Btrfs: Add ordered async work queues
[safe/jmp/linux-2.6] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include <linux/falloc.h>
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "compat.h"
51 #include "tree-log.h"
52 #include "ref-cache.h"
53 #include "compression.h"
54
55 struct btrfs_iget_args {
56         u64 ino;
57         struct btrfs_root *root;
58 };
59
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_bit_radix_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
79         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
80         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
81         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
82         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
83         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
84         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
85 };
86
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89
90 /*
91  * a very lame attempt at stopping writes when the FS is 85% full.  There
92  * are countless ways this is incorrect, but it is better than nothing.
93  */
94 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
95                            int for_del)
96 {
97         u64 total;
98         u64 used;
99         u64 thresh;
100         unsigned long flags;
101         int ret = 0;
102
103         spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
104         total = btrfs_super_total_bytes(&root->fs_info->super_copy);
105         used = btrfs_super_bytes_used(&root->fs_info->super_copy);
106         if (for_del)
107                 thresh = total * 90;
108         else
109                 thresh = total * 85;
110
111         do_div(thresh, 100);
112
113         if (used + root->fs_info->delalloc_bytes + num_required > thresh)
114                 ret = -ENOSPC;
115         spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
116         return ret;
117 }
118
119 /*
120  * this does all the hard work for inserting an inline extent into
121  * the btree.  The caller should have done a btrfs_drop_extents so that
122  * no overlapping inline items exist in the btree
123  */
124 static int noinline insert_inline_extent(struct btrfs_trans_handle *trans,
125                                 struct btrfs_root *root, struct inode *inode,
126                                 u64 start, size_t size, size_t compressed_size,
127                                 struct page **compressed_pages)
128 {
129         struct btrfs_key key;
130         struct btrfs_path *path;
131         struct extent_buffer *leaf;
132         struct page *page = NULL;
133         char *kaddr;
134         unsigned long ptr;
135         struct btrfs_file_extent_item *ei;
136         int err = 0;
137         int ret;
138         size_t cur_size = size;
139         size_t datasize;
140         unsigned long offset;
141         int use_compress = 0;
142
143         if (compressed_size && compressed_pages) {
144                 use_compress = 1;
145                 cur_size = compressed_size;
146         }
147
148         path = btrfs_alloc_path(); if (!path)
149                 return -ENOMEM;
150
151         btrfs_set_trans_block_group(trans, inode);
152
153         key.objectid = inode->i_ino;
154         key.offset = start;
155         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
156         inode_add_bytes(inode, size);
157         datasize = btrfs_file_extent_calc_inline_size(cur_size);
158
159         inode_add_bytes(inode, size);
160         ret = btrfs_insert_empty_item(trans, root, path, &key,
161                                       datasize);
162         BUG_ON(ret);
163         if (ret) {
164                 err = ret;
165                 printk("got bad ret %d\n", ret);
166                 goto fail;
167         }
168         leaf = path->nodes[0];
169         ei = btrfs_item_ptr(leaf, path->slots[0],
170                             struct btrfs_file_extent_item);
171         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
172         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
173         btrfs_set_file_extent_encryption(leaf, ei, 0);
174         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
175         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
176         ptr = btrfs_file_extent_inline_start(ei);
177
178         if (use_compress) {
179                 struct page *cpage;
180                 int i = 0;
181                 while(compressed_size > 0) {
182                         cpage = compressed_pages[i];
183                         cur_size = min(compressed_size,
184                                        PAGE_CACHE_SIZE);
185
186                         kaddr = kmap(cpage);
187                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
188                         kunmap(cpage);
189
190                         i++;
191                         ptr += cur_size;
192                         compressed_size -= cur_size;
193                 }
194                 btrfs_set_file_extent_compression(leaf, ei,
195                                                   BTRFS_COMPRESS_ZLIB);
196         } else {
197                 page = find_get_page(inode->i_mapping,
198                                      start >> PAGE_CACHE_SHIFT);
199                 btrfs_set_file_extent_compression(leaf, ei, 0);
200                 kaddr = kmap_atomic(page, KM_USER0);
201                 offset = start & (PAGE_CACHE_SIZE - 1);
202                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
203                 kunmap_atomic(kaddr, KM_USER0);
204                 page_cache_release(page);
205         }
206         btrfs_mark_buffer_dirty(leaf);
207         btrfs_free_path(path);
208
209         BTRFS_I(inode)->disk_i_size = inode->i_size;
210         btrfs_update_inode(trans, root, inode);
211         return 0;
212 fail:
213         btrfs_free_path(path);
214         return err;
215 }
216
217
218 /*
219  * conditionally insert an inline extent into the file.  This
220  * does the checks required to make sure the data is small enough
221  * to fit as an inline extent.
222  */
223 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
224                                  struct btrfs_root *root,
225                                  struct inode *inode, u64 start, u64 end,
226                                  size_t compressed_size,
227                                  struct page **compressed_pages)
228 {
229         u64 isize = i_size_read(inode);
230         u64 actual_end = min(end + 1, isize);
231         u64 inline_len = actual_end - start;
232         u64 aligned_end = (end + root->sectorsize - 1) &
233                         ~((u64)root->sectorsize - 1);
234         u64 hint_byte;
235         u64 data_len = inline_len;
236         int ret;
237
238         if (compressed_size)
239                 data_len = compressed_size;
240
241         if (start > 0 ||
242             actual_end >= PAGE_CACHE_SIZE ||
243             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
244             (!compressed_size &&
245             (actual_end & (root->sectorsize - 1)) == 0) ||
246             end + 1 < isize ||
247             data_len > root->fs_info->max_inline) {
248                 return 1;
249         }
250
251         ret = btrfs_drop_extents(trans, root, inode, start,
252                                  aligned_end, start, &hint_byte);
253         BUG_ON(ret);
254
255         if (isize > actual_end)
256                 inline_len = min_t(u64, isize, actual_end);
257         ret = insert_inline_extent(trans, root, inode, start,
258                                    inline_len, compressed_size,
259                                    compressed_pages);
260         BUG_ON(ret);
261         btrfs_drop_extent_cache(inode, start, aligned_end, 0);
262         return 0;
263 }
264
265 /*
266  * when extent_io.c finds a delayed allocation range in the file,
267  * the call backs end up in this code.  The basic idea is to
268  * allocate extents on disk for the range, and create ordered data structs
269  * in ram to track those extents.
270  *
271  * locked_page is the page that writepage had locked already.  We use
272  * it to make sure we don't do extra locks or unlocks.
273  *
274  * *page_started is set to one if we unlock locked_page and do everything
275  * required to start IO on it.  It may be clean and already done with
276  * IO when we return.
277  */
278 static int cow_file_range(struct inode *inode, struct page *locked_page,
279                           u64 start, u64 end, int *page_started)
280 {
281         struct btrfs_root *root = BTRFS_I(inode)->root;
282         struct btrfs_trans_handle *trans;
283         u64 alloc_hint = 0;
284         u64 num_bytes;
285         unsigned long ram_size;
286         u64 orig_start;
287         u64 disk_num_bytes;
288         u64 cur_alloc_size;
289         u64 blocksize = root->sectorsize;
290         u64 actual_end;
291         struct btrfs_key ins;
292         struct extent_map *em;
293         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
294         int ret = 0;
295         struct page **pages = NULL;
296         unsigned long nr_pages;
297         unsigned long nr_pages_ret = 0;
298         unsigned long total_compressed = 0;
299         unsigned long total_in = 0;
300         unsigned long max_compressed = 128 * 1024;
301         unsigned long max_uncompressed = 256 * 1024;
302         int i;
303         int ordered_type;
304         int will_compress;
305
306         trans = btrfs_join_transaction(root, 1);
307         BUG_ON(!trans);
308         btrfs_set_trans_block_group(trans, inode);
309         orig_start = start;
310
311         /*
312          * compression made this loop a bit ugly, but the basic idea is to
313          * compress some pages but keep the total size of the compressed
314          * extent relatively small.  If compression is off, this goto target
315          * is never used.
316          */
317 again:
318         will_compress = 0;
319         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
320         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
321
322         actual_end = min_t(u64, i_size_read(inode), end + 1);
323         total_compressed = actual_end - start;
324
325         /* we want to make sure that amount of ram required to uncompress
326          * an extent is reasonable, so we limit the total size in ram
327          * of a compressed extent to 256k
328          */
329         total_compressed = min(total_compressed, max_uncompressed);
330         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
331         num_bytes = max(blocksize,  num_bytes);
332         disk_num_bytes = num_bytes;
333         total_in = 0;
334         ret = 0;
335
336         /* we do compression for mount -o compress and when the
337          * inode has not been flagged as nocompress
338          */
339         if (!btrfs_test_flag(inode, NOCOMPRESS) &&
340             btrfs_test_opt(root, COMPRESS)) {
341                 WARN_ON(pages);
342                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
343
344                 /* we want to make sure the amount of IO required to satisfy
345                  * a random read is reasonably small, so we limit the size
346                  * of a compressed extent to 128k
347                  */
348                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
349                                                 total_compressed, pages,
350                                                 nr_pages, &nr_pages_ret,
351                                                 &total_in,
352                                                 &total_compressed,
353                                                 max_compressed);
354
355                 if (!ret) {
356                         unsigned long offset = total_compressed &
357                                 (PAGE_CACHE_SIZE - 1);
358                         struct page *page = pages[nr_pages_ret - 1];
359                         char *kaddr;
360
361                         /* zero the tail end of the last page, we might be
362                          * sending it down to disk
363                          */
364                         if (offset) {
365                                 kaddr = kmap_atomic(page, KM_USER0);
366                                 memset(kaddr + offset, 0,
367                                        PAGE_CACHE_SIZE - offset);
368                                 kunmap_atomic(kaddr, KM_USER0);
369                         }
370                         will_compress = 1;
371                 }
372         }
373         if (start == 0) {
374                 /* lets try to make an inline extent */
375                 if (ret || total_in < (end - start + 1)) {
376                         /* we didn't compress the entire range, try
377                          * to make an uncompressed inline extent.  This
378                          * is almost sure to fail, but maybe inline sizes
379                          * will get bigger later
380                          */
381                         ret = cow_file_range_inline(trans, root, inode,
382                                                     start, end, 0, NULL);
383                 } else {
384                         ret = cow_file_range_inline(trans, root, inode,
385                                                     start, end,
386                                                     total_compressed, pages);
387                 }
388                 if (ret == 0) {
389                         extent_clear_unlock_delalloc(inode,
390                                                      &BTRFS_I(inode)->io_tree,
391                                                      start, end, NULL,
392                                                      1, 1, 1);
393                         *page_started = 1;
394                         ret = 0;
395                         goto free_pages_out;
396                 }
397         }
398
399         if (will_compress) {
400                 /*
401                  * we aren't doing an inline extent round the compressed size
402                  * up to a block size boundary so the allocator does sane
403                  * things
404                  */
405                 total_compressed = (total_compressed + blocksize - 1) &
406                         ~(blocksize - 1);
407
408                 /*
409                  * one last check to make sure the compression is really a
410                  * win, compare the page count read with the blocks on disk
411                  */
412                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
413                         ~(PAGE_CACHE_SIZE - 1);
414                 if (total_compressed >= total_in) {
415                         will_compress = 0;
416                 } else {
417                         disk_num_bytes = total_compressed;
418                         num_bytes = total_in;
419                 }
420         }
421         if (!will_compress && pages) {
422                 /*
423                  * the compression code ran but failed to make things smaller,
424                  * free any pages it allocated and our page pointer array
425                  */
426                 for (i = 0; i < nr_pages_ret; i++) {
427                         WARN_ON(pages[i]->mapping);
428                         page_cache_release(pages[i]);
429                 }
430                 kfree(pages);
431                 pages = NULL;
432                 total_compressed = 0;
433                 nr_pages_ret = 0;
434
435                 /* flag the file so we don't compress in the future */
436                 btrfs_set_flag(inode, NOCOMPRESS);
437         }
438
439         BUG_ON(disk_num_bytes >
440                btrfs_super_total_bytes(&root->fs_info->super_copy));
441
442         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
443
444         while(disk_num_bytes > 0) {
445                 unsigned long min_bytes;
446
447                 /*
448                  * the max size of a compressed extent is pretty small,
449                  * make the code a little less complex by forcing
450                  * the allocator to find a whole compressed extent at once
451                  */
452                 if (will_compress)
453                         min_bytes = disk_num_bytes;
454                 else
455                         min_bytes = root->sectorsize;
456
457                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
458                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
459                                            min_bytes, 0, alloc_hint,
460                                            (u64)-1, &ins, 1);
461                 if (ret) {
462                         WARN_ON(1);
463                         goto free_pages_out_fail;
464                 }
465                 em = alloc_extent_map(GFP_NOFS);
466                 em->start = start;
467
468                 if (will_compress) {
469                         ram_size = num_bytes;
470                         em->len = num_bytes;
471                 } else {
472                         /* ramsize == disk size */
473                         ram_size = ins.offset;
474                         em->len = ins.offset;
475                 }
476
477                 em->block_start = ins.objectid;
478                 em->block_len = ins.offset;
479                 em->bdev = root->fs_info->fs_devices->latest_bdev;
480                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
481
482                 if (will_compress)
483                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
484
485                 while(1) {
486                         spin_lock(&em_tree->lock);
487                         ret = add_extent_mapping(em_tree, em);
488                         spin_unlock(&em_tree->lock);
489                         if (ret != -EEXIST) {
490                                 free_extent_map(em);
491                                 break;
492                         }
493                         btrfs_drop_extent_cache(inode, start,
494                                                 start + ram_size - 1, 0);
495                 }
496
497                 cur_alloc_size = ins.offset;
498                 ordered_type = will_compress ? BTRFS_ORDERED_COMPRESSED : 0;
499                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
500                                                ram_size, cur_alloc_size,
501                                                ordered_type);
502                 BUG_ON(ret);
503
504                 if (disk_num_bytes < cur_alloc_size) {
505                         printk("num_bytes %Lu cur_alloc %Lu\n", disk_num_bytes,
506                                cur_alloc_size);
507                         break;
508                 }
509
510                 if (will_compress) {
511                         /*
512                          * we're doing compression, we and we need to
513                          * submit the compressed extents down to the device.
514                          *
515                          * We lock down all the file pages, clearing their
516                          * dirty bits and setting them writeback.  Everyone
517                          * that wants to modify the page will wait on the
518                          * ordered extent above.
519                          *
520                          * The writeback bits on the file pages are
521                          * cleared when the compressed pages are on disk
522                          */
523                         btrfs_end_transaction(trans, root);
524
525                         if (start <= page_offset(locked_page) &&
526                             page_offset(locked_page) < start + ram_size) {
527                                 *page_started = 1;
528                         }
529
530                         extent_clear_unlock_delalloc(inode,
531                                                      &BTRFS_I(inode)->io_tree,
532                                                      start,
533                                                      start + ram_size - 1,
534                                                      NULL, 1, 1, 0);
535
536                         ret = btrfs_submit_compressed_write(inode, start,
537                                                  ram_size, ins.objectid,
538                                                  cur_alloc_size, pages,
539                                                  nr_pages_ret);
540
541                         BUG_ON(ret);
542                         trans = btrfs_join_transaction(root, 1);
543                         if (start + ram_size < end) {
544                                 start += ram_size;
545                                 alloc_hint = ins.objectid + ins.offset;
546                                 /* pages will be freed at end_bio time */
547                                 pages = NULL;
548                                 goto again;
549                         } else {
550                                 /* we've written everything, time to go */
551                                 break;
552                         }
553                 }
554                 /* we're not doing compressed IO, don't unlock the first
555                  * page (which the caller expects to stay locked), don't
556                  * clear any dirty bits and don't set any writeback bits
557                  */
558                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
559                                              start, start + ram_size - 1,
560                                              locked_page, 0, 0, 0);
561                 disk_num_bytes -= cur_alloc_size;
562                 num_bytes -= cur_alloc_size;
563                 alloc_hint = ins.objectid + ins.offset;
564                 start += cur_alloc_size;
565         }
566
567         ret = 0;
568 out:
569         btrfs_end_transaction(trans, root);
570
571         return ret;
572
573 free_pages_out_fail:
574         extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
575                                      start, end, locked_page, 0, 0, 0);
576 free_pages_out:
577         for (i = 0; i < nr_pages_ret; i++) {
578                 WARN_ON(pages[i]->mapping);
579                 page_cache_release(pages[i]);
580         }
581         if (pages)
582                 kfree(pages);
583
584         goto out;
585 }
586
587 /*
588  * when nowcow writeback call back.  This checks for snapshots or COW copies
589  * of the extents that exist in the file, and COWs the file as required.
