(leaf, inode_item);
1063         inode->i_generation = btrfs_inode_generation(leaf, inode_item);
1064         inode->i_rdev = 0;
1065         rdev = btrfs_inode_rdev(leaf, inode_item);
1066
1067         BTRFS_I(inode)->index_cnt = (u64)-1;
1068
1069         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1070         BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1071                                                        alloc_group_block);
1072         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1073         if (!BTRFS_I(inode)->block_group) {
1074                 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1075                                                  NULL, 0,
1076                                                  BTRFS_BLOCK_GROUP_METADATA, 0);
1077         }
1078         btrfs_free_path(path);
1079         inode_item = NULL;
1080
1081         switch (inode->i_mode & S_IFMT) {
1082         case S_IFREG:
1083                 inode->i_mapping->a_ops = &btrfs_aops;
1084                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1085                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1086                 inode->i_fop = &btrfs_file_operations;
1087                 inode->i_op = &btrfs_file_inode_operations;
1088                 break;
1089         case S_IFDIR:
1090                 inode->i_fop = &btrfs_dir_file_operations;
1091                 if (root == root->fs_info->tree_root)
1092                         inode->i_op = &btrfs_dir_ro_inode_operations;
1093                 else
1094                         inode->i_op = &btrfs_dir_inode_operations;
1095                 break;
1096         case S_IFLNK:
1097                 inode->i_op = &btrfs_symlink_inode_operations;
1098                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1099                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1100                 break;
1101         default:
1102                 init_special_inode(inode, inode->i_mode, rdev);
1103                 break;
1104         }
1105         return;
1106
1107 make_bad:
1108         btrfs_free_path(path);
1109         make_bad_inode(inode);
1110 }
1111
1112 static void fill_inode_item(struct extent_buffer *leaf,
1113                             struct btrfs_inode_item *item,
1114                             struct inode *inode)
1115 {
1116         btrfs_set_inode_uid(leaf, item, inode->i_uid);
1117         btrfs_set_inode_gid(leaf, item, inode->i_gid);
1118         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1119         btrfs_set_inode_mode(leaf, item, inode->i_mode);
1120         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1121
1122         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1123                                inode->i_atime.tv_sec);
1124         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1125                                 inode->i_atime.tv_nsec);
1126
1127         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1128                                inode->i_mtime.tv_sec);
1129         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1130                                 inode->i_mtime.tv_nsec);
1131
1132         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1133                                inode->i_ctime.tv_sec);
1134         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1135                                 inode->i_ctime.tv_nsec);
1136
1137         btrfs_set_inode_nblocks(leaf, item, inode->i_blocks);
1138         btrfs_set_inode_generation(leaf, item, inode->i_generation);
1139         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1140         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1141         btrfs_set_inode_block_group(leaf, item,
1142                                     BTRFS_I(inode)->block_group->key.objectid);
1143 }
1144
1145 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1146                               struct btrfs_root *root,
1147                               struct inode *inode)
1148 {
1149         struct btrfs_inode_item *inode_item;
1150         struct btrfs_path *path;
1151         struct extent_buffer *leaf;
1152         int ret;
1153
1154         path = btrfs_alloc_path();
1155         BUG_ON(!path);
1156         ret = btrfs_lookup_inode(trans, root, path,
1157                                  &BTRFS_I(inode)->location, 1);
1158         if (ret) {
1159                 if (ret > 0)
1160                         ret = -ENOENT;
1161                 goto failed;
1162         }
1163
1164         leaf = path->nodes[0];
1165         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1166                                   struct btrfs_inode_item);
1167
1168         fill_inode_item(leaf, inode_item, inode);
1169         btrfs_mark_buffer_dirty(leaf);
1170         btrfs_set_inode_last_trans(trans, inode);
1171         ret = 0;
1172 failed:
1173         btrfs_free_path(path);
1174         return ret;
1175 }
1176
1177
1178 static int btrfs_unlink_trans(struct btrfs_trans_handle *trans,
1179                               struct btrfs_root *root,
1180                               struct inode *dir,
1181                               struct dentry *dentry)
1182 {
1183         struct btrfs_path *path;
1184         const char *name = dentry->d_name.name;
1185         int name_len = dentry->d_name.len;
1186         int ret = 0;
1187         struct extent_buffer *leaf;
1188         struct btrfs_dir_item *di;
1189         struct btrfs_key key;
1190         u64 index;
1191
1192         path = btrfs_alloc_path();
1193         if (!path) {
1194                 ret = -ENOMEM;
1195                 goto err;
1196         }
1197
1198         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1199                                     name, name_len, -1);
1200         if (IS_ERR(di)) {
1201                 ret = PTR_ERR(di);
1202                 goto err;
1203         }
1204         if (!di) {
1205                 ret = -ENOENT;
1206                 goto err;
1207         }
1208         leaf = path->nodes[0];
1209         btrfs_dir_item_key_to_cpu(leaf, di, &key);
1210         ret = btrfs_delete_one_dir_name(trans, root, path, di);
1211         if (ret)
1212                 goto err;
1213         btrfs_release_path(root, path);
1214
1215         ret = btrfs_del_inode_ref(trans, root, name, name_len,
1216                                   dentry->d_inode->i_ino,
1217                                   dentry->d_parent->d_inode->i_ino, &index);
1218         if (ret) {
1219                 printk("failed to delete reference to %.*s, "
1220                        "inode %lu parent %lu\n", name_len, name,
1221                        dentry->d_inode->i_ino,
1222                        dentry->d_parent->d_inode->i_ino);
1223                 goto err;
1224         }
1225
1226         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1227                                          index, name, name_len, -1);
1228         if (IS_ERR(di)) {
1229                 ret = PTR_ERR(di);
1230                 goto err;
1231         }
1232         if (!di) {
1233                 ret = -ENOENT;
1234                 goto err;
1235         }
1236         ret = btrfs_delete_one_dir_name(trans, root, path, di);
1237         btrfs_release_path(root, path);
1238
1239         dentry->d_inode->i_ctime = dir->i_ctime;
1240 err:
1241         btrfs_free_path(path);
1242         if (!ret) {
1243                 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1244                 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1245                 btrfs_update_inode(trans, root, dir);
1246 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1247                 dentry->d_inode->i_nlink--;
1248 #else
1249                 drop_nlink(dentry->d_inode);
1250 #endif
1251                 ret = btrfs_update_inode(trans, root, dentry->d_inode);
1252                 dir->i_sb->s_dirt = 1;
1253         }
1254         return ret;
1255 }
1256
1257 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1258 {
1259         struct btrfs_root *root;
1260         struct btrfs_trans_handle *trans;
1261         struct inode *inode = dentry->d_inode;
1262         int ret;
1263         unsigned long nr = 0;
1264
1265         root = BTRFS_I(dir)->root;
1266
1267         ret = btrfs_check_free_space(root, 1, 1);
1268         if (ret)
1269                 goto fail;
1270
1271         trans = btrfs_start_transaction(root, 1);
1272
1273         btrfs_set_trans_block_group(trans, dir);
1274         ret = btrfs_unlink_trans(trans, root, dir, dentry);
1275
1276         if (inode->i_nlink == 0)
1277                 ret = btrfs_orphan_add(trans, inode);
1278
1279         nr = trans->blocks_used;
1280
1281         btrfs_end_transaction_throttle(trans, root);
1282 fail:
1283         btrfs_btree_balance_dirty(root, nr);
1284         return ret;
1285 }
1286
1287 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1288 {
1289         struct inode *inode = dentry->d_inode;
1290         int err = 0;
1291         int ret;
1292         struct btrfs_root *root = BTRFS_I(dir)->root;
1293         struct btrfs_trans_handle *trans;
1294         unsigned long nr = 0;
1295
1296         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1297                 return -ENOTEMPTY;
1298         }
1299
1300         ret = btrfs_check_free_space(root, 1, 1);
1301         if (ret)
1302                 goto fail;
1303
1304         trans = btrfs_start_transaction(root, 1);
1305         btrfs_set_trans_block_group(trans, dir);
1306
1307         err = btrfs_orphan_add(trans, inode);
1308         if (err)
1309                 goto fail_trans;
1310
1311         /* now the directory is empty */
1312         err = btrfs_unlink_trans(trans, root, dir, dentry);
1313         if (!err) {
1314                 btrfs_i_size_write(inode, 0);
1315         }
1316
1317 fail_trans:
1318         nr = trans->blocks_used;
1319         ret = btrfs_end_transaction_throttle(trans, root);
1320 fail:
1321         btrfs_btree_balance_dirty(root, nr);
1322
1323         if (ret && !err)
1324                 err = ret;
1325         return err;
1326 }
1327
1328 /*
1329  * this can truncate away extent items, csum items and directory items.
1330  * It starts at a high offset and removes keys until it can't find
1331  * any higher than i_size.
1332  *
1333  * csum items that cross the new i_size are truncated to the new size
1334  * as well.
1335  *
1336  * min_type is the minimum key type to truncate down to.  If set to 0, this
1337  * will kill all the items on this inode, including the INODE_ITEM_KEY.
