Btrfs: Fix logic to avoid reading checksums for -o nodatasum,compress
[safe/jmp/linux-2.6] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "compat.h"
50 #include "tree-log.h"
51 #include "ref-cache.h"
52 #include "compression.h"
53
54 struct btrfs_iget_args {
55         u64 ino;
56         struct btrfs_root *root;
57 };
58
59 static struct inode_operations btrfs_dir_inode_operations;
60 static struct inode_operations btrfs_symlink_inode_operations;
61 static struct inode_operations btrfs_dir_ro_inode_operations;
62 static struct inode_operations btrfs_special_inode_operations;
63 static struct inode_operations btrfs_file_inode_operations;
64 static struct address_space_operations btrfs_aops;
65 static struct address_space_operations btrfs_symlink_aops;
66 static struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_bit_radix_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74
75 #define S_SHIFT 12
76 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
77         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
78         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
79         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
80         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
81         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
82         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
83         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
84 };
85
86 static void btrfs_truncate(struct inode *inode);
87 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
88
89 /*
90  * a very lame attempt at stopping writes when the FS is 85% full.  There
91  * are countless ways this is incorrect, but it is better than nothing.
92  */
93 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
94                            int for_del)
95 {
96         u64 total;
97         u64 used;
98         u64 thresh;
99         unsigned long flags;
100         int ret = 0;
101
102         spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
103         total = btrfs_super_total_bytes(&root->fs_info->super_copy);
104         used = btrfs_super_bytes_used(&root->fs_info->super_copy);
105         if (for_del)
106                 thresh = total * 90;
107         else
108                 thresh = total * 85;
109
110         do_div(thresh, 100);
111
112         if (used + root->fs_info->delalloc_bytes + num_required > thresh)
113                 ret = -ENOSPC;
114         spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
115         return ret;
116 }
117
118 /*
119  * this does all the hard work for inserting an inline extent into
120  * the btree.  The caller should have done a btrfs_drop_extents so that
121  * no overlapping inline items exist in the btree
122  */
123 static int noinline insert_inline_extent(struct btrfs_trans_handle *trans,
124                                 struct btrfs_root *root, struct inode *inode,
125                                 u64 start, size_t size, size_t compressed_size,
126                                 struct page **compressed_pages)
127 {
128         struct btrfs_key key;
129         struct btrfs_path *path;
130         struct extent_buffer *leaf;
131         struct page *page = NULL;
132         char *kaddr;
133         unsigned long ptr;
134         struct btrfs_file_extent_item *ei;
135         int err = 0;
136         int ret;
137         size_t cur_size = size;
138         size_t datasize;
139         unsigned long offset;
140         int use_compress = 0;
141
142         if (compressed_size && compressed_pages) {
143                 use_compress = 1;
144                 cur_size = compressed_size;
145         }
146
147         path = btrfs_alloc_path(); if (!path)
148                 return -ENOMEM;
149
150         btrfs_set_trans_block_group(trans, inode);
151
152         key.objectid = inode->i_ino;
153         key.offset = start;
154         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
155         inode_add_bytes(inode, size);
156         datasize = btrfs_file_extent_calc_inline_size(cur_size);
157
158         inode_add_bytes(inode, size);
159         ret = btrfs_insert_empty_item(trans, root, path, &key,
160                                       datasize);
161         BUG_ON(ret);
162         if (ret) {
163                 err = ret;
164                 printk("got bad ret %d\n", ret);
165                 goto fail;
166         }
167         leaf = path->nodes[0];
168         ei = btrfs_item_ptr(leaf, path->slots[0],
169                             struct btrfs_file_extent_item);
170         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172         btrfs_set_file_extent_encryption(leaf, ei, 0);
173         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175         ptr = btrfs_file_extent_inline_start(ei);
176
177         if (use_compress) {
178                 struct page *cpage;
179                 int i = 0;
180                 while(compressed_size > 0) {
181                         cpage = compressed_pages[i];
182                         cur_size = min(compressed_size,
183                                        PAGE_CACHE_SIZE);
184
185                         kaddr = kmap(cpage);
186                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
187                         kunmap(cpage);
188
189                         i++;
190                         ptr += cur_size;
191                         compressed_size -= cur_size;
192                 }
193                 btrfs_set_file_extent_compression(leaf, ei,
194                                                   BTRFS_COMPRESS_ZLIB);
195         } else {
196                 page = find_get_page(inode->i_mapping,
197                                      start >> PAGE_CACHE_SHIFT);
198                 btrfs_set_file_extent_compression(leaf, ei, 0);
199                 kaddr = kmap_atomic(page, KM_USER0);
200                 offset = start & (PAGE_CACHE_SIZE - 1);
201                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
202                 kunmap_atomic(kaddr, KM_USER0);
203                 page_cache_release(page);
204         }
205         btrfs_mark_buffer_dirty(leaf);
206         btrfs_free_path(path);
207
208         BTRFS_I(inode)->disk_i_size = inode->i_size;
209         btrfs_update_inode(trans, root, inode);
210         return 0;
211 fail:
212         btrfs_free_path(path);
213         return err;
214 }
215
216
217 /*
218  * conditionally insert an inline extent into the file.  This
219  * does the checks required to make sure the data is small enough
220  * to fit as an inline extent.
221  */
222 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
223                                  struct btrfs_root *root,
224                                  struct inode *inode, u64 start, u64 end,
225                                  size_t compressed_size,
226                                  struct page **compressed_pages)
227 {
228         u64 isize = i_size_read(inode);
229         u64 actual_end = min(end + 1, isize);
230         u64 inline_len = actual_end - start;
231         u64 aligned_end = (end + root->sectorsize - 1) &
232                         ~((u64)root->sectorsize - 1);
233         u64 hint_byte;
234         u64 data_len = inline_len;
235         int ret;
236
237         if (compressed_size)
238                 data_len = compressed_size;
239
240         if (start > 0 ||
241             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
242             (!compressed_size &&
243             (actual_end & (root->sectorsize - 1)) == 0) ||
244             end + 1 < isize ||
245             data_len > root->fs_info->max_inline) {
246                 return 1;
247         }
248
249         mutex_lock(&BTRFS_I(inode)->extent_mutex);
250         ret = btrfs_drop_extents(trans, root, inode, start,
251                                  aligned_end, aligned_end, &hint_byte);
252         BUG_ON(ret);
253
254         if (isize > actual_end)
255                 inline_len = min_t(u64, isize, actual_end);
256         ret = insert_inline_extent(trans, root, inode, start,
257                                    inline_len, compressed_size,
258                                    compressed_pages);
259         BUG_ON(ret);
260         btrfs_drop_extent_cache(inode, start, aligned_end, 0);
261         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
262         return 0;
263 }
264
265 /*
266  * when extent_io.c finds a delayed allocation range in the file,
267  * the call backs end up in this code.  The basic idea is to
268  * allocate extents on disk for the range, and create ordered data structs
269  * in ram to track those extents.
270  *
271  * locked_page is the page that writepage had locked already.  We use
272  * it to make sure we don't do extra locks or unlocks.
273  *
274  * *page_started is set to one if we unlock locked_page and do everything
275  * required to start IO on it.  It may be clean and already done with
276  * IO when we return.
277  */
278 static int cow_file_range(struct inode *inode, struct page *locked_page,
279                           u64 start, u64 end, int *page_started)
280 {
281         struct btrfs_root *root = BTRFS_I(inode)->root;
282         struct btrfs_trans_handle *trans;
283         u64 alloc_hint = 0;
284         u64 num_bytes;
285         unsigned long ram_size;
286         u64 orig_start;
287         u64 disk_num_bytes;
288         u64 cur_alloc_size;
289         u64 blocksize = root->sectorsize;
290         u64 actual_end;
291         struct btrfs_key ins;
292         struct extent_map *em;
293         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
294         int ret = 0;
295         struct page **pages = NULL;
296         unsigned long nr_pages;
297         unsigned long nr_pages_ret = 0;
298         unsigned long total_compressed = 0;
299         unsigned long total_in = 0;
300         unsigned long max_compressed = 128 * 1024;
301         unsigned long max_uncompressed = 256 * 1024;
302         int i;
303         int will_compress;
304
305         trans = btrfs_join_transaction(root, 1);
306         BUG_ON(!trans);
307         btrfs_set_trans_block_group(trans, inode);
308         orig_start = start;
309
310         /*
311          * compression made this loop a bit ugly, but the basic idea is to
312          * compress some pages but keep the total size of the compressed
313          * extent relatively small.  If compression is off, this goto target
314          * is never used.
315          */
316 again:
317         will_compress = 0;
318         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
319         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
320
321         actual_end = min_t(u64, i_size_read(inode), end + 1);
322         total_compressed = actual_end - start;
323
324         /* we want to make sure that amount of ram required to uncompress
325          * an extent is reasonable, so we limit the total size in ram
326          * of a compressed extent to 256k
327          */
328         total_compressed = min(total_compressed, max_uncompressed);
329         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
330         num_bytes = max(blocksize,  num_bytes);
331         disk_num_bytes = num_bytes;
332         total_in = 0;
333         ret = 0;
334
335         /* we do compression for mount -o compress and when the
336          * inode has not been flagged as nocompress
337          */
338         if (!btrfs_test_flag(inode, NOCOMPRESS) &&
339             btrfs_test_opt(root, COMPRESS)) {
340                 WARN_ON(pages);
341                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
342
343                 /* we want to make sure the amount of IO required to satisfy
344                  * a random read is reasonably small, so we limit the size
345                  * of a compressed extent to 128k
346                  */
347                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
348                                                 total_compressed, pages,
349                                                 nr_pages, &nr_pages_ret,
350                                                 &total_in,
351                                                 &total_compressed,
352                                                 max_compressed);
353
354                 if (!ret) {
355                         unsigned long offset = total_compressed &
356                                 (PAGE_CACHE_SIZE - 1);
357                         struct page *page = pages[nr_pages_ret - 1];
358                         char *kaddr;
359
360                         /* zero the tail end of the last page, we might be
361                          * sending it down to disk
362                          */
363                         if (offset) {
364                                 kaddr = kmap_atomic(page, KM_USER0);
365                                 memset(kaddr + offset, 0,
366                                        PAGE_CACHE_SIZE - offset);
367                                 kunmap_atomic(kaddr, KM_USER0);
368                         }
369                         will_compress = 1;
370                 }
371         }
372         if (start == 0) {
373                 /* lets try to make an inline extent */
374                 if (ret || total_in < (end - start + 1)) {
375                         /* we didn't compress the entire range, try
376                          * to make an uncompressed inline extent.  This
377                          * is almost sure to fail, but maybe inline sizes
378                          * will get bigger later
379                          */
380                         ret = cow_file_range_inline(trans, root, inode,
381                                                     start, end, 0, NULL);
382                 } else {
383                         ret = cow_file_range_inline(trans, root, inode,
384                                                     start, end,
385                                                     total_compressed, pages);
386                 }
387                 if (ret == 0) {
388                         extent_clear_unlock_delalloc(inode,
389                                                      &BTRFS_I(inode)->io_tree,
390                                                      start, end, NULL,
391                                                      1, 1, 1);
392                         *page_started = 1;
393                         ret = 0;
394                         goto free_pages_out;
395                 }
396         }
397
398         if (will_compress) {
399                 /*
400                  * we aren't doing an inline extent round the compressed size
401                  * up to a block size boundary so the allocator does sane
402                  * things
403                  */
404                 total_compressed = (total_compressed + blocksize - 1) &
405                         ~(blocksize - 1);
406
407                 /*
408                  * one last check to make sure the compression is really a
409                  * win, compare the page count read with the blocks on disk
410                  */
411                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
412                         ~(PAGE_CACHE_SIZE - 1);
413                 if (total_compressed >= total_in) {
414                         will_compress = 0;
415                 } else {
416                         disk_num_bytes = total_compressed;
417                         num_bytes = total_in;
418                 }
419         }
420         if (!will_compress && pages) {
421                 /*
422                  * the compression code ran but failed to make things smaller,
423                  * free any pages it allocated and our page pointer array
424                  */
425                 for (i = 0; i < nr_pages_ret; i++) {
426                         page_cache_release(pages[i]);
427                 }
428                 kfree(pages);
429                 pages = NULL;
430                 total_compressed = 0;
431                 nr_pages_ret = 0;
432
433                 /* flag the file so we don't compress in the future */
434                 btrfs_set_flag(inode, NOCOMPRESS);
435         }
436
437         BUG_ON(disk_num_bytes >
438                btrfs_super_total_bytes(&root->fs_info->super_copy));
439
440         mutex_lock(&BTRFS_I(inode)->extent_mutex);
441         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
442         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
443
444         while(disk_num_bytes > 0) {
445                 unsigned long min_bytes;
446
447                 /*
448                  * the max size of a compressed extent is pretty small,
449                  * make the code a little less complex by forcing
450                  * the allocator to find a whole compressed extent at once
451                  */
452                 if (will_compress)
453                         min_bytes = disk_num_bytes;
454                 else
455                         min_bytes = root->sectorsize;
456
457                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
458                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
459                                            min_bytes, 0, alloc_hint,
460                                            (u64)-1, &ins, 1);
461                 if (ret) {
462                         WARN_ON(1);
463                         goto free_pages_out_fail;
464                 }
465                 em = alloc_extent_map(GFP_NOFS);
466                 em->start = start;
467
468                 if (will_compress) {
469                         ram_size = num_bytes;
470                         em->len = num_bytes;
471                 } else {
472                         /* ramsize == disk size */
473                         ram_size = ins.offset;
474                         em->len = ins.offset;
475                 }
476
477                 em->block_start = ins.objectid;
478                 em->block_len = ins.offset;
479                 em->bdev = root->fs_info->fs_devices->latest_bdev;
480
481                 mutex_lock(&BTRFS_I(inode)->extent_mutex);
482                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
483
484                 if (will_compress)
485                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
486
487                 while(1) {
488                         spin_lock(&em_tree->lock);
489                         ret = add_extent_mapping(em_tree, em);
490                         spin_unlock(&em_tree->lock);
491                         if (ret != -EEXIST) {
492                                 free_extent_map(em);
493                                 break;
494                         }
495                         btrfs_drop_extent_cache(inode, start,
496                                                 start + ram_size - 1, 0);
497                 }
498                 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
499
500                 cur_alloc_size = ins.offset;
501                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
502                                                ram_size, cur_alloc_size, 0,
503                                                will_compress);
504                 BUG_ON(ret);
505
506                 if (disk_num_bytes < cur_alloc_size) {
507                         printk("num_bytes %Lu cur_alloc %Lu\n", disk_num_bytes,
508                                cur_alloc_size);
509                         break;
510                 }
511
512                 if (will_compress) {
513                         /*
514                          * we're doing compression, we and we need to
515                          * submit the compressed extents down to the device.
516                          *
517                          * We lock down all the file pages, clearing their
518                          * dirty bits and setting them writeback.  Everyone
519                          * that wants to modify the page will wait on the
520                          * ordered extent above.
521                          *
522                          * The writeback bits on the file pages are
523                          * cleared when the compressed pages are on disk
524                          */
525                         btrfs_end_transaction(trans, root);
526
527                         if (start <= page_offset(locked_page) &&
528                             page_offset(locked_page) < start + ram_size) {
529                                 *page_started = 1;
530                         }
531
532                         extent_clear_unlock_delalloc(inode,
533                                                      &BTRFS_I(inode)->io_tree,
534                                                      start,
535                                                      start + ram_size - 1,
536                                                      NULL, 1, 1, 0);
537
538                         ret = btrfs_submit_compressed_write(inode, start,
539                                                  ram_size, ins.objectid,
540                                                  cur_alloc_size, pages,
541                                                  nr_pages_ret);
542
543                         BUG_ON(ret);
544                         trans = btrfs_join_transaction(root, 1);
545                         if (start + ram_size < end) {
546                                 start += ram_size;
547                                 alloc_hint = ins.objectid + ins.offset;
548                                 /* pages will be freed at end_bio time */
549                                 pages = NULL;
550                                 goto again;
551                         } else {
552                                 /* we've written everything, time to go */
553                                 break;
554                         }
555                 }
556                 /* we're not doing compressed IO, don't unlock the first
557                  * page (which the caller expects to stay locked), don't
558                  * clear any dirty bits and don't set any writeback bits
559                  */
560                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
561                                              start, start + ram_size - 1,
562                                              locked_page, 0, 0, 0);
563                 disk_num_bytes -= cur_alloc_size;
564                 num_bytes -= cur_alloc_size;
565                 alloc_hint = ins.objectid + ins.offset;
566                 start += cur_alloc_size;
567         }
568
569         ret = 0;
570 out:
571         btrfs_end_transaction(trans, root);
572
573         return ret;
574
575 free_pages_out_fail:
576         extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
577                                      start, end, locked_page, 0, 0, 0);
578 free_pages_out:
579         for (i = 0; i < nr_pages_ret; i++)
580                 page_cache_release(pages[i]);
581         if (pages)
582                 kfree(pages);
583
584         goto out;
585 }
586
587 /*
588  * when nowcow writeback call back.  This checks for snapshots or COW copies
589  * of the extents that exist in the file, and COWs the file as required.