590  *
591  * If no cow copies or snapshots exist, we write directly to the existing
592  * blocks on disk
593  */
594 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
595                               u64 start, u64 end, int *page_started, int force)
596 {
597         struct btrfs_root *root = BTRFS_I(inode)->root;
598         struct btrfs_trans_handle *trans;
599         struct extent_buffer *leaf;
600         struct btrfs_path *path;
601         struct btrfs_file_extent_item *fi;
602         struct btrfs_key found_key;
603         u64 cow_start;
604         u64 cur_offset;
605         u64 extent_end;
606         u64 disk_bytenr;
607         u64 num_bytes;
608         int extent_type;
609         int ret;
610         int type;
611         int nocow;
612         int check_prev = 1;
613
614         path = btrfs_alloc_path();
615         BUG_ON(!path);
616         trans = btrfs_join_transaction(root, 1);
617         BUG_ON(!trans);
618
619         cow_start = (u64)-1;
620         cur_offset = start;
621         while (1) {
622                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
623                                                cur_offset, 0);
624                 BUG_ON(ret < 0);
625                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
626                         leaf = path->nodes[0];
627                         btrfs_item_key_to_cpu(leaf, &found_key,
628                                               path->slots[0] - 1);
629                         if (found_key.objectid == inode->i_ino &&
630                             found_key.type == BTRFS_EXTENT_DATA_KEY)
631                                 path->slots[0]--;
632                 }
633                 check_prev = 0;
634 next_slot:
635                 leaf = path->nodes[0];
636                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
637                         ret = btrfs_next_leaf(root, path);
638                         if (ret < 0)
639                                 BUG_ON(1);
640                         if (ret > 0)
641                                 break;
642                         leaf = path->nodes[0];
643                 }
644
645                 nocow = 0;
646                 disk_bytenr = 0;
647                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
648
649                 if (found_key.objectid > inode->i_ino ||
650                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
651                     found_key.offset > end)
652                         break;
653
654                 if (found_key.offset > cur_offset) {
655                         extent_end = found_key.offset;
656                         goto out_check;
657                 }
658
659                 fi = btrfs_item_ptr(leaf, path->slots[0],
660                                     struct btrfs_file_extent_item);
661                 extent_type = btrfs_file_extent_type(leaf, fi);
662
663                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
664                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
665                         struct btrfs_block_group_cache *block_group;
666                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
667                         extent_end = found_key.offset +
668                                 btrfs_file_extent_num_bytes(leaf, fi);
669                         if (extent_end <= start) {
670                                 path->slots[0]++;
671                                 goto next_slot;
672                         }
673                         if (btrfs_file_extent_compression(leaf, fi) ||
674                             btrfs_file_extent_encryption(leaf, fi) ||
675                             btrfs_file_extent_other_encoding(leaf, fi))
676                                 goto out_check;
677                         if (disk_bytenr == 0)
678                                 goto out_check;
679                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
680                                 goto out_check;
681                         if (btrfs_cross_ref_exist(trans, root, disk_bytenr))
682                                 goto out_check;
683                         block_group = btrfs_lookup_block_group(root->fs_info,
684                                                                disk_bytenr);
685                         if (!block_group || block_group->ro)
686                                 goto out_check;
687                         disk_bytenr += btrfs_file_extent_offset(leaf, fi);
688                         nocow = 1;
689                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
690                         extent_end = found_key.offset +
691                                 btrfs_file_extent_inline_len(leaf, fi);
692                         extent_end = ALIGN(extent_end, root->sectorsize);
693                 } else {
694                         BUG_ON(1);
695                 }
696 out_check:
697                 if (extent_end <= start) {
698                         path->slots[0]++;
699                         goto next_slot;
700                 }
701                 if (!nocow) {
702                         if (cow_start == (u64)-1)
703                                 cow_start = cur_offset;
704                         cur_offset = extent_end;
705                         if (cur_offset > end)
706                                 break;
707                         path->slots[0]++;
708                         goto next_slot;
709                 }
710
711                 btrfs_release_path(root, path);
712                 if (cow_start != (u64)-1) {
713                         ret = cow_file_range(inode, locked_page, cow_start,
714                                         found_key.offset - 1, page_started);
715                         BUG_ON(ret);
716                         cow_start = (u64)-1;
717                 }
718
719                 disk_bytenr += cur_offset - found_key.offset;
720                 num_bytes = min(end + 1, extent_end) - cur_offset;
721                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
722                         struct extent_map *em;
723                         struct extent_map_tree *em_tree;
724                         em_tree = &BTRFS_I(inode)->extent_tree;
725                         em = alloc_extent_map(GFP_NOFS);
726                         em->start = cur_offset;
727                         em->len = num_bytes;
728                         em->block_len = num_bytes;
729                         em->block_start = disk_bytenr;
730                         em->bdev = root->fs_info->fs_devices->latest_bdev;
731                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
732                         while (1) {
733                                 spin_lock(&em_tree->lock);
734                                 ret = add_extent_mapping(em_tree, em);
735                                 spin_unlock(&em_tree->lock);
736                                 if (ret != -EEXIST) {
737                                         free_extent_map(em);
738                                         break;
739                                 }
740                                 btrfs_drop_extent_cache(inode, em->start,
741                                                 em->start + em->len - 1, 0);
742                         }
743                         type = BTRFS_ORDERED_PREALLOC;
744                 } else {
745                         type = BTRFS_ORDERED_NOCOW;
746                 }
747
748                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
749                                                num_bytes, num_bytes, type);
750                 BUG_ON(ret);
751                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
752                                         cur_offset, cur_offset + num_bytes - 1,
753                                         locked_page, 0, 0, 0);
754                 cur_offset = extent_end;
755                 if (cur_offset > end)
756                         break;
757         }
758         btrfs_release_path(root, path);
759
760         if (cur_offset <= end && cow_start == (u64)-1)
761                 cow_start = cur_offset;
762         if (cow_start != (u64)-1) {
763                 ret = cow_file_range(inode, locked_page, cow_start, end,
764                                      page_started);
765                 BUG_ON(ret);
766         }
767
768         ret = btrfs_end_transaction(trans, root);
769         BUG_ON(ret);
770         btrfs_free_path(path);
771         return 0;
772 }
773
774 /*
775  * extent_io.c call back to do delayed allocation processing
776  */
777 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
778                               u64 start, u64 end, int *page_started)
779 {
780         struct btrfs_root *root = BTRFS_I(inode)->root;
781         int ret;
782
783         if (btrfs_test_opt(root, NODATACOW) ||
784             btrfs_test_flag(inode, NODATACOW))
785                 ret = run_delalloc_nocow(inode, locked_page, start, end,
786                                          page_started, 0);
787         else if (btrfs_test_flag(inode, PREALLOC))
788                 ret = run_delalloc_nocow(inode, locked_page, start, end,
789                                          page_started, 1);
790         else
791                 ret = cow_file_range(inode, locked_page, start, end,
792                                      page_started);
793
794         return ret;
795 }
796
797 /*
798  * extent_io.c set_bit_hook, used to track delayed allocation
799  * bytes in this file, and to maintain the list of inodes that
800  * have pending delalloc work to be done.
801  */
802 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
803                        unsigned long old, unsigned long bits)
804 {
805         unsigned long flags;
806         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
807                 struct btrfs_root *root = BTRFS_I(inode)->root;
808                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
809                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
810                 root->fs_info->delalloc_bytes += end - start + 1;
811                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
812                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
813                                       &root->fs_info->delalloc_inodes);
814                 }
815                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
816         }
817         return 0;
818 }
819
820 /*
821  * extent_io.c clear_bit_hook, see set_bit_hook for why
822  */
823 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
824                          unsigned long old, unsigned long bits)
825 {
826         if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
827                 struct btrfs_root *root = BTRFS_I(inode)->root;
828                 unsigned long flags;
829
830                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
831                 if (end - start + 1 > root->fs_info->delalloc_bytes) {
832                         printk("warning: delalloc account %Lu %Lu\n",
833                                end - start + 1, root->fs_info->delalloc_bytes);
834                         root->fs_info->delalloc_bytes = 0;
835                         BTRFS_I(inode)->delalloc_bytes = 0;
836                 } else {
837                         root->fs_info->delalloc_bytes -= end - start + 1;
838                         BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
839                 }
840                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
841                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
842                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
843                 }
844                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
845         }
846         return 0;
847 }
848
849 /*
850  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
851  * we don't create bios that span stripes or chunks
852  */
853 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
854                          size_t size, struct bio *bio,
855                          unsigned long bio_flags)
856 {
857         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
858         struct btrfs_mapping_tree *map_tree;
859         u64 logical = (u64)bio->bi_sector << 9;
860         u64 length = 0;
861         u64 map_length;
862         int ret;
863
864         length = bio->bi_size;
865         map_tree = &root->fs_info->mapping_tree;
866         map_length = length;
867         ret = btrfs_map_block(map_tree, READ, logical,
868                               &map_length, NULL, 0);
869
870         if (map_length < length + size) {
871                 return 1;
872         }
873         return 0;
874 }
875
876 /*
877  * in order to insert checksums into the metadata in large chunks,
878  * we wait until bio submission time.   All the pages in the bio are
879  * checksummed and sums are attached onto the ordered extent record.
880  *
881  * At IO completion time the cums attached on the ordered extent record
882  * are inserted into the btree
883  */
884 int __btrfs_submit_bio_start(struct inode *inode, int rw, struct bio *bio,
885                           int mirror_num, unsigned long bio_flags)
886 {
887         struct btrfs_root *root = BTRFS_I(inode)->root;
888         int ret = 0;
889
890         ret = btrfs_csum_one_bio(root, inode, bio);
891         BUG_ON(ret);
892         return 0;
893 }
894
895 /*
896  * in order to insert checksums into the metadata in large chunks,
897  * we wait until bio submission time.   All the pages in the bio are
898  * checksummed and sums are attached onto the ordered extent record.
899  *
900  * At IO completion time the cums attached on the ordered extent record
901  * are inserted into the btree
902  */
903 int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
904                           int mirror_num, unsigned long bio_flags)
905 {
906         struct btrfs_root *root = BTRFS_I(inode)->root;
907         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
908 }
909
910 /*
911  * extent_io.c submission hook. This does the right thing for csum calculation on write,
912  * or reading the csums from the tree before a read
913  */
914 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
915                           int mirror_num, unsigned long bio_flags)
916 {
917         struct btrfs_root *root = BTRFS_I(inode)->root;
918         int ret = 0;
919         int skip_sum;
920
921         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
922         BUG_ON(ret);
923
924         skip_sum = btrfs_test_opt(root, NODATASUM) ||
925                 btrfs_test_flag(inode, NODATASUM);
926
927         if (!(rw & (1 << BIO_RW))) {
928                 if (!skip_sum)
929                         btrfs_lookup_bio_sums(root, inode, bio);
930
931                 if (bio_flags & EXTENT_BIO_COMPRESSED)
932                         return btrfs_submit_compressed_read(inode, bio,
933                                                     mirror_num, bio_flags);
934                 goto mapit;
935         } else if (!skip_sum) {
936                 /* we're doing a write, do the async checksumming */
937                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
938                                    inode, rw, bio, mirror_num,
939                                    bio_flags, __btrfs_submit_bio_start,
940                                    __btrfs_submit_bio_done);
941         }
942
943 mapit:
944         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
945 }
946
947 /*
948  * given a list of ordered sums record them in the inode.  This happens
949  * at IO completion time based on sums calculated at bio submission time.
950  */
951 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
952                              struct inode *inode, u64 file_offset,
953                              struct list_head *list)
954 {
955         struct list_head *cur;
956         struct btrfs_ordered_sum *sum;
957
958         btrfs_set_trans_block_group(trans, inode);
959         list_for_each(cur, list) {
960                 sum = list_entry(cur, struct btrfs_ordered_sum, list);
961                 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
962                                        inode, sum);
963         }
964         return 0;
965 }
966
967 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
968 {
969         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
970                                    GFP_NOFS);
971 }
972
973 /* see btrfs_writepage_start_hook for details on why this is required */
974 struct btrfs_writepage_fixup {
975         struct page *page;
976         struct btrfs_work work;
977 };
978
979 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
980 {
981         struct btrfs_writepage_fixup *fixup;
982         struct btrfs_ordered_extent *ordered;
983         struct page *page;
984         struct inode *inode;
985         u64 page_start;
986         u64 page_end;
987
988         fixup = container_of(work, struct btrfs_writepage_fixup, work);
989         page = fixup->page;
990 again:
991         lock_page(page);
992         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
993                 ClearPageChecked(page);
994                 goto out_page;
995         }
996
997         inode = page->mapping->host;
998         page_start = page_offset(page);
999         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1000
1001         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1002
1003         /* already ordered? We're done */
1004         if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1005                              EXTENT_ORDERED, 0)) {
1006                 goto out;
1007         }
1008
1009         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1010         if (ordered) {
1011                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1012                               page_end, GFP_NOFS);
1013                 unlock_page(page);
1014                 btrfs_start_ordered_extent(inode, ordered, 1);
1015                 goto again;
1016         }
1017
1018         btrfs_set_extent_delalloc(inode, page_start, page_end);
1019         ClearPageChecked(page);
1020 out:
1021         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1022 out_page:
1023         unlock_page(page);
1024         page_cache_release(page);
1025 }
1026
1027 /*
1028  * There are a few paths in the higher layers of the kernel that directly
1029  * set the page dirty bit without asking the filesystem if it is a
1030  * good idea.  This causes problems because we want to make sure COW
1031  * properly happens and the data=ordered rules are followed.
1032  *
1033  * In our case any range that doesn't have the ORDERED bit set
1034  * hasn't been properly setup for IO.  We kick off an async process
1035  * to fix it up.  The async helper will wait for ordered extents, set
1036  * the delalloc bit and make it safe to write the page.
1037  */
1038 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1039 {
1040         struct inode *inode = page->mapping->host;
1041         struct btrfs_writepage_fixup *fixup;
1042         struct btrfs_root *root = BTRFS_I(inode)->root;
1043         int ret;
1044
1045         ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1046                              EXTENT_ORDERED, 0);
1047         if (ret)
1048                 return 0;
1049
1050         if (PageChecked(page))
1051                 return -EAGAIN;
1052
1053         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1054         if (!fixup)
1055                 return -EAGAIN;
1056
1057         SetPageChecked(page);
1058         page_cache_get(page);
1059         fixup->work.func = btrfs_writepage_fixup_worker;
1060         fixup->page = page;
1061         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1062         return -EAGAIN;
1063 }
1064
1065 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1066                                        struct inode *inode, u64 file_pos,
1067                                        u64 disk_bytenr, u64 disk_num_bytes,
1068                                        u64 num_bytes, u64 ram_bytes,
1069                                        u8 compression, u8 encryption,
1070                                        u16 other_encoding, int extent_type)
1071 {
1072         struct btrfs_root *root = BTRFS_I(inode)->root;
1073         struct btrfs_file_extent_item *fi;
1074         struct btrfs_path *path;
1075         struct extent_buffer *leaf;
1076         struct btrfs_key ins;
1077         u64 hint;
1078         int ret;
1079
1080         path = btrfs_alloc_path();
1081         BUG_ON(!path);
1082
1083         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1084                                  file_pos + num_bytes, file_pos, &hint);
1085         BUG_ON(ret);
1086
1087         ins.objectid = inode->i_ino;
1088         ins.offset = file_pos;
1089         ins.type = BTRFS_EXTENT_DATA_KEY;
1090         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1091         BUG_ON(ret);
1092         leaf = path->nodes[0];
1093         fi = btrfs_item_ptr(leaf, path->slots[0],
1094                             struct btrfs_file_extent_item);
1095         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1096         btrfs_set_file_extent_type(leaf, fi, extent_type);
1097         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1098         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1099         btrfs_set_file_extent_offset(leaf, fi, 0);
1100         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1101         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1102         btrfs_set_file_extent_compression(leaf, fi, compression);
1103         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1104         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1105         btrfs_mark_buffer_dirty(leaf);
1106
1107         inode_add_bytes(inode, num_bytes);
1108         btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1109
1110         ins.objectid = disk_bytenr;
1111         ins.offset = disk_num_bytes;
1112         ins.type = BTRFS_EXTENT_ITEM_KEY;
1113         ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1114                                           root->root_key.objectid,
1115                                           trans->transid, inode->i_ino, &ins);
1116         BUG_ON(ret);
1117
1118         btrfs_free_path(path);
1119         return 0;
1120 }
1121
1122 /* as ordered data IO finishes, this gets called so we can finish
1123  * an ordered extent if the range of bytes in the file it covers are
1124  * fully written.
1125  */
1126 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1127 {
1128         struct btrfs_root *root = BTRFS_I(inode)->root;
1129         struct btrfs_trans_handle *trans;
1130         struct btrfs_ordered_extent *ordered_extent;
1131         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1132         int compressed = 0;
1133         int ret;
1134
1135         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1136         if (!ret)
1137                 return 0;
1138
1139         trans = btrfs_join_transaction(root, 1);
1140
1141         ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1142         BUG_ON(!ordered_extent);
1143         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1144                 goto nocow;
1145
1146         lock_extent(io_tree, ordered_extent->file_offset,
1147                     ordered_extent->file_offset + ordered_extent->len - 1,
1148                     GFP_NOFS);
1149
1150         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1151                 compressed = 1;
1152         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1153                 BUG_ON(compressed);
1154                 ret = btrfs_mark_extent_written(trans, root, inode,
1155                                                 ordered_extent->file_offset,
1156                                                 ordered_extent->file_offset +
1157                                                 ordered_extent->len);
1158                 BUG_ON(ret);
1159         } else {
1160                 ret = insert_reserved_file_extent(trans, inode,
1161                                                 ordered_extent->file_offset,
1162                                                 ordered_extent->start,
1163                                                 ordered_extent->disk_len,
1164                                                 ordered_extent->len,
1165                                                 ordered_extent->len,
1166                                                 compressed, 0, 0,
1167                                                 BTRFS_FILE_EXTENT_REG);
1168                 BUG_ON(ret);
1169         }
1170         unlock_extent(io_tree, ordered_extent->file_offset,
1171                     ordered_extent->file_offset + ordered_extent->len - 1,
1172                     GFP_NOFS);
1173 nocow:
1174         add_pending_csums(trans, inode, ordered_extent->file_offset,
1175                           &ordered_extent->list);
1176
1177         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1178         btrfs_ordered_update_i_size(inode, ordered_extent);
1179         btrfs_update_inode(trans, root, inode);
1180         btrfs_remove_ordered_extent(inode, ordered_extent);
1181         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1182
1183         /* once for us */
1184         btrfs_put_ordered_extent(ordered_extent);
1185         /* once for the tree */
1186         btrfs_put_ordered_extent(ordered_extent);
1187
1188         btrfs_end_transaction(trans, root);
1189         return 0;
1190 }
1191
1192 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1193                                 struct extent_state *state, int uptodate)
1194 {
1195         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1196 }
1197
1198 /*
1199  * When IO fails, either with EIO or csum verification fails, we
1200  * try other mirrors that might have a good copy of the data.  This
1201  * io_failure_record is used to record state as we go through all the
1202  * mirrors.  If another mirror has good data, the page is set up to date
1203  * and things continue.  If a good mirror can't be found, the original
1204  * bio end_io callback is called to indicate things have failed.
