5313a13a998dd16a0bb92d5340ed339db7865953
[safe/jmp/linux-2.6] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include <linux/falloc.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "volumes.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "ref-cache.h"
53 #include "compression.h"
54
55 struct btrfs_iget_args {
56         u64 ino;
57         struct btrfs_root *root;
58 };
59
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_bit_radix_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
79         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
80         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
81         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
82         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
83         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
84         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
85 };
86
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89 static noinline int cow_file_range(struct inode *inode,
90                                    struct page *locked_page,
91                                    u64 start, u64 end, int *page_started,
92                                    unsigned long *nr_written, int unlock);
93
94 /*
95  * a very lame attempt at stopping writes when the FS is 85% full.  There
96  * are countless ways this is incorrect, but it is better than nothing.
97  */
98 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
99                            int for_del)
100 {
101         u64 total;
102         u64 used;
103         u64 thresh;
104         unsigned long flags;
105         int ret = 0;
106
107         spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
108         total = btrfs_super_total_bytes(&root->fs_info->super_copy);
109         used = btrfs_super_bytes_used(&root->fs_info->super_copy);
110         if (for_del)
111                 thresh = total * 90;
112         else
113                 thresh = total * 85;
114
115         do_div(thresh, 100);
116
117         if (used + root->fs_info->delalloc_bytes + num_required > thresh)
118                 ret = -ENOSPC;
119         spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
120         return ret;
121 }
122
123 /*
124  * this does all the hard work for inserting an inline extent into
125  * the btree.  The caller should have done a btrfs_drop_extents so that
126  * no overlapping inline items exist in the btree
127  */
128 static int noinline insert_inline_extent(struct btrfs_trans_handle *trans,
129                                 struct btrfs_root *root, struct inode *inode,
130                                 u64 start, size_t size, size_t compressed_size,
131                                 struct page **compressed_pages)
132 {
133         struct btrfs_key key;
134         struct btrfs_path *path;
135         struct extent_buffer *leaf;
136         struct page *page = NULL;
137         char *kaddr;
138         unsigned long ptr;
139         struct btrfs_file_extent_item *ei;
140         int err = 0;
141         int ret;
142         size_t cur_size = size;
143         size_t datasize;
144         unsigned long offset;
145         int use_compress = 0;
146
147         if (compressed_size && compressed_pages) {
148                 use_compress = 1;
149                 cur_size = compressed_size;
150         }
151
152         path = btrfs_alloc_path(); if (!path)
153                 return -ENOMEM;
154
155         btrfs_set_trans_block_group(trans, inode);
156
157         key.objectid = inode->i_ino;
158         key.offset = start;
159         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
160         inode_add_bytes(inode, size);
161         datasize = btrfs_file_extent_calc_inline_size(cur_size);
162
163         inode_add_bytes(inode, size);
164         ret = btrfs_insert_empty_item(trans, root, path, &key,
165                                       datasize);
166         BUG_ON(ret);
167         if (ret) {
168                 err = ret;
169                 printk("got bad ret %d\n", ret);
170                 goto fail;
171         }
172         leaf = path->nodes[0];
173         ei = btrfs_item_ptr(leaf, path->slots[0],
174                             struct btrfs_file_extent_item);
175         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
176         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
177         btrfs_set_file_extent_encryption(leaf, ei, 0);
178         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
179         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
180         ptr = btrfs_file_extent_inline_start(ei);
181
182         if (use_compress) {
183                 struct page *cpage;
184                 int i = 0;
185                 while(compressed_size > 0) {
186                         cpage = compressed_pages[i];
187                         cur_size = min_t(unsigned long, compressed_size,
188                                        PAGE_CACHE_SIZE);
189
190                         kaddr = kmap(cpage);
191                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
192                         kunmap(cpage);
193
194                         i++;
195                         ptr += cur_size;
196                         compressed_size -= cur_size;
197                 }
198                 btrfs_set_file_extent_compression(leaf, ei,
199                                                   BTRFS_COMPRESS_ZLIB);
200         } else {
201                 page = find_get_page(inode->i_mapping,
202                                      start >> PAGE_CACHE_SHIFT);
203                 btrfs_set_file_extent_compression(leaf, ei, 0);
204                 kaddr = kmap_atomic(page, KM_USER0);
205                 offset = start & (PAGE_CACHE_SIZE - 1);
206                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
207                 kunmap_atomic(kaddr, KM_USER0);
208                 page_cache_release(page);
209         }
210         btrfs_mark_buffer_dirty(leaf);
211         btrfs_free_path(path);
212
213         BTRFS_I(inode)->disk_i_size = inode->i_size;
214         btrfs_update_inode(trans, root, inode);
215         return 0;
216 fail:
217         btrfs_free_path(path);
218         return err;
219 }
220
221
222 /*
223  * conditionally insert an inline extent into the file.  This
224  * does the checks required to make sure the data is small enough
225  * to fit as an inline extent.
226  */
227 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
228                                  struct btrfs_root *root,
229                                  struct inode *inode, u64 start, u64 end,
230                                  size_t compressed_size,
231                                  struct page **compressed_pages)
232 {
233         u64 isize = i_size_read(inode);
234         u64 actual_end = min(end + 1, isize);
235         u64 inline_len = actual_end - start;
236         u64 aligned_end = (end + root->sectorsize - 1) &
237                         ~((u64)root->sectorsize - 1);
238         u64 hint_byte;
239         u64 data_len = inline_len;
240         int ret;
241
242         if (compressed_size)
243                 data_len = compressed_size;
244
245         if (start > 0 ||
246             actual_end >= PAGE_CACHE_SIZE ||
247             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
248             (!compressed_size &&
249             (actual_end & (root->sectorsize - 1)) == 0) ||
250             end + 1 < isize ||
251             data_len > root->fs_info->max_inline) {
252                 return 1;
253         }
254
255         ret = btrfs_drop_extents(trans, root, inode, start,
256                                  aligned_end, start, &hint_byte);
257         BUG_ON(ret);
258
259         if (isize > actual_end)
260                 inline_len = min_t(u64, isize, actual_end);
261         ret = insert_inline_extent(trans, root, inode, start,
262                                    inline_len, compressed_size,
263                                    compressed_pages);
264         BUG_ON(ret);
265         btrfs_drop_extent_cache(inode, start, aligned_end, 0);
266         return 0;
267 }
268
269 struct async_extent {
270         u64 start;
271         u64 ram_size;
272         u64 compressed_size;
273         struct page **pages;
274         unsigned long nr_pages;
275         struct list_head list;
276 };
277
278 struct async_cow {
279         struct inode *inode;
280         struct btrfs_root *root;
281         struct page *locked_page;
282         u64 start;
283         u64 end;
284         struct list_head extents;
285         struct btrfs_work work;
286 };
287
288 static noinline int add_async_extent(struct async_cow *cow,
289                                      u64 start, u64 ram_size,
290                                      u64 compressed_size,
291                                      struct page **pages,
292                                      unsigned long nr_pages)
293 {
294         struct async_extent *async_extent;
295
296         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
297         async_extent->start = start;
298         async_extent->ram_size = ram_size;
299         async_extent->compressed_size = compressed_size;
300         async_extent->pages = pages;
301         async_extent->nr_pages = nr_pages;
302         list_add_tail(&async_extent->list, &cow->extents);
303         return 0;
304 }
305
306 /*
307  * we create compressed extents in two phases.  The first
308  * phase compresses a range of pages that have already been
309  * locked (both pages and state bits are locked).
310  *
311  * This is done inside an ordered work queue, and the compression
312  * is spread across many cpus.  The actual IO submission is step
313  * two, and the ordered work queue takes care of making sure that
314  * happens in the same order things were put onto the queue by
315  * writepages and friends.
316  *
317  * If this code finds it can't get good compression, it puts an
318  * entry onto the work queue to write the uncompressed bytes.  This
319  * makes sure that both compressed inodes and uncompressed inodes
320  * are written in the same order that pdflush sent them down.
321  */
322 static noinline int compress_file_range(struct inode *inode,
323                                         struct page *locked_page,
324                                         u64 start, u64 end,
325                                         struct async_cow *async_cow,
326                                         int *num_added)
327 {
328         struct btrfs_root *root = BTRFS_I(inode)->root;
329         struct btrfs_trans_handle *trans;
330         u64 num_bytes;
331         u64 orig_start;
332         u64 disk_num_bytes;
333         u64 blocksize = root->sectorsize;
334         u64 actual_end;
335         u64 isize = i_size_read(inode);
336         int ret = 0;
337         struct page **pages = NULL;
338         unsigned long nr_pages;
339         unsigned long nr_pages_ret = 0;
340         unsigned long total_compressed = 0;
341         unsigned long total_in = 0;
342         unsigned long max_compressed = 128 * 1024;
343         unsigned long max_uncompressed = 128 * 1024;
344         int i;
345         int will_compress;
346
347         orig_start = start;
348
349         actual_end = min_t(u64, isize, end + 1);
350 again:
351         will_compress = 0;
352         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
353         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
354
355         total_compressed = actual_end - start;
356
357         /* we want to make sure that amount of ram required to uncompress
358          * an extent is reasonable, so we limit the total size in ram
359          * of a compressed extent to 128k.  This is a crucial number
360          * because it also controls how easily we can spread reads across
361          * cpus for decompression.
362          *
363          * We also want to make sure the amount of IO required to do
364          * a random read is reasonably small, so we limit the size of
365          * a compressed extent to 128k.
366          */
367         total_compressed = min(total_compressed, max_uncompressed);
368         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
369         num_bytes = max(blocksize,  num_bytes);
370         disk_num_bytes = num_bytes;
371         total_in = 0;
372         ret = 0;
373
374         /*
375          * we do compression for mount -o compress and when the
376          * inode has not been flagged as nocompress.  This flag can
377          * change at any time if we discover bad compression ratios.
378          */
379         if (!btrfs_test_flag(inode, NOCOMPRESS) &&
380             btrfs_test_opt(root, COMPRESS)) {
381                 WARN_ON(pages);
382                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
383
384                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
385                                                 total_compressed, pages,
386                                                 nr_pages, &nr_pages_ret,
387                                                 &total_in,
388                                                 &total_compressed,
389                                                 max_compressed);
390
391                 if (!ret) {
392                         unsigned long offset = total_compressed &
393                                 (PAGE_CACHE_SIZE - 1);
394                         struct page *page = pages[nr_pages_ret - 1];
395                         char *kaddr;
396
397                         /* zero the tail end of the last page, we might be
398                          * sending it down to disk
399                          */
400                         if (offset) {
401                                 kaddr = kmap_atomic(page, KM_USER0);
402                                 memset(kaddr + offset, 0,
403                                        PAGE_CACHE_SIZE - offset);
404                                 kunmap_atomic(kaddr, KM_USER0);
405                         }
406                         will_compress = 1;
407                 }
408         }
409         if (start == 0) {
410                 trans = btrfs_join_transaction(root, 1);
411                 BUG_ON(!trans);
412                 btrfs_set_trans_block_group(trans, inode);
413
414                 /* lets try to make an inline extent */
415                 if (ret || total_in < (actual_end - start)) {
416                         /* we didn't compress the entire range, try
417                          * to make an uncompressed inline extent.
418                          */
419                         ret = cow_file_range_inline(trans, root, inode,
420                                                     start, end, 0, NULL);
421                 } else {
422                         /* try making a compressed inline extent */
423                         ret = cow_file_range_inline(trans, root, inode,
424                                                     start, end,
425                                                     total_compressed, pages);
426                 }
427                 btrfs_end_transaction(trans, root);
428                 if (ret == 0) {
429                         /*
430                          * inline extent creation worked, we don't need
431                          * to create any more async work items.  Unlock
432                          * and free up our temp pages.
433                          */
434                         extent_clear_unlock_delalloc(inode,
435                                                      &BTRFS_I(inode)->io_tree,
436                                                      start, end, NULL, 1, 0,
437                                                      0, 1, 1, 1);
438                         ret = 0;
439                         goto free_pages_out;
440                 }
441         }
442
443         if (will_compress) {
444                 /*
445                  * we aren't doing an inline extent round the compressed size
446                  * up to a block size boundary so the allocator does sane
447                  * things
448                  */
449                 total_compressed = (total_compressed + blocksize - 1) &
450                         ~(blocksize - 1);
451
452                 /*
453                  * one last check to make sure the compression is really a
454                  * win, compare the page count read with the blocks on disk
455                  */
456                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
457                         ~(PAGE_CACHE_SIZE - 1);
458                 if (total_compressed >= total_in) {
459                         will_compress = 0;
460                 } else {
461                         disk_num_bytes = total_compressed;
462                         num_bytes = total_in;
463                 }
464         }
465         if (!will_compress && pages) {
466                 /*
467                  * the compression code ran but failed to make things smaller,
468                  * free any pages it allocated and our page pointer array
469                  */
470                 for (i = 0; i < nr_pages_ret; i++) {
471                         WARN_ON(pages[i]->mapping);
472                         page_cache_release(pages[i]);
473                 }
474                 kfree(pages);
475                 pages = NULL;
476                 total_compressed = 0;
477                 nr_pages_ret = 0;
478
479                 /* flag the file so we don't compress in the future */
480                 btrfs_set_flag(inode, NOCOMPRESS);
481         }
482         if (will_compress) {
483                 *num_added += 1;
484
485                 /* the async work queues will take care of doing actual
486                  * allocation on disk for these compressed pages,
487                  * and will submit them to the elevator.
488                  */
489                 add_async_extent(async_cow, start, num_bytes,
490                                  total_compressed, pages, nr_pages_ret);
491
492                 if (start + num_bytes < end && start + num_bytes < actual_end) {
493                         start += num_bytes;
494                         pages = NULL;
495                         cond_resched();
496                         goto again;
497                 }
498         } else {
499                 /*
500                  * No compression, but we still need to write the pages in
501                  * the file we've been given so far.  redirty the locked
502                  * page if it corresponds to our extent and set things up
503                  * for the async work queue to run cow_file_range to do
504                  * the normal delalloc dance
505                  */
506                 if (page_offset(locked_page) >= start &&
507                     page_offset(locked_page) <= end) {
508                         __set_page_dirty_nobuffers(locked_page);
509                         /* unlocked later on in the async handlers */
510                 }
511                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
512                 *num_added += 1;
513         }
514
515 out:
516         return 0;
517
518 free_pages_out:
519         for (i = 0; i < nr_pages_ret; i++) {
520                 WARN_ON(pages[i]->mapping);
521                 page_cache_release(pages[i]);
522         }
523         if (pages)
524                 kfree(pages);
525
526         goto out;
527 }
528
529 /*
530  * phase two of compressed writeback.  This is the ordered portion
531  * of the code, which only gets called in the order the work was
532  * queued.  We walk all the async extents created by compress_file_range
533  * and send them down to the disk.
534  */
535 static noinline int submit_compressed_extents(struct inode *inode,
536                                               struct async_cow *async_cow)
537 {
538         struct async_extent *async_extent;
539         u64 alloc_hint = 0;
540         struct btrfs_trans_handle *trans;
541         struct btrfs_key ins;
542         struct extent_map *em;
543         struct btrfs_root *root = BTRFS_I(inode)->root;
544         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
545         struct extent_io_tree *io_tree;
546         int ret;
547
548         if (list_empty(&async_cow->extents))
549                 return 0;
550
551         trans = btrfs_join_transaction(root, 1);
552
553         while(!list_empty(&async_cow->extents)) {
554                 async_extent = list_entry(async_cow->extents.next,
555                                           struct async_extent, list);
556                 list_del(&async_extent->list);
557
558                 io_tree = &BTRFS_I(inode)->io_tree;
559
560                 /* did the compression code fall back to uncompressed IO? */
561                 if (!async_extent->pages) {
562                         int page_started = 0;
563                         unsigned long nr_written = 0;
564
565                         lock_extent(io_tree, async_extent->start,
566                                     async_extent->start + async_extent->ram_size - 1,
567                                     GFP_NOFS);
568
569                         /* allocate blocks */
570                         cow_file_range(inode, async_cow->locked_page,
571                                        async_extent->start,
572                                        async_extent->start +
573                                        async_extent->ram_size - 1,
574                                        &page_started, &nr_written, 0);
575
576                         /*
577                          * if page_started, cow_file_range inserted an
578                          * inline extent and took care of all the unlocking
579                          * and IO for us.  Otherwise, we need to submit
580                          * all those pages down to the drive.
581                          */
582                         if (!page_started)
583                                 extent_write_locked_range(io_tree,
584                                                   inode, async_extent->start,
585                                                   async_extent->start +
586                                                   async_extent->ram_size - 1,
587                                                   btrfs_get_extent,
588                                                   WB_SYNC_ALL);
589                         kfree(async_extent);
590                         cond_resched();
591                         continue;
592                 }
593
594                 lock_extent(io_tree, async_extent->start,
595                             async_extent->start + async_extent->ram_size - 1,
596                             GFP_NOFS);
597                 /*
598                  * here we're doing allocation and writeback of the
599                  * compressed pages
600                  */
601                 btrfs_drop_extent_cache(inode, async_extent->start,
602                                         async_extent->start +
603                                         async_extent->ram_size - 1, 0);
604
605                 ret = btrfs_reserve_extent(trans, root,
606                                            async_extent->compressed_size,
607                                            async_extent->compressed_size,
608                                            0, alloc_hint,
609                                            (u64)-1, &ins, 1);
610                 BUG_ON(ret);
611                 em = alloc_extent_map(GFP_NOFS);
612                 em->start = async_extent->start;
613                 em->len = async_extent->ram_size;
614                 em->orig_start = em->start;
615
616                 em->block_start = ins.objectid;
617                 em->block_len = ins.offset;
618                 em->bdev = root->fs_info->fs_devices->latest_bdev;
619                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
620                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
621
622                 while(1) {
623                         spin_lock(&em_tree->lock);
624                         ret = add_extent_mapping(em_tree, em);
625                         spin_unlock(&em_tree->lock);
626                         if (ret != -EEXIST) {
627                                 free_extent_map(em);
628                                 break;
629                         }
630                         btrfs_drop_extent_cache(inode, async_extent->start,
631                                                 async_extent->start +
632                                                 async_extent->ram_size - 1, 0);
633                 }
634
635                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
636                                                ins.objectid,
637                                                async_extent->ram_size,
638                                                ins.offset,
639                                                BTRFS_ORDERED_COMPRESSED);
640                 BUG_ON(ret);
641
642                 btrfs_end_transaction(trans, root);
643
644                 /*
645                  * clear dirty, set writeback and unlock the pages.