590  *
591  * If no cow copies or snapshots exist, we write directly to the existing
592  * blocks on disk
593  */
594 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
595                               u64 start, u64 end, int *page_started)
596 {
597         u64 extent_start;
598         u64 extent_end;
599         u64 bytenr;
600         u64 loops = 0;
601         u64 total_fs_bytes;
602         struct btrfs_root *root = BTRFS_I(inode)->root;
603         struct btrfs_block_group_cache *block_group;
604         struct btrfs_trans_handle *trans;
605         struct extent_buffer *leaf;
606         int found_type;
607         struct btrfs_path *path;
608         struct btrfs_file_extent_item *item;
609         int ret;
610         int err = 0;
611         struct btrfs_key found_key;
612
613         total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
614         path = btrfs_alloc_path();
615         BUG_ON(!path);
616         trans = btrfs_join_transaction(root, 1);
617         BUG_ON(!trans);
618 again:
619         ret = btrfs_lookup_file_extent(NULL, root, path,
620                                        inode->i_ino, start, 0);
621         if (ret < 0) {
622                 err = ret;
623                 goto out;
624         }
625
626         if (ret != 0) {
627                 if (path->slots[0] == 0)
628                         goto not_found;
629                 path->slots[0]--;
630         }
631
632         leaf = path->nodes[0];
633         item = btrfs_item_ptr(leaf, path->slots[0],
634                               struct btrfs_file_extent_item);
635
636         /* are we inside the extent that was found? */
637         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
638         found_type = btrfs_key_type(&found_key);
639         if (found_key.objectid != inode->i_ino ||
640             found_type != BTRFS_EXTENT_DATA_KEY)
641                 goto not_found;
642
643         found_type = btrfs_file_extent_type(leaf, item);
644         extent_start = found_key.offset;
645         if (found_type == BTRFS_FILE_EXTENT_REG) {
646                 u64 extent_num_bytes;
647
648                 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
649                 extent_end = extent_start + extent_num_bytes;
650                 err = 0;
651
652                 if (btrfs_file_extent_compression(leaf, item) ||
653                     btrfs_file_extent_encryption(leaf,item) ||
654                     btrfs_file_extent_other_encoding(leaf, item))
655                         goto not_found;
656
657                 if (loops && start != extent_start)
658                         goto not_found;
659
660                 if (start < extent_start || start >= extent_end)
661                         goto not_found;
662
663                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
664                 if (bytenr == 0)
665                         goto not_found;
666
667                 if (btrfs_cross_ref_exists(trans, root, &found_key, bytenr))
668                         goto not_found;
669                 /*
670                  * we may be called by the resizer, make sure we're inside
671                  * the limits of the FS
672                  */
673                 block_group = btrfs_lookup_block_group(root->fs_info,
674                                                        bytenr);
675                 if (!block_group || block_group->ro)
676                         goto not_found;
677
678                 bytenr += btrfs_file_extent_offset(leaf, item);
679                 extent_num_bytes = min(end + 1, extent_end) - start;
680                 ret = btrfs_add_ordered_extent(inode, start, bytenr,
681                                                 extent_num_bytes,
682                                                 extent_num_bytes, 1, 0);
683                 if (ret) {
684                         err = ret;
685                         goto out;
686                 }
687
688                 btrfs_release_path(root, path);
689                 start = extent_end;
690                 if (start <= end) {
691                         loops++;
692                         goto again;
693                 }
694         } else {
695 not_found:
696                 btrfs_end_transaction(trans, root);
697                 btrfs_free_path(path);
698                 return cow_file_range(inode, locked_page, start, end,
699                                       page_started);
700         }
701 out:
702         WARN_ON(err);
703         btrfs_end_transaction(trans, root);
704         btrfs_free_path(path);
705         return err;
706 }
707
708 /*
709  * extent_io.c call back to do delayed allocation processing
710  */
711 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
712                               u64 start, u64 end, int *page_started)
713 {
714         struct btrfs_root *root = BTRFS_I(inode)->root;
715         int ret;
716
717         if (btrfs_test_opt(root, NODATACOW) ||
718             btrfs_test_flag(inode, NODATACOW))
719                 ret = run_delalloc_nocow(inode, locked_page, start, end,
720                                          page_started);
721         else
722                 ret = cow_file_range(inode, locked_page, start, end,
723                                      page_started);
724
725         return ret;
726 }
727
728 /*
729  * extent_io.c set_bit_hook, used to track delayed allocation
730  * bytes in this file, and to maintain the list of inodes that
731  * have pending delalloc work to be done.
732  */
733 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
734                        unsigned long old, unsigned long bits)
735 {
736         unsigned long flags;
737         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
738                 struct btrfs_root *root = BTRFS_I(inode)->root;
739                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
740                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
741                 root->fs_info->delalloc_bytes += end - start + 1;
742                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
743                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
744                                       &root->fs_info->delalloc_inodes);
745                 }
746                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
747         }
748         return 0;
749 }
750
751 /*
752  * extent_io.c clear_bit_hook, see set_bit_hook for why
753  */
754 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
755                          unsigned long old, unsigned long bits)
756 {
757         if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
758                 struct btrfs_root *root = BTRFS_I(inode)->root;
759                 unsigned long flags;
760
761                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
762                 if (end - start + 1 > root->fs_info->delalloc_bytes) {
763                         printk("warning: delalloc account %Lu %Lu\n",
764                                end - start + 1, root->fs_info->delalloc_bytes);
765                         root->fs_info->delalloc_bytes = 0;
766                         BTRFS_I(inode)->delalloc_bytes = 0;
767                 } else {
768                         root->fs_info->delalloc_bytes -= end - start + 1;
769                         BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
770                 }
771                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
772                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
773                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
774                 }
775                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
776         }
777         return 0;
778 }
779
780 /*
781  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
782  * we don't create bios that span stripes or chunks
783  */
784 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
785                          size_t size, struct bio *bio,
786                          unsigned long bio_flags)
787 {
788         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
789         struct btrfs_mapping_tree *map_tree;
790         u64 logical = (u64)bio->bi_sector << 9;
791         u64 length = 0;
792         u64 map_length;
793         int ret;
794
795         length = bio->bi_size;
796         map_tree = &root->fs_info->mapping_tree;
797         map_length = length;
798         ret = btrfs_map_block(map_tree, READ, logical,
799                               &map_length, NULL, 0);
800
801         if (map_length < length + size) {
802                 return 1;
803         }
804         return 0;
805 }
806
807 /*
808  * in order to insert checksums into the metadata in large chunks,
809  * we wait until bio submission time.   All the pages in the bio are
810  * checksummed and sums are attached onto the ordered extent record.
811  *
812  * At IO completion time the cums attached on the ordered extent record
813  * are inserted into the btree
814  */
815 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
816                           int mirror_num, unsigned long bio_flags)
817 {
818         struct btrfs_root *root = BTRFS_I(inode)->root;
819         int ret = 0;
820
821         ret = btrfs_csum_one_bio(root, inode, bio);
822         BUG_ON(ret);
823
824         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
825 }
826
827 /*
828  * extent_io.c submission hook. This does the right thing for csum calculation on write,
829  * or reading the csums from the tree before a read
830  */
831 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
832                           int mirror_num, unsigned long bio_flags)
833 {
834         struct btrfs_root *root = BTRFS_I(inode)->root;
835         int ret = 0;
836         int skip_sum;
837
838         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
839         BUG_ON(ret);
840
841         skip_sum = btrfs_test_opt(root, NODATASUM) ||
842                 btrfs_test_flag(inode, NODATASUM);
843
844         if (!(rw & (1 << BIO_RW))) {
845                 if (!skip_sum)
846                         btrfs_lookup_bio_sums(root, inode, bio);
847
848                 if (bio_flags & EXTENT_BIO_COMPRESSED)
849                         return btrfs_submit_compressed_read(inode, bio,
850                                                     mirror_num, bio_flags);
851                 goto mapit;
852         } else if (!skip_sum) {
853                 /* we're doing a write, do the async checksumming */
854                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
855                                    inode, rw, bio, mirror_num,
856                                    bio_flags, __btrfs_submit_bio_hook);
857         }
858
859 mapit:
860         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
861 }
862
863 /*
864  * given a list of ordered sums record them in the inode.  This happens
865  * at IO completion time based on sums calculated at bio submission time.
866  */
867 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
868                              struct inode *inode, u64 file_offset,
869                              struct list_head *list)
870 {
871         struct list_head *cur;
872         struct btrfs_ordered_sum *sum;
873
874         btrfs_set_trans_block_group(trans, inode);
875         list_for_each(cur, list) {
876                 sum = list_entry(cur, struct btrfs_ordered_sum, list);
877                 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
878                                        inode, sum);
879         }
880         return 0;
881 }
882
883 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
884 {
885         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
886                                    GFP_NOFS);
887 }
888
889 /* see btrfs_writepage_start_hook for details on why this is required */
890 struct btrfs_writepage_fixup {
891         struct page *page;
892         struct btrfs_work work;
893 };
894
895 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
896 {
897         struct btrfs_writepage_fixup *fixup;
898         struct btrfs_ordered_extent *ordered;
899         struct page *page;
900         struct inode *inode;
901         u64 page_start;
902         u64 page_end;
903
904         fixup = container_of(work, struct btrfs_writepage_fixup, work);
905         page = fixup->page;
906 again:
907         lock_page(page);
908         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
909                 ClearPageChecked(page);
910                 goto out_page;
911         }
912
913         inode = page->mapping->host;
914         page_start = page_offset(page);
915         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
916
917         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
918
919         /* already ordered? We're done */
920         if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
921                              EXTENT_ORDERED, 0)) {
922                 goto out;
923         }
924
925         ordered = btrfs_lookup_ordered_extent(inode, page_start);
926         if (ordered) {
927                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
928                               page_end, GFP_NOFS);
929                 unlock_page(page);
930                 btrfs_start_ordered_extent(inode, ordered, 1);
931                 goto again;
932         }
933
934         btrfs_set_extent_delalloc(inode, page_start, page_end);
935         ClearPageChecked(page);
936 out:
937         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
938 out_page:
939         unlock_page(page);
940         page_cache_release(page);
941 }
942
943 /*
944  * There are a few paths in the higher layers of the kernel that directly
945  * set the page dirty bit without asking the filesystem if it is a
946  * good idea.  This causes problems because we want to make sure COW
947  * properly happens and the data=ordered rules are followed.
948  *
949  * In our case any range that doesn't have the ORDERED bit set
950  * hasn't been properly setup for IO.  We kick off an async process
951  * to fix it up.  The async helper will wait for ordered extents, set
952  * the delalloc bit and make it safe to write the page.
953  */
954 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
955 {
956         struct inode *inode = page->mapping->host;
957         struct btrfs_writepage_fixup *fixup;
958         struct btrfs_root *root = BTRFS_I(inode)->root;
959         int ret;
960
961         ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
962                              EXTENT_ORDERED, 0);
963         if (ret)
964                 return 0;
965
966         if (PageChecked(page))
967                 return -EAGAIN;
968
969         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
970         if (!fixup)
971                 return -EAGAIN;
972
973         SetPageChecked(page);
974         page_cache_get(page);
975         fixup->work.func = btrfs_writepage_fixup_worker;
976         fixup->page = page;
977         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
978         return -EAGAIN;
979 }
980
981 /* as ordered data IO finishes, this gets called so we can finish
982  * an ordered extent if the range of bytes in the file it covers are
983  * fully written.
984  */
985 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
986 {
987         struct btrfs_root *root = BTRFS_I(inode)->root;
988         struct btrfs_trans_handle *trans;
989         struct btrfs_ordered_extent *ordered_extent;
990         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
991         struct btrfs_file_extent_item *extent_item;
992         struct btrfs_path *path = NULL;
993         struct extent_buffer *leaf;
994         u64 alloc_hint = 0;
995         struct list_head list;
996         struct btrfs_key ins;
997         int ret;
998
999         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1000         if (!ret)
1001                 return 0;
1002
1003         trans = btrfs_join_transaction(root, 1);
1004
1005         ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1006         BUG_ON(!ordered_extent);
1007         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1008                 goto nocow;
1009
1010         path = btrfs_alloc_path();
1011         BUG_ON(!path);
1012
1013         lock_extent(io_tree, ordered_extent->file_offset,
1014                     ordered_extent->file_offset + ordered_extent->len - 1,
1015                     GFP_NOFS);
1016
1017         INIT_LIST_HEAD(&list);
1018
1019         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1020
1021         ret = btrfs_drop_extents(trans, root, inode,
1022                                  ordered_extent->file_offset,
1023                                  ordered_extent->file_offset +
1024                                  ordered_extent->len,
1025                                  ordered_extent->file_offset, &alloc_hint);
1026         BUG_ON(ret);
1027
1028         ins.objectid = inode->i_ino;
1029         ins.offset = ordered_extent->file_offset;
1030         ins.type = BTRFS_EXTENT_DATA_KEY;
1031         ret = btrfs_insert_empty_item(trans, root, path, &ins,
1032                                       sizeof(*extent_item));
1033         BUG_ON(ret);
1034         leaf = path->nodes[0];
1035         extent_item = btrfs_item_ptr(leaf, path->slots[0],
1036                                      struct btrfs_file_extent_item);
1037         btrfs_set_file_extent_generation(leaf, extent_item, trans->transid);
1038         btrfs_set_file_extent_type(leaf, extent_item, BTRFS_FILE_EXTENT_REG);
1039         btrfs_set_file_extent_disk_bytenr(leaf, extent_item,
1040                                           ordered_extent->start);
1041         btrfs_set_file_extent_disk_num_bytes(leaf, extent_item,
1042                                              ordered_extent->disk_len);
1043         btrfs_set_file_extent_offset(leaf, extent_item, 0);
1044
1045         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1046                 btrfs_set_file_extent_compression(leaf, extent_item, 1);
1047         else
1048                 btrfs_set_file_extent_compression(leaf, extent_item, 0);
1049         btrfs_set_file_extent_encryption(leaf, extent_item, 0);
1050         btrfs_set_file_extent_other_encoding(leaf, extent_item, 0);
1051
1052         /* ram bytes = extent_num_bytes for now */
1053         btrfs_set_file_extent_num_bytes(leaf, extent_item,
1054                                         ordered_extent->len);
1055         btrfs_set_file_extent_ram_bytes(leaf, extent_item,
1056                                         ordered_extent->len);
1057         btrfs_mark_buffer_dirty(leaf);
1058
1059         btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
1060                                 ordered_extent->file_offset +
1061                                 ordered_extent->len - 1, 0);
1062         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1063
1064         ins.objectid = ordered_extent->start;
1065         ins.offset = ordered_extent->disk_len;
1066         ins.type = BTRFS_EXTENT_ITEM_KEY;
1067         ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1068                                           root->root_key.objectid,
1069                                           trans->transid, inode->i_ino, &ins);
1070         BUG_ON(ret);
1071         btrfs_release_path(root, path);
1072
1073         inode_add_bytes(inode, ordered_extent->len);
1074         unlock_extent(io_tree, ordered_extent->file_offset,
1075                     ordered_extent->file_offset + ordered_extent->len - 1,
1076                     GFP_NOFS);
1077 nocow:
1078         add_pending_csums(trans, inode, ordered_extent->file_offset,
1079                           &ordered_extent->list);
1080
1081         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1082         btrfs_ordered_update_i_size(inode, ordered_extent);
1083         btrfs_update_inode(trans, root, inode);
1084         btrfs_remove_ordered_extent(inode, ordered_extent);
1085         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1086
1087         /* once for us */
1088         btrfs_put_ordered_extent(ordered_extent);
1089         /* once for the tree */
1090         btrfs_put_ordered_extent(ordered_extent);
1091
1092         btrfs_end_transaction(trans, root);
1093         if (path)
1094                 btrfs_free_path(path);
1095         return 0;
1096 }
1097
1098 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1099                                 struct extent_state *state, int uptodate)
1100 {
1101         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1102 }
1103
1104 /*
1105  * When IO fails, either with EIO or csum verification fails, we
1106  * try other mirrors that might have a good copy of the data.  This
1107  * io_failure_record is used to record state as we go through all the
1108  * mirrors.  If another mirror has good data, the page is set up to date
1109  * and things continue.  If a good mirror can't be found, the original
1110  * bio end_io callback is called to indicate things have failed.