1338  */
1339 static int btrfs_truncate_in_trans(struct btrfs_trans_handle *trans,
1340                                    struct btrfs_root *root,
1341                                    struct inode *inode,
1342                                    u32 min_type)
1343 {
1344         int ret;
1345         struct btrfs_path *path;
1346         struct btrfs_key key;
1347         struct btrfs_key found_key;
1348         u32 found_type;
1349         struct extent_buffer *leaf;
1350         struct btrfs_file_extent_item *fi;
1351         u64 extent_start = 0;
1352         u64 extent_num_bytes = 0;
1353         u64 item_end = 0;
1354         u64 root_gen = 0;
1355         u64 root_owner = 0;
1356         int found_extent;
1357         int del_item;
1358         int pending_del_nr = 0;
1359         int pending_del_slot = 0;
1360         int extent_type = -1;
1361         u64 mask = root->sectorsize - 1;
1362
1363         btrfs_drop_extent_cache(inode, inode->i_size & (~mask), (u64)-1);
1364         path = btrfs_alloc_path();
1365         path->reada = -1;
1366         BUG_ON(!path);
1367
1368         /* FIXME, add redo link to tree so we don't leak on crash */
1369         key.objectid = inode->i_ino;
1370         key.offset = (u64)-1;
1371         key.type = (u8)-1;
1372
1373         btrfs_init_path(path);
1374 search_again:
1375         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1376         if (ret < 0) {
1377                 goto error;
1378         }
1379         if (ret > 0) {
1380                 BUG_ON(path->slots[0] == 0);
1381                 path->slots[0]--;
1382         }
1383
1384         while(1) {
1385                 fi = NULL;
1386                 leaf = path->nodes[0];
1387                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1388                 found_type = btrfs_key_type(&found_key);
1389
1390                 if (found_key.objectid != inode->i_ino)
1391                         break;
1392
1393                 if (found_type < min_type)
1394                         break;
1395
1396                 item_end = found_key.offset;
1397                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
1398                         fi = btrfs_item_ptr(leaf, path->slots[0],
1399                                             struct btrfs_file_extent_item);
1400                         extent_type = btrfs_file_extent_type(leaf, fi);
1401                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1402                                 item_end +=
1403                                     btrfs_file_extent_num_bytes(leaf, fi);
1404                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1405                                 struct btrfs_item *item = btrfs_item_nr(leaf,
1406                                                                 path->slots[0]);
1407                                 item_end += btrfs_file_extent_inline_len(leaf,
1408                                                                          item);
1409                         }
1410                         item_end--;
1411                 }
1412                 if (found_type == BTRFS_CSUM_ITEM_KEY) {
1413                         ret = btrfs_csum_truncate(trans, root, path,
1414                                                   inode->i_size);
1415                         BUG_ON(ret);
1416                 }
1417                 if (item_end < inode->i_size) {
1418                         if (found_type == BTRFS_DIR_ITEM_KEY) {
1419                                 found_type = BTRFS_INODE_ITEM_KEY;
1420                         } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
1421                                 found_type = BTRFS_CSUM_ITEM_KEY;
1422                         } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
1423                                 found_type = BTRFS_XATTR_ITEM_KEY;
1424                         } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
1425                                 found_type = BTRFS_INODE_REF_KEY;
1426                         } else if (found_type) {
1427                                 found_type--;
1428                         } else {
1429                                 break;
1430                         }
1431                         btrfs_set_key_type(&key, found_type);
1432                         goto next;
1433                 }
1434                 if (found_key.offset >= inode->i_size)
1435                         del_item = 1;
1436                 else
1437                         del_item = 0;
1438                 found_extent = 0;
1439
1440                 /* FIXME, shrink the extent if the ref count is only 1 */
1441                 if (found_type != BTRFS_EXTENT_DATA_KEY)
1442                         goto delete;
1443
1444                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1445                         u64 num_dec;
1446                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
1447                         if (!del_item) {
1448                                 u64 orig_num_bytes =
1449                                         btrfs_file_extent_num_bytes(leaf, fi);
1450                                 extent_num_bytes = inode->i_size -
1451                                         found_key.offset + root->sectorsize - 1;
1452                                 extent_num_bytes = extent_num_bytes &
1453                                         ~((u64)root->sectorsize - 1);
1454                                 btrfs_set_file_extent_num_bytes(leaf, fi,
1455                                                          extent_num_bytes);
1456                                 num_dec = (orig_num_bytes -
1457                                            extent_num_bytes);
1458                                 if (extent_start != 0)
1459                                         dec_i_blocks(inode, num_dec);
1460                                 btrfs_mark_buffer_dirty(leaf);
1461                         } else {
1462                                 extent_num_bytes =
1463                                         btrfs_file_extent_disk_num_bytes(leaf,
1464                                                                          fi);
1465                                 /* FIXME blocksize != 4096 */
1466                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
1467                                 if (extent_start != 0) {
1468                                         found_extent = 1;
1469                                         dec_i_blocks(inode, num_dec);
1470                                 }
1471                                 root_gen = btrfs_header_generation(leaf);
1472                                 root_owner = btrfs_header_owner(leaf);
1473                         }
1474                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1475                         if (!del_item) {
1476                                 u32 newsize = inode->i_size - found_key.offset;
1477                                 dec_i_blocks(inode, item_end + 1 -
1478                                             found_key.offset - newsize);
1479                                 newsize =
1480                                     btrfs_file_extent_calc_inline_size(newsize);
1481                                 ret = btrfs_truncate_item(trans, root, path,
1482                                                           newsize, 1);
1483                                 BUG_ON(ret);
1484                         } else {
1485                                 dec_i_blocks(inode, item_end + 1 -
1486                                              found_key.offset);
1487                         }
1488                 }
1489 delete:
1490                 if (del_item) {
1491                         if (!pending_del_nr) {
1492                                 /* no pending yet, add ourselves */
1493                                 pending_del_slot = path->slots[0];
1494                                 pending_del_nr = 1;
1495                         } else if (pending_del_nr &&
1496                                    path->slots[0] + 1 == pending_del_slot) {
1497                                 /* hop on the pending chunk */
1498                                 pending_del_nr++;
1499                                 pending_del_slot = path->slots[0];
1500                         } else {
1501                                 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
1502                         }
1503                 } else {
1504                         break;
1505                 }
1506                 if (found_extent) {
1507                         ret = btrfs_free_extent(trans, root, extent_start,
1508                                                 extent_num_bytes,
1509                                                 root_owner,
1510                                                 root_gen, inode->i_ino,
1511                                                 found_key.offset, 0);
1512                         BUG_ON(ret);
1513                 }
1514 next:
1515                 if (path->slots[0] == 0) {
1516                         if (pending_del_nr)
1517                                 goto del_pending;
1518                         btrfs_release_path(root, path);
1519                         goto search_again;
1520                 }
1521
1522                 path->slots[0]--;
1523                 if (pending_del_nr &&
1524                     path->slots[0] + 1 != pending_del_slot) {
1525                         struct btrfs_key debug;
1526 del_pending:
1527                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
1528                                               pending_del_slot);
1529                         ret = btrfs_del_items(trans, root, path,
1530                                               pending_del_slot,
1531                                               pending_del_nr);
1532                         BUG_ON(ret);
1533                         pending_del_nr = 0;
1534                         btrfs_release_path(root, path);
1535                         goto search_again;
1536                 }
1537         }
1538         ret = 0;
1539 error:
1540         if (pending_del_nr) {
1541                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
1542                                       pending_del_nr);
1543         }
1544         btrfs_free_path(path);
1545         inode->i_sb->s_dirt = 1;
1546         return ret;
1547 }
1548
1549 /*
1550  * taken from block_truncate_page, but does cow as it zeros out
1551  * any bytes left in the last page in the file.
1552  */
1553 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
1554 {
1555         struct inode *inode = mapping->host;
1556         struct btrfs_root *root = BTRFS_I(inode)->root;
1557         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1558         struct btrfs_ordered_extent *ordered;
1559         char *kaddr;
1560         u32 blocksize = root->sectorsize;
1561         pgoff_t index = from >> PAGE_CACHE_SHIFT;
1562         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1563         struct page *page;
1564         int ret = 0;
1565         u64 page_start;
1566         u64 page_end;
1567
1568         if ((offset & (blocksize - 1)) == 0)
1569                 goto out;
1570
1571         ret = -ENOMEM;
1572 again:
1573         page = grab_cache_page(mapping, index);
1574         if (!page)
1575                 goto out;
1576
1577         page_start = page_offset(page);
1578         page_end = page_start + PAGE_CACHE_SIZE - 1;
1579
1580         if (!PageUptodate(page)) {
1581                 ret = btrfs_readpage(NULL, page);
1582                 lock_page(page);
1583                 if (page->mapping != mapping) {
1584                         unlock_page(page);
1585                         page_cache_release(page);
1586                         goto again;
1587                 }
1588                 if (!PageUptodate(page)) {
1589                         ret = -EIO;
1590                         goto out_unlock;
1591                 }
1592         }
1593         wait_on_page_writeback(page);
1594
1595         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
1596         set_page_extent_mapped(page);
1597
1598         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1599         if (ordered) {
1600                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1601                 unlock_page(page);
1602                 page_cache_release(page);
1603                 btrfs_start_ordered_extent(inode, ordered, 1);
1604                 btrfs_put_ordered_extent(ordered);
1605                 goto again;
1606         }
1607
1608         btrfs_set_extent_delalloc(inode, page_start, page_end);
1609         ret = 0;
1610         if (offset != PAGE_CACHE_SIZE) {
1611                 kaddr = kmap(page);
1612                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1613                 flush_dcache_page(page);
1614                 kunmap(page);
1615         }
1616         ClearPageChecked(page);
1617         set_page_dirty(page);
1618         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1619
1620 out_unlock:
1621         unlock_page(page);
1622         page_cache_release(page);
1623 out:
1624         return ret;
1625 }
1626
1627 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
1628 {
1629         struct inode *inode = dentry->d_inode;
1630         int err;
1631
1632         err = inode_change_ok(inode, attr);
1633         if (err)
1634                 return err;
1635
1636         if (S_ISREG(inode->i_mode) &&
1637             attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
1638                 struct btrfs_trans_handle *trans;
1639                 struct btrfs_root *root = BTRFS_I(inode)->root;
1640                 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1641
1642                 u64 mask = root->sectorsize - 1;
1643                 u64 hole_start = (inode->i_size + mask) & ~mask;
1644                 u64 block_end = (attr->ia_size + mask) & ~mask;
1645                 u64 hole_size;
1646                 u64 alloc_hint = 0;
1647
1648                 if (attr->ia_size <= hole_start)
1649                         goto out;
1650
1651                 err = btrfs_check_free_space(root, 1, 0);
1652                 if (err)
1653                         goto fail;
1654
1655                 btrfs_truncate_page(inode->i_mapping, inode->i_size);
1656
1657                 hole_size = block_end - hole_start;
1658                 btrfs_wait_ordered_range(inode, hole_start, hole_size);
1659                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1660
1661                 trans = btrfs_start_transaction(root, 1);
1662                 btrfs_set_trans_block_group(trans, inode);
1663                 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1664                 err = btrfs_drop_extents(trans, root, inode,
1665                                          hole_start, block_end, hole_start,
1666                                          &alloc_hint);
1667
1668                 if (alloc_hint != EXTENT_MAP_INLINE) {
1669                         err = btrfs_insert_file_extent(trans, root,
1670                                                        inode->i_ino,
1671                                                        hole_start, 0, 0,
1672                                                        hole_size, 0);
1673                         btrfs_drop_extent_cache(inode, hole_start,
1674                                                 (u64)-1);
1675                         btrfs_check_file(root, inode);
1676                 }
1677                 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1678                 btrfs_end_transaction(trans, root);
1679                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1680                 if (err)
1681                         return err;
1682         }
1683 out:
1684         err = inode_setattr(inode, attr);
1685
1686         if (!err && ((attr->ia_valid & ATTR_MODE)))
1687                 err = btrfs_acl_chmod(inode);
1688 fail:
1689         return err;
1690 }
1691
1692 void btrfs_delete_inode(struct inode *inode)
1693 {
1694         struct btrfs_trans_handle *trans;
1695         struct btrfs_root *root = BTRFS_I(inode)->root;
1696         unsigned long nr;
1697         int ret;
1698
1699         truncate_inode_pages(&inode->i_data, 0);
1700         if (is_bad_inode(inode)) {
1701                 btrfs_orphan_del(NULL, inode);
1702                 goto no_delete;
1703         }
1704         btrfs_wait_ordered_range(inode, 0, (u64)-1);
1705
1706         btrfs_i_size_write(inode, 0);
1707         trans = btrfs_start_transaction(root, 1);
1708
1709         btrfs_set_trans_block_group(trans, inode);
1710         ret = btrfs_truncate_in_trans(trans, root, inode, 0);
1711         if (ret) {
1712                 btrfs_orphan_del(NULL, inode);
1713                 goto no_delete_lock;
1714         }
1715
1716         btrfs_orphan_del(trans, inode);
1717
1718         nr = trans->blocks_used;
1719         clear_inode(inode);
1720
1721         btrfs_end_transaction(trans, root);
1722         btrfs_btree_balance_dirty(root, nr);
1723         return;
1724
1725 no_delete_lock:
1726         nr = trans->blocks_used;
1727         btrfs_end_transaction(trans, root);
1728         btrfs_btree_balance_dirty(root, nr);
1729 no_delete:
1730         clear_inode(inode);
1731 }
1732
1733 /*
1734  * this returns the key found in the dir entry in the location pointer.
