6036b36789cc705b6e4fb2a0c892a837cebdbac0
[safe/jmp/linux-2.6] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
52
53 struct btrfs_iget_args {
54         u64 ino;
55         struct btrfs_root *root;
56 };
57
58 static struct inode_operations btrfs_dir_inode_operations;
59 static struct inode_operations btrfs_symlink_inode_operations;
60 static struct inode_operations btrfs_dir_ro_inode_operations;
61 static struct inode_operations btrfs_special_inode_operations;
62 static struct inode_operations btrfs_file_inode_operations;
63 static struct address_space_operations btrfs_aops;
64 static struct address_space_operations btrfs_symlink_aops;
65 static struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
67
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
76         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
77         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
78         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
79         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
80         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
81         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87                                    struct page *locked_page,
88                                    u64 start, u64 end, int *page_started,
89                                    unsigned long *nr_written, int unlock);
90
91 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
92 {
93         int err;
94
95         err = btrfs_init_acl(inode, dir);
96         if (!err)
97                 err = btrfs_xattr_security_init(inode, dir);
98         return err;
99 }
100
101 /*
102  * this does all the hard work for inserting an inline extent into
103  * the btree.  The caller should have done a btrfs_drop_extents so that
104  * no overlapping inline items exist in the btree
105  */
106 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
107                                 struct btrfs_root *root, struct inode *inode,
108                                 u64 start, size_t size, size_t compressed_size,
109                                 struct page **compressed_pages)
110 {
111         struct btrfs_key key;
112         struct btrfs_path *path;
113         struct extent_buffer *leaf;
114         struct page *page = NULL;
115         char *kaddr;
116         unsigned long ptr;
117         struct btrfs_file_extent_item *ei;
118         int err = 0;
119         int ret;
120         size_t cur_size = size;
121         size_t datasize;
122         unsigned long offset;
123         int use_compress = 0;
124
125         if (compressed_size && compressed_pages) {
126                 use_compress = 1;
127                 cur_size = compressed_size;
128         }
129
130         path = btrfs_alloc_path();
131         if (!path)
132                 return -ENOMEM;
133
134         path->leave_spinning = 1;
135         btrfs_set_trans_block_group(trans, inode);
136
137         key.objectid = inode->i_ino;
138         key.offset = start;
139         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
140         datasize = btrfs_file_extent_calc_inline_size(cur_size);
141
142         inode_add_bytes(inode, size);
143         ret = btrfs_insert_empty_item(trans, root, path, &key,
144                                       datasize);
145         BUG_ON(ret);
146         if (ret) {
147                 err = ret;
148                 goto fail;
149         }
150         leaf = path->nodes[0];
151         ei = btrfs_item_ptr(leaf, path->slots[0],
152                             struct btrfs_file_extent_item);
153         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155         btrfs_set_file_extent_encryption(leaf, ei, 0);
156         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158         ptr = btrfs_file_extent_inline_start(ei);
159
160         if (use_compress) {
161                 struct page *cpage;
162                 int i = 0;
163                 while (compressed_size > 0) {
164                         cpage = compressed_pages[i];
165                         cur_size = min_t(unsigned long, compressed_size,
166                                        PAGE_CACHE_SIZE);
167
168                         kaddr = kmap_atomic(cpage, KM_USER0);
169                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
170                         kunmap_atomic(kaddr, KM_USER0);
171
172                         i++;
173                         ptr += cur_size;
174                         compressed_size -= cur_size;
175                 }
176                 btrfs_set_file_extent_compression(leaf, ei,
177                                                   BTRFS_COMPRESS_ZLIB);
178         } else {
179                 page = find_get_page(inode->i_mapping,
180                                      start >> PAGE_CACHE_SHIFT);
181                 btrfs_set_file_extent_compression(leaf, ei, 0);
182                 kaddr = kmap_atomic(page, KM_USER0);
183                 offset = start & (PAGE_CACHE_SIZE - 1);
184                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
185                 kunmap_atomic(kaddr, KM_USER0);
186                 page_cache_release(page);
187         }
188         btrfs_mark_buffer_dirty(leaf);
189         btrfs_free_path(path);
190
191         BTRFS_I(inode)->disk_i_size = inode->i_size;
192         btrfs_update_inode(trans, root, inode);
193         return 0;
194 fail:
195         btrfs_free_path(path);
196         return err;
197 }
198
199
200 /*
201  * conditionally insert an inline extent into the file.  This
202  * does the checks required to make sure the data is small enough
203  * to fit as an inline extent.
204  */
205 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
206                                  struct btrfs_root *root,
207                                  struct inode *inode, u64 start, u64 end,
208                                  size_t compressed_size,
209                                  struct page **compressed_pages)
210 {
211         u64 isize = i_size_read(inode);
212         u64 actual_end = min(end + 1, isize);
213         u64 inline_len = actual_end - start;
214         u64 aligned_end = (end + root->sectorsize - 1) &
215                         ~((u64)root->sectorsize - 1);
216         u64 hint_byte;
217         u64 data_len = inline_len;
218         int ret;
219
220         if (compressed_size)
221                 data_len = compressed_size;
222
223         if (start > 0 ||
224             actual_end >= PAGE_CACHE_SIZE ||
225             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
226             (!compressed_size &&
227             (actual_end & (root->sectorsize - 1)) == 0) ||
228             end + 1 < isize ||
229             data_len > root->fs_info->max_inline) {
230                 return 1;
231         }
232
233         ret = btrfs_drop_extents(trans, root, inode, start,
234                                  aligned_end, aligned_end, start,
235                                  &hint_byte, 1);
236         BUG_ON(ret);
237
238         if (isize > actual_end)
239                 inline_len = min_t(u64, isize, actual_end);
240         ret = insert_inline_extent(trans, root, inode, start,
241                                    inline_len, compressed_size,
242                                    compressed_pages);
243         BUG_ON(ret);
244         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
245         return 0;
246 }
247
248 struct async_extent {
249         u64 start;
250         u64 ram_size;
251         u64 compressed_size;
252         struct page **pages;
253         unsigned long nr_pages;
254         struct list_head list;
255 };
256
257 struct async_cow {
258         struct inode *inode;
259         struct btrfs_root *root;
260         struct page *locked_page;
261         u64 start;
262         u64 end;
263         struct list_head extents;
264         struct btrfs_work work;
265 };
266
267 static noinline int add_async_extent(struct async_cow *cow,
268                                      u64 start, u64 ram_size,
269                                      u64 compressed_size,
270                                      struct page **pages,
271                                      unsigned long nr_pages)
272 {
273         struct async_extent *async_extent;
274
275         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276         async_extent->start = start;
277         async_extent->ram_size = ram_size;
278         async_extent->compressed_size = compressed_size;
279         async_extent->pages = pages;
280         async_extent->nr_pages = nr_pages;
281         list_add_tail(&async_extent->list, &cow->extents);
282         return 0;
283 }
284
285 /*
286  * we create compressed extents in two phases.  The first
287  * phase compresses a range of pages that have already been
288  * locked (both pages and state bits are locked).
289  *
290  * This is done inside an ordered work queue, and the compression
291  * is spread across many cpus.  The actual IO submission is step
292  * two, and the ordered work queue takes care of making sure that
293  * happens in the same order things were put onto the queue by
294  * writepages and friends.
295  *
296  * If this code finds it can't get good compression, it puts an
297  * entry onto the work queue to write the uncompressed bytes.  This
298  * makes sure that both compressed inodes and uncompressed inodes
299  * are written in the same order that pdflush sent them down.
300  */
301 static noinline int compress_file_range(struct inode *inode,
302                                         struct page *locked_page,
303                                         u64 start, u64 end,
304                                         struct async_cow *async_cow,
305                                         int *num_added)
306 {
307         struct btrfs_root *root = BTRFS_I(inode)->root;
308         struct btrfs_trans_handle *trans;
309         u64 num_bytes;
310         u64 orig_start;
311         u64 disk_num_bytes;
312         u64 blocksize = root->sectorsize;
313         u64 actual_end;
314         u64 isize = i_size_read(inode);
315         int ret = 0;
316         struct page **pages = NULL;
317         unsigned long nr_pages;
318         unsigned long nr_pages_ret = 0;
319         unsigned long total_compressed = 0;
320         unsigned long total_in = 0;
321         unsigned long max_compressed = 128 * 1024;
322         unsigned long max_uncompressed = 128 * 1024;
323         int i;
324         int will_compress;
325
326         orig_start = start;
327
328         actual_end = min_t(u64, isize, end + 1);
329 again:
330         will_compress = 0;
331         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
333
334         /*
335          * we don't want to send crud past the end of i_size through
336          * compression, that's just a waste of CPU time.  So, if the
337          * end of the file is before the start of our current
338          * requested range of bytes, we bail out to the uncompressed
339          * cleanup code that can deal with all of this.
340          *
341          * It isn't really the fastest way to fix things, but this is a
342          * very uncommon corner.
343          */
344         if (actual_end <= start)
345                 goto cleanup_and_bail_uncompressed;
346
347         total_compressed = actual_end - start;
348
349         /* we want to make sure that amount of ram required to uncompress
350          * an extent is reasonable, so we limit the total size in ram
351          * of a compressed extent to 128k.  This is a crucial number
352          * because it also controls how easily we can spread reads across
353          * cpus for decompression.
354          *
355          * We also want to make sure the amount of IO required to do
356          * a random read is reasonably small, so we limit the size of
357          * a compressed extent to 128k.
358          */
359         total_compressed = min(total_compressed, max_uncompressed);
360         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
361         num_bytes = max(blocksize,  num_bytes);
362         disk_num_bytes = num_bytes;
363         total_in = 0;
364         ret = 0;
365
366         /*
367          * we do compression for mount -o compress and when the
368          * inode has not been flagged as nocompress.  This flag can
369          * change at any time if we discover bad compression ratios.
370          */
371         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
372             btrfs_test_opt(root, COMPRESS)) {
373                 WARN_ON(pages);
374                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
375
376                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377                                                 total_compressed, pages,
378                                                 nr_pages, &nr_pages_ret,
379                                                 &total_in,
380                                                 &total_compressed,
381                                                 max_compressed);
382
383                 if (!ret) {
384                         unsigned long offset = total_compressed &
385                                 (PAGE_CACHE_SIZE - 1);
386                         struct page *page = pages[nr_pages_ret - 1];
387                         char *kaddr;
388
389                         /* zero the tail end of the last page, we might be
390                          * sending it down to disk
391                          */
392                         if (offset) {
393                                 kaddr = kmap_atomic(page, KM_USER0);
394                                 memset(kaddr + offset, 0,
395                                        PAGE_CACHE_SIZE - offset);
396                                 kunmap_atomic(kaddr, KM_USER0);
397                         }
398                         will_compress = 1;
399                 }
400         }
401         if (start == 0) {
402                 trans = btrfs_join_transaction(root, 1);
403                 BUG_ON(!trans);
404                 btrfs_set_trans_block_group(trans, inode);
405
406                 /* lets try to make an inline extent */
407                 if (ret || total_in < (actual_end - start)) {
408                         /* we didn't compress the entire range, try
409                          * to make an uncompressed inline extent.
410                          */
411                         ret = cow_file_range_inline(trans, root, inode,
412                                                     start, end, 0, NULL);
413                 } else {
414                         /* try making a compressed inline extent */
415                         ret = cow_file_range_inline(trans, root, inode,
416                                                     start, end,
417                                                     total_compressed, pages);
418                 }
419                 btrfs_end_transaction(trans, root);
420                 if (ret == 0) {
421                         /*
422                          * inline extent creation worked, we don't need
423                          * to create any more async work items.  Unlock
424                          * and free up our temp pages.
425                          */
426                         extent_clear_unlock_delalloc(inode,
427                                                      &BTRFS_I(inode)->io_tree,
428                                                      start, end, NULL, 1, 0,
429                                                      0, 1, 1, 1, 0);
430                         ret = 0;
431                         goto free_pages_out;
432                 }
433         }
434
435         if (will_compress) {
436                 /*
437                  * we aren't doing an inline extent round the compressed size
438                  * up to a block size boundary so the allocator does sane
439                  * things
440                  */
441                 total_compressed = (total_compressed + blocksize - 1) &
442                         ~(blocksize - 1);
443
444                 /*
445                  * one last check to make sure the compression is really a
446                  * win, compare the page count read with the blocks on disk
447                  */
448                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
449                         ~(PAGE_CACHE_SIZE - 1);
450                 if (total_compressed >= total_in) {
451                         will_compress = 0;
452                 } else {
453                         disk_num_bytes = total_compressed;
454                         num_bytes = total_in;
455                 }
456         }
457         if (!will_compress && pages) {
458                 /*
459                  * the compression code ran but failed to make things smaller,
460                  * free any pages it allocated and our page pointer array
461                  */
462                 for (i = 0; i < nr_pages_ret; i++) {
463                         WARN_ON(pages[i]->mapping);
464                         page_cache_release(pages[i]);
465                 }
466                 kfree(pages);
467                 pages = NULL;
468                 total_compressed = 0;
469                 nr_pages_ret = 0;
470
471                 /* flag the file so we don't compress in the future */
472                 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
473         }
474         if (will_compress) {
475                 *num_added += 1;
476
477                 /* the async work queues will take care of doing actual
478                  * allocation on disk for these compressed pages,
479                  * and will submit them to the elevator.
480                  */
481                 add_async_extent(async_cow, start, num_bytes,
482                                  total_compressed, pages, nr_pages_ret);
483
484                 if (start + num_bytes < end && start + num_bytes < actual_end) {
485                         start += num_bytes;
486                         pages = NULL;
487                         cond_resched();
488                         goto again;
489                 }
490         } else {
491 cleanup_and_bail_uncompressed:
492                 /*
493                  * No compression, but we still need to write the pages in
494                  * the file we've been given so far.  redirty the locked
495                  * page if it corresponds to our extent and set things up
496                  * for the async work queue to run cow_file_range to do
497                  * the normal delalloc dance
498                  */
499                 if (page_offset(locked_page) >= start &&
500                     page_offset(locked_page) <= end) {
501                         __set_page_dirty_nobuffers(locked_page);
502                         /* unlocked later on in the async handlers */
503                 }
504                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
505                 *num_added += 1;
506         }
507
508 out:
509         return 0;
510
511 free_pages_out:
512         for (i = 0; i < nr_pages_ret; i++) {
513                 WARN_ON(pages[i]->mapping);
514                 page_cache_release(pages[i]);
515         }
516         kfree(pages);
517
518         goto out;
519 }
520
521 /*
522  * phase two of compressed writeback.  This is the ordered portion
523  * of the code, which only gets called in the order the work was
524  * queued.  We walk all the async extents created by compress_file_range
525  * and send them down to the disk.
526  */
527 static noinline int submit_compressed_extents(struct inode *inode,
528                                               struct async_cow *async_cow)
529 {
530         struct async_extent *async_extent;
531         u64 alloc_hint = 0;
532         struct btrfs_trans_handle *trans;
533         struct btrfs_key ins;
534         struct extent_map *em;
535         struct btrfs_root *root = BTRFS_I(inode)->root;
536         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
537         struct extent_io_tree *io_tree;
538         int ret;
539
540         if (list_empty(&async_cow->extents))
541                 return 0;
542
543         trans = btrfs_join_transaction(root, 1);
544
545         while (!list_empty(&async_cow->extents)) {
546                 async_extent = list_entry(async_cow->extents.next,
547                                           struct async_extent, list);
548                 list_del(&async_extent->list);
549
550                 io_tree = &BTRFS_I(inode)->io_tree;
551
552                 /* did the compression code fall back to uncompressed IO? */
553                 if (!async_extent->pages) {
554                         int page_started = 0;
555                         unsigned long nr_written = 0;
556
557                         lock_extent(io_tree, async_extent->start,
558                                     async_extent->start +
559                                     async_extent->ram_size - 1, GFP_NOFS);
560
561                         /* allocate blocks */
562                         cow_file_range(inode, async_cow->locked_page,
563                                        async_extent->start,
564                                        async_extent->start +
565                                        async_extent->ram_size - 1,
566                                        &page_started, &nr_written, 0);
567
568                         /*
569                          * if page_started, cow_file_range inserted an
570                          * inline extent and took care of all the unlocking
571                          * and IO for us.  Otherwise, we need to submit
572                          * all those pages down to the drive.
573                          */
574                         if (!page_started)
575                                 extent_write_locked_range(io_tree,
576                                                   inode, async_extent->start,
577                                                   async_extent->start +
578                                                   async_extent->ram_size - 1,
579                                                   btrfs_get_extent,
580                                                   WB_SYNC_ALL);
581                         kfree(async_extent);
582                         cond_resched();
583                         continue;
584                 }
585
586                 lock_extent(io_tree, async_extent->start,
587                             async_extent->start + async_extent->ram_size - 1,
588                             GFP_NOFS);
589                 /*
590                  * here we're doing allocation and writeback of the
591                  * compressed pages
592                  */
593                 btrfs_drop_extent_cache(inode, async_extent->start,
594                                         async_extent->start +
595                                         async_extent->ram_size - 1, 0);
596
597                 ret = btrfs_reserve_extent(trans, root,
598                                            async_extent->compressed_size,
599                                            async_extent->compressed_size,
600                                            0, alloc_hint,
601                                            (u64)-1, &ins, 1);
602                 BUG_ON(ret);
603                 em = alloc_extent_map(GFP_NOFS);
604                 em->start = async_extent->start;
605                 em->len = async_extent->ram_size;
606                 em->orig_start = em->start;
607
608                 em->block_start = ins.objectid;
609                 em->block_len = ins.offset;
610                 em->bdev = root->fs_info->fs_devices->latest_bdev;
611                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
612                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
613
614                 while (1) {
615                         write_lock(&em_tree->lock);
616                         ret = add_extent_mapping(em_tree, em);
617                         write_unlock(&em_tree->lock);
618                         if (ret != -EEXIST) {
619                                 free_extent_map(em);
620                                 break;
621                         }
622                         btrfs_drop_extent_cache(inode, async_extent->start,
623                                                 async_extent->start +
624                                                 async_extent->ram_size - 1, 0);
625                 }
626
627                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
628                                                ins.objectid,
629                                                async_extent->ram_size,
630                                                ins.offset,
631                                                BTRFS_ORDERED_COMPRESSED);
632                 BUG_ON(ret);
633
634                 btrfs_end_transaction(trans, root);
635
636                 /*
637                  * clear dirty, set writeback and unlock the pages.
638                  */
639                 extent_clear_unlock_delalloc(inode,
640                                              &BTRFS_I(inode)->io_tree,
641                                              async_extent->start,
642                                              async_extent->start +
643                                              async_extent->ram_size - 1,
644                                              NULL, 1, 1, 0, 1, 1, 0, 0);
645
646                 ret = btrfs_submit_compressed_write(inode,
647                                     async_extent->start,
648                                     async_extent->ram_size,
649                                     ins.objectid,
650                                     ins.offset, async_extent->pages,
651                                     async_extent->nr_pages);
652
653                 BUG_ON(ret);
654                 trans = btrfs_join_transaction(root, 1);
655                 alloc_hint = ins.objectid + ins.offset;
656                 kfree(async_extent);
657                 cond_resched();
658         }
659
660         btrfs_end_transaction(trans, root);
661         return 0;
662 }
663
664 /*
665  * when extent_io.c finds a delayed allocation range in the file,
666  * the call backs end up in this code.  The basic idea is to
667  * allocate extents on disk for the range, and create ordered data structs
668  * in ram to track those extents.
669  *
670  * locked_page is the page that writepage had locked already.  We use
671  * it to make sure we don't do extra locks or unlocks.
672  *
673  * *page_started is set to one if we unlock locked_page and do everything
674  * required to start IO on it.  It may be clean and already done with
675  * IO when we return.