1111  */
1112 struct io_failure_record {
1113         struct page *page;
1114         u64 start;
1115         u64 len;
1116         u64 logical;
1117         int last_mirror;
1118 };
1119
1120 int btrfs_io_failed_hook(struct bio *failed_bio,
1121                          struct page *page, u64 start, u64 end,
1122                          struct extent_state *state)
1123 {
1124         struct io_failure_record *failrec = NULL;
1125         u64 private;
1126         struct extent_map *em;
1127         struct inode *inode = page->mapping->host;
1128         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1129         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1130         struct bio *bio;
1131         int num_copies;
1132         int ret;
1133         int rw;
1134         u64 logical;
1135         unsigned long bio_flags = 0;
1136
1137         ret = get_state_private(failure_tree, start, &private);
1138         if (ret) {
1139                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1140                 if (!failrec)
1141                         return -ENOMEM;
1142                 failrec->start = start;
1143                 failrec->len = end - start + 1;
1144                 failrec->last_mirror = 0;
1145
1146                 spin_lock(&em_tree->lock);
1147                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1148                 if (em->start > start || em->start + em->len < start) {
1149                         free_extent_map(em);
1150                         em = NULL;
1151                 }
1152                 spin_unlock(&em_tree->lock);
1153
1154                 if (!em || IS_ERR(em)) {
1155                         kfree(failrec);
1156                         return -EIO;
1157                 }
1158                 logical = start - em->start;
1159                 logical = em->block_start + logical;
1160                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1161                         bio_flags = EXTENT_BIO_COMPRESSED;
1162                 failrec->logical = logical;
1163                 free_extent_map(em);
1164                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1165                                 EXTENT_DIRTY, GFP_NOFS);
1166                 set_state_private(failure_tree, start,
1167                                  (u64)(unsigned long)failrec);
1168         } else {
1169                 failrec = (struct io_failure_record *)(unsigned long)private;
1170         }
1171         num_copies = btrfs_num_copies(
1172                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1173                               failrec->logical, failrec->len);
1174         failrec->last_mirror++;
1175         if (!state) {
1176                 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
1177                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1178                                                     failrec->start,
1179                                                     EXTENT_LOCKED);
1180                 if (state && state->start != failrec->start)
1181                         state = NULL;
1182                 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
1183         }
1184         if (!state || failrec->last_mirror > num_copies) {
1185                 set_state_private(failure_tree, failrec->start, 0);
1186                 clear_extent_bits(failure_tree, failrec->start,
1187                                   failrec->start + failrec->len - 1,
1188                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1189                 kfree(failrec);
1190                 return -EIO;
1191         }
1192         bio = bio_alloc(GFP_NOFS, 1);
1193         bio->bi_private = state;
1194         bio->bi_end_io = failed_bio->bi_end_io;
1195         bio->bi_sector = failrec->logical >> 9;
1196         bio->bi_bdev = failed_bio->bi_bdev;
1197         bio->bi_size = 0;
1198         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1199         if (failed_bio->bi_rw & (1 << BIO_RW))
1200                 rw = WRITE;
1201         else
1202                 rw = READ;
1203
1204         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1205                                                       failrec->last_mirror,
1206                                                       bio_flags);
1207         return 0;
1208 }
1209
1210 /*
1211  * each time an IO finishes, we do a fast check in the IO failure tree
1212  * to see if we need to process or clean up an io_failure_record
1213  */
1214 int btrfs_clean_io_failures(struct inode *inode, u64 start)
1215 {
1216         u64 private;
1217         u64 private_failure;
1218         struct io_failure_record *failure;
1219         int ret;
1220
1221         private = 0;
1222         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1223                              (u64)-1, 1, EXTENT_DIRTY)) {
1224                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1225                                         start, &private_failure);
1226                 if (ret == 0) {
1227                         failure = (struct io_failure_record *)(unsigned long)
1228                                    private_failure;
1229                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1230                                           failure->start, 0);
1231                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1232                                           failure->start,
1233                                           failure->start + failure->len - 1,
1234                                           EXTENT_DIRTY | EXTENT_LOCKED,
1235                                           GFP_NOFS);
1236                         kfree(failure);
1237                 }
1238         }
1239         return 0;
1240 }
1241
1242 /*
1243  * when reads are done, we need to check csums to verify the data is correct
1244  * if there's a match, we allow the bio to finish.  If not, we go through
1245  * the io_failure_record routines to find good copies
1246  */
1247 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1248                                struct extent_state *state)
1249 {
1250         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1251         struct inode *inode = page->mapping->host;
1252         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1253         char *kaddr;
1254         u64 private = ~(u32)0;
1255         int ret;
1256         struct btrfs_root *root = BTRFS_I(inode)->root;
1257         u32 csum = ~(u32)0;
1258         unsigned long flags;
1259
1260         if (btrfs_test_opt(root, NODATASUM) ||
1261             btrfs_test_flag(inode, NODATASUM))
1262                 return 0;
1263         if (state && state->start == start) {
1264                 private = state->private;
1265                 ret = 0;
1266         } else {
1267                 ret = get_state_private(io_tree, start, &private);
1268         }
1269         local_irq_save(flags);
1270         kaddr = kmap_atomic(page, KM_IRQ0);
1271         if (ret) {
1272                 goto zeroit;
1273         }
1274         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1275         btrfs_csum_final(csum, (char *)&csum);
1276         if (csum != private) {
1277                 goto zeroit;
1278         }
1279         kunmap_atomic(kaddr, KM_IRQ0);
1280         local_irq_restore(flags);
1281
1282         /* if the io failure tree for this inode is non-empty,
1283          * check to see if we've recovered from a failed IO
1284          */
1285         btrfs_clean_io_failures(inode, start);
1286         return 0;
1287
1288 zeroit:
1289         printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
1290                page->mapping->host->i_ino, (unsigned long long)start, csum,
1291                private);
1292         memset(kaddr + offset, 1, end - start + 1);
1293         flush_dcache_page(page);
1294         kunmap_atomic(kaddr, KM_IRQ0);
1295         local_irq_restore(flags);
1296         if (private == 0)
1297                 return 0;
1298         return -EIO;
1299 }
1300
1301 /*
1302  * This creates an orphan entry for the given inode in case something goes
1303  * wrong in the middle of an unlink/truncate.
1304  */
1305 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1306 {
1307         struct btrfs_root *root = BTRFS_I(inode)->root;
1308         int ret = 0;
1309
1310         spin_lock(&root->list_lock);
1311
1312         /* already on the orphan list, we're good */
1313         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1314                 spin_unlock(&root->list_lock);
1315                 return 0;
1316         }
1317
1318         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1319
1320         spin_unlock(&root->list_lock);
1321
1322         /*
1323          * insert an orphan item to track this unlinked/truncated file
1324          */
1325         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1326
1327         return ret;
1328 }
1329
1330 /*
1331  * We have done the truncate/delete so we can go ahead and remove the orphan
1332  * item for this particular inode.
1333  */
1334 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1335 {
1336         struct btrfs_root *root = BTRFS_I(inode)->root;
1337         int ret = 0;
1338
1339         spin_lock(&root->list_lock);
1340
1341         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1342                 spin_unlock(&root->list_lock);
1343                 return 0;
1344         }
1345
1346         list_del_init(&BTRFS_I(inode)->i_orphan);
1347         if (!trans) {
1348                 spin_unlock(&root->list_lock);
1349                 return 0;
1350         }
1351
1352         spin_unlock(&root->list_lock);
1353
1354         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1355
1356         return ret;
1357 }
1358
1359 /*
1360  * this cleans up any orphans that may be left on the list from the last use
1361  * of this root.
1362  */
1363 void btrfs_orphan_cleanup(struct btrfs_root *root)
1364 {
1365         struct btrfs_path *path;
1366         struct extent_buffer *leaf;
1367         struct btrfs_item *item;
1368         struct btrfs_key key, found_key;
1369         struct btrfs_trans_handle *trans;
1370         struct inode *inode;
1371         int ret = 0, nr_unlink = 0, nr_truncate = 0;
1372
1373         /* don't do orphan cleanup if the fs is readonly. */
1374         if (root->fs_info->sb->s_flags & MS_RDONLY)
1375                 return;
1376
1377         path = btrfs_alloc_path();
1378         if (!path)
1379                 return;
1380         path->reada = -1;
1381
1382         key.objectid = BTRFS_ORPHAN_OBJECTID;
1383         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1384         key.offset = (u64)-1;
1385
1386
1387         while (1) {
1388                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1389                 if (ret < 0) {
1390                         printk(KERN_ERR "Error searching slot for orphan: %d"
1391                                "\n", ret);
1392                         break;
1393                 }
1394
1395                 /*
1396                  * if ret == 0 means we found what we were searching for, which
1397                  * is weird, but possible, so only screw with path if we didnt
1398                  * find the key and see if we have stuff that matches
1399                  */
1400                 if (ret > 0) {
1401                         if (path->slots[0] == 0)
1402                                 break;
1403                         path->slots[0]--;
1404                 }
1405
1406                 /* pull out the item */
1407                 leaf = path->nodes[0];
1408                 item = btrfs_item_nr(leaf, path->slots[0]);
1409                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1410
1411                 /* make sure the item matches what we want */
1412                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1413                         break;
1414                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1415                         break;
1416
1417                 /* release the path since we're done with it */
1418                 btrfs_release_path(root, path);
1419
1420                 /*
1421                  * this is where we are basically btrfs_lookup, without the
1422                  * crossing root thing.  we store the inode number in the
1423                  * offset of the orphan item.
1424                  */
1425                 inode = btrfs_iget_locked(root->fs_info->sb,
1426                                           found_key.offset, root);
1427                 if (!inode)
1428                         break;
1429
1430                 if (inode->i_state & I_NEW) {
1431                         BTRFS_I(inode)->root = root;
1432
1433                         /* have to set the location manually */
1434                         BTRFS_I(inode)->location.objectid = inode->i_ino;
1435                         BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1436                         BTRFS_I(inode)->location.offset = 0;
1437
1438                         btrfs_read_locked_inode(inode);
1439                         unlock_new_inode(inode);
1440                 }
1441
1442                 /*
1443                  * add this inode to the orphan list so btrfs_orphan_del does
1444                  * the proper thing when we hit it
1445                  */
1446                 spin_lock(&root->list_lock);
1447                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1448                 spin_unlock(&root->list_lock);
1449
1450                 /*
1451                  * if this is a bad inode, means we actually succeeded in
1452                  * removing the inode, but not the orphan record, which means
1453                  * we need to manually delete the orphan since iput will just
1454                  * do a destroy_inode
1455                  */
1456                 if (is_bad_inode(inode)) {
1457                         trans = btrfs_start_transaction(root, 1);
1458                         btrfs_orphan_del(trans, inode);
1459                         btrfs_end_transaction(trans, root);
1460                         iput(inode);
1461                         continue;
1462                 }
1463
1464                 /* if we have links, this was a truncate, lets do that */
1465                 if (inode->i_nlink) {
1466                         nr_truncate++;
1467                         btrfs_truncate(inode);
1468                 } else {
1469                         nr_unlink++;
1470                 }
1471
1472                 /* this will do delete_inode and everything for us */
1473                 iput(inode);
1474         }
1475
1476         if (nr_unlink)
1477                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1478         if (nr_truncate)
1479                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1480
1481         btrfs_free_path(path);
1482 }
1483
1484 /*
1485  * read an inode from the btree into the in-memory inode
1486  */
1487 void btrfs_read_locked_inode(struct inode *inode)
1488 {
1489         struct btrfs_path *path;
1490         struct extent_buffer *leaf;
1491         struct btrfs_inode_item *inode_item;
1492         struct btrfs_timespec *tspec;
1493         struct btrfs_root *root = BTRFS_I(inode)->root;
1494         struct btrfs_key location;
1495         u64 alloc_group_block;
1496         u32 rdev;
1497         int ret;
1498
1499         path = btrfs_alloc_path();
1500         BUG_ON(!path);
1501         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1502
1503         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1504         if (ret)
1505                 goto make_bad;
1506
1507         leaf = path->nodes[0];
1508         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1509                                     struct btrfs_inode_item);
1510
1511         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1512         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1513         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1514         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1515         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1516
1517         tspec = btrfs_inode_atime(inode_item);
1518         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1519         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1520
1521         tspec = btrfs_inode_mtime(inode_item);
1522         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1523         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1524
1525         tspec = btrfs_inode_ctime(inode_item);
1526         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1527         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1528
1529         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
1530         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
1531         inode->i_generation = BTRFS_I(inode)->generation;
1532         inode->i_rdev = 0;
1533         rdev = btrfs_inode_rdev(leaf, inode_item);
1534
1535         BTRFS_I(inode)->index_cnt = (u64)-1;
1536
1537         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1538         BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1539                                                        alloc_group_block);
1540         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1541         if (!BTRFS_I(inode)->block_group) {
1542                 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1543                                                  NULL, 0,
1544                                                  BTRFS_BLOCK_GROUP_METADATA, 0);
1545         }
1546         btrfs_free_path(path);
1547         inode_item = NULL;
1548
1549         switch (inode->i_mode & S_IFMT) {
1550         case S_IFREG:
1551                 inode->i_mapping->a_ops = &btrfs_aops;
1552                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1553                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1554                 inode->i_fop = &btrfs_file_operations;
1555                 inode->i_op = &btrfs_file_inode_operations;
1556                 break;
1557         case S_IFDIR:
1558                 inode->i_fop = &btrfs_dir_file_operations;
1559                 if (root == root->fs_info->tree_root)
1560                         inode->i_op = &btrfs_dir_ro_inode_operations;
1561                 else
1562                         inode->i_op = &btrfs_dir_inode_operations;
1563                 break;
1564         case S_IFLNK:
1565                 inode->i_op = &btrfs_symlink_inode_operations;
1566                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1567                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1568                 break;
1569         default:
1570                 init_special_inode(inode, inode->i_mode, rdev);
1571                 break;
1572         }
1573         return;
1574
1575 make_bad:
1576         btrfs_free_path(path);
1577         make_bad_inode(inode);
1578 }
1579
1580 /*
1581  * given a leaf and an inode, copy the inode fields into the leaf
1582  */
1583 static void fill_inode_item(struct btrfs_trans_handle *trans,
1584                             struct extent_buffer *leaf,
1585                             struct btrfs_inode_item *item,
1586                             struct inode *inode)
1587 {
1588         btrfs_set_inode_uid(leaf, item, inode->i_uid);
1589         btrfs_set_inode_gid(leaf, item, inode->i_gid);
1590         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1591         btrfs_set_inode_mode(leaf, item, inode->i_mode);
1592         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1593
1594         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1595                                inode->i_atime.tv_sec);
1596         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1597                                 inode->i_atime.tv_nsec);
1598
1599         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1600                                inode->i_mtime.tv_sec);
1601         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1602                                 inode->i_mtime.tv_nsec);
1603
1604         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1605                                inode->i_ctime.tv_sec);
1606         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1607                                 inode->i_ctime.tv_nsec);
1608
1609         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
1610         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
1611         btrfs_set_inode_transid(leaf, item, trans->transid);
1612         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1613         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1614         btrfs_set_inode_block_group(leaf, item,
1615                                     BTRFS_I(inode)->block_group->key.objectid);
1616 }
1617
1618 /*
1619  * copy everything in the in-memory inode into the btree.
1620  */
1621 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1622                               struct btrfs_root *root,
1623                               struct inode *inode)
1624 {
1625         struct btrfs_inode_item *inode_item;
1626         struct btrfs_path *path;
1627         struct extent_buffer *leaf;
1628         int ret;
1629
1630         path = btrfs_alloc_path();
1631         BUG_ON(!path);
1632         ret = btrfs_lookup_inode(trans, root, path,
1633                                  &BTRFS_I(inode)->location, 1);
1634         if (ret) {
1635                 if (ret > 0)
1636                         ret = -ENOENT;
1637                 goto failed;
1638         }
1639
1640         leaf = path->nodes[0];
1641         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1642                                   struct btrfs_inode_item);
1643
1644         fill_inode_item(trans, leaf, inode_item, inode);
1645         btrfs_mark_buffer_dirty(leaf);
1646         btrfs_set_inode_last_trans(trans, inode);
1647         ret = 0;
1648 failed:
1649         btrfs_free_path(path);
1650         return ret;
1651 }
1652
1653
1654 /*
1655  * unlink helper that gets used here in inode.c and in the tree logging
1656  * recovery code.  It remove a link in a directory with a given name, and
1657  * also drops the back refs in the inode to the directory
1658  */
1659 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
1660                        struct btrfs_root *root,
1661                        struct inode *dir, struct inode *inode,
1662                        const char *name, int name_len)
1663 {
1664         struct btrfs_path *path;
1665         int ret = 0;
1666         struct extent_buffer *leaf;
1667         struct btrfs_dir_item *di;
1668         struct btrfs_key key;
1669         u64 index;
1670
1671         path = btrfs_alloc_path();
1672         if (!path) {
1673                 ret = -ENOMEM;
1674                 goto err;
1675         }
1676
1677         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1678                                     name, name_len, -1);
1679         if (IS_ERR(di)) {
1680                 ret = PTR_ERR(di);
1681                 goto err;
1682         }
1683         if (!di) {
1684                 ret = -ENOENT;
1685                 goto err;
1686         }
1687         leaf = path->nodes[0];
1688         btrfs_dir_item_key_to_cpu(leaf, di, &key);
1689         ret = btrfs_delete_one_dir_name(trans, root, path, di);
1690         if (ret)
1691                 goto err;
1692         btrfs_release_path(root, path);
1693
1694         ret = btrfs_del_inode_ref(trans, root, name, name_len,
1695                                   inode->i_ino,
1696                                   dir->i_ino, &index);
1697         if (ret) {
1698                 printk("failed to delete reference to %.*s, "
1699                        "inode %lu parent %lu\n", name_len, name,
1700                        inode->i_ino, dir->i_ino);
1701                 goto err;
1702         }
1703
1704         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1705                                          index, name, name_len, -1);
1706         if (IS_ERR(di)) {
1707                 ret = PTR_ERR(di);
1708                 goto err;
1709         }
1710         if (!di) {
1711                 ret = -ENOENT;
1712                 goto err;
1713         }
1714         ret = btrfs_delete_one_dir_name(trans, root, path, di);
1715         btrfs_release_path(root, path);
1716
1717         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
1718                                          inode, dir->i_ino);
1719         BUG_ON(ret != 0 && ret != -ENOENT);
1720         if (ret != -ENOENT)
1721                 BTRFS_I(dir)->log_dirty_trans = trans->transid;
1722
1723         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
1724                                            dir, index);
1725         BUG_ON(ret);
1726 err:
1727         btrfs_free_path(path);
1728         if (ret)
1729                 goto out;
1730
1731         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1732         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1733         btrfs_update_inode(trans, root, dir);
1734         btrfs_drop_nlink(inode);
1735         ret = btrfs_update_inode(trans, root, inode);
1736         dir->i_sb->s_dirt = 1;
1737 out:
1738         return ret;
1739 }
1740
1741 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1742 {
1743         struct btrfs_root *root;
1744         struct btrfs_trans_handle *trans;
1745         struct inode *inode = dentry->d_inode;
1746         int ret;
1747         unsigned long nr = 0;
1748
1749         root = BTRFS_I(dir)->root;
1750
1751         ret = btrfs_check_free_space(root, 1, 1);
1752         if (ret)
1753                 goto fail;
1754
1755         trans = btrfs_start_transaction(root, 1);
1756
1757         btrfs_set_trans_block_group(trans, dir);
1758         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1759                                  dentry->d_name.name, dentry->d_name.len);
1760
1761         if (inode->i_nlink == 0)
1762                 ret = btrfs_orphan_add(trans, inode);
1763
1764         nr = trans->blocks_used;
1765
1766         btrfs_end_transaction_throttle(trans, root);
1767 fail:
1768         btrfs_btree_balance_dirty(root, nr);
1769         return ret;
1770 }
1771
1772 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1773 {
1774         struct inode *inode = dentry->d_inode;
1775         int err = 0;
1776         int ret;
1777         struct btrfs_root *root = BTRFS_I(dir)->root;
1778         struct btrfs_trans_handle *trans;
1779         unsigned long nr = 0;
1780
1781         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1782                 return -ENOTEMPTY;
1783         }
1784
1785         ret = btrfs_check_free_space(root, 1, 1);
1786         if (ret)
1787                 goto fail;
1788
1789         trans = btrfs_start_transaction(root, 1);
1790         btrfs_set_trans_block_group(trans, dir);
1791
1792         err = btrfs_orphan_add(trans, inode);
1793         if (err)
1794                 goto fail_trans;
1795
1796         /* now the directory is empty */
1797         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1798                                  dentry->d_name.name, dentry->d_name.len);
1799         if (!err) {
1800                 btrfs_i_size_write(inode, 0);
1801         }
1802
1803 fail_trans:
1804         nr = trans->blocks_used;
1805         ret = btrfs_end_transaction_throttle(trans, root);
1806 fail:
1807         btrfs_btree_balance_dirty(root, nr);
1808
1809         if (ret && !err)
1810                 err = ret;
1811         return err;
1812 }
1813
1814 /*
1815  * when truncating bytes in a file, it is possible to avoid reading
1816  * the leaves that contain only checksum items.  This can be the
1817  * majority of the IO required to delete a large file, but it must
1818  * be done carefully.