1735  * If no dir entries were found, location->objectid is 0.
1736  */
1737 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
1738                                struct btrfs_key *location)
1739 {
1740         const char *name = dentry->d_name.name;
1741         int namelen = dentry->d_name.len;
1742         struct btrfs_dir_item *di;
1743         struct btrfs_path *path;
1744         struct btrfs_root *root = BTRFS_I(dir)->root;
1745         int ret = 0;
1746
1747         if (namelen == 1 && strcmp(name, ".") == 0) {
1748                 location->objectid = dir->i_ino;
1749                 location->type = BTRFS_INODE_ITEM_KEY;
1750                 location->offset = 0;
1751                 return 0;
1752         }
1753         path = btrfs_alloc_path();
1754         BUG_ON(!path);
1755
1756         if (namelen == 2 && strcmp(name, "..") == 0) {
1757                 struct btrfs_key key;
1758                 struct extent_buffer *leaf;
1759                 int slot;
1760
1761                 key.objectid = dir->i_ino;
1762                 key.offset = (u64)-1;
1763                 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1764                 if (ret < 0 || path->slots[0] == 0)
1765                         goto out_err;
1766                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1767                 BUG_ON(ret == 0);
1768                 ret = 0;
1769                 leaf = path->nodes[0];
1770                 slot = path->slots[0] - 1;
1771
1772                 btrfs_item_key_to_cpu(leaf, &key, slot);
1773                 if (key.objectid != dir->i_ino ||
1774                     key.type != BTRFS_INODE_REF_KEY) {
1775                         goto out_err;
1776                 }
1777                 location->objectid = key.offset;
1778                 location->type = BTRFS_INODE_ITEM_KEY;
1779                 location->offset = 0;
1780                 goto out;
1781         }
1782
1783         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
1784                                     namelen, 0);
1785         if (IS_ERR(di))
1786                 ret = PTR_ERR(di);
1787         if (!di || IS_ERR(di)) {
1788                 goto out_err;
1789         }
1790         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
1791 out:
1792         btrfs_free_path(path);
1793         return ret;
1794 out_err:
1795         location->objectid = 0;
1796         goto out;
1797 }
1798
1799 /*
1800  * when we hit a tree root in a directory, the btrfs part of the inode
1801  * needs to be changed to reflect the root directory of the tree root.  This
1802  * is kind of like crossing a mount point.
1803  */
1804 static int fixup_tree_root_location(struct btrfs_root *root,
1805                              struct btrfs_key *location,
1806                              struct btrfs_root **sub_root,
1807                              struct dentry *dentry)
1808 {
1809         struct btrfs_root_item *ri;
1810
1811         if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
1812                 return 0;
1813         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1814                 return 0;
1815
1816         *sub_root = btrfs_read_fs_root(root->fs_info, location,
1817                                         dentry->d_name.name,
1818                                         dentry->d_name.len);
1819         if (IS_ERR(*sub_root))
1820                 return PTR_ERR(*sub_root);
1821
1822         ri = &(*sub_root)->root_item;
1823         location->objectid = btrfs_root_dirid(ri);
1824         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
1825         location->offset = 0;
1826
1827         return 0;
1828 }
1829
1830 static int btrfs_init_locked_inode(struct inode *inode, void *p)
1831 {
1832         struct btrfs_iget_args *args = p;
1833         inode->i_ino = args->ino;
1834         BTRFS_I(inode)->root = args->root;
1835         BTRFS_I(inode)->delalloc_bytes = 0;
1836         BTRFS_I(inode)->disk_i_size = 0;
1837         BTRFS_I(inode)->index_cnt = (u64)-1;
1838         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
1839         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
1840                              inode->i_mapping, GFP_NOFS);
1841         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
1842                              inode->i_mapping, GFP_NOFS);
1843         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
1844         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
1845         mutex_init(&BTRFS_I(inode)->csum_mutex);
1846         mutex_init(&BTRFS_I(inode)->extent_mutex);
1847         return 0;
1848 }
1849
1850 static int btrfs_find_actor(struct inode *inode, void *opaque)
1851 {
1852         struct btrfs_iget_args *args = opaque;
1853         return (args->ino == inode->i_ino &&
1854                 args->root == BTRFS_I(inode)->root);
1855 }
1856
1857 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
1858                             u64 root_objectid)
1859 {
1860         struct btrfs_iget_args args;
1861         args.ino = objectid;
1862         args.root = btrfs_lookup_fs_root(btrfs_sb(s)->fs_info, root_objectid);
1863
1864         if (!args.root)
1865                 return NULL;
1866
1867         return ilookup5(s, objectid, btrfs_find_actor, (void *)&args);
1868 }
1869
1870 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
1871                                 struct btrfs_root *root)
1872 {
1873         struct inode *inode;
1874         struct btrfs_iget_args args;
1875         args.ino = objectid;
1876         args.root = root;
1877
1878         inode = iget5_locked(s, objectid, btrfs_find_actor,
1879                              btrfs_init_locked_inode,
1880                              (void *)&args);
1881         return inode;
1882 }
1883
1884 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
1885                                    struct nameidata *nd)
1886 {
1887         struct inode * inode;
1888         struct btrfs_inode *bi = BTRFS_I(dir);
1889         struct btrfs_root *root = bi->root;
1890         struct btrfs_root *sub_root = root;
1891         struct btrfs_key location;
1892         int ret, do_orphan = 0;
1893
1894         if (dentry->d_name.len > BTRFS_NAME_LEN)
1895                 return ERR_PTR(-ENAMETOOLONG);
1896
1897         ret = btrfs_inode_by_name(dir, dentry, &location);
1898
1899         if (ret < 0)
1900                 return ERR_PTR(ret);
1901
1902         inode = NULL;
1903         if (location.objectid) {
1904                 ret = fixup_tree_root_location(root, &location, &sub_root,
1905                                                 dentry);
1906                 if (ret < 0)
1907                         return ERR_PTR(ret);
1908                 if (ret > 0)
1909                         return ERR_PTR(-ENOENT);
1910
1911                 inode = btrfs_iget_locked(dir->i_sb, location.objectid,
1912                                           sub_root);
1913                 if (!inode)
1914                         return ERR_PTR(-EACCES);
1915                 if (inode->i_state & I_NEW) {
1916                         /* the inode and parent dir are two different roots */
1917                         if (sub_root != root) {
1918                                 igrab(inode);
1919                                 sub_root->inode = inode;
1920                                 do_orphan = 1;
1921                         }
1922                         BTRFS_I(inode)->root = sub_root;
1923                         memcpy(&BTRFS_I(inode)->location, &location,
1924                                sizeof(location));
1925                         btrfs_read_locked_inode(inode);
1926                         unlock_new_inode(inode);
1927                 }
1928         }
1929
1930         if (unlikely(do_orphan))
1931                 btrfs_orphan_cleanup(sub_root);
1932
1933         return d_splice_alias(inode, dentry);
1934 }
1935
1936 static unsigned char btrfs_filetype_table[] = {
1937         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
1938 };
1939
1940 static int btrfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
1941 {
1942         struct inode *inode = filp->f_dentry->d_inode;
1943         struct btrfs_root *root = BTRFS_I(inode)->root;
1944         struct btrfs_item *item;
1945         struct btrfs_dir_item *di;
1946         struct btrfs_key key;
1947         struct btrfs_key found_key;
1948         struct btrfs_path *path;
1949         int ret;
1950         u32 nritems;
1951         struct extent_buffer *leaf;
1952         int slot;
1953         int advance;
1954         unsigned char d_type;
1955         int over = 0;
1956         u32 di_cur;
1957         u32 di_total;
1958         u32 di_len;
1959         int key_type = BTRFS_DIR_INDEX_KEY;
1960         char tmp_name[32];
1961         char *name_ptr;
1962         int name_len;
1963
1964         /* FIXME, use a real flag for deciding about the key type */
1965         if (root->fs_info->tree_root == root)
1966                 key_type = BTRFS_DIR_ITEM_KEY;
1967
1968         /* special case for "." */
1969         if (filp->f_pos == 0) {
1970                 over = filldir(dirent, ".", 1,
1971                                1, inode->i_ino,
1972                                DT_DIR);
1973                 if (over)
1974                         return 0;
1975                 filp->f_pos = 1;
1976         }
1977
1978         key.objectid = inode->i_ino;
1979         path = btrfs_alloc_path();
1980         path->reada = 2;
1981
1982         /* special case for .., just use the back ref */
1983         if (filp->f_pos == 1) {
1984                 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1985                 key.offset = (u64)-1;
1986                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1987                 if (ret < 0 || path->slots[0] == 0) {
1988                         btrfs_release_path(root, path);
1989                         goto read_dir_items;
1990                 }
1991                 BUG_ON(ret == 0);
1992                 leaf = path->nodes[0];
1993                 slot = path->slots[0] - 1;
1994                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1995                 btrfs_release_path(root, path);
1996                 if (found_key.objectid != key.objectid ||
1997                     found_key.type != BTRFS_INODE_REF_KEY)
1998                         goto read_dir_items;
1999                 over = filldir(dirent, "..", 2,
2000                                2, found_key.offset, DT_DIR);
2001                 if (over)
2002                         goto nopos;
2003                 filp->f_pos = 2;
2004         }
2005
2006 read_dir_items:
2007         btrfs_set_key_type(&key, key_type);
2008         key.offset = filp->f_pos;
2009
2010         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2011         if (ret < 0)
2012                 goto err;
2013         advance = 0;
2014         while(1) {
2015                 leaf = path->nodes[0];
2016                 nritems = btrfs_header_nritems(leaf);
2017                 slot = path->slots[0];
2018                 if (advance || slot >= nritems) {
2019                         if (slot >= nritems -1) {
2020                                 ret = btrfs_next_leaf(root, path);
2021                                 if (ret)
2022                                         break;
2023                                 leaf = path->nodes[0];
2024                                 nritems = btrfs_header_nritems(leaf);
2025                                 slot = path->slots[0];
2026                         } else {
2027                                 slot++;
2028                                 path->slots[0]++;
2029                         }
2030                 }
2031                 advance = 1;
2032                 item = btrfs_item_nr(leaf, slot);
2033                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2034
2035                 if (found_key.objectid != key.objectid)
2036                         break;
2037                 if (btrfs_key_type(&found_key) != key_type)
2038                         break;
2039                 if (found_key.offset < filp->f_pos)
2040                         continue;
2041
2042                 filp->f_pos = found_key.offset;
2043                 advance = 1;
2044                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2045                 di_cur = 0;
2046                 di_total = btrfs_item_size(leaf, item);
2047                 while(di_cur < di_total) {
2048                         struct btrfs_key location;
2049
2050                         name_len = btrfs_dir_name_len(leaf, di);
2051                         if (name_len < 32) {
2052                                 name_ptr = tmp_name;
2053                         } else {
2054                                 name_ptr = kmalloc(name_len, GFP_NOFS);
2055                                 BUG_ON(!name_ptr);
2056                         }
2057                         read_extent_buffer(leaf, name_ptr,
2058                                            (unsigned long)(di + 1), name_len);
2059
2060                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2061                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
2062                         over = filldir(dirent, name_ptr, name_len,
2063                                        found_key.offset,
2064                                        location.objectid,
2065                                        d_type);
2066
2067                         if (name_ptr != tmp_name)
2068                                 kfree(name_ptr);
2069
2070                         if (over)
2071                                 goto nopos;
2072                         di_len = btrfs_dir_name_len(leaf, di) +
2073                                 btrfs_dir_data_len(leaf, di) +sizeof(*di);
2074                         di_cur += di_len;
2075                         di = (struct btrfs_dir_item *)((char *)di + di_len);
2076                 }
2077         }
2078         if (key_type == BTRFS_DIR_INDEX_KEY)
2079                 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2080         else
2081                 filp->f_pos++;
2082 nopos:
2083         ret = 0;
2084 err:
2085         btrfs_free_path(path);
2086         return ret;
2087 }
2088
2089 int btrfs_write_inode(struct inode *inode, int wait)
2090 {
2091         struct btrfs_root *root = BTRFS_I(inode)->root;
2092         struct btrfs_trans_handle *trans;
2093         int ret = 0;
2094
2095         if (root->fs_info->closing > 1)
2096                 return 0;
2097
2098         if (wait) {
2099                 trans = btrfs_join_transaction(root, 1);
2100                 btrfs_set_trans_block_group(trans, inode);
2101                 ret = btrfs_commit_transaction(trans, root);
2102         }
2103         return ret;
2104 }
2105
2106 /*
2107  * This is somewhat expensive, updating the tree every time the
2108  * inode changes.  But, it is most likely to find the inode in cache.