676  */
677 static noinline int cow_file_range(struct inode *inode,
678                                    struct page *locked_page,
679                                    u64 start, u64 end, int *page_started,
680                                    unsigned long *nr_written,
681                                    int unlock)
682 {
683         struct btrfs_root *root = BTRFS_I(inode)->root;
684         struct btrfs_trans_handle *trans;
685         u64 alloc_hint = 0;
686         u64 num_bytes;
687         unsigned long ram_size;
688         u64 disk_num_bytes;
689         u64 cur_alloc_size;
690         u64 blocksize = root->sectorsize;
691         u64 actual_end;
692         u64 isize = i_size_read(inode);
693         struct btrfs_key ins;
694         struct extent_map *em;
695         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
696         int ret = 0;
697
698         trans = btrfs_join_transaction(root, 1);
699         BUG_ON(!trans);
700         btrfs_set_trans_block_group(trans, inode);
701
702         actual_end = min_t(u64, isize, end + 1);
703
704         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
705         num_bytes = max(blocksize,  num_bytes);
706         disk_num_bytes = num_bytes;
707         ret = 0;
708
709         if (start == 0) {
710                 /* lets try to make an inline extent */
711                 ret = cow_file_range_inline(trans, root, inode,
712                                             start, end, 0, NULL);
713                 if (ret == 0) {
714                         extent_clear_unlock_delalloc(inode,
715                                                      &BTRFS_I(inode)->io_tree,
716                                                      start, end, NULL, 1, 1,
717                                                      1, 1, 1, 1, 0);
718                         *nr_written = *nr_written +
719                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
720                         *page_started = 1;
721                         ret = 0;
722                         goto out;
723                 }
724         }
725
726         BUG_ON(disk_num_bytes >
727                btrfs_super_total_bytes(&root->fs_info->super_copy));
728
729
730         read_lock(&BTRFS_I(inode)->extent_tree.lock);
731         em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
732                                    start, num_bytes);
733         if (em) {
734                 alloc_hint = em->block_start;
735                 free_extent_map(em);
736         }
737         read_unlock(&BTRFS_I(inode)->extent_tree.lock);
738         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
739
740         while (disk_num_bytes > 0) {
741                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
742                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
743                                            root->sectorsize, 0, alloc_hint,
744                                            (u64)-1, &ins, 1);
745                 BUG_ON(ret);
746
747                 em = alloc_extent_map(GFP_NOFS);
748                 em->start = start;
749                 em->orig_start = em->start;
750                 ram_size = ins.offset;
751                 em->len = ins.offset;
752
753                 em->block_start = ins.objectid;
754                 em->block_len = ins.offset;
755                 em->bdev = root->fs_info->fs_devices->latest_bdev;
756                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
757
758                 while (1) {
759                         write_lock(&em_tree->lock);
760                         ret = add_extent_mapping(em_tree, em);
761                         write_unlock(&em_tree->lock);
762                         if (ret != -EEXIST) {
763                                 free_extent_map(em);
764                                 break;
765                         }
766                         btrfs_drop_extent_cache(inode, start,
767                                                 start + ram_size - 1, 0);
768                 }
769
770                 cur_alloc_size = ins.offset;
771                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
772                                                ram_size, cur_alloc_size, 0);
773                 BUG_ON(ret);
774
775                 if (root->root_key.objectid ==
776                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
777                         ret = btrfs_reloc_clone_csums(inode, start,
778                                                       cur_alloc_size);
779                         BUG_ON(ret);
780                 }
781
782                 if (disk_num_bytes < cur_alloc_size)
783                         break;
784
785                 /* we're not doing compressed IO, don't unlock the first
786                  * page (which the caller expects to stay locked), don't
787                  * clear any dirty bits and don't set any writeback bits
788                  *
789                  * Do set the Private2 bit so we know this page was properly
790                  * setup for writepage
791                  */
792                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
793                                              start, start + ram_size - 1,
794                                              locked_page, unlock, 1,
795                                              1, 0, 0, 0, 1);
796                 disk_num_bytes -= cur_alloc_size;
797                 num_bytes -= cur_alloc_size;
798                 alloc_hint = ins.objectid + ins.offset;
799                 start += cur_alloc_size;
800         }
801 out:
802         ret = 0;
803         btrfs_end_transaction(trans, root);
804
805         return ret;
806 }
807
808 /*
809  * work queue call back to started compression on a file and pages
810  */
811 static noinline void async_cow_start(struct btrfs_work *work)
812 {
813         struct async_cow *async_cow;
814         int num_added = 0;
815         async_cow = container_of(work, struct async_cow, work);
816
817         compress_file_range(async_cow->inode, async_cow->locked_page,
818                             async_cow->start, async_cow->end, async_cow,
819                             &num_added);
820         if (num_added == 0)
821                 async_cow->inode = NULL;
822 }
823
824 /*
825  * work queue call back to submit previously compressed pages
826  */
827 static noinline void async_cow_submit(struct btrfs_work *work)
828 {
829         struct async_cow *async_cow;
830         struct btrfs_root *root;
831         unsigned long nr_pages;
832
833         async_cow = container_of(work, struct async_cow, work);
834
835         root = async_cow->root;
836         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
837                 PAGE_CACHE_SHIFT;
838
839         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
840
841         if (atomic_read(&root->fs_info->async_delalloc_pages) <
842             5 * 1042 * 1024 &&
843             waitqueue_active(&root->fs_info->async_submit_wait))
844                 wake_up(&root->fs_info->async_submit_wait);
845
846         if (async_cow->inode)
847                 submit_compressed_extents(async_cow->inode, async_cow);
848 }
849
850 static noinline void async_cow_free(struct btrfs_work *work)
851 {
852         struct async_cow *async_cow;
853         async_cow = container_of(work, struct async_cow, work);
854         kfree(async_cow);
855 }
856
857 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
858                                 u64 start, u64 end, int *page_started,
859                                 unsigned long *nr_written)
860 {
861         struct async_cow *async_cow;
862         struct btrfs_root *root = BTRFS_I(inode)->root;
863         unsigned long nr_pages;
864         u64 cur_end;
865         int limit = 10 * 1024 * 1042;
866
867         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
868                          EXTENT_DELALLOC, 1, 0, NULL, GFP_NOFS);
869         while (start < end) {
870                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
871                 async_cow->inode = inode;
872                 async_cow->root = root;
873                 async_cow->locked_page = locked_page;
874                 async_cow->start = start;
875
876                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
877                         cur_end = end;
878                 else
879                         cur_end = min(end, start + 512 * 1024 - 1);
880
881                 async_cow->end = cur_end;
882                 INIT_LIST_HEAD(&async_cow->extents);
883
884                 async_cow->work.func = async_cow_start;
885                 async_cow->work.ordered_func = async_cow_submit;
886                 async_cow->work.ordered_free = async_cow_free;
887                 async_cow->work.flags = 0;
888
889                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
890                         PAGE_CACHE_SHIFT;
891                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
892
893                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
894                                    &async_cow->work);
895
896                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
897                         wait_event(root->fs_info->async_submit_wait,
898                            (atomic_read(&root->fs_info->async_delalloc_pages) <
899                             limit));
900                 }
901
902                 while (atomic_read(&root->fs_info->async_submit_draining) &&
903                       atomic_read(&root->fs_info->async_delalloc_pages)) {
904                         wait_event(root->fs_info->async_submit_wait,
905                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
906                            0));
907                 }
908
909                 *nr_written += nr_pages;
910                 start = cur_end + 1;
911         }
912         *page_started = 1;
913         return 0;
914 }
915
916 static noinline int csum_exist_in_range(struct btrfs_root *root,
917                                         u64 bytenr, u64 num_bytes)
918 {
919         int ret;
920         struct btrfs_ordered_sum *sums;
921         LIST_HEAD(list);
922
923         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
924                                        bytenr + num_bytes - 1, &list);
925         if (ret == 0 && list_empty(&list))
926                 return 0;
927
928         while (!list_empty(&list)) {
929                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
930                 list_del(&sums->list);
931                 kfree(sums);
932         }
933         return 1;
934 }
935
936 /*
937  * when nowcow writeback call back.  This checks for snapshots or COW copies
938  * of the extents that exist in the file, and COWs the file as required.
939  *
940  * If no cow copies or snapshots exist, we write directly to the existing
941  * blocks on disk
942  */
943 static noinline int run_delalloc_nocow(struct inode *inode,
944                                        struct page *locked_page,
945                               u64 start, u64 end, int *page_started, int force,
946                               unsigned long *nr_written)
947 {
948         struct btrfs_root *root = BTRFS_I(inode)->root;
949         struct btrfs_trans_handle *trans;
950         struct extent_buffer *leaf;
951         struct btrfs_path *path;
952         struct btrfs_file_extent_item *fi;
953         struct btrfs_key found_key;
954         u64 cow_start;
955         u64 cur_offset;
956         u64 extent_end;
957         u64 extent_offset;
958         u64 disk_bytenr;
959         u64 num_bytes;
960         int extent_type;
961         int ret;
962         int type;
963         int nocow;
964         int check_prev = 1;
965
966         path = btrfs_alloc_path();
967         BUG_ON(!path);
968         trans = btrfs_join_transaction(root, 1);
969         BUG_ON(!trans);
970
971         cow_start = (u64)-1;
972         cur_offset = start;
973         while (1) {
974                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
975                                                cur_offset, 0);
976                 BUG_ON(ret < 0);
977                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
978                         leaf = path->nodes[0];
979                         btrfs_item_key_to_cpu(leaf, &found_key,
980                                               path->slots[0] - 1);
981                         if (found_key.objectid == inode->i_ino &&
982                             found_key.type == BTRFS_EXTENT_DATA_KEY)
983                                 path->slots[0]--;
984                 }
985                 check_prev = 0;
986 next_slot:
987                 leaf = path->nodes[0];
988                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
989                         ret = btrfs_next_leaf(root, path);
990                         if (ret < 0)
991                                 BUG_ON(1);
992                         if (ret > 0)
993                                 break;
994                         leaf = path->nodes[0];
995                 }
996
997                 nocow = 0;
998                 disk_bytenr = 0;
999                 num_bytes = 0;
1000                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1001
1002                 if (found_key.objectid > inode->i_ino ||
1003                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1004                     found_key.offset > end)
1005                         break;
1006
1007                 if (found_key.offset > cur_offset) {
1008                         extent_end = found_key.offset;
1009                         goto out_check;
1010                 }
1011
1012                 fi = btrfs_item_ptr(leaf, path->slots[0],
1013                                     struct btrfs_file_extent_item);
1014                 extent_type = btrfs_file_extent_type(leaf, fi);
1015
1016                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1017                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1018                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1019                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1020                         extent_end = found_key.offset +
1021                                 btrfs_file_extent_num_bytes(leaf, fi);
1022                         if (extent_end <= start) {
1023                                 path->slots[0]++;
1024                                 goto next_slot;
1025                         }
1026                         if (disk_bytenr == 0)
1027                                 goto out_check;
1028                         if (btrfs_file_extent_compression(leaf, fi) ||
1029                             btrfs_file_extent_encryption(leaf, fi) ||
1030                             btrfs_file_extent_other_encoding(leaf, fi))
1031                                 goto out_check;
1032                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1033                                 goto out_check;
1034                         if (btrfs_extent_readonly(root, disk_bytenr))
1035                                 goto out_check;
1036                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1037                                                   found_key.offset -
1038                                                   extent_offset, disk_bytenr))
1039                                 goto out_check;
1040                         disk_bytenr += extent_offset;
1041                         disk_bytenr += cur_offset - found_key.offset;
1042                         num_bytes = min(end + 1, extent_end) - cur_offset;
1043                         /*
1044                          * force cow if csum exists in the range.
1045                          * this ensure that csum for a given extent are
1046                          * either valid or do not exist.
1047                          */
1048                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1049                                 goto out_check;
1050                         nocow = 1;
1051                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1052                         extent_end = found_key.offset +
1053                                 btrfs_file_extent_inline_len(leaf, fi);
1054                         extent_end = ALIGN(extent_end, root->sectorsize);
1055                 } else {
1056                         BUG_ON(1);
1057                 }
1058 out_check:
1059                 if (extent_end <= start) {
1060                         path->slots[0]++;
1061                         goto next_slot;
1062                 }
1063                 if (!nocow) {
1064                         if (cow_start == (u64)-1)
1065                                 cow_start = cur_offset;
1066                         cur_offset = extent_end;
1067                         if (cur_offset > end)
1068                                 break;
1069                         path->slots[0]++;
1070                         goto next_slot;
1071                 }
1072
1073                 btrfs_release_path(root, path);
1074                 if (cow_start != (u64)-1) {
1075                         ret = cow_file_range(inode, locked_page, cow_start,
1076                                         found_key.offset - 1, page_started,
1077                                         nr_written, 1);
1078                         BUG_ON(ret);
1079                         cow_start = (u64)-1;
1080                 }
1081
1082                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1083                         struct extent_map *em;
1084                         struct extent_map_tree *em_tree;
1085                         em_tree = &BTRFS_I(inode)->extent_tree;
1086                         em = alloc_extent_map(GFP_NOFS);
1087                         em->start = cur_offset;
1088                         em->orig_start = em->start;
1089                         em->len = num_bytes;
1090                         em->block_len = num_bytes;
1091                         em->block_start = disk_bytenr;
1092                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1093                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1094                         while (1) {
1095                                 write_lock(&em_tree->lock);
1096                                 ret = add_extent_mapping(em_tree, em);
1097                                 write_unlock(&em_tree->lock);
1098                                 if (ret != -EEXIST) {
1099                                         free_extent_map(em);
1100                                         break;
1101                                 }
1102                                 btrfs_drop_extent_cache(inode, em->start,
1103                                                 em->start + em->len - 1, 0);
1104                         }
1105                         type = BTRFS_ORDERED_PREALLOC;
1106                 } else {
1107                         type = BTRFS_ORDERED_NOCOW;
1108                 }
1109
1110                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1111                                                num_bytes, num_bytes, type);
1112                 BUG_ON(ret);
1113
1114                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1115                                         cur_offset, cur_offset + num_bytes - 1,
1116                                         locked_page, 1, 1, 1, 0, 0, 0, 1);
1117                 cur_offset = extent_end;
1118                 if (cur_offset > end)
1119                         break;
1120         }
1121         btrfs_release_path(root, path);
1122
1123         if (cur_offset <= end && cow_start == (u64)-1)
1124                 cow_start = cur_offset;
1125         if (cow_start != (u64)-1) {
1126                 ret = cow_file_range(inode, locked_page, cow_start, end,
1127                                      page_started, nr_written, 1);
1128                 BUG_ON(ret);
1129         }
1130
1131         ret = btrfs_end_transaction(trans, root);
1132         BUG_ON(ret);
1133         btrfs_free_path(path);
1134         return 0;
1135 }
1136
1137 /*
1138  * extent_io.c call back to do delayed allocation processing
1139  */
1140 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1141                               u64 start, u64 end, int *page_started,
1142                               unsigned long *nr_written)
1143 {
1144         int ret;
1145         struct btrfs_root *root = BTRFS_I(inode)->root;
1146
1147         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1148                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1149                                          page_started, 1, nr_written);
1150         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1151                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1152                                          page_started, 0, nr_written);
1153         else if (!btrfs_test_opt(root, COMPRESS))
1154                 ret = cow_file_range(inode, locked_page, start, end,
1155                                       page_started, nr_written, 1);
1156         else
1157                 ret = cow_file_range_async(inode, locked_page, start, end,
1158                                            page_started, nr_written);
1159         return ret;
1160 }
1161
1162 /*
1163  * extent_io.c set_bit_hook, used to track delayed allocation
1164  * bytes in this file, and to maintain the list of inodes that
1165  * have pending delalloc work to be done.
1166  */
1167 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1168                        unsigned long old, unsigned long bits)
1169 {
1170         /*
1171          * set_bit and clear bit hooks normally require _irqsave/restore
1172          * but in this case, we are only testeing for the DELALLOC
1173          * bit, which is only set or cleared with irqs on
1174          */
1175         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1176                 struct btrfs_root *root = BTRFS_I(inode)->root;
1177                 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1178                 spin_lock(&root->fs_info->delalloc_lock);
1179                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1180                 root->fs_info->delalloc_bytes += end - start + 1;
1181                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1182                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1183                                       &root->fs_info->delalloc_inodes);
1184                 }
1185                 spin_unlock(&root->fs_info->delalloc_lock);
1186         }
1187         return 0;
1188 }
1189
1190 /*
1191  * extent_io.c clear_bit_hook, see set_bit_hook for why
1192  */
1193 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1194                          unsigned long old, unsigned long bits)
1195 {
1196         /*
1197          * set_bit and clear bit hooks normally require _irqsave/restore
1198          * but in this case, we are only testeing for the DELALLOC
1199          * bit, which is only set or cleared with irqs on
1200          */
1201         if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1202                 struct btrfs_root *root = BTRFS_I(inode)->root;
1203
1204                 spin_lock(&root->fs_info->delalloc_lock);
1205                 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1206                         printk(KERN_INFO "btrfs warning: delalloc account "
1207                                "%llu %llu\n",
1208                                (unsigned long long)end - start + 1,
1209                                (unsigned long long)
1210                                root->fs_info->delalloc_bytes);
1211                         btrfs_delalloc_free_space(root, inode, (u64)-1);
1212                         root->fs_info->delalloc_bytes = 0;
1213                         BTRFS_I(inode)->delalloc_bytes = 0;
1214                 } else {
1215                         btrfs_delalloc_free_space(root, inode,
1216                                                   end - start + 1);
1217                         root->fs_info->delalloc_bytes -= end - start + 1;
1218                         BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1219                 }
1220                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1221                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1222                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1223                 }
1224                 spin_unlock(&root->fs_info->delalloc_lock);
1225         }
1226         return 0;
1227 }
1228
1229 /*
1230  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1231  * we don't create bios that span stripes or chunks
1232  */
1233 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1234                          size_t size, struct bio *bio,
1235                          unsigned long bio_flags)
1236 {
1237         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1238         struct btrfs_mapping_tree *map_tree;
1239         u64 logical = (u64)bio->bi_sector << 9;
1240         u64 length = 0;
1241         u64 map_length;
1242         int ret;
1243
1244         if (bio_flags & EXTENT_BIO_COMPRESSED)
1245                 return 0;
1246
1247         length = bio->bi_size;
1248         map_tree = &root->fs_info->mapping_tree;
1249         map_length = length;
1250         ret = btrfs_map_block(map_tree, READ, logical,
1251                               &map_length, NULL, 0);
1252
1253         if (map_length < length + size)
1254                 return 1;
1255         return 0;
1256 }
1257
1258 /*
1259  * in order to insert checksums into the metadata in large chunks,
1260  * we wait until bio submission time.   All the pages in the bio are
1261  * checksummed and sums are attached onto the ordered extent record.
1262  *
1263  * At IO completion time the cums attached on the ordered extent record
1264  * are inserted into the btree
1265  */
1266 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1267                                     struct bio *bio, int mirror_num,
1268                                     unsigned long bio_flags)
1269 {
1270         struct btrfs_root *root = BTRFS_I(inode)->root;
1271         int ret = 0;
1272
1273         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1274         BUG_ON(ret);
1275         return 0;
1276 }
1277
1278 /*
1279  * in order to insert checksums into the metadata in large chunks,
1280  * we wait until bio submission time.   All the pages in the bio are
1281  * checksummed and sums are attached onto the ordered extent record.
1282  *
1283  * At IO completion time the cums attached on the ordered extent record
1284  * are inserted into the btree
1285  */
1286 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1287                           int mirror_num, unsigned long bio_flags)
1288 {
1289         struct btrfs_root *root = BTRFS_I(inode)->root;
1290         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1291 }
1292
1293 /*
1294  * extent_io.c submission hook. This does the right thing for csum calculation
1295  * on write, or reading the csums from the tree before a read
1296  */
1297 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1298                           int mirror_num, unsigned long bio_flags)
1299 {
1300         struct btrfs_root *root = BTRFS_I(inode)->root;
1301         int ret = 0;
1302         int skip_sum;
1303
1304         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1305
1306         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1307         BUG_ON(ret);
1308
1309         if (!(rw & (1 << BIO_RW))) {
1310                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1311                         return btrfs_submit_compressed_read(inode, bio,
1312                                                     mirror_num, bio_flags);
1313                 } else if (!skip_sum)
1314                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1315                 goto mapit;
1316         } else if (!skip_sum) {
1317                 /* csum items have already been cloned */
1318                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1319                         goto mapit;
1320                 /* we're doing a write, do the async checksumming */
1321                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1322                                    inode, rw, bio, mirror_num,
1323                                    bio_flags, __btrfs_submit_bio_start,
1324                                    __btrfs_submit_bio_done);
1325         }
1326
1327 mapit:
1328         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1329 }
1330
1331 /*
1332  * given a list of ordered sums record them in the inode.  This happens
1333  * at IO completion time based on sums calculated at bio submission time.
1334  */
1335 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1336                              struct inode *inode, u64 file_offset,
1337                              struct list_head *list)
1338 {
1339         struct btrfs_ordered_sum *sum;
1340
1341         btrfs_set_trans_block_group(trans, inode);
1342
1343         list_for_each_entry(sum, list, list) {
1344                 btrfs_csum_file_blocks(trans,
1345                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1346         }
1347         return 0;
1348 }
1349
1350 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1351 {
1352         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1353                 WARN_ON(1);
1354         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1355                                    GFP_NOFS);
1356 }
1357
1358 /* see btrfs_writepage_start_hook for details on why this is required */
1359 struct btrfs_writepage_fixup {
1360         struct page *page;
1361         struct btrfs_work work;
1362 };
1363
1364 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1365 {
1366         struct btrfs_writepage_fixup *fixup;
1367         struct btrfs_ordered_extent *ordered;
1368         struct page *page;
1369         struct inode *inode;
1370         u64 page_start;
1371         u64 page_end;
1372
1373         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1374         page = fixup->page;
1375 again:
1376         lock_page(page);
1377         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1378                 ClearPageChecked(page);
1379                 goto out_page;
1380         }
1381
1382         inode = page->mapping->host;
1383         page_start = page_offset(page);
1384         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1385
1386         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1387
1388         /* already ordered? We're done */
1389         if (PagePrivate2(page))
1390                 goto out;
1391
1392         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1393         if (ordered) {
1394                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1395                               page_end, GFP_NOFS);
1396                 unlock_page(page);
1397                 btrfs_start_ordered_extent(inode, ordered, 1);
1398                 goto again;
1399         }
1400
1401         btrfs_set_extent_delalloc(inode, page_start, page_end);
1402         ClearPageChecked(page);
1403 out:
1404         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1405 out_page:
1406         unlock_page(page);
1407         page_cache_release(page);
1408 }
1409
1410 /*
1411  * There are a few paths in the higher layers of the kernel that directly
1412  * set the page dirty bit without asking the filesystem if it is a
1413  * good idea.  This causes problems because we want to make sure COW
1414  * properly happens and the data=ordered rules are followed.
1415  *
1416  * In our case any range that doesn't have the ORDERED bit set
1417  * hasn't been properly setup for IO.  We kick off an async process
1418  * to fix it up.  The async helper will wait for ordered extents, set
1419  * the delalloc bit and make it safe to write the page.