1819  *
1820  * The keys in the level just above the leaves are checked to make sure
1821  * the lowest key in a given leaf is a csum key, and starts at an offset
1822  * after the new  size.
1823  *
1824  * Then the key for the next leaf is checked to make sure it also has
1825  * a checksum item for the same file.  If it does, we know our target leaf
1826  * contains only checksum items, and it can be safely freed without reading
1827  * it.
1828  *
1829  * This is just an optimization targeted at large files.  It may do
1830  * nothing.  It will return 0 unless things went badly.
1831  */
1832 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
1833                                      struct btrfs_root *root,
1834                                      struct btrfs_path *path,
1835                                      struct inode *inode, u64 new_size)
1836 {
1837         struct btrfs_key key;
1838         int ret;
1839         int nritems;
1840         struct btrfs_key found_key;
1841         struct btrfs_key other_key;
1842         struct btrfs_leaf_ref *ref;
1843         u64 leaf_gen;
1844         u64 leaf_start;
1845
1846         path->lowest_level = 1;
1847         key.objectid = inode->i_ino;
1848         key.type = BTRFS_CSUM_ITEM_KEY;
1849         key.offset = new_size;
1850 again:
1851         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1852         if (ret < 0)
1853                 goto out;
1854
1855         if (path->nodes[1] == NULL) {
1856                 ret = 0;
1857                 goto out;
1858         }
1859         ret = 0;
1860         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
1861         nritems = btrfs_header_nritems(path->nodes[1]);
1862
1863         if (!nritems)
1864                 goto out;
1865
1866         if (path->slots[1] >= nritems)
1867                 goto next_node;
1868
1869         /* did we find a key greater than anything we want to delete? */
1870         if (found_key.objectid > inode->i_ino ||
1871            (found_key.objectid == inode->i_ino && found_key.type > key.type))
1872                 goto out;
1873
1874         /* we check the next key in the node to make sure the leave contains
1875          * only checksum items.  This comparison doesn't work if our
1876          * leaf is the last one in the node
1877          */
1878         if (path->slots[1] + 1 >= nritems) {
1879 next_node:
1880                 /* search forward from the last key in the node, this
1881                  * will bring us into the next node in the tree
1882                  */
1883                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
1884
1885                 /* unlikely, but we inc below, so check to be safe */
1886                 if (found_key.offset == (u64)-1)
1887                         goto out;
1888
1889                 /* search_forward needs a path with locks held, do the
1890                  * search again for the original key.  It is possible
1891                  * this will race with a balance and return a path that
1892                  * we could modify, but this drop is just an optimization
1893                  * and is allowed to miss some leaves.
1894                  */
1895                 btrfs_release_path(root, path);
1896                 found_key.offset++;
1897
1898                 /* setup a max key for search_forward */
1899                 other_key.offset = (u64)-1;
1900                 other_key.type = key.type;
1901                 other_key.objectid = key.objectid;
1902
1903                 path->keep_locks = 1;
1904                 ret = btrfs_search_forward(root, &found_key, &other_key,
1905                                            path, 0, 0);
1906                 path->keep_locks = 0;
1907                 if (ret || found_key.objectid != key.objectid ||
1908                     found_key.type != key.type) {
1909                         ret = 0;
1910                         goto out;
1911                 }
1912
1913                 key.offset = found_key.offset;
1914                 btrfs_release_path(root, path);
1915                 cond_resched();
1916                 goto again;
1917         }
1918
1919         /* we know there's one more slot after us in the tree,
1920          * read that key so we can verify it is also a checksum item
1921          */
1922         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
1923
1924         if (found_key.objectid < inode->i_ino)
1925                 goto next_key;
1926
1927         if (found_key.type != key.type || found_key.offset < new_size)
1928                 goto next_key;
1929
1930         /*
1931          * if the key for the next leaf isn't a csum key from this objectid,
1932          * we can't be sure there aren't good items inside this leaf.
1933          * Bail out
1934          */
1935         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
1936                 goto out;
1937
1938         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
1939         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
1940         /*
1941          * it is safe to delete this leaf, it contains only
1942          * csum items from this inode at an offset >= new_size
1943          */
1944         ret = btrfs_del_leaf(trans, root, path, leaf_start);
1945         BUG_ON(ret);
1946
1947         if (root->ref_cows && leaf_gen < trans->transid) {
1948                 ref = btrfs_alloc_leaf_ref(root, 0);
1949                 if (ref) {
1950                         ref->root_gen = root->root_key.offset;
1951                         ref->bytenr = leaf_start;
1952                         ref->owner = 0;
1953                         ref->generation = leaf_gen;
1954                         ref->nritems = 0;
1955
1956                         ret = btrfs_add_leaf_ref(root, ref, 0);
1957                         WARN_ON(ret);
1958                         btrfs_free_leaf_ref(root, ref);
1959                 } else {
1960                         WARN_ON(1);
1961                 }
1962         }
1963 next_key:
1964         btrfs_release_path(root, path);
1965
1966         if (other_key.objectid == inode->i_ino &&
1967             other_key.type == key.type && other_key.offset > key.offset) {
1968                 key.offset = other_key.offset;
1969                 cond_resched();
1970                 goto again;
1971         }
1972         ret = 0;
1973 out:
1974         /* fixup any changes we've made to the path */
1975         path->lowest_level = 0;
1976         path->keep_locks = 0;
1977         btrfs_release_path(root, path);
1978         return ret;
1979 }
1980
1981 /*
1982  * this can truncate away extent items, csum items and directory items.
1983  * It starts at a high offset and removes keys until it can't find
1984  * any higher than new_size
1985  *
1986  * csum items that cross the new i_size are truncated to the new size
1987  * as well.
1988  *
1989  * min_type is the minimum key type to truncate down to.  If set to 0, this
1990  * will kill all the items on this inode, including the INODE_ITEM_KEY.
1991  */
1992 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
1993                                         struct btrfs_root *root,
1994                                         struct inode *inode,
1995                                         u64 new_size, u32 min_type)
1996 {
1997         int ret;
1998         struct btrfs_path *path;
1999         struct btrfs_key key;
2000         struct btrfs_key found_key;
2001         u32 found_type;
2002         struct extent_buffer *leaf;
2003         struct btrfs_file_extent_item *fi;
2004         u64 extent_start = 0;
2005         u64 extent_num_bytes = 0;
2006         u64 item_end = 0;
2007         u64 root_gen = 0;
2008         u64 root_owner = 0;
2009         int found_extent;
2010         int del_item;
2011         int pending_del_nr = 0;
2012         int pending_del_slot = 0;
2013         int extent_type = -1;
2014         u64 mask = root->sectorsize - 1;
2015
2016         if (root->ref_cows)
2017                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2018         path = btrfs_alloc_path();
2019         path->reada = -1;
2020         BUG_ON(!path);
2021
2022         /* FIXME, add redo link to tree so we don't leak on crash */
2023         key.objectid = inode->i_ino;
2024         key.offset = (u64)-1;
2025         key.type = (u8)-1;
2026
2027         btrfs_init_path(path);
2028
2029         ret = drop_csum_leaves(trans, root, path, inode, new_size);
2030         BUG_ON(ret);
2031
2032 search_again:
2033         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2034         if (ret < 0) {
2035                 goto error;
2036         }
2037         if (ret > 0) {
2038                 /* there are no items in the tree for us to truncate, we're
2039                  * done
2040                  */
2041                 if (path->slots[0] == 0) {
2042                         ret = 0;
2043                         goto error;
2044                 }
2045                 path->slots[0]--;
2046         }
2047
2048         while(1) {
2049                 fi = NULL;
2050                 leaf = path->nodes[0];
2051                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2052                 found_type = btrfs_key_type(&found_key);
2053
2054                 if (found_key.objectid != inode->i_ino)
2055                         break;
2056
2057                 if (found_type < min_type)
2058                         break;
2059
2060                 item_end = found_key.offset;
2061                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2062                         fi = btrfs_item_ptr(leaf, path->slots[0],
2063                                             struct btrfs_file_extent_item);
2064                         extent_type = btrfs_file_extent_type(leaf, fi);
2065                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2066                                 item_end +=
2067                                     btrfs_file_extent_num_bytes(leaf, fi);
2068                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2069                                 item_end += btrfs_file_extent_inline_len(leaf,
2070                                                                          fi);
2071                         }
2072                         item_end--;
2073                 }
2074                 if (found_type == BTRFS_CSUM_ITEM_KEY) {
2075                         ret = btrfs_csum_truncate(trans, root, path,
2076                                                   new_size);
2077                         BUG_ON(ret);
2078                 }
2079                 if (item_end < new_size) {
2080                         if (found_type == BTRFS_DIR_ITEM_KEY) {
2081                                 found_type = BTRFS_INODE_ITEM_KEY;
2082                         } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
2083                                 found_type = BTRFS_CSUM_ITEM_KEY;
2084                         } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
2085                                 found_type = BTRFS_XATTR_ITEM_KEY;
2086                         } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
2087                                 found_type = BTRFS_INODE_REF_KEY;
2088                         } else if (found_type) {
2089                                 found_type--;
2090                         } else {
2091                                 break;
2092                         }
2093                         btrfs_set_key_type(&key, found_type);
2094                         goto next;
2095                 }
2096                 if (found_key.offset >= new_size)
2097                         del_item = 1;
2098                 else
2099                         del_item = 0;
2100                 found_extent = 0;
2101
2102                 /* FIXME, shrink the extent if the ref count is only 1 */
2103                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2104                         goto delete;
2105
2106                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2107                         u64 num_dec;
2108                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2109                         if (!del_item) {
2110                                 u64 orig_num_bytes =
2111                                         btrfs_file_extent_num_bytes(leaf, fi);
2112                                 extent_num_bytes = new_size -
2113                                         found_key.offset + root->sectorsize - 1;
2114                                 extent_num_bytes = extent_num_bytes &
2115                                         ~((u64)root->sectorsize - 1);
2116                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2117                                                          extent_num_bytes);
2118                                 num_dec = (orig_num_bytes -
2119                                            extent_num_bytes);
2120                                 if (root->ref_cows && extent_start != 0)
2121                                         inode_sub_bytes(inode, num_dec);
2122                                 btrfs_mark_buffer_dirty(leaf);
2123                         } else {
2124                                 extent_num_bytes =
2125                                         btrfs_file_extent_disk_num_bytes(leaf,
2126                                                                          fi);
2127                                 /* FIXME blocksize != 4096 */
2128                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2129                                 if (extent_start != 0) {
2130                                         found_extent = 1;
2131                                         if (root->ref_cows)
2132                                                 inode_sub_bytes(inode, num_dec);
2133                                 }
2134                                 root_gen = btrfs_header_generation(leaf);
2135                                 root_owner = btrfs_header_owner(leaf);
2136                         }
2137                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2138                         /*
2139                          * we can't truncate inline items that have had
2140                          * special encodings
2141                          */
2142                         if (!del_item &&
2143                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2144                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
2145                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2146                                 u32 size = new_size - found_key.offset;
2147
2148                                 if (root->ref_cows) {
2149                                         inode_sub_bytes(inode, item_end + 1 -
2150                                                         new_size);
2151                                 }
2152                                 size =
2153                                     btrfs_file_extent_calc_inline_size(size);
2154                                 ret = btrfs_truncate_item(trans, root, path,
2155                                                           size, 1);
2156                                 BUG_ON(ret);
2157                         } else if (root->ref_cows) {
2158                                 inode_sub_bytes(inode, item_end + 1 -
2159                                                 found_key.offset);
2160                         }
2161                 }
2162 delete:
2163                 if (del_item) {
2164                         if (!pending_del_nr) {
2165                                 /* no pending yet, add ourselves */
2166                                 pending_del_slot = path->slots[0];
2167                                 pending_del_nr = 1;
2168                         } else if (pending_del_nr &&
2169                                    path->slots[0] + 1 == pending_del_slot) {
2170                                 /* hop on the pending chunk */
2171                                 pending_del_nr++;
2172                                 pending_del_slot = path->slots[0];
2173                         } else {
2174                                 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
2175                         }
2176                 } else {
2177                         break;
2178                 }
2179                 if (found_extent) {
2180                         ret = btrfs_free_extent(trans, root, extent_start,
2181                                                 extent_num_bytes,
2182                                                 leaf->start, root_owner,
2183                                                 root_gen, inode->i_ino, 0);
2184                         BUG_ON(ret);
2185                 }
2186 next:
2187                 if (path->slots[0] == 0) {
2188                         if (pending_del_nr)
2189                                 goto del_pending;
2190                         btrfs_release_path(root, path);
2191                         goto search_again;
2192                 }
2193
2194                 path->slots[0]--;
2195                 if (pending_del_nr &&
2196                     path->slots[0] + 1 != pending_del_slot) {
2197                         struct btrfs_key debug;
2198 del_pending:
2199                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
2200                                               pending_del_slot);
2201                         ret = btrfs_del_items(trans, root, path,
2202                                               pending_del_slot,
2203                                               pending_del_nr);
2204                         BUG_ON(ret);
2205                         pending_del_nr = 0;
2206                         btrfs_release_path(root, path);
2207                         goto search_again;
2208                 }
2209         }
2210         ret = 0;
2211 error:
2212         if (pending_del_nr) {
2213                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2214                                       pending_del_nr);
2215         }
2216         btrfs_free_path(path);
2217         inode->i_sb->s_dirt = 1;
2218         return ret;
2219 }
2220
2221 /*
2222  * taken from block_truncate_page, but does cow as it zeros out
2223  * any bytes left in the last page in the file.