646                  */
647                 extent_clear_unlock_delalloc(inode,
648                                              &BTRFS_I(inode)->io_tree,
649                                              async_extent->start,
650                                              async_extent->start +
651                                              async_extent->ram_size - 1,
652                                              NULL, 1, 1, 0, 1, 1, 0);
653
654                 ret = btrfs_submit_compressed_write(inode,
655                                          async_extent->start,
656                                          async_extent->ram_size,
657                                          ins.objectid,
658                                          ins.offset, async_extent->pages,
659                                          async_extent->nr_pages);
660
661                 BUG_ON(ret);
662                 trans = btrfs_join_transaction(root, 1);
663                 alloc_hint = ins.objectid + ins.offset;
664                 kfree(async_extent);
665                 cond_resched();
666         }
667
668         btrfs_end_transaction(trans, root);
669         return 0;
670 }
671
672 /*
673  * when extent_io.c finds a delayed allocation range in the file,
674  * the call backs end up in this code.  The basic idea is to
675  * allocate extents on disk for the range, and create ordered data structs
676  * in ram to track those extents.
677  *
678  * locked_page is the page that writepage had locked already.  We use
679  * it to make sure we don't do extra locks or unlocks.
680  *
681  * *page_started is set to one if we unlock locked_page and do everything
682  * required to start IO on it.  It may be clean and already done with
683  * IO when we return.
684  */
685 static noinline int cow_file_range(struct inode *inode,
686                                    struct page *locked_page,
687                                    u64 start, u64 end, int *page_started,
688                                    unsigned long *nr_written,
689                                    int unlock)
690 {
691         struct btrfs_root *root = BTRFS_I(inode)->root;
692         struct btrfs_trans_handle *trans;
693         u64 alloc_hint = 0;
694         u64 num_bytes;
695         unsigned long ram_size;
696         u64 disk_num_bytes;
697         u64 cur_alloc_size;
698         u64 blocksize = root->sectorsize;
699         u64 actual_end;
700         u64 isize = i_size_read(inode);
701         struct btrfs_key ins;
702         struct extent_map *em;
703         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
704         int ret = 0;
705
706         trans = btrfs_join_transaction(root, 1);
707         BUG_ON(!trans);
708         btrfs_set_trans_block_group(trans, inode);
709
710         actual_end = min_t(u64, isize, end + 1);
711
712         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
713         num_bytes = max(blocksize,  num_bytes);
714         disk_num_bytes = num_bytes;
715         ret = 0;
716
717         if (start == 0) {
718                 /* lets try to make an inline extent */
719                 ret = cow_file_range_inline(trans, root, inode,
720                                             start, end, 0, NULL);
721                 if (ret == 0) {
722                         extent_clear_unlock_delalloc(inode,
723                                                      &BTRFS_I(inode)->io_tree,
724                                                      start, end, NULL, 1, 1,
725                                                      1, 1, 1, 1);
726                         *nr_written = *nr_written +
727                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
728                         *page_started = 1;
729                         ret = 0;
730                         goto out;
731                 }
732         }
733
734         BUG_ON(disk_num_bytes >
735                btrfs_super_total_bytes(&root->fs_info->super_copy));
736
737         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
738
739         while(disk_num_bytes > 0) {
740                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
741                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
742                                            root->sectorsize, 0, alloc_hint,
743                                            (u64)-1, &ins, 1);
744                 if (ret) {
745                         BUG();
746                 }
747                 em = alloc_extent_map(GFP_NOFS);
748                 em->start = start;
749                 em->orig_start = em->start;
750
751                 ram_size = ins.offset;
752                 em->len = ins.offset;
753
754                 em->block_start = ins.objectid;
755                 em->block_len = ins.offset;
756                 em->bdev = root->fs_info->fs_devices->latest_bdev;
757                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
758
759                 while(1) {
760                         spin_lock(&em_tree->lock);
761                         ret = add_extent_mapping(em_tree, em);
762                         spin_unlock(&em_tree->lock);
763                         if (ret != -EEXIST) {
764                                 free_extent_map(em);
765                                 break;
766                         }
767                         btrfs_drop_extent_cache(inode, start,
768                                                 start + ram_size - 1, 0);
769                 }
770
771                 cur_alloc_size = ins.offset;
772                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
773                                                ram_size, cur_alloc_size, 0);
774                 BUG_ON(ret);
775
776                 if (root->root_key.objectid ==
777                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
778                         ret = btrfs_reloc_clone_csums(inode, start,
779                                                       cur_alloc_size);
780                         BUG_ON(ret);
781                 }
782
783                 if (disk_num_bytes < cur_alloc_size) {
784                         printk("num_bytes %Lu cur_alloc %Lu\n", disk_num_bytes,
785                                cur_alloc_size);
786                         break;
787                 }
788                 /* we're not doing compressed IO, don't unlock the first
789                  * page (which the caller expects to stay locked), don't
790                  * clear any dirty bits and don't set any writeback bits
791                  */
792                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
793                                              start, start + ram_size - 1,
794                                              locked_page, unlock, 1,
795                                              1, 0, 0, 0);
796                 disk_num_bytes -= cur_alloc_size;
797                 num_bytes -= cur_alloc_size;
798                 alloc_hint = ins.objectid + ins.offset;
799                 start += cur_alloc_size;
800         }
801 out:
802         ret = 0;
803         btrfs_end_transaction(trans, root);
804
805         return ret;
806 }
807
808 /*
809  * work queue call back to started compression on a file and pages
810  */
811 static noinline void async_cow_start(struct btrfs_work *work)
812 {
813         struct async_cow *async_cow;
814         int num_added = 0;
815         async_cow = container_of(work, struct async_cow, work);
816
817         compress_file_range(async_cow->inode, async_cow->locked_page,
818                             async_cow->start, async_cow->end, async_cow,
819                             &num_added);
820         if (num_added == 0)
821                 async_cow->inode = NULL;
822 }
823
824 /*
825  * work queue call back to submit previously compressed pages
826  */
827 static noinline void async_cow_submit(struct btrfs_work *work)
828 {
829         struct async_cow *async_cow;
830         struct btrfs_root *root;
831         unsigned long nr_pages;
832
833         async_cow = container_of(work, struct async_cow, work);
834
835         root = async_cow->root;
836         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
837                 PAGE_CACHE_SHIFT;
838
839         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
840
841         if (atomic_read(&root->fs_info->async_delalloc_pages) <
842             5 * 1042 * 1024 &&
843             waitqueue_active(&root->fs_info->async_submit_wait))
844                 wake_up(&root->fs_info->async_submit_wait);
845
846         if (async_cow->inode) {
847                 submit_compressed_extents(async_cow->inode, async_cow);
848         }
849 }
850
851 static noinline void async_cow_free(struct btrfs_work *work)
852 {
853         struct async_cow *async_cow;
854         async_cow = container_of(work, struct async_cow, work);
855         kfree(async_cow);
856 }
857
858 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
859                                 u64 start, u64 end, int *page_started,
860                                 unsigned long *nr_written)
861 {
862         struct async_cow *async_cow;
863         struct btrfs_root *root = BTRFS_I(inode)->root;
864         unsigned long nr_pages;
865         u64 cur_end;
866         int limit = 10 * 1024 * 1042;
867
868         if (!btrfs_test_opt(root, COMPRESS)) {
869                 return cow_file_range(inode, locked_page, start, end,
870                                       page_started, nr_written, 1);
871         }
872
873         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
874                          EXTENT_DELALLOC, 1, 0, GFP_NOFS);
875         while(start < end) {
876                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
877                 async_cow->inode = inode;
878                 async_cow->root = root;
879                 async_cow->locked_page = locked_page;
880                 async_cow->start = start;
881
882                 if (btrfs_test_flag(inode, NOCOMPRESS))
883                         cur_end = end;
884                 else
885                         cur_end = min(end, start + 512 * 1024 - 1);
886
887                 async_cow->end = cur_end;
888                 INIT_LIST_HEAD(&async_cow->extents);
889
890                 async_cow->work.func = async_cow_start;
891                 async_cow->work.ordered_func = async_cow_submit;
892                 async_cow->work.ordered_free = async_cow_free;
893                 async_cow->work.flags = 0;
894
895                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
896                         PAGE_CACHE_SHIFT;
897                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
898
899                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
900                                    &async_cow->work);
901
902                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
903                         wait_event(root->fs_info->async_submit_wait,
904                            (atomic_read(&root->fs_info->async_delalloc_pages) <
905                             limit));
906                 }
907
908                 while(atomic_read(&root->fs_info->async_submit_draining) &&
909                       atomic_read(&root->fs_info->async_delalloc_pages)) {
910                         wait_event(root->fs_info->async_submit_wait,
911                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
912                            0));
913                 }
914
915                 *nr_written += nr_pages;
916                 start = cur_end + 1;
917         }
918         *page_started = 1;
919         return 0;
920 }
921
922 static int noinline csum_exist_in_range(struct btrfs_root *root,
923                                         u64 bytenr, u64 num_bytes)
924 {
925         int ret;
926         struct btrfs_ordered_sum *sums;
927         LIST_HEAD(list);
928
929         ret = btrfs_lookup_csums_range(root, bytenr, bytenr + num_bytes - 1,
930                                        &list);
931         if (ret == 0 && list_empty(&list))
932                 return 0;
933
934         while (!list_empty(&list)) {
935                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
936                 list_del(&sums->list);
937                 kfree(sums);
938         }
939         return 1;
940 }
941
942 /*
943  * when nowcow writeback call back.  This checks for snapshots or COW copies
944  * of the extents that exist in the file, and COWs the file as required.
945  *
946  * If no cow copies or snapshots exist, we write directly to the existing
947  * blocks on disk
948  */
949 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
950                               u64 start, u64 end, int *page_started, int force,
951                               unsigned long *nr_written)
952 {
953         struct btrfs_root *root = BTRFS_I(inode)->root;
954         struct btrfs_trans_handle *trans;
955         struct extent_buffer *leaf;
956         struct btrfs_path *path;
957         struct btrfs_file_extent_item *fi;
958         struct btrfs_key found_key;
959         u64 cow_start;
960         u64 cur_offset;
961         u64 extent_end;
962         u64 disk_bytenr;
963         u64 num_bytes;
964         int extent_type;
965         int ret;
966         int type;
967         int nocow;
968         int check_prev = 1;
969
970         path = btrfs_alloc_path();
971         BUG_ON(!path);
972         trans = btrfs_join_transaction(root, 1);
973         BUG_ON(!trans);
974
975         cow_start = (u64)-1;
976         cur_offset = start;
977         while (1) {
978                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
979                                                cur_offset, 0);
980                 BUG_ON(ret < 0);
981                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
982                         leaf = path->nodes[0];
983                         btrfs_item_key_to_cpu(leaf, &found_key,
984                                               path->slots[0] - 1);
985                         if (found_key.objectid == inode->i_ino &&
986                             found_key.type == BTRFS_EXTENT_DATA_KEY)
987                                 path->slots[0]--;
988                 }
989                 check_prev = 0;
990 next_slot:
991                 leaf = path->nodes[0];
992                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
993                         ret = btrfs_next_leaf(root, path);
994                         if (ret < 0)
995                                 BUG_ON(1);
996                         if (ret > 0)
997                                 break;
998                         leaf = path->nodes[0];
999                 }
1000
1001                 nocow = 0;
1002                 disk_bytenr = 0;
1003                 num_bytes = 0;
1004                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1005
1006                 if (found_key.objectid > inode->i_ino ||
1007                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1008                     found_key.offset > end)
1009                         break;
1010
1011                 if (found_key.offset > cur_offset) {
1012                         extent_end = found_key.offset;
1013                         goto out_check;
1014                 }
1015
1016                 fi = btrfs_item_ptr(leaf, path->slots[0],
1017                                     struct btrfs_file_extent_item);
1018                 extent_type = btrfs_file_extent_type(leaf, fi);
1019
1020                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1021                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1022                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1023                         extent_end = found_key.offset +
1024                                 btrfs_file_extent_num_bytes(leaf, fi);
1025                         if (extent_end <= start) {
1026                                 path->slots[0]++;
1027                                 goto next_slot;
1028                         }
1029                         if (disk_bytenr == 0)
1030                                 goto out_check;
1031                         if (btrfs_file_extent_compression(leaf, fi) ||
1032                             btrfs_file_extent_encryption(leaf, fi) ||
1033                             btrfs_file_extent_other_encoding(leaf, fi))
1034                                 goto out_check;
1035                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1036                                 goto out_check;
1037                         if (btrfs_extent_readonly(root, disk_bytenr))
1038                                 goto out_check;
1039                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1040                                                   disk_bytenr))
1041                                 goto out_check;
1042                         disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1043                         disk_bytenr += cur_offset - found_key.offset;
1044                         num_bytes = min(end + 1, extent_end) - cur_offset;
1045                         /*
1046                          * force cow if csum exists in the range.
1047                          * this ensure that csum for a given extent are
1048                          * either valid or do not exist.
1049                          */
1050                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1051                                 goto out_check;
1052                         nocow = 1;
1053                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1054                         extent_end = found_key.offset +
1055                                 btrfs_file_extent_inline_len(leaf, fi);
1056                         extent_end = ALIGN(extent_end, root->sectorsize);
1057                 } else {
1058                         BUG_ON(1);
1059                 }
1060 out_check:
1061                 if (extent_end <= start) {
1062                         path->slots[0]++;
1063                         goto next_slot;
1064                 }
1065                 if (!nocow) {
1066                         if (cow_start == (u64)-1)
1067                                 cow_start = cur_offset;
1068                         cur_offset = extent_end;
1069                         if (cur_offset > end)
1070                                 break;
1071                         path->slots[0]++;
1072                         goto next_slot;
1073                 }
1074
1075                 btrfs_release_path(root, path);
1076                 if (cow_start != (u64)-1) {
1077                         ret = cow_file_range(inode, locked_page, cow_start,
1078                                         found_key.offset - 1, page_started,
1079                                         nr_written, 1);
1080                         BUG_ON(ret);
1081                         cow_start = (u64)-1;
1082                 }
1083
1084                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1085                         struct extent_map *em;
1086                         struct extent_map_tree *em_tree;
1087                         em_tree = &BTRFS_I(inode)->extent_tree;
1088                         em = alloc_extent_map(GFP_NOFS);
1089                         em->start = cur_offset;
1090                         em->orig_start = em->start;
1091                         em->len = num_bytes;
1092                         em->block_len = num_bytes;
1093                         em->block_start = disk_bytenr;
1094                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1095                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1096                         while (1) {
1097                                 spin_lock(&em_tree->lock);
1098                                 ret = add_extent_mapping(em_tree, em);
1099                                 spin_unlock(&em_tree->lock);
1100                                 if (ret != -EEXIST) {
1101                                         free_extent_map(em);
1102                                         break;
1103                                 }
1104                                 btrfs_drop_extent_cache(inode, em->start,
1105                                                 em->start + em->len - 1, 0);
1106                         }
1107                         type = BTRFS_ORDERED_PREALLOC;
1108                 } else {
1109                         type = BTRFS_ORDERED_NOCOW;
1110                 }
1111
1112                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1113                                                num_bytes, num_bytes, type);
1114                 BUG_ON(ret);
1115
1116                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1117                                         cur_offset, cur_offset + num_bytes - 1,
1118                                         locked_page, 1, 1, 1, 0, 0, 0);
1119                 cur_offset = extent_end;
1120                 if (cur_offset > end)
1121                         break;
1122         }
1123         btrfs_release_path(root, path);
1124
1125         if (cur_offset <= end && cow_start == (u64)-1)
1126                 cow_start = cur_offset;
1127         if (cow_start != (u64)-1) {
1128                 ret = cow_file_range(inode, locked_page, cow_start, end,
1129                                      page_started, nr_written, 1);
1130                 BUG_ON(ret);
1131         }
1132
1133         ret = btrfs_end_transaction(trans, root);
1134         BUG_ON(ret);
1135         btrfs_free_path(path);
1136         return 0;
1137 }
1138
1139 /*
1140  * extent_io.c call back to do delayed allocation processing
1141  */
1142 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1143                               u64 start, u64 end, int *page_started,
1144                               unsigned long *nr_written)
1145 {
1146         int ret;
1147
1148         if (btrfs_test_flag(inode, NODATACOW))
1149                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1150                                         page_started, 1, nr_written);
1151         else if (btrfs_test_flag(inode, PREALLOC))
1152                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1153                                         page_started, 0, nr_written);
1154         else
1155                 ret = cow_file_range_async(inode, locked_page, start, end,
1156                                      page_started, nr_written);
1157
1158         return ret;
1159 }
1160
1161 /*
1162  * extent_io.c set_bit_hook, used to track delayed allocation
1163  * bytes in this file, and to maintain the list of inodes that
1164  * have pending delalloc work to be done.
1165  */
1166 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1167                        unsigned long old, unsigned long bits)
1168 {
1169         unsigned long flags;
1170         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1171                 struct btrfs_root *root = BTRFS_I(inode)->root;
1172                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
1173                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1174                 root->fs_info->delalloc_bytes += end - start + 1;
1175                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1176                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1177                                       &root->fs_info->delalloc_inodes);
1178                 }
1179                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
1180         }
1181         return 0;
1182 }
1183
1184 /*
1185  * extent_io.c clear_bit_hook, see set_bit_hook for why
1186  */
1187 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1188                          unsigned long old, unsigned long bits)
1189 {
1190         if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1191                 struct btrfs_root *root = BTRFS_I(inode)->root;
1192                 unsigned long flags;
1193
1194                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
1195                 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1196                         printk("warning: delalloc account %Lu %Lu\n",
1197                                end - start + 1, root->fs_info->delalloc_bytes);
1198                         root->fs_info->delalloc_bytes = 0;
1199                         BTRFS_I(inode)->delalloc_bytes = 0;
1200                 } else {
1201                         root->fs_info->delalloc_bytes -= end - start + 1;
1202                         BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1203                 }
1204                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1205                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1206                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1207                 }
1208                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
1209         }
1210         return 0;
1211 }
1212
1213 /*
1214  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1215  * we don't create bios that span stripes or chunks
1216  */
1217 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1218                          size_t size, struct bio *bio,
1219                          unsigned long bio_flags)
1220 {
1221         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1222         struct btrfs_mapping_tree *map_tree;
1223         u64 logical = (u64)bio->bi_sector << 9;
1224         u64 length = 0;
1225         u64 map_length;
1226         int ret;
1227
1228         if (bio_flags & EXTENT_BIO_COMPRESSED)
1229                 return 0;
1230
1231         length = bio->bi_size;
1232         map_tree = &root->fs_info->mapping_tree;
1233         map_length = length;
1234         ret = btrfs_map_block(map_tree, READ, logical,
1235                               &map_length, NULL, 0);
1236
1237         if (map_length < length + size) {
1238                 return 1;
1239         }
1240         return 0;
1241 }
1242
1243 /*
1244  * in order to insert checksums into the metadata in large chunks,
1245  * we wait until bio submission time.   All the pages in the bio are
1246  * checksummed and sums are attached onto the ordered extent record.