1205  */
1206 struct io_failure_record {
1207         struct page *page;
1208         u64 start;
1209         u64 len;
1210         u64 logical;
1211         int last_mirror;
1212 };
1213
1214 int btrfs_io_failed_hook(struct bio *failed_bio,
1215                          struct page *page, u64 start, u64 end,
1216                          struct extent_state *state)
1217 {
1218         struct io_failure_record *failrec = NULL;
1219         u64 private;
1220         struct extent_map *em;
1221         struct inode *inode = page->mapping->host;
1222         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1223         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1224         struct bio *bio;
1225         int num_copies;
1226         int ret;
1227         int rw;
1228         u64 logical;
1229         unsigned long bio_flags = 0;
1230
1231         ret = get_state_private(failure_tree, start, &private);
1232         if (ret) {
1233                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1234                 if (!failrec)
1235                         return -ENOMEM;
1236                 failrec->start = start;
1237                 failrec->len = end - start + 1;
1238                 failrec->last_mirror = 0;
1239
1240                 spin_lock(&em_tree->lock);
1241                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1242                 if (em->start > start || em->start + em->len < start) {
1243                         free_extent_map(em);
1244                         em = NULL;
1245                 }
1246                 spin_unlock(&em_tree->lock);
1247
1248                 if (!em || IS_ERR(em)) {
1249                         kfree(failrec);
1250                         return -EIO;
1251                 }
1252                 logical = start - em->start;
1253                 logical = em->block_start + logical;
1254                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1255                         bio_flags = EXTENT_BIO_COMPRESSED;
1256                 failrec->logical = logical;
1257                 free_extent_map(em);
1258                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1259                                 EXTENT_DIRTY, GFP_NOFS);
1260                 set_state_private(failure_tree, start,
1261                                  (u64)(unsigned long)failrec);
1262         } else {
1263                 failrec = (struct io_failure_record *)(unsigned long)private;
1264         }
1265         num_copies = btrfs_num_copies(
1266                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1267                               failrec->logical, failrec->len);
1268         failrec->last_mirror++;
1269         if (!state) {
1270                 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
1271                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1272                                                     failrec->start,
1273                                                     EXTENT_LOCKED);
1274                 if (state && state->start != failrec->start)
1275                         state = NULL;
1276                 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
1277         }
1278         if (!state || failrec->last_mirror > num_copies) {
1279                 set_state_private(failure_tree, failrec->start, 0);
1280                 clear_extent_bits(failure_tree, failrec->start,
1281                                   failrec->start + failrec->len - 1,
1282                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1283                 kfree(failrec);
1284                 return -EIO;
1285         }
1286         bio = bio_alloc(GFP_NOFS, 1);
1287         bio->bi_private = state;
1288         bio->bi_end_io = failed_bio->bi_end_io;
1289         bio->bi_sector = failrec->logical >> 9;
1290         bio->bi_bdev = failed_bio->bi_bdev;
1291         bio->bi_size = 0;
1292         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1293         if (failed_bio->bi_rw & (1 << BIO_RW))
1294                 rw = WRITE;
1295         else
1296                 rw = READ;
1297
1298         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1299                                                       failrec->last_mirror,
1300                                                       bio_flags);
1301         return 0;
1302 }
1303
1304 /*
1305  * each time an IO finishes, we do a fast check in the IO failure tree
1306  * to see if we need to process or clean up an io_failure_record
1307  */
1308 int btrfs_clean_io_failures(struct inode *inode, u64 start)
1309 {
1310         u64 private;
1311         u64 private_failure;
1312         struct io_failure_record *failure;
1313         int ret;
1314
1315         private = 0;
1316         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1317                              (u64)-1, 1, EXTENT_DIRTY)) {
1318                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1319                                         start, &private_failure);
1320                 if (ret == 0) {
1321                         failure = (struct io_failure_record *)(unsigned long)
1322                                    private_failure;
1323                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1324                                           failure->start, 0);
1325                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1326                                           failure->start,
1327                                           failure->start + failure->len - 1,
1328                                           EXTENT_DIRTY | EXTENT_LOCKED,
1329                                           GFP_NOFS);
1330                         kfree(failure);
1331                 }
1332         }
1333         return 0;
1334 }
1335
1336 /*
1337  * when reads are done, we need to check csums to verify the data is correct
1338  * if there's a match, we allow the bio to finish.  If not, we go through
1339  * the io_failure_record routines to find good copies
1340  */
1341 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1342                                struct extent_state *state)
1343 {
1344         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1345         struct inode *inode = page->mapping->host;
1346         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1347         char *kaddr;
1348         u64 private = ~(u32)0;
1349         int ret;
1350         struct btrfs_root *root = BTRFS_I(inode)->root;
1351         u32 csum = ~(u32)0;
1352         unsigned long flags;
1353
1354         if (btrfs_test_opt(root, NODATASUM) ||
1355             btrfs_test_flag(inode, NODATASUM))
1356                 return 0;
1357         if (state && state->start == start) {
1358                 private = state->private;
1359                 ret = 0;
1360         } else {
1361                 ret = get_state_private(io_tree, start, &private);
1362         }
1363         local_irq_save(flags);
1364         kaddr = kmap_atomic(page, KM_IRQ0);
1365         if (ret) {
1366                 goto zeroit;
1367         }
1368         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1369         btrfs_csum_final(csum, (char *)&csum);
1370         if (csum != private) {
1371                 goto zeroit;
1372         }
1373         kunmap_atomic(kaddr, KM_IRQ0);
1374         local_irq_restore(flags);
1375
1376         /* if the io failure tree for this inode is non-empty,
1377          * check to see if we've recovered from a failed IO
1378          */
1379         btrfs_clean_io_failures(inode, start);
1380         return 0;
1381
1382 zeroit:
1383         printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
1384                page->mapping->host->i_ino, (unsigned long long)start, csum,
1385                private);
1386         memset(kaddr + offset, 1, end - start + 1);
1387         flush_dcache_page(page);
1388         kunmap_atomic(kaddr, KM_IRQ0);
1389         local_irq_restore(flags);
1390         if (private == 0)
1391                 return 0;
1392         return -EIO;
1393 }
1394
1395 /*
1396  * This creates an orphan entry for the given inode in case something goes
1397  * wrong in the middle of an unlink/truncate.
1398  */
1399 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1400 {
1401         struct btrfs_root *root = BTRFS_I(inode)->root;
1402         int ret = 0;
1403
1404         spin_lock(&root->list_lock);
1405
1406         /* already on the orphan list, we're good */
1407         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1408                 spin_unlock(&root->list_lock);
1409                 return 0;
1410         }
1411
1412         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1413
1414         spin_unlock(&root->list_lock);
1415
1416         /*
1417          * insert an orphan item to track this unlinked/truncated file
1418          */
1419         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1420
1421         return ret;
1422 }
1423
1424 /*
1425  * We have done the truncate/delete so we can go ahead and remove the orphan
1426  * item for this particular inode.
1427  */
1428 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1429 {
1430         struct btrfs_root *root = BTRFS_I(inode)->root;
1431         int ret = 0;
1432
1433         spin_lock(&root->list_lock);
1434
1435         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1436                 spin_unlock(&root->list_lock);
1437                 return 0;
1438         }
1439
1440         list_del_init(&BTRFS_I(inode)->i_orphan);
1441         if (!trans) {
1442                 spin_unlock(&root->list_lock);
1443                 return 0;
1444         }
1445
1446         spin_unlock(&root->list_lock);
1447
1448         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1449
1450         return ret;
1451 }
1452
1453 /*
1454  * this cleans up any orphans that may be left on the list from the last use
1455  * of this root.
1456  */
1457 void btrfs_orphan_cleanup(struct btrfs_root *root)
1458 {
1459         struct btrfs_path *path;
1460         struct extent_buffer *leaf;
1461         struct btrfs_item *item;
1462         struct btrfs_key key, found_key;
1463         struct btrfs_trans_handle *trans;
1464         struct inode *inode;
1465         int ret = 0, nr_unlink = 0, nr_truncate = 0;
1466
1467         /* don't do orphan cleanup if the fs is readonly. */
1468         if (root->fs_info->sb->s_flags & MS_RDONLY)
1469                 return;
1470
1471         path = btrfs_alloc_path();
1472         if (!path)
1473                 return;
1474         path->reada = -1;
1475
1476         key.objectid = BTRFS_ORPHAN_OBJECTID;
1477         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1478         key.offset = (u64)-1;
1479
1480
1481         while (1) {
1482                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1483                 if (ret < 0) {
1484                         printk(KERN_ERR "Error searching slot for orphan: %d"
1485                                "\n", ret);
1486                         break;
1487                 }
1488
1489                 /*
1490                  * if ret == 0 means we found what we were searching for, which
1491                  * is weird, but possible, so only screw with path if we didnt
1492                  * find the key and see if we have stuff that matches
1493                  */
1494                 if (ret > 0) {
1495                         if (path->slots[0] == 0)
1496                                 break;
1497                         path->slots[0]--;
1498                 }
1499
1500                 /* pull out the item */
1501                 leaf = path->nodes[0];
1502                 item = btrfs_item_nr(leaf, path->slots[0]);
1503                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1504
1505                 /* make sure the item matches what we want */
1506                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1507                         break;
1508                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1509                         break;
1510
1511                 /* release the path since we're done with it */
1512                 btrfs_release_path(root, path);
1513
1514                 /*
1515                  * this is where we are basically btrfs_lookup, without the
1516                  * crossing root thing.  we store the inode number in the
1517                  * offset of the orphan item.
1518                  */
1519                 inode = btrfs_iget_locked(root->fs_info->sb,
1520                                           found_key.offset, root);
1521                 if (!inode)
1522                         break;
1523
1524                 if (inode->i_state & I_NEW) {
1525                         BTRFS_I(inode)->root = root;
1526
1527                         /* have to set the location manually */
1528                         BTRFS_I(inode)->location.objectid = inode->i_ino;
1529                         BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1530                         BTRFS_I(inode)->location.offset = 0;
1531
1532                         btrfs_read_locked_inode(inode);
1533                         unlock_new_inode(inode);
1534                 }
1535
1536                 /*
1537                  * add this inode to the orphan list so btrfs_orphan_del does
1538                  * the proper thing when we hit it
1539                  */
1540                 spin_lock(&root->list_lock);
1541                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1542                 spin_unlock(&root->list_lock);
1543
1544                 /*
1545                  * if this is a bad inode, means we actually succeeded in
1546                  * removing the inode, but not the orphan record, which means
1547                  * we need to manually delete the orphan since iput will just
1548                  * do a destroy_inode
1549                  */
1550                 if (is_bad_inode(inode)) {
1551                         trans = btrfs_start_transaction(root, 1);
1552                         btrfs_orphan_del(trans, inode);
1553                         btrfs_end_transaction(trans, root);
1554                         iput(inode);
1555                         continue;
1556                 }
1557
1558                 /* if we have links, this was a truncate, lets do that */
1559                 if (inode->i_nlink) {
1560                         nr_truncate++;
1561                         btrfs_truncate(inode);
1562                 } else {
1563                         nr_unlink++;
1564                 }
1565
1566                 /* this will do delete_inode and everything for us */
1567                 iput(inode);
1568         }
1569
1570         if (nr_unlink)
1571                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1572         if (nr_truncate)
1573                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1574
1575         btrfs_free_path(path);
1576 }
1577
1578 /*
1579  * read an inode from the btree into the in-memory inode
1580  */
1581 void btrfs_read_locked_inode(struct inode *inode)
1582 {
1583         struct btrfs_path *path;
1584         struct extent_buffer *leaf;
1585         struct btrfs_inode_item *inode_item;
1586         struct btrfs_timespec *tspec;
1587         struct btrfs_root *root = BTRFS_I(inode)->root;
1588         struct btrfs_key location;
1589         u64 alloc_group_block;
1590         u32 rdev;
1591         int ret;
1592
1593         path = btrfs_alloc_path();
1594         BUG_ON(!path);
1595         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1596
1597         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1598         if (ret)
1599                 goto make_bad;
1600
1601         leaf = path->nodes[0];
1602         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1603                                     struct btrfs_inode_item);
1604
1605         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1606         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1607         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1608         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1609         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1610
1611         tspec = btrfs_inode_atime(inode_item);
1612         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1613         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1614
1615         tspec = btrfs_inode_mtime(inode_item);
1616         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1617         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1618
1619         tspec = btrfs_inode_ctime(inode_item);
1620         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1621         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1622
1623         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
1624         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
1625         inode->i_generation = BTRFS_I(inode)->generation;
1626         inode->i_rdev = 0;
1627         rdev = btrfs_inode_rdev(leaf, inode_item);
1628
1629         BTRFS_I(inode)->index_cnt = (u64)-1;
1630
1631         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1632         BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1633                                                        alloc_group_block);
1634         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1635         if (!BTRFS_I(inode)->block_group) {
1636                 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1637                                                  NULL, 0,
1638                                                  BTRFS_BLOCK_GROUP_METADATA, 0);
1639         }
1640         btrfs_free_path(path);
1641         inode_item = NULL;
1642
1643         switch (inode->i_mode & S_IFMT) {
1644         case S_IFREG:
1645                 inode->i_mapping->a_ops = &btrfs_aops;
1646                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1647                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1648                 inode->i_fop = &btrfs_file_operations;
1649                 inode->i_op = &btrfs_file_inode_operations;
1650                 break;
1651         case S_IFDIR:
1652                 inode->i_fop = &btrfs_dir_file_operations;
1653                 if (root == root->fs_info->tree_root)
1654                         inode->i_op = &btrfs_dir_ro_inode_operations;
1655                 else
1656                         inode->i_op = &btrfs_dir_inode_operations;
1657                 break;
1658         case S_IFLNK:
1659                 inode->i_op = &btrfs_symlink_inode_operations;
1660                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1661                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1662                 break;
1663         default:
1664                 init_special_inode(inode, inode->i_mode, rdev);
1665                 break;
1666         }
1667         return;
1668
1669 make_bad:
1670         btrfs_free_path(path);
1671         make_bad_inode(inode);
1672 }
1673
1674 /*
1675  * given a leaf and an inode, copy the inode fields into the leaf
1676  */
1677 static void fill_inode_item(struct btrfs_trans_handle *trans,
1678                             struct extent_buffer *leaf,
1679                             struct btrfs_inode_item *item,
1680                             struct inode *inode)
1681 {
1682         btrfs_set_inode_uid(leaf, item, inode->i_uid);
1683         btrfs_set_inode_gid(leaf, item, inode->i_gid);
1684         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1685         btrfs_set_inode_mode(leaf, item, inode->i_mode);
1686         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1687
1688         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1689                                inode->i_atime.tv_sec);
1690         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1691                                 inode->i_atime.tv_nsec);
1692
1693         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1694                                inode->i_mtime.tv_sec);
1695         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1696                                 inode->i_mtime.tv_nsec);
1697
1698         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1699                                inode->i_ctime.tv_sec);
1700         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1701                                 inode->i_ctime.tv_nsec);
1702
1703         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
1704         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
1705         btrfs_set_inode_transid(leaf, item, trans->transid);
1706         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1707         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1708         btrfs_set_inode_block_group(leaf, item,
1709                                     BTRFS_I(inode)->block_group->key.objectid);
1710 }
1711
1712 /*
1713  * copy everything in the in-memory inode into the btree.
1714  */
1715 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1716                               struct btrfs_root *root,
1717                               struct inode *inode)
1718 {
1719         struct btrfs_inode_item *inode_item;
1720         struct btrfs_path *path;
1721         struct extent_buffer *leaf;
1722         int ret;
1723
1724         path = btrfs_alloc_path();
1725         BUG_ON(!path);
1726         ret = btrfs_lookup_inode(trans, root, path,
1727                                  &BTRFS_I(inode)->location, 1);
1728         if (ret) {
1729                 if (ret > 0)
1730                         ret = -ENOENT;
1731                 goto failed;
1732         }
1733
1734         leaf = path->nodes[0];
1735         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1736                                   struct btrfs_inode_item);
1737
1738         fill_inode_item(trans, leaf, inode_item, inode);
1739         btrfs_mark_buffer_dirty(leaf);
1740         btrfs_set_inode_last_trans(trans, inode);
1741         ret = 0;
1742 failed:
1743         btrfs_free_path(path);
1744         return ret;
1745 }
1746
1747
1748 /*
1749  * unlink helper that gets used here in inode.c and in the tree logging
1750  * recovery code.  It remove a link in a directory with a given name, and
1751  * also drops the back refs in the inode to the directory
1752  */
1753 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
1754                        struct btrfs_root *root,
1755                        struct inode *dir, struct inode *inode,
1756                        const char *name, int name_len)
1757 {
1758         struct btrfs_path *path;
1759         int ret = 0;
1760         struct extent_buffer *leaf;
1761         struct btrfs_dir_item *di;
1762         struct btrfs_key key;
1763         u64 index;
1764
1765         path = btrfs_alloc_path();
1766         if (!path) {
1767                 ret = -ENOMEM;
1768                 goto err;
1769         }
1770
1771         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1772                                     name, name_len, -1);
1773         if (IS_ERR(di)) {
1774                 ret = PTR_ERR(di);
1775                 goto err;
1776         }
1777         if (!di) {
1778                 ret = -ENOENT;
1779                 goto err;
1780         }
1781         leaf = path->nodes[0];
1782         btrfs_dir_item_key_to_cpu(leaf, di, &key);
1783         ret = btrfs_delete_one_dir_name(trans, root, path, di);
1784         if (ret)
1785                 goto err;
1786         btrfs_release_path(root, path);
1787
1788         ret = btrfs_del_inode_ref(trans, root, name, name_len,
1789                                   inode->i_ino,
1790                                   dir->i_ino, &index);
1791         if (ret) {
1792                 printk("failed to delete reference to %.*s, "
1793                        "inode %lu parent %lu\n", name_len, name,
1794                        inode->i_ino, dir->i_ino);
1795                 goto err;
1796         }
1797
1798         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1799                                          index, name, name_len, -1);
1800         if (IS_ERR(di)) {
1801                 ret = PTR_ERR(di);
1802                 goto err;
1803         }
1804         if (!di) {
1805                 ret = -ENOENT;
1806                 goto err;
1807         }
1808         ret = btrfs_delete_one_dir_name(trans, root, path, di);
1809         btrfs_release_path(root, path);
1810
1811         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
1812                                          inode, dir->i_ino);
1813         BUG_ON(ret != 0 && ret != -ENOENT);
1814         if (ret != -ENOENT)
1815                 BTRFS_I(dir)->log_dirty_trans = trans->transid;
1816
1817         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
1818                                            dir, index);
1819         BUG_ON(ret);
1820 err:
1821         btrfs_free_path(path);
1822         if (ret)
1823                 goto out;
1824
1825         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1826         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1827         btrfs_update_inode(trans, root, dir);
1828         btrfs_drop_nlink(inode);
1829         ret = btrfs_update_inode(trans, root, inode);
1830         dir->i_sb->s_dirt = 1;
1831 out:
1832         return ret;
1833 }
1834
1835 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1836 {
1837         struct btrfs_root *root;
1838         struct btrfs_trans_handle *trans;
1839         struct inode *inode = dentry->d_inode;
1840         int ret;
1841         unsigned long nr = 0;
1842
1843         root = BTRFS_I(dir)->root;
1844
1845         ret = btrfs_check_free_space(root, 1, 1);
1846         if (ret)
1847                 goto fail;
1848
1849         trans = btrfs_start_transaction(root, 1);
1850
1851         btrfs_set_trans_block_group(trans, dir);
1852         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1853                                  dentry->d_name.name, dentry->d_name.len);
1854
1855         if (inode->i_nlink == 0)
1856                 ret = btrfs_orphan_add(trans, inode);
1857
1858         nr = trans->blocks_used;
1859
1860         btrfs_end_transaction_throttle(trans, root);
1861 fail:
1862         btrfs_btree_balance_dirty(root, nr);
1863         return ret;
1864 }
1865
1866 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1867 {
1868         struct inode *inode = dentry->d_inode;
1869         int err = 0;
1870         int ret;
1871         struct btrfs_root *root = BTRFS_I(dir)->root;
1872         struct btrfs_trans_handle *trans;
1873         unsigned long nr = 0;
1874
1875         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1876                 return -ENOTEMPTY;
1877         }
1878
1879         ret = btrfs_check_free_space(root, 1, 1);
1880         if (ret)
1881                 goto fail;
1882
1883         trans = btrfs_start_transaction(root, 1);
1884         btrfs_set_trans_block_group(trans, dir);
1885
1886         err = btrfs_orphan_add(trans, inode);
1887         if (err)
1888                 goto fail_trans;
1889
1890         /* now the directory is empty */
1891         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1892                                  dentry->d_name.name, dentry->d_name.len);
1893         if (!err) {
1894                 btrfs_i_size_write(inode, 0);
1895         }
1896
1897 fail_trans:
1898         nr = trans->blocks_used;
1899         ret = btrfs_end_transaction_throttle(trans, root);
1900 fail:
1901         btrfs_btree_balance_dirty(root, nr);
1902
1903         if (ret && !err)
1904                 err = ret;
1905         return err;
1906 }
1907
1908 /*
1909  * when truncating bytes in a file, it is possible to avoid reading
1910  * the leaves that contain only checksum items.  This can be the
1911  * majority of the IO required to delete a large file, but it must
1912  * be done carefully.