2109  * FIXME, needs more benchmarking...there are no reasons other than performance
2110  * to keep or drop this code.
2111  */
2112 void btrfs_dirty_inode(struct inode *inode)
2113 {
2114         struct btrfs_root *root = BTRFS_I(inode)->root;
2115         struct btrfs_trans_handle *trans;
2116
2117         trans = btrfs_join_transaction(root, 1);
2118         btrfs_set_trans_block_group(trans, inode);
2119         btrfs_update_inode(trans, root, inode);
2120         btrfs_end_transaction(trans, root);
2121 }
2122
2123 static int btrfs_set_inode_index_count(struct inode *inode)
2124 {
2125         struct btrfs_root *root = BTRFS_I(inode)->root;
2126         struct btrfs_key key, found_key;
2127         struct btrfs_path *path;
2128         struct extent_buffer *leaf;
2129         int ret;
2130
2131         key.objectid = inode->i_ino;
2132         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2133         key.offset = (u64)-1;
2134
2135         path = btrfs_alloc_path();
2136         if (!path)
2137                 return -ENOMEM;
2138
2139         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2140         if (ret < 0)
2141                 goto out;
2142         /* FIXME: we should be able to handle this */
2143         if (ret == 0)
2144                 goto out;
2145         ret = 0;
2146
2147         /*
2148          * MAGIC NUMBER EXPLANATION:
2149          * since we search a directory based on f_pos we have to start at 2
2150          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2151          * else has to start at 2
2152          */
2153         if (path->slots[0] == 0) {
2154                 BTRFS_I(inode)->index_cnt = 2;
2155                 goto out;
2156         }
2157
2158         path->slots[0]--;
2159
2160         leaf = path->nodes[0];
2161         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2162
2163         if (found_key.objectid != inode->i_ino ||
2164             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2165                 BTRFS_I(inode)->index_cnt = 2;
2166                 goto out;
2167         }
2168
2169         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2170 out:
2171         btrfs_free_path(path);
2172         return ret;
2173 }
2174
2175 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
2176                                  u64 *index)
2177 {
2178         int ret = 0;
2179
2180         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2181                 ret = btrfs_set_inode_index_count(dir);
2182                 if (ret)
2183                         return ret;
2184         }
2185
2186         *index = BTRFS_I(dir)->index_cnt;
2187         BTRFS_I(dir)->index_cnt++;
2188
2189         return ret;
2190 }
2191
2192 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2193                                      struct btrfs_root *root,
2194                                      struct inode *dir,
2195                                      const char *name, int name_len,
2196                                      u64 ref_objectid,
2197                                      u64 objectid,
2198                                      struct btrfs_block_group_cache *group,
2199                                      int mode, u64 *index)
2200 {
2201         struct inode *inode;
2202         struct btrfs_inode_item *inode_item;
2203         struct btrfs_block_group_cache *new_inode_group;
2204         struct btrfs_key *location;
2205         struct btrfs_path *path;
2206         struct btrfs_inode_ref *ref;
2207         struct btrfs_key key[2];
2208         u32 sizes[2];
2209         unsigned long ptr;
2210         int ret;
2211         int owner;
2212
2213         path = btrfs_alloc_path();
2214         BUG_ON(!path);
2215
2216         inode = new_inode(root->fs_info->sb);
2217         if (!inode)
2218                 return ERR_PTR(-ENOMEM);
2219
2220         if (dir) {
2221                 ret = btrfs_set_inode_index(dir, inode, index);
2222                 if (ret)
2223                         return ERR_PTR(ret);
2224         }
2225         /*
2226          * index_cnt is ignored for everything but a dir,
2227          * btrfs_get_inode_index_count has an explanation for the magic
2228          * number
2229          */
2230         BTRFS_I(inode)->index_cnt = 2;
2231
2232         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2233         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2234                              inode->i_mapping, GFP_NOFS);
2235         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2236                              inode->i_mapping, GFP_NOFS);
2237         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2238         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2239         mutex_init(&BTRFS_I(inode)->csum_mutex);
2240         mutex_init(&BTRFS_I(inode)->extent_mutex);
2241         BTRFS_I(inode)->delalloc_bytes = 0;
2242         BTRFS_I(inode)->disk_i_size = 0;
2243         BTRFS_I(inode)->root = root;
2244
2245         if (mode & S_IFDIR)
2246                 owner = 0;
2247         else
2248                 owner = 1;
2249         new_inode_group = btrfs_find_block_group(root, group, 0,
2250                                        BTRFS_BLOCK_GROUP_METADATA, owner);
2251         if (!new_inode_group) {
2252                 printk("find_block group failed\n");
2253                 new_inode_group = group;
2254         }
2255         BTRFS_I(inode)->block_group = new_inode_group;
2256         BTRFS_I(inode)->flags = 0;
2257
2258         key[0].objectid = objectid;
2259         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2260         key[0].offset = 0;
2261
2262         key[1].objectid = objectid;
2263         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2264         key[1].offset = ref_objectid;
2265
2266         sizes[0] = sizeof(struct btrfs_inode_item);
2267         sizes[1] = name_len + sizeof(*ref);
2268
2269         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2270         if (ret != 0)
2271                 goto fail;
2272
2273         if (objectid > root->highest_inode)
2274                 root->highest_inode = objectid;
2275
2276         inode->i_uid = current->fsuid;
2277         inode->i_gid = current->fsgid;
2278         inode->i_mode = mode;
2279         inode->i_ino = objectid;
2280         inode->i_blocks = 0;
2281         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2282         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2283                                   struct btrfs_inode_item);
2284         fill_inode_item(path->nodes[0], inode_item, inode);
2285
2286         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2287                              struct btrfs_inode_ref);
2288         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2289         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
2290         ptr = (unsigned long)(ref + 1);
2291         write_extent_buffer(path->nodes[0], name, ptr, name_len);
2292
2293         btrfs_mark_buffer_dirty(path->nodes[0]);
2294         btrfs_free_path(path);
2295
2296         location = &BTRFS_I(inode)->location;
2297         location->objectid = objectid;
2298         location->offset = 0;
2299         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2300
2301         insert_inode_hash(inode);
2302         return inode;
2303 fail:
2304         if (dir)
2305                 BTRFS_I(dir)->index_cnt--;
2306         btrfs_free_path(path);
2307         return ERR_PTR(ret);
2308 }
2309
2310 static inline u8 btrfs_inode_type(struct inode *inode)
2311 {
2312         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2313 }
2314
2315 static int btrfs_add_link(struct btrfs_trans_handle *trans,
2316                             struct dentry *dentry, struct inode *inode,
2317                             int add_backref, u64 index)
2318 {
2319         int ret;
2320         struct btrfs_key key;
2321         struct btrfs_root *root = BTRFS_I(dentry->d_parent->d_inode)->root;
2322         struct inode *parent_inode = dentry->d_parent->d_inode;
2323
2324         key.objectid = inode->i_ino;
2325         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
2326         key.offset = 0;
2327
2328         ret = btrfs_insert_dir_item(trans, root,
2329                                     dentry->d_name.name, dentry->d_name.len,
2330                                     dentry->d_parent->d_inode->i_ino,
2331                                     &key, btrfs_inode_type(inode),
2332                                     index);
2333         if (ret == 0) {
2334                 if (add_backref) {
2335                         ret = btrfs_insert_inode_ref(trans, root,
2336                                              dentry->d_name.name,
2337                                              dentry->d_name.len,
2338                                              inode->i_ino,
2339                                              parent_inode->i_ino,
2340                                              index);
2341                 }
2342                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
2343                                    dentry->d_name.len * 2);
2344                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
2345                 ret = btrfs_update_inode(trans, root,
2346                                          dentry->d_parent->d_inode);
2347         }
2348         return ret;
2349 }
2350
2351 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
2352                             struct dentry *dentry, struct inode *inode,
2353                             int backref, u64 index)
2354 {
2355         int err = btrfs_add_link(trans, dentry, inode, backref, index);
2356         if (!err) {
2357                 d_instantiate(dentry, inode);
2358                 return 0;
2359         }
2360         if (err > 0)
2361                 err = -EEXIST;
2362         return err;
2363 }
2364
2365 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
2366                         int mode, dev_t rdev)
2367 {
2368         struct btrfs_trans_handle *trans;
2369         struct btrfs_root *root = BTRFS_I(dir)->root;
2370         struct inode *inode = NULL;
2371         int err;
2372         int drop_inode = 0;
2373         u64 objectid;
2374         unsigned long nr = 0;
2375         u64 index = 0;
2376
2377         if (!new_valid_dev(rdev))
2378                 return -EINVAL;
2379
2380         err = btrfs_check_free_space(root, 1, 0);
2381         if (err)
2382                 goto fail;
2383
2384         trans = btrfs_start_transaction(root, 1);
2385         btrfs_set_trans_block_group(trans, dir);
2386
2387         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2388         if (err) {
2389                 err = -ENOSPC;
2390                 goto out_unlock;
2391         }
2392
2393         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2394                                 dentry->d_name.len,
2395                                 dentry->d_parent->d_inode->i_ino, objectid,
2396                                 BTRFS_I(dir)->block_group, mode, &index);
2397         err = PTR_ERR(inode);
2398         if (IS_ERR(inode))
2399                 goto out_unlock;
2400
2401         err = btrfs_init_acl(inode, dir);
2402         if (err) {
2403                 drop_inode = 1;
2404                 goto out_unlock;
2405         }
2406
2407         btrfs_set_trans_block_group(trans, inode);
2408         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2409         if (err)
2410                 drop_inode = 1;
2411         else {
2412                 inode->i_op = &btrfs_special_inode_operations;
2413                 init_special_inode(inode, inode->i_mode, rdev);
2414                 btrfs_update_inode(trans, root, inode);
2415         }
2416         dir->i_sb->s_dirt = 1;
2417         btrfs_update_inode_block_group(trans, inode);
2418         btrfs_update_inode_block_group(trans, dir);
2419 out_unlock:
2420         nr = trans->blocks_used;
2421         btrfs_end_transaction_throttle(trans, root);
2422 fail:
2423         if (drop_inode) {
2424                 inode_dec_link_count(inode);
2425                 iput(inode);
2426         }
2427         btrfs_btree_balance_dirty(root, nr);
2428         return err;
2429 }
2430
2431 static int btrfs_create(struct inode *dir, struct dentry *dentry,
2432                         int mode, struct nameidata *nd)
2433 {
2434         struct btrfs_trans_handle *trans;
2435         struct btrfs_root *root = BTRFS_I(dir)->root;
2436         struct inode *inode = NULL;
2437         int err;
2438         int drop_inode = 0;
2439         unsigned long nr = 0;