1247  *
1248  * At IO completion time the cums attached on the ordered extent record
1249  * are inserted into the btree
1250  */
1251 static int __btrfs_submit_bio_start(struct inode *inode, int rw, struct bio *bio,
1252                           int mirror_num, unsigned long bio_flags)
1253 {
1254         struct btrfs_root *root = BTRFS_I(inode)->root;
1255         int ret = 0;
1256
1257         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1258         BUG_ON(ret);
1259         return 0;
1260 }
1261
1262 /*
1263  * in order to insert checksums into the metadata in large chunks,
1264  * we wait until bio submission time.   All the pages in the bio are
1265  * checksummed and sums are attached onto the ordered extent record.
1266  *
1267  * At IO completion time the cums attached on the ordered extent record
1268  * are inserted into the btree
1269  */
1270 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1271                           int mirror_num, unsigned long bio_flags)
1272 {
1273         struct btrfs_root *root = BTRFS_I(inode)->root;
1274         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1275 }
1276
1277 /*
1278  * extent_io.c submission hook. This does the right thing for csum calculation on write,
1279  * or reading the csums from the tree before a read
1280  */
1281 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1282                           int mirror_num, unsigned long bio_flags)
1283 {
1284         struct btrfs_root *root = BTRFS_I(inode)->root;
1285         int ret = 0;
1286         int skip_sum;
1287
1288         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1289         BUG_ON(ret);
1290
1291         skip_sum = btrfs_test_flag(inode, NODATASUM);
1292
1293         if (!(rw & (1 << BIO_RW))) {
1294                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1295                         return btrfs_submit_compressed_read(inode, bio,
1296                                                     mirror_num, bio_flags);
1297                 } else if (!skip_sum)
1298                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1299                 goto mapit;
1300         } else if (!skip_sum) {
1301                 /* csum items have already been cloned */
1302                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1303                         goto mapit;
1304                 /* we're doing a write, do the async checksumming */
1305                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1306                                    inode, rw, bio, mirror_num,
1307                                    bio_flags, __btrfs_submit_bio_start,
1308                                    __btrfs_submit_bio_done);
1309         }
1310
1311 mapit:
1312         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1313 }
1314
1315 /*
1316  * given a list of ordered sums record them in the inode.  This happens
1317  * at IO completion time based on sums calculated at bio submission time.
1318  */
1319 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1320                              struct inode *inode, u64 file_offset,
1321                              struct list_head *list)
1322 {
1323         struct list_head *cur;
1324         struct btrfs_ordered_sum *sum;
1325
1326         btrfs_set_trans_block_group(trans, inode);
1327         list_for_each(cur, list) {
1328                 sum = list_entry(cur, struct btrfs_ordered_sum, list);
1329                 btrfs_csum_file_blocks(trans,
1330                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1331         }
1332         return 0;
1333 }
1334
1335 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1336 {
1337         if ((end & (PAGE_CACHE_SIZE - 1)) == 0) {
1338                 WARN_ON(1);
1339         }
1340         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1341                                    GFP_NOFS);
1342 }
1343
1344 /* see btrfs_writepage_start_hook for details on why this is required */
1345 struct btrfs_writepage_fixup {
1346         struct page *page;
1347         struct btrfs_work work;
1348 };
1349
1350 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1351 {
1352         struct btrfs_writepage_fixup *fixup;
1353         struct btrfs_ordered_extent *ordered;
1354         struct page *page;
1355         struct inode *inode;
1356         u64 page_start;
1357         u64 page_end;
1358
1359         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1360         page = fixup->page;
1361 again:
1362         lock_page(page);
1363         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1364                 ClearPageChecked(page);
1365                 goto out_page;
1366         }
1367
1368         inode = page->mapping->host;
1369         page_start = page_offset(page);
1370         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1371
1372         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1373
1374         /* already ordered? We're done */
1375         if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1376                              EXTENT_ORDERED, 0)) {
1377                 goto out;
1378         }
1379
1380         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1381         if (ordered) {
1382                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1383                               page_end, GFP_NOFS);
1384                 unlock_page(page);
1385                 btrfs_start_ordered_extent(inode, ordered, 1);
1386                 goto again;
1387         }
1388
1389         btrfs_set_extent_delalloc(inode, page_start, page_end);
1390         ClearPageChecked(page);
1391 out:
1392         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1393 out_page:
1394         unlock_page(page);
1395         page_cache_release(page);
1396 }
1397
1398 /*
1399  * There are a few paths in the higher layers of the kernel that directly
1400  * set the page dirty bit without asking the filesystem if it is a
1401  * good idea.  This causes problems because we want to make sure COW
1402  * properly happens and the data=ordered rules are followed.
1403  *
1404  * In our case any range that doesn't have the ORDERED bit set
1405  * hasn't been properly setup for IO.  We kick off an async process
1406  * to fix it up.  The async helper will wait for ordered extents, set
1407  * the delalloc bit and make it safe to write the page.
1408  */
1409 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1410 {
1411         struct inode *inode = page->mapping->host;
1412         struct btrfs_writepage_fixup *fixup;
1413         struct btrfs_root *root = BTRFS_I(inode)->root;
1414         int ret;
1415
1416         ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1417                              EXTENT_ORDERED, 0);
1418         if (ret)
1419                 return 0;
1420
1421         if (PageChecked(page))
1422                 return -EAGAIN;
1423
1424         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1425         if (!fixup)
1426                 return -EAGAIN;
1427
1428         SetPageChecked(page);
1429         page_cache_get(page);
1430         fixup->work.func = btrfs_writepage_fixup_worker;
1431         fixup->page = page;
1432         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1433         return -EAGAIN;
1434 }
1435
1436 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1437                                        struct inode *inode, u64 file_pos,
1438                                        u64 disk_bytenr, u64 disk_num_bytes,
1439                                        u64 num_bytes, u64 ram_bytes,
1440                                        u8 compression, u8 encryption,
1441                                        u16 other_encoding, int extent_type)
1442 {
1443         struct btrfs_root *root = BTRFS_I(inode)->root;
1444         struct btrfs_file_extent_item *fi;
1445         struct btrfs_path *path;
1446         struct extent_buffer *leaf;
1447         struct btrfs_key ins;
1448         u64 hint;
1449         int ret;
1450
1451         path = btrfs_alloc_path();
1452         BUG_ON(!path);
1453
1454         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1455                                  file_pos + num_bytes, file_pos, &hint);
1456         BUG_ON(ret);
1457
1458         ins.objectid = inode->i_ino;
1459         ins.offset = file_pos;
1460         ins.type = BTRFS_EXTENT_DATA_KEY;
1461         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1462         BUG_ON(ret);
1463         leaf = path->nodes[0];
1464         fi = btrfs_item_ptr(leaf, path->slots[0],
1465                             struct btrfs_file_extent_item);
1466         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1467         btrfs_set_file_extent_type(leaf, fi, extent_type);
1468         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1469         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1470         btrfs_set_file_extent_offset(leaf, fi, 0);
1471         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1472         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1473         btrfs_set_file_extent_compression(leaf, fi, compression);
1474         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1475         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1476         btrfs_mark_buffer_dirty(leaf);
1477
1478         inode_add_bytes(inode, num_bytes);
1479         btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1480
1481         ins.objectid = disk_bytenr;
1482         ins.offset = disk_num_bytes;
1483         ins.type = BTRFS_EXTENT_ITEM_KEY;
1484         ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1485                                           root->root_key.objectid,
1486                                           trans->transid, inode->i_ino, &ins);
1487         BUG_ON(ret);
1488
1489         btrfs_free_path(path);
1490         return 0;
1491 }
1492
1493 /* as ordered data IO finishes, this gets called so we can finish
1494  * an ordered extent if the range of bytes in the file it covers are
1495  * fully written.
1496  */
1497 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1498 {
1499         struct btrfs_root *root = BTRFS_I(inode)->root;
1500         struct btrfs_trans_handle *trans;
1501         struct btrfs_ordered_extent *ordered_extent;
1502         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1503         int compressed = 0;
1504         int ret;
1505
1506         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1507         if (!ret)
1508                 return 0;
1509
1510         trans = btrfs_join_transaction(root, 1);
1511
1512         ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1513         BUG_ON(!ordered_extent);
1514         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1515                 goto nocow;
1516
1517         lock_extent(io_tree, ordered_extent->file_offset,
1518                     ordered_extent->file_offset + ordered_extent->len - 1,
1519                     GFP_NOFS);
1520
1521         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1522                 compressed = 1;
1523         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1524                 BUG_ON(compressed);
1525                 ret = btrfs_mark_extent_written(trans, root, inode,
1526                                                 ordered_extent->file_offset,
1527                                                 ordered_extent->file_offset +
1528                                                 ordered_extent->len);
1529                 BUG_ON(ret);
1530         } else {
1531                 ret = insert_reserved_file_extent(trans, inode,
1532                                                 ordered_extent->file_offset,
1533                                                 ordered_extent->start,
1534                                                 ordered_extent->disk_len,
1535                                                 ordered_extent->len,
1536                                                 ordered_extent->len,
1537                                                 compressed, 0, 0,
1538                                                 BTRFS_FILE_EXTENT_REG);
1539                 BUG_ON(ret);
1540         }
1541         unlock_extent(io_tree, ordered_extent->file_offset,
1542                     ordered_extent->file_offset + ordered_extent->len - 1,
1543                     GFP_NOFS);
1544 nocow:
1545         add_pending_csums(trans, inode, ordered_extent->file_offset,
1546                           &ordered_extent->list);
1547
1548         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1549         btrfs_ordered_update_i_size(inode, ordered_extent);
1550         btrfs_update_inode(trans, root, inode);
1551         btrfs_remove_ordered_extent(inode, ordered_extent);
1552         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1553
1554         /* once for us */
1555         btrfs_put_ordered_extent(ordered_extent);
1556         /* once for the tree */
1557         btrfs_put_ordered_extent(ordered_extent);
1558
1559         btrfs_end_transaction(trans, root);
1560         return 0;
1561 }
1562
1563 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1564                                 struct extent_state *state, int uptodate)
1565 {
1566         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1567 }
1568
1569 /*
1570  * When IO fails, either with EIO or csum verification fails, we
1571  * try other mirrors that might have a good copy of the data.  This
1572  * io_failure_record is used to record state as we go through all the
1573  * mirrors.  If another mirror has good data, the page is set up to date
1574  * and things continue.  If a good mirror can't be found, the original
1575  * bio end_io callback is called to indicate things have failed.
1576  */
1577 struct io_failure_record {
1578         struct page *page;
1579         u64 start;
1580         u64 len;
1581         u64 logical;
1582         unsigned long bio_flags;
1583         int last_mirror;
1584 };
1585
1586 static int btrfs_io_failed_hook(struct bio *failed_bio,
1587                          struct page *page, u64 start, u64 end,
1588                          struct extent_state *state)
1589 {
1590         struct io_failure_record *failrec = NULL;
1591         u64 private;
1592         struct extent_map *em;
1593         struct inode *inode = page->mapping->host;
1594         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1595         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1596         struct bio *bio;
1597         int num_copies;
1598         int ret;
1599         int rw;
1600         u64 logical;
1601
1602         ret = get_state_private(failure_tree, start, &private);
1603         if (ret) {
1604                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1605                 if (!failrec)
1606                         return -ENOMEM;
1607                 failrec->start = start;
1608                 failrec->len = end - start + 1;
1609                 failrec->last_mirror = 0;
1610                 failrec->bio_flags = 0;
1611
1612                 spin_lock(&em_tree->lock);
1613                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1614                 if (em->start > start || em->start + em->len < start) {
1615                         free_extent_map(em);
1616                         em = NULL;
1617                 }
1618                 spin_unlock(&em_tree->lock);
1619
1620                 if (!em || IS_ERR(em)) {
1621                         kfree(failrec);
1622                         return -EIO;
1623                 }
1624                 logical = start - em->start;
1625                 logical = em->block_start + logical;
1626                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1627                         logical = em->block_start;
1628                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1629                 }
1630                 failrec->logical = logical;
1631                 free_extent_map(em);
1632                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1633                                 EXTENT_DIRTY, GFP_NOFS);
1634                 set_state_private(failure_tree, start,
1635                                  (u64)(unsigned long)failrec);
1636         } else {
1637                 failrec = (struct io_failure_record *)(unsigned long)private;
1638         }
1639         num_copies = btrfs_num_copies(
1640                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1641                               failrec->logical, failrec->len);
1642         failrec->last_mirror++;
1643         if (!state) {
1644                 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
1645                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1646                                                     failrec->start,
1647                                                     EXTENT_LOCKED);
1648                 if (state && state->start != failrec->start)
1649                         state = NULL;
1650                 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
1651         }
1652         if (!state || failrec->last_mirror > num_copies) {
1653                 set_state_private(failure_tree, failrec->start, 0);
1654                 clear_extent_bits(failure_tree, failrec->start,
1655                                   failrec->start + failrec->len - 1,
1656                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1657                 kfree(failrec);
1658                 return -EIO;
1659         }
1660         bio = bio_alloc(GFP_NOFS, 1);
1661         bio->bi_private = state;
1662         bio->bi_end_io = failed_bio->bi_end_io;
1663         bio->bi_sector = failrec->logical >> 9;
1664         bio->bi_bdev = failed_bio->bi_bdev;
1665         bio->bi_size = 0;
1666
1667         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1668         if (failed_bio->bi_rw & (1 << BIO_RW))
1669                 rw = WRITE;
1670         else
1671                 rw = READ;
1672
1673         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1674                                                       failrec->last_mirror,
1675                                                       failrec->bio_flags);
1676         return 0;
1677 }
1678
1679 /*
1680  * each time an IO finishes, we do a fast check in the IO failure tree
1681  * to see if we need to process or clean up an io_failure_record
1682  */
1683 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1684 {
1685         u64 private;
1686         u64 private_failure;
1687         struct io_failure_record *failure;
1688         int ret;
1689
1690         private = 0;
1691         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1692                              (u64)-1, 1, EXTENT_DIRTY)) {
1693                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1694                                         start, &private_failure);
1695                 if (ret == 0) {
1696                         failure = (struct io_failure_record *)(unsigned long)
1697                                    private_failure;
1698                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1699                                           failure->start, 0);
1700                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1701                                           failure->start,
1702                                           failure->start + failure->len - 1,
1703                                           EXTENT_DIRTY | EXTENT_LOCKED,
1704                                           GFP_NOFS);
1705                         kfree(failure);
1706                 }
1707         }
1708         return 0;
1709 }
1710
1711 /*
1712  * when reads are done, we need to check csums to verify the data is correct
1713  * if there's a match, we allow the bio to finish.  If not, we go through
1714  * the io_failure_record routines to find good copies
1715  */
1716 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1717                                struct extent_state *state)
1718 {
1719         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1720         struct inode *inode = page->mapping->host;
1721         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1722         char *kaddr;
1723         u64 private = ~(u32)0;
1724         int ret;
1725         struct btrfs_root *root = BTRFS_I(inode)->root;
1726         u32 csum = ~(u32)0;
1727         unsigned long flags;
1728
1729         if (PageChecked(page)) {
1730                 ClearPageChecked(page);
1731                 goto good;
1732         }
1733         if (btrfs_test_flag(inode, NODATASUM))
1734                 return 0;
1735
1736         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1737             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1738                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1739                                   GFP_NOFS);
1740                 return 0;
1741         }
1742
1743         if (state && state->start == start) {
1744                 private = state->private;
1745                 ret = 0;
1746         } else {
1747                 ret = get_state_private(io_tree, start, &private);
1748         }
1749         local_irq_save(flags);
1750         kaddr = kmap_atomic(page, KM_IRQ0);
1751         if (ret) {
1752                 goto zeroit;
1753         }
1754         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1755         btrfs_csum_final(csum, (char *)&csum);
1756         if (csum != private) {
1757                 goto zeroit;
1758         }
1759         kunmap_atomic(kaddr, KM_IRQ0);
1760         local_irq_restore(flags);
1761 good:
1762         /* if the io failure tree for this inode is non-empty,
1763          * check to see if we've recovered from a failed IO
1764          */
1765         btrfs_clean_io_failures(inode, start);
1766         return 0;
1767
1768 zeroit:
1769         printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
1770                page->mapping->host->i_ino, (unsigned long long)start, csum,
1771                private);
1772         memset(kaddr + offset, 1, end - start + 1);
1773         flush_dcache_page(page);
1774         kunmap_atomic(kaddr, KM_IRQ0);
1775         local_irq_restore(flags);
1776         if (private == 0)
1777                 return 0;
1778         return -EIO;
1779 }
1780
1781 /*
1782  * This creates an orphan entry for the given inode in case something goes
1783  * wrong in the middle of an unlink/truncate.
1784  */
1785 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1786 {
1787         struct btrfs_root *root = BTRFS_I(inode)->root;
1788         int ret = 0;
1789
1790         spin_lock(&root->list_lock);
1791
1792         /* already on the orphan list, we're good */
1793         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1794                 spin_unlock(&root->list_lock);
1795                 return 0;
1796         }
1797
1798         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1799
1800         spin_unlock(&root->list_lock);
1801
1802         /*
1803          * insert an orphan item to track this unlinked/truncated file
1804          */
1805         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1806
1807         return ret;
1808 }
1809
1810 /*
1811  * We have done the truncate/delete so we can go ahead and remove the orphan
1812  * item for this particular inode.
1813  */
1814 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1815 {
1816         struct btrfs_root *root = BTRFS_I(inode)->root;
1817         int ret = 0;
1818
1819         spin_lock(&root->list_lock);
1820
1821         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1822                 spin_unlock(&root->list_lock);
1823                 return 0;
1824         }
1825
1826         list_del_init(&BTRFS_I(inode)->i_orphan);
1827         if (!trans) {
1828                 spin_unlock(&root->list_lock);
1829                 return 0;
1830         }
1831
1832         spin_unlock(&root->list_lock);
1833
1834         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1835
1836         return ret;
1837 }
1838
1839 /*
1840  * this cleans up any orphans that may be left on the list from the last use
1841  * of this root.