2224  */
2225 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2226 {
2227         struct inode *inode = mapping->host;
2228         struct btrfs_root *root = BTRFS_I(inode)->root;
2229         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2230         struct btrfs_ordered_extent *ordered;
2231         char *kaddr;
2232         u32 blocksize = root->sectorsize;
2233         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2234         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2235         struct page *page;
2236         int ret = 0;
2237         u64 page_start;
2238         u64 page_end;
2239
2240         if ((offset & (blocksize - 1)) == 0)
2241                 goto out;
2242
2243         ret = -ENOMEM;
2244 again:
2245         page = grab_cache_page(mapping, index);
2246         if (!page)
2247                 goto out;
2248
2249         page_start = page_offset(page);
2250         page_end = page_start + PAGE_CACHE_SIZE - 1;
2251
2252         if (!PageUptodate(page)) {
2253                 ret = btrfs_readpage(NULL, page);
2254                 lock_page(page);
2255                 if (page->mapping != mapping) {
2256                         unlock_page(page);
2257                         page_cache_release(page);
2258                         goto again;
2259                 }
2260                 if (!PageUptodate(page)) {
2261                         ret = -EIO;
2262                         goto out_unlock;
2263                 }
2264         }
2265         wait_on_page_writeback(page);
2266
2267         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2268         set_page_extent_mapped(page);
2269
2270         ordered = btrfs_lookup_ordered_extent(inode, page_start);
2271         if (ordered) {
2272                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2273                 unlock_page(page);
2274                 page_cache_release(page);
2275                 btrfs_start_ordered_extent(inode, ordered, 1);
2276                 btrfs_put_ordered_extent(ordered);
2277                 goto again;
2278         }
2279
2280         btrfs_set_extent_delalloc(inode, page_start, page_end);
2281         ret = 0;
2282         if (offset != PAGE_CACHE_SIZE) {
2283                 kaddr = kmap(page);
2284                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2285                 flush_dcache_page(page);
2286                 kunmap(page);
2287         }
2288         ClearPageChecked(page);
2289         set_page_dirty(page);
2290         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2291
2292 out_unlock:
2293         unlock_page(page);
2294         page_cache_release(page);
2295 out:
2296         return ret;
2297 }
2298
2299 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2300 {
2301         struct inode *inode = dentry->d_inode;
2302         int err;
2303
2304         err = inode_change_ok(inode, attr);
2305         if (err)
2306                 return err;
2307
2308         if (S_ISREG(inode->i_mode) &&
2309             attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2310                 struct btrfs_trans_handle *trans;
2311                 struct btrfs_root *root = BTRFS_I(inode)->root;
2312                 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2313
2314                 u64 mask = root->sectorsize - 1;
2315                 u64 hole_start = (inode->i_size + mask) & ~mask;
2316                 u64 block_end = (attr->ia_size + mask) & ~mask;
2317                 u64 hole_size;
2318                 u64 alloc_hint = 0;
2319
2320                 if (attr->ia_size <= hole_start)
2321                         goto out;
2322
2323                 err = btrfs_check_free_space(root, 1, 0);
2324                 if (err)
2325                         goto fail;
2326
2327                 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2328
2329                 hole_size = block_end - hole_start;
2330                 while(1) {
2331                         struct btrfs_ordered_extent *ordered;
2332                         btrfs_wait_ordered_range(inode, hole_start, hole_size);
2333
2334                         lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2335                         ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2336                         if (ordered) {
2337                                 unlock_extent(io_tree, hole_start,
2338                                               block_end - 1, GFP_NOFS);
2339                                 btrfs_put_ordered_extent(ordered);
2340                         } else {
2341                                 break;
2342                         }
2343                 }
2344
2345                 trans = btrfs_start_transaction(root, 1);
2346                 btrfs_set_trans_block_group(trans, inode);
2347                 mutex_lock(&BTRFS_I(inode)->extent_mutex);
2348                 err = btrfs_drop_extents(trans, root, inode,
2349                                          hole_start, block_end, hole_start,
2350                                          &alloc_hint);
2351
2352                 if (alloc_hint != EXTENT_MAP_INLINE) {
2353                         err = btrfs_insert_file_extent(trans, root,
2354                                                        inode->i_ino,
2355                                                        hole_start, 0, 0,
2356                                                        hole_size, 0, hole_size,
2357                                                        0, 0, 0);
2358                         btrfs_drop_extent_cache(inode, hole_start,
2359                                                 (u64)-1, 0);
2360                         btrfs_check_file(root, inode);
2361                 }
2362                 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
2363                 btrfs_end_transaction(trans, root);
2364                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2365                 if (err)
2366                         return err;
2367         }
2368 out:
2369         err = inode_setattr(inode, attr);
2370
2371         if (!err && ((attr->ia_valid & ATTR_MODE)))
2372                 err = btrfs_acl_chmod(inode);
2373 fail:
2374         return err;
2375 }
2376
2377 void btrfs_delete_inode(struct inode *inode)
2378 {
2379         struct btrfs_trans_handle *trans;
2380         struct btrfs_root *root = BTRFS_I(inode)->root;
2381         unsigned long nr;
2382         int ret;
2383
2384         truncate_inode_pages(&inode->i_data, 0);
2385         if (is_bad_inode(inode)) {
2386                 btrfs_orphan_del(NULL, inode);
2387                 goto no_delete;
2388         }
2389         btrfs_wait_ordered_range(inode, 0, (u64)-1);
2390
2391         btrfs_i_size_write(inode, 0);
2392         trans = btrfs_start_transaction(root, 1);
2393
2394         btrfs_set_trans_block_group(trans, inode);
2395         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2396         if (ret) {
2397                 btrfs_orphan_del(NULL, inode);
2398                 goto no_delete_lock;
2399         }
2400
2401         btrfs_orphan_del(trans, inode);
2402
2403         nr = trans->blocks_used;
2404         clear_inode(inode);
2405
2406         btrfs_end_transaction(trans, root);
2407         btrfs_btree_balance_dirty(root, nr);
2408         return;
2409
2410 no_delete_lock:
2411         nr = trans->blocks_used;
2412         btrfs_end_transaction(trans, root);
2413         btrfs_btree_balance_dirty(root, nr);
2414 no_delete:
2415         clear_inode(inode);
2416 }
2417
2418 /*
2419  * this returns the key found in the dir entry in the location pointer.
2420  * If no dir entries were found, location->objectid is 0.
2421  */
2422 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2423                                struct btrfs_key *location)
2424 {
2425         const char *name = dentry->d_name.name;
2426         int namelen = dentry->d_name.len;
2427         struct btrfs_dir_item *di;
2428         struct btrfs_path *path;
2429         struct btrfs_root *root = BTRFS_I(dir)->root;
2430         int ret = 0;
2431
2432         path = btrfs_alloc_path();
2433         BUG_ON(!path);
2434
2435         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2436                                     namelen, 0);
2437         if (IS_ERR(di))
2438                 ret = PTR_ERR(di);
2439         if (!di || IS_ERR(di)) {
2440                 goto out_err;
2441         }
2442         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2443 out:
2444         btrfs_free_path(path);
2445         return ret;
2446 out_err:
2447         location->objectid = 0;
2448         goto out;
2449 }
2450
2451 /*
2452  * when we hit a tree root in a directory, the btrfs part of the inode
2453  * needs to be changed to reflect the root directory of the tree root.  This
2454  * is kind of like crossing a mount point.
2455  */
2456 static int fixup_tree_root_location(struct btrfs_root *root,
2457                              struct btrfs_key *location,
2458                              struct btrfs_root **sub_root,
2459                              struct dentry *dentry)
2460 {
2461         struct btrfs_root_item *ri;
2462
2463         if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2464                 return 0;
2465         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2466                 return 0;
2467
2468         *sub_root = btrfs_read_fs_root(root->fs_info, location,
2469                                         dentry->d_name.name,
2470                                         dentry->d_name.len);
2471         if (IS_ERR(*sub_root))
2472                 return PTR_ERR(*sub_root);
2473
2474         ri = &(*sub_root)->root_item;
2475         location->objectid = btrfs_root_dirid(ri);
2476         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2477         location->offset = 0;
2478
2479         return 0;
2480 }
2481
2482 static noinline void init_btrfs_i(struct inode *inode)
2483 {
2484         struct btrfs_inode *bi = BTRFS_I(inode);
2485
2486         bi->i_acl = NULL;
2487         bi->i_default_acl = NULL;
2488
2489         bi->generation = 0;
2490         bi->last_trans = 0;
2491         bi->logged_trans = 0;
2492         bi->delalloc_bytes = 0;
2493         bi->disk_i_size = 0;
2494         bi->flags = 0;
2495         bi->index_cnt = (u64)-1;
2496         bi->log_dirty_trans = 0;
2497         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2498         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2499                              inode->i_mapping, GFP_NOFS);
2500         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2501                              inode->i_mapping, GFP_NOFS);
2502         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2503         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2504         mutex_init(&BTRFS_I(inode)->csum_mutex);
2505         mutex_init(&BTRFS_I(inode)->extent_mutex);
2506         mutex_init(&BTRFS_I(inode)->log_mutex);
2507 }
2508
2509 static int btrfs_init_locked_inode(struct inode *inode, void *p)
2510 {
2511         struct btrfs_iget_args *args = p;
2512         inode->i_ino = args->ino;
2513         init_btrfs_i(inode);
2514         BTRFS_I(inode)->root = args->root;
2515         return 0;
2516 }
2517
2518 static int btrfs_find_actor(struct inode *inode, void *opaque)
2519 {
2520         struct btrfs_iget_args *args = opaque;
2521         return (args->ino == inode->i_ino &&
2522                 args->root == BTRFS_I(inode)->root);
2523 }
2524
2525 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
2526                             struct btrfs_root *root, int wait)
2527 {
2528         struct inode *inode;
2529         struct btrfs_iget_args args;
2530         args.ino = objectid;
2531         args.root = root;
2532
2533         if (wait) {
2534                 inode = ilookup5(s, objectid, btrfs_find_actor,
2535                                  (void *)&args);
2536         } else {
2537                 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
2538                                         (void *)&args);
2539         }
2540         return inode;
2541 }
2542
2543 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
2544                                 struct btrfs_root *root)
2545 {
2546         struct inode *inode;
2547         struct btrfs_iget_args args;
2548         args.ino = objectid;
2549         args.root = root;
2550
2551         inode = iget5_locked(s, objectid, btrfs_find_actor,
2552                              btrfs_init_locked_inode,
2553                              (void *)&args);
2554         return inode;
2555 }
2556
2557 /* Get an inode object given its location and corresponding root.
2558  * Returns in *is_new if the inode was read from disk
2559  */
2560 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
2561                          struct btrfs_root *root, int *is_new)
2562 {
2563         struct inode *inode;
2564
2565         inode = btrfs_iget_locked(s, location->objectid, root);
2566         if (!inode)
2567                 return ERR_PTR(-EACCES);
2568
2569         if (inode->i_state & I_NEW) {
2570                 BTRFS_I(inode)->root = root;
2571                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
2572                 btrfs_read_locked_inode(inode);
2573                 unlock_new_inode(inode);
2574                 if (is_new)
2575                         *is_new = 1;
2576         } else {
2577                 if (is_new)
2578                         *is_new = 0;
2579         }
2580
2581         return inode;
2582 }
2583
2584 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
2585                                    struct nameidata *nd)
2586 {
2587         struct inode * inode;
2588         struct btrfs_inode *bi = BTRFS_I(dir);
2589         struct btrfs_root *root = bi->root;
2590         struct btrfs_root *sub_root = root;
2591         struct btrfs_key location;
2592         int ret, new, do_orphan = 0;
2593
2594         if (dentry->d_name.len > BTRFS_NAME_LEN)
2595                 return ERR_PTR(-ENAMETOOLONG);
2596
2597         ret = btrfs_inode_by_name(dir, dentry, &location);
2598
2599         if (ret < 0)
2600                 return ERR_PTR(ret);
2601
2602         inode = NULL;
2603         if (location.objectid) {
2604                 ret = fixup_tree_root_location(root, &location, &sub_root,
2605                                                 dentry);
2606                 if (ret < 0)
2607                         return ERR_PTR(ret);
2608                 if (ret > 0)
2609                         return ERR_PTR(-ENOENT);
2610                 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
2611                 if (IS_ERR(inode))
2612                         return ERR_CAST(inode);
2613
2614                 /* the inode and parent dir are two different roots */
2615                 if (new && root != sub_root) {
2616                         igrab(inode);
2617                         sub_root->inode = inode;
2618                         do_orphan = 1;
2619                 }
2620         }
2621
2622         if (unlikely(do_orphan))
2623                 btrfs_orphan_cleanup(sub_root);
2624
2625         return d_splice_alias(inode, dentry);
2626 }
2627
2628 static unsigned char btrfs_filetype_table[] = {
2629         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
2630 };
2631
2632 static int btrfs_real_readdir(struct file *filp, void *dirent,
2633                               filldir_t filldir)
2634 {
2635         struct inode *inode = filp->f_dentry->d_inode;
2636         struct btrfs_root *root = BTRFS_I(inode)->root;
2637         struct btrfs_item *item;
2638         struct btrfs_dir_item *di;
2639         struct btrfs_key key;
2640         struct btrfs_key found_key;
2641         struct btrfs_path *path;
2642         int ret;
2643         u32 nritems;
2644         struct extent_buffer *leaf;
2645         int slot;
2646         int advance;
2647         unsigned char d_type;
2648         int over = 0;
2649         u32 di_cur;
2650         u32 di_total;
2651         u32 di_len;
2652         int key_type = BTRFS_DIR_INDEX_KEY;
2653         char tmp_name[32];
2654         char *name_ptr;
2655         int name_len;
2656
2657         /* FIXME, use a real flag for deciding about the key type */
2658         if (root->fs_info->tree_root == root)
2659                 key_type = BTRFS_DIR_ITEM_KEY;
2660
2661         /* special case for "." */
2662         if (filp->f_pos == 0) {
2663                 over = filldir(dirent, ".", 1,
2664                                1, inode->i_ino,
2665                                DT_DIR);
2666                 if (over)
2667                         return 0;
2668                 filp->f_pos = 1;
2669         }
2670         /* special case for .., just use the back ref */
2671         if (filp->f_pos == 1) {
2672                 u64 pino = parent_ino(filp->f_path.dentry);
2673                 over = filldir(dirent, "..", 2,
2674                                2, pino, DT_DIR);
2675                 if (over)
2676                         return 0;
2677                 filp->f_pos = 2;
2678         }
2679
2680         path = btrfs_alloc_path();
2681         path->reada = 2;
2682
2683         btrfs_set_key_type(&key, key_type);
2684         key.offset = filp->f_pos;
2685         key.objectid = inode->i_ino;
2686
2687         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2688         if (ret < 0)
2689                 goto err;
2690         advance = 0;
2691
2692         while (1) {
2693                 leaf = path->nodes[0];
2694                 nritems = btrfs_header_nritems(leaf);
2695                 slot = path->slots[0];
2696                 if (advance || slot >= nritems) {
2697                         if (slot >= nritems - 1) {
2698                                 ret = btrfs_next_leaf(root, path);
2699                                 if (ret)
2700                                         break;
2701                                 leaf = path->nodes[0];
2702                                 nritems = btrfs_header_nritems(leaf);
2703                                 slot = path->slots[0];
2704                         } else {
2705                                 slot++;
2706                                 path->slots[0]++;
2707                         }
2708                 }
2709                 advance = 1;
2710                 item = btrfs_item_nr(leaf, slot);
2711                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2712
2713                 if (found_key.objectid != key.objectid)
2714                         break;
2715                 if (btrfs_key_type(&found_key) != key_type)
2716                         break;
2717                 if (found_key.offset < filp->f_pos)
2718                         continue;
2719
2720                 filp->f_pos = found_key.offset;
2721
2722                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2723                 di_cur = 0;
2724                 di_total = btrfs_item_size(leaf, item);
2725
2726                 while (di_cur < di_total) {
2727                         struct btrfs_key location;
2728
2729                         name_len = btrfs_dir_name_len(leaf, di);
2730                         if (name_len <= sizeof(tmp_name)) {
2731                                 name_ptr = tmp_name;
2732                         } else {
2733                                 name_ptr = kmalloc(name_len, GFP_NOFS);
2734                                 if (!name_ptr) {
2735                                         ret = -ENOMEM;
2736                                         goto err;
2737                                 }
2738                         }
2739                         read_extent_buffer(leaf, name_ptr,
2740                                            (unsigned long)(di + 1), name_len);
2741
2742                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2743                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
2744                         over = filldir(dirent, name_ptr, name_len,
2745                                        found_key.offset, location.objectid,
2746                                        d_type);
2747
2748                         if (name_ptr != tmp_name)
2749                                 kfree(name_ptr);
2750
2751                         if (over)
2752                                 goto nopos;
2753
2754                         di_len = btrfs_dir_name_len(leaf, di) +
2755                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
2756                         di_cur += di_len;
2757                         di = (struct btrfs_dir_item *)((char *)di + di_len);
2758                 }
2759         }
2760
2761         /* Reached end of directory/root. Bump pos past the last item. */
2762         if (key_type == BTRFS_DIR_INDEX_KEY)
2763                 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2764         else
2765                 filp->f_pos++;
2766 nopos:
2767         ret = 0;
2768 err:
2769         btrfs_free_path(path);
2770         return ret;
2771 }
2772
2773 int btrfs_write_inode(struct inode *inode, int wait)
2774 {
2775         struct btrfs_root *root = BTRFS_I(inode)->root;
2776         struct btrfs_trans_handle *trans;
2777         int ret = 0;
2778
2779         if (root->fs_info->closing > 1)
2780                 return 0;
2781
2782         if (wait) {
2783                 trans = btrfs_join_transaction(root, 1);
2784                 btrfs_set_trans_block_group(trans, inode);
2785                 ret = btrfs_commit_transaction(trans, root);
2786         }
2787         return ret;
2788 }
2789
2790 /*
2791  * This is somewhat expensive, updating the tree every time the
2792  * inode changes.  But, it is most likely to find the inode in cache.
2793  * FIXME, needs more benchmarking...there are no reasons other than performance
2794  * to keep or drop this code.