1420  */
1421 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1422 {
1423         struct inode *inode = page->mapping->host;
1424         struct btrfs_writepage_fixup *fixup;
1425         struct btrfs_root *root = BTRFS_I(inode)->root;
1426
1427         /* this page is properly in the ordered list */
1428         if (TestClearPagePrivate2(page))
1429                 return 0;
1430
1431         if (PageChecked(page))
1432                 return -EAGAIN;
1433
1434         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1435         if (!fixup)
1436                 return -EAGAIN;
1437
1438         SetPageChecked(page);
1439         page_cache_get(page);
1440         fixup->work.func = btrfs_writepage_fixup_worker;
1441         fixup->page = page;
1442         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1443         return -EAGAIN;
1444 }
1445
1446 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1447                                        struct inode *inode, u64 file_pos,
1448                                        u64 disk_bytenr, u64 disk_num_bytes,
1449                                        u64 num_bytes, u64 ram_bytes,
1450                                        u64 locked_end,
1451                                        u8 compression, u8 encryption,
1452                                        u16 other_encoding, int extent_type)
1453 {
1454         struct btrfs_root *root = BTRFS_I(inode)->root;
1455         struct btrfs_file_extent_item *fi;
1456         struct btrfs_path *path;
1457         struct extent_buffer *leaf;
1458         struct btrfs_key ins;
1459         u64 hint;
1460         int ret;
1461
1462         path = btrfs_alloc_path();
1463         BUG_ON(!path);
1464
1465         path->leave_spinning = 1;
1466
1467         /*
1468          * we may be replacing one extent in the tree with another.
1469          * The new extent is pinned in the extent map, and we don't want
1470          * to drop it from the cache until it is completely in the btree.
1471          *
1472          * So, tell btrfs_drop_extents to leave this extent in the cache.
1473          * the caller is expected to unpin it and allow it to be merged
1474          * with the others.
1475          */
1476         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1477                                  file_pos + num_bytes, locked_end,
1478                                  file_pos, &hint, 0);
1479         BUG_ON(ret);
1480
1481         ins.objectid = inode->i_ino;
1482         ins.offset = file_pos;
1483         ins.type = BTRFS_EXTENT_DATA_KEY;
1484         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1485         BUG_ON(ret);
1486         leaf = path->nodes[0];
1487         fi = btrfs_item_ptr(leaf, path->slots[0],
1488                             struct btrfs_file_extent_item);
1489         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1490         btrfs_set_file_extent_type(leaf, fi, extent_type);
1491         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1492         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1493         btrfs_set_file_extent_offset(leaf, fi, 0);
1494         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1495         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1496         btrfs_set_file_extent_compression(leaf, fi, compression);
1497         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1498         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1499
1500         btrfs_unlock_up_safe(path, 1);
1501         btrfs_set_lock_blocking(leaf);
1502
1503         btrfs_mark_buffer_dirty(leaf);
1504
1505         inode_add_bytes(inode, num_bytes);
1506
1507         ins.objectid = disk_bytenr;
1508         ins.offset = disk_num_bytes;
1509         ins.type = BTRFS_EXTENT_ITEM_KEY;
1510         ret = btrfs_alloc_reserved_file_extent(trans, root,
1511                                         root->root_key.objectid,
1512                                         inode->i_ino, file_pos, &ins);
1513         BUG_ON(ret);
1514         btrfs_free_path(path);
1515
1516         return 0;
1517 }
1518
1519 /*
1520  * helper function for btrfs_finish_ordered_io, this
1521  * just reads in some of the csum leaves to prime them into ram
1522  * before we start the transaction.  It limits the amount of btree
1523  * reads required while inside the transaction.
1524  */
1525 static noinline void reada_csum(struct btrfs_root *root,
1526                                 struct btrfs_path *path,
1527                                 struct btrfs_ordered_extent *ordered_extent)
1528 {
1529         struct btrfs_ordered_sum *sum;
1530         u64 bytenr;
1531
1532         sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1533                          list);
1534         bytenr = sum->sums[0].bytenr;
1535
1536         /*
1537          * we don't care about the results, the point of this search is
1538          * just to get the btree leaves into ram
1539          */
1540         btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1541 }
1542
1543 /* as ordered data IO finishes, this gets called so we can finish
1544  * an ordered extent if the range of bytes in the file it covers are
1545  * fully written.
1546  */
1547 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1548 {
1549         struct btrfs_root *root = BTRFS_I(inode)->root;
1550         struct btrfs_trans_handle *trans;
1551         struct btrfs_ordered_extent *ordered_extent = NULL;
1552         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1553         struct btrfs_path *path;
1554         int compressed = 0;
1555         int ret;
1556
1557         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1558         if (!ret)
1559                 return 0;
1560
1561         /*
1562          * before we join the transaction, try to do some of our IO.
1563          * This will limit the amount of IO that we have to do with
1564          * the transaction running.  We're unlikely to need to do any
1565          * IO if the file extents are new, the disk_i_size checks
1566          * covers the most common case.
1567          */
1568         if (start < BTRFS_I(inode)->disk_i_size) {
1569                 path = btrfs_alloc_path();
1570                 if (path) {
1571                         ret = btrfs_lookup_file_extent(NULL, root, path,
1572                                                        inode->i_ino,
1573                                                        start, 0);
1574                         ordered_extent = btrfs_lookup_ordered_extent(inode,
1575                                                                      start);
1576                         if (!list_empty(&ordered_extent->list)) {
1577                                 btrfs_release_path(root, path);
1578                                 reada_csum(root, path, ordered_extent);
1579                         }
1580                         btrfs_free_path(path);
1581                 }
1582         }
1583
1584         trans = btrfs_join_transaction(root, 1);
1585
1586         if (!ordered_extent)
1587                 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1588         BUG_ON(!ordered_extent);
1589         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1590                 goto nocow;
1591
1592         lock_extent(io_tree, ordered_extent->file_offset,
1593                     ordered_extent->file_offset + ordered_extent->len - 1,
1594                     GFP_NOFS);
1595
1596         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1597                 compressed = 1;
1598         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1599                 BUG_ON(compressed);
1600                 ret = btrfs_mark_extent_written(trans, root, inode,
1601                                                 ordered_extent->file_offset,
1602                                                 ordered_extent->file_offset +
1603                                                 ordered_extent->len);
1604                 BUG_ON(ret);
1605         } else {
1606                 ret = insert_reserved_file_extent(trans, inode,
1607                                                 ordered_extent->file_offset,
1608                                                 ordered_extent->start,
1609                                                 ordered_extent->disk_len,
1610                                                 ordered_extent->len,
1611                                                 ordered_extent->len,
1612                                                 ordered_extent->file_offset +
1613                                                 ordered_extent->len,
1614                                                 compressed, 0, 0,
1615                                                 BTRFS_FILE_EXTENT_REG);
1616                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1617                                    ordered_extent->file_offset,
1618                                    ordered_extent->len);
1619                 BUG_ON(ret);
1620         }
1621         unlock_extent(io_tree, ordered_extent->file_offset,
1622                     ordered_extent->file_offset + ordered_extent->len - 1,
1623                     GFP_NOFS);
1624 nocow:
1625         add_pending_csums(trans, inode, ordered_extent->file_offset,
1626                           &ordered_extent->list);
1627
1628         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1629         btrfs_ordered_update_i_size(inode, ordered_extent);
1630         btrfs_update_inode(trans, root, inode);
1631         btrfs_remove_ordered_extent(inode, ordered_extent);
1632         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1633
1634         /* once for us */
1635         btrfs_put_ordered_extent(ordered_extent);
1636         /* once for the tree */
1637         btrfs_put_ordered_extent(ordered_extent);
1638
1639         btrfs_end_transaction(trans, root);
1640         return 0;
1641 }
1642
1643 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1644                                 struct extent_state *state, int uptodate)
1645 {
1646         ClearPagePrivate2(page);
1647         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1648 }
1649
1650 /*
1651  * When IO fails, either with EIO or csum verification fails, we
1652  * try other mirrors that might have a good copy of the data.  This
1653  * io_failure_record is used to record state as we go through all the
1654  * mirrors.  If another mirror has good data, the page is set up to date
1655  * and things continue.  If a good mirror can't be found, the original
1656  * bio end_io callback is called to indicate things have failed.
1657  */
1658 struct io_failure_record {
1659         struct page *page;
1660         u64 start;
1661         u64 len;
1662         u64 logical;
1663         unsigned long bio_flags;
1664         int last_mirror;
1665 };
1666
1667 static int btrfs_io_failed_hook(struct bio *failed_bio,
1668                          struct page *page, u64 start, u64 end,
1669                          struct extent_state *state)
1670 {
1671         struct io_failure_record *failrec = NULL;
1672         u64 private;
1673         struct extent_map *em;
1674         struct inode *inode = page->mapping->host;
1675         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1676         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1677         struct bio *bio;
1678         int num_copies;
1679         int ret;
1680         int rw;
1681         u64 logical;
1682
1683         ret = get_state_private(failure_tree, start, &private);
1684         if (ret) {
1685                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1686                 if (!failrec)
1687                         return -ENOMEM;
1688                 failrec->start = start;
1689                 failrec->len = end - start + 1;
1690                 failrec->last_mirror = 0;
1691                 failrec->bio_flags = 0;
1692
1693                 read_lock(&em_tree->lock);
1694                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1695                 if (em->start > start || em->start + em->len < start) {
1696                         free_extent_map(em);
1697                         em = NULL;
1698                 }
1699                 read_unlock(&em_tree->lock);
1700
1701                 if (!em || IS_ERR(em)) {
1702                         kfree(failrec);
1703                         return -EIO;
1704                 }
1705                 logical = start - em->start;
1706                 logical = em->block_start + logical;
1707                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1708                         logical = em->block_start;
1709                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1710                 }
1711                 failrec->logical = logical;
1712                 free_extent_map(em);
1713                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1714                                 EXTENT_DIRTY, GFP_NOFS);
1715                 set_state_private(failure_tree, start,
1716                                  (u64)(unsigned long)failrec);
1717         } else {
1718                 failrec = (struct io_failure_record *)(unsigned long)private;
1719         }
1720         num_copies = btrfs_num_copies(
1721                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1722                               failrec->logical, failrec->len);
1723         failrec->last_mirror++;
1724         if (!state) {
1725                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1726                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1727                                                     failrec->start,
1728                                                     EXTENT_LOCKED);
1729                 if (state && state->start != failrec->start)
1730                         state = NULL;
1731                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1732         }
1733         if (!state || failrec->last_mirror > num_copies) {
1734                 set_state_private(failure_tree, failrec->start, 0);
1735                 clear_extent_bits(failure_tree, failrec->start,
1736                                   failrec->start + failrec->len - 1,
1737                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1738                 kfree(failrec);
1739                 return -EIO;
1740         }
1741         bio = bio_alloc(GFP_NOFS, 1);
1742         bio->bi_private = state;
1743         bio->bi_end_io = failed_bio->bi_end_io;
1744         bio->bi_sector = failrec->logical >> 9;
1745         bio->bi_bdev = failed_bio->bi_bdev;
1746         bio->bi_size = 0;
1747
1748         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1749         if (failed_bio->bi_rw & (1 << BIO_RW))
1750                 rw = WRITE;
1751         else
1752                 rw = READ;
1753
1754         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1755                                                       failrec->last_mirror,
1756                                                       failrec->bio_flags);
1757         return 0;
1758 }
1759
1760 /*
1761  * each time an IO finishes, we do a fast check in the IO failure tree
1762  * to see if we need to process or clean up an io_failure_record
1763  */
1764 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1765 {
1766         u64 private;
1767         u64 private_failure;
1768         struct io_failure_record *failure;
1769         int ret;
1770
1771         private = 0;
1772         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1773                              (u64)-1, 1, EXTENT_DIRTY)) {
1774                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1775                                         start, &private_failure);
1776                 if (ret == 0) {
1777                         failure = (struct io_failure_record *)(unsigned long)
1778                                    private_failure;
1779                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1780                                           failure->start, 0);
1781                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1782                                           failure->start,
1783                                           failure->start + failure->len - 1,
1784                                           EXTENT_DIRTY | EXTENT_LOCKED,
1785                                           GFP_NOFS);
1786                         kfree(failure);
1787                 }
1788         }
1789         return 0;
1790 }
1791
1792 /*
1793  * when reads are done, we need to check csums to verify the data is correct
1794  * if there's a match, we allow the bio to finish.  If not, we go through
1795  * the io_failure_record routines to find good copies
1796  */
1797 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1798                                struct extent_state *state)
1799 {
1800         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1801         struct inode *inode = page->mapping->host;
1802         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1803         char *kaddr;
1804         u64 private = ~(u32)0;
1805         int ret;
1806         struct btrfs_root *root = BTRFS_I(inode)->root;
1807         u32 csum = ~(u32)0;
1808
1809         if (PageChecked(page)) {
1810                 ClearPageChecked(page);
1811                 goto good;
1812         }
1813
1814         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1815                 return 0;
1816
1817         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1818             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1819                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1820                                   GFP_NOFS);
1821                 return 0;
1822         }
1823
1824         if (state && state->start == start) {
1825                 private = state->private;
1826                 ret = 0;
1827         } else {
1828                 ret = get_state_private(io_tree, start, &private);
1829         }
1830         kaddr = kmap_atomic(page, KM_USER0);
1831         if (ret)
1832                 goto zeroit;
1833
1834         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1835         btrfs_csum_final(csum, (char *)&csum);
1836         if (csum != private)
1837                 goto zeroit;
1838
1839         kunmap_atomic(kaddr, KM_USER0);
1840 good:
1841         /* if the io failure tree for this inode is non-empty,
1842          * check to see if we've recovered from a failed IO
1843          */
1844         btrfs_clean_io_failures(inode, start);
1845         return 0;
1846
1847 zeroit:
1848         if (printk_ratelimit()) {
1849                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1850                        "private %llu\n", page->mapping->host->i_ino,
1851                        (unsigned long long)start, csum,
1852                        (unsigned long long)private);
1853         }
1854         memset(kaddr + offset, 1, end - start + 1);
1855         flush_dcache_page(page);
1856         kunmap_atomic(kaddr, KM_USER0);
1857         if (private == 0)
1858                 return 0;
1859         return -EIO;
1860 }
1861
1862 /*
1863  * This creates an orphan entry for the given inode in case something goes
1864  * wrong in the middle of an unlink/truncate.
1865  */
1866 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1867 {
1868         struct btrfs_root *root = BTRFS_I(inode)->root;
1869         int ret = 0;
1870
1871         spin_lock(&root->list_lock);
1872
1873         /* already on the orphan list, we're good */
1874         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1875                 spin_unlock(&root->list_lock);
1876                 return 0;
1877         }
1878
1879         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1880
1881         spin_unlock(&root->list_lock);
1882
1883         /*
1884          * insert an orphan item to track this unlinked/truncated file
1885          */
1886         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1887
1888         return ret;
1889 }
1890
1891 /*
1892  * We have done the truncate/delete so we can go ahead and remove the orphan
1893  * item for this particular inode.
1894  */
1895 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1896 {
1897         struct btrfs_root *root = BTRFS_I(inode)->root;
1898         int ret = 0;
1899
1900         spin_lock(&root->list_lock);
1901
1902         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1903                 spin_unlock(&root->list_lock);
1904                 return 0;
1905         }
1906
1907         list_del_init(&BTRFS_I(inode)->i_orphan);
1908         if (!trans) {
1909                 spin_unlock(&root->list_lock);
1910                 return 0;
1911         }
1912
1913         spin_unlock(&root->list_lock);
1914
1915         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1916
1917         return ret;
1918 }
1919
1920 /*
1921  * this cleans up any orphans that may be left on the list from the last use
1922  * of this root.
1923  */
1924 void btrfs_orphan_cleanup(struct btrfs_root *root)
1925 {
1926         struct btrfs_path *path;
1927         struct extent_buffer *leaf;
1928         struct btrfs_item *item;
1929         struct btrfs_key key, found_key;
1930         struct btrfs_trans_handle *trans;
1931         struct inode *inode;
1932         int ret = 0, nr_unlink = 0, nr_truncate = 0;
1933
1934         path = btrfs_alloc_path();
1935         if (!path)
1936                 return;
1937         path->reada = -1;
1938
1939         key.objectid = BTRFS_ORPHAN_OBJECTID;
1940         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1941         key.offset = (u64)-1;
1942
1943
1944         while (1) {
1945                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1946                 if (ret < 0) {
1947                         printk(KERN_ERR "Error searching slot for orphan: %d"
1948                                "\n", ret);
1949                         break;
1950                 }
1951
1952                 /*
1953                  * if ret == 0 means we found what we were searching for, which
1954                  * is weird, but possible, so only screw with path if we didnt
1955                  * find the key and see if we have stuff that matches
1956                  */
1957                 if (ret > 0) {
1958                         if (path->slots[0] == 0)
1959                                 break;
1960                         path->slots[0]--;
1961                 }
1962
1963                 /* pull out the item */
1964                 leaf = path->nodes[0];
1965                 item = btrfs_item_nr(leaf, path->slots[0]);
1966                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1967
1968                 /* make sure the item matches what we want */
1969                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1970                         break;
1971                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1972                         break;
1973
1974                 /* release the path since we're done with it */
1975                 btrfs_release_path(root, path);
1976
1977                 /*
1978                  * this is where we are basically btrfs_lookup, without the
1979                  * crossing root thing.  we store the inode number in the
1980                  * offset of the orphan item.
1981                  */
1982                 found_key.objectid = found_key.offset;
1983                 found_key.type = BTRFS_INODE_ITEM_KEY;
1984                 found_key.offset = 0;
1985                 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
1986                 if (IS_ERR(inode))
1987                         break;
1988
1989                 /*
1990                  * add this inode to the orphan list so btrfs_orphan_del does
1991                  * the proper thing when we hit it
1992                  */
1993                 spin_lock(&root->list_lock);
1994                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1995                 spin_unlock(&root->list_lock);
1996
1997                 /*
1998                  * if this is a bad inode, means we actually succeeded in
1999                  * removing the inode, but not the orphan record, which means
2000                  * we need to manually delete the orphan since iput will just
2001                  * do a destroy_inode
2002                  */
2003                 if (is_bad_inode(inode)) {
2004                         trans = btrfs_start_transaction(root, 1);
2005                         btrfs_orphan_del(trans, inode);
2006                         btrfs_end_transaction(trans, root);
2007                         iput(inode);
2008                         continue;
2009                 }
2010
2011                 /* if we have links, this was a truncate, lets do that */
2012                 if (inode->i_nlink) {
2013                         nr_truncate++;
2014                         btrfs_truncate(inode);
2015                 } else {
2016                         nr_unlink++;
2017                 }
2018
2019                 /* this will do delete_inode and everything for us */
2020                 iput(inode);
2021         }
2022
2023         if (nr_unlink)
2024                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2025         if (nr_truncate)
2026                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2027
2028         btrfs_free_path(path);
2029 }
2030
2031 /*
2032  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2033  * don't find any xattrs, we know there can't be any acls.
2034  *
2035  * slot is the slot the inode is in, objectid is the objectid of the inode
2036  */
2037 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2038                                           int slot, u64 objectid)
2039 {
2040         u32 nritems = btrfs_header_nritems(leaf);
2041         struct btrfs_key found_key;
2042         int scanned = 0;
2043
2044         slot++;
2045         while (slot < nritems) {
2046                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2047
2048                 /* we found a different objectid, there must not be acls */
2049                 if (found_key.objectid != objectid)
2050                         return 0;
2051
2052                 /* we found an xattr, assume we've got an acl */
2053                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2054                         return 1;
2055
2056                 /*
2057                  * we found a key greater than an xattr key, there can't
2058                  * be any acls later on
2059                  */
2060                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2061                         return 0;
2062
2063                 slot++;
2064                 scanned++;
2065
2066                 /*
2067                  * it goes inode, inode backrefs, xattrs, extents,
2068                  * so if there are a ton of hard links to an inode there can
2069                  * be a lot of backrefs.  Don't waste time searching too hard,
2070                  * this is just an optimization
2071                  */
2072                 if (scanned >= 8)
2073                         break;
2074         }
2075         /* we hit the end of the leaf before we found an xattr or
2076          * something larger than an xattr.  We have to assume the inode
2077          * has acls
2078          */
2079         return 1;
2080 }
2081
2082 /*
2083  * read an inode from the btree into the in-memory inode
2084  */
2085 static void btrfs_read_locked_inode(struct inode *inode)
2086 {
2087         struct btrfs_path *path;
2088         struct extent_buffer *leaf;
2089         struct btrfs_inode_item *inode_item;
2090         struct btrfs_timespec *tspec;
2091         struct btrfs_root *root = BTRFS_I(inode)->root;
2092         struct btrfs_key location;
2093         int maybe_acls;
2094         u64 alloc_group_block;
2095         u32 rdev;
2096         int ret;
2097
2098         path = btrfs_alloc_path();
2099         BUG_ON(!path);
2100         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2101
2102         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2103         if (ret)
2104                 goto make_bad;
2105
2106         leaf = path->nodes[0];
2107         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2108                                     struct btrfs_inode_item);
2109
2110         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2111         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2112         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2113         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2114         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2115
2116         tspec = btrfs_inode_atime(inode_item);
2117         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2118         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2119
2120         tspec = btrfs_inode_mtime(inode_item);
2121         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2122         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2123
2124         tspec = btrfs_inode_ctime(inode_item);
2125         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2126         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2127
2128         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2129         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2130         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2131         inode->i_generation = BTRFS_I(inode)->generation;
2132         inode->i_rdev = 0;
2133         rdev = btrfs_inode_rdev(leaf, inode_item);
2134
2135         BTRFS_I(inode)->index_cnt = (u64)-1;
2136         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2137
2138         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2139
2140         /*
2141          * try to precache a NULL acl entry for files that don't have
2142          * any xattrs or acls
2143          */
2144         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2145         if (!maybe_acls)
2146                 cache_no_acl(inode);
2147
2148         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2149                                                 alloc_group_block, 0);
2150         btrfs_free_path(path);
2151         inode_item = NULL;
2152
2153         switch (inode->i_mode & S_IFMT) {
2154         case S_IFREG:
2155                 inode->i_mapping->a_ops = &btrfs_aops;
2156                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2157                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2158                 inode->i_fop = &btrfs_file_operations;
2159                 inode->i_op = &btrfs_file_inode_operations;
2160                 break;
2161         case S_IFDIR:
2162                 inode->i_fop = &btrfs_dir_file_operations;
2163                 if (root == root->fs_info->tree_root)
2164                         inode->i_op = &btrfs_dir_ro_inode_operations;
2165                 else
2166                         inode->i_op = &btrfs_dir_inode_operations;
2167                 break;
2168         case S_IFLNK:
2169                 inode->i_op = &btrfs_symlink_inode_operations;
2170                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2171                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2172                 break;
2173         default:
2174                 inode->i_op = &btrfs_special_inode_operations;
2175                 init_special_inode(inode, inode->i_mode, rdev);
2176                 break;
2177         }
2178
2179         btrfs_update_iflags(inode);
2180         return;
2181
2182 make_bad:
2183         btrfs_free_path(path);
2184         make_bad_inode(inode);
2185 }
2186
2187 /*
2188  * given a leaf and an inode, copy the inode fields into the leaf
2189  */
2190 static void fill_inode_item(struct btrfs_trans_handle *trans,
2191                             struct extent_buffer *leaf,
2192                             struct btrfs_inode_item *item,
2193                             struct inode *inode)
2194 {
2195         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2196         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2197         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2198         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2199         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2200
2201         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2202                                inode->i_atime.tv_sec);
2203         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2204                                 inode->i_atime.tv_nsec);
2205
2206         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2207                                inode->i_mtime.tv_sec);
2208         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2209                                 inode->i_mtime.tv_nsec);
2210
2211         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2212                                inode->i_ctime.tv_sec);
2213         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2214                                 inode->i_ctime.tv_nsec);
2215
2216         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2217         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2218         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2219         btrfs_set_inode_transid(leaf, item, trans->transid);
2220         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2221         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2222         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2223 }
2224
2225 /*
2226  * copy everything in the in-memory inode into the btree.