1913  *
1914  * The keys in the level just above the leaves are checked to make sure
1915  * the lowest key in a given leaf is a csum key, and starts at an offset
1916  * after the new  size.
1917  *
1918  * Then the key for the next leaf is checked to make sure it also has
1919  * a checksum item for the same file.  If it does, we know our target leaf
1920  * contains only checksum items, and it can be safely freed without reading
1921  * it.
1922  *
1923  * This is just an optimization targeted at large files.  It may do
1924  * nothing.  It will return 0 unless things went badly.
1925  */
1926 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
1927                                      struct btrfs_root *root,
1928                                      struct btrfs_path *path,
1929                                      struct inode *inode, u64 new_size)
1930 {
1931         struct btrfs_key key;
1932         int ret;
1933         int nritems;
1934         struct btrfs_key found_key;
1935         struct btrfs_key other_key;
1936         struct btrfs_leaf_ref *ref;
1937         u64 leaf_gen;
1938         u64 leaf_start;
1939
1940         path->lowest_level = 1;
1941         key.objectid = inode->i_ino;
1942         key.type = BTRFS_CSUM_ITEM_KEY;
1943         key.offset = new_size;
1944 again:
1945         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1946         if (ret < 0)
1947                 goto out;
1948
1949         if (path->nodes[1] == NULL) {
1950                 ret = 0;
1951                 goto out;
1952         }
1953         ret = 0;
1954         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
1955         nritems = btrfs_header_nritems(path->nodes[1]);
1956
1957         if (!nritems)
1958                 goto out;
1959
1960         if (path->slots[1] >= nritems)
1961                 goto next_node;
1962
1963         /* did we find a key greater than anything we want to delete? */
1964         if (found_key.objectid > inode->i_ino ||
1965            (found_key.objectid == inode->i_ino && found_key.type > key.type))
1966                 goto out;
1967
1968         /* we check the next key in the node to make sure the leave contains
1969          * only checksum items.  This comparison doesn't work if our
1970          * leaf is the last one in the node
1971          */
1972         if (path->slots[1] + 1 >= nritems) {
1973 next_node:
1974                 /* search forward from the last key in the node, this
1975                  * will bring us into the next node in the tree
1976                  */
1977                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
1978
1979                 /* unlikely, but we inc below, so check to be safe */
1980                 if (found_key.offset == (u64)-1)
1981                         goto out;
1982
1983                 /* search_forward needs a path with locks held, do the
1984                  * search again for the original key.  It is possible
1985                  * this will race with a balance and return a path that
1986                  * we could modify, but this drop is just an optimization
1987                  * and is allowed to miss some leaves.
1988                  */
1989                 btrfs_release_path(root, path);
1990                 found_key.offset++;
1991
1992                 /* setup a max key for search_forward */
1993                 other_key.offset = (u64)-1;
1994                 other_key.type = key.type;
1995                 other_key.objectid = key.objectid;
1996
1997                 path->keep_locks = 1;
1998                 ret = btrfs_search_forward(root, &found_key, &other_key,
1999                                            path, 0, 0);
2000                 path->keep_locks = 0;
2001                 if (ret || found_key.objectid != key.objectid ||
2002                     found_key.type != key.type) {
2003                         ret = 0;
2004                         goto out;
2005                 }
2006
2007                 key.offset = found_key.offset;
2008                 btrfs_release_path(root, path);
2009                 cond_resched();
2010                 goto again;
2011         }
2012
2013         /* we know there's one more slot after us in the tree,
2014          * read that key so we can verify it is also a checksum item
2015          */
2016         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2017
2018         if (found_key.objectid < inode->i_ino)
2019                 goto next_key;
2020
2021         if (found_key.type != key.type || found_key.offset < new_size)
2022                 goto next_key;
2023
2024         /*
2025          * if the key for the next leaf isn't a csum key from this objectid,
2026          * we can't be sure there aren't good items inside this leaf.
2027          * Bail out
2028          */
2029         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2030                 goto out;
2031
2032         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2033         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2034         /*
2035          * it is safe to delete this leaf, it contains only
2036          * csum items from this inode at an offset >= new_size
2037          */
2038         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2039         BUG_ON(ret);
2040
2041         if (root->ref_cows && leaf_gen < trans->transid) {
2042                 ref = btrfs_alloc_leaf_ref(root, 0);
2043                 if (ref) {
2044                         ref->root_gen = root->root_key.offset;
2045                         ref->bytenr = leaf_start;
2046                         ref->owner = 0;
2047                         ref->generation = leaf_gen;
2048                         ref->nritems = 0;
2049
2050                         ret = btrfs_add_leaf_ref(root, ref, 0);
2051                         WARN_ON(ret);
2052                         btrfs_free_leaf_ref(root, ref);
2053                 } else {
2054                         WARN_ON(1);
2055                 }
2056         }
2057 next_key:
2058         btrfs_release_path(root, path);
2059
2060         if (other_key.objectid == inode->i_ino &&
2061             other_key.type == key.type && other_key.offset > key.offset) {
2062                 key.offset = other_key.offset;
2063                 cond_resched();
2064                 goto again;
2065         }
2066         ret = 0;
2067 out:
2068         /* fixup any changes we've made to the path */
2069         path->lowest_level = 0;
2070         path->keep_locks = 0;
2071         btrfs_release_path(root, path);
2072         return ret;
2073 }
2074
2075 /*
2076  * this can truncate away extent items, csum items and directory items.
2077  * It starts at a high offset and removes keys until it can't find
2078  * any higher than new_size
2079  *
2080  * csum items that cross the new i_size are truncated to the new size
2081  * as well.
2082  *
2083  * min_type is the minimum key type to truncate down to.  If set to 0, this
2084  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2085  */
2086 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2087                                         struct btrfs_root *root,
2088                                         struct inode *inode,
2089                                         u64 new_size, u32 min_type)
2090 {
2091         int ret;
2092         struct btrfs_path *path;
2093         struct btrfs_key key;
2094         struct btrfs_key found_key;
2095         u32 found_type;
2096         struct extent_buffer *leaf;
2097         struct btrfs_file_extent_item *fi;
2098         u64 extent_start = 0;
2099         u64 extent_num_bytes = 0;
2100         u64 item_end = 0;
2101         u64 root_gen = 0;
2102         u64 root_owner = 0;
2103         int found_extent;
2104         int del_item;
2105         int pending_del_nr = 0;
2106         int pending_del_slot = 0;
2107         int extent_type = -1;
2108         u64 mask = root->sectorsize - 1;
2109
2110         if (root->ref_cows)
2111                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2112         path = btrfs_alloc_path();
2113         path->reada = -1;
2114         BUG_ON(!path);
2115
2116         /* FIXME, add redo link to tree so we don't leak on crash */
2117         key.objectid = inode->i_ino;
2118         key.offset = (u64)-1;
2119         key.type = (u8)-1;
2120
2121         btrfs_init_path(path);
2122
2123         ret = drop_csum_leaves(trans, root, path, inode, new_size);
2124         BUG_ON(ret);
2125
2126 search_again:
2127         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2128         if (ret < 0) {
2129                 goto error;
2130         }
2131         if (ret > 0) {
2132                 /* there are no items in the tree for us to truncate, we're
2133                  * done
2134                  */
2135                 if (path->slots[0] == 0) {
2136                         ret = 0;
2137                         goto error;
2138                 }
2139                 path->slots[0]--;
2140         }
2141
2142         while(1) {
2143                 fi = NULL;
2144                 leaf = path->nodes[0];
2145                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2146                 found_type = btrfs_key_type(&found_key);
2147
2148                 if (found_key.objectid != inode->i_ino)
2149                         break;
2150
2151                 if (found_type < min_type)
2152                         break;
2153
2154                 item_end = found_key.offset;
2155                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2156                         fi = btrfs_item_ptr(leaf, path->slots[0],
2157                                             struct btrfs_file_extent_item);
2158                         extent_type = btrfs_file_extent_type(leaf, fi);
2159                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2160                                 item_end +=
2161                                     btrfs_file_extent_num_bytes(leaf, fi);
2162                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2163                                 item_end += btrfs_file_extent_inline_len(leaf,
2164                                                                          fi);
2165                         }
2166                         item_end--;
2167                 }
2168                 if (found_type == BTRFS_CSUM_ITEM_KEY) {
2169                         ret = btrfs_csum_truncate(trans, root, path,
2170                                                   new_size);
2171                         BUG_ON(ret);
2172                 }
2173                 if (item_end < new_size) {
2174                         if (found_type == BTRFS_DIR_ITEM_KEY) {
2175                                 found_type = BTRFS_INODE_ITEM_KEY;
2176                         } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
2177                                 found_type = BTRFS_CSUM_ITEM_KEY;
2178                         } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
2179                                 found_type = BTRFS_XATTR_ITEM_KEY;
2180                         } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
2181                                 found_type = BTRFS_INODE_REF_KEY;
2182                         } else if (found_type) {
2183                                 found_type--;
2184                         } else {
2185                                 break;
2186                         }
2187                         btrfs_set_key_type(&key, found_type);
2188                         goto next;
2189                 }
2190                 if (found_key.offset >= new_size)
2191                         del_item = 1;
2192                 else
2193                         del_item = 0;
2194                 found_extent = 0;
2195
2196                 /* FIXME, shrink the extent if the ref count is only 1 */
2197                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2198                         goto delete;
2199
2200                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2201                         u64 num_dec;
2202                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2203                         if (!del_item) {
2204                                 u64 orig_num_bytes =
2205                                         btrfs_file_extent_num_bytes(leaf, fi);
2206                                 extent_num_bytes = new_size -
2207                                         found_key.offset + root->sectorsize - 1;
2208                                 extent_num_bytes = extent_num_bytes &
2209                                         ~((u64)root->sectorsize - 1);
2210                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2211                                                          extent_num_bytes);
2212                                 num_dec = (orig_num_bytes -
2213                                            extent_num_bytes);
2214                                 if (root->ref_cows && extent_start != 0)
2215                                         inode_sub_bytes(inode, num_dec);
2216                                 btrfs_mark_buffer_dirty(leaf);
2217                         } else {
2218                                 extent_num_bytes =
2219                                         btrfs_file_extent_disk_num_bytes(leaf,
2220                                                                          fi);
2221                                 /* FIXME blocksize != 4096 */
2222                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2223                                 if (extent_start != 0) {
2224                                         found_extent = 1;
2225                                         if (root->ref_cows)
2226                                                 inode_sub_bytes(inode, num_dec);
2227                                 }
2228                                 root_gen = btrfs_header_generation(leaf);
2229                                 root_owner = btrfs_header_owner(leaf);
2230                         }
2231                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2232                         /*
2233                          * we can't truncate inline items that have had
2234                          * special encodings
2235                          */
2236                         if (!del_item &&
2237                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2238                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
2239                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2240                                 u32 size = new_size - found_key.offset;
2241
2242                                 if (root->ref_cows) {
2243                                         inode_sub_bytes(inode, item_end + 1 -
2244                                                         new_size);
2245                                 }
2246                                 size =
2247                                     btrfs_file_extent_calc_inline_size(size);
2248                                 ret = btrfs_truncate_item(trans, root, path,
2249                                                           size, 1);
2250                                 BUG_ON(ret);
2251                         } else if (root->ref_cows) {
2252                                 inode_sub_bytes(inode, item_end + 1 -
2253                                                 found_key.offset);
2254                         }
2255                 }
2256 delete:
2257                 if (del_item) {
2258                         if (!pending_del_nr) {
2259                                 /* no pending yet, add ourselves */
2260                                 pending_del_slot = path->slots[0];
2261                                 pending_del_nr = 1;
2262                         } else if (pending_del_nr &&
2263                                    path->slots[0] + 1 == pending_del_slot) {
2264                                 /* hop on the pending chunk */
2265                                 pending_del_nr++;
2266                                 pending_del_slot = path->slots[0];
2267                         } else {
2268                                 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
2269                         }
2270                 } else {
2271                         break;
2272                 }
2273                 if (found_extent) {
2274                         ret = btrfs_free_extent(trans, root, extent_start,
2275                                                 extent_num_bytes,
2276                                                 leaf->start, root_owner,
2277                                                 root_gen, inode->i_ino, 0);
2278                         BUG_ON(ret);
2279                 }
2280 next:
2281                 if (path->slots[0] == 0) {
2282                         if (pending_del_nr)
2283                                 goto del_pending;
2284                         btrfs_release_path(root, path);
2285                         goto search_again;
2286                 }
2287
2288                 path->slots[0]--;
2289                 if (pending_del_nr &&
2290                     path->slots[0] + 1 != pending_del_slot) {
2291                         struct btrfs_key debug;
2292 del_pending:
2293                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
2294                                               pending_del_slot);
2295                         ret = btrfs_del_items(trans, root, path,
2296                                               pending_del_slot,
2297                                               pending_del_nr);
2298                         BUG_ON(ret);
2299                         pending_del_nr = 0;
2300                         btrfs_release_path(root, path);
2301                         goto search_again;
2302                 }
2303         }
2304         ret = 0;
2305 error:
2306         if (pending_del_nr) {
2307                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2308                                       pending_del_nr);
2309         }
2310         btrfs_free_path(path);
2311         inode->i_sb->s_dirt = 1;
2312         return ret;
2313 }
2314
2315 /*
2316  * taken from block_truncate_page, but does cow as it zeros out
2317  * any bytes left in the last page in the file.