2440         u64 objectid;
2441         u64 index = 0;
2442
2443         err = btrfs_check_free_space(root, 1, 0);
2444         if (err)
2445                 goto fail;
2446         trans = btrfs_start_transaction(root, 1);
2447         btrfs_set_trans_block_group(trans, dir);
2448
2449         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2450         if (err) {
2451                 err = -ENOSPC;
2452                 goto out_unlock;
2453         }
2454
2455         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2456                                 dentry->d_name.len,
2457                                 dentry->d_parent->d_inode->i_ino,
2458                                 objectid, BTRFS_I(dir)->block_group, mode,
2459                                 &index);
2460         err = PTR_ERR(inode);
2461         if (IS_ERR(inode))
2462                 goto out_unlock;
2463
2464         err = btrfs_init_acl(inode, dir);
2465         if (err) {
2466                 drop_inode = 1;
2467                 goto out_unlock;
2468         }
2469
2470         btrfs_set_trans_block_group(trans, inode);
2471         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2472         if (err)
2473                 drop_inode = 1;
2474         else {
2475                 inode->i_mapping->a_ops = &btrfs_aops;
2476                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2477                 inode->i_fop = &btrfs_file_operations;
2478                 inode->i_op = &btrfs_file_inode_operations;
2479                 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2480                 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2481                                      inode->i_mapping, GFP_NOFS);
2482                 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2483                                      inode->i_mapping, GFP_NOFS);
2484                 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2485                 mutex_init(&BTRFS_I(inode)->csum_mutex);
2486                 mutex_init(&BTRFS_I(inode)->extent_mutex);
2487                 BTRFS_I(inode)->delalloc_bytes = 0;
2488                 BTRFS_I(inode)->disk_i_size = 0;
2489                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2490                 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2491         }
2492         dir->i_sb->s_dirt = 1;
2493         btrfs_update_inode_block_group(trans, inode);
2494         btrfs_update_inode_block_group(trans, dir);
2495 out_unlock:
2496         nr = trans->blocks_used;
2497         btrfs_end_transaction_throttle(trans, root);
2498 fail:
2499         if (drop_inode) {
2500                 inode_dec_link_count(inode);
2501                 iput(inode);
2502         }
2503         btrfs_btree_balance_dirty(root, nr);
2504         return err;
2505 }
2506
2507 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
2508                       struct dentry *dentry)
2509 {
2510         struct btrfs_trans_handle *trans;
2511         struct btrfs_root *root = BTRFS_I(dir)->root;
2512         struct inode *inode = old_dentry->d_inode;
2513         u64 index;
2514         unsigned long nr = 0;
2515         int err;
2516         int drop_inode = 0;
2517
2518         if (inode->i_nlink == 0)
2519                 return -ENOENT;
2520
2521 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
2522         inode->i_nlink++;
2523 #else
2524         inc_nlink(inode);
2525 #endif
2526         err = btrfs_check_free_space(root, 1, 0);
2527         if (err)
2528                 goto fail;
2529         err = btrfs_set_inode_index(dir, inode, &index);
2530         if (err)
2531                 goto fail;
2532
2533         trans = btrfs_start_transaction(root, 1);
2534
2535         btrfs_set_trans_block_group(trans, dir);
2536         atomic_inc(&inode->i_count);
2537
2538         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
2539
2540         if (err)
2541                 drop_inode = 1;
2542
2543         dir->i_sb->s_dirt = 1;
2544         btrfs_update_inode_block_group(trans, dir);
2545         err = btrfs_update_inode(trans, root, inode);
2546
2547         if (err)
2548                 drop_inode = 1;
2549
2550         nr = trans->blocks_used;
2551         btrfs_end_transaction_throttle(trans, root);
2552 fail:
2553         if (drop_inode) {
2554                 inode_dec_link_count(inode);
2555                 iput(inode);
2556         }
2557         btrfs_btree_balance_dirty(root, nr);
2558         return err;
2559 }
2560
2561 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2562 {
2563         struct inode *inode = NULL;
2564         struct btrfs_trans_handle *trans;
2565         struct btrfs_root *root = BTRFS_I(dir)->root;
2566         int err = 0;
2567         int drop_on_err = 0;
2568         u64 objectid = 0;
2569         u64 index = 0;
2570         unsigned long nr = 1;
2571
2572         err = btrfs_check_free_space(root, 1, 0);
2573         if (err)
2574                 goto out_unlock;
2575
2576         trans = btrfs_start_transaction(root, 1);
2577         btrfs_set_trans_block_group(trans, dir);
2578
2579         if (IS_ERR(trans)) {
2580                 err = PTR_ERR(trans);
2581                 goto out_unlock;
2582         }
2583
2584         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2585         if (err) {
2586                 err = -ENOSPC;
2587                 goto out_unlock;
2588         }
2589
2590         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2591                                 dentry->d_name.len,
2592                                 dentry->d_parent->d_inode->i_ino, objectid,
2593                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
2594                                 &index);
2595         if (IS_ERR(inode)) {
2596                 err = PTR_ERR(inode);
2597                 goto out_fail;
2598         }
2599
2600         drop_on_err = 1;
2601
2602         err = btrfs_init_acl(inode, dir);
2603         if (err)
2604                 goto out_fail;
2605
2606         inode->i_op = &btrfs_dir_inode_operations;
2607         inode->i_fop = &btrfs_dir_file_operations;
2608         btrfs_set_trans_block_group(trans, inode);
2609
2610         btrfs_i_size_write(inode, 0);
2611         err = btrfs_update_inode(trans, root, inode);
2612         if (err)
2613                 goto out_fail;
2614
2615         err = btrfs_add_link(trans, dentry, inode, 0, index);
2616         if (err)
2617                 goto out_fail;
2618
2619         d_instantiate(dentry, inode);
2620         drop_on_err = 0;
2621         dir->i_sb->s_dirt = 1;
2622         btrfs_update_inode_block_group(trans, inode);
2623         btrfs_update_inode_block_group(trans, dir);
2624
2625 out_fail:
2626         nr = trans->blocks_used;
2627         btrfs_end_transaction_throttle(trans, root);
2628
2629 out_unlock:
2630         if (drop_on_err)
2631                 iput(inode);
2632         btrfs_btree_balance_dirty(root, nr);
2633         return err;
2634 }
2635
2636 static int merge_extent_mapping(struct extent_map_tree *em_tree,
2637                                 struct extent_map *existing,
2638                                 struct extent_map *em,
2639                                 u64 map_start, u64 map_len)
2640 {
2641         u64 start_diff;
2642
2643         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
2644         start_diff = map_start - em->start;
2645         em->start = map_start;
2646         em->len = map_len;
2647         if (em->block_start < EXTENT_MAP_LAST_BYTE)
2648                 em->block_start += start_diff;
2649         return add_extent_mapping(em_tree, em);
2650 }
2651
2652 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2653                                     size_t pg_offset, u64 start, u64 len,
2654                                     int create)
2655 {
2656         int ret;
2657         int err = 0;
2658         u64 bytenr;
2659         u64 extent_start = 0;
2660         u64 extent_end = 0;
2661         u64 objectid = inode->i_ino;
2662         u32 found_type;
2663         struct btrfs_path *path = NULL;
2664         struct btrfs_root *root = BTRFS_I(inode)->root;
2665         struct btrfs_file_extent_item *item;
2666         struct extent_buffer *leaf;
2667         struct btrfs_key found_key;
2668         struct extent_map *em = NULL;
2669         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2670         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2671         struct btrfs_trans_handle *trans = NULL;
2672
2673 again:
2674         spin_lock(&em_tree->lock);
2675         em = lookup_extent_mapping(em_tree, start, len);
2676         if (em)
2677                 em->bdev = root->fs_info->fs_devices->latest_bdev;
2678         spin_unlock(&em_tree->lock);
2679
2680         if (em) {
2681                 if (em->start > start || em->start + em->len <= start)
2682                         free_extent_map(em);
2683                 else if (em->block_start == EXTENT_MAP_INLINE && page)
2684                         free_extent_map(em);
2685                 else
2686                         goto out;
2687         }
2688         em = alloc_extent_map(GFP_NOFS);
2689         if (!em) {
2690                 err = -ENOMEM;
2691                 goto out;
2692         }
2693         em->bdev = root->fs_info->fs_devices->latest_bdev;
2694         em->start = EXTENT_MAP_HOLE;
2695         em->len = (u64)-1;
2696
2697         if (!path) {
2698                 path = btrfs_alloc_path();
2699                 BUG_ON(!path);
2700         }
2701
2702         ret = btrfs_lookup_file_extent(trans, root, path,
2703                                        objectid, start, trans != NULL);
2704         if (ret < 0) {
2705                 err = ret;
2706                 goto out;
2707         }
2708
2709         if (ret != 0) {
2710                 if (path->slots[0] == 0)
2711                         goto not_found;
2712                 path->slots[0]--;
2713         }
2714
2715         leaf = path->nodes[0];
2716         item = btrfs_item_ptr(leaf, path->slots[0],
2717                               struct btrfs_file_extent_item);
2718         /* are we inside the extent that was found? */
2719         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2720         found_type = btrfs_key_type(&found_key);
2721         if (found_key.objectid != objectid ||
2722             found_type != BTRFS_EXTENT_DATA_KEY) {
2723                 goto not_found;
2724         }
2725
2726         found_type = btrfs_file_extent_type(leaf, item);
2727         extent_start = found_key.offset;
2728         if (found_type == BTRFS_FILE_EXTENT_REG) {
2729                 extent_end = extent_start +
2730                        btrfs_file_extent_num_bytes(leaf, item);
2731                 err = 0;
2732                 if (start < extent_start || start >= extent_end) {
2733                         em->start = start;
2734                         if (start < extent_start) {
2735                                 if (start + len <= extent_start)
2736                                         goto not_found;
2737                                 em->len = extent_end - extent_start;
2738                         } else {
2739                                 em->len = len;
2740                         }
2741                         goto not_found_em;
2742                 }
2743                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
2744                 if (bytenr == 0) {
2745                         em->start = extent_start;
2746                         em->len = extent_end - extent_start;
2747                         em->block_start = EXTENT_MAP_HOLE;
2748                         goto insert;
2749                 }
2750                 bytenr += btrfs_file_extent_offset(leaf, item);
2751                 em->block_start = bytenr;
2752                 em->start = extent_start;
2753                 em->len = extent_end - extent_start;
2754                 goto insert;
2755         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
2756                 u64 page_start;
2757                 unsigned long ptr;
2758                 char *map;
2759                 size_t size;
2760                 size_t extent_offset;
2761                 size_t copy_size;
2762
2763                 size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf,
2764                                                     path->slots[0]));
2765                 extent_end = (extent_start + size + root->sectorsize - 1) &
2766                         ~((u64)root->sectorsize - 1);
2767                 if (start < extent_start || start >= extent_end) {
2768                         em->start = start;