2227  */
2228 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2229                                 struct btrfs_root *root, struct inode *inode)
2230 {
2231         struct btrfs_inode_item *inode_item;
2232         struct btrfs_path *path;
2233         struct extent_buffer *leaf;
2234         int ret;
2235
2236         path = btrfs_alloc_path();
2237         BUG_ON(!path);
2238         path->leave_spinning = 1;
2239         ret = btrfs_lookup_inode(trans, root, path,
2240                                  &BTRFS_I(inode)->location, 1);
2241         if (ret) {
2242                 if (ret > 0)
2243                         ret = -ENOENT;
2244                 goto failed;
2245         }
2246
2247         btrfs_unlock_up_safe(path, 1);
2248         leaf = path->nodes[0];
2249         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2250                                   struct btrfs_inode_item);
2251
2252         fill_inode_item(trans, leaf, inode_item, inode);
2253         btrfs_mark_buffer_dirty(leaf);
2254         btrfs_set_inode_last_trans(trans, inode);
2255         ret = 0;
2256 failed:
2257         btrfs_free_path(path);
2258         return ret;
2259 }
2260
2261
2262 /*
2263  * unlink helper that gets used here in inode.c and in the tree logging
2264  * recovery code.  It remove a link in a directory with a given name, and
2265  * also drops the back refs in the inode to the directory
2266  */
2267 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2268                        struct btrfs_root *root,
2269                        struct inode *dir, struct inode *inode,
2270                        const char *name, int name_len)
2271 {
2272         struct btrfs_path *path;
2273         int ret = 0;
2274         struct extent_buffer *leaf;
2275         struct btrfs_dir_item *di;
2276         struct btrfs_key key;
2277         u64 index;
2278
2279         path = btrfs_alloc_path();
2280         if (!path) {
2281                 ret = -ENOMEM;
2282                 goto err;
2283         }
2284
2285         path->leave_spinning = 1;
2286         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2287                                     name, name_len, -1);
2288         if (IS_ERR(di)) {
2289                 ret = PTR_ERR(di);
2290                 goto err;
2291         }
2292         if (!di) {
2293                 ret = -ENOENT;
2294                 goto err;
2295         }
2296         leaf = path->nodes[0];
2297         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2298         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2299         if (ret)
2300                 goto err;
2301         btrfs_release_path(root, path);
2302
2303         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2304                                   inode->i_ino,
2305                                   dir->i_ino, &index);
2306         if (ret) {
2307                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2308                        "inode %lu parent %lu\n", name_len, name,
2309                        inode->i_ino, dir->i_ino);
2310                 goto err;
2311         }
2312
2313         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2314                                          index, name, name_len, -1);
2315         if (IS_ERR(di)) {
2316                 ret = PTR_ERR(di);
2317                 goto err;
2318         }
2319         if (!di) {
2320                 ret = -ENOENT;
2321                 goto err;
2322         }
2323         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2324         btrfs_release_path(root, path);
2325
2326         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2327                                          inode, dir->i_ino);
2328         BUG_ON(ret != 0 && ret != -ENOENT);
2329
2330         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2331                                            dir, index);
2332         BUG_ON(ret);
2333 err:
2334         btrfs_free_path(path);
2335         if (ret)
2336                 goto out;
2337
2338         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2339         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2340         btrfs_update_inode(trans, root, dir);
2341         btrfs_drop_nlink(inode);
2342         ret = btrfs_update_inode(trans, root, inode);
2343 out:
2344         return ret;
2345 }
2346
2347 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2348 {
2349         struct btrfs_root *root;
2350         struct btrfs_trans_handle *trans;
2351         struct inode *inode = dentry->d_inode;
2352         int ret;
2353         unsigned long nr = 0;
2354
2355         root = BTRFS_I(dir)->root;
2356
2357         trans = btrfs_start_transaction(root, 1);
2358
2359         btrfs_set_trans_block_group(trans, dir);
2360
2361         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2362
2363         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2364                                  dentry->d_name.name, dentry->d_name.len);
2365
2366         if (inode->i_nlink == 0)
2367                 ret = btrfs_orphan_add(trans, inode);
2368
2369         nr = trans->blocks_used;
2370
2371         btrfs_end_transaction_throttle(trans, root);
2372         btrfs_btree_balance_dirty(root, nr);
2373         return ret;
2374 }
2375
2376 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2377                         struct btrfs_root *root,
2378                         struct inode *dir, u64 objectid,
2379                         const char *name, int name_len)
2380 {
2381         struct btrfs_path *path;
2382         struct extent_buffer *leaf;
2383         struct btrfs_dir_item *di;
2384         struct btrfs_key key;
2385         u64 index;
2386         int ret;
2387
2388         path = btrfs_alloc_path();
2389         if (!path)
2390                 return -ENOMEM;
2391
2392         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2393                                    name, name_len, -1);
2394         BUG_ON(!di || IS_ERR(di));
2395
2396         leaf = path->nodes[0];
2397         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2398         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2399         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2400         BUG_ON(ret);
2401         btrfs_release_path(root, path);
2402
2403         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2404                                  objectid, root->root_key.objectid,
2405                                  dir->i_ino, &index, name, name_len);
2406         if (ret < 0) {
2407                 BUG_ON(ret != -ENOENT);
2408                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2409                                                  name, name_len);
2410                 BUG_ON(!di || IS_ERR(di));
2411
2412                 leaf = path->nodes[0];
2413                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2414                 btrfs_release_path(root, path);
2415                 index = key.offset;
2416         }
2417
2418         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2419                                          index, name, name_len, -1);
2420         BUG_ON(!di || IS_ERR(di));
2421
2422         leaf = path->nodes[0];
2423         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2424         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2425         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2426         BUG_ON(ret);
2427         btrfs_release_path(root, path);
2428
2429         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2430         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2431         ret = btrfs_update_inode(trans, root, dir);
2432         BUG_ON(ret);
2433         dir->i_sb->s_dirt = 1;
2434
2435         btrfs_free_path(path);
2436         return 0;
2437 }
2438
2439 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2440 {
2441         struct inode *inode = dentry->d_inode;
2442         int err = 0;
2443         int ret;
2444         struct btrfs_root *root = BTRFS_I(dir)->root;
2445         struct btrfs_trans_handle *trans;
2446         unsigned long nr = 0;
2447
2448         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2449             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2450                 return -ENOTEMPTY;
2451
2452         trans = btrfs_start_transaction(root, 1);
2453         btrfs_set_trans_block_group(trans, dir);
2454
2455         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2456                 err = btrfs_unlink_subvol(trans, root, dir,
2457                                           BTRFS_I(inode)->location.objectid,
2458                                           dentry->d_name.name,
2459                                           dentry->d_name.len);
2460                 goto out;
2461         }
2462
2463         err = btrfs_orphan_add(trans, inode);
2464         if (err)
2465                 goto out;
2466
2467         /* now the directory is empty */
2468         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2469                                  dentry->d_name.name, dentry->d_name.len);
2470         if (!err)
2471                 btrfs_i_size_write(inode, 0);
2472 out:
2473         nr = trans->blocks_used;
2474         ret = btrfs_end_transaction_throttle(trans, root);
2475         btrfs_btree_balance_dirty(root, nr);
2476
2477         if (ret && !err)
2478                 err = ret;
2479         return err;
2480 }
2481
2482 #if 0
2483 /*
2484  * when truncating bytes in a file, it is possible to avoid reading
2485  * the leaves that contain only checksum items.  This can be the
2486  * majority of the IO required to delete a large file, but it must
2487  * be done carefully.
2488  *
2489  * The keys in the level just above the leaves are checked to make sure
2490  * the lowest key in a given leaf is a csum key, and starts at an offset
2491  * after the new  size.
2492  *
2493  * Then the key for the next leaf is checked to make sure it also has
2494  * a checksum item for the same file.  If it does, we know our target leaf
2495  * contains only checksum items, and it can be safely freed without reading
2496  * it.
2497  *
2498  * This is just an optimization targeted at large files.  It may do
2499  * nothing.  It will return 0 unless things went badly.
2500  */
2501 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2502                                      struct btrfs_root *root,
2503                                      struct btrfs_path *path,
2504                                      struct inode *inode, u64 new_size)
2505 {
2506         struct btrfs_key key;
2507         int ret;
2508         int nritems;
2509         struct btrfs_key found_key;
2510         struct btrfs_key other_key;
2511         struct btrfs_leaf_ref *ref;
2512         u64 leaf_gen;
2513         u64 leaf_start;
2514
2515         path->lowest_level = 1;
2516         key.objectid = inode->i_ino;
2517         key.type = BTRFS_CSUM_ITEM_KEY;
2518         key.offset = new_size;
2519 again:
2520         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2521         if (ret < 0)
2522                 goto out;
2523
2524         if (path->nodes[1] == NULL) {
2525                 ret = 0;
2526                 goto out;
2527         }
2528         ret = 0;
2529         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2530         nritems = btrfs_header_nritems(path->nodes[1]);
2531
2532         if (!nritems)
2533                 goto out;
2534
2535         if (path->slots[1] >= nritems)
2536                 goto next_node;
2537
2538         /* did we find a key greater than anything we want to delete? */
2539         if (found_key.objectid > inode->i_ino ||
2540            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2541                 goto out;
2542
2543         /* we check the next key in the node to make sure the leave contains
2544          * only checksum items.  This comparison doesn't work if our
2545          * leaf is the last one in the node
2546          */
2547         if (path->slots[1] + 1 >= nritems) {
2548 next_node:
2549                 /* search forward from the last key in the node, this
2550                  * will bring us into the next node in the tree
2551                  */
2552                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2553
2554                 /* unlikely, but we inc below, so check to be safe */
2555                 if (found_key.offset == (u64)-1)
2556                         goto out;
2557
2558                 /* search_forward needs a path with locks held, do the
2559                  * search again for the original key.  It is possible
2560                  * this will race with a balance and return a path that
2561                  * we could modify, but this drop is just an optimization
2562                  * and is allowed to miss some leaves.
2563                  */
2564                 btrfs_release_path(root, path);
2565                 found_key.offset++;
2566
2567                 /* setup a max key for search_forward */
2568                 other_key.offset = (u64)-1;
2569                 other_key.type = key.type;
2570                 other_key.objectid = key.objectid;
2571
2572                 path->keep_locks = 1;
2573                 ret = btrfs_search_forward(root, &found_key, &other_key,
2574                                            path, 0, 0);
2575                 path->keep_locks = 0;
2576                 if (ret || found_key.objectid != key.objectid ||
2577                     found_key.type != key.type) {
2578                         ret = 0;
2579                         goto out;
2580                 }
2581
2582                 key.offset = found_key.offset;
2583                 btrfs_release_path(root, path);
2584                 cond_resched();
2585                 goto again;
2586         }
2587
2588         /* we know there's one more slot after us in the tree,
2589          * read that key so we can verify it is also a checksum item
2590          */
2591         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2592
2593         if (found_key.objectid < inode->i_ino)
2594                 goto next_key;
2595
2596         if (found_key.type != key.type || found_key.offset < new_size)
2597                 goto next_key;
2598
2599         /*
2600          * if the key for the next leaf isn't a csum key from this objectid,
2601          * we can't be sure there aren't good items inside this leaf.
2602          * Bail out
2603          */
2604         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2605                 goto out;
2606
2607         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2608         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2609         /*
2610          * it is safe to delete this leaf, it contains only
2611          * csum items from this inode at an offset >= new_size
2612          */
2613         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2614         BUG_ON(ret);
2615
2616         if (root->ref_cows && leaf_gen < trans->transid) {
2617                 ref = btrfs_alloc_leaf_ref(root, 0);
2618                 if (ref) {
2619                         ref->root_gen = root->root_key.offset;
2620                         ref->bytenr = leaf_start;
2621                         ref->owner = 0;
2622                         ref->generation = leaf_gen;
2623                         ref->nritems = 0;
2624
2625                         btrfs_sort_leaf_ref(ref);
2626
2627                         ret = btrfs_add_leaf_ref(root, ref, 0);
2628                         WARN_ON(ret);
2629                         btrfs_free_leaf_ref(root, ref);
2630                 } else {
2631                         WARN_ON(1);
2632                 }
2633         }
2634 next_key:
2635         btrfs_release_path(root, path);
2636
2637         if (other_key.objectid == inode->i_ino &&
2638             other_key.type == key.type && other_key.offset > key.offset) {
2639                 key.offset = other_key.offset;
2640                 cond_resched();
2641                 goto again;
2642         }
2643         ret = 0;
2644 out:
2645         /* fixup any changes we've made to the path */
2646         path->lowest_level = 0;
2647         path->keep_locks = 0;
2648         btrfs_release_path(root, path);
2649         return ret;
2650 }
2651
2652 #endif
2653
2654 /*
2655  * this can truncate away extent items, csum items and directory items.
2656  * It starts at a high offset and removes keys until it can't find
2657  * any higher than new_size
2658  *
2659  * csum items that cross the new i_size are truncated to the new size
2660  * as well.
2661  *
2662  * min_type is the minimum key type to truncate down to.  If set to 0, this
2663  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2664  */
2665 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2666                                         struct btrfs_root *root,
2667                                         struct inode *inode,
2668                                         u64 new_size, u32 min_type)
2669 {
2670         int ret;
2671         struct btrfs_path *path;
2672         struct btrfs_key key;
2673         struct btrfs_key found_key;
2674         u32 found_type = (u8)-1;
2675         struct extent_buffer *leaf;
2676         struct btrfs_file_extent_item *fi;
2677         u64 extent_start = 0;
2678         u64 extent_num_bytes = 0;
2679         u64 extent_offset = 0;
2680         u64 item_end = 0;
2681         int found_extent;
2682         int del_item;
2683         int pending_del_nr = 0;
2684         int pending_del_slot = 0;
2685         int extent_type = -1;
2686         int encoding;
2687         u64 mask = root->sectorsize - 1;
2688
2689         if (root->ref_cows)
2690                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2691         path = btrfs_alloc_path();
2692         BUG_ON(!path);
2693         path->reada = -1;
2694
2695         /* FIXME, add redo link to tree so we don't leak on crash */
2696         key.objectid = inode->i_ino;
2697         key.offset = (u64)-1;
2698         key.type = (u8)-1;
2699
2700 search_again:
2701         path->leave_spinning = 1;
2702         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2703         if (ret < 0)
2704                 goto error;
2705
2706         if (ret > 0) {
2707                 /* there are no items in the tree for us to truncate, we're
2708                  * done
2709                  */
2710                 if (path->slots[0] == 0) {
2711                         ret = 0;
2712                         goto error;
2713                 }
2714                 path->slots[0]--;
2715         }
2716
2717         while (1) {
2718                 fi = NULL;
2719                 leaf = path->nodes[0];
2720                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2721                 found_type = btrfs_key_type(&found_key);
2722                 encoding = 0;
2723
2724                 if (found_key.objectid != inode->i_ino)
2725                         break;
2726
2727                 if (found_type < min_type)
2728                         break;
2729
2730                 item_end = found_key.offset;
2731                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2732                         fi = btrfs_item_ptr(leaf, path->slots[0],
2733                                             struct btrfs_file_extent_item);
2734                         extent_type = btrfs_file_extent_type(leaf, fi);
2735                         encoding = btrfs_file_extent_compression(leaf, fi);
2736                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2737                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2738
2739                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2740                                 item_end +=
2741                                     btrfs_file_extent_num_bytes(leaf, fi);
2742                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2743                                 item_end += btrfs_file_extent_inline_len(leaf,
2744                                                                          fi);
2745                         }
2746                         item_end--;
2747                 }
2748                 if (item_end < new_size) {
2749                         if (found_type == BTRFS_DIR_ITEM_KEY)
2750                                 found_type = BTRFS_INODE_ITEM_KEY;
2751                         else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2752                                 found_type = BTRFS_EXTENT_DATA_KEY;
2753                         else if (found_type == BTRFS_EXTENT_DATA_KEY)
2754                                 found_type = BTRFS_XATTR_ITEM_KEY;
2755                         else if (found_type == BTRFS_XATTR_ITEM_KEY)
2756                                 found_type = BTRFS_INODE_REF_KEY;
2757                         else if (found_type)
2758                                 found_type--;
2759                         else
2760                                 break;
2761                         btrfs_set_key_type(&key, found_type);
2762                         goto next;
2763                 }
2764                 if (found_key.offset >= new_size)
2765                         del_item = 1;
2766                 else
2767                         del_item = 0;
2768                 found_extent = 0;
2769
2770                 /* FIXME, shrink the extent if the ref count is only 1 */
2771                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2772                         goto delete;
2773
2774                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2775                         u64 num_dec;
2776                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2777                         if (!del_item && !encoding) {
2778                                 u64 orig_num_bytes =
2779                                         btrfs_file_extent_num_bytes(leaf, fi);
2780                                 extent_num_bytes = new_size -
2781                                         found_key.offset + root->sectorsize - 1;
2782                                 extent_num_bytes = extent_num_bytes &
2783                                         ~((u64)root->sectorsize - 1);
2784                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2785                                                          extent_num_bytes);
2786                                 num_dec = (orig_num_bytes -
2787                                            extent_num_bytes);
2788                                 if (root->ref_cows && extent_start != 0)
2789                                         inode_sub_bytes(inode, num_dec);
2790                                 btrfs_mark_buffer_dirty(leaf);
2791                         } else {
2792                                 extent_num_bytes =
2793                                         btrfs_file_extent_disk_num_bytes(leaf,
2794                                                                          fi);
2795                                 extent_offset = found_key.offset -
2796                                         btrfs_file_extent_offset(leaf, fi);
2797
2798                                 /* FIXME blocksize != 4096 */
2799                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2800                                 if (extent_start != 0) {
2801                                         found_extent = 1;
2802                                         if (root->ref_cows)
2803                                                 inode_sub_bytes(inode, num_dec);
2804                                 }
2805                         }
2806                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2807                         /*
2808                          * we can't truncate inline items that have had
2809                          * special encodings
2810                          */
2811                         if (!del_item &&
2812                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2813                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
2814                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2815                                 u32 size = new_size - found_key.offset;
2816
2817                                 if (root->ref_cows) {
2818                                         inode_sub_bytes(inode, item_end + 1 -
2819                                                         new_size);
2820                                 }
2821                                 size =
2822                                     btrfs_file_extent_calc_inline_size(size);
2823                                 ret = btrfs_truncate_item(trans, root, path,
2824                                                           size, 1);
2825                                 BUG_ON(ret);
2826                         } else if (root->ref_cows) {
2827                                 inode_sub_bytes(inode, item_end + 1 -
2828                                                 found_key.offset);
2829                         }
2830                 }
2831 delete:
2832                 if (del_item) {
2833                         if (!pending_del_nr) {
2834                                 /* no pending yet, add ourselves */
2835                                 pending_del_slot = path->slots[0];
2836                                 pending_del_nr = 1;
2837                         } else if (pending_del_nr &&
2838                                    path->slots[0] + 1 == pending_del_slot) {
2839                                 /* hop on the pending chunk */
2840                                 pending_del_nr++;
2841                                 pending_del_slot = path->slots[0];
2842                         } else {
2843                                 BUG();
2844                         }
2845                 } else {
2846                         break;
2847                 }
2848                 if (found_extent && root->ref_cows) {
2849                         btrfs_set_path_blocking(path);
2850                         ret = btrfs_free_extent(trans, root, extent_start,
2851                                                 extent_num_bytes, 0,
2852                                                 btrfs_header_owner(leaf),
2853                                                 inode->i_ino, extent_offset);
2854                         BUG_ON(ret);
2855                 }
2856 next:
2857                 if (path->slots[0] == 0) {
2858                         if (pending_del_nr)
2859                                 goto del_pending;
2860                         btrfs_release_path(root, path);
2861                         if (found_type == BTRFS_INODE_ITEM_KEY)
2862                                 break;
2863                         goto search_again;
2864                 }
2865
2866                 path->slots[0]--;
2867                 if (pending_del_nr &&
2868                     path->slots[0] + 1 != pending_del_slot) {
2869                         struct btrfs_key debug;
2870 del_pending:
2871                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
2872                                               pending_del_slot);
2873                         ret = btrfs_del_items(trans, root, path,
2874                                               pending_del_slot,
2875                                               pending_del_nr);
2876                         BUG_ON(ret);
2877                         pending_del_nr = 0;
2878                         btrfs_release_path(root, path);
2879                         if (found_type == BTRFS_INODE_ITEM_KEY)
2880                                 break;
2881                         goto search_again;
2882                 }
2883         }
2884         ret = 0;
2885 error:
2886         if (pending_del_nr) {
2887                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2888                                       pending_del_nr);
2889         }
2890         btrfs_free_path(path);
2891         return ret;
2892 }
2893
2894 /*
2895  * taken from block_truncate_page, but does cow as it zeros out
2896  * any bytes left in the last page in the file.