1842  */
1843 void btrfs_orphan_cleanup(struct btrfs_root *root)
1844 {
1845         struct btrfs_path *path;
1846         struct extent_buffer *leaf;
1847         struct btrfs_item *item;
1848         struct btrfs_key key, found_key;
1849         struct btrfs_trans_handle *trans;
1850         struct inode *inode;
1851         int ret = 0, nr_unlink = 0, nr_truncate = 0;
1852
1853         path = btrfs_alloc_path();
1854         if (!path)
1855                 return;
1856         path->reada = -1;
1857
1858         key.objectid = BTRFS_ORPHAN_OBJECTID;
1859         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1860         key.offset = (u64)-1;
1861
1862
1863         while (1) {
1864                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1865                 if (ret < 0) {
1866                         printk(KERN_ERR "Error searching slot for orphan: %d"
1867                                "\n", ret);
1868                         break;
1869                 }
1870
1871                 /*
1872                  * if ret == 0 means we found what we were searching for, which
1873                  * is weird, but possible, so only screw with path if we didnt
1874                  * find the key and see if we have stuff that matches
1875                  */
1876                 if (ret > 0) {
1877                         if (path->slots[0] == 0)
1878                                 break;
1879                         path->slots[0]--;
1880                 }
1881
1882                 /* pull out the item */
1883                 leaf = path->nodes[0];
1884                 item = btrfs_item_nr(leaf, path->slots[0]);
1885                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1886
1887                 /* make sure the item matches what we want */
1888                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1889                         break;
1890                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1891                         break;
1892
1893                 /* release the path since we're done with it */
1894                 btrfs_release_path(root, path);
1895
1896                 /*
1897                  * this is where we are basically btrfs_lookup, without the
1898                  * crossing root thing.  we store the inode number in the
1899                  * offset of the orphan item.
1900                  */
1901                 inode = btrfs_iget_locked(root->fs_info->sb,
1902                                           found_key.offset, root);
1903                 if (!inode)
1904                         break;
1905
1906                 if (inode->i_state & I_NEW) {
1907                         BTRFS_I(inode)->root = root;
1908
1909                         /* have to set the location manually */
1910                         BTRFS_I(inode)->location.objectid = inode->i_ino;
1911                         BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1912                         BTRFS_I(inode)->location.offset = 0;
1913
1914                         btrfs_read_locked_inode(inode);
1915                         unlock_new_inode(inode);
1916                 }
1917
1918                 /*
1919                  * add this inode to the orphan list so btrfs_orphan_del does
1920                  * the proper thing when we hit it
1921                  */
1922                 spin_lock(&root->list_lock);
1923                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1924                 spin_unlock(&root->list_lock);
1925
1926                 /*
1927                  * if this is a bad inode, means we actually succeeded in
1928                  * removing the inode, but not the orphan record, which means
1929                  * we need to manually delete the orphan since iput will just
1930                  * do a destroy_inode
1931                  */
1932                 if (is_bad_inode(inode)) {
1933                         trans = btrfs_start_transaction(root, 1);
1934                         btrfs_orphan_del(trans, inode);
1935                         btrfs_end_transaction(trans, root);
1936                         iput(inode);
1937                         continue;
1938                 }
1939
1940                 /* if we have links, this was a truncate, lets do that */
1941                 if (inode->i_nlink) {
1942                         nr_truncate++;
1943                         btrfs_truncate(inode);
1944                 } else {
1945                         nr_unlink++;
1946                 }
1947
1948                 /* this will do delete_inode and everything for us */
1949                 iput(inode);
1950         }
1951
1952         if (nr_unlink)
1953                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1954         if (nr_truncate)
1955                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1956
1957         btrfs_free_path(path);
1958 }
1959
1960 /*
1961  * read an inode from the btree into the in-memory inode
1962  */
1963 void btrfs_read_locked_inode(struct inode *inode)
1964 {
1965         struct btrfs_path *path;
1966         struct extent_buffer *leaf;
1967         struct btrfs_inode_item *inode_item;
1968         struct btrfs_timespec *tspec;
1969         struct btrfs_root *root = BTRFS_I(inode)->root;
1970         struct btrfs_key location;
1971         u64 alloc_group_block;
1972         u32 rdev;
1973         int ret;
1974
1975         path = btrfs_alloc_path();
1976         BUG_ON(!path);
1977         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1978
1979         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1980         if (ret)
1981                 goto make_bad;
1982
1983         leaf = path->nodes[0];
1984         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1985                                     struct btrfs_inode_item);
1986
1987         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1988         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1989         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1990         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1991         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1992
1993         tspec = btrfs_inode_atime(inode_item);
1994         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1995         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1996
1997         tspec = btrfs_inode_mtime(inode_item);
1998         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1999         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2000
2001         tspec = btrfs_inode_ctime(inode_item);
2002         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2003         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2004
2005         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2006         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2007         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2008         inode->i_generation = BTRFS_I(inode)->generation;
2009         inode->i_rdev = 0;
2010         rdev = btrfs_inode_rdev(leaf, inode_item);
2011
2012         BTRFS_I(inode)->index_cnt = (u64)-1;
2013         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2014
2015         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2016         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2017                                                 alloc_group_block, 0);
2018         btrfs_free_path(path);
2019         inode_item = NULL;
2020
2021         switch (inode->i_mode & S_IFMT) {
2022         case S_IFREG:
2023                 inode->i_mapping->a_ops = &btrfs_aops;
2024                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2025                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2026                 inode->i_fop = &btrfs_file_operations;
2027                 inode->i_op = &btrfs_file_inode_operations;
2028                 break;
2029         case S_IFDIR:
2030                 inode->i_fop = &btrfs_dir_file_operations;
2031                 if (root == root->fs_info->tree_root)
2032                         inode->i_op = &btrfs_dir_ro_inode_operations;
2033                 else
2034                         inode->i_op = &btrfs_dir_inode_operations;
2035                 break;
2036         case S_IFLNK:
2037                 inode->i_op = &btrfs_symlink_inode_operations;
2038                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2039                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2040                 break;
2041         default:
2042                 init_special_inode(inode, inode->i_mode, rdev);
2043                 break;
2044         }
2045         return;
2046
2047 make_bad:
2048         btrfs_free_path(path);
2049         make_bad_inode(inode);
2050 }
2051
2052 /*
2053  * given a leaf and an inode, copy the inode fields into the leaf
2054  */
2055 static void fill_inode_item(struct btrfs_trans_handle *trans,
2056                             struct extent_buffer *leaf,
2057                             struct btrfs_inode_item *item,
2058                             struct inode *inode)
2059 {
2060         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2061         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2062         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2063         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2064         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2065
2066         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2067                                inode->i_atime.tv_sec);
2068         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2069                                 inode->i_atime.tv_nsec);
2070
2071         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2072                                inode->i_mtime.tv_sec);
2073         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2074                                 inode->i_mtime.tv_nsec);
2075
2076         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2077                                inode->i_ctime.tv_sec);
2078         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2079                                 inode->i_ctime.tv_nsec);
2080
2081         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2082         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2083         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2084         btrfs_set_inode_transid(leaf, item, trans->transid);
2085         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2086         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2087         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2088 }
2089
2090 /*
2091  * copy everything in the in-memory inode into the btree.
2092  */
2093 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
2094                               struct btrfs_root *root,
2095                               struct inode *inode)
2096 {
2097         struct btrfs_inode_item *inode_item;
2098         struct btrfs_path *path;
2099         struct extent_buffer *leaf;
2100         int ret;
2101
2102         path = btrfs_alloc_path();
2103         BUG_ON(!path);
2104         ret = btrfs_lookup_inode(trans, root, path,
2105                                  &BTRFS_I(inode)->location, 1);
2106         if (ret) {
2107                 if (ret > 0)
2108                         ret = -ENOENT;
2109                 goto failed;
2110         }
2111
2112         leaf = path->nodes[0];
2113         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2114                                   struct btrfs_inode_item);
2115
2116         fill_inode_item(trans, leaf, inode_item, inode);
2117         btrfs_mark_buffer_dirty(leaf);
2118         btrfs_set_inode_last_trans(trans, inode);
2119         ret = 0;
2120 failed:
2121         btrfs_free_path(path);
2122         return ret;
2123 }
2124
2125
2126 /*
2127  * unlink helper that gets used here in inode.c and in the tree logging
2128  * recovery code.  It remove a link in a directory with a given name, and
2129  * also drops the back refs in the inode to the directory
2130  */
2131 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2132                        struct btrfs_root *root,
2133                        struct inode *dir, struct inode *inode,
2134                        const char *name, int name_len)
2135 {
2136         struct btrfs_path *path;
2137         int ret = 0;
2138         struct extent_buffer *leaf;
2139         struct btrfs_dir_item *di;
2140         struct btrfs_key key;
2141         u64 index;
2142
2143         path = btrfs_alloc_path();
2144         if (!path) {
2145                 ret = -ENOMEM;
2146                 goto err;
2147         }
2148
2149         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2150                                     name, name_len, -1);
2151         if (IS_ERR(di)) {
2152                 ret = PTR_ERR(di);
2153                 goto err;
2154         }
2155         if (!di) {
2156                 ret = -ENOENT;
2157                 goto err;
2158         }
2159         leaf = path->nodes[0];
2160         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2161         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2162         if (ret)
2163                 goto err;
2164         btrfs_release_path(root, path);
2165
2166         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2167                                   inode->i_ino,
2168                                   dir->i_ino, &index);
2169         if (ret) {
2170                 printk("failed to delete reference to %.*s, "
2171                        "inode %lu parent %lu\n", name_len, name,
2172                        inode->i_ino, dir->i_ino);
2173                 goto err;
2174         }
2175
2176         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2177                                          index, name, name_len, -1);
2178         if (IS_ERR(di)) {
2179                 ret = PTR_ERR(di);
2180                 goto err;
2181         }
2182         if (!di) {
2183                 ret = -ENOENT;
2184                 goto err;
2185         }
2186         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2187         btrfs_release_path(root, path);
2188
2189         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2190                                          inode, dir->i_ino);
2191         BUG_ON(ret != 0 && ret != -ENOENT);
2192         if (ret != -ENOENT)
2193                 BTRFS_I(dir)->log_dirty_trans = trans->transid;
2194
2195         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2196                                            dir, index);
2197         BUG_ON(ret);
2198 err:
2199         btrfs_free_path(path);
2200         if (ret)
2201                 goto out;
2202
2203         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2204         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2205         btrfs_update_inode(trans, root, dir);
2206         btrfs_drop_nlink(inode);
2207         ret = btrfs_update_inode(trans, root, inode);
2208         dir->i_sb->s_dirt = 1;
2209 out:
2210         return ret;
2211 }
2212
2213 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2214 {
2215         struct btrfs_root *root;
2216         struct btrfs_trans_handle *trans;
2217         struct inode *inode = dentry->d_inode;
2218         int ret;
2219         unsigned long nr = 0;
2220
2221         root = BTRFS_I(dir)->root;
2222
2223         ret = btrfs_check_free_space(root, 1, 1);
2224         if (ret)
2225                 goto fail;
2226
2227         trans = btrfs_start_transaction(root, 1);
2228
2229         btrfs_set_trans_block_group(trans, dir);
2230         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2231                                  dentry->d_name.name, dentry->d_name.len);
2232
2233         if (inode->i_nlink == 0)
2234                 ret = btrfs_orphan_add(trans, inode);
2235
2236         nr = trans->blocks_used;
2237
2238         btrfs_end_transaction_throttle(trans, root);
2239 fail:
2240         btrfs_btree_balance_dirty(root, nr);
2241         return ret;
2242 }
2243
2244 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2245 {
2246         struct inode *inode = dentry->d_inode;
2247         int err = 0;
2248         int ret;
2249         struct btrfs_root *root = BTRFS_I(dir)->root;
2250         struct btrfs_trans_handle *trans;
2251         unsigned long nr = 0;
2252
2253         /*
2254          * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2255          * the root of a subvolume or snapshot
2256          */
2257         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2258             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2259                 return -ENOTEMPTY;
2260         }
2261
2262         ret = btrfs_check_free_space(root, 1, 1);
2263         if (ret)
2264                 goto fail;
2265
2266         trans = btrfs_start_transaction(root, 1);
2267         btrfs_set_trans_block_group(trans, dir);
2268
2269         err = btrfs_orphan_add(trans, inode);
2270         if (err)
2271                 goto fail_trans;
2272
2273         /* now the directory is empty */
2274         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2275                                  dentry->d_name.name, dentry->d_name.len);
2276         if (!err) {
2277                 btrfs_i_size_write(inode, 0);
2278         }
2279
2280 fail_trans:
2281         nr = trans->blocks_used;
2282         ret = btrfs_end_transaction_throttle(trans, root);
2283 fail:
2284         btrfs_btree_balance_dirty(root, nr);
2285
2286         if (ret && !err)
2287                 err = ret;
2288         return err;
2289 }
2290
2291 #if 0
2292 /*
2293  * when truncating bytes in a file, it is possible to avoid reading
2294  * the leaves that contain only checksum items.  This can be the
2295  * majority of the IO required to delete a large file, but it must
2296  * be done carefully.
2297  *
2298  * The keys in the level just above the leaves are checked to make sure
2299  * the lowest key in a given leaf is a csum key, and starts at an offset
2300  * after the new  size.
2301  *
2302  * Then the key for the next leaf is checked to make sure it also has
2303  * a checksum item for the same file.  If it does, we know our target leaf
2304  * contains only checksum items, and it can be safely freed without reading
2305  * it.
2306  *
2307  * This is just an optimization targeted at large files.  It may do
2308  * nothing.  It will return 0 unless things went badly.
2309  */
2310 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2311                                      struct btrfs_root *root,
2312                                      struct btrfs_path *path,
2313                                      struct inode *inode, u64 new_size)
2314 {
2315         struct btrfs_key key;
2316         int ret;
2317         int nritems;
2318         struct btrfs_key found_key;
2319         struct btrfs_key other_key;
2320         struct btrfs_leaf_ref *ref;
2321         u64 leaf_gen;
2322         u64 leaf_start;
2323
2324         path->lowest_level = 1;
2325         key.objectid = inode->i_ino;
2326         key.type = BTRFS_CSUM_ITEM_KEY;
2327         key.offset = new_size;
2328 again:
2329         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2330         if (ret < 0)
2331                 goto out;
2332
2333         if (path->nodes[1] == NULL) {
2334                 ret = 0;
2335                 goto out;
2336         }
2337         ret = 0;
2338         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2339         nritems = btrfs_header_nritems(path->nodes[1]);
2340
2341         if (!nritems)
2342                 goto out;
2343
2344         if (path->slots[1] >= nritems)
2345                 goto next_node;
2346
2347         /* did we find a key greater than anything we want to delete? */
2348         if (found_key.objectid > inode->i_ino ||
2349            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2350                 goto out;
2351
2352         /* we check the next key in the node to make sure the leave contains
2353          * only checksum items.  This comparison doesn't work if our
2354          * leaf is the last one in the node
2355          */
2356         if (path->slots[1] + 1 >= nritems) {
2357 next_node:
2358                 /* search forward from the last key in the node, this
2359                  * will bring us into the next node in the tree
2360                  */
2361                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2362
2363                 /* unlikely, but we inc below, so check to be safe */
2364                 if (found_key.offset == (u64)-1)
2365                         goto out;
2366
2367                 /* search_forward needs a path with locks held, do the
2368                  * search again for the original key.  It is possible
2369                  * this will race with a balance and return a path that
2370                  * we could modify, but this drop is just an optimization
2371                  * and is allowed to miss some leaves.
2372                  */
2373                 btrfs_release_path(root, path);
2374                 found_key.offset++;
2375
2376                 /* setup a max key for search_forward */
2377                 other_key.offset = (u64)-1;
2378                 other_key.type = key.type;
2379                 other_key.objectid = key.objectid;
2380
2381                 path->keep_locks = 1;
2382                 ret = btrfs_search_forward(root, &found_key, &other_key,
2383                                            path, 0, 0);
2384                 path->keep_locks = 0;
2385                 if (ret || found_key.objectid != key.objectid ||
2386                     found_key.type != key.type) {
2387                         ret = 0;
2388                         goto out;
2389                 }
2390
2391                 key.offset = found_key.offset;
2392                 btrfs_release_path(root, path);
2393                 cond_resched();
2394                 goto again;
2395         }
2396
2397         /* we know there's one more slot after us in the tree,
2398          * read that key so we can verify it is also a checksum item
2399          */
2400         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2401
2402         if (found_key.objectid < inode->i_ino)
2403                 goto next_key;
2404
2405         if (found_key.type != key.type || found_key.offset < new_size)
2406                 goto next_key;
2407
2408         /*
2409          * if the key for the next leaf isn't a csum key from this objectid,
2410          * we can't be sure there aren't good items inside this leaf.
2411          * Bail out
2412          */
2413         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2414                 goto out;
2415
2416         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2417         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2418         /*
2419          * it is safe to delete this leaf, it contains only
2420          * csum items from this inode at an offset >= new_size
2421          */
2422         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2423         BUG_ON(ret);
2424
2425         if (root->ref_cows && leaf_gen < trans->transid) {
2426                 ref = btrfs_alloc_leaf_ref(root, 0);
2427                 if (ref) {
2428                         ref->root_gen = root->root_key.offset;
2429                         ref->bytenr = leaf_start;
2430                         ref->owner = 0;
2431                         ref->generation = leaf_gen;
2432                         ref->nritems = 0;
2433
2434                         ret = btrfs_add_leaf_ref(root, ref, 0);
2435                         WARN_ON(ret);
2436                         btrfs_free_leaf_ref(root, ref);
2437                 } else {
2438                         WARN_ON(1);
2439                 }
2440         }
2441 next_key:
2442         btrfs_release_path(root, path);
2443
2444         if (other_key.objectid == inode->i_ino &&
2445             other_key.type == key.type && other_key.offset > key.offset) {
2446                 key.offset = other_key.offset;
2447                 cond_resched();
2448                 goto again;
2449         }
2450         ret = 0;
2451 out:
2452         /* fixup any changes we've made to the path */
2453         path->lowest_level = 0;
2454         path->keep_locks = 0;
2455         btrfs_release_path(root, path);
2456         return ret;
2457 }
2458
2459 #endif
2460
2461 /*
2462  * this can truncate away extent items, csum items and directory items.
2463  * It starts at a high offset and removes keys until it can't find
2464  * any higher than new_size
2465  *
2466  * csum items that cross the new i_size are truncated to the new size
2467  * as well.