2795  */
2796 void btrfs_dirty_inode(struct inode *inode)
2797 {
2798         struct btrfs_root *root = BTRFS_I(inode)->root;
2799         struct btrfs_trans_handle *trans;
2800
2801         trans = btrfs_join_transaction(root, 1);
2802         btrfs_set_trans_block_group(trans, inode);
2803         btrfs_update_inode(trans, root, inode);
2804         btrfs_end_transaction(trans, root);
2805 }
2806
2807 /*
2808  * find the highest existing sequence number in a directory
2809  * and then set the in-memory index_cnt variable to reflect
2810  * free sequence numbers
2811  */
2812 static int btrfs_set_inode_index_count(struct inode *inode)
2813 {
2814         struct btrfs_root *root = BTRFS_I(inode)->root;
2815         struct btrfs_key key, found_key;
2816         struct btrfs_path *path;
2817         struct extent_buffer *leaf;
2818         int ret;
2819
2820         key.objectid = inode->i_ino;
2821         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2822         key.offset = (u64)-1;
2823
2824         path = btrfs_alloc_path();
2825         if (!path)
2826                 return -ENOMEM;
2827
2828         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2829         if (ret < 0)
2830                 goto out;
2831         /* FIXME: we should be able to handle this */
2832         if (ret == 0)
2833                 goto out;
2834         ret = 0;
2835
2836         /*
2837          * MAGIC NUMBER EXPLANATION:
2838          * since we search a directory based on f_pos we have to start at 2
2839          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2840          * else has to start at 2
2841          */
2842         if (path->slots[0] == 0) {
2843                 BTRFS_I(inode)->index_cnt = 2;
2844                 goto out;
2845         }
2846
2847         path->slots[0]--;
2848
2849         leaf = path->nodes[0];
2850         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2851
2852         if (found_key.objectid != inode->i_ino ||
2853             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2854                 BTRFS_I(inode)->index_cnt = 2;
2855                 goto out;
2856         }
2857
2858         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2859 out:
2860         btrfs_free_path(path);
2861         return ret;
2862 }
2863
2864 /*
2865  * helper to find a free sequence number in a given directory.  This current
2866  * code is very simple, later versions will do smarter things in the btree
2867  */
2868 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
2869                                  u64 *index)
2870 {
2871         int ret = 0;
2872
2873         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2874                 ret = btrfs_set_inode_index_count(dir);
2875                 if (ret) {
2876                         return ret;
2877                 }
2878         }
2879
2880         *index = BTRFS_I(dir)->index_cnt;
2881         BTRFS_I(dir)->index_cnt++;
2882
2883         return ret;
2884 }
2885
2886 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2887                                      struct btrfs_root *root,
2888                                      struct inode *dir,
2889                                      const char *name, int name_len,
2890                                      u64 ref_objectid,
2891                                      u64 objectid,
2892                                      struct btrfs_block_group_cache *group,
2893                                      int mode, u64 *index)
2894 {
2895         struct inode *inode;
2896         struct btrfs_inode_item *inode_item;
2897         struct btrfs_block_group_cache *new_inode_group;
2898         struct btrfs_key *location;
2899         struct btrfs_path *path;
2900         struct btrfs_inode_ref *ref;
2901         struct btrfs_key key[2];
2902         u32 sizes[2];
2903         unsigned long ptr;
2904         int ret;
2905         int owner;
2906
2907         path = btrfs_alloc_path();
2908         BUG_ON(!path);
2909
2910         inode = new_inode(root->fs_info->sb);
2911         if (!inode)
2912                 return ERR_PTR(-ENOMEM);
2913
2914         if (dir) {
2915                 ret = btrfs_set_inode_index(dir, inode, index);
2916                 if (ret)
2917                         return ERR_PTR(ret);
2918         }
2919         /*
2920          * index_cnt is ignored for everything but a dir,
2921          * btrfs_get_inode_index_count has an explanation for the magic
2922          * number
2923          */
2924         init_btrfs_i(inode);
2925         BTRFS_I(inode)->index_cnt = 2;
2926         BTRFS_I(inode)->root = root;
2927         BTRFS_I(inode)->generation = trans->transid;
2928
2929         if (mode & S_IFDIR)
2930                 owner = 0;
2931         else
2932                 owner = 1;
2933         new_inode_group = btrfs_find_block_group(root, group, 0,
2934                                        BTRFS_BLOCK_GROUP_METADATA, owner);
2935         if (!new_inode_group) {
2936                 printk("find_block group failed\n");
2937                 new_inode_group = group;
2938         }
2939         BTRFS_I(inode)->block_group = new_inode_group;
2940
2941         key[0].objectid = objectid;
2942         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2943         key[0].offset = 0;
2944
2945         key[1].objectid = objectid;
2946         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2947         key[1].offset = ref_objectid;
2948
2949         sizes[0] = sizeof(struct btrfs_inode_item);
2950         sizes[1] = name_len + sizeof(*ref);
2951
2952         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2953         if (ret != 0)
2954                 goto fail;
2955
2956         if (objectid > root->highest_inode)
2957                 root->highest_inode = objectid;
2958
2959         inode->i_uid = current->fsuid;
2960         inode->i_gid = current->fsgid;
2961         inode->i_mode = mode;
2962         inode->i_ino = objectid;
2963         inode_set_bytes(inode, 0);
2964         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2965         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2966                                   struct btrfs_inode_item);
2967         fill_inode_item(trans, path->nodes[0], inode_item, inode);
2968
2969         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2970                              struct btrfs_inode_ref);
2971         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2972         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
2973         ptr = (unsigned long)(ref + 1);
2974         write_extent_buffer(path->nodes[0], name, ptr, name_len);
2975
2976         btrfs_mark_buffer_dirty(path->nodes[0]);
2977         btrfs_free_path(path);
2978
2979         location = &BTRFS_I(inode)->location;
2980         location->objectid = objectid;
2981         location->offset = 0;
2982         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2983
2984         insert_inode_hash(inode);
2985         return inode;
2986 fail:
2987         if (dir)
2988                 BTRFS_I(dir)->index_cnt--;
2989         btrfs_free_path(path);
2990         return ERR_PTR(ret);
2991 }
2992
2993 static inline u8 btrfs_inode_type(struct inode *inode)
2994 {
2995         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2996 }
2997
2998 /*
2999  * utility function to add 'inode' into 'parent_inode' with
3000  * a give name and a given sequence number.
3001  * if 'add_backref' is true, also insert a backref from the
3002  * inode to the parent directory.
3003  */
3004 int btrfs_add_link(struct btrfs_trans_handle *trans,
3005                    struct inode *parent_inode, struct inode *inode,
3006                    const char *name, int name_len, int add_backref, u64 index)
3007 {
3008         int ret;
3009         struct btrfs_key key;
3010         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3011
3012         key.objectid = inode->i_ino;
3013         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3014         key.offset = 0;
3015
3016         ret = btrfs_insert_dir_item(trans, root, name, name_len,
3017                                     parent_inode->i_ino,
3018                                     &key, btrfs_inode_type(inode),
3019                                     index);
3020         if (ret == 0) {
3021                 if (add_backref) {
3022                         ret = btrfs_insert_inode_ref(trans, root,
3023                                                      name, name_len,
3024                                                      inode->i_ino,
3025                                                      parent_inode->i_ino,
3026                                                      index);
3027                 }
3028                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3029                                    name_len * 2);
3030                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3031                 ret = btrfs_update_inode(trans, root, parent_inode);
3032         }
3033         return ret;
3034 }
3035
3036 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3037                             struct dentry *dentry, struct inode *inode,
3038                             int backref, u64 index)
3039 {
3040         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3041                                  inode, dentry->d_name.name,
3042                                  dentry->d_name.len, backref, index);
3043         if (!err) {
3044                 d_instantiate(dentry, inode);
3045                 return 0;
3046         }
3047         if (err > 0)
3048                 err = -EEXIST;
3049         return err;
3050 }
3051
3052 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3053                         int mode, dev_t rdev)
3054 {
3055         struct btrfs_trans_handle *trans;
3056         struct btrfs_root *root = BTRFS_I(dir)->root;
3057         struct inode *inode = NULL;
3058         int err;
3059         int drop_inode = 0;
3060         u64 objectid;
3061         unsigned long nr = 0;
3062         u64 index = 0;
3063
3064         if (!new_valid_dev(rdev))
3065                 return -EINVAL;
3066
3067         err = btrfs_check_free_space(root, 1, 0);
3068         if (err)
3069                 goto fail;
3070
3071         trans = btrfs_start_transaction(root, 1);
3072         btrfs_set_trans_block_group(trans, dir);
3073
3074         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3075         if (err) {
3076                 err = -ENOSPC;
3077                 goto out_unlock;
3078         }
3079
3080         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3081                                 dentry->d_name.len,
3082                                 dentry->d_parent->d_inode->i_ino, objectid,
3083                                 BTRFS_I(dir)->block_group, mode, &index);
3084         err = PTR_ERR(inode);
3085         if (IS_ERR(inode))
3086                 goto out_unlock;
3087
3088         err = btrfs_init_acl(inode, dir);
3089         if (err) {
3090                 drop_inode = 1;
3091                 goto out_unlock;
3092         }
3093
3094         btrfs_set_trans_block_group(trans, inode);
3095         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3096         if (err)
3097                 drop_inode = 1;
3098         else {
3099                 inode->i_op = &btrfs_special_inode_operations;
3100                 init_special_inode(inode, inode->i_mode, rdev);
3101                 btrfs_update_inode(trans, root, inode);
3102         }
3103         dir->i_sb->s_dirt = 1;
3104         btrfs_update_inode_block_group(trans, inode);
3105         btrfs_update_inode_block_group(trans, dir);
3106 out_unlock:
3107         nr = trans->blocks_used;
3108         btrfs_end_transaction_throttle(trans, root);
3109 fail:
3110         if (drop_inode) {
3111                 inode_dec_link_count(inode);
3112                 iput(inode);
3113         }
3114         btrfs_btree_balance_dirty(root, nr);
3115         return err;
3116 }
3117
3118 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3119                         int mode, struct nameidata *nd)
3120 {
3121         struct btrfs_trans_handle *trans;
3122         struct btrfs_root *root = BTRFS_I(dir)->root;
3123         struct inode *inode = NULL;
3124         int err;
3125         int drop_inode = 0;
3126         unsigned long nr = 0;
3127         u64 objectid;
3128         u64 index = 0;
3129
3130         err = btrfs_check_free_space(root, 1, 0);
3131         if (err)
3132                 goto fail;
3133         trans = btrfs_start_transaction(root, 1);
3134         btrfs_set_trans_block_group(trans, dir);
3135
3136         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3137         if (err) {
3138                 err = -ENOSPC;
3139                 goto out_unlock;
3140         }
3141
3142         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3143                                 dentry->d_name.len,
3144                                 dentry->d_parent->d_inode->i_ino,
3145                                 objectid, BTRFS_I(dir)->block_group, mode,
3146                                 &index);
3147         err = PTR_ERR(inode);
3148         if (IS_ERR(inode))
3149                 goto out_unlock;
3150
3151         err = btrfs_init_acl(inode, dir);
3152         if (err) {
3153                 drop_inode = 1;
3154                 goto out_unlock;
3155         }
3156
3157         btrfs_set_trans_block_group(trans, inode);
3158         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3159         if (err)
3160                 drop_inode = 1;
3161         else {
3162                 inode->i_mapping->a_ops = &btrfs_aops;
3163                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3164                 inode->i_fop = &btrfs_file_operations;
3165                 inode->i_op = &btrfs_file_inode_operations;
3166                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3167         }
3168         dir->i_sb->s_dirt = 1;
3169         btrfs_update_inode_block_group(trans, inode);
3170         btrfs_update_inode_block_group(trans, dir);
3171 out_unlock:
3172         nr = trans->blocks_used;
3173         btrfs_end_transaction_throttle(trans, root);
3174 fail:
3175         if (drop_inode) {
3176                 inode_dec_link_count(inode);
3177                 iput(inode);
3178         }
3179         btrfs_btree_balance_dirty(root, nr);
3180         return err;
3181 }
3182
3183 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3184                       struct dentry *dentry)
3185 {
3186         struct btrfs_trans_handle *trans;
3187         struct btrfs_root *root = BTRFS_I(dir)->root;
3188         struct inode *inode = old_dentry->d_inode;
3189         u64 index;
3190         unsigned long nr = 0;
3191         int err;
3192         int drop_inode = 0;
3193
3194         if (inode->i_nlink == 0)
3195                 return -ENOENT;
3196
3197         btrfs_inc_nlink(inode);
3198         err = btrfs_check_free_space(root, 1, 0);
3199         if (err)
3200                 goto fail;
3201         err = btrfs_set_inode_index(dir, inode, &index);
3202         if (err)
3203                 goto fail;
3204
3205         trans = btrfs_start_transaction(root, 1);
3206
3207         btrfs_set_trans_block_group(trans, dir);
3208         atomic_inc(&inode->i_count);
3209
3210         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3211
3212         if (err)
3213                 drop_inode = 1;
3214
3215         dir->i_sb->s_dirt = 1;
3216         btrfs_update_inode_block_group(trans, dir);
3217         err = btrfs_update_inode(trans, root, inode);
3218
3219         if (err)
3220                 drop_inode = 1;
3221
3222         nr = trans->blocks_used;
3223         btrfs_end_transaction_throttle(trans, root);
3224 fail:
3225         if (drop_inode) {
3226                 inode_dec_link_count(inode);
3227                 iput(inode);
3228         }
3229         btrfs_btree_balance_dirty(root, nr);
3230         return err;
3231 }
3232
3233 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3234 {
3235         struct inode *inode = NULL;
3236         struct btrfs_trans_handle *trans;
3237         struct btrfs_root *root = BTRFS_I(dir)->root;
3238         int err = 0;
3239         int drop_on_err = 0;
3240         u64 objectid = 0;
3241         u64 index = 0;
3242         unsigned long nr = 1;
3243
3244         err = btrfs_check_free_space(root, 1, 0);
3245         if (err)
3246                 goto out_unlock;
3247
3248         trans = btrfs_start_transaction(root, 1);
3249         btrfs_set_trans_block_group(trans, dir);
3250
3251         if (IS_ERR(trans)) {
3252                 err = PTR_ERR(trans);
3253                 goto out_unlock;
3254         }
3255
3256         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3257         if (err) {
3258                 err = -ENOSPC;
3259                 goto out_unlock;
3260         }
3261
3262         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3263                                 dentry->d_name.len,
3264                                 dentry->d_parent->d_inode->i_ino, objectid,
3265                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3266                                 &index);
3267         if (IS_ERR(inode)) {
3268                 err = PTR_ERR(inode);
3269                 goto out_fail;
3270         }
3271
3272         drop_on_err = 1;
3273
3274         err = btrfs_init_acl(inode, dir);
3275         if (err)
3276                 goto out_fail;
3277
3278         inode->i_op = &btrfs_dir_inode_operations;
3279         inode->i_fop = &btrfs_dir_file_operations;
3280         btrfs_set_trans_block_group(trans, inode);
3281
3282         btrfs_i_size_write(inode, 0);
3283         err = btrfs_update_inode(trans, root, inode);
3284         if (err)
3285                 goto out_fail;
3286
3287         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3288                                  inode, dentry->d_name.name,
3289                                  dentry->d_name.len, 0, index);
3290         if (err)
3291                 goto out_fail;
3292
3293         d_instantiate(dentry, inode);
3294         drop_on_err = 0;
3295         dir->i_sb->s_dirt = 1;
3296         btrfs_update_inode_block_group(trans, inode);
3297         btrfs_update_inode_block_group(trans, dir);
3298
3299 out_fail:
3300         nr = trans->blocks_used;
3301         btrfs_end_transaction_throttle(trans, root);
3302
3303 out_unlock:
3304         if (drop_on_err)
3305                 iput(inode);
3306         btrfs_btree_balance_dirty(root, nr);
3307         return err;
3308 }
3309
3310 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3311  * and an extent that you want to insert, deal with overlap and insert
3312  * the new extent into the tree.
3313  */
3314 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3315                                 struct extent_map *existing,
3316                                 struct extent_map *em,
3317                                 u64 map_start, u64 map_len)
3318 {
3319         u64 start_diff;
3320
3321         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3322         start_diff = map_start - em->start;
3323         em->start = map_start;
3324         em->len = map_len;
3325         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3326             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3327                 em->block_start += start_diff;
3328                 em->block_len -= start_diff;
3329         }
3330         return add_extent_mapping(em_tree, em);
3331 }
3332
3333 static noinline int uncompress_inline(struct btrfs_path *path,
3334                                       struct inode *inode, struct page *page,
3335                                       size_t pg_offset, u64 extent_offset,
3336                                       struct btrfs_file_extent_item *item)
3337 {
3338         int ret;
3339         struct extent_buffer *leaf = path->nodes[0];
3340         char *tmp;
3341         size_t max_size;
3342         unsigned long inline_size;
3343         unsigned long ptr;
3344
3345         WARN_ON(pg_offset != 0);
3346         max_size = btrfs_file_extent_ram_bytes(leaf, item);
3347         inline_size = btrfs_file_extent_inline_item_len(leaf,
3348                                         btrfs_item_nr(leaf, path->slots[0]));
3349         tmp = kmalloc(inline_size, GFP_NOFS);
3350         ptr = btrfs_file_extent_inline_start(item);
3351
3352         read_extent_buffer(leaf, tmp, ptr, inline_size);
3353
3354         max_size = min(PAGE_CACHE_SIZE, max_size);
3355         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3356                                     inline_size, max_size);
3357         if (ret) {
3358                 char *kaddr = kmap_atomic(page, KM_USER0);
3359                 unsigned long copy_size = min_t(u64,
3360                                   PAGE_CACHE_SIZE - pg_offset,
3361                                   max_size - extent_offset);
3362                 memset(kaddr + pg_offset, 0, copy_size);
3363                 kunmap_atomic(kaddr, KM_USER0);
3364         }
3365         kfree(tmp);
3366         return 0;
3367 }
3368
3369 /*
3370  * a bit scary, this does extent mapping from logical file offset to the disk.
3371  * the ugly parts come from merging extents from the disk with the
3372  * in-ram representation.  This gets more complex because of the data=ordered code,
3373  * where the in-ram extents might be locked pending data=ordered completion.
3374  *
3375  * This also copies inline extents directly into the page.