2318  */
2319 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2320 {
2321         struct inode *inode = mapping->host;
2322         struct btrfs_root *root = BTRFS_I(inode)->root;
2323         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2324         struct btrfs_ordered_extent *ordered;
2325         char *kaddr;
2326         u32 blocksize = root->sectorsize;
2327         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2328         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2329         struct page *page;
2330         int ret = 0;
2331         u64 page_start;
2332         u64 page_end;
2333
2334         if ((offset & (blocksize - 1)) == 0)
2335                 goto out;
2336
2337         ret = -ENOMEM;
2338 again:
2339         page = grab_cache_page(mapping, index);
2340         if (!page)
2341                 goto out;
2342
2343         page_start = page_offset(page);
2344         page_end = page_start + PAGE_CACHE_SIZE - 1;
2345
2346         if (!PageUptodate(page)) {
2347                 ret = btrfs_readpage(NULL, page);
2348                 lock_page(page);
2349                 if (page->mapping != mapping) {
2350                         unlock_page(page);
2351                         page_cache_release(page);
2352                         goto again;
2353                 }
2354                 if (!PageUptodate(page)) {
2355                         ret = -EIO;
2356                         goto out_unlock;
2357                 }
2358         }
2359         wait_on_page_writeback(page);
2360
2361         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2362         set_page_extent_mapped(page);
2363
2364         ordered = btrfs_lookup_ordered_extent(inode, page_start);
2365         if (ordered) {
2366                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2367                 unlock_page(page);
2368                 page_cache_release(page);
2369                 btrfs_start_ordered_extent(inode, ordered, 1);
2370                 btrfs_put_ordered_extent(ordered);
2371                 goto again;
2372         }
2373
2374         btrfs_set_extent_delalloc(inode, page_start, page_end);
2375         ret = 0;
2376         if (offset != PAGE_CACHE_SIZE) {
2377                 kaddr = kmap(page);
2378                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2379                 flush_dcache_page(page);
2380                 kunmap(page);
2381         }
2382         ClearPageChecked(page);
2383         set_page_dirty(page);
2384         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2385
2386 out_unlock:
2387         unlock_page(page);
2388         page_cache_release(page);
2389 out:
2390         return ret;
2391 }
2392
2393 int btrfs_cont_expand(struct inode *inode, loff_t size)
2394 {
2395         struct btrfs_trans_handle *trans;
2396         struct btrfs_root *root = BTRFS_I(inode)->root;
2397         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2398         struct extent_map *em;
2399         u64 mask = root->sectorsize - 1;
2400         u64 hole_start = (inode->i_size + mask) & ~mask;
2401         u64 block_end = (size + mask) & ~mask;
2402         u64 last_byte;
2403         u64 cur_offset;
2404         u64 hole_size;
2405         int err;
2406
2407         if (size <= hole_start)
2408                 return 0;
2409
2410         err = btrfs_check_free_space(root, 1, 0);
2411         if (err)
2412                 return err;
2413
2414         btrfs_truncate_page(inode->i_mapping, inode->i_size);
2415
2416         while (1) {
2417                 struct btrfs_ordered_extent *ordered;
2418                 btrfs_wait_ordered_range(inode, hole_start,
2419                                          block_end - hole_start);
2420                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2421                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2422                 if (!ordered)
2423                         break;
2424                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2425                 btrfs_put_ordered_extent(ordered);
2426         }
2427
2428         trans = btrfs_start_transaction(root, 1);
2429         btrfs_set_trans_block_group(trans, inode);
2430
2431         cur_offset = hole_start;
2432         while (1) {
2433                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2434                                 block_end - cur_offset, 0);
2435                 BUG_ON(IS_ERR(em) || !em);
2436                 last_byte = min(extent_map_end(em), block_end);
2437                 last_byte = (last_byte + mask) & ~mask;
2438                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2439                         hole_size = last_byte - cur_offset;
2440                         err = btrfs_insert_file_extent(trans, root,
2441                                         inode->i_ino, cur_offset, 0,
2442                                         0, hole_size, 0, hole_size,
2443                                         0, 0, 0);
2444                         btrfs_drop_extent_cache(inode, hole_start,
2445                                         last_byte - 1, 0);
2446                 }
2447                 free_extent_map(em);
2448                 cur_offset = last_byte;
2449                 if (err || cur_offset >= block_end)
2450                         break;
2451         }
2452
2453         btrfs_end_transaction(trans, root);
2454         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2455         return err;
2456 }
2457
2458 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2459 {
2460         struct inode *inode = dentry->d_inode;
2461         int err;
2462
2463         err = inode_change_ok(inode, attr);
2464         if (err)
2465                 return err;
2466
2467         if (S_ISREG(inode->i_mode) &&
2468             attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2469                 err = btrfs_cont_expand(inode, attr->ia_size);
2470                 if (err)
2471                         return err;
2472         }
2473
2474         err = inode_setattr(inode, attr);
2475
2476         if (!err && ((attr->ia_valid & ATTR_MODE)))
2477                 err = btrfs_acl_chmod(inode);
2478         return err;
2479 }
2480
2481 void btrfs_delete_inode(struct inode *inode)
2482 {
2483         struct btrfs_trans_handle *trans;
2484         struct btrfs_root *root = BTRFS_I(inode)->root;
2485         unsigned long nr;
2486         int ret;
2487
2488         truncate_inode_pages(&inode->i_data, 0);
2489         if (is_bad_inode(inode)) {
2490                 btrfs_orphan_del(NULL, inode);
2491                 goto no_delete;
2492         }
2493         btrfs_wait_ordered_range(inode, 0, (u64)-1);
2494
2495         btrfs_i_size_write(inode, 0);
2496         trans = btrfs_start_transaction(root, 1);
2497
2498         btrfs_set_trans_block_group(trans, inode);
2499         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2500         if (ret) {
2501                 btrfs_orphan_del(NULL, inode);
2502                 goto no_delete_lock;
2503         }
2504
2505         btrfs_orphan_del(trans, inode);
2506
2507         nr = trans->blocks_used;
2508         clear_inode(inode);
2509
2510         btrfs_end_transaction(trans, root);
2511         btrfs_btree_balance_dirty(root, nr);
2512         return;
2513
2514 no_delete_lock:
2515         nr = trans->blocks_used;
2516         btrfs_end_transaction(trans, root);
2517         btrfs_btree_balance_dirty(root, nr);
2518 no_delete:
2519         clear_inode(inode);
2520 }
2521
2522 /*
2523  * this returns the key found in the dir entry in the location pointer.
2524  * If no dir entries were found, location->objectid is 0.
2525  */
2526 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2527                                struct btrfs_key *location)
2528 {
2529         const char *name = dentry->d_name.name;
2530         int namelen = dentry->d_name.len;
2531         struct btrfs_dir_item *di;
2532         struct btrfs_path *path;
2533         struct btrfs_root *root = BTRFS_I(dir)->root;
2534         int ret = 0;
2535
2536         path = btrfs_alloc_path();
2537         BUG_ON(!path);
2538
2539         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2540                                     namelen, 0);
2541         if (IS_ERR(di))
2542                 ret = PTR_ERR(di);
2543         if (!di || IS_ERR(di)) {
2544                 goto out_err;
2545         }
2546         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2547 out:
2548         btrfs_free_path(path);
2549         return ret;
2550 out_err:
2551         location->objectid = 0;
2552         goto out;
2553 }
2554
2555 /*
2556  * when we hit a tree root in a directory, the btrfs part of the inode
2557  * needs to be changed to reflect the root directory of the tree root.  This
2558  * is kind of like crossing a mount point.
2559  */
2560 static int fixup_tree_root_location(struct btrfs_root *root,
2561                              struct btrfs_key *location,
2562                              struct btrfs_root **sub_root,
2563                              struct dentry *dentry)
2564 {
2565         struct btrfs_root_item *ri;
2566
2567         if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2568                 return 0;
2569         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2570                 return 0;
2571
2572         *sub_root = btrfs_read_fs_root(root->fs_info, location,
2573                                         dentry->d_name.name,
2574                                         dentry->d_name.len);
2575         if (IS_ERR(*sub_root))
2576                 return PTR_ERR(*sub_root);
2577
2578         ri = &(*sub_root)->root_item;
2579         location->objectid = btrfs_root_dirid(ri);
2580         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2581         location->offset = 0;
2582
2583         return 0;
2584 }
2585
2586 static noinline void init_btrfs_i(struct inode *inode)
2587 {
2588         struct btrfs_inode *bi = BTRFS_I(inode);
2589
2590         bi->i_acl = NULL;
2591         bi->i_default_acl = NULL;
2592
2593         bi->generation = 0;
2594         bi->last_trans = 0;
2595         bi->logged_trans = 0;
2596         bi->delalloc_bytes = 0;
2597         bi->disk_i_size = 0;
2598         bi->flags = 0;
2599         bi->index_cnt = (u64)-1;
2600         bi->log_dirty_trans = 0;
2601         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2602         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2603                              inode->i_mapping, GFP_NOFS);
2604         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2605                              inode->i_mapping, GFP_NOFS);
2606         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2607         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2608         mutex_init(&BTRFS_I(inode)->csum_mutex);
2609         mutex_init(&BTRFS_I(inode)->extent_mutex);
2610         mutex_init(&BTRFS_I(inode)->log_mutex);
2611 }
2612
2613 static int btrfs_init_locked_inode(struct inode *inode, void *p)
2614 {
2615         struct btrfs_iget_args *args = p;
2616         inode->i_ino = args->ino;
2617         init_btrfs_i(inode);
2618         BTRFS_I(inode)->root = args->root;
2619         return 0;
2620 }
2621
2622 static int btrfs_find_actor(struct inode *inode, void *opaque)
2623 {
2624         struct btrfs_iget_args *args = opaque;
2625         return (args->ino == inode->i_ino &&
2626                 args->root == BTRFS_I(inode)->root);
2627 }
2628
2629 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
2630                             struct btrfs_root *root, int wait)
2631 {
2632         struct inode *inode;
2633         struct btrfs_iget_args args;
2634         args.ino = objectid;
2635         args.root = root;
2636
2637         if (wait) {
2638                 inode = ilookup5(s, objectid, btrfs_find_actor,
2639                                  (void *)&args);
2640         } else {
2641                 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
2642                                         (void *)&args);
2643         }
2644         return inode;
2645 }
2646
2647 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
2648                                 struct btrfs_root *root)
2649 {
2650         struct inode *inode;
2651         struct btrfs_iget_args args;
2652         args.ino = objectid;
2653         args.root = root;
2654
2655         inode = iget5_locked(s, objectid, btrfs_find_actor,
2656                              btrfs_init_locked_inode,
2657                              (void *)&args);
2658         return inode;
2659 }
2660
2661 /* Get an inode object given its location and corresponding root.
2662  * Returns in *is_new if the inode was read from disk
2663  */
2664 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
2665                          struct btrfs_root *root, int *is_new)
2666 {
2667         struct inode *inode;
2668
2669         inode = btrfs_iget_locked(s, location->objectid, root);
2670         if (!inode)
2671                 return ERR_PTR(-EACCES);
2672
2673         if (inode->i_state & I_NEW) {
2674                 BTRFS_I(inode)->root = root;
2675                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
2676                 btrfs_read_locked_inode(inode);
2677                 unlock_new_inode(inode);
2678                 if (is_new)
2679                         *is_new = 1;
2680         } else {
2681                 if (is_new)
2682                         *is_new = 0;
2683         }
2684
2685         return inode;
2686 }
2687
2688 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
2689                                    struct nameidata *nd)
2690 {
2691         struct inode * inode;
2692         struct btrfs_inode *bi = BTRFS_I(dir);
2693         struct btrfs_root *root = bi->root;
2694         struct btrfs_root *sub_root = root;
2695         struct btrfs_key location;
2696         int ret, new, do_orphan = 0;
2697
2698         if (dentry->d_name.len > BTRFS_NAME_LEN)
2699                 return ERR_PTR(-ENAMETOOLONG);
2700
2701         ret = btrfs_inode_by_name(dir, dentry, &location);
2702
2703         if (ret < 0)
2704                 return ERR_PTR(ret);
2705
2706         inode = NULL;
2707         if (location.objectid) {
2708                 ret = fixup_tree_root_location(root, &location, &sub_root,
2709                                                 dentry);
2710                 if (ret < 0)
2711                         return ERR_PTR(ret);
2712                 if (ret > 0)
2713                         return ERR_PTR(-ENOENT);
2714                 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
2715                 if (IS_ERR(inode))
2716                         return ERR_CAST(inode);
2717
2718                 /* the inode and parent dir are two different roots */
2719                 if (new && root != sub_root) {
2720                         igrab(inode);
2721                         sub_root->inode = inode;
2722                         do_orphan = 1;
2723                 }
2724         }
2725
2726         if (unlikely(do_orphan))
2727                 btrfs_orphan_cleanup(sub_root);
2728
2729         return d_splice_alias(inode, dentry);
2730 }
2731
2732 static unsigned char btrfs_filetype_table[] = {
2733         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
2734 };
2735
2736 static int btrfs_real_readdir(struct file *filp, void *dirent,
2737                               filldir_t filldir)
2738 {
2739         struct inode *inode = filp->f_dentry->d_inode;
2740         struct btrfs_root *root = BTRFS_I(inode)->root;
2741         struct btrfs_item *item;
2742         struct btrfs_dir_item *di;
2743         struct btrfs_key key;
2744         struct btrfs_key found_key;
2745         struct btrfs_path *path;
2746         int ret;
2747         u32 nritems;
2748         struct extent_buffer *leaf;
2749         int slot;
2750         int advance;
2751         unsigned char d_type;
2752         int over = 0;
2753         u32 di_cur;
2754         u32 di_total;
2755         u32 di_len;
2756         int key_type = BTRFS_DIR_INDEX_KEY;
2757         char tmp_name[32];
2758         char *name_ptr;
2759         int name_len;
2760
2761         /* FIXME, use a real flag for deciding about the key type */
2762         if (root->fs_info->tree_root == root)
2763                 key_type = BTRFS_DIR_ITEM_KEY;
2764
2765         /* special case for "." */
2766         if (filp->f_pos == 0) {
2767                 over = filldir(dirent, ".", 1,
2768                                1, inode->i_ino,
2769                                DT_DIR);
2770                 if (over)
2771                         return 0;
2772                 filp->f_pos = 1;
2773         }
2774         /* special case for .., just use the back ref */
2775         if (filp->f_pos == 1) {
2776                 u64 pino = parent_ino(filp->f_path.dentry);
2777                 over = filldir(dirent, "..", 2,
2778                                2, pino, DT_DIR);
2779                 if (over)
2780                         return 0;
2781                 filp->f_pos = 2;
2782         }
2783
2784         path = btrfs_alloc_path();
2785         path->reada = 2;
2786
2787         btrfs_set_key_type(&key, key_type);
2788         key.offset = filp->f_pos;
2789         key.objectid = inode->i_ino;
2790
2791         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2792         if (ret < 0)
2793                 goto err;
2794         advance = 0;
2795
2796         while (1) {
2797                 leaf = path->nodes[0];
2798                 nritems = btrfs_header_nritems(leaf);
2799                 slot = path->slots[0];
2800                 if (advance || slot >= nritems) {
2801                         if (slot >= nritems - 1) {
2802                                 ret = btrfs_next_leaf(root, path);
2803                                 if (ret)
2804                                         break;
2805                                 leaf = path->nodes[0];
2806                                 nritems = btrfs_header_nritems(leaf);
2807                                 slot = path->slots[0];
2808                         } else {
2809                                 slot++;
2810                                 path->slots[0]++;
2811                         }
2812                 }
2813                 advance = 1;
2814                 item = btrfs_item_nr(leaf, slot);
2815                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2816
2817                 if (found_key.objectid != key.objectid)
2818                         break;
2819                 if (btrfs_key_type(&found_key) != key_type)
2820                         break;
2821                 if (found_key.offset < filp->f_pos)
2822                         continue;
2823
2824                 filp->f_pos = found_key.offset;
2825
2826                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2827                 di_cur = 0;
2828                 di_total = btrfs_item_size(leaf, item);
2829
2830                 while (di_cur < di_total) {
2831                         struct btrfs_key location;
2832
2833                         name_len = btrfs_dir_name_len(leaf, di);
2834                         if (name_len <= sizeof(tmp_name)) {
2835                                 name_ptr = tmp_name;
2836                         } else {
2837                                 name_ptr = kmalloc(name_len, GFP_NOFS);
2838                                 if (!name_ptr) {
2839                                         ret = -ENOMEM;
2840                                         goto err;
2841                                 }
2842                         }
2843                         read_extent_buffer(leaf, name_ptr,
2844                                            (unsigned long)(di + 1), name_len);
2845
2846                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2847                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
2848                         over = filldir(dirent, name_ptr, name_len,
2849                                        found_key.offset, location.objectid,
2850                                        d_type);
2851
2852                         if (name_ptr != tmp_name)
2853                                 kfree(name_ptr);
2854
2855                         if (over)
2856                                 goto nopos;
2857
2858                         di_len = btrfs_dir_name_len(leaf, di) +
2859                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
2860                         di_cur += di_len;
2861                         di = (struct btrfs_dir_item *)((char *)di + di_len);
2862                 }
2863         }
2864
2865         /* Reached end of directory/root. Bump pos past the last item. */
2866         if (key_type == BTRFS_DIR_INDEX_KEY)
2867                 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2868         else
2869                 filp->f_pos++;
2870 nopos:
2871         ret = 0;
2872 err:
2873         btrfs_free_path(path);
2874         return ret;
2875 }
2876
2877 int btrfs_write_inode(struct inode *inode, int wait)
2878 {
2879         struct btrfs_root *root = BTRFS_I(inode)->root;
2880         struct btrfs_trans_handle *trans;
2881         int ret = 0;
2882
2883         if (root->fs_info->closing > 1)
2884                 return 0;
2885
2886         if (wait) {
2887                 trans = btrfs_join_transaction(root, 1);
2888                 btrfs_set_trans_block_group(trans, inode);
2889                 ret = btrfs_commit_transaction(trans, root);
2890         }
2891         return ret;
2892 }
2893
2894 /*
2895  * This is somewhat expensive, updating the tree every time the
2896  * inode changes.  But, it is most likely to find the inode in cache.
2897  * FIXME, needs more benchmarking...there are no reasons other than performance
2898  * to keep or drop this code.
2899  */
2900 void btrfs_dirty_inode(struct inode *inode)
2901 {
2902         struct btrfs_root *root = BTRFS_I(inode)->root;
2903         struct btrfs_trans_handle *trans;
2904
2905         trans = btrfs_join_transaction(root, 1);
2906         btrfs_set_trans_block_group(trans, inode);
2907         btrfs_update_inode(trans, root, inode);
2908         btrfs_end_transaction(trans, root);
2909 }
2910
2911 /*
2912  * find the highest existing sequence number in a directory
2913  * and then set the in-memory index_cnt variable to reflect
2914  * free sequence numbers
2915  */
2916 static int btrfs_set_inode_index_count(struct inode *inode)
2917 {
2918         struct btrfs_root *root = BTRFS_I(inode)->root;
2919         struct btrfs_key key, found_key;
2920         struct btrfs_path *path;
2921         struct extent_buffer *leaf;
2922         int ret;
2923
2924         key.objectid = inode->i_ino;
2925         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2926         key.offset = (u64)-1;
2927
2928         path = btrfs_alloc_path();
2929         if (!path)
2930                 return -ENOMEM;
2931
2932         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2933         if (ret < 0)
2934                 goto out;
2935         /* FIXME: we should be able to handle this */
2936         if (ret == 0)
2937                 goto out;
2938         ret = 0;
2939
2940         /*
2941          * MAGIC NUMBER EXPLANATION:
2942          * since we search a directory based on f_pos we have to start at 2
2943          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2944          * else has to start at 2
2945          */
2946         if (path->slots[0] == 0) {
2947                 BTRFS_I(inode)->index_cnt = 2;
2948                 goto out;
2949         }
2950
2951         path->slots[0]--;
2952
2953         leaf = path->nodes[0];
2954         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2955
2956         if (found_key.objectid != inode->i_ino ||
2957             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2958                 BTRFS_I(inode)->index_cnt = 2;
2959                 goto out;
2960         }
2961
2962         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2963 out:
2964         btrfs_free_path(path);
2965         return ret;
2966 }
2967
2968 /*
2969  * helper to find a free sequence number in a given directory.  This current
2970  * code is very simple, later versions will do smarter things in the btree
2971  */
2972 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
2973                                  u64 *index)
2974 {
2975         int ret = 0;
2976
2977         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2978                 ret = btrfs_set_inode_index_count(dir);
2979                 if (ret) {
2980                         return ret;
2981                 }
2982         }
2983
2984         *index = BTRFS_I(dir)->index_cnt;
2985         BTRFS_I(dir)->index_cnt++;
2986
2987         return ret;
2988 }
2989
2990 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2991                                      struct btrfs_root *root,
2992                                      struct inode *dir,
2993                                      const char *name, int name_len,
2994                                      u64 ref_objectid,
2995                                      u64 objectid,
2996                                      struct btrfs_block_group_cache *group,
2997                                      int mode, u64 *index)
2998 {
2999         struct inode *inode;
3000         struct btrfs_inode_item *inode_item;
3001         struct btrfs_block_group_cache *new_inode_group;
3002         struct btrfs_key *location;
3003         struct btrfs_path *path;
3004         struct btrfs_inode_ref *ref;
3005         struct btrfs_key key[2];
3006         u32 sizes[2];
3007         unsigned long ptr;
3008         int ret;
3009         int owner;
3010
3011         path = btrfs_alloc_path();
3012         BUG_ON(!path);
3013
3014         inode = new_inode(root->fs_info->sb);
3015         if (!inode)
3016                 return ERR_PTR(-ENOMEM);
3017
3018         if (dir) {
3019                 ret = btrfs_set_inode_index(dir, inode, index);
3020                 if (ret)
3021                         return ERR_PTR(ret);
3022         }
3023         /*
3024          * index_cnt is ignored for everything but a dir,
3025          * btrfs_get_inode_index_count has an explanation for the magic
3026          * number
3027          */
3028         init_btrfs_i(inode);
3029         BTRFS_I(inode)->index_cnt = 2;
3030         BTRFS_I(inode)->root = root;
3031         BTRFS_I(inode)->generation = trans->transid;
3032
3033         if (mode & S_IFDIR)
3034                 owner = 0;
3035         else
3036                 owner = 1;
3037         new_inode_group = btrfs_find_block_group(root, group, 0,
3038                                        BTRFS_BLOCK_GROUP_METADATA, owner);
3039         if (!new_inode_group) {
3040                 printk("find_block group failed\n");
3041                 new_inode_group = group;
3042         }
3043         BTRFS_I(inode)->block_group = new_inode_group;
3044
3045         key[0].objectid = objectid;
3046         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3047         key[0].offset = 0;
3048
3049         key[1].objectid = objectid;
3050         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3051         key[1].offset = ref_objectid;
3052
3053         sizes[0] = sizeof(struct btrfs_inode_item);
3054         sizes[1] = name_len + sizeof(*ref);
3055
3056         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3057         if (ret != 0)
3058                 goto fail;
3059
3060         if (objectid > root->highest_inode)
3061                 root->highest_inode = objectid;
3062
3063         inode->i_uid = current->fsuid;
3064         inode->i_gid = current->fsgid;
3065         inode->i_mode = mode;
3066         inode->i_ino = objectid;
3067         inode_set_bytes(inode, 0);
3068         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3069         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3070                                   struct btrfs_inode_item);
3071         fill_inode_item(trans, path->nodes[0], inode_item, inode);
3072
3073         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3074                              struct btrfs_inode_ref);
3075         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3076         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3077         ptr = (unsigned long)(ref + 1);
3078         write_extent_buffer(path->nodes[0], name, ptr, name_len);
3079
3080         btrfs_mark_buffer_dirty(path->nodes[0]);
3081         btrfs_free_path(path);
3082
3083         location = &BTRFS_I(inode)->location;
3084         location->objectid = objectid;
3085         location->offset = 0;
3086         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3087
3088         insert_inode_hash(inode);
3089         return inode;
3090 fail:
3091         if (dir)
3092                 BTRFS_I(dir)->index_cnt--;
3093         btrfs_free_path(path);
3094         return ERR_PTR(ret);
3095 }
3096
3097 static inline u8 btrfs_inode_type(struct inode *inode)
3098 {
3099         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3100 }
3101
3102 /*
3103  * utility function to add 'inode' into 'parent_inode' with
3104  * a give name and a given sequence number.