2468  *
2469  * min_type is the minimum key type to truncate down to.  If set to 0, this
2470  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2471  */
2472 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2473                                         struct btrfs_root *root,
2474                                         struct inode *inode,
2475                                         u64 new_size, u32 min_type)
2476 {
2477         int ret;
2478         struct btrfs_path *path;
2479         struct btrfs_key key;
2480         struct btrfs_key found_key;
2481         u32 found_type;
2482         struct extent_buffer *leaf;
2483         struct btrfs_file_extent_item *fi;
2484         u64 extent_start = 0;
2485         u64 extent_num_bytes = 0;
2486         u64 item_end = 0;
2487         u64 root_gen = 0;
2488         u64 root_owner = 0;
2489         int found_extent;
2490         int del_item;
2491         int pending_del_nr = 0;
2492         int pending_del_slot = 0;
2493         int extent_type = -1;
2494         int encoding;
2495         u64 mask = root->sectorsize - 1;
2496
2497         if (root->ref_cows)
2498                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2499         path = btrfs_alloc_path();
2500         path->reada = -1;
2501         BUG_ON(!path);
2502
2503         /* FIXME, add redo link to tree so we don't leak on crash */
2504         key.objectid = inode->i_ino;
2505         key.offset = (u64)-1;
2506         key.type = (u8)-1;
2507
2508         btrfs_init_path(path);
2509
2510 search_again:
2511         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2512         if (ret < 0) {
2513                 goto error;
2514         }
2515         if (ret > 0) {
2516                 /* there are no items in the tree for us to truncate, we're
2517                  * done
2518                  */
2519                 if (path->slots[0] == 0) {
2520                         ret = 0;
2521                         goto error;
2522                 }
2523                 path->slots[0]--;
2524         }
2525
2526         while(1) {
2527                 fi = NULL;
2528                 leaf = path->nodes[0];
2529                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2530                 found_type = btrfs_key_type(&found_key);
2531                 encoding = 0;
2532
2533                 if (found_key.objectid != inode->i_ino)
2534                         break;
2535
2536                 if (found_type < min_type)
2537                         break;
2538
2539                 item_end = found_key.offset;
2540                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2541                         fi = btrfs_item_ptr(leaf, path->slots[0],
2542                                             struct btrfs_file_extent_item);
2543                         extent_type = btrfs_file_extent_type(leaf, fi);
2544                         encoding = btrfs_file_extent_compression(leaf, fi);
2545                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2546                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2547
2548                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2549                                 item_end +=
2550                                     btrfs_file_extent_num_bytes(leaf, fi);
2551                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2552                                 item_end += btrfs_file_extent_inline_len(leaf,
2553                                                                          fi);
2554                         }
2555                         item_end--;
2556                 }
2557                 if (item_end < new_size) {
2558                         if (found_type == BTRFS_DIR_ITEM_KEY) {
2559                                 found_type = BTRFS_INODE_ITEM_KEY;
2560                         } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
2561                                 found_type = BTRFS_EXTENT_DATA_KEY;
2562                         } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
2563                                 found_type = BTRFS_XATTR_ITEM_KEY;
2564                         } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
2565                                 found_type = BTRFS_INODE_REF_KEY;
2566                         } else if (found_type) {
2567                                 found_type--;
2568                         } else {
2569                                 break;
2570                         }
2571                         btrfs_set_key_type(&key, found_type);
2572                         goto next;
2573                 }
2574                 if (found_key.offset >= new_size)
2575                         del_item = 1;
2576                 else
2577                         del_item = 0;
2578                 found_extent = 0;
2579
2580                 /* FIXME, shrink the extent if the ref count is only 1 */
2581                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2582                         goto delete;
2583
2584                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2585                         u64 num_dec;
2586                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2587                         if (!del_item && !encoding) {
2588                                 u64 orig_num_bytes =
2589                                         btrfs_file_extent_num_bytes(leaf, fi);
2590                                 extent_num_bytes = new_size -
2591                                         found_key.offset + root->sectorsize - 1;
2592                                 extent_num_bytes = extent_num_bytes &
2593                                         ~((u64)root->sectorsize - 1);
2594                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2595                                                          extent_num_bytes);
2596                                 num_dec = (orig_num_bytes -
2597                                            extent_num_bytes);
2598                                 if (root->ref_cows && extent_start != 0)
2599                                         inode_sub_bytes(inode, num_dec);
2600                                 btrfs_mark_buffer_dirty(leaf);
2601                         } else {
2602                                 extent_num_bytes =
2603                                         btrfs_file_extent_disk_num_bytes(leaf,
2604                                                                          fi);
2605                                 /* FIXME blocksize != 4096 */
2606                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2607                                 if (extent_start != 0) {
2608                                         found_extent = 1;
2609                                         if (root->ref_cows)
2610                                                 inode_sub_bytes(inode, num_dec);
2611                                 }
2612                                 root_gen = btrfs_header_generation(leaf);
2613                                 root_owner = btrfs_header_owner(leaf);
2614                         }
2615                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2616                         /*
2617                          * we can't truncate inline items that have had
2618                          * special encodings
2619                          */
2620                         if (!del_item &&
2621                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2622                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
2623                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2624                                 u32 size = new_size - found_key.offset;
2625
2626                                 if (root->ref_cows) {
2627                                         inode_sub_bytes(inode, item_end + 1 -
2628                                                         new_size);
2629                                 }
2630                                 size =
2631                                     btrfs_file_extent_calc_inline_size(size);
2632                                 ret = btrfs_truncate_item(trans, root, path,
2633                                                           size, 1);
2634                                 BUG_ON(ret);
2635                         } else if (root->ref_cows) {
2636                                 inode_sub_bytes(inode, item_end + 1 -
2637                                                 found_key.offset);
2638                         }
2639                 }
2640 delete:
2641                 if (del_item) {
2642                         if (!pending_del_nr) {
2643                                 /* no pending yet, add ourselves */
2644                                 pending_del_slot = path->slots[0];
2645                                 pending_del_nr = 1;
2646                         } else if (pending_del_nr &&
2647                                    path->slots[0] + 1 == pending_del_slot) {
2648                                 /* hop on the pending chunk */
2649                                 pending_del_nr++;
2650                                 pending_del_slot = path->slots[0];
2651                         } else {
2652                                 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
2653                         }
2654                 } else {
2655                         break;
2656                 }
2657                 if (found_extent) {
2658                         ret = btrfs_free_extent(trans, root, extent_start,
2659                                                 extent_num_bytes,
2660                                                 leaf->start, root_owner,
2661                                                 root_gen, inode->i_ino, 0);
2662                         BUG_ON(ret);
2663                 }
2664 next:
2665                 if (path->slots[0] == 0) {
2666                         if (pending_del_nr)
2667                                 goto del_pending;
2668                         btrfs_release_path(root, path);
2669                         goto search_again;
2670                 }
2671
2672                 path->slots[0]--;
2673                 if (pending_del_nr &&
2674                     path->slots[0] + 1 != pending_del_slot) {
2675                         struct btrfs_key debug;
2676 del_pending:
2677                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
2678                                               pending_del_slot);
2679                         ret = btrfs_del_items(trans, root, path,
2680                                               pending_del_slot,
2681                                               pending_del_nr);
2682                         BUG_ON(ret);
2683                         pending_del_nr = 0;
2684                         btrfs_release_path(root, path);
2685                         goto search_again;
2686                 }
2687         }
2688         ret = 0;
2689 error:
2690         if (pending_del_nr) {
2691                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2692                                       pending_del_nr);
2693         }
2694         btrfs_free_path(path);
2695         inode->i_sb->s_dirt = 1;
2696         return ret;
2697 }
2698
2699 /*
2700  * taken from block_truncate_page, but does cow as it zeros out
2701  * any bytes left in the last page in the file.
2702  */
2703 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2704 {
2705         struct inode *inode = mapping->host;
2706         struct btrfs_root *root = BTRFS_I(inode)->root;
2707         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2708         struct btrfs_ordered_extent *ordered;
2709         char *kaddr;
2710         u32 blocksize = root->sectorsize;
2711         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2712         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2713         struct page *page;
2714         int ret = 0;
2715         u64 page_start;
2716         u64 page_end;
2717
2718         if ((offset & (blocksize - 1)) == 0)
2719                 goto out;
2720
2721         ret = -ENOMEM;
2722 again:
2723         page = grab_cache_page(mapping, index);
2724         if (!page)
2725                 goto out;
2726
2727         page_start = page_offset(page);
2728         page_end = page_start + PAGE_CACHE_SIZE - 1;
2729
2730         if (!PageUptodate(page)) {
2731                 ret = btrfs_readpage(NULL, page);
2732                 lock_page(page);
2733                 if (page->mapping != mapping) {
2734                         unlock_page(page);
2735                         page_cache_release(page);
2736                         goto again;
2737                 }
2738                 if (!PageUptodate(page)) {
2739                         ret = -EIO;
2740                         goto out_unlock;
2741                 }
2742         }
2743         wait_on_page_writeback(page);
2744
2745         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2746         set_page_extent_mapped(page);
2747
2748         ordered = btrfs_lookup_ordered_extent(inode, page_start);
2749         if (ordered) {
2750                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2751                 unlock_page(page);
2752                 page_cache_release(page);
2753                 btrfs_start_ordered_extent(inode, ordered, 1);
2754                 btrfs_put_ordered_extent(ordered);
2755                 goto again;
2756         }
2757
2758         btrfs_set_extent_delalloc(inode, page_start, page_end);
2759         ret = 0;
2760         if (offset != PAGE_CACHE_SIZE) {
2761                 kaddr = kmap(page);
2762                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2763                 flush_dcache_page(page);
2764                 kunmap(page);
2765         }
2766         ClearPageChecked(page);
2767         set_page_dirty(page);
2768         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2769
2770 out_unlock:
2771         unlock_page(page);
2772         page_cache_release(page);
2773 out:
2774         return ret;
2775 }
2776
2777 int btrfs_cont_expand(struct inode *inode, loff_t size)
2778 {
2779         struct btrfs_trans_handle *trans;
2780         struct btrfs_root *root = BTRFS_I(inode)->root;
2781         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2782         struct extent_map *em;
2783         u64 mask = root->sectorsize - 1;
2784         u64 hole_start = (inode->i_size + mask) & ~mask;
2785         u64 block_end = (size + mask) & ~mask;
2786         u64 last_byte;
2787         u64 cur_offset;
2788         u64 hole_size;
2789         int err;
2790
2791         if (size <= hole_start)
2792                 return 0;
2793
2794         err = btrfs_check_free_space(root, 1, 0);
2795         if (err)
2796                 return err;
2797
2798         btrfs_truncate_page(inode->i_mapping, inode->i_size);
2799
2800         while (1) {
2801                 struct btrfs_ordered_extent *ordered;
2802                 btrfs_wait_ordered_range(inode, hole_start,
2803                                          block_end - hole_start);
2804                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2805                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2806                 if (!ordered)
2807                         break;
2808                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2809                 btrfs_put_ordered_extent(ordered);
2810         }
2811
2812         trans = btrfs_start_transaction(root, 1);
2813         btrfs_set_trans_block_group(trans, inode);
2814
2815         cur_offset = hole_start;
2816         while (1) {
2817                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2818                                 block_end - cur_offset, 0);
2819                 BUG_ON(IS_ERR(em) || !em);
2820                 last_byte = min(extent_map_end(em), block_end);
2821                 last_byte = (last_byte + mask) & ~mask;
2822                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2823                         u64 hint_byte = 0;
2824                         hole_size = last_byte - cur_offset;
2825                         err = btrfs_drop_extents(trans, root, inode,
2826                                                  cur_offset,
2827                                                  cur_offset + hole_size,
2828                                                  cur_offset, &hint_byte);
2829                         if (err)
2830                                 break;
2831                         err = btrfs_insert_file_extent(trans, root,
2832                                         inode->i_ino, cur_offset, 0,
2833                                         0, hole_size, 0, hole_size,
2834                                         0, 0, 0);
2835                         btrfs_drop_extent_cache(inode, hole_start,
2836                                         last_byte - 1, 0);
2837                 }
2838                 free_extent_map(em);
2839                 cur_offset = last_byte;
2840                 if (err || cur_offset >= block_end)
2841                         break;
2842         }
2843
2844         btrfs_end_transaction(trans, root);
2845         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2846         return err;
2847 }
2848
2849 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2850 {
2851         struct inode *inode = dentry->d_inode;
2852         int err;
2853
2854         err = inode_change_ok(inode, attr);
2855         if (err)
2856                 return err;
2857
2858         if (S_ISREG(inode->i_mode) &&
2859             attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2860                 err = btrfs_cont_expand(inode, attr->ia_size);
2861                 if (err)
2862                         return err;
2863         }
2864
2865         err = inode_setattr(inode, attr);
2866
2867         if (!err && ((attr->ia_valid & ATTR_MODE)))
2868                 err = btrfs_acl_chmod(inode);
2869         return err;
2870 }
2871
2872 void btrfs_delete_inode(struct inode *inode)
2873 {
2874         struct btrfs_trans_handle *trans;
2875         struct btrfs_root *root = BTRFS_I(inode)->root;
2876         unsigned long nr;
2877         int ret;
2878
2879         truncate_inode_pages(&inode->i_data, 0);
2880         if (is_bad_inode(inode)) {
2881                 btrfs_orphan_del(NULL, inode);
2882                 goto no_delete;
2883         }
2884         btrfs_wait_ordered_range(inode, 0, (u64)-1);
2885
2886         btrfs_i_size_write(inode, 0);
2887         trans = btrfs_start_transaction(root, 1);
2888
2889         btrfs_set_trans_block_group(trans, inode);
2890         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2891         if (ret) {
2892                 btrfs_orphan_del(NULL, inode);
2893                 goto no_delete_lock;
2894         }
2895
2896         btrfs_orphan_del(trans, inode);
2897
2898         nr = trans->blocks_used;
2899         clear_inode(inode);
2900
2901         btrfs_end_transaction(trans, root);
2902         btrfs_btree_balance_dirty(root, nr);
2903         return;
2904
2905 no_delete_lock:
2906         nr = trans->blocks_used;
2907         btrfs_end_transaction(trans, root);
2908         btrfs_btree_balance_dirty(root, nr);
2909 no_delete:
2910         clear_inode(inode);
2911 }
2912
2913 /*
2914  * this returns the key found in the dir entry in the location pointer.
2915  * If no dir entries were found, location->objectid is 0.
2916  */
2917 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2918                                struct btrfs_key *location)
2919 {
2920         const char *name = dentry->d_name.name;
2921         int namelen = dentry->d_name.len;
2922         struct btrfs_dir_item *di;
2923         struct btrfs_path *path;
2924         struct btrfs_root *root = BTRFS_I(dir)->root;
2925         int ret = 0;
2926
2927         path = btrfs_alloc_path();
2928         BUG_ON(!path);
2929
2930         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2931                                     namelen, 0);
2932         if (IS_ERR(di))
2933                 ret = PTR_ERR(di);
2934         if (!di || IS_ERR(di)) {
2935                 goto out_err;
2936         }
2937         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2938 out:
2939         btrfs_free_path(path);
2940         return ret;
2941 out_err:
2942         location->objectid = 0;
2943         goto out;
2944 }
2945
2946 /*
2947  * when we hit a tree root in a directory, the btrfs part of the inode
2948  * needs to be changed to reflect the root directory of the tree root.  This
2949  * is kind of like crossing a mount point.
2950  */
2951 static int fixup_tree_root_location(struct btrfs_root *root,
2952                              struct btrfs_key *location,
2953                              struct btrfs_root **sub_root,
2954                              struct dentry *dentry)
2955 {
2956         struct btrfs_root_item *ri;
2957
2958         if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2959                 return 0;
2960         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2961                 return 0;
2962
2963         *sub_root = btrfs_read_fs_root(root->fs_info, location,
2964                                         dentry->d_name.name,
2965                                         dentry->d_name.len);
2966         if (IS_ERR(*sub_root))
2967                 return PTR_ERR(*sub_root);
2968
2969         ri = &(*sub_root)->root_item;
2970         location->objectid = btrfs_root_dirid(ri);
2971         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2972         location->offset = 0;
2973
2974         return 0;
2975 }
2976
2977 static noinline void init_btrfs_i(struct inode *inode)
2978 {
2979         struct btrfs_inode *bi = BTRFS_I(inode);
2980
2981         bi->i_acl = NULL;
2982         bi->i_default_acl = NULL;
2983
2984         bi->generation = 0;
2985         bi->sequence = 0;
2986         bi->last_trans = 0;
2987         bi->logged_trans = 0;
2988         bi->delalloc_bytes = 0;
2989         bi->disk_i_size = 0;
2990         bi->flags = 0;
2991         bi->index_cnt = (u64)-1;
2992         bi->log_dirty_trans = 0;
2993         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2994         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2995                              inode->i_mapping, GFP_NOFS);
2996         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2997                              inode->i_mapping, GFP_NOFS);
2998         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2999         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3000         mutex_init(&BTRFS_I(inode)->extent_mutex);
3001         mutex_init(&BTRFS_I(inode)->log_mutex);
3002 }
3003
3004 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3005 {
3006         struct btrfs_iget_args *args = p;
3007         inode->i_ino = args->ino;
3008         init_btrfs_i(inode);
3009         BTRFS_I(inode)->root = args->root;
3010         return 0;
3011 }
3012
3013 static int btrfs_find_actor(struct inode *inode, void *opaque)
3014 {
3015         struct btrfs_iget_args *args = opaque;
3016         return (args->ino == inode->i_ino &&
3017                 args->root == BTRFS_I(inode)->root);
3018 }
3019
3020 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
3021                             struct btrfs_root *root, int wait)
3022 {
3023         struct inode *inode;
3024         struct btrfs_iget_args args;
3025         args.ino = objectid;
3026         args.root = root;
3027
3028         if (wait) {
3029                 inode = ilookup5(s, objectid, btrfs_find_actor,
3030                                  (void *)&args);
3031         } else {
3032                 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3033                                         (void *)&args);
3034         }
3035         return inode;
3036 }
3037
3038 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3039                                 struct btrfs_root *root)
3040 {
3041         struct inode *inode;
3042         struct btrfs_iget_args args;
3043         args.ino = objectid;
3044         args.root = root;
3045
3046         inode = iget5_locked(s, objectid, btrfs_find_actor,
3047                              btrfs_init_locked_inode,
3048                              (void *)&args);
3049         return inode;
3050 }
3051
3052 /* Get an inode object given its location and corresponding root.