2897  */
2898 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2899 {
2900         struct inode *inode = mapping->host;
2901         struct btrfs_root *root = BTRFS_I(inode)->root;
2902         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2903         struct btrfs_ordered_extent *ordered;
2904         char *kaddr;
2905         u32 blocksize = root->sectorsize;
2906         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2907         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2908         struct page *page;
2909         int ret = 0;
2910         u64 page_start;
2911         u64 page_end;
2912
2913         if ((offset & (blocksize - 1)) == 0)
2914                 goto out;
2915
2916         ret = -ENOMEM;
2917 again:
2918         page = grab_cache_page(mapping, index);
2919         if (!page)
2920                 goto out;
2921
2922         page_start = page_offset(page);
2923         page_end = page_start + PAGE_CACHE_SIZE - 1;
2924
2925         if (!PageUptodate(page)) {
2926                 ret = btrfs_readpage(NULL, page);
2927                 lock_page(page);
2928                 if (page->mapping != mapping) {
2929                         unlock_page(page);
2930                         page_cache_release(page);
2931                         goto again;
2932                 }
2933                 if (!PageUptodate(page)) {
2934                         ret = -EIO;
2935                         goto out_unlock;
2936                 }
2937         }
2938         wait_on_page_writeback(page);
2939
2940         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2941         set_page_extent_mapped(page);
2942
2943         ordered = btrfs_lookup_ordered_extent(inode, page_start);
2944         if (ordered) {
2945                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2946                 unlock_page(page);
2947                 page_cache_release(page);
2948                 btrfs_start_ordered_extent(inode, ordered, 1);
2949                 btrfs_put_ordered_extent(ordered);
2950                 goto again;
2951         }
2952
2953         btrfs_set_extent_delalloc(inode, page_start, page_end);
2954         ret = 0;
2955         if (offset != PAGE_CACHE_SIZE) {
2956                 kaddr = kmap(page);
2957                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2958                 flush_dcache_page(page);
2959                 kunmap(page);
2960         }
2961         ClearPageChecked(page);
2962         set_page_dirty(page);
2963         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2964
2965 out_unlock:
2966         unlock_page(page);
2967         page_cache_release(page);
2968 out:
2969         return ret;
2970 }
2971
2972 int btrfs_cont_expand(struct inode *inode, loff_t size)
2973 {
2974         struct btrfs_trans_handle *trans;
2975         struct btrfs_root *root = BTRFS_I(inode)->root;
2976         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2977         struct extent_map *em;
2978         u64 mask = root->sectorsize - 1;
2979         u64 hole_start = (inode->i_size + mask) & ~mask;
2980         u64 block_end = (size + mask) & ~mask;
2981         u64 last_byte;
2982         u64 cur_offset;
2983         u64 hole_size;
2984         int err;
2985
2986         if (size <= hole_start)
2987                 return 0;
2988
2989         err = btrfs_check_metadata_free_space(root);
2990         if (err)
2991                 return err;
2992
2993         btrfs_truncate_page(inode->i_mapping, inode->i_size);
2994
2995         while (1) {
2996                 struct btrfs_ordered_extent *ordered;
2997                 btrfs_wait_ordered_range(inode, hole_start,
2998                                          block_end - hole_start);
2999                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3000                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3001                 if (!ordered)
3002                         break;
3003                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3004                 btrfs_put_ordered_extent(ordered);
3005         }
3006
3007         trans = btrfs_start_transaction(root, 1);
3008         btrfs_set_trans_block_group(trans, inode);
3009
3010         cur_offset = hole_start;
3011         while (1) {
3012                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3013                                 block_end - cur_offset, 0);
3014                 BUG_ON(IS_ERR(em) || !em);
3015                 last_byte = min(extent_map_end(em), block_end);
3016                 last_byte = (last_byte + mask) & ~mask;
3017                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
3018                         u64 hint_byte = 0;
3019                         hole_size = last_byte - cur_offset;
3020                         err = btrfs_drop_extents(trans, root, inode,
3021                                                  cur_offset,
3022                                                  cur_offset + hole_size,
3023                                                  block_end,
3024                                                  cur_offset, &hint_byte, 1);
3025                         if (err)
3026                                 break;
3027                         err = btrfs_insert_file_extent(trans, root,
3028                                         inode->i_ino, cur_offset, 0,
3029                                         0, hole_size, 0, hole_size,
3030                                         0, 0, 0);
3031                         btrfs_drop_extent_cache(inode, hole_start,
3032                                         last_byte - 1, 0);
3033                 }
3034                 free_extent_map(em);
3035                 cur_offset = last_byte;
3036                 if (err || cur_offset >= block_end)
3037                         break;
3038         }
3039
3040         btrfs_end_transaction(trans, root);
3041         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3042         return err;
3043 }
3044
3045 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3046 {
3047         struct inode *inode = dentry->d_inode;
3048         int err;
3049
3050         err = inode_change_ok(inode, attr);
3051         if (err)
3052                 return err;
3053
3054         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3055                 if (attr->ia_size > inode->i_size) {
3056                         err = btrfs_cont_expand(inode, attr->ia_size);
3057                         if (err)
3058                                 return err;
3059                 } else if (inode->i_size > 0 &&
3060                            attr->ia_size == 0) {
3061
3062                         /* we're truncating a file that used to have good
3063                          * data down to zero.  Make sure it gets into
3064                          * the ordered flush list so that any new writes
3065                          * get down to disk quickly.
3066                          */
3067                         BTRFS_I(inode)->ordered_data_close = 1;
3068                 }
3069         }
3070
3071         err = inode_setattr(inode, attr);
3072
3073         if (!err && ((attr->ia_valid & ATTR_MODE)))
3074                 err = btrfs_acl_chmod(inode);
3075         return err;
3076 }
3077
3078 void btrfs_delete_inode(struct inode *inode)
3079 {
3080         struct btrfs_trans_handle *trans;
3081         struct btrfs_root *root = BTRFS_I(inode)->root;
3082         unsigned long nr;
3083         int ret;
3084
3085         truncate_inode_pages(&inode->i_data, 0);
3086         if (is_bad_inode(inode)) {
3087                 btrfs_orphan_del(NULL, inode);
3088                 goto no_delete;
3089         }
3090         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3091
3092         btrfs_i_size_write(inode, 0);
3093         trans = btrfs_join_transaction(root, 1);
3094
3095         btrfs_set_trans_block_group(trans, inode);
3096         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3097         if (ret) {
3098                 btrfs_orphan_del(NULL, inode);
3099                 goto no_delete_lock;
3100         }
3101
3102         btrfs_orphan_del(trans, inode);
3103
3104         nr = trans->blocks_used;
3105         clear_inode(inode);
3106
3107         btrfs_end_transaction(trans, root);
3108         btrfs_btree_balance_dirty(root, nr);
3109         return;
3110
3111 no_delete_lock:
3112         nr = trans->blocks_used;
3113         btrfs_end_transaction(trans, root);
3114         btrfs_btree_balance_dirty(root, nr);
3115 no_delete:
3116         clear_inode(inode);
3117 }
3118
3119 /*
3120  * this returns the key found in the dir entry in the location pointer.
3121  * If no dir entries were found, location->objectid is 0.
3122  */
3123 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3124                                struct btrfs_key *location)
3125 {
3126         const char *name = dentry->d_name.name;
3127         int namelen = dentry->d_name.len;
3128         struct btrfs_dir_item *di;
3129         struct btrfs_path *path;
3130         struct btrfs_root *root = BTRFS_I(dir)->root;
3131         int ret = 0;
3132
3133         path = btrfs_alloc_path();
3134         BUG_ON(!path);
3135
3136         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3137                                     namelen, 0);
3138         if (IS_ERR(di))
3139                 ret = PTR_ERR(di);
3140
3141         if (!di || IS_ERR(di))
3142                 goto out_err;
3143
3144         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3145 out:
3146         btrfs_free_path(path);
3147         return ret;
3148 out_err:
3149         location->objectid = 0;
3150         goto out;
3151 }
3152
3153 /*
3154  * when we hit a tree root in a directory, the btrfs part of the inode
3155  * needs to be changed to reflect the root directory of the tree root.  This
3156  * is kind of like crossing a mount point.
3157  */
3158 static int fixup_tree_root_location(struct btrfs_root *root,
3159                                     struct inode *dir,
3160                                     struct dentry *dentry,
3161                                     struct btrfs_key *location,
3162                                     struct btrfs_root **sub_root)
3163 {
3164         struct btrfs_path *path;
3165         struct btrfs_root *new_root;
3166         struct btrfs_root_ref *ref;
3167         struct extent_buffer *leaf;
3168         int ret;
3169         int err = 0;
3170
3171         path = btrfs_alloc_path();
3172         if (!path) {
3173                 err = -ENOMEM;
3174                 goto out;
3175         }
3176
3177         err = -ENOENT;
3178         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3179                                   BTRFS_I(dir)->root->root_key.objectid,
3180                                   location->objectid);
3181         if (ret) {
3182                 if (ret < 0)
3183                         err = ret;
3184                 goto out;
3185         }
3186
3187         leaf = path->nodes[0];
3188         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3189         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3190             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3191                 goto out;
3192
3193         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3194                                    (unsigned long)(ref + 1),
3195                                    dentry->d_name.len);
3196         if (ret)
3197                 goto out;
3198
3199         btrfs_release_path(root->fs_info->tree_root, path);
3200
3201         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3202         if (IS_ERR(new_root)) {
3203                 err = PTR_ERR(new_root);
3204                 goto out;
3205         }
3206
3207         if (btrfs_root_refs(&new_root->root_item) == 0) {
3208                 err = -ENOENT;
3209                 goto out;
3210         }
3211
3212         *sub_root = new_root;
3213         location->objectid = btrfs_root_dirid(&new_root->root_item);
3214         location->type = BTRFS_INODE_ITEM_KEY;
3215         location->offset = 0;
3216         err = 0;
3217 out:
3218         btrfs_free_path(path);
3219         return err;
3220 }
3221
3222 static void inode_tree_add(struct inode *inode)
3223 {
3224         struct btrfs_root *root = BTRFS_I(inode)->root;
3225         struct btrfs_inode *entry;
3226         struct rb_node **p;
3227         struct rb_node *parent;
3228
3229 again:
3230         p = &root->inode_tree.rb_node;
3231         parent = NULL;
3232
3233         spin_lock(&root->inode_lock);
3234         while (*p) {
3235                 parent = *p;
3236                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3237
3238                 if (inode->i_ino < entry->vfs_inode.i_ino)
3239                         p = &parent->rb_left;
3240                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3241                         p = &parent->rb_right;
3242                 else {
3243                         WARN_ON(!(entry->vfs_inode.i_state &
3244                                   (I_WILL_FREE | I_FREEING | I_CLEAR)));
3245                         rb_erase(parent, &root->inode_tree);
3246                         RB_CLEAR_NODE(parent);
3247                         spin_unlock(&root->inode_lock);
3248                         goto again;
3249                 }
3250         }
3251         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3252         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3253         spin_unlock(&root->inode_lock);
3254 }
3255
3256 static void inode_tree_del(struct inode *inode)
3257 {
3258         struct btrfs_root *root = BTRFS_I(inode)->root;
3259
3260         spin_lock(&root->inode_lock);
3261         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3262                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3263                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3264         }
3265         spin_unlock(&root->inode_lock);
3266 }
3267
3268 static noinline void init_btrfs_i(struct inode *inode)
3269 {
3270         struct btrfs_inode *bi = BTRFS_I(inode);
3271
3272         bi->generation = 0;
3273         bi->sequence = 0;
3274         bi->last_trans = 0;
3275         bi->logged_trans = 0;
3276         bi->delalloc_bytes = 0;
3277         bi->reserved_bytes = 0;
3278         bi->disk_i_size = 0;
3279         bi->flags = 0;
3280         bi->index_cnt = (u64)-1;
3281         bi->last_unlink_trans = 0;
3282         bi->ordered_data_close = 0;
3283         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3284         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3285                              inode->i_mapping, GFP_NOFS);
3286         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3287                              inode->i_mapping, GFP_NOFS);
3288         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3289         INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3290         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3291         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3292         mutex_init(&BTRFS_I(inode)->extent_mutex);
3293         mutex_init(&BTRFS_I(inode)->log_mutex);
3294 }
3295
3296 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3297 {
3298         struct btrfs_iget_args *args = p;
3299         inode->i_ino = args->ino;
3300         init_btrfs_i(inode);
3301         BTRFS_I(inode)->root = args->root;
3302         btrfs_set_inode_space_info(args->root, inode);
3303         return 0;
3304 }
3305
3306 static int btrfs_find_actor(struct inode *inode, void *opaque)
3307 {
3308         struct btrfs_iget_args *args = opaque;
3309         return args->ino == inode->i_ino &&
3310                 args->root == BTRFS_I(inode)->root;
3311 }
3312
3313 static struct inode *btrfs_iget_locked(struct super_block *s,
3314                                        u64 objectid,
3315                                        struct btrfs_root *root)
3316 {
3317         struct inode *inode;
3318         struct btrfs_iget_args args;
3319         args.ino = objectid;
3320         args.root = root;
3321
3322         inode = iget5_locked(s, objectid, btrfs_find_actor,
3323                              btrfs_init_locked_inode,
3324                              (void *)&args);
3325         return inode;
3326 }
3327
3328 /* Get an inode object given its location and corresponding root.
3329  * Returns in *is_new if the inode was read from disk
3330  */
3331 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3332                          struct btrfs_root *root)
3333 {
3334         struct inode *inode;
3335
3336         inode = btrfs_iget_locked(s, location->objectid, root);
3337         if (!inode)
3338                 return ERR_PTR(-ENOMEM);
3339
3340         if (inode->i_state & I_NEW) {
3341                 BTRFS_I(inode)->root = root;
3342                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3343                 btrfs_read_locked_inode(inode);
3344
3345                 inode_tree_add(inode);
3346                 unlock_new_inode(inode);
3347         }
3348
3349         return inode;
3350 }
3351
3352 static struct inode *new_simple_dir(struct super_block *s,
3353                                     struct btrfs_key *key,
3354                                     struct btrfs_root *root)
3355 {
3356         struct inode *inode = new_inode(s);
3357
3358         if (!inode)
3359                 return ERR_PTR(-ENOMEM);
3360
3361         init_btrfs_i(inode);
3362
3363         BTRFS_I(inode)->root = root;
3364         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3365         BTRFS_I(inode)->dummy_inode = 1;
3366
3367         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3368         inode->i_op = &simple_dir_inode_operations;
3369         inode->i_fop = &simple_dir_operations;
3370         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3371         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3372
3373         return inode;
3374 }
3375
3376 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3377 {
3378         struct inode *inode;
3379         struct btrfs_root *root = BTRFS_I(dir)->root;
3380         struct btrfs_root *sub_root = root;
3381         struct btrfs_key location;
3382         int ret;
3383
3384         if (dentry->d_name.len > BTRFS_NAME_LEN)
3385                 return ERR_PTR(-ENAMETOOLONG);
3386
3387         ret = btrfs_inode_by_name(dir, dentry, &location);
3388
3389         if (ret < 0)
3390                 return ERR_PTR(ret);
3391
3392         if (location.objectid == 0)
3393                 return NULL;
3394
3395         if (location.type == BTRFS_INODE_ITEM_KEY) {
3396                 inode = btrfs_iget(dir->i_sb, &location, root);
3397                 return inode;
3398         }
3399
3400         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3401
3402         ret = fixup_tree_root_location(root, dir, dentry,
3403                                        &location, &sub_root);
3404         if (ret < 0) {
3405                 if (ret != -ENOENT)
3406                         inode = ERR_PTR(ret);
3407                 else
3408                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
3409         } else {
3410                 inode = btrfs_iget(dir->i_sb, &location, sub_root);
3411         }
3412         return inode;
3413 }
3414
3415 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3416                                    struct nameidata *nd)
3417 {
3418         struct inode *inode;
3419
3420         inode = btrfs_lookup_dentry(dir, dentry);
3421         if (IS_ERR(inode))
3422                 return ERR_CAST(inode);
3423
3424         return d_splice_alias(inode, dentry);
3425 }
3426
3427 static unsigned char btrfs_filetype_table[] = {
3428         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3429 };
3430
3431 static int btrfs_real_readdir(struct file *filp, void *dirent,
3432                               filldir_t filldir)
3433 {
3434         struct inode *inode = filp->f_dentry->d_inode;
3435         struct btrfs_root *root = BTRFS_I(inode)->root;
3436         struct btrfs_item *item;
3437         struct btrfs_dir_item *di;
3438         struct btrfs_key key;
3439         struct btrfs_key found_key;
3440         struct btrfs_path *path;
3441         int ret;
3442         u32 nritems;
3443         struct extent_buffer *leaf;
3444         int slot;
3445         int advance;
3446         unsigned char d_type;
3447         int over = 0;
3448         u32 di_cur;
3449         u32 di_total;
3450         u32 di_len;
3451         int key_type = BTRFS_DIR_INDEX_KEY;
3452         char tmp_name[32];
3453         char *name_ptr;
3454         int name_len;
3455
3456         /* FIXME, use a real flag for deciding about the key type */
3457         if (root->fs_info->tree_root == root)
3458                 key_type = BTRFS_DIR_ITEM_KEY;
3459
3460         /* special case for "." */
3461         if (filp->f_pos == 0) {
3462                 over = filldir(dirent, ".", 1,
3463                                1, inode->i_ino,
3464                                DT_DIR);
3465                 if (over)
3466                         return 0;
3467                 filp->f_pos = 1;
3468         }
3469         /* special case for .., just use the back ref */
3470         if (filp->f_pos == 1) {
3471                 u64 pino = parent_ino(filp->f_path.dentry);
3472                 over = filldir(dirent, "..", 2,
3473                                2, pino, DT_DIR);
3474                 if (over)
3475                         return 0;
3476                 filp->f_pos = 2;
3477         }
3478         path = btrfs_alloc_path();
3479         path->reada = 2;
3480
3481         btrfs_set_key_type(&key, key_type);
3482         key.offset = filp->f_pos;
3483         key.objectid = inode->i_ino;
3484
3485         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3486         if (ret < 0)
3487                 goto err;
3488         advance = 0;
3489
3490         while (1) {
3491                 leaf = path->nodes[0];
3492                 nritems = btrfs_header_nritems(leaf);
3493                 slot = path->slots[0];
3494                 if (advance || slot >= nritems) {
3495                         if (slot >= nritems - 1) {
3496                                 ret = btrfs_next_leaf(root, path);
3497                                 if (ret)
3498                                         break;
3499                                 leaf = path->nodes[0];
3500                                 nritems = btrfs_header_nritems(leaf);
3501                                 slot = path->slots[0];
3502                         } else {
3503                                 slot++;
3504                                 path->slots[0]++;
3505                         }
3506                 }
3507
3508                 advance = 1;
3509                 item = btrfs_item_nr(leaf, slot);
3510                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3511
3512                 if (found_key.objectid != key.objectid)
3513                         break;
3514                 if (btrfs_key_type(&found_key) != key_type)
3515                         break;
3516                 if (found_key.offset < filp->f_pos)
3517                         continue;
3518
3519                 filp->f_pos = found_key.offset;
3520
3521                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3522                 di_cur = 0;
3523                 di_total = btrfs_item_size(leaf, item);
3524
3525                 while (di_cur < di_total) {
3526                         struct btrfs_key location;
3527
3528                         name_len = btrfs_dir_name_len(leaf, di);
3529                         if (name_len <= sizeof(tmp_name)) {
3530                                 name_ptr = tmp_name;
3531                         } else {
3532                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3533                                 if (!name_ptr) {
3534                                         ret = -ENOMEM;
3535                                         goto err;
3536                                 }
3537                         }
3538                         read_extent_buffer(leaf, name_ptr,
3539                                            (unsigned long)(di + 1), name_len);
3540
3541                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3542                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3543
3544                         /* is this a reference to our own snapshot? If so
3545                          * skip it
3546                          */
3547                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3548                             location.objectid == root->root_key.objectid) {
3549                                 over = 0;
3550                                 goto skip;
3551                         }
3552                         over = filldir(dirent, name_ptr, name_len,
3553                                        found_key.offset, location.objectid,
3554                                        d_type);
3555
3556 skip:
3557                         if (name_ptr != tmp_name)
3558                                 kfree(name_ptr);
3559
3560                         if (over)
3561                                 goto nopos;
3562                         di_len = btrfs_dir_name_len(leaf, di) +
3563                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3564                         di_cur += di_len;
3565                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3566                 }
3567         }
3568
3569         /* Reached end of directory/root. Bump pos past the last item. */
3570         if (key_type == BTRFS_DIR_INDEX_KEY)
3571                 filp->f_pos = INT_LIMIT(off_t);
3572         else
3573                 filp->f_pos++;
3574 nopos:
3575         ret = 0;
3576 err:
3577         btrfs_free_path(path);
3578         return ret;
3579 }
3580
3581 int btrfs_write_inode(struct inode *inode, int wait)
3582 {
3583         struct btrfs_root *root = BTRFS_I(inode)->root;
3584         struct btrfs_trans_handle *trans;
3585         int ret = 0;
3586
3587         if (root->fs_info->btree_inode == inode)
3588                 return 0;
3589
3590         if (wait) {
3591                 trans = btrfs_join_transaction(root, 1);
3592                 btrfs_set_trans_block_group(trans, inode);
3593                 ret = btrfs_commit_transaction(trans, root);
3594         }
3595         return ret;
3596 }
3597
3598 /*
3599  * This is somewhat expensive, updating the tree every time the
3600  * inode changes.  But, it is most likely to find the inode in cache.