3376  */
3377 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3378                                     size_t pg_offset, u64 start, u64 len,
3379                                     int create)
3380 {
3381         int ret;
3382         int err = 0;
3383         u64 bytenr;
3384         u64 extent_start = 0;
3385         u64 extent_end = 0;
3386         u64 objectid = inode->i_ino;
3387         u32 found_type;
3388         struct btrfs_path *path = NULL;
3389         struct btrfs_root *root = BTRFS_I(inode)->root;
3390         struct btrfs_file_extent_item *item;
3391         struct extent_buffer *leaf;
3392         struct btrfs_key found_key;
3393         struct extent_map *em = NULL;
3394         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3395         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3396         struct btrfs_trans_handle *trans = NULL;
3397         int compressed;
3398
3399 again:
3400         spin_lock(&em_tree->lock);
3401         em = lookup_extent_mapping(em_tree, start, len);
3402         if (em)
3403                 em->bdev = root->fs_info->fs_devices->latest_bdev;
3404         spin_unlock(&em_tree->lock);
3405
3406         if (em) {
3407                 if (em->start > start || em->start + em->len <= start)
3408                         free_extent_map(em);
3409                 else if (em->block_start == EXTENT_MAP_INLINE && page)
3410                         free_extent_map(em);
3411                 else
3412                         goto out;
3413         }
3414         em = alloc_extent_map(GFP_NOFS);
3415         if (!em) {
3416                 err = -ENOMEM;
3417                 goto out;
3418         }
3419         em->bdev = root->fs_info->fs_devices->latest_bdev;
3420         em->start = EXTENT_MAP_HOLE;
3421         em->len = (u64)-1;
3422         em->block_len = (u64)-1;
3423
3424         if (!path) {
3425                 path = btrfs_alloc_path();
3426                 BUG_ON(!path);
3427         }
3428
3429         ret = btrfs_lookup_file_extent(trans, root, path,
3430                                        objectid, start, trans != NULL);
3431         if (ret < 0) {
3432                 err = ret;
3433                 goto out;
3434         }
3435
3436         if (ret != 0) {
3437                 if (path->slots[0] == 0)
3438                         goto not_found;
3439                 path->slots[0]--;
3440         }
3441
3442         leaf = path->nodes[0];
3443         item = btrfs_item_ptr(leaf, path->slots[0],
3444                               struct btrfs_file_extent_item);
3445         /* are we inside the extent that was found? */
3446         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3447         found_type = btrfs_key_type(&found_key);
3448         if (found_key.objectid != objectid ||
3449             found_type != BTRFS_EXTENT_DATA_KEY) {
3450                 goto not_found;
3451         }
3452
3453         found_type = btrfs_file_extent_type(leaf, item);
3454         extent_start = found_key.offset;
3455         compressed = btrfs_file_extent_compression(leaf, item);
3456         if (found_type == BTRFS_FILE_EXTENT_REG) {
3457                 extent_end = extent_start +
3458                        btrfs_file_extent_num_bytes(leaf, item);
3459                 err = 0;
3460                 if (start < extent_start || start >= extent_end) {
3461                         em->start = start;
3462                         if (start < extent_start) {
3463                                 if (start + len <= extent_start)
3464                                         goto not_found;
3465                                 em->len = extent_end - extent_start;
3466                         } else {
3467                                 em->len = len;
3468                         }
3469                         goto not_found_em;
3470                 }
3471                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
3472                 if (bytenr == 0) {
3473                         em->start = extent_start;
3474                         em->len = extent_end - extent_start;
3475                         em->block_start = EXTENT_MAP_HOLE;
3476                         goto insert;
3477                 }
3478                 em->start = extent_start;
3479                 em->len = extent_end - extent_start;
3480                 if (compressed) {
3481                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3482                         em->block_start = bytenr;
3483                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
3484                                                                          item);
3485                 } else {
3486                         bytenr += btrfs_file_extent_offset(leaf, item);
3487                         em->block_start = bytenr;
3488                         em->block_len = em->len;
3489                 }
3490                 goto insert;
3491         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3492                 u64 page_start;
3493                 unsigned long ptr;
3494                 char *map;
3495                 size_t size;
3496                 size_t extent_offset;
3497                 size_t copy_size;
3498
3499                 size = btrfs_file_extent_inline_len(leaf, item);
3500                 extent_end = (extent_start + size + root->sectorsize - 1) &
3501                         ~((u64)root->sectorsize - 1);
3502                 if (start < extent_start || start >= extent_end) {
3503                         em->start = start;
3504                         if (start < extent_start) {
3505                                 if (start + len <= extent_start)
3506                                         goto not_found;
3507                                 em->len = extent_end - extent_start;
3508                         } else {
3509                                 em->len = len;
3510                         }
3511                         goto not_found_em;
3512                 }
3513                 em->block_start = EXTENT_MAP_INLINE;
3514
3515                 if (!page || create) {
3516                         em->start = extent_start;
3517                         em->len = (size + root->sectorsize - 1) &
3518                         ~((u64)root->sectorsize - 1);
3519                         goto out;
3520                 }
3521
3522                 page_start = page_offset(page) + pg_offset;
3523                 extent_offset = page_start - extent_start;
3524                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3525                                 size - extent_offset);
3526                 em->start = extent_start + extent_offset;
3527                 em->len = (copy_size + root->sectorsize - 1) &
3528                         ~((u64)root->sectorsize - 1);
3529                 if (compressed)
3530                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3531                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
3532                 if (create == 0 && !PageUptodate(page)) {
3533                         if (btrfs_file_extent_compression(leaf, item) ==
3534                             BTRFS_COMPRESS_ZLIB) {
3535                                 ret = uncompress_inline(path, inode, page,
3536                                                         pg_offset,
3537                                                         extent_offset, item);
3538                                 BUG_ON(ret);
3539                         } else {
3540                                 map = kmap(page);
3541                                 read_extent_buffer(leaf, map + pg_offset, ptr,
3542                                                    copy_size);
3543                                 kunmap(page);
3544                         }
3545                         flush_dcache_page(page);
3546                 } else if (create && PageUptodate(page)) {
3547                         if (!trans) {
3548                                 kunmap(page);
3549                                 free_extent_map(em);
3550                                 em = NULL;
3551                                 btrfs_release_path(root, path);
3552                                 trans = btrfs_join_transaction(root, 1);
3553                                 goto again;
3554                         }
3555                         map = kmap(page);
3556                         write_extent_buffer(leaf, map + pg_offset, ptr,
3557                                             copy_size);
3558                         kunmap(page);
3559                         btrfs_mark_buffer_dirty(leaf);
3560                 }
3561                 set_extent_uptodate(io_tree, em->start,
3562                                     extent_map_end(em) - 1, GFP_NOFS);
3563                 goto insert;
3564         } else {
3565                 printk("unkknown found_type %d\n", found_type);
3566                 WARN_ON(1);
3567         }
3568 not_found:
3569         em->start = start;
3570         em->len = len;
3571 not_found_em:
3572         em->block_start = EXTENT_MAP_HOLE;
3573 insert:
3574         btrfs_release_path(root, path);
3575         if (em->start > start || extent_map_end(em) <= start) {
3576                 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
3577                 err = -EIO;
3578                 goto out;
3579         }
3580
3581         err = 0;
3582         spin_lock(&em_tree->lock);
3583         ret = add_extent_mapping(em_tree, em);
3584         /* it is possible that someone inserted the extent into the tree
3585          * while we had the lock dropped.  It is also possible that
3586          * an overlapping map exists in the tree
3587          */
3588         if (ret == -EEXIST) {
3589                 struct extent_map *existing;
3590
3591                 ret = 0;
3592
3593                 existing = lookup_extent_mapping(em_tree, start, len);
3594                 if (existing && (existing->start > start ||
3595                     existing->start + existing->len <= start)) {
3596                         free_extent_map(existing);
3597                         existing = NULL;
3598                 }
3599                 if (!existing) {
3600                         existing = lookup_extent_mapping(em_tree, em->start,
3601                                                          em->len);
3602                         if (existing) {
3603                                 err = merge_extent_mapping(em_tree, existing,
3604                                                            em, start,
3605                                                            root->sectorsize);
3606                                 free_extent_map(existing);
3607                                 if (err) {
3608                                         free_extent_map(em);
3609                                         em = NULL;
3610                                 }
3611                         } else {
3612                                 err = -EIO;
3613                                 printk("failing to insert %Lu %Lu\n",
3614                                        start, len);
3615                                 free_extent_map(em);
3616                                 em = NULL;
3617                         }
3618                 } else {
3619                         free_extent_map(em);
3620                         em = existing;
3621                         err = 0;
3622                 }
3623         }
3624         spin_unlock(&em_tree->lock);
3625 out:
3626         if (path)
3627                 btrfs_free_path(path);
3628         if (trans) {
3629                 ret = btrfs_end_transaction(trans, root);
3630                 if (!err) {
3631                         err = ret;
3632                 }
3633         }
3634         if (err) {
3635                 free_extent_map(em);
3636                 WARN_ON(1);
3637                 return ERR_PTR(err);
3638         }
3639         return em;
3640 }
3641
3642 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
3643                         const struct iovec *iov, loff_t offset,
3644                         unsigned long nr_segs)
3645 {
3646         return -EINVAL;
3647 }
3648
3649 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
3650 {
3651         return extent_bmap(mapping, iblock, btrfs_get_extent);
3652 }
3653
3654 int btrfs_readpage(struct file *file, struct page *page)
3655 {
3656         struct extent_io_tree *tree;
3657         tree = &BTRFS_I(page->mapping->host)->io_tree;
3658         return extent_read_full_page(tree, page, btrfs_get_extent);
3659 }
3660
3661 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
3662 {
3663         struct extent_io_tree *tree;
3664
3665
3666         if (current->flags & PF_MEMALLOC) {
3667                 redirty_page_for_writepage(wbc, page);
3668                 unlock_page(page);
3669                 return 0;
3670         }
3671         tree = &BTRFS_I(page->mapping->host)->io_tree;
3672         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
3673 }
3674
3675 int btrfs_writepages(struct address_space *mapping,
3676                      struct writeback_control *wbc)
3677 {
3678         struct extent_io_tree *tree;
3679         tree = &BTRFS_I(mapping->host)->io_tree;
3680         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
3681 }
3682
3683 static int
3684 btrfs_readpages(struct file *file, struct address_space *mapping,
3685                 struct list_head *pages, unsigned nr_pages)
3686 {
3687         struct extent_io_tree *tree;
3688         tree = &BTRFS_I(mapping->host)->io_tree;
3689         return extent_readpages(tree, mapping, pages, nr_pages,
3690                                 btrfs_get_extent);
3691 }
3692 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3693 {
3694         struct extent_io_tree *tree;
3695         struct extent_map_tree *map;
3696         int ret;
3697
3698         tree = &BTRFS_I(page->mapping->host)->io_tree;
3699         map = &BTRFS_I(page->mapping->host)->extent_tree;
3700         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
3701         if (ret == 1) {
3702                 ClearPagePrivate(page);
3703                 set_page_private(page, 0);
3704                 page_cache_release(page);
3705         }
3706         return ret;
3707 }
3708
3709 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3710 {
3711         if (PageWriteback(page) || PageDirty(page))
3712                 return 0;
3713         return __btrfs_releasepage(page, gfp_flags);
3714 }
3715
3716 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
3717 {
3718         struct extent_io_tree *tree;
3719         struct btrfs_ordered_extent *ordered;
3720         u64 page_start = page_offset(page);
3721         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3722
3723         wait_on_page_writeback(page);
3724         tree = &BTRFS_I(page->mapping->host)->io_tree;
3725         if (offset) {
3726                 btrfs_releasepage(page, GFP_NOFS);
3727                 return;
3728         }
3729
3730         lock_extent(tree, page_start, page_end, GFP_NOFS);
3731         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3732                                            page_offset(page));
3733         if (ordered) {
3734                 /*
3735                  * IO on this page will never be started, so we need
3736                  * to account for any ordered extents now
3737                  */
3738                 clear_extent_bit(tree, page_start, page_end,
3739                                  EXTENT_DIRTY | EXTENT_DELALLOC |
3740                                  EXTENT_LOCKED, 1, 0, GFP_NOFS);
3741                 btrfs_finish_ordered_io(page->mapping->host,
3742                                         page_start, page_end);
3743                 btrfs_put_ordered_extent(ordered);
3744                 lock_extent(tree, page_start, page_end, GFP_NOFS);
3745         }
3746         clear_extent_bit(tree, page_start, page_end,
3747                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3748                  EXTENT_ORDERED,
3749                  1, 1, GFP_NOFS);
3750         __btrfs_releasepage(page, GFP_NOFS);
3751
3752         ClearPageChecked(page);
3753         if (PagePrivate(page)) {
3754                 ClearPagePrivate(page);
3755                 set_page_private(page, 0);
3756                 page_cache_release(page);
3757         }
3758 }
3759
3760 /*
3761  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3762  * called from a page fault handler when a page is first dirtied. Hence we must
3763  * be careful to check for EOF conditions here. We set the page up correctly
3764  * for a written page which means we get ENOSPC checking when writing into
3765  * holes and correct delalloc and unwritten extent mapping on filesystems that
3766  * support these features.
3767  *
3768  * We are not allowed to take the i_mutex here so we have to play games to
3769  * protect against truncate races as the page could now be beyond EOF.  Because
3770  * vmtruncate() writes the inode size before removing pages, once we have the
3771  * page lock we can determine safely if the page is beyond EOF. If it is not
3772  * beyond EOF, then the page is guaranteed safe against truncation until we
3773  * unlock the page.
3774  */
3775 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3776 {
3777         struct inode *inode = fdentry(vma->vm_file)->d_inode;
3778         struct btrfs_root *root = BTRFS_I(inode)->root;
3779         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3780         struct btrfs_ordered_extent *ordered;
3781         char *kaddr;
3782         unsigned long zero_start;
3783         loff_t size;
3784         int ret;
3785         u64 page_start;
3786         u64 page_end;
3787
3788         ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3789         if (ret)
3790                 goto out;
3791
3792         ret = -EINVAL;
3793 again:
3794         lock_page(page);
3795         size = i_size_read(inode);
3796         page_start = page_offset(page);
3797         page_end = page_start + PAGE_CACHE_SIZE - 1;
3798
3799         if ((page->mapping != inode->i_mapping) ||
3800             (page_start >= size)) {
3801                 /* page got truncated out from underneath us */
3802                 goto out_unlock;
3803         }
3804         wait_on_page_writeback(page);
3805
3806         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3807         set_page_extent_mapped(page);
3808
3809         /*
3810          * we can't set the delalloc bits if there are pending ordered
3811          * extents.  Drop our locks and wait for them to finish
3812          */
3813         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3814         if (ordered) {
3815                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3816                 unlock_page(page);
3817                 btrfs_start_ordered_extent(inode, ordered, 1);
3818                 btrfs_put_ordered_extent(ordered);
3819                 goto again;
3820         }
3821
3822         btrfs_set_extent_delalloc(inode, page_start, page_end);
3823         ret = 0;
3824
3825         /* page is wholly or partially inside EOF */
3826         if (page_start + PAGE_CACHE_SIZE > size)
3827                 zero_start = size & ~PAGE_CACHE_MASK;
3828         else
3829                 zero_start = PAGE_CACHE_SIZE;
3830
3831         if (zero_start != PAGE_CACHE_SIZE) {
3832                 kaddr = kmap(page);
3833                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3834                 flush_dcache_page(page);
3835                 kunmap(page);
3836         }
3837         ClearPageChecked(page);
3838         set_page_dirty(page);
3839         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3840
3841 out_unlock:
3842         unlock_page(page);
3843 out:
3844         return ret;
3845 }
3846
3847 static void btrfs_truncate(struct inode *inode)
3848 {
3849         struct btrfs_root *root = BTRFS_I(inode)->root;
3850         int ret;
3851         struct btrfs_trans_handle *trans;
3852         unsigned long nr;
3853         u64 mask = root->sectorsize - 1;
3854
3855         if (!S_ISREG(inode->i_mode))
3856                 return;
3857         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3858                 return;
3859
3860         btrfs_truncate_page(inode->i_mapping, inode->i_size);
3861         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3862
3863         trans = btrfs_start_transaction(root, 1);
3864         btrfs_set_trans_block_group(trans, inode);
3865         btrfs_i_size_write(inode, inode->i_size);
3866
3867         ret = btrfs_orphan_add(trans, inode);
3868         if (ret)
3869                 goto out;
3870         /* FIXME, add redo link to tree so we don't leak on crash */
3871         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
3872                                       BTRFS_EXTENT_DATA_KEY);
3873         btrfs_update_inode(trans, root, inode);
3874
3875         ret = btrfs_orphan_del(trans, inode);
3876         BUG_ON(ret);
3877
3878 out:
3879         nr = trans->blocks_used;
3880         ret = btrfs_end_transaction_throttle(trans, root);
3881         BUG_ON(ret);
3882         btrfs_btree_balance_dirty(root, nr);
3883 }
3884
3885 /*
3886  * Invalidate a single dcache entry at the root of the filesystem.
3887  * Needed after creation of snapshot or subvolume.
3888  */
3889 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3890                                   int namelen)
3891 {
3892         struct dentry *alias, *entry;
3893         struct qstr qstr;
3894
3895         alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3896         if (alias) {
3897                 qstr.name = name;
3898                 qstr.len = namelen;
3899                 /* change me if btrfs ever gets a d_hash operation */
3900                 qstr.hash = full_name_hash(qstr.name, qstr.len);
3901                 entry = d_lookup(alias, &qstr);
3902                 dput(alias);
3903                 if (entry) {
3904                         d_invalidate(entry);
3905                         dput(entry);
3906                 }
3907         }
3908 }
3909
3910 /*
3911  * create a new subvolume directory/inode (helper for the ioctl).