2769                         if (start < extent_start) {
2770                                 if (start + len <= extent_start)
2771                                         goto not_found;
2772                                 em->len = extent_end - extent_start;
2773                         } else {
2774                                 em->len = len;
2775                         }
2776                         goto not_found_em;
2777                 }
2778                 em->block_start = EXTENT_MAP_INLINE;
2779
2780                 if (!page) {
2781                         em->start = extent_start;
2782                         em->len = size;
2783                         goto out;
2784                 }
2785
2786                 page_start = page_offset(page) + pg_offset;
2787                 extent_offset = page_start - extent_start;
2788                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
2789                                 size - extent_offset);
2790                 em->start = extent_start + extent_offset;
2791                 em->len = (copy_size + root->sectorsize - 1) &
2792                         ~((u64)root->sectorsize - 1);
2793                 map = kmap(page);
2794                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
2795                 if (create == 0 && !PageUptodate(page)) {
2796                         read_extent_buffer(leaf, map + pg_offset, ptr,
2797                                            copy_size);
2798                         flush_dcache_page(page);
2799                 } else if (create && PageUptodate(page)) {
2800                         if (!trans) {
2801                                 kunmap(page);
2802                                 free_extent_map(em);
2803                                 em = NULL;
2804                                 btrfs_release_path(root, path);
2805                                 trans = btrfs_join_transaction(root, 1);
2806                                 goto again;
2807                         }
2808                         write_extent_buffer(leaf, map + pg_offset, ptr,
2809                                             copy_size);
2810                         btrfs_mark_buffer_dirty(leaf);
2811                 }
2812                 kunmap(page);
2813                 set_extent_uptodate(io_tree, em->start,
2814                                     extent_map_end(em) - 1, GFP_NOFS);
2815                 goto insert;
2816         } else {
2817                 printk("unkknown found_type %d\n", found_type);
2818                 WARN_ON(1);
2819         }
2820 not_found:
2821         em->start = start;
2822         em->len = len;
2823 not_found_em:
2824         em->block_start = EXTENT_MAP_HOLE;
2825 insert:
2826         btrfs_release_path(root, path);
2827         if (em->start > start || extent_map_end(em) <= start) {
2828                 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
2829                 err = -EIO;
2830                 goto out;
2831         }
2832
2833         err = 0;
2834         spin_lock(&em_tree->lock);
2835         ret = add_extent_mapping(em_tree, em);
2836         /* it is possible that someone inserted the extent into the tree
2837          * while we had the lock dropped.  It is also possible that
2838          * an overlapping map exists in the tree
2839          */
2840         if (ret == -EEXIST) {
2841                 struct extent_map *existing;
2842
2843                 ret = 0;
2844
2845                 existing = lookup_extent_mapping(em_tree, start, len);
2846                 if (existing && (existing->start > start ||
2847                     existing->start + existing->len <= start)) {
2848                         free_extent_map(existing);
2849                         existing = NULL;
2850                 }
2851                 if (!existing) {
2852                         existing = lookup_extent_mapping(em_tree, em->start,
2853                                                          em->len);
2854                         if (existing) {
2855                                 err = merge_extent_mapping(em_tree, existing,
2856                                                            em, start,
2857                                                            root->sectorsize);
2858                                 free_extent_map(existing);
2859                                 if (err) {
2860                                         free_extent_map(em);
2861                                         em = NULL;
2862                                 }
2863                         } else {
2864                                 err = -EIO;
2865                                 printk("failing to insert %Lu %Lu\n",
2866                                        start, len);
2867                                 free_extent_map(em);
2868                                 em = NULL;
2869                         }
2870                 } else {
2871                         free_extent_map(em);
2872                         em = existing;
2873                         err = 0;
2874                 }
2875         }
2876         spin_unlock(&em_tree->lock);
2877 out:
2878         if (path)
2879                 btrfs_free_path(path);
2880         if (trans) {
2881                 ret = btrfs_end_transaction(trans, root);
2882                 if (!err) {
2883                         err = ret;
2884                 }
2885         }
2886         if (err) {
2887                 free_extent_map(em);
2888                 WARN_ON(1);
2889                 return ERR_PTR(err);
2890         }
2891         return em;
2892 }
2893
2894 #if 0 /* waiting for O_DIRECT reads */
2895 static int btrfs_get_block(struct inode *inode, sector_t iblock,
2896                         struct buffer_head *bh_result, int create)
2897 {
2898         struct extent_map *em;
2899         u64 start = (u64)iblock << inode->i_blkbits;
2900         struct btrfs_multi_bio *multi = NULL;
2901         struct btrfs_root *root = BTRFS_I(inode)->root;
2902         u64 len;
2903         u64 logical;
2904         u64 map_length;
2905         int ret = 0;
2906
2907         em = btrfs_get_extent(inode, NULL, 0, start, bh_result->b_size, 0);
2908
2909         if (!em || IS_ERR(em))
2910                 goto out;
2911
2912         if (em->start > start || em->start + em->len <= start) {
2913             goto out;
2914         }
2915
2916         if (em->block_start == EXTENT_MAP_INLINE) {
2917                 ret = -EINVAL;
2918                 goto out;
2919         }
2920
2921         len = em->start + em->len - start;
2922         len = min_t(u64, len, INT_LIMIT(typeof(bh_result->b_size)));
2923
2924         if (em->block_start == EXTENT_MAP_HOLE ||
2925             em->block_start == EXTENT_MAP_DELALLOC) {
2926                 bh_result->b_size = len;
2927                 goto out;
2928         }
2929
2930         logical = start - em->start;
2931         logical = em->block_start + logical;
2932
2933         map_length = len;
2934         ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
2935                               logical, &map_length, &multi, 0);
2936         BUG_ON(ret);
2937         bh_result->b_blocknr = multi->stripes[0].physical >> inode->i_blkbits;
2938         bh_result->b_size = min(map_length, len);
2939
2940         bh_result->b_bdev = multi->stripes[0].dev->bdev;
2941         set_buffer_mapped(bh_result);
2942         kfree(multi);
2943 out:
2944         free_extent_map(em);
2945         return ret;
2946 }
2947 #endif
2948
2949 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
2950                         const struct iovec *iov, loff_t offset,
2951                         unsigned long nr_segs)
2952 {
2953         return -EINVAL;
2954 #if 0
2955         struct file *file = iocb->ki_filp;
2956         struct inode *inode = file->f_mapping->host;
2957
2958         if (rw == WRITE)
2959                 return -EINVAL;
2960
2961         return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2962                                   offset, nr_segs, btrfs_get_block, NULL);
2963 #endif
2964 }
2965
2966 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
2967 {
2968         return extent_bmap(mapping, iblock, btrfs_get_extent);
2969 }
2970
2971 int btrfs_readpage(struct file *file, struct page *page)
2972 {
2973         struct extent_io_tree *tree;
2974         tree = &BTRFS_I(page->mapping->host)->io_tree;
2975         return extent_read_full_page(tree, page, btrfs_get_extent);
2976 }
2977
2978 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
2979 {
2980         struct extent_io_tree *tree;
2981
2982
2983         if (current->flags & PF_MEMALLOC) {
2984                 redirty_page_for_writepage(wbc, page);
2985                 unlock_page(page);
2986                 return 0;
2987         }
2988         tree = &BTRFS_I(page->mapping->host)->io_tree;
2989         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
2990 }
2991
2992 int btrfs_writepages(struct address_space *mapping,
2993                      struct writeback_control *wbc)
2994 {
2995         struct extent_io_tree *tree;
2996         tree = &BTRFS_I(mapping->host)->io_tree;
2997         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
2998 }
2999
3000 static int
3001 btrfs_readpages(struct file *file, struct address_space *mapping,
3002                 struct list_head *pages, unsigned nr_pages)
3003 {
3004         struct extent_io_tree *tree;
3005         tree = &BTRFS_I(mapping->host)->io_tree;
3006         return extent_readpages(tree, mapping, pages, nr_pages,
3007                                 btrfs_get_extent);
3008 }
3009 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3010 {
3011         struct extent_io_tree *tree;
3012         struct extent_map_tree *map;
3013         int ret;
3014
3015         tree = &BTRFS_I(page->mapping->host)->io_tree;
3016         map = &BTRFS_I(page->mapping->host)->extent_tree;
3017         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
3018         if (ret == 1) {
3019                 ClearPagePrivate(page);
3020                 set_page_private(page, 0);
3021                 page_cache_release(page);
3022         }
3023         return ret;
3024 }
3025
3026 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3027 {
3028         return __btrfs_releasepage(page, gfp_flags);
3029 }
3030
3031 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
3032 {
3033         struct extent_io_tree *tree;
3034         struct btrfs_ordered_extent *ordered;
3035         u64 page_start = page_offset(page);
3036         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3037
3038         wait_on_page_writeback(page);
3039         tree = &BTRFS_I(page->mapping->host)->io_tree;
3040         if (offset) {
3041                 btrfs_releasepage(page, GFP_NOFS);
3042                 return;
3043         }
3044
3045         lock_extent(tree, page_start, page_end, GFP_NOFS);
3046         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3047                                            page_offset(page));
3048         if (ordered) {
3049                 /*
3050                  * IO on this page will never be started, so we need
3051                  * to account for any ordered extents now
3052                  */
3053                 clear_extent_bit(tree, page_start, page_end,
3054                                  EXTENT_DIRTY | EXTENT_DELALLOC |
3055                                  EXTENT_LOCKED, 1, 0, GFP_NOFS);
3056                 btrfs_finish_ordered_io(page->mapping->host,
3057                                         page_start, page_end);
3058                 btrfs_put_ordered_extent(ordered);
3059                 lock_extent(tree, page_start, page_end, GFP_NOFS);
3060         }
3061         clear_extent_bit(tree, page_start, page_end,
3062                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3063                  EXTENT_ORDERED,
3064                  1, 1, GFP_NOFS);
3065         __btrfs_releasepage(page, GFP_NOFS);
3066
3067         ClearPageChecked(page);
3068         if (PagePrivate(page)) {
3069                 ClearPagePrivate(page);
3070                 set_page_private(page, 0);
3071                 page_cache_release(page);
3072         }
3073 }
3074
3075 /*
3076  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3077  * called from a page fault handler when a page is first dirtied. Hence we must
3078  * be careful to check for EOF conditions here. We set the page up correctly
3079  * for a written page which means we get ENOSPC checking when writing into
3080  * holes and correct delalloc and unwritten extent mapping on filesystems that
3081  * support these features.