3053  * Returns in *is_new if the inode was read from disk
3054  */
3055 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3056                          struct btrfs_root *root, int *is_new)
3057 {
3058         struct inode *inode;
3059
3060         inode = btrfs_iget_locked(s, location->objectid, root);
3061         if (!inode)
3062                 return ERR_PTR(-EACCES);
3063
3064         if (inode->i_state & I_NEW) {
3065                 BTRFS_I(inode)->root = root;
3066                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3067                 btrfs_read_locked_inode(inode);
3068                 unlock_new_inode(inode);
3069                 if (is_new)
3070                         *is_new = 1;
3071         } else {
3072                 if (is_new)
3073                         *is_new = 0;
3074         }
3075
3076         return inode;
3077 }
3078
3079 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3080 {
3081         struct inode * inode;
3082         struct btrfs_inode *bi = BTRFS_I(dir);
3083         struct btrfs_root *root = bi->root;
3084         struct btrfs_root *sub_root = root;
3085         struct btrfs_key location;
3086         int ret, new;
3087
3088         if (dentry->d_name.len > BTRFS_NAME_LEN)
3089                 return ERR_PTR(-ENAMETOOLONG);
3090
3091         ret = btrfs_inode_by_name(dir, dentry, &location);
3092
3093         if (ret < 0)
3094                 return ERR_PTR(ret);
3095
3096         inode = NULL;
3097         if (location.objectid) {
3098                 ret = fixup_tree_root_location(root, &location, &sub_root,
3099                                                 dentry);
3100                 if (ret < 0)
3101                         return ERR_PTR(ret);
3102                 if (ret > 0)
3103                         return ERR_PTR(-ENOENT);
3104                 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3105                 if (IS_ERR(inode))
3106                         return ERR_CAST(inode);
3107         }
3108         return inode;
3109 }
3110
3111 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3112                                    struct nameidata *nd)
3113 {
3114         struct inode *inode;
3115
3116         if (dentry->d_name.len > BTRFS_NAME_LEN)
3117                 return ERR_PTR(-ENAMETOOLONG);
3118
3119         inode = btrfs_lookup_dentry(dir, dentry);
3120         if (IS_ERR(inode))
3121                 return ERR_CAST(inode);
3122
3123         return d_splice_alias(inode, dentry);
3124 }
3125
3126 static unsigned char btrfs_filetype_table[] = {
3127         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3128 };
3129
3130 static int btrfs_real_readdir(struct file *filp, void *dirent,
3131                               filldir_t filldir)
3132 {
3133         struct inode *inode = filp->f_dentry->d_inode;
3134         struct btrfs_root *root = BTRFS_I(inode)->root;
3135         struct btrfs_item *item;
3136         struct btrfs_dir_item *di;
3137         struct btrfs_key key;
3138         struct btrfs_key found_key;
3139         struct btrfs_path *path;
3140         int ret;
3141         u32 nritems;
3142         struct extent_buffer *leaf;
3143         int slot;
3144         int advance;
3145         unsigned char d_type;
3146         int over = 0;
3147         u32 di_cur;
3148         u32 di_total;
3149         u32 di_len;
3150         int key_type = BTRFS_DIR_INDEX_KEY;
3151         char tmp_name[32];
3152         char *name_ptr;
3153         int name_len;
3154
3155         /* FIXME, use a real flag for deciding about the key type */
3156         if (root->fs_info->tree_root == root)
3157                 key_type = BTRFS_DIR_ITEM_KEY;
3158
3159         /* special case for "." */
3160         if (filp->f_pos == 0) {
3161                 over = filldir(dirent, ".", 1,
3162                                1, inode->i_ino,
3163                                DT_DIR);
3164                 if (over)
3165                         return 0;
3166                 filp->f_pos = 1;
3167         }
3168         /* special case for .., just use the back ref */
3169         if (filp->f_pos == 1) {
3170                 u64 pino = parent_ino(filp->f_path.dentry);
3171                 over = filldir(dirent, "..", 2,
3172                                2, pino, DT_DIR);
3173                 if (over)
3174                         return 0;
3175                 filp->f_pos = 2;
3176         }
3177         path = btrfs_alloc_path();
3178         path->reada = 2;
3179
3180         btrfs_set_key_type(&key, key_type);
3181         key.offset = filp->f_pos;
3182         key.objectid = inode->i_ino;
3183
3184         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3185         if (ret < 0)
3186                 goto err;
3187         advance = 0;
3188
3189         while (1) {
3190                 leaf = path->nodes[0];
3191                 nritems = btrfs_header_nritems(leaf);
3192                 slot = path->slots[0];
3193                 if (advance || slot >= nritems) {
3194                         if (slot >= nritems - 1) {
3195                                 ret = btrfs_next_leaf(root, path);
3196                                 if (ret)
3197                                         break;
3198                                 leaf = path->nodes[0];
3199                                 nritems = btrfs_header_nritems(leaf);
3200                                 slot = path->slots[0];
3201                         } else {
3202                                 slot++;
3203                                 path->slots[0]++;
3204                         }
3205                 }
3206
3207                 advance = 1;
3208                 item = btrfs_item_nr(leaf, slot);
3209                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3210
3211                 if (found_key.objectid != key.objectid)
3212                         break;
3213                 if (btrfs_key_type(&found_key) != key_type)
3214                         break;
3215                 if (found_key.offset < filp->f_pos)
3216                         continue;
3217
3218                 filp->f_pos = found_key.offset;
3219
3220                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3221                 di_cur = 0;
3222                 di_total = btrfs_item_size(leaf, item);
3223
3224                 while (di_cur < di_total) {
3225                         struct btrfs_key location;
3226
3227                         name_len = btrfs_dir_name_len(leaf, di);
3228                         if (name_len <= sizeof(tmp_name)) {
3229                                 name_ptr = tmp_name;
3230                         } else {
3231                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3232                                 if (!name_ptr) {
3233                                         ret = -ENOMEM;
3234                                         goto err;
3235                                 }
3236                         }
3237                         read_extent_buffer(leaf, name_ptr,
3238                                            (unsigned long)(di + 1), name_len);
3239
3240                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3241                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3242
3243                         /* is this a reference to our own snapshot? If so
3244                          * skip it
3245                          */
3246                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3247                             location.objectid == root->root_key.objectid) {
3248                                 over = 0;
3249                                 goto skip;
3250                         }
3251                         over = filldir(dirent, name_ptr, name_len,
3252                                        found_key.offset, location.objectid,
3253                                        d_type);
3254
3255 skip:
3256                         if (name_ptr != tmp_name)
3257                                 kfree(name_ptr);
3258
3259                         if (over)
3260                                 goto nopos;
3261                         di_len = btrfs_dir_name_len(leaf, di) +
3262                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3263                         di_cur += di_len;
3264                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3265                 }
3266         }
3267
3268         /* Reached end of directory/root. Bump pos past the last item. */
3269         if (key_type == BTRFS_DIR_INDEX_KEY)
3270                 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
3271         else
3272                 filp->f_pos++;
3273 nopos:
3274         ret = 0;
3275 err:
3276         btrfs_free_path(path);
3277         return ret;
3278 }
3279
3280 int btrfs_write_inode(struct inode *inode, int wait)
3281 {
3282         struct btrfs_root *root = BTRFS_I(inode)->root;
3283         struct btrfs_trans_handle *trans;
3284         int ret = 0;
3285
3286         if (root->fs_info->btree_inode == inode)
3287                 return 0;
3288
3289         if (wait) {
3290                 trans = btrfs_join_transaction(root, 1);
3291                 btrfs_set_trans_block_group(trans, inode);
3292                 ret = btrfs_commit_transaction(trans, root);
3293         }
3294         return ret;
3295 }
3296
3297 /*
3298  * This is somewhat expensive, updating the tree every time the
3299  * inode changes.  But, it is most likely to find the inode in cache.
3300  * FIXME, needs more benchmarking...there are no reasons other than performance
3301  * to keep or drop this code.
3302  */
3303 void btrfs_dirty_inode(struct inode *inode)
3304 {
3305         struct btrfs_root *root = BTRFS_I(inode)->root;
3306         struct btrfs_trans_handle *trans;
3307
3308         trans = btrfs_join_transaction(root, 1);
3309         btrfs_set_trans_block_group(trans, inode);
3310         btrfs_update_inode(trans, root, inode);
3311         btrfs_end_transaction(trans, root);
3312 }
3313
3314 /*
3315  * find the highest existing sequence number in a directory
3316  * and then set the in-memory index_cnt variable to reflect
3317  * free sequence numbers
3318  */
3319 static int btrfs_set_inode_index_count(struct inode *inode)
3320 {
3321         struct btrfs_root *root = BTRFS_I(inode)->root;
3322         struct btrfs_key key, found_key;
3323         struct btrfs_path *path;
3324         struct extent_buffer *leaf;
3325         int ret;
3326
3327         key.objectid = inode->i_ino;
3328         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3329         key.offset = (u64)-1;
3330
3331         path = btrfs_alloc_path();
3332         if (!path)
3333                 return -ENOMEM;
3334
3335         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3336         if (ret < 0)
3337                 goto out;
3338         /* FIXME: we should be able to handle this */
3339         if (ret == 0)
3340                 goto out;
3341         ret = 0;
3342
3343         /*
3344          * MAGIC NUMBER EXPLANATION:
3345          * since we search a directory based on f_pos we have to start at 2
3346          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3347          * else has to start at 2
3348          */
3349         if (path->slots[0] == 0) {
3350                 BTRFS_I(inode)->index_cnt = 2;
3351                 goto out;
3352         }
3353
3354         path->slots[0]--;
3355
3356         leaf = path->nodes[0];
3357         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3358
3359         if (found_key.objectid != inode->i_ino ||
3360             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3361                 BTRFS_I(inode)->index_cnt = 2;
3362                 goto out;
3363         }
3364
3365         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3366 out:
3367         btrfs_free_path(path);
3368         return ret;
3369 }
3370
3371 /*
3372  * helper to find a free sequence number in a given directory.  This current
3373  * code is very simple, later versions will do smarter things in the btree
3374  */
3375 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3376 {
3377         int ret = 0;
3378
3379         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3380                 ret = btrfs_set_inode_index_count(dir);
3381                 if (ret) {
3382                         return ret;
3383                 }
3384         }
3385
3386         *index = BTRFS_I(dir)->index_cnt;
3387         BTRFS_I(dir)->index_cnt++;
3388
3389         return ret;
3390 }
3391
3392 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3393                                      struct btrfs_root *root,
3394                                      struct inode *dir,
3395                                      const char *name, int name_len,
3396                                      u64 ref_objectid, u64 objectid,
3397                                      u64 alloc_hint, int mode, u64 *index)
3398 {
3399         struct inode *inode;
3400         struct btrfs_inode_item *inode_item;
3401         struct btrfs_key *location;
3402         struct btrfs_path *path;
3403         struct btrfs_inode_ref *ref;
3404         struct btrfs_key key[2];
3405         u32 sizes[2];
3406         unsigned long ptr;
3407         int ret;
3408         int owner;
3409
3410         path = btrfs_alloc_path();
3411         BUG_ON(!path);
3412
3413         inode = new_inode(root->fs_info->sb);
3414         if (!inode)
3415                 return ERR_PTR(-ENOMEM);
3416
3417         if (dir) {
3418                 ret = btrfs_set_inode_index(dir, index);
3419                 if (ret)
3420                         return ERR_PTR(ret);
3421         }
3422         /*
3423          * index_cnt is ignored for everything but a dir,
3424          * btrfs_get_inode_index_count has an explanation for the magic
3425          * number
3426          */
3427         init_btrfs_i(inode);
3428         BTRFS_I(inode)->index_cnt = 2;
3429         BTRFS_I(inode)->root = root;
3430         BTRFS_I(inode)->generation = trans->transid;
3431
3432         if (mode & S_IFDIR)
3433                 owner = 0;
3434         else
3435                 owner = 1;
3436         BTRFS_I(inode)->block_group =
3437                         btrfs_find_block_group(root, 0, alloc_hint, owner);
3438         if ((mode & S_IFREG)) {
3439                 if (btrfs_test_opt(root, NODATASUM))
3440                         btrfs_set_flag(inode, NODATASUM);
3441                 if (btrfs_test_opt(root, NODATACOW))
3442                         btrfs_set_flag(inode, NODATACOW);
3443         }
3444
3445         key[0].objectid = objectid;
3446         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3447         key[0].offset = 0;
3448
3449         key[1].objectid = objectid;
3450         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3451         key[1].offset = ref_objectid;
3452
3453         sizes[0] = sizeof(struct btrfs_inode_item);
3454         sizes[1] = name_len + sizeof(*ref);
3455
3456         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3457         if (ret != 0)
3458                 goto fail;
3459
3460         if (objectid > root->highest_inode)
3461                 root->highest_inode = objectid;
3462
3463         inode->i_uid = current_fsuid();
3464         inode->i_gid = current_fsgid();
3465         inode->i_mode = mode;
3466         inode->i_ino = objectid;
3467         inode_set_bytes(inode, 0);
3468         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3469         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3470                                   struct btrfs_inode_item);
3471         fill_inode_item(trans, path->nodes[0], inode_item, inode);
3472
3473         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3474                              struct btrfs_inode_ref);
3475         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3476         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3477         ptr = (unsigned long)(ref + 1);
3478         write_extent_buffer(path->nodes[0], name, ptr, name_len);
3479
3480         btrfs_mark_buffer_dirty(path->nodes[0]);
3481         btrfs_free_path(path);
3482
3483         location = &BTRFS_I(inode)->location;
3484         location->objectid = objectid;
3485         location->offset = 0;
3486         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3487
3488         insert_inode_hash(inode);
3489         return inode;
3490 fail:
3491         if (dir)
3492                 BTRFS_I(dir)->index_cnt--;
3493         btrfs_free_path(path);
3494         return ERR_PTR(ret);
3495 }
3496
3497 static inline u8 btrfs_inode_type(struct inode *inode)
3498 {
3499         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3500 }
3501
3502 /*
3503  * utility function to add 'inode' into 'parent_inode' with
3504  * a give name and a given sequence number.
3505  * if 'add_backref' is true, also insert a backref from the
3506  * inode to the parent directory.
3507  */
3508 int btrfs_add_link(struct btrfs_trans_handle *trans,
3509                    struct inode *parent_inode, struct inode *inode,
3510                    const char *name, int name_len, int add_backref, u64 index)
3511 {
3512         int ret;
3513         struct btrfs_key key;
3514         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3515
3516         key.objectid = inode->i_ino;
3517         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3518         key.offset = 0;
3519
3520         ret = btrfs_insert_dir_item(trans, root, name, name_len,
3521                                     parent_inode->i_ino,
3522                                     &key, btrfs_inode_type(inode),
3523                                     index);
3524         if (ret == 0) {
3525                 if (add_backref) {
3526                         ret = btrfs_insert_inode_ref(trans, root,
3527                                                      name, name_len,
3528                                                      inode->i_ino,
3529                                                      parent_inode->i_ino,
3530                                                      index);
3531                 }
3532                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3533                                    name_len * 2);
3534                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3535                 ret = btrfs_update_inode(trans, root, parent_inode);
3536         }
3537         return ret;
3538 }
3539
3540 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3541                             struct dentry *dentry, struct inode *inode,
3542                             int backref, u64 index)
3543 {
3544         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3545                                  inode, dentry->d_name.name,
3546                                  dentry->d_name.len, backref, index);
3547         if (!err) {
3548                 d_instantiate(dentry, inode);
3549                 return 0;
3550         }
3551         if (err > 0)
3552                 err = -EEXIST;
3553         return err;
3554 }
3555
3556 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3557                         int mode, dev_t rdev)
3558 {
3559         struct btrfs_trans_handle *trans;
3560         struct btrfs_root *root = BTRFS_I(dir)->root;
3561         struct inode *inode = NULL;
3562         int err;
3563         int drop_inode = 0;
3564         u64 objectid;
3565         unsigned long nr = 0;
3566         u64 index = 0;
3567
3568         if (!new_valid_dev(rdev))
3569                 return -EINVAL;
3570
3571         err = btrfs_check_free_space(root, 1, 0);
3572         if (err)
3573                 goto fail;
3574
3575         trans = btrfs_start_transaction(root, 1);
3576         btrfs_set_trans_block_group(trans, dir);
3577
3578         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3579         if (err) {
3580                 err = -ENOSPC;
3581                 goto out_unlock;
3582         }
3583
3584         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3585                                 dentry->d_name.len,
3586                                 dentry->d_parent->d_inode->i_ino, objectid,
3587                                 BTRFS_I(dir)->block_group, mode, &index);
3588         err = PTR_ERR(inode);
3589         if (IS_ERR(inode))
3590                 goto out_unlock;
3591
3592         err = btrfs_init_acl(inode, dir);
3593         if (err) {
3594                 drop_inode = 1;
3595                 goto out_unlock;
3596         }
3597
3598         btrfs_set_trans_block_group(trans, inode);
3599         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3600         if (err)
3601                 drop_inode = 1;
3602         else {
3603                 inode->i_op = &btrfs_special_inode_operations;
3604                 init_special_inode(inode, inode->i_mode, rdev);
3605                 btrfs_update_inode(trans, root, inode);
3606         }
3607         dir->i_sb->s_dirt = 1;
3608         btrfs_update_inode_block_group(trans, inode);
3609         btrfs_update_inode_block_group(trans, dir);
3610 out_unlock:
3611         nr = trans->blocks_used;
3612         btrfs_end_transaction_throttle(trans, root);
3613 fail:
3614         if (drop_inode) {
3615                 inode_dec_link_count(inode);
3616                 iput(inode);
3617         }
3618         btrfs_btree_balance_dirty(root, nr);
3619         return err;
3620 }
3621
3622 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3623                         int mode, struct nameidata *nd)
3624 {
3625         struct btrfs_trans_handle *trans;
3626         struct btrfs_root *root = BTRFS_I(dir)->root;
3627         struct inode *inode = NULL;
3628         int err;
3629         int drop_inode = 0;
3630         unsigned long nr = 0;
3631         u64 objectid;
3632         u64 index = 0;
3633
3634         err = btrfs_check_free_space(root, 1, 0);
3635         if (err)
3636                 goto fail;
3637         trans = btrfs_start_transaction(root, 1);
3638         btrfs_set_trans_block_group(trans, dir);
3639
3640         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3641         if (err) {
3642                 err = -ENOSPC;
3643                 goto out_unlock;
3644         }
3645
3646         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3647                                 dentry->d_name.len,
3648                                 dentry->d_parent->d_inode->i_ino,
3649                                 objectid, BTRFS_I(dir)->block_group, mode,
3650                                 &index);
3651         err = PTR_ERR(inode);
3652         if (IS_ERR(inode))
3653                 goto out_unlock;
3654
3655         err = btrfs_init_acl(inode, dir);
3656         if (err) {
3657                 drop_inode = 1;
3658                 goto out_unlock;
3659         }
3660
3661         btrfs_set_trans_block_group(trans, inode);
3662         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3663         if (err)
3664                 drop_inode = 1;
3665         else {
3666                 inode->i_mapping->a_ops = &btrfs_aops;
3667                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3668                 inode->i_fop = &btrfs_file_operations;
3669                 inode->i_op = &btrfs_file_inode_operations;
3670                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3671         }
3672         dir->i_sb->s_dirt = 1;
3673         btrfs_update_inode_block_group(trans, inode);
3674         btrfs_update_inode_block_group(trans, dir);
3675 out_unlock:
3676         nr = trans->blocks_used;
3677         btrfs_end_transaction_throttle(trans, root);
3678 fail:
3679         if (drop_inode) {
3680                 inode_dec_link_count(inode);
3681                 iput(inode);
3682         }
3683         btrfs_btree_balance_dirty(root, nr);
3684         return err;
3685 }
3686
3687 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3688                       struct dentry *dentry)
3689 {
3690         struct btrfs_trans_handle *trans;
3691         struct btrfs_root *root = BTRFS_I(dir)->root;
3692         struct inode *inode = old_dentry->d_inode;
3693         u64 index;
3694         unsigned long nr = 0;
3695         int err;
3696         int drop_inode = 0;
3697
3698         if (inode->i_nlink == 0)
3699                 return -ENOENT;
3700
3701         btrfs_inc_nlink(inode);
3702         err = btrfs_check_free_space(root, 1, 0);
3703         if (err)
3704                 goto fail;
3705         err = btrfs_set_inode_index(dir, &index);
3706         if (err)
3707                 goto fail;
3708
3709         trans = btrfs_start_transaction(root, 1);
3710
3711         btrfs_set_trans_block_group(trans, dir);
3712         atomic_inc(&inode->i_count);
3713
3714         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3715
3716         if (err)
3717                 drop_inode = 1;
3718
3719         dir->i_sb->s_dirt = 1;
3720         btrfs_update_inode_block_group(trans, dir);
3721         err = btrfs_update_inode(trans, root, inode);
3722
3723         if (err)
3724                 drop_inode = 1;
3725
3726         nr = trans->blocks_used;
3727         btrfs_end_transaction_throttle(trans, root);
3728 fail:
3729         if (drop_inode) {
3730                 inode_dec_link_count(inode);
3731                 iput(inode);
3732         }
3733         btrfs_btree_balance_dirty(root, nr);
3734         return err;
3735 }
3736
3737 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3738 {
3739         struct inode *inode = NULL;
3740         struct btrfs_trans_handle *trans;
3741         struct btrfs_root *root = BTRFS_I(dir)->root;
3742         int err = 0;
3743         int drop_on_err = 0;
3744         u64 objectid = 0;
3745         u64 index = 0;
3746         unsigned long nr = 1;
3747
3748         err = btrfs_check_free_space(root, 1, 0);
3749         if (err)
3750                 goto out_unlock;
3751
3752         trans = btrfs_start_transaction(root, 1);
3753         btrfs_set_trans_block_group(trans, dir);
3754
3755         if (IS_ERR(trans)) {
3756                 err = PTR_ERR(trans);
3757                 goto out_unlock;
3758         }
3759
3760         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3761         if (err) {
3762                 err = -ENOSPC;
3763                 goto out_unlock;
3764         }
3765
3766         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3767                                 dentry->d_name.len,
3768                                 dentry->d_parent->d_inode->i_ino, objectid,
3769                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3770                                 &index);
3771         if (IS_ERR(inode)) {
3772                 err = PTR_ERR(inode);
3773                 goto out_fail;
3774         }
3775
3776         drop_on_err = 1;
3777
3778         err = btrfs_init_acl(inode, dir);
3779         if (err)
3780                 goto out_fail;
3781
3782         inode->i_op = &btrfs_dir_inode_operations;
3783         inode->i_fop = &btrfs_dir_file_operations;
3784         btrfs_set_trans_block_group(trans, inode);
3785
3786         btrfs_i_size_write(inode, 0);
3787         err = btrfs_update_inode(trans, root, inode);
3788         if (err)
3789                 goto out_fail;
3790
3791         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3792                                  inode, dentry->d_name.name,
3793                                  dentry->d_name.len, 0, index);
3794         if (err)
3795                 goto out_fail;
3796
3797         d_instantiate(dentry, inode);
3798         drop_on_err = 0;
3799         dir->i_sb->s_dirt = 1;
3800         btrfs_update_inode_block_group(trans, inode);
3801         btrfs_update_inode_block_group(trans, dir);
3802
3803 out_fail:
3804         nr = trans->blocks_used;
3805         btrfs_end_transaction_throttle(trans, root);
3806
3807 out_unlock:
3808         if (drop_on_err)
3809                 iput(inode);
3810         btrfs_btree_balance_dirty(root, nr);
3811         return err;
3812 }
3813
3814 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3815  * and an extent that you want to insert, deal with overlap and insert
3816  * the new extent into the tree.