3601  * FIXME, needs more benchmarking...there are no reasons other than performance
3602  * to keep or drop this code.
3603  */
3604 void btrfs_dirty_inode(struct inode *inode)
3605 {
3606         struct btrfs_root *root = BTRFS_I(inode)->root;
3607         struct btrfs_trans_handle *trans;
3608
3609         trans = btrfs_join_transaction(root, 1);
3610         btrfs_set_trans_block_group(trans, inode);
3611         btrfs_update_inode(trans, root, inode);
3612         btrfs_end_transaction(trans, root);
3613 }
3614
3615 /*
3616  * find the highest existing sequence number in a directory
3617  * and then set the in-memory index_cnt variable to reflect
3618  * free sequence numbers
3619  */
3620 static int btrfs_set_inode_index_count(struct inode *inode)
3621 {
3622         struct btrfs_root *root = BTRFS_I(inode)->root;
3623         struct btrfs_key key, found_key;
3624         struct btrfs_path *path;
3625         struct extent_buffer *leaf;
3626         int ret;
3627
3628         key.objectid = inode->i_ino;
3629         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3630         key.offset = (u64)-1;
3631
3632         path = btrfs_alloc_path();
3633         if (!path)
3634                 return -ENOMEM;
3635
3636         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3637         if (ret < 0)
3638                 goto out;
3639         /* FIXME: we should be able to handle this */
3640         if (ret == 0)
3641                 goto out;
3642         ret = 0;
3643
3644         /*
3645          * MAGIC NUMBER EXPLANATION:
3646          * since we search a directory based on f_pos we have to start at 2
3647          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3648          * else has to start at 2
3649          */
3650         if (path->slots[0] == 0) {
3651                 BTRFS_I(inode)->index_cnt = 2;
3652                 goto out;
3653         }
3654
3655         path->slots[0]--;
3656
3657         leaf = path->nodes[0];
3658         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3659
3660         if (found_key.objectid != inode->i_ino ||
3661             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3662                 BTRFS_I(inode)->index_cnt = 2;
3663                 goto out;
3664         }
3665
3666         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3667 out:
3668         btrfs_free_path(path);
3669         return ret;
3670 }
3671
3672 /*
3673  * helper to find a free sequence number in a given directory.  This current
3674  * code is very simple, later versions will do smarter things in the btree
3675  */
3676 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3677 {
3678         int ret = 0;
3679
3680         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3681                 ret = btrfs_set_inode_index_count(dir);
3682                 if (ret)
3683                         return ret;
3684         }
3685
3686         *index = BTRFS_I(dir)->index_cnt;
3687         BTRFS_I(dir)->index_cnt++;
3688
3689         return ret;
3690 }
3691
3692 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3693                                      struct btrfs_root *root,
3694                                      struct inode *dir,
3695                                      const char *name, int name_len,
3696                                      u64 ref_objectid, u64 objectid,
3697                                      u64 alloc_hint, int mode, u64 *index)
3698 {
3699         struct inode *inode;
3700         struct btrfs_inode_item *inode_item;
3701         struct btrfs_key *location;
3702         struct btrfs_path *path;
3703         struct btrfs_inode_ref *ref;
3704         struct btrfs_key key[2];
3705         u32 sizes[2];
3706         unsigned long ptr;
3707         int ret;
3708         int owner;
3709
3710         path = btrfs_alloc_path();
3711         BUG_ON(!path);
3712
3713         inode = new_inode(root->fs_info->sb);
3714         if (!inode)
3715                 return ERR_PTR(-ENOMEM);
3716
3717         if (dir) {
3718                 ret = btrfs_set_inode_index(dir, index);
3719                 if (ret) {
3720                         iput(inode);
3721                         return ERR_PTR(ret);
3722                 }
3723         }
3724         /*
3725          * index_cnt is ignored for everything but a dir,
3726          * btrfs_get_inode_index_count has an explanation for the magic
3727          * number
3728          */
3729         init_btrfs_i(inode);
3730         BTRFS_I(inode)->index_cnt = 2;
3731         BTRFS_I(inode)->root = root;
3732         BTRFS_I(inode)->generation = trans->transid;
3733         btrfs_set_inode_space_info(root, inode);
3734
3735         if (mode & S_IFDIR)
3736                 owner = 0;
3737         else
3738                 owner = 1;
3739         BTRFS_I(inode)->block_group =
3740                         btrfs_find_block_group(root, 0, alloc_hint, owner);
3741
3742         key[0].objectid = objectid;
3743         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3744         key[0].offset = 0;
3745
3746         key[1].objectid = objectid;
3747         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3748         key[1].offset = ref_objectid;
3749
3750         sizes[0] = sizeof(struct btrfs_inode_item);
3751         sizes[1] = name_len + sizeof(*ref);
3752
3753         path->leave_spinning = 1;
3754         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3755         if (ret != 0)
3756                 goto fail;
3757
3758         inode->i_uid = current_fsuid();
3759
3760         if (dir && (dir->i_mode & S_ISGID)) {
3761                 inode->i_gid = dir->i_gid;
3762                 if (S_ISDIR(mode))
3763                         mode |= S_ISGID;
3764         } else
3765                 inode->i_gid = current_fsgid();
3766
3767         inode->i_mode = mode;
3768         inode->i_ino = objectid;
3769         inode_set_bytes(inode, 0);
3770         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3771         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3772                                   struct btrfs_inode_item);
3773         fill_inode_item(trans, path->nodes[0], inode_item, inode);
3774
3775         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3776                              struct btrfs_inode_ref);
3777         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3778         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3779         ptr = (unsigned long)(ref + 1);
3780         write_extent_buffer(path->nodes[0], name, ptr, name_len);
3781
3782         btrfs_mark_buffer_dirty(path->nodes[0]);
3783         btrfs_free_path(path);
3784
3785         location = &BTRFS_I(inode)->location;
3786         location->objectid = objectid;
3787         location->offset = 0;
3788         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3789
3790         btrfs_inherit_iflags(inode, dir);
3791
3792         if ((mode & S_IFREG)) {
3793                 if (btrfs_test_opt(root, NODATASUM))
3794                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
3795                 if (btrfs_test_opt(root, NODATACOW))
3796                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
3797         }
3798
3799         insert_inode_hash(inode);
3800         inode_tree_add(inode);
3801         return inode;
3802 fail:
3803         if (dir)
3804                 BTRFS_I(dir)->index_cnt--;
3805         btrfs_free_path(path);
3806         iput(inode);
3807         return ERR_PTR(ret);
3808 }
3809
3810 static inline u8 btrfs_inode_type(struct inode *inode)
3811 {
3812         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3813 }
3814
3815 /*
3816  * utility function to add 'inode' into 'parent_inode' with
3817  * a give name and a given sequence number.
3818  * if 'add_backref' is true, also insert a backref from the
3819  * inode to the parent directory.
3820  */
3821 int btrfs_add_link(struct btrfs_trans_handle *trans,
3822                    struct inode *parent_inode, struct inode *inode,
3823                    const char *name, int name_len, int add_backref, u64 index)
3824 {
3825         int ret = 0;
3826         struct btrfs_key key;
3827         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3828
3829         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
3830                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
3831         } else {
3832                 key.objectid = inode->i_ino;
3833                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3834                 key.offset = 0;
3835         }
3836
3837         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
3838                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
3839                                          key.objectid, root->root_key.objectid,
3840                                          parent_inode->i_ino,
3841                                          index, name, name_len);
3842         } else if (add_backref) {
3843                 ret = btrfs_insert_inode_ref(trans, root,
3844                                              name, name_len, inode->i_ino,
3845                                              parent_inode->i_ino, index);
3846         }
3847
3848         if (ret == 0) {
3849                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
3850                                             parent_inode->i_ino, &key,
3851                                             btrfs_inode_type(inode), index);
3852                 BUG_ON(ret);
3853
3854                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3855                                    name_len * 2);
3856                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3857                 ret = btrfs_update_inode(trans, root, parent_inode);
3858         }
3859         return ret;
3860 }
3861
3862 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3863                             struct dentry *dentry, struct inode *inode,
3864                             int backref, u64 index)
3865 {
3866         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3867                                  inode, dentry->d_name.name,
3868                                  dentry->d_name.len, backref, index);
3869         if (!err) {
3870                 d_instantiate(dentry, inode);
3871                 return 0;
3872         }
3873         if (err > 0)
3874                 err = -EEXIST;
3875         return err;
3876 }
3877
3878 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3879                         int mode, dev_t rdev)
3880 {
3881         struct btrfs_trans_handle *trans;
3882         struct btrfs_root *root = BTRFS_I(dir)->root;
3883         struct inode *inode = NULL;
3884         int err;
3885         int drop_inode = 0;
3886         u64 objectid;
3887         unsigned long nr = 0;
3888         u64 index = 0;
3889
3890         if (!new_valid_dev(rdev))
3891                 return -EINVAL;
3892
3893         err = btrfs_check_metadata_free_space(root);
3894         if (err)
3895                 goto fail;
3896
3897         trans = btrfs_start_transaction(root, 1);
3898         btrfs_set_trans_block_group(trans, dir);
3899
3900         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3901         if (err) {
3902                 err = -ENOSPC;
3903                 goto out_unlock;
3904         }
3905
3906         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3907                                 dentry->d_name.len,
3908                                 dentry->d_parent->d_inode->i_ino, objectid,
3909                                 BTRFS_I(dir)->block_group, mode, &index);
3910         err = PTR_ERR(inode);
3911         if (IS_ERR(inode))
3912                 goto out_unlock;
3913
3914         err = btrfs_init_inode_security(inode, dir);
3915         if (err) {
3916                 drop_inode = 1;
3917                 goto out_unlock;
3918         }
3919
3920         btrfs_set_trans_block_group(trans, inode);
3921         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3922         if (err)
3923                 drop_inode = 1;
3924         else {
3925                 inode->i_op = &btrfs_special_inode_operations;
3926                 init_special_inode(inode, inode->i_mode, rdev);
3927                 btrfs_update_inode(trans, root, inode);
3928         }
3929         btrfs_update_inode_block_group(trans, inode);
3930         btrfs_update_inode_block_group(trans, dir);
3931 out_unlock:
3932         nr = trans->blocks_used;
3933         btrfs_end_transaction_throttle(trans, root);
3934 fail:
3935         if (drop_inode) {
3936                 inode_dec_link_count(inode);
3937                 iput(inode);
3938         }
3939         btrfs_btree_balance_dirty(root, nr);
3940         return err;
3941 }
3942
3943 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3944                         int mode, struct nameidata *nd)
3945 {
3946         struct btrfs_trans_handle *trans;
3947         struct btrfs_root *root = BTRFS_I(dir)->root;
3948         struct inode *inode = NULL;
3949         int err;
3950         int drop_inode = 0;
3951         unsigned long nr = 0;
3952         u64 objectid;
3953         u64 index = 0;
3954
3955         err = btrfs_check_metadata_free_space(root);
3956         if (err)
3957                 goto fail;
3958         trans = btrfs_start_transaction(root, 1);
3959         btrfs_set_trans_block_group(trans, dir);
3960
3961         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3962         if (err) {
3963                 err = -ENOSPC;
3964                 goto out_unlock;
3965         }
3966
3967         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3968                                 dentry->d_name.len,
3969                                 dentry->d_parent->d_inode->i_ino,
3970                                 objectid, BTRFS_I(dir)->block_group, mode,
3971                                 &index);
3972         err = PTR_ERR(inode);
3973         if (IS_ERR(inode))
3974                 goto out_unlock;
3975
3976         err = btrfs_init_inode_security(inode, dir);
3977         if (err) {
3978                 drop_inode = 1;
3979                 goto out_unlock;
3980         }
3981
3982         btrfs_set_trans_block_group(trans, inode);
3983         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3984         if (err)
3985                 drop_inode = 1;
3986         else {
3987                 inode->i_mapping->a_ops = &btrfs_aops;
3988                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3989                 inode->i_fop = &btrfs_file_operations;
3990                 inode->i_op = &btrfs_file_inode_operations;
3991                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3992         }
3993         btrfs_update_inode_block_group(trans, inode);
3994         btrfs_update_inode_block_group(trans, dir);
3995 out_unlock:
3996         nr = trans->blocks_used;
3997         btrfs_end_transaction_throttle(trans, root);
3998 fail:
3999         if (drop_inode) {
4000                 inode_dec_link_count(inode);
4001                 iput(inode);
4002         }
4003         btrfs_btree_balance_dirty(root, nr);
4004         return err;
4005 }
4006
4007 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4008                       struct dentry *dentry)
4009 {
4010         struct btrfs_trans_handle *trans;
4011         struct btrfs_root *root = BTRFS_I(dir)->root;
4012         struct inode *inode = old_dentry->d_inode;
4013         u64 index;
4014         unsigned long nr = 0;
4015         int err;
4016         int drop_inode = 0;
4017
4018         if (inode->i_nlink == 0)
4019                 return -ENOENT;
4020
4021         btrfs_inc_nlink(inode);
4022         err = btrfs_check_metadata_free_space(root);
4023         if (err)
4024                 goto fail;
4025         err = btrfs_set_inode_index(dir, &index);
4026         if (err)
4027                 goto fail;
4028
4029         trans = btrfs_start_transaction(root, 1);
4030
4031         btrfs_set_trans_block_group(trans, dir);
4032         atomic_inc(&inode->i_count);
4033
4034         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4035
4036         if (err)
4037                 drop_inode = 1;
4038
4039         btrfs_update_inode_block_group(trans, dir);
4040         err = btrfs_update_inode(trans, root, inode);
4041
4042         if (err)
4043                 drop_inode = 1;
4044
4045         nr = trans->blocks_used;
4046
4047         btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4048         btrfs_end_transaction_throttle(trans, root);
4049 fail:
4050         if (drop_inode) {
4051                 inode_dec_link_count(inode);
4052                 iput(inode);
4053         }
4054         btrfs_btree_balance_dirty(root, nr);
4055         return err;
4056 }
4057
4058 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4059 {
4060         struct inode *inode = NULL;
4061         struct btrfs_trans_handle *trans;
4062         struct btrfs_root *root = BTRFS_I(dir)->root;
4063         int err = 0;
4064         int drop_on_err = 0;
4065         u64 objectid = 0;
4066         u64 index = 0;
4067         unsigned long nr = 1;
4068
4069         err = btrfs_check_metadata_free_space(root);
4070         if (err)
4071                 goto out_unlock;
4072
4073         trans = btrfs_start_transaction(root, 1);
4074         btrfs_set_trans_block_group(trans, dir);
4075
4076         if (IS_ERR(trans)) {
4077                 err = PTR_ERR(trans);
4078                 goto out_unlock;
4079         }
4080
4081         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4082         if (err) {
4083                 err = -ENOSPC;
4084                 goto out_unlock;
4085         }
4086
4087         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4088                                 dentry->d_name.len,
4089                                 dentry->d_parent->d_inode->i_ino, objectid,
4090                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4091                                 &index);
4092         if (IS_ERR(inode)) {
4093                 err = PTR_ERR(inode);
4094                 goto out_fail;
4095         }
4096
4097         drop_on_err = 1;
4098
4099         err = btrfs_init_inode_security(inode, dir);
4100         if (err)
4101                 goto out_fail;
4102
4103         inode->i_op = &btrfs_dir_inode_operations;
4104         inode->i_fop = &btrfs_dir_file_operations;
4105         btrfs_set_trans_block_group(trans, inode);
4106
4107         btrfs_i_size_write(inode, 0);
4108         err = btrfs_update_inode(trans, root, inode);
4109         if (err)
4110                 goto out_fail;
4111
4112         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4113                                  inode, dentry->d_name.name,
4114                                  dentry->d_name.len, 0, index);
4115         if (err)
4116                 goto out_fail;
4117
4118         d_instantiate(dentry, inode);
4119         drop_on_err = 0;
4120         btrfs_update_inode_block_group(trans, inode);
4121         btrfs_update_inode_block_group(trans, dir);
4122
4123 out_fail:
4124         nr = trans->blocks_used;
4125         btrfs_end_transaction_throttle(trans, root);
4126
4127 out_unlock:
4128         if (drop_on_err)
4129                 iput(inode);
4130         btrfs_btree_balance_dirty(root, nr);
4131         return err;
4132 }
4133
4134 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4135  * and an extent that you want to insert, deal with overlap and insert
4136  * the new extent into the tree.
4137  */
4138 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4139                                 struct extent_map *existing,
4140                                 struct extent_map *em,
4141                                 u64 map_start, u64 map_len)
4142 {
4143         u64 start_diff;
4144
4145         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4146         start_diff = map_start - em->start;
4147         em->start = map_start;
4148         em->len = map_len;
4149         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4150             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4151                 em->block_start += start_diff;
4152                 em->block_len -= start_diff;
4153         }
4154         return add_extent_mapping(em_tree, em);
4155 }
4156
4157 static noinline int uncompress_inline(struct btrfs_path *path,
4158                                       struct inode *inode, struct page *page,
4159                                       size_t pg_offset, u64 extent_offset,
4160                                       struct btrfs_file_extent_item *item)
4161 {
4162         int ret;
4163         struct extent_buffer *leaf = path->nodes[0];
4164         char *tmp;
4165         size_t max_size;
4166         unsigned long inline_size;
4167         unsigned long ptr;
4168
4169         WARN_ON(pg_offset != 0);
4170         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4171         inline_size = btrfs_file_extent_inline_item_len(leaf,
4172                                         btrfs_item_nr(leaf, path->slots[0]));
4173         tmp = kmalloc(inline_size, GFP_NOFS);
4174         ptr = btrfs_file_extent_inline_start(item);
4175
4176         read_extent_buffer(leaf, tmp, ptr, inline_size);
4177
4178         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4179         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4180                                     inline_size, max_size);
4181         if (ret) {
4182                 char *kaddr = kmap_atomic(page, KM_USER0);
4183                 unsigned long copy_size = min_t(u64,
4184                                   PAGE_CACHE_SIZE - pg_offset,
4185                                   max_size - extent_offset);
4186                 memset(kaddr + pg_offset, 0, copy_size);
4187                 kunmap_atomic(kaddr, KM_USER0);
4188         }
4189         kfree(tmp);
4190         return 0;
4191 }
4192
4193 /*
4194  * a bit scary, this does extent mapping from logical file offset to the disk.
4195  * the ugly parts come from merging extents from the disk with the in-ram
4196  * representation.  This gets more complex because of the data=ordered code,
4197  * where the in-ram extents might be locked pending data=ordered completion.
4198  *
4199  * This also copies inline extents directly into the page.