3082  *
3083  * We are not allowed to take the i_mutex here so we have to play games to
3084  * protect against truncate races as the page could now be beyond EOF.  Because
3085  * vmtruncate() writes the inode size before removing pages, once we have the
3086  * page lock we can determine safely if the page is beyond EOF. If it is not
3087  * beyond EOF, then the page is guaranteed safe against truncation until we
3088  * unlock the page.
3089  */
3090 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3091 {
3092         struct inode *inode = fdentry(vma->vm_file)->d_inode;
3093         struct btrfs_root *root = BTRFS_I(inode)->root;
3094         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3095         struct btrfs_ordered_extent *ordered;
3096         char *kaddr;
3097         unsigned long zero_start;
3098         loff_t size;
3099         int ret;
3100         u64 page_start;
3101         u64 page_end;
3102
3103         ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3104         if (ret)
3105                 goto out;
3106
3107         ret = -EINVAL;
3108 again:
3109         lock_page(page);
3110         size = i_size_read(inode);
3111         page_start = page_offset(page);
3112         page_end = page_start + PAGE_CACHE_SIZE - 1;
3113
3114         if ((page->mapping != inode->i_mapping) ||
3115             (page_start >= size)) {
3116                 /* page got truncated out from underneath us */
3117                 goto out_unlock;
3118         }
3119         wait_on_page_writeback(page);
3120
3121         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3122         set_page_extent_mapped(page);
3123
3124         /*
3125          * we can't set the delalloc bits if there are pending ordered
3126          * extents.  Drop our locks and wait for them to finish
3127          */
3128         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3129         if (ordered) {
3130                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3131                 unlock_page(page);
3132                 btrfs_start_ordered_extent(inode, ordered, 1);
3133                 btrfs_put_ordered_extent(ordered);
3134                 goto again;
3135         }
3136
3137         btrfs_set_extent_delalloc(inode, page_start, page_end);
3138         ret = 0;
3139
3140         /* page is wholly or partially inside EOF */
3141         if (page_start + PAGE_CACHE_SIZE > size)
3142                 zero_start = size & ~PAGE_CACHE_MASK;
3143         else
3144                 zero_start = PAGE_CACHE_SIZE;
3145
3146         if (zero_start != PAGE_CACHE_SIZE) {
3147                 kaddr = kmap(page);
3148                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3149                 flush_dcache_page(page);
3150                 kunmap(page);
3151         }
3152         ClearPageChecked(page);
3153         set_page_dirty(page);
3154         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3155
3156 out_unlock:
3157         unlock_page(page);
3158 out:
3159         return ret;
3160 }
3161
3162 static void btrfs_truncate(struct inode *inode)
3163 {
3164         struct btrfs_root *root = BTRFS_I(inode)->root;
3165         int ret;
3166         struct btrfs_trans_handle *trans;
3167         unsigned long nr;
3168         u64 mask = root->sectorsize - 1;
3169
3170         if (!S_ISREG(inode->i_mode))
3171                 return;
3172         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3173                 return;
3174
3175         btrfs_truncate_page(inode->i_mapping, inode->i_size);
3176         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3177
3178         trans = btrfs_start_transaction(root, 1);
3179         btrfs_set_trans_block_group(trans, inode);
3180         btrfs_i_size_write(inode, inode->i_size);
3181
3182         ret = btrfs_orphan_add(trans, inode);
3183         if (ret)
3184                 goto out;
3185         /* FIXME, add redo link to tree so we don't leak on crash */
3186         ret = btrfs_truncate_in_trans(trans, root, inode,
3187                                       BTRFS_EXTENT_DATA_KEY);
3188         btrfs_update_inode(trans, root, inode);
3189
3190         ret = btrfs_orphan_del(trans, inode);
3191         BUG_ON(ret);
3192
3193 out:
3194         nr = trans->blocks_used;
3195         ret = btrfs_end_transaction_throttle(trans, root);
3196         BUG_ON(ret);
3197         btrfs_btree_balance_dirty(root, nr);
3198 }
3199
3200 /*
3201  * Invalidate a single dcache entry at the root of the filesystem.
3202  * Needed after creation of snapshot or subvolume.
3203  */
3204 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3205                                   int namelen)
3206 {
3207         struct dentry *alias, *entry;
3208         struct qstr qstr;
3209
3210         alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3211         if (alias) {
3212                 qstr.name = name;
3213                 qstr.len = namelen;
3214                 /* change me if btrfs ever gets a d_hash operation */
3215                 qstr.hash = full_name_hash(qstr.name, qstr.len);
3216                 entry = d_lookup(alias, &qstr);
3217                 dput(alias);
3218                 if (entry) {
3219                         d_invalidate(entry);
3220                         dput(entry);
3221                 }
3222         }
3223 }
3224
3225 int btrfs_create_subvol_root(struct btrfs_root *new_root,
3226                 struct btrfs_trans_handle *trans, u64 new_dirid,
3227                 struct btrfs_block_group_cache *block_group)
3228 {
3229         struct inode *inode;
3230         u64 index = 0;
3231
3232         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3233                                 new_dirid, block_group, S_IFDIR | 0700, &index);
3234         if (IS_ERR(inode))
3235                 return PTR_ERR(inode);
3236         inode->i_op = &btrfs_dir_inode_operations;
3237         inode->i_fop = &btrfs_dir_file_operations;
3238         new_root->inode = inode;
3239
3240         inode->i_nlink = 1;
3241         btrfs_i_size_write(inode, 0);
3242
3243         return btrfs_update_inode(trans, new_root, inode);
3244 }
3245
3246 unsigned long btrfs_force_ra(struct address_space *mapping,
3247                               struct file_ra_state *ra, struct file *file,
3248                               pgoff_t offset, pgoff_t last_index)
3249 {
3250         pgoff_t req_size = last_index - offset + 1;
3251
3252 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3253         offset = page_cache_readahead(mapping, ra, file, offset, req_size);
3254         return offset;
3255 #else
3256         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3257         return offset + req_size;
3258 #endif
3259 }
3260
3261 struct inode *btrfs_alloc_inode(struct super_block *sb)
3262 {
3263         struct btrfs_inode *ei;
3264
3265         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3266         if (!ei)
3267                 return NULL;
3268         ei->last_trans = 0;
3269         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3270         ei->i_acl = BTRFS_ACL_NOT_CACHED;
3271         ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3272         INIT_LIST_HEAD(&ei->i_orphan);
3273         return &ei->vfs_inode;
3274 }
3275
3276 void btrfs_destroy_inode(struct inode *inode)
3277 {
3278         struct btrfs_ordered_extent *ordered;
3279         WARN_ON(!list_empty(&inode->i_dentry));
3280         WARN_ON(inode->i_data.nrpages);
3281
3282         if (BTRFS_I(inode)->i_acl &&
3283             BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3284                 posix_acl_release(BTRFS_I(inode)->i_acl);
3285         if (BTRFS_I(inode)->i_default_acl &&
3286             BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3287                 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3288
3289         spin_lock(&BTRFS_I(inode)->root->list_lock);
3290         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3291                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3292                        " list\n", inode->i_ino);
3293                 dump_stack();
3294         }
3295         spin_unlock(&BTRFS_I(inode)->root->list_lock);
3296
3297         while(1) {
3298                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3299                 if (!ordered)
3300                         break;
3301                 else {
3302                         printk("found ordered extent %Lu %Lu\n",
3303                                ordered->file_offset, ordered->len);
3304                         btrfs_remove_ordered_extent(inode, ordered);
3305                         btrfs_put_ordered_extent(ordered);
3306                         btrfs_put_ordered_extent(ordered);
3307                 }
3308         }
3309         btrfs_drop_extent_cache(inode, 0, (u64)-1);
3310         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
3311 }
3312
3313 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3314 static void init_once(void *foo)
3315 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3316 static void init_once(struct kmem_cache * cachep, void *foo)
3317 #else
3318 static void init_once(void * foo, struct kmem_cache * cachep,
3319                       unsigned long flags)
3320 #endif
3321 {
3322         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
3323
3324         inode_init_once(&ei->vfs_inode);
3325 }
3326
3327 void btrfs_destroy_cachep(void)
3328 {
3329         if (btrfs_inode_cachep)
3330                 kmem_cache_destroy(btrfs_inode_cachep);
3331         if (btrfs_trans_handle_cachep)
3332                 kmem_cache_destroy(btrfs_trans_handle_cachep);
3333         if (btrfs_transaction_cachep)
3334                 kmem_cache_destroy(btrfs_transaction_cachep);
3335         if (btrfs_bit_radix_cachep)
3336                 kmem_cache_destroy(btrfs_bit_radix_cachep);
3337         if (btrfs_path_cachep)
3338                 kmem_cache_destroy(btrfs_path_cachep);
3339 }
3340
3341 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
3342                                        unsigned long extra_flags,
3343 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3344                                        void (*ctor)(void *)
3345 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3346                                        void (*ctor)(struct kmem_cache *, void *)
3347 #else
3348                                        void (*ctor)(void *, struct kmem_cache *,
3349                                                     unsigned long)
3350 #endif
3351                                      )
3352 {
3353         return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
3354                                  SLAB_MEM_SPREAD | extra_flags), ctor
3355 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3356                                  ,NULL
3357 #endif
3358                                 );
3359 }
3360
3361 int btrfs_init_cachep(void)
3362 {
3363         btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
3364                                           sizeof(struct btrfs_inode),
3365                                           0, init_once);
3366         if (!btrfs_inode_cachep)
3367                 goto fail;
3368         btrfs_trans_handle_cachep =
3369                         btrfs_cache_create("btrfs_trans_handle_cache",
3370                                            sizeof(struct btrfs_trans_handle),
3371                                            0, NULL);
3372         if (!btrfs_trans_handle_cachep)
3373                 goto fail;
3374         btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
3375                                              sizeof(struct btrfs_transaction),
3376                                              0, NULL);
3377         if (!btrfs_transaction_cachep)
3378                 goto fail;
3379         btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
3380                                          sizeof(struct btrfs_path),
3381                                          0, NULL);
3382         if (!btrfs_path_cachep)
3383                 goto fail;
3384         btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
3385                                               SLAB_DESTROY_BY_RCU, NULL);
3386         if (!btrfs_bit_radix_cachep)
3387                 goto fail;
3388         return 0;
3389 fail:
3390         btrfs_destroy_cachep();
3391         return -ENOMEM;
3392 }
3393
3394 static int btrfs_getattr(struct vfsmount *mnt,
3395                          struct dentry *dentry, struct kstat *stat)
3396 {
3397         struct inode *inode = dentry->d_inode;
3398         generic_fillattr(inode, stat);
3399         stat->blksize = PAGE_CACHE_SIZE;