3817  */
3818 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3819                                 struct extent_map *existing,
3820                                 struct extent_map *em,
3821                                 u64 map_start, u64 map_len)
3822 {
3823         u64 start_diff;
3824
3825         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3826         start_diff = map_start - em->start;
3827         em->start = map_start;
3828         em->len = map_len;
3829         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3830             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3831                 em->block_start += start_diff;
3832                 em->block_len -= start_diff;
3833         }
3834         return add_extent_mapping(em_tree, em);
3835 }
3836
3837 static noinline int uncompress_inline(struct btrfs_path *path,
3838                                       struct inode *inode, struct page *page,
3839                                       size_t pg_offset, u64 extent_offset,
3840                                       struct btrfs_file_extent_item *item)
3841 {
3842         int ret;
3843         struct extent_buffer *leaf = path->nodes[0];
3844         char *tmp;
3845         size_t max_size;
3846         unsigned long inline_size;
3847         unsigned long ptr;
3848
3849         WARN_ON(pg_offset != 0);
3850         max_size = btrfs_file_extent_ram_bytes(leaf, item);
3851         inline_size = btrfs_file_extent_inline_item_len(leaf,
3852                                         btrfs_item_nr(leaf, path->slots[0]));
3853         tmp = kmalloc(inline_size, GFP_NOFS);
3854         ptr = btrfs_file_extent_inline_start(item);
3855
3856         read_extent_buffer(leaf, tmp, ptr, inline_size);
3857
3858         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3859         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3860                                     inline_size, max_size);
3861         if (ret) {
3862                 char *kaddr = kmap_atomic(page, KM_USER0);
3863                 unsigned long copy_size = min_t(u64,
3864                                   PAGE_CACHE_SIZE - pg_offset,
3865                                   max_size - extent_offset);
3866                 memset(kaddr + pg_offset, 0, copy_size);
3867                 kunmap_atomic(kaddr, KM_USER0);
3868         }
3869         kfree(tmp);
3870         return 0;
3871 }
3872
3873 /*
3874  * a bit scary, this does extent mapping from logical file offset to the disk.
3875  * the ugly parts come from merging extents from the disk with the
3876  * in-ram representation.  This gets more complex because of the data=ordered code,
3877  * where the in-ram extents might be locked pending data=ordered completion.
3878  *
3879  * This also copies inline extents directly into the page.
3880  */
3881 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3882                                     size_t pg_offset, u64 start, u64 len,
3883                                     int create)
3884 {
3885         int ret;
3886         int err = 0;
3887         u64 bytenr;
3888         u64 extent_start = 0;
3889         u64 extent_end = 0;
3890         u64 objectid = inode->i_ino;
3891         u32 found_type;
3892         struct btrfs_path *path = NULL;
3893         struct btrfs_root *root = BTRFS_I(inode)->root;
3894         struct btrfs_file_extent_item *item;
3895         struct extent_buffer *leaf;
3896         struct btrfs_key found_key;
3897         struct extent_map *em = NULL;
3898         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3899         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3900         struct btrfs_trans_handle *trans = NULL;
3901         int compressed;
3902
3903 again:
3904         spin_lock(&em_tree->lock);
3905         em = lookup_extent_mapping(em_tree, start, len);
3906         if (em)
3907                 em->bdev = root->fs_info->fs_devices->latest_bdev;
3908         spin_unlock(&em_tree->lock);
3909
3910         if (em) {
3911                 if (em->start > start || em->start + em->len <= start)
3912                         free_extent_map(em);
3913                 else if (em->block_start == EXTENT_MAP_INLINE && page)
3914                         free_extent_map(em);
3915                 else
3916                         goto out;
3917         }
3918         em = alloc_extent_map(GFP_NOFS);
3919         if (!em) {
3920                 err = -ENOMEM;
3921                 goto out;
3922         }
3923         em->bdev = root->fs_info->fs_devices->latest_bdev;
3924         em->start = EXTENT_MAP_HOLE;
3925         em->orig_start = EXTENT_MAP_HOLE;
3926         em->len = (u64)-1;
3927         em->block_len = (u64)-1;
3928
3929         if (!path) {
3930                 path = btrfs_alloc_path();
3931                 BUG_ON(!path);
3932         }
3933
3934         ret = btrfs_lookup_file_extent(trans, root, path,
3935                                        objectid, start, trans != NULL);
3936         if (ret < 0) {
3937                 err = ret;
3938                 goto out;
3939         }
3940
3941         if (ret != 0) {
3942                 if (path->slots[0] == 0)
3943                         goto not_found;
3944                 path->slots[0]--;
3945         }
3946
3947         leaf = path->nodes[0];
3948         item = btrfs_item_ptr(leaf, path->slots[0],
3949                               struct btrfs_file_extent_item);
3950         /* are we inside the extent that was found? */
3951         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3952         found_type = btrfs_key_type(&found_key);
3953         if (found_key.objectid != objectid ||
3954             found_type != BTRFS_EXTENT_DATA_KEY) {
3955                 goto not_found;
3956         }
3957
3958         found_type = btrfs_file_extent_type(leaf, item);
3959         extent_start = found_key.offset;
3960         compressed = btrfs_file_extent_compression(leaf, item);
3961         if (found_type == BTRFS_FILE_EXTENT_REG ||
3962             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3963                 extent_end = extent_start +
3964                        btrfs_file_extent_num_bytes(leaf, item);
3965         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3966                 size_t size;
3967                 size = btrfs_file_extent_inline_len(leaf, item);
3968                 extent_end = (extent_start + size + root->sectorsize - 1) &
3969                         ~((u64)root->sectorsize - 1);
3970         }
3971
3972         if (start >= extent_end) {
3973                 path->slots[0]++;
3974                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3975                         ret = btrfs_next_leaf(root, path);
3976                         if (ret < 0) {
3977                                 err = ret;
3978                                 goto out;
3979                         }
3980                         if (ret > 0)
3981                                 goto not_found;
3982                         leaf = path->nodes[0];
3983                 }
3984                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3985                 if (found_key.objectid != objectid ||
3986                     found_key.type != BTRFS_EXTENT_DATA_KEY)
3987                         goto not_found;
3988                 if (start + len <= found_key.offset)
3989                         goto not_found;
3990                 em->start = start;
3991                 em->len = found_key.offset - start;
3992                 goto not_found_em;
3993         }
3994
3995         if (found_type == BTRFS_FILE_EXTENT_REG ||
3996             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3997                 em->start = extent_start;
3998                 em->len = extent_end - extent_start;
3999                 em->orig_start = extent_start -
4000                                  btrfs_file_extent_offset(leaf, item);
4001                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4002                 if (bytenr == 0) {
4003                         em->block_start = EXTENT_MAP_HOLE;
4004                         goto insert;
4005                 }
4006                 if (compressed) {
4007                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4008                         em->block_start = bytenr;
4009                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4010                                                                          item);
4011                 } else {
4012                         bytenr += btrfs_file_extent_offset(leaf, item);
4013                         em->block_start = bytenr;
4014                         em->block_len = em->len;
4015                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4016                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4017                 }
4018                 goto insert;
4019         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4020                 unsigned long ptr;
4021                 char *map;
4022                 size_t size;
4023                 size_t extent_offset;
4024                 size_t copy_size;
4025
4026                 em->block_start = EXTENT_MAP_INLINE;
4027                 if (!page || create) {
4028                         em->start = extent_start;
4029                         em->len = extent_end - extent_start;
4030                         goto out;
4031                 }
4032
4033                 size = btrfs_file_extent_inline_len(leaf, item);
4034                 extent_offset = page_offset(page) + pg_offset - extent_start;
4035                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4036                                 size - extent_offset);
4037                 em->start = extent_start + extent_offset;
4038                 em->len = (copy_size + root->sectorsize - 1) &
4039                         ~((u64)root->sectorsize - 1);
4040                 em->orig_start = EXTENT_MAP_INLINE;
4041                 if (compressed)
4042                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4043                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4044                 if (create == 0 && !PageUptodate(page)) {
4045                         if (btrfs_file_extent_compression(leaf, item) ==
4046                             BTRFS_COMPRESS_ZLIB) {
4047                                 ret = uncompress_inline(path, inode, page,
4048                                                         pg_offset,
4049                                                         extent_offset, item);
4050                                 BUG_ON(ret);
4051                         } else {
4052                                 map = kmap(page);
4053                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4054                                                    copy_size);
4055                                 kunmap(page);
4056                         }
4057                         flush_dcache_page(page);
4058                 } else if (create && PageUptodate(page)) {
4059                         if (!trans) {
4060                                 kunmap(page);
4061                                 free_extent_map(em);
4062                                 em = NULL;
4063                                 btrfs_release_path(root, path);
4064                                 trans = btrfs_join_transaction(root, 1);
4065                                 goto again;
4066                         }
4067                         map = kmap(page);
4068                         write_extent_buffer(leaf, map + pg_offset, ptr,
4069                                             copy_size);
4070                         kunmap(page);
4071                         btrfs_mark_buffer_dirty(leaf);
4072                 }
4073                 set_extent_uptodate(io_tree, em->start,
4074                                     extent_map_end(em) - 1, GFP_NOFS);
4075                 goto insert;
4076         } else {
4077                 printk("unkknown found_type %d\n", found_type);
4078                 WARN_ON(1);
4079         }
4080 not_found:
4081         em->start = start;
4082         em->len = len;
4083 not_found_em:
4084         em->block_start = EXTENT_MAP_HOLE;
4085         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4086 insert:
4087         btrfs_release_path(root, path);
4088         if (em->start > start || extent_map_end(em) <= start) {
4089                 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
4090                 err = -EIO;
4091                 goto out;
4092         }
4093
4094         err = 0;
4095         spin_lock(&em_tree->lock);
4096         ret = add_extent_mapping(em_tree, em);
4097         /* it is possible that someone inserted the extent into the tree
4098          * while we had the lock dropped.  It is also possible that
4099          * an overlapping map exists in the tree
4100          */
4101         if (ret == -EEXIST) {
4102                 struct extent_map *existing;
4103
4104                 ret = 0;
4105
4106                 existing = lookup_extent_mapping(em_tree, start, len);
4107                 if (existing && (existing->start > start ||
4108                     existing->start + existing->len <= start)) {
4109                         free_extent_map(existing);
4110                         existing = NULL;
4111                 }
4112                 if (!existing) {
4113                         existing = lookup_extent_mapping(em_tree, em->start,
4114                                                          em->len);
4115                         if (existing) {
4116                                 err = merge_extent_mapping(em_tree, existing,
4117                                                            em, start,
4118                                                            root->sectorsize);
4119                                 free_extent_map(existing);
4120                                 if (err) {
4121                                         free_extent_map(em);
4122                                         em = NULL;
4123                                 }
4124                         } else {
4125                                 err = -EIO;
4126                                 printk("failing to insert %Lu %Lu\n",
4127                                        start, len);
4128                                 free_extent_map(em);
4129                                 em = NULL;
4130                         }
4131                 } else {
4132                         free_extent_map(em);
4133                         em = existing;
4134                         err = 0;
4135                 }
4136         }
4137         spin_unlock(&em_tree->lock);
4138 out:
4139         if (path)
4140                 btrfs_free_path(path);
4141         if (trans) {
4142                 ret = btrfs_end_transaction(trans, root);
4143                 if (!err) {
4144                         err = ret;
4145                 }
4146         }
4147         if (err) {
4148                 free_extent_map(em);
4149                 WARN_ON(1);
4150                 return ERR_PTR(err);
4151         }
4152         return em;
4153 }
4154
4155 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4156                         const struct iovec *iov, loff_t offset,
4157                         unsigned long nr_segs)
4158 {
4159         return -EINVAL;
4160 }
4161
4162 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
4163 {
4164         return extent_bmap(mapping, iblock, btrfs_get_extent);
4165 }
4166
4167 int btrfs_readpage(struct file *file, struct page *page)
4168 {
4169         struct extent_io_tree *tree;
4170         tree = &BTRFS_I(page->mapping->host)->io_tree;
4171         return extent_read_full_page(tree, page, btrfs_get_extent);
4172 }
4173
4174 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4175 {
4176         struct extent_io_tree *tree;
4177
4178
4179         if (current->flags & PF_MEMALLOC) {
4180                 redirty_page_for_writepage(wbc, page);
4181                 unlock_page(page);
4182                 return 0;
4183         }
4184         tree = &BTRFS_I(page->mapping->host)->io_tree;
4185         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4186 }
4187
4188 int btrfs_writepages(struct address_space *mapping,
4189                      struct writeback_control *wbc)
4190 {
4191         struct extent_io_tree *tree;
4192
4193         tree = &BTRFS_I(mapping->host)->io_tree;
4194         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4195 }
4196
4197 static int
4198 btrfs_readpages(struct file *file, struct address_space *mapping,
4199                 struct list_head *pages, unsigned nr_pages)
4200 {
4201         struct extent_io_tree *tree;
4202         tree = &BTRFS_I(mapping->host)->io_tree;
4203         return extent_readpages(tree, mapping, pages, nr_pages,
4204                                 btrfs_get_extent);
4205 }
4206 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4207 {
4208         struct extent_io_tree *tree;
4209         struct extent_map_tree *map;
4210         int ret;
4211
4212         tree = &BTRFS_I(page->mapping->host)->io_tree;
4213         map = &BTRFS_I(page->mapping->host)->extent_tree;
4214         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4215         if (ret == 1) {
4216                 ClearPagePrivate(page);
4217                 set_page_private(page, 0);
4218                 page_cache_release(page);
4219         }
4220         return ret;
4221 }
4222
4223 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4224 {
4225         if (PageWriteback(page) || PageDirty(page))
4226                 return 0;
4227         return __btrfs_releasepage(page, gfp_flags);
4228 }
4229
4230 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4231 {
4232         struct extent_io_tree *tree;
4233         struct btrfs_ordered_extent *ordered;
4234         u64 page_start = page_offset(page);
4235         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4236
4237         wait_on_page_writeback(page);
4238         tree = &BTRFS_I(page->mapping->host)->io_tree;
4239         if (offset) {
4240                 btrfs_releasepage(page, GFP_NOFS);
4241                 return;
4242         }
4243
4244         lock_extent(tree, page_start, page_end, GFP_NOFS);
4245         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4246                                            page_offset(page));
4247         if (ordered) {
4248                 /*
4249                  * IO on this page will never be started, so we need
4250                  * to account for any ordered extents now
4251                  */
4252                 clear_extent_bit(tree, page_start, page_end,
4253                                  EXTENT_DIRTY | EXTENT_DELALLOC |
4254                                  EXTENT_LOCKED, 1, 0, GFP_NOFS);
4255                 btrfs_finish_ordered_io(page->mapping->host,
4256                                         page_start, page_end);
4257                 btrfs_put_ordered_extent(ordered);
4258                 lock_extent(tree, page_start, page_end, GFP_NOFS);
4259         }
4260         clear_extent_bit(tree, page_start, page_end,
4261                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4262                  EXTENT_ORDERED,
4263                  1, 1, GFP_NOFS);
4264         __btrfs_releasepage(page, GFP_NOFS);
4265
4266         ClearPageChecked(page);
4267         if (PagePrivate(page)) {
4268                 ClearPagePrivate(page);
4269                 set_page_private(page, 0);
4270                 page_cache_release(page);
4271         }
4272 }
4273
4274 /*
4275  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4276  * called from a page fault handler when a page is first dirtied. Hence we must
4277  * be careful to check for EOF conditions here. We set the page up correctly
4278  * for a written page which means we get ENOSPC checking when writing into
4279  * holes and correct delalloc and unwritten extent mapping on filesystems that
4280  * support these features.