3912  */
3913 int btrfs_create_subvol_root(struct btrfs_root *new_root, struct dentry *dentry,
3914                 struct btrfs_trans_handle *trans, u64 new_dirid,
3915                 struct btrfs_block_group_cache *block_group)
3916 {
3917         struct inode *inode;
3918         int error;
3919         u64 index = 0;
3920
3921         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3922                                 new_dirid, block_group, S_IFDIR | 0700, &index);
3923         if (IS_ERR(inode))
3924                 return PTR_ERR(inode);
3925         inode->i_op = &btrfs_dir_inode_operations;
3926         inode->i_fop = &btrfs_dir_file_operations;
3927         new_root->inode = inode;
3928
3929         inode->i_nlink = 1;
3930         btrfs_i_size_write(inode, 0);
3931
3932         error = btrfs_update_inode(trans, new_root, inode);
3933         if (error)
3934                 return error;
3935
3936         d_instantiate(dentry, inode);
3937         return 0;
3938 }
3939
3940 /* helper function for file defrag and space balancing.  This
3941  * forces readahead on a given range of bytes in an inode
3942  */
3943 unsigned long btrfs_force_ra(struct address_space *mapping,
3944                               struct file_ra_state *ra, struct file *file,
3945                               pgoff_t offset, pgoff_t last_index)
3946 {
3947         pgoff_t req_size = last_index - offset + 1;
3948
3949         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3950         return offset + req_size;
3951 }
3952
3953 struct inode *btrfs_alloc_inode(struct super_block *sb)
3954 {
3955         struct btrfs_inode *ei;
3956
3957         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3958         if (!ei)
3959                 return NULL;
3960         ei->last_trans = 0;
3961         ei->logged_trans = 0;
3962         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3963         ei->i_acl = BTRFS_ACL_NOT_CACHED;
3964         ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3965         INIT_LIST_HEAD(&ei->i_orphan);
3966         return &ei->vfs_inode;
3967 }
3968
3969 void btrfs_destroy_inode(struct inode *inode)
3970 {
3971         struct btrfs_ordered_extent *ordered;
3972         WARN_ON(!list_empty(&inode->i_dentry));
3973         WARN_ON(inode->i_data.nrpages);
3974
3975         if (BTRFS_I(inode)->i_acl &&
3976             BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3977                 posix_acl_release(BTRFS_I(inode)->i_acl);
3978         if (BTRFS_I(inode)->i_default_acl &&
3979             BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3980                 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3981
3982         spin_lock(&BTRFS_I(inode)->root->list_lock);
3983         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3984                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3985                        " list\n", inode->i_ino);
3986                 dump_stack();
3987         }
3988         spin_unlock(&BTRFS_I(inode)->root->list_lock);
3989
3990         while(1) {
3991                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3992                 if (!ordered)
3993                         break;
3994                 else {
3995                         printk("found ordered extent %Lu %Lu\n",
3996                                ordered->file_offset, ordered->len);
3997                         btrfs_remove_ordered_extent(inode, ordered);
3998                         btrfs_put_ordered_extent(ordered);
3999                         btrfs_put_ordered_extent(ordered);
4000                 }
4001         }
4002         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4003         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4004 }
4005
4006 static void init_once(void *foo)
4007 {
4008         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4009
4010         inode_init_once(&ei->vfs_inode);
4011 }
4012
4013 void btrfs_destroy_cachep(void)
4014 {
4015         if (btrfs_inode_cachep)
4016                 kmem_cache_destroy(btrfs_inode_cachep);
4017         if (btrfs_trans_handle_cachep)
4018                 kmem_cache_destroy(btrfs_trans_handle_cachep);
4019         if (btrfs_transaction_cachep)
4020                 kmem_cache_destroy(btrfs_transaction_cachep);
4021         if (btrfs_bit_radix_cachep)
4022                 kmem_cache_destroy(btrfs_bit_radix_cachep);
4023         if (btrfs_path_cachep)
4024                 kmem_cache_destroy(btrfs_path_cachep);
4025 }
4026
4027 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4028                                        unsigned long extra_flags,
4029                                        void (*ctor)(void *))
4030 {
4031         return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4032                                  SLAB_MEM_SPREAD | extra_flags), ctor);
4033 }
4034
4035 int btrfs_init_cachep(void)
4036 {
4037         btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4038                                           sizeof(struct btrfs_inode),
4039                                           0, init_once);
4040         if (!btrfs_inode_cachep)
4041                 goto fail;
4042         btrfs_trans_handle_cachep =
4043                         btrfs_cache_create("btrfs_trans_handle_cache",
4044                                            sizeof(struct btrfs_trans_handle),
4045                                            0, NULL);
4046         if (!btrfs_trans_handle_cachep)
4047                 goto fail;
4048         btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4049                                              sizeof(struct btrfs_transaction),
4050                                              0, NULL);
4051         if (!btrfs_transaction_cachep)
4052                 goto fail;
4053         btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4054                                          sizeof(struct btrfs_path),
4055                                          0, NULL);
4056         if (!btrfs_path_cachep)
4057                 goto fail;
4058         btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4059                                               SLAB_DESTROY_BY_RCU, NULL);
4060         if (!btrfs_bit_radix_cachep)
4061                 goto fail;
4062         return 0;
4063 fail:
4064         btrfs_destroy_cachep();
4065         return -ENOMEM;
4066 }
4067
4068 static int btrfs_getattr(struct vfsmount *mnt,
4069                          struct dentry *dentry, struct kstat *stat)
4070 {
4071         struct inode *inode = dentry->d_inode;
4072         generic_fillattr(inode, stat);
4073         stat->blksize = PAGE_CACHE_SIZE;
4074         stat->blocks = (inode_get_bytes(inode) +
4075                         BTRFS_I(inode)->delalloc_bytes) >> 9;
4076         return 0;
4077 }
4078
4079 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
4080                            struct inode * new_dir,struct dentry *new_dentry)
4081 {
4082         struct btrfs_trans_handle *trans;
4083         struct btrfs_root *root = BTRFS_I(old_dir)->root;
4084         struct inode *new_inode = new_dentry->d_inode;
4085         struct inode *old_inode = old_dentry->d_inode;
4086         struct timespec ctime = CURRENT_TIME;
4087         u64 index = 0;
4088         int ret;
4089
4090         if (S_ISDIR(old_inode->i_mode) && new_inode &&
4091             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4092                 return -ENOTEMPTY;
4093         }
4094
4095         ret = btrfs_check_free_space(root, 1, 0);
4096         if (ret)
4097                 goto out_unlock;
4098
4099         trans = btrfs_start_transaction(root, 1);
4100
4101         btrfs_set_trans_block_group(trans, new_dir);
4102
4103         btrfs_inc_nlink(old_dentry->d_inode);
4104         old_dir->i_ctime = old_dir->i_mtime = ctime;
4105         new_dir->i_ctime = new_dir->i_mtime = ctime;
4106         old_inode->i_ctime = ctime;
4107
4108         ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4109                                  old_dentry->d_name.name,
4110                                  old_dentry->d_name.len);
4111         if (ret)
4112                 goto out_fail;
4113
4114         if (new_inode) {
4115                 new_inode->i_ctime = CURRENT_TIME;
4116                 ret = btrfs_unlink_inode(trans, root, new_dir,
4117                                          new_dentry->d_inode,
4118                                          new_dentry->d_name.name,
4119                                          new_dentry->d_name.len);
4120                 if (ret)
4121                         goto out_fail;
4122                 if (new_inode->i_nlink == 0) {
4123                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4124                         if (ret)
4125                                 goto out_fail;
4126                 }
4127
4128         }
4129         ret = btrfs_set_inode_index(new_dir, old_inode, &index);
4130         if (ret)
4131                 goto out_fail;
4132
4133         ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4134                              old_inode, new_dentry->d_name.name,
4135                              new_dentry->d_name.len, 1, index);
4136         if (ret)
4137                 goto out_fail;
4138
4139 out_fail:
4140         btrfs_end_transaction_throttle(trans, root);
4141 out_unlock:
4142         return ret;
4143 }
4144
4145 /*
4146  * some fairly slow code that needs optimization. This walks the list
4147  * of all the inodes with pending delalloc and forces them to disk.
4148  */
4149 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4150 {
4151         struct list_head *head = &root->fs_info->delalloc_inodes;
4152         struct btrfs_inode *binode;
4153         struct inode *inode;
4154         unsigned long flags;
4155
4156         spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4157         while(!list_empty(head)) {
4158                 binode = list_entry(head->next, struct btrfs_inode,
4159                                     delalloc_inodes);
4160                 inode = igrab(&binode->vfs_inode);
4161                 if (!inode)
4162                         list_del_init(&binode->delalloc_inodes);
4163                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4164                 if (inode) {
4165                         filemap_flush(inode->i_mapping);
4166                         iput(inode);
4167                 }
4168                 cond_resched();
4169                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4170         }
4171         spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4172
4173         /* the filemap_flush will queue IO into the worker threads, but
4174          * we have to make sure the IO is actually started and that
4175          * ordered extents get created before we return
4176          */
4177         atomic_inc(&root->fs_info->async_submit_draining);
4178         while(atomic_read(&root->fs_info->nr_async_submits)) {
4179                 wait_event(root->fs_info->async_submit_wait,
4180                    (atomic_read(&root->fs_info->nr_async_submits) == 0));
4181         }
4182         atomic_dec(&root->fs_info->async_submit_draining);
4183         return 0;
4184 }
4185
4186 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4187                          const char *symname)
4188 {
4189         struct btrfs_trans_handle *trans;
4190         struct btrfs_root *root = BTRFS_I(dir)->root;
4191         struct btrfs_path *path;
4192         struct btrfs_key key;
4193         struct inode *inode = NULL;
4194         int err;
4195         int drop_inode = 0;
4196         u64 objectid;
4197         u64 index = 0 ;
4198         int name_len;
4199         int datasize;
4200         unsigned long ptr;
4201         struct btrfs_file_extent_item *ei;
4202         struct extent_buffer *leaf;
4203         unsigned long nr = 0;
4204
4205         name_len = strlen(symname) + 1;
4206         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4207                 return -ENAMETOOLONG;
4208
4209         err = btrfs_check_free_space(root, 1, 0);
4210         if (err)
4211                 goto out_fail;
4212
4213         trans = btrfs_start_transaction(root, 1);
4214         btrfs_set_trans_block_group(trans, dir);
4215
4216         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4217         if (err) {
4218                 err = -ENOSPC;
4219                 goto out_unlock;
4220         }
4221
4222         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4223                                 dentry->d_name.len,
4224                                 dentry->d_parent->d_inode->i_ino, objectid,
4225                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4226                                 &index);
4227         err = PTR_ERR(inode);
4228         if (IS_ERR(inode))
4229                 goto out_unlock;
4230
4231         err = btrfs_init_acl(inode, dir);
4232         if (err) {
4233                 drop_inode = 1;
4234                 goto out_unlock;
4235         }
4236
4237         btrfs_set_trans_block_group(trans, inode);
4238         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4239         if (err)
4240                 drop_inode = 1;
4241         else {
4242                 inode->i_mapping->a_ops = &btrfs_aops;
4243                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4244                 inode->i_fop = &btrfs_file_operations;
4245                 inode->i_op = &btrfs_file_inode_operations;
4246                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4247         }
4248         dir->i_sb->s_dirt = 1;
4249         btrfs_update_inode_block_group(trans, inode);
4250         btrfs_update_inode_block_group(trans, dir);
4251         if (drop_inode)
4252                 goto out_unlock;
4253
4254         path = btrfs_alloc_path();
4255         BUG_ON(!path);
4256         key.objectid = inode->i_ino;
4257         key.offset = 0;
4258         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4259         datasize = btrfs_file_extent_calc_inline_size(name_len);
4260         err = btrfs_insert_empty_item(trans, root, path, &key,
4261                                       datasize);
4262         if (err) {
4263                 drop_inode = 1;
4264                 goto out_unlock;
4265         }
4266         leaf = path->nodes[0];
4267         ei = btrfs_item_ptr(leaf, path->slots[0],
4268                             struct btrfs_file_extent_item);
4269         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4270         btrfs_set_file_extent_type(leaf, ei,
4271                                    BTRFS_FILE_EXTENT_INLINE);
4272         btrfs_set_file_extent_encryption(leaf, ei, 0);
4273         btrfs_set_file_extent_compression(leaf, ei, 0);
4274         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4275         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4276
4277         ptr = btrfs_file_extent_inline_start(ei);
4278         write_extent_buffer(leaf, symname, ptr, name_len);
4279         btrfs_mark_buffer_dirty(leaf);
4280         btrfs_free_path(path);
4281
4282         inode->i_op = &btrfs_symlink_inode_operations;
4283         inode->i_mapping->a_ops = &btrfs_symlink_aops;
4284         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4285         btrfs_i_size_write(inode, name_len - 1);
4286         err = btrfs_update_inode(trans, root, inode);
4287         if (err)
4288                 drop_inode = 1;
4289
4290 out_unlock:
4291         nr = trans->blocks_used;
4292         btrfs_end_transaction_throttle(trans, root);
4293 out_fail:
4294         if (drop_inode) {
4295                 inode_dec_link_count(inode);
4296                 iput(inode);
4297         }
4298         btrfs_btree_balance_dirty(root, nr);
4299         return err;
4300 }
4301
4302 static int btrfs_set_page_dirty(struct page *page)
4303 {
4304         return __set_page_dirty_nobuffers(page);
4305 }
4306
4307 static int btrfs_permission(struct inode *inode, int mask)
4308 {
4309         if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4310                 return -EACCES;
4311         return generic_permission(inode, mask, btrfs_check_acl);
4312 }
4313
4314 static struct inode_operations btrfs_dir_inode_operations = {
4315         .lookup         = btrfs_lookup,
4316         .create         = btrfs_create,
4317         .unlink         = btrfs_unlink,
4318         .link           = btrfs_link,
4319         .mkdir          = btrfs_mkdir,
4320         .rmdir          = btrfs_rmdir,
4321         .rename         = btrfs_rename,
4322         .symlink        = btrfs_symlink,
4323         .setattr        = btrfs_setattr,
4324         .mknod          = btrfs_mknod,
4325         .setxattr       = btrfs_setxattr,
4326         .getxattr       = btrfs_getxattr,
4327         .listxattr      = btrfs_listxattr,
4328         .removexattr    = btrfs_removexattr,
4329         .permission     = btrfs_permission,
4330 };
4331 static struct inode_operations btrfs_dir_ro_inode_operations = {
4332         .lookup         = btrfs_lookup,
4333         .permission     = btrfs_permission,
4334 };
4335 static struct file_operations btrfs_dir_file_operations = {
4336         .llseek         = generic_file_llseek,
4337         .read           = generic_read_dir,
4338         .readdir        = btrfs_real_readdir,
4339         .unlocked_ioctl = btrfs_ioctl,
4340 #ifdef CONFIG_COMPAT
4341         .compat_ioctl   = btrfs_ioctl,
4342 #endif
4343         .release        = btrfs_release_file,
4344         .fsync          = btrfs_sync_file,
4345 };
4346
4347 static struct extent_io_ops btrfs_extent_io_ops = {
4348         .fill_delalloc = run_delalloc_range,
4349         .submit_bio_hook = btrfs_submit_bio_hook,
4350         .merge_bio_hook = btrfs_merge_bio_hook,
4351         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4352         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
4353         .writepage_start_hook = btrfs_writepage_start_hook,
4354         .readpage_io_failed_hook = btrfs_io_failed_hook,
4355         .set_bit_hook = btrfs_set_bit_hook,
4356         .clear_bit_hook = btrfs_clear_bit_hook,
4357 };
4358
4359 static struct address_space_operations btrfs_aops = {
4360         .readpage       = btrfs_readpage,
4361         .writepage      = btrfs_writepage,
4362         .writepages     = btrfs_writepages,
4363         .readpages      = btrfs_readpages,
4364         .sync_page      = block_sync_page,
4365         .bmap           = btrfs_bmap,
4366         .direct_IO      = btrfs_direct_IO,
4367         .invalidatepage = btrfs_invalidatepage,
4368         .releasepage    = btrfs_releasepage,
4369         .set_page_dirty = btrfs_set_page_dirty,
4370 };
4371
4372 static struct address_space_operations btrfs_symlink_aops = {
4373         .readpage       = btrfs_readpage,
4374         .writepage      = btrfs_writepage,
4375         .invalidatepage = btrfs_invalidatepage,
4376         .releasepage    = btrfs_releasepage,
4377 };
4378
4379 static struct inode_operations btrfs_file_inode_operations = {
4380         .truncate       = btrfs_truncate,
4381         .getattr        = btrfs_getattr,
4382         .setattr        = btrfs_setattr,
4383         .setxattr       = btrfs_setxattr,
4384         .getxattr       = btrfs_getxattr,
4385         .listxattr      = btrfs_listxattr,
4386         .removexattr    = btrfs_removexattr,
4387         .permission     = btrfs_permission,
4388 };
4389 static struct inode_operations btrfs_special_inode_operations = {
4390         .getattr        = btrfs_getattr,
4391         .setattr        = btrfs_setattr,
4392         .permission     = btrfs_permission,
4393         .setxattr       = btrfs_setxattr,
4394         .getxattr       = btrfs_getxattr,
4395         .listxattr      = btrfs_listxattr,
4396         .removexattr    = btrfs_removexattr,
4397 };
4398 static struct inode_operations btrfs_symlink_inode_operations = {
4399         .readlink       = generic_readlink,
4400         .follow_link    = page_follow_link_light,
4401         .put_link       = page_put_link,
4402         .permission     = btrfs_permission,
4403 };