3400         stat->blocks = inode->i_blocks + (BTRFS_I(inode)->delalloc_bytes >> 9);
3401         return 0;
3402 }
3403
3404 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
3405                            struct inode * new_dir,struct dentry *new_dentry)
3406 {
3407         struct btrfs_trans_handle *trans;
3408         struct btrfs_root *root = BTRFS_I(old_dir)->root;
3409         struct inode *new_inode = new_dentry->d_inode;
3410         struct inode *old_inode = old_dentry->d_inode;
3411         struct timespec ctime = CURRENT_TIME;
3412         u64 index = 0;
3413         int ret;
3414
3415         if (S_ISDIR(old_inode->i_mode) && new_inode &&
3416             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
3417                 return -ENOTEMPTY;
3418         }
3419
3420         ret = btrfs_check_free_space(root, 1, 0);
3421         if (ret)
3422                 goto out_unlock;
3423
3424         trans = btrfs_start_transaction(root, 1);
3425
3426         btrfs_set_trans_block_group(trans, new_dir);
3427
3428         old_dentry->d_inode->i_nlink++;
3429         old_dir->i_ctime = old_dir->i_mtime = ctime;
3430         new_dir->i_ctime = new_dir->i_mtime = ctime;
3431         old_inode->i_ctime = ctime;
3432
3433         ret = btrfs_unlink_trans(trans, root, old_dir, old_dentry);
3434         if (ret)
3435                 goto out_fail;
3436
3437         if (new_inode) {
3438                 new_inode->i_ctime = CURRENT_TIME;
3439                 ret = btrfs_unlink_trans(trans, root, new_dir, new_dentry);
3440                 if (ret)
3441                         goto out_fail;
3442                 if (new_inode->i_nlink == 0) {
3443                         ret = btrfs_orphan_add(trans, new_inode);
3444                         if (ret)
3445                                 goto out_fail;
3446                 }
3447         }
3448         ret = btrfs_set_inode_index(new_dir, old_inode, &index);
3449         if (ret)
3450                 goto out_fail;
3451
3452         ret = btrfs_add_link(trans, new_dentry, old_inode, 1, index);
3453         if (ret)
3454                 goto out_fail;
3455
3456 out_fail:
3457         btrfs_end_transaction_throttle(trans, root);
3458 out_unlock:
3459         return ret;
3460 }
3461
3462 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
3463 {
3464         struct list_head *head = &root->fs_info->delalloc_inodes;
3465         struct btrfs_inode *binode;
3466         unsigned long flags;
3467
3468         spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3469         while(!list_empty(head)) {
3470                 binode = list_entry(head->next, struct btrfs_inode,
3471                                     delalloc_inodes);
3472                 atomic_inc(&binode->vfs_inode.i_count);
3473                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3474                 filemap_write_and_wait(binode->vfs_inode.i_mapping);
3475                 iput(&binode->vfs_inode);
3476                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3477         }
3478         spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3479         return 0;
3480 }
3481
3482 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
3483                          const char *symname)
3484 {
3485         struct btrfs_trans_handle *trans;
3486         struct btrfs_root *root = BTRFS_I(dir)->root;
3487         struct btrfs_path *path;
3488         struct btrfs_key key;
3489         struct inode *inode = NULL;
3490         int err;
3491         int drop_inode = 0;
3492         u64 objectid;
3493         u64 index = 0 ;
3494         int name_len;
3495         int datasize;
3496         unsigned long ptr;
3497         struct btrfs_file_extent_item *ei;
3498         struct extent_buffer *leaf;
3499         unsigned long nr = 0;
3500
3501         name_len = strlen(symname) + 1;
3502         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
3503                 return -ENAMETOOLONG;
3504
3505         err = btrfs_check_free_space(root, 1, 0);
3506         if (err)
3507                 goto out_fail;
3508
3509         trans = btrfs_start_transaction(root, 1);
3510         btrfs_set_trans_block_group(trans, dir);
3511
3512         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3513         if (err) {
3514                 err = -ENOSPC;
3515                 goto out_unlock;
3516         }
3517
3518         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3519                                 dentry->d_name.len,
3520                                 dentry->d_parent->d_inode->i_ino, objectid,
3521                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
3522                                 &index);
3523         err = PTR_ERR(inode);
3524         if (IS_ERR(inode))
3525                 goto out_unlock;
3526
3527         err = btrfs_init_acl(inode, dir);
3528         if (err) {
3529                 drop_inode = 1;
3530                 goto out_unlock;
3531         }
3532
3533         btrfs_set_trans_block_group(trans, inode);
3534         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3535         if (err)
3536                 drop_inode = 1;
3537         else {
3538                 inode->i_mapping->a_ops = &btrfs_aops;
3539                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3540                 inode->i_fop = &btrfs_file_operations;
3541                 inode->i_op = &btrfs_file_inode_operations;
3542                 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3543                 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3544                                      inode->i_mapping, GFP_NOFS);
3545                 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3546                                      inode->i_mapping, GFP_NOFS);
3547                 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3548                 mutex_init(&BTRFS_I(inode)->csum_mutex);
3549                 mutex_init(&BTRFS_I(inode)->extent_mutex);
3550                 BTRFS_I(inode)->delalloc_bytes = 0;
3551                 BTRFS_I(inode)->disk_i_size = 0;
3552                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3553                 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3554         }
3555         dir->i_sb->s_dirt = 1;
3556         btrfs_update_inode_block_group(trans, inode);
3557         btrfs_update_inode_block_group(trans, dir);
3558         if (drop_inode)
3559                 goto out_unlock;
3560
3561         path = btrfs_alloc_path();
3562         BUG_ON(!path);
3563         key.objectid = inode->i_ino;
3564         key.offset = 0;
3565         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
3566         datasize = btrfs_file_extent_calc_inline_size(name_len);
3567         err = btrfs_insert_empty_item(trans, root, path, &key,
3568                                       datasize);
3569         if (err) {
3570                 drop_inode = 1;
3571                 goto out_unlock;
3572         }
3573         leaf = path->nodes[0];
3574         ei = btrfs_item_ptr(leaf, path->slots[0],
3575                             struct btrfs_file_extent_item);
3576         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
3577         btrfs_set_file_extent_type(leaf, ei,
3578                                    BTRFS_FILE_EXTENT_INLINE);
3579         ptr = btrfs_file_extent_inline_start(ei);
3580         write_extent_buffer(leaf, symname, ptr, name_len);
3581         btrfs_mark_buffer_dirty(leaf);
3582         btrfs_free_path(path);
3583
3584         inode->i_op = &btrfs_symlink_inode_operations;
3585         inode->i_mapping->a_ops = &btrfs_symlink_aops;
3586         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3587         btrfs_i_size_write(inode, name_len - 1);
3588         err = btrfs_update_inode(trans, root, inode);
3589         if (err)
3590                 drop_inode = 1;
3591
3592 out_unlock:
3593         nr = trans->blocks_used;
3594         btrfs_end_transaction_throttle(trans, root);
3595 out_fail:
3596         if (drop_inode) {
3597                 inode_dec_link_count(inode);
3598                 iput(inode);
3599         }
3600         btrfs_btree_balance_dirty(root, nr);
3601         return err;
3602 }
3603
3604 static int btrfs_set_page_dirty(struct page *page)
3605 {
3606         return __set_page_dirty_nobuffers(page);
3607 }
3608
3609 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3610 static int btrfs_permission(struct inode *inode, int mask)
3611 #else
3612 static int btrfs_permission(struct inode *inode, int mask,
3613                             struct nameidata *nd)
3614 #endif
3615 {
3616         if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
3617                 return -EACCES;
3618         return generic_permission(inode, mask, btrfs_check_acl);
3619 }
3620
3621 static struct inode_operations btrfs_dir_inode_operations = {
3622         .lookup         = btrfs_lookup,
3623         .create         = btrfs_create,
3624         .unlink         = btrfs_unlink,
3625         .link           = btrfs_link,
3626         .mkdir          = btrfs_mkdir,
3627         .rmdir          = btrfs_rmdir,
3628         .rename         = btrfs_rename,
3629         .symlink        = btrfs_symlink,
3630         .setattr        = btrfs_setattr,
3631         .mknod          = btrfs_mknod,
3632         .setxattr       = generic_setxattr,
3633         .getxattr       = generic_getxattr,
3634         .listxattr      = btrfs_listxattr,
3635         .removexattr    = generic_removexattr,
3636         .permission     = btrfs_permission,
3637 };
3638 static struct inode_operations btrfs_dir_ro_inode_operations = {
3639         .lookup         = btrfs_lookup,
3640         .permission     = btrfs_permission,
3641 };
3642 static struct file_operations btrfs_dir_file_operations = {
3643         .llseek         = generic_file_llseek,
3644         .read           = generic_read_dir,
3645         .readdir        = btrfs_readdir,
3646         .unlocked_ioctl = btrfs_ioctl,
3647 #ifdef CONFIG_COMPAT
3648         .compat_ioctl   = btrfs_ioctl,
3649 #endif
3650         .release        = btrfs_release_file,
3651 };
3652
3653 static struct extent_io_ops btrfs_extent_io_ops = {
3654         .fill_delalloc = run_delalloc_range,
3655         .submit_bio_hook = btrfs_submit_bio_hook,
3656         .merge_bio_hook = btrfs_merge_bio_hook,
3657         .readpage_io_hook = btrfs_readpage_io_hook,
3658         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
3659         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
3660         .writepage_start_hook = btrfs_writepage_start_hook,
3661         .readpage_io_failed_hook = btrfs_io_failed_hook,
3662         .set_bit_hook = btrfs_set_bit_hook,
3663         .clear_bit_hook = btrfs_clear_bit_hook,
3664 };
3665
3666 static struct address_space_operations btrfs_aops = {
3667         .readpage       = btrfs_readpage,
3668         .writepage      = btrfs_writepage,
3669         .writepages     = btrfs_writepages,
3670         .readpages      = btrfs_readpages,
3671         .sync_page      = block_sync_page,
3672         .bmap           = btrfs_bmap,
3673         .direct_IO      = btrfs_direct_IO,
3674         .invalidatepage = btrfs_invalidatepage,
3675         .releasepage    = btrfs_releasepage,
3676         .set_page_dirty = btrfs_set_page_dirty,
3677 };
3678
3679 static struct address_space_operations btrfs_symlink_aops = {
3680         .readpage       = btrfs_readpage,
3681         .writepage      = btrfs_writepage,
3682         .invalidatepage = btrfs_invalidatepage,
3683         .releasepage    = btrfs_releasepage,
3684 };
3685
3686 static struct inode_operations btrfs_file_inode_operations = {
3687         .truncate       = btrfs_truncate,
3688         .getattr        = btrfs_getattr,
3689         .setattr        = btrfs_setattr,
3690         .setxattr       = generic_setxattr,
3691         .getxattr       = generic_getxattr,
3692         .listxattr      = btrfs_listxattr,
3693         .removexattr    = generic_removexattr,
3694         .permission     = btrfs_permission,
3695 };
3696 static struct inode_operations btrfs_special_inode_operations = {
3697         .getattr        = btrfs_getattr,
3698         .setattr        = btrfs_setattr,
3699         .permission     = btrfs_permission,
3700         .setxattr       = generic_setxattr,
3701         .getxattr       = generic_getxattr,
3702         .listxattr      = btrfs_listxattr,
3703         .removexattr    = generic_removexattr,
3704 };
3705 static struct inode_operations btrfs_symlink_inode_operations = {
3706         .readlink       = generic_readlink,
3707         .follow_link    = page_follow_link_light,
3708         .put_link       = page_put_link,
3709         .permission     = btrfs_permission,
3710 };