3105  * if 'add_backref' is true, also insert a backref from the
3106  * inode to the parent directory.
3107  */
3108 int btrfs_add_link(struct btrfs_trans_handle *trans,
3109                    struct inode *parent_inode, struct inode *inode,
3110                    const char *name, int name_len, int add_backref, u64 index)
3111 {
3112         int ret;
3113         struct btrfs_key key;
3114         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3115
3116         key.objectid = inode->i_ino;
3117         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3118         key.offset = 0;
3119
3120         ret = btrfs_insert_dir_item(trans, root, name, name_len,
3121                                     parent_inode->i_ino,
3122                                     &key, btrfs_inode_type(inode),
3123                                     index);
3124         if (ret == 0) {
3125                 if (add_backref) {
3126                         ret = btrfs_insert_inode_ref(trans, root,
3127                                                      name, name_len,
3128                                                      inode->i_ino,
3129                                                      parent_inode->i_ino,
3130                                                      index);
3131                 }
3132                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3133                                    name_len * 2);
3134                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3135                 ret = btrfs_update_inode(trans, root, parent_inode);
3136         }
3137         return ret;
3138 }
3139
3140 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3141                             struct dentry *dentry, struct inode *inode,
3142                             int backref, u64 index)
3143 {
3144         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3145                                  inode, dentry->d_name.name,
3146                                  dentry->d_name.len, backref, index);
3147         if (!err) {
3148                 d_instantiate(dentry, inode);
3149                 return 0;
3150         }
3151         if (err > 0)
3152                 err = -EEXIST;
3153         return err;
3154 }
3155
3156 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3157                         int mode, dev_t rdev)
3158 {
3159         struct btrfs_trans_handle *trans;
3160         struct btrfs_root *root = BTRFS_I(dir)->root;
3161         struct inode *inode = NULL;
3162         int err;
3163         int drop_inode = 0;
3164         u64 objectid;
3165         unsigned long nr = 0;
3166         u64 index = 0;
3167
3168         if (!new_valid_dev(rdev))
3169                 return -EINVAL;
3170
3171         err = btrfs_check_free_space(root, 1, 0);
3172         if (err)
3173                 goto fail;
3174
3175         trans = btrfs_start_transaction(root, 1);
3176         btrfs_set_trans_block_group(trans, dir);
3177
3178         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3179         if (err) {
3180                 err = -ENOSPC;
3181                 goto out_unlock;
3182         }
3183
3184         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3185                                 dentry->d_name.len,
3186                                 dentry->d_parent->d_inode->i_ino, objectid,
3187                                 BTRFS_I(dir)->block_group, mode, &index);
3188         err = PTR_ERR(inode);
3189         if (IS_ERR(inode))
3190                 goto out_unlock;
3191
3192         err = btrfs_init_acl(inode, dir);
3193         if (err) {
3194                 drop_inode = 1;
3195                 goto out_unlock;
3196         }
3197
3198         btrfs_set_trans_block_group(trans, inode);
3199         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3200         if (err)
3201                 drop_inode = 1;
3202         else {
3203                 inode->i_op = &btrfs_special_inode_operations;
3204                 init_special_inode(inode, inode->i_mode, rdev);
3205                 btrfs_update_inode(trans, root, inode);
3206         }
3207         dir->i_sb->s_dirt = 1;
3208         btrfs_update_inode_block_group(trans, inode);
3209         btrfs_update_inode_block_group(trans, dir);
3210 out_unlock:
3211         nr = trans->blocks_used;
3212         btrfs_end_transaction_throttle(trans, root);
3213 fail:
3214         if (drop_inode) {
3215                 inode_dec_link_count(inode);
3216                 iput(inode);
3217         }
3218         btrfs_btree_balance_dirty(root, nr);
3219         return err;
3220 }
3221
3222 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3223                         int mode, struct nameidata *nd)
3224 {
3225         struct btrfs_trans_handle *trans;
3226         struct btrfs_root *root = BTRFS_I(dir)->root;
3227         struct inode *inode = NULL;
3228         int err;
3229         int drop_inode = 0;
3230         unsigned long nr = 0;
3231         u64 objectid;
3232         u64 index = 0;
3233
3234         err = btrfs_check_free_space(root, 1, 0);
3235         if (err)
3236                 goto fail;
3237         trans = btrfs_start_transaction(root, 1);
3238         btrfs_set_trans_block_group(trans, dir);
3239
3240         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3241         if (err) {
3242                 err = -ENOSPC;
3243                 goto out_unlock;
3244         }
3245
3246         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3247                                 dentry->d_name.len,
3248                                 dentry->d_parent->d_inode->i_ino,
3249                                 objectid, BTRFS_I(dir)->block_group, mode,
3250                                 &index);
3251         err = PTR_ERR(inode);
3252         if (IS_ERR(inode))
3253                 goto out_unlock;
3254
3255         err = btrfs_init_acl(inode, dir);
3256         if (err) {
3257                 drop_inode = 1;
3258                 goto out_unlock;
3259         }
3260
3261         btrfs_set_trans_block_group(trans, inode);
3262         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3263         if (err)
3264                 drop_inode = 1;
3265         else {
3266                 inode->i_mapping->a_ops = &btrfs_aops;
3267                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3268                 inode->i_fop = &btrfs_file_operations;
3269                 inode->i_op = &btrfs_file_inode_operations;
3270                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3271         }
3272         dir->i_sb->s_dirt = 1;
3273         btrfs_update_inode_block_group(trans, inode);
3274         btrfs_update_inode_block_group(trans, dir);
3275 out_unlock:
3276         nr = trans->blocks_used;
3277         btrfs_end_transaction_throttle(trans, root);
3278 fail:
3279         if (drop_inode) {
3280                 inode_dec_link_count(inode);
3281                 iput(inode);
3282         }
3283         btrfs_btree_balance_dirty(root, nr);
3284         return err;
3285 }
3286
3287 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3288                       struct dentry *dentry)
3289 {
3290         struct btrfs_trans_handle *trans;
3291         struct btrfs_root *root = BTRFS_I(dir)->root;
3292         struct inode *inode = old_dentry->d_inode;
3293         u64 index;
3294         unsigned long nr = 0;
3295         int err;
3296         int drop_inode = 0;
3297
3298         if (inode->i_nlink == 0)
3299                 return -ENOENT;
3300
3301         btrfs_inc_nlink(inode);
3302         err = btrfs_check_free_space(root, 1, 0);
3303         if (err)
3304                 goto fail;
3305         err = btrfs_set_inode_index(dir, inode, &index);
3306         if (err)
3307                 goto fail;
3308
3309         trans = btrfs_start_transaction(root, 1);
3310
3311         btrfs_set_trans_block_group(trans, dir);
3312         atomic_inc(&inode->i_count);
3313
3314         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3315
3316         if (err)
3317                 drop_inode = 1;
3318
3319         dir->i_sb->s_dirt = 1;
3320         btrfs_update_inode_block_group(trans, dir);
3321         err = btrfs_update_inode(trans, root, inode);
3322
3323         if (err)
3324                 drop_inode = 1;
3325
3326         nr = trans->blocks_used;
3327         btrfs_end_transaction_throttle(trans, root);
3328 fail:
3329         if (drop_inode) {
3330                 inode_dec_link_count(inode);
3331                 iput(inode);
3332         }
3333         btrfs_btree_balance_dirty(root, nr);
3334         return err;
3335 }
3336
3337 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3338 {
3339         struct inode *inode = NULL;
3340         struct btrfs_trans_handle *trans;
3341         struct btrfs_root *root = BTRFS_I(dir)->root;
3342         int err = 0;
3343         int drop_on_err = 0;
3344         u64 objectid = 0;
3345         u64 index = 0;
3346         unsigned long nr = 1;
3347
3348         err = btrfs_check_free_space(root, 1, 0);
3349         if (err)
3350                 goto out_unlock;
3351
3352         trans = btrfs_start_transaction(root, 1);
3353         btrfs_set_trans_block_group(trans, dir);
3354
3355         if (IS_ERR(trans)) {
3356                 err = PTR_ERR(trans);
3357                 goto out_unlock;
3358         }
3359
3360         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3361         if (err) {
3362                 err = -ENOSPC;
3363                 goto out_unlock;
3364         }
3365
3366         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3367                                 dentry->d_name.len,
3368                                 dentry->d_parent->d_inode->i_ino, objectid,
3369                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3370                                 &index);
3371         if (IS_ERR(inode)) {
3372                 err = PTR_ERR(inode);
3373                 goto out_fail;
3374         }
3375
3376         drop_on_err = 1;
3377
3378         err = btrfs_init_acl(inode, dir);
3379         if (err)
3380                 goto out_fail;
3381
3382         inode->i_op = &btrfs_dir_inode_operations;
3383         inode->i_fop = &btrfs_dir_file_operations;
3384         btrfs_set_trans_block_group(trans, inode);
3385
3386         btrfs_i_size_write(inode, 0);
3387         err = btrfs_update_inode(trans, root, inode);
3388         if (err)
3389                 goto out_fail;
3390
3391         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3392                                  inode, dentry->d_name.name,
3393                                  dentry->d_name.len, 0, index);
3394         if (err)
3395                 goto out_fail;
3396
3397         d_instantiate(dentry, inode);
3398         drop_on_err = 0;
3399         dir->i_sb->s_dirt = 1;
3400         btrfs_update_inode_block_group(trans, inode);
3401         btrfs_update_inode_block_group(trans, dir);
3402
3403 out_fail:
3404         nr = trans->blocks_used;
3405         btrfs_end_transaction_throttle(trans, root);
3406
3407 out_unlock:
3408         if (drop_on_err)
3409                 iput(inode);
3410         btrfs_btree_balance_dirty(root, nr);
3411         return err;
3412 }
3413
3414 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3415  * and an extent that you want to insert, deal with overlap and insert
3416  * the new extent into the tree.
3417  */
3418 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3419                                 struct extent_map *existing,
3420                                 struct extent_map *em,
3421                                 u64 map_start, u64 map_len)
3422 {
3423         u64 start_diff;
3424
3425         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3426         start_diff = map_start - em->start;
3427         em->start = map_start;
3428         em->len = map_len;
3429         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3430             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3431                 em->block_start += start_diff;
3432                 em->block_len -= start_diff;
3433         }
3434         return add_extent_mapping(em_tree, em);
3435 }
3436
3437 static noinline int uncompress_inline(struct btrfs_path *path,
3438                                       struct inode *inode, struct page *page,
3439                                       size_t pg_offset, u64 extent_offset,
3440                                       struct btrfs_file_extent_item *item)
3441 {
3442         int ret;
3443         struct extent_buffer *leaf = path->nodes[0];
3444         char *tmp;
3445         size_t max_size;
3446         unsigned long inline_size;
3447         unsigned long ptr;
3448
3449         WARN_ON(pg_offset != 0);
3450         max_size = btrfs_file_extent_ram_bytes(leaf, item);
3451         inline_size = btrfs_file_extent_inline_item_len(leaf,
3452                                         btrfs_item_nr(leaf, path->slots[0]));
3453         tmp = kmalloc(inline_size, GFP_NOFS);
3454         ptr = btrfs_file_extent_inline_start(item);
3455
3456         read_extent_buffer(leaf, tmp, ptr, inline_size);
3457
3458         max_size = min(PAGE_CACHE_SIZE, max_size);
3459         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3460                                     inline_size, max_size);
3461         if (ret) {
3462                 char *kaddr = kmap_atomic(page, KM_USER0);
3463                 unsigned long copy_size = min_t(u64,
3464                                   PAGE_CACHE_SIZE - pg_offset,
3465                                   max_size - extent_offset);
3466                 memset(kaddr + pg_offset, 0, copy_size);
3467                 kunmap_atomic(kaddr, KM_USER0);
3468         }
3469         kfree(tmp);
3470         return 0;
3471 }
3472
3473 /*
3474  * a bit scary, this does extent mapping from logical file offset to the disk.
3475  * the ugly parts come from merging extents from the disk with the
3476  * in-ram representation.  This gets more complex because of the data=ordered code,
3477  * where the in-ram extents might be locked pending data=ordered completion.
3478  *
3479  * This also copies inline extents directly into the page.