4200  */
4201
4202 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4203                                     size_t pg_offset, u64 start, u64 len,
4204                                     int create)
4205 {
4206         int ret;
4207         int err = 0;
4208         u64 bytenr;
4209         u64 extent_start = 0;
4210         u64 extent_end = 0;
4211         u64 objectid = inode->i_ino;
4212         u32 found_type;
4213         struct btrfs_path *path = NULL;
4214         struct btrfs_root *root = BTRFS_I(inode)->root;
4215         struct btrfs_file_extent_item *item;
4216         struct extent_buffer *leaf;
4217         struct btrfs_key found_key;
4218         struct extent_map *em = NULL;
4219         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4220         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4221         struct btrfs_trans_handle *trans = NULL;
4222         int compressed;
4223
4224 again:
4225         read_lock(&em_tree->lock);
4226         em = lookup_extent_mapping(em_tree, start, len);
4227         if (em)
4228                 em->bdev = root->fs_info->fs_devices->latest_bdev;
4229         read_unlock(&em_tree->lock);
4230
4231         if (em) {
4232                 if (em->start > start || em->start + em->len <= start)
4233                         free_extent_map(em);
4234                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4235                         free_extent_map(em);
4236                 else
4237                         goto out;
4238         }
4239         em = alloc_extent_map(GFP_NOFS);
4240         if (!em) {
4241                 err = -ENOMEM;
4242                 goto out;
4243         }
4244         em->bdev = root->fs_info->fs_devices->latest_bdev;
4245         em->start = EXTENT_MAP_HOLE;
4246         em->orig_start = EXTENT_MAP_HOLE;
4247         em->len = (u64)-1;
4248         em->block_len = (u64)-1;
4249
4250         if (!path) {
4251                 path = btrfs_alloc_path();
4252                 BUG_ON(!path);
4253         }
4254
4255         ret = btrfs_lookup_file_extent(trans, root, path,
4256                                        objectid, start, trans != NULL);
4257         if (ret < 0) {
4258                 err = ret;
4259                 goto out;
4260         }
4261
4262         if (ret != 0) {
4263                 if (path->slots[0] == 0)
4264                         goto not_found;
4265                 path->slots[0]--;
4266         }
4267
4268         leaf = path->nodes[0];
4269         item = btrfs_item_ptr(leaf, path->slots[0],
4270                               struct btrfs_file_extent_item);
4271         /* are we inside the extent that was found? */
4272         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4273         found_type = btrfs_key_type(&found_key);
4274         if (found_key.objectid != objectid ||
4275             found_type != BTRFS_EXTENT_DATA_KEY) {
4276                 goto not_found;
4277         }
4278
4279         found_type = btrfs_file_extent_type(leaf, item);
4280         extent_start = found_key.offset;
4281         compressed = btrfs_file_extent_compression(leaf, item);
4282         if (found_type == BTRFS_FILE_EXTENT_REG ||
4283             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4284                 extent_end = extent_start +
4285                        btrfs_file_extent_num_bytes(leaf, item);
4286         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4287                 size_t size;
4288                 size = btrfs_file_extent_inline_len(leaf, item);
4289                 extent_end = (extent_start + size + root->sectorsize - 1) &
4290                         ~((u64)root->sectorsize - 1);
4291         }
4292
4293         if (start >= extent_end) {
4294                 path->slots[0]++;
4295                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4296                         ret = btrfs_next_leaf(root, path);
4297                         if (ret < 0) {
4298                                 err = ret;
4299                                 goto out;
4300                         }
4301                         if (ret > 0)
4302                                 goto not_found;
4303                         leaf = path->nodes[0];
4304                 }
4305                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4306                 if (found_key.objectid != objectid ||
4307                     found_key.type != BTRFS_EXTENT_DATA_KEY)
4308                         goto not_found;
4309                 if (start + len <= found_key.offset)
4310                         goto not_found;
4311                 em->start = start;
4312                 em->len = found_key.offset - start;
4313                 goto not_found_em;
4314         }
4315
4316         if (found_type == BTRFS_FILE_EXTENT_REG ||
4317             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4318                 em->start = extent_start;
4319                 em->len = extent_end - extent_start;
4320                 em->orig_start = extent_start -
4321                                  btrfs_file_extent_offset(leaf, item);
4322                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4323                 if (bytenr == 0) {
4324                         em->block_start = EXTENT_MAP_HOLE;
4325                         goto insert;
4326                 }
4327                 if (compressed) {
4328                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4329                         em->block_start = bytenr;
4330                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4331                                                                          item);
4332                 } else {
4333                         bytenr += btrfs_file_extent_offset(leaf, item);
4334                         em->block_start = bytenr;
4335                         em->block_len = em->len;
4336                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4337                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4338                 }
4339                 goto insert;
4340         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4341                 unsigned long ptr;
4342                 char *map;
4343                 size_t size;
4344                 size_t extent_offset;
4345                 size_t copy_size;
4346
4347                 em->block_start = EXTENT_MAP_INLINE;
4348                 if (!page || create) {
4349                         em->start = extent_start;
4350                         em->len = extent_end - extent_start;
4351                         goto out;
4352                 }
4353
4354                 size = btrfs_file_extent_inline_len(leaf, item);
4355                 extent_offset = page_offset(page) + pg_offset - extent_start;
4356                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4357                                 size - extent_offset);
4358                 em->start = extent_start + extent_offset;
4359                 em->len = (copy_size + root->sectorsize - 1) &
4360                         ~((u64)root->sectorsize - 1);
4361                 em->orig_start = EXTENT_MAP_INLINE;
4362                 if (compressed)
4363                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4364                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4365                 if (create == 0 && !PageUptodate(page)) {
4366                         if (btrfs_file_extent_compression(leaf, item) ==
4367                             BTRFS_COMPRESS_ZLIB) {
4368                                 ret = uncompress_inline(path, inode, page,
4369                                                         pg_offset,
4370                                                         extent_offset, item);
4371                                 BUG_ON(ret);
4372                         } else {
4373                                 map = kmap(page);
4374                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4375                                                    copy_size);
4376                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4377                                         memset(map + pg_offset + copy_size, 0,
4378                                                PAGE_CACHE_SIZE - pg_offset -
4379                                                copy_size);
4380                                 }
4381                                 kunmap(page);
4382                         }
4383                         flush_dcache_page(page);
4384                 } else if (create && PageUptodate(page)) {
4385                         if (!trans) {
4386                                 kunmap(page);
4387                                 free_extent_map(em);
4388                                 em = NULL;
4389                                 btrfs_release_path(root, path);
4390                                 trans = btrfs_join_transaction(root, 1);
4391                                 goto again;
4392                         }
4393                         map = kmap(page);
4394                         write_extent_buffer(leaf, map + pg_offset, ptr,
4395                                             copy_size);
4396                         kunmap(page);
4397                         btrfs_mark_buffer_dirty(leaf);
4398                 }
4399                 set_extent_uptodate(io_tree, em->start,
4400                                     extent_map_end(em) - 1, GFP_NOFS);
4401                 goto insert;
4402         } else {
4403                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4404                 WARN_ON(1);
4405         }
4406 not_found:
4407         em->start = start;
4408         em->len = len;
4409 not_found_em:
4410         em->block_start = EXTENT_MAP_HOLE;
4411         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4412 insert:
4413         btrfs_release_path(root, path);
4414         if (em->start > start || extent_map_end(em) <= start) {
4415                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4416                        "[%llu %llu]\n", (unsigned long long)em->start,
4417                        (unsigned long long)em->len,
4418                        (unsigned long long)start,
4419                        (unsigned long long)len);
4420                 err = -EIO;
4421                 goto out;
4422         }
4423
4424         err = 0;
4425         write_lock(&em_tree->lock);
4426         ret = add_extent_mapping(em_tree, em);
4427         /* it is possible that someone inserted the extent into the tree
4428          * while we had the lock dropped.  It is also possible that
4429          * an overlapping map exists in the tree
4430          */
4431         if (ret == -EEXIST) {
4432                 struct extent_map *existing;
4433
4434                 ret = 0;
4435
4436                 existing = lookup_extent_mapping(em_tree, start, len);
4437                 if (existing && (existing->start > start ||
4438                     existing->start + existing->len <= start)) {
4439                         free_extent_map(existing);
4440                         existing = NULL;
4441                 }
4442                 if (!existing) {
4443                         existing = lookup_extent_mapping(em_tree, em->start,
4444                                                          em->len);
4445                         if (existing) {
4446                                 err = merge_extent_mapping(em_tree, existing,
4447                                                            em, start,
4448                                                            root->sectorsize);
4449                                 free_extent_map(existing);
4450                                 if (err) {
4451                                         free_extent_map(em);
4452                                         em = NULL;
4453                                 }
4454                         } else {
4455                                 err = -EIO;
4456                                 free_extent_map(em);
4457                                 em = NULL;
4458                         }
4459                 } else {
4460                         free_extent_map(em);
4461                         em = existing;
4462                         err = 0;
4463                 }
4464         }
4465         write_unlock(&em_tree->lock);
4466 out:
4467         if (path)
4468                 btrfs_free_path(path);
4469         if (trans) {
4470                 ret = btrfs_end_transaction(trans, root);
4471                 if (!err)
4472                         err = ret;
4473         }
4474         if (err) {
4475                 free_extent_map(em);
4476                 return ERR_PTR(err);
4477         }
4478         return em;
4479 }
4480
4481 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4482                         const struct iovec *iov, loff_t offset,
4483                         unsigned long nr_segs)
4484 {
4485         return -EINVAL;
4486 }
4487
4488 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4489                 __u64 start, __u64 len)
4490 {
4491         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4492 }
4493
4494 int btrfs_readpage(struct file *file, struct page *page)
4495 {
4496         struct extent_io_tree *tree;
4497         tree = &BTRFS_I(page->mapping->host)->io_tree;
4498         return extent_read_full_page(tree, page, btrfs_get_extent);
4499 }
4500
4501 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4502 {
4503         struct extent_io_tree *tree;
4504
4505
4506         if (current->flags & PF_MEMALLOC) {
4507                 redirty_page_for_writepage(wbc, page);
4508                 unlock_page(page);
4509                 return 0;
4510         }
4511         tree = &BTRFS_I(page->mapping->host)->io_tree;
4512         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4513 }
4514
4515 int btrfs_writepages(struct address_space *mapping,
4516                      struct writeback_control *wbc)
4517 {
4518         struct extent_io_tree *tree;
4519
4520         tree = &BTRFS_I(mapping->host)->io_tree;
4521         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4522 }
4523
4524 static int
4525 btrfs_readpages(struct file *file, struct address_space *mapping,
4526                 struct list_head *pages, unsigned nr_pages)
4527 {
4528         struct extent_io_tree *tree;
4529         tree = &BTRFS_I(mapping->host)->io_tree;
4530         return extent_readpages(tree, mapping, pages, nr_pages,
4531                                 btrfs_get_extent);
4532 }
4533 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4534 {
4535         struct extent_io_tree *tree;
4536         struct extent_map_tree *map;
4537         int ret;
4538
4539         tree = &BTRFS_I(page->mapping->host)->io_tree;
4540         map = &BTRFS_I(page->mapping->host)->extent_tree;
4541         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4542         if (ret == 1) {
4543                 ClearPagePrivate(page);
4544                 set_page_private(page, 0);
4545                 page_cache_release(page);
4546         }
4547         return ret;
4548 }
4549
4550 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4551 {
4552         if (PageWriteback(page) || PageDirty(page))
4553                 return 0;
4554         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4555 }
4556
4557 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4558 {
4559         struct extent_io_tree *tree;
4560         struct btrfs_ordered_extent *ordered;
4561         u64 page_start = page_offset(page);
4562         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4563
4564
4565         /*
4566          * we have the page locked, so new writeback can't start,
4567          * and the dirty bit won't be cleared while we are here.
4568          *
4569          * Wait for IO on this page so that we can safely clear
4570          * the PagePrivate2 bit and do ordered accounting
4571          */
4572         wait_on_page_writeback(page);
4573
4574         tree = &BTRFS_I(page->mapping->host)->io_tree;
4575         if (offset) {
4576                 btrfs_releasepage(page, GFP_NOFS);
4577                 return;
4578         }
4579         lock_extent(tree, page_start, page_end, GFP_NOFS);
4580         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4581                                            page_offset(page));
4582         if (ordered) {
4583                 /*
4584                  * IO on this page will never be started, so we need
4585                  * to account for any ordered extents now
4586                  */
4587                 clear_extent_bit(tree, page_start, page_end,
4588                                  EXTENT_DIRTY | EXTENT_DELALLOC |
4589                                  EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
4590                 /*
4591                  * whoever cleared the private bit is responsible
4592                  * for the finish_ordered_io
4593                  */
4594                 if (TestClearPagePrivate2(page)) {
4595                         btrfs_finish_ordered_io(page->mapping->host,
4596                                                 page_start, page_end);
4597                 }
4598                 btrfs_put_ordered_extent(ordered);
4599                 lock_extent(tree, page_start, page_end, GFP_NOFS);
4600         }
4601         clear_extent_bit(tree, page_start, page_end,
4602                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
4603                  1, 1, NULL, GFP_NOFS);
4604         __btrfs_releasepage(page, GFP_NOFS);
4605
4606         ClearPageChecked(page);
4607         if (PagePrivate(page)) {
4608                 ClearPagePrivate(page);
4609                 set_page_private(page, 0);
4610                 page_cache_release(page);
4611         }
4612 }
4613
4614 /*
4615  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4616  * called from a page fault handler when a page is first dirtied. Hence we must
4617  * be careful to check for EOF conditions here. We set the page up correctly
4618  * for a written page which means we get ENOSPC checking when writing into
4619  * holes and correct delalloc and unwritten extent mapping on filesystems that
4620  * support these features.
4621  *
4622  * We are not allowed to take the i_mutex here so we have to play games to
4623  * protect against truncate races as the page could now be beyond EOF.  Because
4624  * vmtruncate() writes the inode size before removing pages, once we have the
4625  * page lock we can determine safely if the page is beyond EOF. If it is not
4626  * beyond EOF, then the page is guaranteed safe against truncation until we
4627  * unlock the page.
4628  */
4629 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4630 {
4631         struct page *page = vmf->page;
4632         struct inode *inode = fdentry(vma->vm_file)->d_inode;
4633         struct btrfs_root *root = BTRFS_I(inode)->root;
4634         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4635         struct btrfs_ordered_extent *ordered;
4636         char *kaddr;
4637         unsigned long zero_start;
4638         loff_t size;
4639         int ret;
4640         u64 page_start;
4641         u64 page_end;
4642
4643         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4644         if (ret) {
4645                 if (ret == -ENOMEM)
4646                         ret = VM_FAULT_OOM;
4647                 else /* -ENOSPC, -EIO, etc */
4648                         ret = VM_FAULT_SIGBUS;
4649                 goto out;
4650         }
4651
4652         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4653 again:
4654         lock_page(page);
4655         size = i_size_read(inode);
4656         page_start = page_offset(page);
4657         page_end = page_start + PAGE_CACHE_SIZE - 1;
4658
4659         if ((page->mapping != inode->i_mapping) ||
4660             (page_start >= size)) {
4661                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4662                 /* page got truncated out from underneath us */
4663                 goto out_unlock;
4664         }
4665         wait_on_page_writeback(page);
4666
4667         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4668         set_page_extent_mapped(page);
4669
4670         /*
4671          * we can't set the delalloc bits if there are pending ordered
4672          * extents.  Drop our locks and wait for them to finish
4673          */
4674         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4675         if (ordered) {
4676                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4677                 unlock_page(page);
4678                 btrfs_start_ordered_extent(inode, ordered, 1);
4679                 btrfs_put_ordered_extent(ordered);
4680                 goto again;
4681         }
4682
4683         btrfs_set_extent_delalloc(inode, page_start, page_end);
4684         ret = 0;
4685
4686         /* page is wholly or partially inside EOF */
4687         if (page_start + PAGE_CACHE_SIZE > size)
4688                 zero_start = size & ~PAGE_CACHE_MASK;
4689         else
4690                 zero_start = PAGE_CACHE_SIZE;
4691
4692         if (zero_start != PAGE_CACHE_SIZE) {
4693                 kaddr = kmap(page);
4694                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4695                 flush_dcache_page(page);
4696                 kunmap(page);
4697         }
4698         ClearPageChecked(page);
4699         set_page_dirty(page);
4700         SetPageUptodate(page);
4701
4702         BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
4703         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4704
4705 out_unlock:
4706         if (!ret)
4707                 return VM_FAULT_LOCKED;
4708         unlock_page(page);
4709 out:
4710         return ret;
4711 }
4712
4713 static void btrfs_truncate(struct inode *inode)
4714 {
4715         struct btrfs_root *root = BTRFS_I(inode)->root;
4716         int ret;
4717         struct btrfs_trans_handle *trans;
4718         unsigned long nr;
4719         u64 mask = root->sectorsize - 1;
4720
4721         if (!S_ISREG(inode->i_mode))
4722                 return;
4723         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4724                 return;
4725
4726         btrfs_truncate_page(inode->i_mapping, inode->i_size);
4727         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4728
4729         trans = btrfs_start_transaction(root, 1);
4730
4731         /*
4732          * setattr is responsible for setting the ordered_data_close flag,
4733          * but that is only tested during the last file release.  That
4734          * could happen well after the next commit, leaving a great big
4735          * window where new writes may get lost if someone chooses to write
4736          * to this file after truncating to zero
4737          *
4738          * The inode doesn't have any dirty data here, and so if we commit
4739          * this is a noop.  If someone immediately starts writing to the inode
4740          * it is very likely we'll catch some of their writes in this
4741          * transaction, and the commit will find this file on the ordered
4742          * data list with good things to send down.
4743          *
4744          * This is a best effort solution, there is still a window where
4745          * using truncate to replace the contents of the file will
4746          * end up with a zero length file after a crash.
4747          */
4748         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
4749                 btrfs_add_ordered_operation(trans, root, inode);
4750
4751         btrfs_set_trans_block_group(trans, inode);
4752         btrfs_i_size_write(inode, inode->i_size);
4753
4754         ret = btrfs_orphan_add(trans, inode);
4755         if (ret)
4756                 goto out;
4757         /* FIXME, add redo link to tree so we don't leak on crash */
4758         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4759                                       BTRFS_EXTENT_DATA_KEY);
4760         btrfs_update_inode(trans, root, inode);
4761
4762         ret = btrfs_orphan_del(trans, inode);
4763         BUG_ON(ret);
4764
4765 out:
4766         nr = trans->blocks_used;
4767         ret = btrfs_end_transaction_throttle(trans, root);
4768         BUG_ON(ret);
4769         btrfs_btree_balance_dirty(root, nr);
4770 }
4771
4772 /*
4773  * create a new subvolume directory/inode (helper for the ioctl).
4774  */
4775 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4776                              struct btrfs_root *new_root, struct dentry *dentry,
4777                              u64 new_dirid, u64 alloc_hint)
4778 {
4779         struct inode *inode;
4780         int error;
4781         u64 index = 0;
4782
4783         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4784                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4785         if (IS_ERR(inode))
4786                 return PTR_ERR(inode);
4787         inode->i_op = &btrfs_dir_inode_operations;
4788         inode->i_fop = &btrfs_dir_file_operations;
4789
4790         inode->i_nlink = 1;
4791         btrfs_i_size_write(inode, 0);
4792
4793         error = btrfs_update_inode(trans, new_root, inode);
4794         if (error)
4795                 return error;
4796
4797         d_instantiate(dentry, inode);
4798         return 0;
4799 }
4800
4801 /* helper function for file defrag and space balancing.  This
4802  * forces readahead on a given range of bytes in an inode
4803  */
4804 unsigned long btrfs_force_ra(struct address_space *mapping,
4805                               struct file_ra_state *ra, struct file *file,
4806                               pgoff_t offset, pgoff_t last_index)
4807 {
4808         pgoff_t req_size = last_index - offset + 1;
4809
4810         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4811         return offset + req_size;
4812 }
4813
4814 struct inode *btrfs_alloc_inode(struct super_block *sb)
4815 {
4816         struct btrfs_inode *ei;
4817
4818         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4819         if (!ei)
4820                 return NULL;
4821         ei->last_trans = 0;
4822         ei->logged_trans = 0;
4823         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4824         INIT_LIST_HEAD(&ei->i_orphan);
4825         INIT_LIST_HEAD(&ei->ordered_operations);
4826         return &ei->vfs_inode;
4827 }
4828
4829 void btrfs_destroy_inode(struct inode *inode)
4830 {
4831         struct btrfs_ordered_extent *ordered;
4832         struct btrfs_root *root = BTRFS_I(inode)->root;
4833
4834         WARN_ON(!list_empty(&inode->i_dentry));
4835         WARN_ON(inode->i_data.nrpages);
4836
4837         /*
4838          * Make sure we're properly removed from the ordered operation
4839          * lists.
4840          */
4841         smp_mb();
4842         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
4843                 spin_lock(&root->fs_info->ordered_extent_lock);
4844                 list_del_init(&BTRFS_I(inode)->ordered_operations);
4845                 spin_unlock(&root->fs_info->ordered_extent_lock);
4846         }
4847
4848         spin_lock(&root->list_lock);
4849         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4850                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4851                        " list\n", inode->i_ino);
4852                 dump_stack();
4853         }
4854         spin_unlock(&root->list_lock);
4855
4856         while (1) {
4857                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4858                 if (!ordered)
4859                         break;
4860                 else {
4861                         printk(KERN_ERR "btrfs found ordered "
4862                                "extent %llu %llu on inode cleanup\n",
4863                                (unsigned long long)ordered->file_offset,
4864                                (unsigned long long)ordered->len);
4865                         btrfs_remove_ordered_extent(inode, ordered);
4866                         btrfs_put_ordered_extent(ordered);
4867                         btrfs_put_ordered_extent(ordered);
4868                 }
4869         }
4870         inode_tree_del(inode);
4871         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4872         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4873 }
4874
4875 static void init_once(void *foo)
4876 {
4877         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4878
4879         inode_init_once(&ei->vfs_inode);
4880 }
4881
4882 void btrfs_destroy_cachep(void)
4883 {
4884         if (btrfs_inode_cachep)
4885                 kmem_cache_destroy(btrfs_inode_cachep);
4886         if (btrfs_trans_handle_cachep)
4887                 kmem_cache_destroy(btrfs_trans_handle_cachep);
4888         if (btrfs_transaction_cachep)
4889                 kmem_cache_destroy(btrfs_transaction_cachep);
4890         if (btrfs_path_cachep)
4891                 kmem_cache_destroy(btrfs_path_cachep);
4892 }
4893
4894 int btrfs_init_cachep(void)
4895 {
4896         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
4897                         sizeof(struct btrfs_inode), 0,
4898                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
4899         if (!btrfs_inode_cachep)
4900                 goto fail;
4901
4902         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
4903                         sizeof(struct btrfs_trans_handle), 0,
4904                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4905         if (!btrfs_trans_handle_cachep)
4906                 goto fail;
4907
4908         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
4909                         sizeof(struct btrfs_transaction), 0,
4910                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4911         if (!btrfs_transaction_cachep)
4912                 goto fail;
4913
4914         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
4915                         sizeof(struct btrfs_path), 0,
4916                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4917         if (!btrfs_path_cachep)
4918                 goto fail;
4919
4920         return 0;
4921 fail:
4922         btrfs_destroy_cachep();
4923         return -ENOMEM;
4924 }
4925
4926 static int btrfs_getattr(struct vfsmount *mnt,
4927                          struct dentry *dentry, struct kstat *stat)
4928 {
4929         struct inode *inode = dentry->d_inode;
4930         generic_fillattr(inode, stat);
4931         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4932         stat->blksize = PAGE_CACHE_SIZE;
4933         stat->blocks = (inode_get_bytes(inode) +
4934                         BTRFS_I(inode)->delalloc_bytes) >> 9;
4935         return 0;
4936 }
4937
4938 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4939                            struct inode *new_dir, struct dentry *new_dentry)
4940 {
4941         struct btrfs_trans_handle *trans;
4942         struct btrfs_root *root = BTRFS_I(old_dir)->root;
4943         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
4944         struct inode *new_inode = new_dentry->d_inode;
4945         struct inode *old_inode = old_dentry->d_inode;
4946         struct timespec ctime = CURRENT_TIME;
4947         u64 index = 0;
4948         u64 root_objectid;
4949         int ret;
4950
4951         /* we only allow rename subvolume link between subvolumes */
4952         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
4953                 return -EXDEV;
4954
4955         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4956             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
4957                 return -ENOTEMPTY;
4958
4959         if (S_ISDIR(old_inode->i_mode) && new_inode &&
4960             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4961                 return -ENOTEMPTY;
4962
4963         ret = btrfs_check_metadata_free_space(root);
4964         if (ret)
4965                 return ret;
4966
4967         /*
4968          * we're using rename to replace one file with another.