3480  */
3481 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3482                                     size_t pg_offset, u64 start, u64 len,
3483                                     int create)
3484 {
3485         int ret;
3486         int err = 0;
3487         u64 bytenr;
3488         u64 extent_start = 0;
3489         u64 extent_end = 0;
3490         u64 objectid = inode->i_ino;
3491         u32 found_type;
3492         struct btrfs_path *path = NULL;
3493         struct btrfs_root *root = BTRFS_I(inode)->root;
3494         struct btrfs_file_extent_item *item;
3495         struct extent_buffer *leaf;
3496         struct btrfs_key found_key;
3497         struct extent_map *em = NULL;
3498         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3499         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3500         struct btrfs_trans_handle *trans = NULL;
3501         int compressed;
3502
3503 again:
3504         spin_lock(&em_tree->lock);
3505         em = lookup_extent_mapping(em_tree, start, len);
3506         if (em)
3507                 em->bdev = root->fs_info->fs_devices->latest_bdev;
3508         spin_unlock(&em_tree->lock);
3509
3510         if (em) {
3511                 if (em->start > start || em->start + em->len <= start)
3512                         free_extent_map(em);
3513                 else if (em->block_start == EXTENT_MAP_INLINE && page)
3514                         free_extent_map(em);
3515                 else
3516                         goto out;
3517         }
3518         em = alloc_extent_map(GFP_NOFS);
3519         if (!em) {
3520                 err = -ENOMEM;
3521                 goto out;
3522         }
3523         em->bdev = root->fs_info->fs_devices->latest_bdev;
3524         em->start = EXTENT_MAP_HOLE;
3525         em->len = (u64)-1;
3526         em->block_len = (u64)-1;
3527
3528         if (!path) {
3529                 path = btrfs_alloc_path();
3530                 BUG_ON(!path);
3531         }
3532
3533         ret = btrfs_lookup_file_extent(trans, root, path,
3534                                        objectid, start, trans != NULL);
3535         if (ret < 0) {
3536                 err = ret;
3537                 goto out;
3538         }
3539
3540         if (ret != 0) {
3541                 if (path->slots[0] == 0)
3542                         goto not_found;
3543                 path->slots[0]--;
3544         }
3545
3546         leaf = path->nodes[0];
3547         item = btrfs_item_ptr(leaf, path->slots[0],
3548                               struct btrfs_file_extent_item);
3549         /* are we inside the extent that was found? */
3550         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3551         found_type = btrfs_key_type(&found_key);
3552         if (found_key.objectid != objectid ||
3553             found_type != BTRFS_EXTENT_DATA_KEY) {
3554                 goto not_found;
3555         }
3556
3557         found_type = btrfs_file_extent_type(leaf, item);
3558         extent_start = found_key.offset;
3559         compressed = btrfs_file_extent_compression(leaf, item);
3560         if (found_type == BTRFS_FILE_EXTENT_REG ||
3561             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3562                 extent_end = extent_start +
3563                        btrfs_file_extent_num_bytes(leaf, item);
3564         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3565                 size_t size;
3566                 size = btrfs_file_extent_inline_len(leaf, item);
3567                 extent_end = (extent_start + size + root->sectorsize - 1) &
3568                         ~((u64)root->sectorsize - 1);
3569         }
3570
3571         if (start >= extent_end) {
3572                 path->slots[0]++;
3573                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3574                         ret = btrfs_next_leaf(root, path);
3575                         if (ret < 0) {
3576                                 err = ret;
3577                                 goto out;
3578                         }
3579                         if (ret > 0)
3580                                 goto not_found;
3581                         leaf = path->nodes[0];
3582                 }
3583                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3584                 if (found_key.objectid != objectid ||
3585                     found_key.type != BTRFS_EXTENT_DATA_KEY)
3586                         goto not_found;
3587                 if (start + len <= found_key.offset)
3588                         goto not_found;
3589                 em->start = start;
3590                 em->len = found_key.offset - start;
3591                 goto not_found_em;
3592         }
3593
3594         if (found_type == BTRFS_FILE_EXTENT_REG ||
3595             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3596                 em->start = extent_start;
3597                 em->len = extent_end - extent_start;
3598                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
3599                 if (bytenr == 0) {
3600                         em->block_start = EXTENT_MAP_HOLE;
3601                         goto insert;
3602                 }
3603                 if (compressed) {
3604                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3605                         em->block_start = bytenr;
3606                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
3607                                                                          item);
3608                 } else {
3609                         bytenr += btrfs_file_extent_offset(leaf, item);
3610                         em->block_start = bytenr;
3611                         em->block_len = em->len;
3612                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
3613                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
3614                 }
3615                 goto insert;
3616         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3617                 unsigned long ptr;
3618                 char *map;
3619                 size_t size;
3620                 size_t extent_offset;
3621                 size_t copy_size;
3622
3623                 em->block_start = EXTENT_MAP_INLINE;
3624                 if (!page || create) {
3625                         em->start = extent_start;
3626                         em->len = extent_end - extent_start;
3627                         goto out;
3628                 }
3629
3630                 size = btrfs_file_extent_inline_len(leaf, item);
3631                 extent_offset = page_offset(page) + pg_offset - extent_start;
3632                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3633                                 size - extent_offset);
3634                 em->start = extent_start + extent_offset;
3635                 em->len = (copy_size + root->sectorsize - 1) &
3636                         ~((u64)root->sectorsize - 1);
3637                 if (compressed)
3638                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3639                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
3640                 if (create == 0 && !PageUptodate(page)) {
3641                         if (btrfs_file_extent_compression(leaf, item) ==
3642                             BTRFS_COMPRESS_ZLIB) {
3643                                 ret = uncompress_inline(path, inode, page,
3644                                                         pg_offset,
3645                                                         extent_offset, item);
3646                                 BUG_ON(ret);
3647                         } else {
3648                                 map = kmap(page);
3649                                 read_extent_buffer(leaf, map + pg_offset, ptr,
3650                                                    copy_size);
3651                                 kunmap(page);
3652                         }
3653                         flush_dcache_page(page);
3654                 } else if (create && PageUptodate(page)) {
3655                         if (!trans) {
3656                                 kunmap(page);
3657                                 free_extent_map(em);
3658                                 em = NULL;
3659                                 btrfs_release_path(root, path);
3660                                 trans = btrfs_join_transaction(root, 1);
3661                                 goto again;
3662                         }
3663                         map = kmap(page);
3664                         write_extent_buffer(leaf, map + pg_offset, ptr,
3665                                             copy_size);
3666                         kunmap(page);
3667                         btrfs_mark_buffer_dirty(leaf);
3668                 }
3669                 set_extent_uptodate(io_tree, em->start,
3670                                     extent_map_end(em) - 1, GFP_NOFS);
3671                 goto insert;
3672         } else {
3673                 printk("unkknown found_type %d\n", found_type);
3674                 WARN_ON(1);
3675         }
3676 not_found:
3677         em->start = start;
3678         em->len = len;
3679 not_found_em:
3680         em->block_start = EXTENT_MAP_HOLE;
3681         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
3682 insert:
3683         btrfs_release_path(root, path);
3684         if (em->start > start || extent_map_end(em) <= start) {
3685                 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
3686                 err = -EIO;
3687                 goto out;
3688         }
3689
3690         err = 0;
3691         spin_lock(&em_tree->lock);
3692         ret = add_extent_mapping(em_tree, em);
3693         /* it is possible that someone inserted the extent into the tree
3694          * while we had the lock dropped.  It is also possible that
3695          * an overlapping map exists in the tree
3696          */
3697         if (ret == -EEXIST) {
3698                 struct extent_map *existing;
3699
3700                 ret = 0;
3701
3702                 existing = lookup_extent_mapping(em_tree, start, len);
3703                 if (existing && (existing->start > start ||
3704                     existing->start + existing->len <= start)) {
3705                         free_extent_map(existing);
3706                         existing = NULL;
3707                 }
3708                 if (!existing) {
3709                         existing = lookup_extent_mapping(em_tree, em->start,
3710                                                          em->len);
3711                         if (existing) {
3712                                 err = merge_extent_mapping(em_tree, existing,
3713                                                            em, start,
3714                                                            root->sectorsize);
3715                                 free_extent_map(existing);
3716                                 if (err) {
3717                                         free_extent_map(em);
3718                                         em = NULL;
3719                                 }
3720                         } else {
3721                                 err = -EIO;
3722                                 printk("failing to insert %Lu %Lu\n",
3723                                        start, len);
3724                                 free_extent_map(em);
3725                                 em = NULL;
3726                         }
3727                 } else {
3728                         free_extent_map(em);
3729                         em = existing;
3730                         err = 0;
3731                 }
3732         }
3733         spin_unlock(&em_tree->lock);
3734 out:
3735         if (path)
3736                 btrfs_free_path(path);
3737         if (trans) {
3738                 ret = btrfs_end_transaction(trans, root);
3739                 if (!err) {
3740                         err = ret;
3741                 }
3742         }
3743         if (err) {
3744                 free_extent_map(em);
3745                 WARN_ON(1);
3746                 return ERR_PTR(err);
3747         }
3748         return em;
3749 }
3750
3751 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
3752                         const struct iovec *iov, loff_t offset,
3753                         unsigned long nr_segs)
3754 {
3755         return -EINVAL;
3756 }
3757
3758 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
3759 {
3760         return extent_bmap(mapping, iblock, btrfs_get_extent);
3761 }
3762
3763 int btrfs_readpage(struct file *file, struct page *page)
3764 {
3765         struct extent_io_tree *tree;
3766         tree = &BTRFS_I(page->mapping->host)->io_tree;
3767         return extent_read_full_page(tree, page, btrfs_get_extent);
3768 }
3769
3770 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
3771 {
3772         struct extent_io_tree *tree;
3773
3774
3775         if (current->flags & PF_MEMALLOC) {
3776                 redirty_page_for_writepage(wbc, page);
3777                 unlock_page(page);
3778                 return 0;
3779         }
3780         tree = &BTRFS_I(page->mapping->host)->io_tree;
3781         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
3782 }
3783
3784 int btrfs_writepages(struct address_space *mapping,
3785                      struct writeback_control *wbc)
3786 {
3787         struct extent_io_tree *tree;
3788         tree = &BTRFS_I(mapping->host)->io_tree;
3789         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
3790 }
3791
3792 static int
3793 btrfs_readpages(struct file *file, struct address_space *mapping,
3794                 struct list_head *pages, unsigned nr_pages)
3795 {
3796         struct extent_io_tree *tree;
3797         tree = &BTRFS_I(mapping->host)->io_tree;
3798         return extent_readpages(tree, mapping, pages, nr_pages,
3799                                 btrfs_get_extent);
3800 }
3801 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3802 {
3803         struct extent_io_tree *tree;
3804         struct extent_map_tree *map;
3805         int ret;
3806
3807         tree = &BTRFS_I(page->mapping->host)->io_tree;
3808         map = &BTRFS_I(page->mapping->host)->extent_tree;
3809         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
3810         if (ret == 1) {
3811                 ClearPagePrivate(page);
3812                 set_page_private(page, 0);
3813                 page_cache_release(page);
3814         }
3815         return ret;
3816 }
3817
3818 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3819 {
3820         if (PageWriteback(page) || PageDirty(page))
3821                 return 0;
3822         return __btrfs_releasepage(page, gfp_flags);
3823 }
3824
3825 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
3826 {
3827         struct extent_io_tree *tree;
3828         struct btrfs_ordered_extent *ordered;
3829         u64 page_start = page_offset(page);
3830         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3831
3832         wait_on_page_writeback(page);
3833         tree = &BTRFS_I(page->mapping->host)->io_tree;
3834         if (offset) {
3835                 btrfs_releasepage(page, GFP_NOFS);
3836                 return;
3837         }
3838
3839         lock_extent(tree, page_start, page_end, GFP_NOFS);
3840         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3841                                            page_offset(page));
3842         if (ordered) {
3843                 /*
3844                  * IO on this page will never be started, so we need
3845                  * to account for any ordered extents now
3846                  */
3847                 clear_extent_bit(tree, page_start, page_end,
3848                                  EXTENT_DIRTY | EXTENT_DELALLOC |
3849                                  EXTENT_LOCKED, 1, 0, GFP_NOFS);
3850                 btrfs_finish_ordered_io(page->mapping->host,
3851                                         page_start, page_end);
3852                 btrfs_put_ordered_extent(ordered);
3853                 lock_extent(tree, page_start, page_end, GFP_NOFS);
3854         }
3855         clear_extent_bit(tree, page_start, page_end,
3856                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3857                  EXTENT_ORDERED,
3858                  1, 1, GFP_NOFS);
3859         __btrfs_releasepage(page, GFP_NOFS);
3860
3861         ClearPageChecked(page);
3862         if (PagePrivate(page)) {
3863                 ClearPagePrivate(page);
3864                 set_page_private(page, 0);
3865                 page_cache_release(page);
3866         }
3867 }
3868
3869 /*
3870  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3871  * called from a page fault handler when a page is first dirtied. Hence we must
3872  * be careful to check for EOF conditions here. We set the page up correctly
3873  * for a written page which means we get ENOSPC checking when writing into
3874  * holes and correct delalloc and unwritten extent mapping on filesystems that
3875  * support these features.
3876  *
3877  * We are not allowed to take the i_mutex here so we have to play games to
3878  * protect against truncate races as the page could now be beyond EOF.  Because
3879  * vmtruncate() writes the inode size before removing pages, once we have the
3880  * page lock we can determine safely if the page is beyond EOF. If it is not
3881  * beyond EOF, then the page is guaranteed safe against truncation until we
3882  * unlock the page.
3883  */
3884 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3885 {
3886         struct inode *inode = fdentry(vma->vm_file)->d_inode;
3887         struct btrfs_root *root = BTRFS_I(inode)->root;
3888         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3889         struct btrfs_ordered_extent *ordered;
3890         char *kaddr;
3891         unsigned long zero_start;
3892         loff_t size;
3893         int ret;
3894         u64 page_start;
3895         u64 page_end;
3896
3897         ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3898         if (ret)
3899                 goto out;
3900
3901         ret = -EINVAL;
3902 again:
3903         lock_page(page);
3904         size = i_size_read(inode);
3905         page_start = page_offset(page);
3906         page_end = page_start + PAGE_CACHE_SIZE - 1;
3907
3908         if ((page->mapping != inode->i_mapping) ||
3909             (page_start >= size)) {
3910                 /* page got truncated out from underneath us */
3911                 goto out_unlock;
3912         }
3913         wait_on_page_writeback(page);
3914
3915         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3916         set_page_extent_mapped(page);
3917
3918         /*
3919          * we can't set the delalloc bits if there are pending ordered
3920          * extents.  Drop our locks and wait for them to finish
3921          */
3922         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3923         if (ordered) {
3924                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3925                 unlock_page(page);
3926                 btrfs_start_ordered_extent(inode, ordered, 1);
3927                 btrfs_put_ordered_extent(ordered);
3928                 goto again;
3929         }
3930
3931         btrfs_set_extent_delalloc(inode, page_start, page_end);
3932         ret = 0;
3933
3934         /* page is wholly or partially inside EOF */
3935         if (page_start + PAGE_CACHE_SIZE > size)
3936                 zero_start = size & ~PAGE_CACHE_MASK;
3937         else
3938                 zero_start = PAGE_CACHE_SIZE;
3939
3940         if (zero_start != PAGE_CACHE_SIZE) {
3941                 kaddr = kmap(page);
3942                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3943                 flush_dcache_page(page);
3944                 kunmap(page);
3945         }
3946         ClearPageChecked(page);
3947         set_page_dirty(page);
3948         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3949
3950 out_unlock:
3951         unlock_page(page);
3952 out:
3953         return ret;
3954 }
3955
3956 static void btrfs_truncate(struct inode *inode)
3957 {
3958         struct btrfs_root *root = BTRFS_I(inode)->root;
3959         int ret;
3960         struct btrfs_trans_handle *trans;
3961         unsigned long nr;
3962         u64 mask = root->sectorsize - 1;
3963
3964         if (!S_ISREG(inode->i_mode))
3965                 return;
3966         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3967                 return;
3968
3969         btrfs_truncate_page(inode->i_mapping, inode->i_size);
3970         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3971
3972         trans = btrfs_start_transaction(root, 1);
3973         btrfs_set_trans_block_group(trans, inode);
3974         btrfs_i_size_write(inode, inode->i_size);
3975
3976         ret = btrfs_orphan_add(trans, inode);
3977         if (ret)
3978                 goto out;
3979         /* FIXME, add redo link to tree so we don't leak on crash */
3980         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
3981                                       BTRFS_EXTENT_DATA_KEY);
3982         btrfs_update_inode(trans, root, inode);
3983
3984         ret = btrfs_orphan_del(trans, inode);
3985         BUG_ON(ret);
3986
3987 out:
3988         nr = trans->blocks_used;
3989         ret = btrfs_end_transaction_throttle(trans, root);
3990         BUG_ON(ret);
3991         btrfs_btree_balance_dirty(root, nr);
3992 }
3993
3994 /*
3995  * Invalidate a single dcache entry at the root of the filesystem.
3996  * Needed after creation of snapshot or subvolume.
3997  */
3998 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3999                                   int namelen)
4000 {
4001         struct dentry *alias, *entry;
4002         struct qstr qstr;
4003
4004         alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
4005         if (alias) {
4006                 qstr.name = name;
4007                 qstr.len = namelen;
4008                 /* change me if btrfs ever gets a d_hash operation */
4009                 qstr.hash = full_name_hash(qstr.name, qstr.len);
4010                 entry = d_lookup(alias, &qstr);
4011                 dput(alias);
4012                 if (entry) {
4013                         d_invalidate(entry);
4014                         dput(entry);
4015                 }
4016         }
4017 }
4018
4019 /*
4020  * create a new subvolume directory/inode (helper for the ioctl).
4021  */
4022 int btrfs_create_subvol_root(struct btrfs_root *new_root, struct dentry *dentry,
4023                 struct btrfs_trans_handle *trans, u64 new_dirid,
4024                 struct btrfs_block_group_cache *block_group)
4025 {
4026         struct inode *inode;
4027         int error;
4028         u64 index = 0;
4029
4030         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4031                                 new_dirid, block_group, S_IFDIR | 0700, &index);
4032         if (IS_ERR(inode))
4033                 return PTR_ERR(inode);
4034         inode->i_op = &btrfs_dir_inode_operations;
4035         inode->i_fop = &btrfs_dir_file_operations;
4036         new_root->inode = inode;
4037
4038         inode->i_nlink = 1;
4039         btrfs_i_size_write(inode, 0);
4040
4041         error = btrfs_update_inode(trans, new_root, inode);
4042         if (error)
4043                 return error;
4044
4045         atomic_inc(&inode->i_count);
4046         d_instantiate(dentry, inode);
4047         return 0;
4048 }
4049
4050 /* helper function for file defrag and space balancing.  This
4051  * forces readahead on a given range of bytes in an inode
4052  */
4053 unsigned long btrfs_force_ra(struct address_space *mapping,
4054                               struct file_ra_state *ra, struct file *file,
4055                               pgoff_t offset, pgoff_t last_index)
4056 {
4057         pgoff_t req_size = last_index - offset + 1;
4058
4059         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4060         return offset + req_size;
4061 }
4062
4063 struct inode *btrfs_alloc_inode(struct super_block *sb)
4064 {
4065         struct btrfs_inode *ei;
4066
4067         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4068         if (!ei)
4069                 return NULL;
4070         ei->last_trans = 0;
4071         ei->logged_trans = 0;
4072         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4073         ei->i_acl = BTRFS_ACL_NOT_CACHED;
4074         ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4075         INIT_LIST_HEAD(&ei->i_orphan);
4076         return &ei->vfs_inode;
4077 }
4078
4079 void btrfs_destroy_inode(struct inode *inode)
4080 {
4081         struct btrfs_ordered_extent *ordered;
4082         WARN_ON(!list_empty(&inode->i_dentry));
4083         WARN_ON(inode->i_data.nrpages);
4084
4085         if (BTRFS_I(inode)->i_acl &&
4086             BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4087                 posix_acl_release(BTRFS_I(inode)->i_acl);
4088         if (BTRFS_I(inode)->i_default_acl &&
4089             BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4090                 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4091
4092         spin_lock(&BTRFS_I(inode)->root->list_lock);
4093         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4094                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4095                        " list\n", inode->i_ino);
4096                 dump_stack();
4097         }
4098         spin_unlock(&BTRFS_I(inode)->root->list_lock);
4099
4100         while(1) {
4101                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4102                 if (!ordered)
4103                         break;
4104                 else {
4105                         printk("found ordered extent %Lu %Lu\n",
4106                                ordered->file_offset, ordered->len);
4107                         btrfs_remove_ordered_extent(inode, ordered);
4108                         btrfs_put_ordered_extent(ordered);
4109                         btrfs_put_ordered_extent(ordered);
4110                 }
4111         }
4112         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4113         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4114 }
4115
4116 static void init_once(void *foo)
4117 {
4118         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4119
4120         inode_init_once(&ei->vfs_inode);
4121 }
4122
4123 void btrfs_destroy_cachep(void)
4124 {
4125         if (btrfs_inode_cachep)
4126                 kmem_cache_destroy(btrfs_inode_cachep);
4127         if (btrfs_trans_handle_cachep)
4128                 kmem_cache_destroy(btrfs_trans_handle_cachep);
4129         if (btrfs_transaction_cachep)
4130                 kmem_cache_destroy(btrfs_transaction_cachep);
4131         if (btrfs_bit_radix_cachep)
4132                 kmem_cache_destroy(btrfs_bit_radix_cachep);
4133         if (btrfs_path_cachep)
4134                 kmem_cache_destroy(btrfs_path_cachep);
4135 }
4136
4137 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4138                                        unsigned long extra_flags,
4139                                        void (*ctor)(void *))
4140 {
4141         return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4142                                  SLAB_MEM_SPREAD | extra_flags), ctor);
4143 }
4144
4145 int btrfs_init_cachep(void)
4146 {
4147         btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4148                                           sizeof(struct btrfs_inode),
4149                                           0, init_once);
4150         if (!btrfs_inode_cachep)
4151                 goto fail;
4152         btrfs_trans_handle_cachep =
4153                         btrfs_cache_create("btrfs_trans_handle_cache",
4154                                            sizeof(struct btrfs_trans_handle),
4155                                            0, NULL);
4156         if (!btrfs_trans_handle_cachep)
4157                 goto fail;
4158         btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4159                                              sizeof(struct btrfs_transaction),
4160                                              0, NULL);
4161         if (!btrfs_transaction_cachep)
4162                 goto fail;
4163         btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4164                                          sizeof(struct btrfs_path),
4165                                          0, NULL);
4166         if (!btrfs_path_cachep)
4167                 goto fail;
4168         btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4169                                               SLAB_DESTROY_BY_RCU, NULL);
4170         if (!btrfs_bit_radix_cachep)
4171                 goto fail;
4172         return 0;
4173 fail:
4174         btrfs_destroy_cachep();
4175         return -ENOMEM;
4176 }
4177
4178 static int btrfs_getattr(struct vfsmount *mnt,
4179                          struct dentry *dentry, struct kstat *stat)
4180 {
4181         struct inode *inode = dentry->d_inode;
4182         generic_fillattr(inode, stat);
4183         stat->blksize = PAGE_CACHE_SIZE;
4184         stat->blocks = (inode_get_bytes(inode) +
4185                         BTRFS_I(inode)->delalloc_bytes) >> 9;
4186         return 0;
4187 }
4188
4189 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
4190                            struct inode * new_dir,struct dentry *new_dentry)
4191 {
4192         struct btrfs_trans_handle *trans;
4193         struct btrfs_root *root = BTRFS_I(old_dir)->root;
4194         struct inode *new_inode = new_dentry->d_inode;
4195         struct inode *old_inode = old_dentry->d_inode;
4196         struct timespec ctime = CURRENT_TIME;
4197         u64 index = 0;
4198         int ret;
4199
4200         if (S_ISDIR(old_inode->i_mode) && new_inode &&
4201             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4202                 return -ENOTEMPTY;
4203         }
4204
4205         ret = btrfs_check_free_space(root, 1, 0);
4206         if (ret)
4207                 goto out_unlock;
4208
4209         trans = btrfs_start_transaction(root, 1);
4210
4211         btrfs_set_trans_block_group(trans, new_dir);
4212
4213         btrfs_inc_nlink(old_dentry->d_inode);
4214         old_dir->i_ctime = old_dir->i_mtime = ctime;
4215         new_dir->i_ctime = new_dir->i_mtime = ctime;
4216         old_inode->i_ctime = ctime;
4217
4218         ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4219                                  old_dentry->d_name.name,
4220                                  old_dentry->d_name.len);
4221         if (ret)
4222                 goto out_fail;
4223
4224         if (new_inode) {
4225                 new_inode->i_ctime = CURRENT_TIME;
4226                 ret = btrfs_unlink_inode(trans, root, new_dir,
4227                                          new_dentry->d_inode,
4228                                          new_dentry->d_name.name,
4229                                          new_dentry->d_name.len);
4230                 if (ret)
4231                         goto out_fail;
4232                 if (new_inode->i_nlink == 0) {
4233                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4234                         if (ret)
4235                                 goto out_fail;
4236                 }
4237
4238         }
4239         ret = btrfs_set_inode_index(new_dir, old_inode, &index);
4240         if (ret)
4241                 goto out_fail;
4242
4243         ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4244                              old_inode, new_dentry->d_name.name,
4245                              new_dentry->d_name.len, 1, index);
4246         if (ret)
4247                 goto out_fail;
4248
4249 out_fail:
4250         btrfs_end_transaction_throttle(trans, root);
4251 out_unlock:
4252         return ret;
4253 }
4254
4255 /*
4256  * some fairly slow code that needs optimization. This walks the list
4257  * of all the inodes with pending delalloc and forces them to disk.
4258  */
4259 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4260 {
4261         struct list_head *head = &root->fs_info->delalloc_inodes;
4262         struct btrfs_inode *binode;
4263         struct inode *inode;
4264         unsigned long flags;
4265
4266         spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4267         while(!list_empty(head)) {
4268                 binode = list_entry(head->next, struct btrfs_inode,
4269                                     delalloc_inodes);
4270                 inode = igrab(&binode->vfs_inode);
4271                 if (!inode)
4272                         list_del_init(&binode->delalloc_inodes);
4273                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4274                 if (inode) {
4275                         filemap_flush(inode->i_mapping);
4276                         iput(inode);
4277                 }
4278                 cond_resched();
4279                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4280         }
4281         spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4282
4283         /* the filemap_flush will queue IO into the worker threads, but
4284          * we have to make sure the IO is actually started and that
4285          * ordered extents get created before we return
4286          */
4287         atomic_inc(&root->fs_info->async_submit_draining);
4288         while(atomic_read(&root->fs_info->nr_async_submits)) {
4289                 wait_event(root->fs_info->async_submit_wait,
4290                    (atomic_read(&root->fs_info->nr_async_submits) == 0));
4291         }
4292         atomic_dec(&root->fs_info->async_submit_draining);
4293         return 0;
4294 }
4295
4296 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4297                          const char *symname)
4298 {
4299         struct btrfs_trans_handle *trans;
4300         struct btrfs_root *root = BTRFS_I(dir)->root;
4301         struct btrfs_path *path;
4302         struct btrfs_key key;
4303         struct inode *inode = NULL;
4304         int err;
4305         int drop_inode = 0;
4306         u64 objectid;
4307         u64 index = 0 ;
4308         int name_len;
4309         int datasize;
4310         unsigned long ptr;
4311         struct btrfs_file_extent_item *ei;
4312         struct extent_buffer *leaf;
4313         unsigned long nr = 0;
4314
4315         name_len = strlen(symname) + 1;
4316         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4317                 return -ENAMETOOLONG;
4318
4319         err = btrfs_check_free_space(root, 1, 0);
4320         if (err)
4321                 goto out_fail;
4322
4323         trans = btrfs_start_transaction(root, 1);
4324         btrfs_set_trans_block_group(trans, dir);
4325
4326         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4327         if (err) {
4328                 err = -ENOSPC;
4329                 goto out_unlock;
4330         }
4331
4332         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4333                                 dentry->d_name.len,
4334                                 dentry->d_parent->d_inode->i_ino, objectid,
4335                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4336                                 &index);
4337         err = PTR_ERR(inode);
4338         if (IS_ERR(inode))
4339                 goto out_unlock;
4340
4341         err = btrfs_init_acl(inode, dir);
4342         if (err) {
4343                 drop_inode = 1;
4344                 goto out_unlock;
4345         }
4346
4347         btrfs_set_trans_block_group(trans, inode);
4348         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4349         if (err)
4350                 drop_inode = 1;
4351         else {
4352                 inode->i_mapping->a_ops = &btrfs_aops;
4353                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4354                 inode->i_fop = &btrfs_file_operations;
4355                 inode->i_op = &btrfs_file_inode_operations;
4356                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4357         }
4358         dir->i_sb->s_dirt = 1;
4359         btrfs_update_inode_block_group(trans, inode);
4360         btrfs_update_inode_block_group(trans, dir);
4361         if (drop_inode)
4362                 goto out_unlock;
4363
4364         path = btrfs_alloc_path();
4365         BUG_ON(!path);
4366         key.objectid = inode->i_ino;
4367         key.offset = 0;
4368         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4369         datasize = btrfs_file_extent_calc_inline_size(name_len);
4370         err = btrfs_insert_empty_item(trans, root, path, &key,
4371                                       datasize);
4372         if (err) {
4373                 drop_inode = 1;
4374                 goto out_unlock;
4375         }
4376         leaf = path->nodes[0];
4377         ei = btrfs_item_ptr(leaf, path->slots[0],
4378                             struct btrfs_file_extent_item);
4379         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4380         btrfs_set_file_extent_type(leaf, ei,
4381                                    BTRFS_FILE_EXTENT_INLINE);
4382         btrfs_set_file_extent_encryption(leaf, ei, 0);
4383         btrfs_set_file_extent_compression(leaf, ei, 0);
4384         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4385         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4386
4387         ptr = btrfs_file_extent_inline_start(ei);
4388         write_extent_buffer(leaf, symname, ptr, name_len);
4389         btrfs_mark_buffer_dirty(leaf);
4390         btrfs_free_path(path);
4391
4392         inode->i_op = &btrfs_symlink_inode_operations;
4393         inode->i_mapping->a_ops = &btrfs_symlink_aops;
4394         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4395         inode_set_bytes(inode, name_len);
4396         btrfs_i_size_write(inode, name_len - 1);
4397         err = btrfs_update_inode(trans, root, inode);
4398         if (err)
4399                 drop_inode = 1;
4400
4401 out_unlock:
4402         nr = trans->blocks_used;
4403         btrfs_end_transaction_throttle(trans, root);
4404 out_fail:
4405         if (drop_inode) {
4406                 inode_dec_link_count(inode);
4407                 iput(inode);
4408         }
4409         btrfs_btree_balance_dirty(root, nr);
4410         return err;
4411 }
4412
4413 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4414                                u64 alloc_hint, int mode)
4415 {
4416         struct btrfs_trans_handle *trans;
4417         struct btrfs_root *root = BTRFS_I(inode)->root;
4418         struct btrfs_key ins;
4419         u64 alloc_size;
4420         u64 cur_offset = start;
4421         u64 num_bytes = end - start;
4422         int ret = 0;
4423
4424         trans = btrfs_join_transaction(root, 1);
4425         BUG_ON(!trans);
4426         btrfs_set_trans_block_group(trans, inode);
4427
4428         while (num_bytes > 0) {
4429                 alloc_size = min(num_bytes, root->fs_info->max_extent);
4430                 ret = btrfs_reserve_extent(trans, root, alloc_size,
4431                                            root->sectorsize, 0, alloc_hint,
4432                                            (u64)-1, &ins, 1);
4433                 if (ret) {
4434                         WARN_ON(1);
4435                         goto out;
4436                 }
4437                 ret = insert_reserved_file_extent(trans, inode,
4438                                                   cur_offset, ins.objectid,
4439                                                   ins.offset, ins.offset,
4440                                                   ins.offset, 0, 0, 0,
4441                                                   BTRFS_FILE_EXTENT_PREALLOC);
4442                 BUG_ON(ret);
4443                 num_bytes -= ins.offset;
4444                 cur_offset += ins.offset;
4445                 alloc_hint = ins.objectid + ins.offset;
4446         }
4447 out:
4448         if (cur_offset > start) {
4449                 inode->i_ctime = CURRENT_TIME;
4450                 btrfs_set_flag(inode, PREALLOC);
4451                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4452                     cur_offset > i_size_read(inode))
4453                         btrfs_i_size_write(inode, cur_offset);
4454                 ret = btrfs_update_inode(trans, root, inode);
4455                 BUG_ON(ret);
4456         }
4457
4458         btrfs_end_transaction(trans, root);
4459         return ret;
4460 }
4461
4462 static long btrfs_fallocate(struct inode *inode, int mode,
4463                             loff_t offset, loff_t len)
4464 {
4465         u64 cur_offset;
4466         u64 last_byte;
4467         u64 alloc_start;
4468         u64 alloc_end;
4469         u64 alloc_hint = 0;
4470         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4471         struct extent_map *em;
4472         int ret;
4473
4474         alloc_start = offset & ~mask;
4475         alloc_end =  (offset + len + mask) & ~mask;
4476
4477         mutex_lock(&inode->i_mutex);
4478         if (alloc_start > inode->i_size) {
4479                 ret = btrfs_cont_expand(inode, alloc_start);
4480                 if (ret)
4481                         goto out;
4482         }
4483
4484         while (1) {
4485                 struct btrfs_ordered_extent *ordered;
4486                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4487                             alloc_end - 1, GFP_NOFS);
4488                 ordered = btrfs_lookup_first_ordered_extent(inode,
4489                                                             alloc_end - 1);
4490                 if (ordered &&
4491                     ordered->file_offset + ordered->len > alloc_start &&
4492                     ordered->file_offset < alloc_end) {
4493                         btrfs_put_ordered_extent(ordered);
4494                         unlock_extent(&BTRFS_I(inode)->io_tree,
4495                                       alloc_start, alloc_end - 1, GFP_NOFS);
4496                         btrfs_wait_ordered_range(inode, alloc_start,
4497                                                  alloc_end - alloc_start);
4498                 } else {
4499                         if (ordered)
4500                                 btrfs_put_ordered_extent(ordered);
4501                         break;
4502                 }
4503         }
4504
4505         cur_offset = alloc_start;
4506         while (1) {
4507                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4508                                       alloc_end - cur_offset, 0);
4509                 BUG_ON(IS_ERR(em) || !em);
4510                 last_byte = min(extent_map_end(em), alloc_end);
4511                 last_byte = (last_byte + mask) & ~mask;
4512                 if (em->block_start == EXTENT_MAP_HOLE) {
4513                         ret = prealloc_file_range(inode, cur_offset,
4514                                         last_byte, alloc_hint, mode);
4515                         if (ret < 0) {
4516                                 free_extent_map(em);
4517                                 break;
4518                         }
4519                 }
4520                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4521                         alloc_hint = em->block_start;
4522                 free_extent_map(em);
4523
4524                 cur_offset = last_byte;
4525                 if (cur_offset >= alloc_end) {
4526                         ret = 0;
4527                         break;
4528                 }
4529         }
4530         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4531                       GFP_NOFS);
4532 out:
4533         mutex_unlock(&inode->i_mutex);
4534         return ret;
4535 }
4536
4537 static int btrfs_set_page_dirty(struct page *page)
4538 {
4539         return __set_page_dirty_nobuffers(page);
4540 }
4541
4542 static int btrfs_permission(struct inode *inode, int mask)
4543 {
4544         if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4545                 return -EACCES;
4546         return generic_permission(inode, mask, btrfs_check_acl);
4547 }
4548
4549 static struct inode_operations btrfs_dir_inode_operations = {
4550         .lookup         = btrfs_lookup,
4551         .create         = btrfs_create,
4552         .unlink         = btrfs_unlink,
4553         .link           = btrfs_link,
4554         .mkdir          = btrfs_mkdir,
4555         .rmdir          = btrfs_rmdir,
4556         .rename         = btrfs_rename,
4557         .symlink        = btrfs_symlink,
4558         .setattr        = btrfs_setattr,
4559         .mknod          = btrfs_mknod,
4560         .setxattr       = btrfs_setxattr,
4561         .getxattr       = btrfs_getxattr,
4562         .listxattr      = btrfs_listxattr,
4563         .removexattr    = btrfs_removexattr,
4564         .permission     = btrfs_permission,
4565 };
4566 static struct inode_operations btrfs_dir_ro_inode_operations = {
4567         .lookup         = btrfs_lookup,
4568         .permission     = btrfs_permission,
4569 };
4570 static struct file_operations btrfs_dir_file_operations = {
4571         .llseek         = generic_file_llseek,
4572         .read           = generic_read_dir,
4573         .readdir        = btrfs_real_readdir,
4574         .unlocked_ioctl = btrfs_ioctl,
4575 #ifdef CONFIG_COMPAT
4576         .compat_ioctl   = btrfs_ioctl,
4577 #endif
4578         .release        = btrfs_release_file,
4579         .fsync          = btrfs_sync_file,
4580 };
4581
4582 static struct extent_io_ops btrfs_extent_io_ops = {
4583         .fill_delalloc = run_delalloc_range,
4584         .submit_bio_hook = btrfs_submit_bio_hook,
4585         .merge_bio_hook = btrfs_merge_bio_hook,
4586         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4587         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
4588         .writepage_start_hook = btrfs_writepage_start_hook,
4589         .readpage_io_failed_hook = btrfs_io_failed_hook,
4590         .set_bit_hook = btrfs_set_bit_hook,
4591         .clear_bit_hook = btrfs_clear_bit_hook,
4592 };
4593
4594 static struct address_space_operations btrfs_aops = {
4595         .readpage       = btrfs_readpage,
4596         .writepage      = btrfs_writepage,
4597         .writepages     = btrfs_writepages,
4598         .readpages      = btrfs_readpages,
4599         .sync_page      = block_sync_page,
4600         .bmap           = btrfs_bmap,
4601         .direct_IO      = btrfs_direct_IO,
4602         .invalidatepage = btrfs_invalidatepage,
4603         .releasepage    = btrfs_releasepage,
4604         .set_page_dirty = btrfs_set_page_dirty,
4605 };
4606
4607 static struct address_space_operations btrfs_symlink_aops = {
4608         .readpage       = btrfs_readpage,
4609         .writepage      = btrfs_writepage,
4610         .invalidatepage = btrfs_invalidatepage,
4611         .releasepage    = btrfs_releasepage,
4612 };
4613
4614 static struct inode_operations btrfs_file_inode_operations = {
4615         .truncate       = btrfs_truncate,
4616         .getattr        = btrfs_getattr,
4617         .setattr        = btrfs_setattr,
4618         .setxattr       = btrfs_setxattr,
4619         .getxattr       = btrfs_getxattr,
4620         .listxattr      = btrfs_listxattr,
4621         .removexattr    = btrfs_removexattr,
4622         .permission     = btrfs_permission,
4623         .fallocate      = btrfs_fallocate,
4624 };
4625 static struct inode_operations btrfs_special_inode_operations = {
4626         .getattr        = btrfs_getattr,
4627         .setattr        = btrfs_setattr,
4628         .permission     = btrfs_permission,
4629         .setxattr       = btrfs_setxattr,
4630         .getxattr       = btrfs_getxattr,
4631         .listxattr      = btrfs_listxattr,
4632         .removexattr    = btrfs_removexattr,
4633 };
4634 static struct inode_operations btrfs_symlink_inode_operations = {
4635         .readlink       = generic_readlink,
4636         .follow_link    = page_follow_link_light,
4637         .put_link       = page_put_link,
4638         .permission     = btrfs_permission,
4639 };