4969          * and the replacement file is large.  Start IO on it now so
4970          * we don't add too much work to the end of the transaction
4971          */
4972         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
4973             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
4974                 filemap_flush(old_inode->i_mapping);
4975
4976         trans = btrfs_start_transaction(root, 1);
4977
4978         if (dest != root)
4979                 btrfs_record_root_in_trans(trans, dest);
4980
4981         /*
4982          * make sure the inode gets flushed if it is replacing
4983          * something.
4984          */
4985         if (new_inode && new_inode->i_size &&
4986             old_inode && S_ISREG(old_inode->i_mode)) {
4987                 btrfs_add_ordered_operation(trans, root, old_inode);
4988         }
4989
4990         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
4991                 /* force full log commit if subvolume involved. */
4992                 root->fs_info->last_trans_log_full_commit = trans->transid;
4993         } else {
4994                 /*
4995                  * this is an ugly little race, but the rename is required
4996                  * to make sure that if we crash, the inode is either at the
4997                  * old name or the new one.  pinning the log transaction lets
4998                  * us make sure we don't allow a log commit to come in after
4999                  * we unlink the name but before we add the new name back in.
5000                  */
5001                 btrfs_pin_log_trans(root);
5002         }
5003
5004         btrfs_set_trans_block_group(trans, new_dir);
5005
5006         old_dir->i_ctime = old_dir->i_mtime = ctime;
5007         new_dir->i_ctime = new_dir->i_mtime = ctime;
5008         old_inode->i_ctime = ctime;
5009
5010         if (old_dentry->d_parent != new_dentry->d_parent)
5011                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5012
5013         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5014                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5015                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5016                                         old_dentry->d_name.name,
5017                                         old_dentry->d_name.len);
5018         } else {
5019                 btrfs_inc_nlink(old_dentry->d_inode);
5020                 ret = btrfs_unlink_inode(trans, root, old_dir,
5021                                          old_dentry->d_inode,
5022                                          old_dentry->d_name.name,
5023                                          old_dentry->d_name.len);
5024         }
5025         BUG_ON(ret);
5026
5027         if (new_inode) {
5028                 new_inode->i_ctime = CURRENT_TIME;
5029                 if (unlikely(new_inode->i_ino ==
5030                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5031                         root_objectid = BTRFS_I(new_inode)->location.objectid;
5032                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
5033                                                 root_objectid,
5034                                                 new_dentry->d_name.name,
5035                                                 new_dentry->d_name.len);
5036                         BUG_ON(new_inode->i_nlink == 0);
5037                 } else {
5038                         ret = btrfs_unlink_inode(trans, dest, new_dir,
5039                                                  new_dentry->d_inode,
5040                                                  new_dentry->d_name.name,
5041                                                  new_dentry->d_name.len);
5042                 }
5043                 BUG_ON(ret);
5044                 if (new_inode->i_nlink == 0) {
5045                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5046                         BUG_ON(ret);
5047                 }
5048         }
5049         ret = btrfs_set_inode_index(new_dir, &index);
5050         BUG_ON(ret);
5051
5052         ret = btrfs_add_link(trans, new_dir, old_inode,
5053                              new_dentry->d_name.name,
5054                              new_dentry->d_name.len, 1, index);
5055         BUG_ON(ret);
5056
5057         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5058                 btrfs_log_new_name(trans, old_inode, old_dir,
5059                                    new_dentry->d_parent);
5060                 btrfs_end_log_trans(root);
5061         }
5062
5063         btrfs_end_transaction_throttle(trans, root);
5064
5065         return ret;
5066 }
5067
5068 /*
5069  * some fairly slow code that needs optimization. This walks the list
5070  * of all the inodes with pending delalloc and forces them to disk.
5071  */
5072 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
5073 {
5074         struct list_head *head = &root->fs_info->delalloc_inodes;
5075         struct btrfs_inode *binode;
5076         struct inode *inode;
5077
5078         if (root->fs_info->sb->s_flags & MS_RDONLY)
5079                 return -EROFS;
5080
5081         spin_lock(&root->fs_info->delalloc_lock);
5082         while (!list_empty(head)) {
5083                 binode = list_entry(head->next, struct btrfs_inode,
5084                                     delalloc_inodes);
5085                 inode = igrab(&binode->vfs_inode);
5086                 if (!inode)
5087                         list_del_init(&binode->delalloc_inodes);
5088                 spin_unlock(&root->fs_info->delalloc_lock);
5089                 if (inode) {
5090                         filemap_flush(inode->i_mapping);
5091                         iput(inode);
5092                 }
5093                 cond_resched();
5094                 spin_lock(&root->fs_info->delalloc_lock);
5095         }
5096         spin_unlock(&root->fs_info->delalloc_lock);
5097
5098         /* the filemap_flush will queue IO into the worker threads, but
5099          * we have to make sure the IO is actually started and that
5100          * ordered extents get created before we return
5101          */
5102         atomic_inc(&root->fs_info->async_submit_draining);
5103         while (atomic_read(&root->fs_info->nr_async_submits) ||
5104               atomic_read(&root->fs_info->async_delalloc_pages)) {
5105                 wait_event(root->fs_info->async_submit_wait,
5106                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5107                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5108         }
5109         atomic_dec(&root->fs_info->async_submit_draining);
5110         return 0;
5111 }
5112
5113 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5114                          const char *symname)
5115 {
5116         struct btrfs_trans_handle *trans;
5117         struct btrfs_root *root = BTRFS_I(dir)->root;
5118         struct btrfs_path *path;
5119         struct btrfs_key key;
5120         struct inode *inode = NULL;
5121         int err;
5122         int drop_inode = 0;
5123         u64 objectid;
5124         u64 index = 0 ;
5125         int name_len;
5126         int datasize;
5127         unsigned long ptr;
5128         struct btrfs_file_extent_item *ei;
5129         struct extent_buffer *leaf;
5130         unsigned long nr = 0;
5131
5132         name_len = strlen(symname) + 1;
5133         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5134                 return -ENAMETOOLONG;
5135
5136         err = btrfs_check_metadata_free_space(root);
5137         if (err)
5138                 goto out_fail;
5139
5140         trans = btrfs_start_transaction(root, 1);
5141         btrfs_set_trans_block_group(trans, dir);
5142
5143         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5144         if (err) {
5145                 err = -ENOSPC;
5146                 goto out_unlock;
5147         }
5148
5149         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5150                                 dentry->d_name.len,
5151                                 dentry->d_parent->d_inode->i_ino, objectid,
5152                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5153                                 &index);
5154         err = PTR_ERR(inode);
5155         if (IS_ERR(inode))
5156                 goto out_unlock;
5157
5158         err = btrfs_init_inode_security(inode, dir);
5159         if (err) {
5160                 drop_inode = 1;
5161                 goto out_unlock;
5162         }
5163
5164         btrfs_set_trans_block_group(trans, inode);
5165         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5166         if (err)
5167                 drop_inode = 1;
5168         else {
5169                 inode->i_mapping->a_ops = &btrfs_aops;
5170                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5171                 inode->i_fop = &btrfs_file_operations;
5172                 inode->i_op = &btrfs_file_inode_operations;
5173                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5174         }
5175         btrfs_update_inode_block_group(trans, inode);
5176         btrfs_update_inode_block_group(trans, dir);
5177         if (drop_inode)
5178                 goto out_unlock;
5179
5180         path = btrfs_alloc_path();
5181         BUG_ON(!path);
5182         key.objectid = inode->i_ino;
5183         key.offset = 0;
5184         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5185         datasize = btrfs_file_extent_calc_inline_size(name_len);
5186         err = btrfs_insert_empty_item(trans, root, path, &key,
5187                                       datasize);
5188         if (err) {
5189                 drop_inode = 1;
5190                 goto out_unlock;
5191         }
5192         leaf = path->nodes[0];
5193         ei = btrfs_item_ptr(leaf, path->slots[0],
5194                             struct btrfs_file_extent_item);
5195         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5196         btrfs_set_file_extent_type(leaf, ei,
5197                                    BTRFS_FILE_EXTENT_INLINE);
5198         btrfs_set_file_extent_encryption(leaf, ei, 0);
5199         btrfs_set_file_extent_compression(leaf, ei, 0);
5200         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5201         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5202
5203         ptr = btrfs_file_extent_inline_start(ei);
5204         write_extent_buffer(leaf, symname, ptr, name_len);
5205         btrfs_mark_buffer_dirty(leaf);
5206         btrfs_free_path(path);
5207
5208         inode->i_op = &btrfs_symlink_inode_operations;
5209         inode->i_mapping->a_ops = &btrfs_symlink_aops;
5210         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5211         inode_set_bytes(inode, name_len);
5212         btrfs_i_size_write(inode, name_len - 1);
5213         err = btrfs_update_inode(trans, root, inode);
5214         if (err)
5215                 drop_inode = 1;
5216
5217 out_unlock:
5218         nr = trans->blocks_used;
5219         btrfs_end_transaction_throttle(trans, root);
5220 out_fail:
5221         if (drop_inode) {
5222                 inode_dec_link_count(inode);
5223                 iput(inode);
5224         }
5225         btrfs_btree_balance_dirty(root, nr);
5226         return err;
5227 }
5228
5229 static int prealloc_file_range(struct btrfs_trans_handle *trans,
5230                                struct inode *inode, u64 start, u64 end,
5231                                u64 locked_end, u64 alloc_hint, int mode)
5232 {
5233         struct btrfs_root *root = BTRFS_I(inode)->root;
5234         struct btrfs_key ins;
5235         u64 alloc_size;
5236         u64 cur_offset = start;
5237         u64 num_bytes = end - start;
5238         int ret = 0;
5239
5240         while (num_bytes > 0) {
5241                 alloc_size = min(num_bytes, root->fs_info->max_extent);
5242                 ret = btrfs_reserve_extent(trans, root, alloc_size,
5243                                            root->sectorsize, 0, alloc_hint,
5244                                            (u64)-1, &ins, 1);
5245                 if (ret) {
5246                         WARN_ON(1);
5247                         goto out;
5248                 }
5249                 ret = insert_reserved_file_extent(trans, inode,
5250                                                   cur_offset, ins.objectid,
5251                                                   ins.offset, ins.offset,
5252                                                   ins.offset, locked_end,
5253                                                   0, 0, 0,
5254                                                   BTRFS_FILE_EXTENT_PREALLOC);
5255                 BUG_ON(ret);
5256                 btrfs_drop_extent_cache(inode, cur_offset,
5257                                         cur_offset + ins.offset -1, 0);
5258                 num_bytes -= ins.offset;
5259                 cur_offset += ins.offset;
5260                 alloc_hint = ins.objectid + ins.offset;
5261         }
5262 out:
5263         if (cur_offset > start) {
5264                 inode->i_ctime = CURRENT_TIME;
5265                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5266                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5267                     cur_offset > i_size_read(inode))
5268                         btrfs_i_size_write(inode, cur_offset);
5269                 ret = btrfs_update_inode(trans, root, inode);
5270                 BUG_ON(ret);
5271         }
5272
5273         return ret;
5274 }
5275
5276 static long btrfs_fallocate(struct inode *inode, int mode,
5277                             loff_t offset, loff_t len)
5278 {
5279         u64 cur_offset;
5280         u64 last_byte;
5281         u64 alloc_start;
5282         u64 alloc_end;
5283         u64 alloc_hint = 0;
5284         u64 locked_end;
5285         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5286         struct extent_map *em;
5287         struct btrfs_trans_handle *trans;
5288         struct btrfs_root *root;
5289         int ret;
5290
5291         alloc_start = offset & ~mask;
5292         alloc_end =  (offset + len + mask) & ~mask;
5293
5294         /*
5295          * wait for ordered IO before we have any locks.  We'll loop again
5296          * below with the locks held.
5297          */
5298         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5299
5300         mutex_lock(&inode->i_mutex);
5301         if (alloc_start > inode->i_size) {
5302                 ret = btrfs_cont_expand(inode, alloc_start);
5303                 if (ret)
5304                         goto out;
5305         }
5306
5307         root = BTRFS_I(inode)->root;
5308
5309         ret = btrfs_check_data_free_space(root, inode,
5310                                           alloc_end - alloc_start);
5311         if (ret)
5312                 goto out;
5313
5314         locked_end = alloc_end - 1;
5315         while (1) {
5316                 struct btrfs_ordered_extent *ordered;
5317
5318                 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5319                 if (!trans) {
5320                         ret = -EIO;
5321                         goto out_free;
5322                 }
5323
5324                 /* the extent lock is ordered inside the running
5325                  * transaction
5326                  */
5327                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5328                             GFP_NOFS);
5329                 ordered = btrfs_lookup_first_ordered_extent(inode,
5330                                                             alloc_end - 1);
5331                 if (ordered &&
5332                     ordered->file_offset + ordered->len > alloc_start &&
5333                     ordered->file_offset < alloc_end) {
5334                         btrfs_put_ordered_extent(ordered);
5335                         unlock_extent(&BTRFS_I(inode)->io_tree,
5336                                       alloc_start, locked_end, GFP_NOFS);
5337                         btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5338
5339                         /*
5340                          * we can't wait on the range with the transaction
5341                          * running or with the extent lock held
5342                          */
5343                         btrfs_wait_ordered_range(inode, alloc_start,
5344                                                  alloc_end - alloc_start);
5345                 } else {
5346                         if (ordered)
5347                                 btrfs_put_ordered_extent(ordered);
5348                         break;
5349                 }
5350         }
5351
5352         cur_offset = alloc_start;
5353         while (1) {
5354                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5355                                       alloc_end - cur_offset, 0);
5356                 BUG_ON(IS_ERR(em) || !em);
5357                 last_byte = min(extent_map_end(em), alloc_end);
5358                 last_byte = (last_byte + mask) & ~mask;
5359                 if (em->block_start == EXTENT_MAP_HOLE) {
5360                         ret = prealloc_file_range(trans, inode, cur_offset,
5361                                         last_byte, locked_end + 1,
5362                                         alloc_hint, mode);
5363                         if (ret < 0) {
5364                                 free_extent_map(em);
5365                                 break;
5366                         }
5367                 }
5368                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5369                         alloc_hint = em->block_start;
5370                 free_extent_map(em);
5371
5372                 cur_offset = last_byte;
5373                 if (cur_offset >= alloc_end) {
5374                         ret = 0;
5375                         break;
5376                 }
5377         }
5378         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5379                       GFP_NOFS);
5380
5381         btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5382 out_free:
5383         btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
5384 out:
5385         mutex_unlock(&inode->i_mutex);
5386         return ret;
5387 }
5388
5389 static int btrfs_set_page_dirty(struct page *page)
5390 {
5391         return __set_page_dirty_nobuffers(page);
5392 }
5393
5394 static int btrfs_permission(struct inode *inode, int mask)
5395 {
5396         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5397                 return -EACCES;
5398         return generic_permission(inode, mask, btrfs_check_acl);
5399 }
5400
5401 static struct inode_operations btrfs_dir_inode_operations = {
5402         .getattr        = btrfs_getattr,
5403         .lookup         = btrfs_lookup,
5404         .create         = btrfs_create,
5405         .unlink         = btrfs_unlink,
5406         .link           = btrfs_link,
5407         .mkdir          = btrfs_mkdir,
5408         .rmdir          = btrfs_rmdir,
5409         .rename         = btrfs_rename,
5410         .symlink        = btrfs_symlink,
5411         .setattr        = btrfs_setattr,
5412         .mknod          = btrfs_mknod,
5413         .setxattr       = btrfs_setxattr,
5414         .getxattr       = btrfs_getxattr,
5415         .listxattr      = btrfs_listxattr,
5416         .removexattr    = btrfs_removexattr,
5417         .permission     = btrfs_permission,
5418 };
5419 static struct inode_operations btrfs_dir_ro_inode_operations = {
5420         .lookup         = btrfs_lookup,
5421         .permission     = btrfs_permission,
5422 };
5423 static struct file_operations btrfs_dir_file_operations = {
5424         .llseek         = generic_file_llseek,
5425         .read           = generic_read_dir,
5426         .readdir        = btrfs_real_readdir,
5427         .unlocked_ioctl = btrfs_ioctl,
5428 #ifdef CONFIG_COMPAT
5429         .compat_ioctl   = btrfs_ioctl,
5430 #endif
5431         .release        = btrfs_release_file,
5432         .fsync          = btrfs_sync_file,
5433 };
5434
5435 static struct extent_io_ops btrfs_extent_io_ops = {
5436         .fill_delalloc = run_delalloc_range,
5437         .submit_bio_hook = btrfs_submit_bio_hook,
5438         .merge_bio_hook = btrfs_merge_bio_hook,
5439         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5440         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5441         .writepage_start_hook = btrfs_writepage_start_hook,
5442         .readpage_io_failed_hook = btrfs_io_failed_hook,
5443         .set_bit_hook = btrfs_set_bit_hook,
5444         .clear_bit_hook = btrfs_clear_bit_hook,
5445 };
5446
5447 /*
5448  * btrfs doesn't support the bmap operation because swapfiles
5449  * use bmap to make a mapping of extents in the file.  They assume
5450  * these extents won't change over the life of the file and they
5451  * use the bmap result to do IO directly to the drive.
5452  *
5453  * the btrfs bmap call would return logical addresses that aren't
5454  * suitable for IO and they also will change frequently as COW
5455  * operations happen.  So, swapfile + btrfs == corruption.
5456  *
5457  * For now we're avoiding this by dropping bmap.
5458  */
5459 static struct address_space_operations btrfs_aops = {
5460         .readpage       = btrfs_readpage,
5461         .writepage      = btrfs_writepage,
5462         .writepages     = btrfs_writepages,
5463         .readpages      = btrfs_readpages,
5464         .sync_page      = block_sync_page,
5465         .direct_IO      = btrfs_direct_IO,
5466         .invalidatepage = btrfs_invalidatepage,
5467         .releasepage    = btrfs_releasepage,
5468         .set_page_dirty = btrfs_set_page_dirty,
5469 };
5470
5471 static struct address_space_operations btrfs_symlink_aops = {
5472         .readpage       = btrfs_readpage,
5473         .writepage      = btrfs_writepage,
5474         .invalidatepage = btrfs_invalidatepage,
5475         .releasepage    = btrfs_releasepage,
5476 };
5477
5478 static struct inode_operations btrfs_file_inode_operations = {
5479         .truncate       = btrfs_truncate,
5480         .getattr        = btrfs_getattr,
5481         .setattr        = btrfs_setattr,
5482         .setxattr       = btrfs_setxattr,
5483         .getxattr       = btrfs_getxattr,
5484         .listxattr      = btrfs_listxattr,
5485         .removexattr    = btrfs_removexattr,
5486         .permission     = btrfs_permission,
5487         .fallocate      = btrfs_fallocate,
5488         .fiemap         = btrfs_fiemap,
5489 };
5490 static struct inode_operations btrfs_special_inode_operations = {
5491         .getattr        = btrfs_getattr,
5492         .setattr        = btrfs_setattr,
5493         .permission     = btrfs_permission,
5494         .setxattr       = btrfs_setxattr,
5495         .getxattr       = btrfs_getxattr,
5496         .listxattr      = btrfs_listxattr,
5497         .removexattr    = btrfs_removexattr,
5498 };
5499 static struct inode_operations btrfs_symlink_inode_operations = {
5500         .readlink       = generic_readlink,
5501         .follow_link    = page_follow_link_light,
5502         .put_link       = page_put_link,
5503         .permission     = btrfs_permission,
5504         .setxattr       = btrfs_setxattr,
5505         .getxattr       = btrfs_getxattr,
5506         .listxattr      = btrfs_listxattr,
5507         .removexattr    = btrfs_removexattr,
5508 };