4281  *
4282  * We are not allowed to take the i_mutex here so we have to play games to
4283  * protect against truncate races as the page could now be beyond EOF.  Because
4284  * vmtruncate() writes the inode size before removing pages, once we have the
4285  * page lock we can determine safely if the page is beyond EOF. If it is not
4286  * beyond EOF, then the page is guaranteed safe against truncation until we
4287  * unlock the page.
4288  */
4289 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4290 {
4291         struct inode *inode = fdentry(vma->vm_file)->d_inode;
4292         struct btrfs_root *root = BTRFS_I(inode)->root;
4293         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4294         struct btrfs_ordered_extent *ordered;
4295         char *kaddr;
4296         unsigned long zero_start;
4297         loff_t size;
4298         int ret;
4299         u64 page_start;
4300         u64 page_end;
4301
4302         ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
4303         if (ret)
4304                 goto out;
4305
4306         ret = -EINVAL;
4307 again:
4308         lock_page(page);
4309         size = i_size_read(inode);
4310         page_start = page_offset(page);
4311         page_end = page_start + PAGE_CACHE_SIZE - 1;
4312
4313         if ((page->mapping != inode->i_mapping) ||
4314             (page_start >= size)) {
4315                 /* page got truncated out from underneath us */
4316                 goto out_unlock;
4317         }
4318         wait_on_page_writeback(page);
4319
4320         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4321         set_page_extent_mapped(page);
4322
4323         /*
4324          * we can't set the delalloc bits if there are pending ordered
4325          * extents.  Drop our locks and wait for them to finish
4326          */
4327         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4328         if (ordered) {
4329                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4330                 unlock_page(page);
4331                 btrfs_start_ordered_extent(inode, ordered, 1);
4332                 btrfs_put_ordered_extent(ordered);
4333                 goto again;
4334         }
4335
4336         btrfs_set_extent_delalloc(inode, page_start, page_end);
4337         ret = 0;
4338
4339         /* page is wholly or partially inside EOF */
4340         if (page_start + PAGE_CACHE_SIZE > size)
4341                 zero_start = size & ~PAGE_CACHE_MASK;
4342         else
4343                 zero_start = PAGE_CACHE_SIZE;
4344
4345         if (zero_start != PAGE_CACHE_SIZE) {
4346                 kaddr = kmap(page);
4347                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4348                 flush_dcache_page(page);
4349                 kunmap(page);
4350         }
4351         ClearPageChecked(page);
4352         set_page_dirty(page);
4353         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4354
4355 out_unlock:
4356         unlock_page(page);
4357 out:
4358         return ret;
4359 }
4360
4361 static void btrfs_truncate(struct inode *inode)
4362 {
4363         struct btrfs_root *root = BTRFS_I(inode)->root;
4364         int ret;
4365         struct btrfs_trans_handle *trans;
4366         unsigned long nr;
4367         u64 mask = root->sectorsize - 1;
4368
4369         if (!S_ISREG(inode->i_mode))
4370                 return;
4371         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4372                 return;
4373
4374         btrfs_truncate_page(inode->i_mapping, inode->i_size);
4375         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4376
4377         trans = btrfs_start_transaction(root, 1);
4378         btrfs_set_trans_block_group(trans, inode);
4379         btrfs_i_size_write(inode, inode->i_size);
4380
4381         ret = btrfs_orphan_add(trans, inode);
4382         if (ret)
4383                 goto out;
4384         /* FIXME, add redo link to tree so we don't leak on crash */
4385         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4386                                       BTRFS_EXTENT_DATA_KEY);
4387         btrfs_update_inode(trans, root, inode);
4388
4389         ret = btrfs_orphan_del(trans, inode);
4390         BUG_ON(ret);
4391
4392 out:
4393         nr = trans->blocks_used;
4394         ret = btrfs_end_transaction_throttle(trans, root);
4395         BUG_ON(ret);
4396         btrfs_btree_balance_dirty(root, nr);
4397 }
4398
4399 /*
4400  * create a new subvolume directory/inode (helper for the ioctl).
4401  */
4402 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4403                              struct btrfs_root *new_root, struct dentry *dentry,
4404                              u64 new_dirid, u64 alloc_hint)
4405 {
4406         struct inode *inode;
4407         int error;
4408         u64 index = 0;
4409
4410         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4411                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4412         if (IS_ERR(inode))
4413                 return PTR_ERR(inode);
4414         inode->i_op = &btrfs_dir_inode_operations;
4415         inode->i_fop = &btrfs_dir_file_operations;
4416
4417         inode->i_nlink = 1;
4418         btrfs_i_size_write(inode, 0);
4419
4420         error = btrfs_update_inode(trans, new_root, inode);
4421         if (error)
4422                 return error;
4423
4424         d_instantiate(dentry, inode);
4425         return 0;
4426 }
4427
4428 /* helper function for file defrag and space balancing.  This
4429  * forces readahead on a given range of bytes in an inode
4430  */
4431 unsigned long btrfs_force_ra(struct address_space *mapping,
4432                               struct file_ra_state *ra, struct file *file,
4433                               pgoff_t offset, pgoff_t last_index)
4434 {
4435         pgoff_t req_size = last_index - offset + 1;
4436
4437         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4438         return offset + req_size;
4439 }
4440
4441 struct inode *btrfs_alloc_inode(struct super_block *sb)
4442 {
4443         struct btrfs_inode *ei;
4444
4445         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4446         if (!ei)
4447                 return NULL;
4448         ei->last_trans = 0;
4449         ei->logged_trans = 0;
4450         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4451         ei->i_acl = BTRFS_ACL_NOT_CACHED;
4452         ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4453         INIT_LIST_HEAD(&ei->i_orphan);
4454         return &ei->vfs_inode;
4455 }
4456
4457 void btrfs_destroy_inode(struct inode *inode)
4458 {
4459         struct btrfs_ordered_extent *ordered;
4460         WARN_ON(!list_empty(&inode->i_dentry));
4461         WARN_ON(inode->i_data.nrpages);
4462
4463         if (BTRFS_I(inode)->i_acl &&
4464             BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4465                 posix_acl_release(BTRFS_I(inode)->i_acl);
4466         if (BTRFS_I(inode)->i_default_acl &&
4467             BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4468                 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4469
4470         spin_lock(&BTRFS_I(inode)->root->list_lock);
4471         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4472                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4473                        " list\n", inode->i_ino);
4474                 dump_stack();
4475         }
4476         spin_unlock(&BTRFS_I(inode)->root->list_lock);
4477
4478         while(1) {
4479                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4480                 if (!ordered)
4481                         break;
4482                 else {
4483                         printk("found ordered extent %Lu %Lu\n",
4484                                ordered->file_offset, ordered->len);
4485                         btrfs_remove_ordered_extent(inode, ordered);
4486                         btrfs_put_ordered_extent(ordered);
4487                         btrfs_put_ordered_extent(ordered);
4488                 }
4489         }
4490         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4491         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4492 }
4493
4494 static void init_once(void *foo)
4495 {
4496         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4497
4498         inode_init_once(&ei->vfs_inode);
4499 }
4500
4501 void btrfs_destroy_cachep(void)
4502 {
4503         if (btrfs_inode_cachep)
4504                 kmem_cache_destroy(btrfs_inode_cachep);
4505         if (btrfs_trans_handle_cachep)
4506                 kmem_cache_destroy(btrfs_trans_handle_cachep);
4507         if (btrfs_transaction_cachep)
4508                 kmem_cache_destroy(btrfs_transaction_cachep);
4509         if (btrfs_bit_radix_cachep)
4510                 kmem_cache_destroy(btrfs_bit_radix_cachep);
4511         if (btrfs_path_cachep)
4512                 kmem_cache_destroy(btrfs_path_cachep);
4513 }
4514
4515 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4516                                        unsigned long extra_flags,
4517                                        void (*ctor)(void *))
4518 {
4519         return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4520                                  SLAB_MEM_SPREAD | extra_flags), ctor);
4521 }
4522
4523 int btrfs_init_cachep(void)
4524 {
4525         btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4526                                           sizeof(struct btrfs_inode),
4527                                           0, init_once);
4528         if (!btrfs_inode_cachep)
4529                 goto fail;
4530         btrfs_trans_handle_cachep =
4531                         btrfs_cache_create("btrfs_trans_handle_cache",
4532                                            sizeof(struct btrfs_trans_handle),
4533                                            0, NULL);
4534         if (!btrfs_trans_handle_cachep)
4535                 goto fail;
4536         btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4537                                              sizeof(struct btrfs_transaction),
4538                                              0, NULL);
4539         if (!btrfs_transaction_cachep)
4540                 goto fail;
4541         btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4542                                          sizeof(struct btrfs_path),
4543                                          0, NULL);
4544         if (!btrfs_path_cachep)
4545                 goto fail;
4546         btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4547                                               SLAB_DESTROY_BY_RCU, NULL);
4548         if (!btrfs_bit_radix_cachep)
4549                 goto fail;
4550         return 0;
4551 fail:
4552         btrfs_destroy_cachep();
4553         return -ENOMEM;
4554 }
4555
4556 static int btrfs_getattr(struct vfsmount *mnt,
4557                          struct dentry *dentry, struct kstat *stat)
4558 {
4559         struct inode *inode = dentry->d_inode;
4560         generic_fillattr(inode, stat);
4561         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4562         stat->blksize = PAGE_CACHE_SIZE;
4563         stat->blocks = (inode_get_bytes(inode) +
4564                         BTRFS_I(inode)->delalloc_bytes) >> 9;
4565         return 0;
4566 }
4567
4568 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
4569                            struct inode * new_dir,struct dentry *new_dentry)
4570 {
4571         struct btrfs_trans_handle *trans;
4572         struct btrfs_root *root = BTRFS_I(old_dir)->root;
4573         struct inode *new_inode = new_dentry->d_inode;
4574         struct inode *old_inode = old_dentry->d_inode;
4575         struct timespec ctime = CURRENT_TIME;
4576         u64 index = 0;
4577         int ret;
4578
4579         /* we're not allowed to rename between subvolumes */
4580         if (BTRFS_I(old_inode)->root->root_key.objectid !=
4581             BTRFS_I(new_dir)->root->root_key.objectid)
4582                 return -EXDEV;
4583
4584         if (S_ISDIR(old_inode->i_mode) && new_inode &&
4585             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4586                 return -ENOTEMPTY;
4587         }
4588
4589         /* to rename a snapshot or subvolume, we need to juggle the
4590          * backrefs.  This isn't coded yet
4591          */
4592         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4593                 return -EXDEV;
4594
4595         ret = btrfs_check_free_space(root, 1, 0);
4596         if (ret)
4597                 goto out_unlock;
4598
4599         trans = btrfs_start_transaction(root, 1);
4600
4601         btrfs_set_trans_block_group(trans, new_dir);
4602
4603         btrfs_inc_nlink(old_dentry->d_inode);
4604         old_dir->i_ctime = old_dir->i_mtime = ctime;
4605         new_dir->i_ctime = new_dir->i_mtime = ctime;
4606         old_inode->i_ctime = ctime;
4607
4608         ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4609                                  old_dentry->d_name.name,
4610                                  old_dentry->d_name.len);
4611         if (ret)
4612                 goto out_fail;
4613
4614         if (new_inode) {
4615                 new_inode->i_ctime = CURRENT_TIME;
4616                 ret = btrfs_unlink_inode(trans, root, new_dir,
4617                                          new_dentry->d_inode,
4618                                          new_dentry->d_name.name,
4619                                          new_dentry->d_name.len);
4620                 if (ret)
4621                         goto out_fail;
4622                 if (new_inode->i_nlink == 0) {
4623                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4624                         if (ret)
4625                                 goto out_fail;
4626                 }
4627
4628         }
4629         ret = btrfs_set_inode_index(new_dir, &index);
4630         if (ret)
4631                 goto out_fail;
4632
4633         ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4634                              old_inode, new_dentry->d_name.name,
4635                              new_dentry->d_name.len, 1, index);
4636         if (ret)
4637                 goto out_fail;
4638
4639 out_fail:
4640         btrfs_end_transaction_throttle(trans, root);
4641 out_unlock:
4642         return ret;
4643 }
4644
4645 /*
4646  * some fairly slow code that needs optimization. This walks the list
4647  * of all the inodes with pending delalloc and forces them to disk.
4648  */
4649 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4650 {
4651         struct list_head *head = &root->fs_info->delalloc_inodes;
4652         struct btrfs_inode *binode;
4653         struct inode *inode;
4654         unsigned long flags;
4655
4656         if (root->fs_info->sb->s_flags & MS_RDONLY)
4657                 return -EROFS;
4658
4659         spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4660         while(!list_empty(head)) {
4661                 binode = list_entry(head->next, struct btrfs_inode,
4662                                     delalloc_inodes);
4663                 inode = igrab(&binode->vfs_inode);
4664                 if (!inode)
4665                         list_del_init(&binode->delalloc_inodes);
4666                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4667                 if (inode) {
4668                         filemap_flush(inode->i_mapping);
4669                         iput(inode);
4670                 }
4671                 cond_resched();
4672                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4673         }
4674         spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4675
4676         /* the filemap_flush will queue IO into the worker threads, but
4677          * we have to make sure the IO is actually started and that
4678          * ordered extents get created before we return
4679          */
4680         atomic_inc(&root->fs_info->async_submit_draining);
4681         while(atomic_read(&root->fs_info->nr_async_submits) ||
4682               atomic_read(&root->fs_info->async_delalloc_pages)) {
4683                 wait_event(root->fs_info->async_submit_wait,
4684                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4685                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4686         }
4687         atomic_dec(&root->fs_info->async_submit_draining);
4688         return 0;
4689 }
4690
4691 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4692                          const char *symname)
4693 {
4694         struct btrfs_trans_handle *trans;
4695         struct btrfs_root *root = BTRFS_I(dir)->root;
4696         struct btrfs_path *path;
4697         struct btrfs_key key;
4698         struct inode *inode = NULL;
4699         int err;
4700         int drop_inode = 0;
4701         u64 objectid;
4702         u64 index = 0 ;
4703         int name_len;
4704         int datasize;
4705         unsigned long ptr;
4706         struct btrfs_file_extent_item *ei;
4707         struct extent_buffer *leaf;
4708         unsigned long nr = 0;
4709
4710         name_len = strlen(symname) + 1;
4711         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4712                 return -ENAMETOOLONG;
4713
4714         err = btrfs_check_free_space(root, 1, 0);
4715         if (err)
4716                 goto out_fail;
4717
4718         trans = btrfs_start_transaction(root, 1);
4719         btrfs_set_trans_block_group(trans, dir);
4720
4721         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4722         if (err) {
4723                 err = -ENOSPC;
4724                 goto out_unlock;
4725         }
4726
4727         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4728                                 dentry->d_name.len,
4729                                 dentry->d_parent->d_inode->i_ino, objectid,
4730                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4731                                 &index);
4732         err = PTR_ERR(inode);
4733         if (IS_ERR(inode))
4734                 goto out_unlock;
4735
4736         err = btrfs_init_acl(inode, dir);
4737         if (err) {
4738                 drop_inode = 1;
4739                 goto out_unlock;
4740         }
4741
4742         btrfs_set_trans_block_group(trans, inode);
4743         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4744         if (err)
4745                 drop_inode = 1;
4746         else {
4747                 inode->i_mapping->a_ops = &btrfs_aops;
4748                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4749                 inode->i_fop = &btrfs_file_operations;
4750                 inode->i_op = &btrfs_file_inode_operations;
4751                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4752         }
4753         dir->i_sb->s_dirt = 1;
4754         btrfs_update_inode_block_group(trans, inode);
4755         btrfs_update_inode_block_group(trans, dir);
4756         if (drop_inode)
4757                 goto out_unlock;
4758
4759         path = btrfs_alloc_path();
4760         BUG_ON(!path);
4761         key.objectid = inode->i_ino;
4762         key.offset = 0;
4763         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4764         datasize = btrfs_file_extent_calc_inline_size(name_len);
4765         err = btrfs_insert_empty_item(trans, root, path, &key,
4766                                       datasize);
4767         if (err) {
4768                 drop_inode = 1;
4769                 goto out_unlock;
4770         }
4771         leaf = path->nodes[0];
4772         ei = btrfs_item_ptr(leaf, path->slots[0],
4773                             struct btrfs_file_extent_item);
4774         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4775         btrfs_set_file_extent_type(leaf, ei,
4776                                    BTRFS_FILE_EXTENT_INLINE);
4777         btrfs_set_file_extent_encryption(leaf, ei, 0);
4778         btrfs_set_file_extent_compression(leaf, ei, 0);
4779         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4780         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4781
4782         ptr = btrfs_file_extent_inline_start(ei);
4783         write_extent_buffer(leaf, symname, ptr, name_len);
4784         btrfs_mark_buffer_dirty(leaf);
4785         btrfs_free_path(path);
4786
4787         inode->i_op = &btrfs_symlink_inode_operations;
4788         inode->i_mapping->a_ops = &btrfs_symlink_aops;
4789         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4790         inode_set_bytes(inode, name_len);
4791         btrfs_i_size_write(inode, name_len - 1);
4792         err = btrfs_update_inode(trans, root, inode);
4793         if (err)
4794                 drop_inode = 1;
4795
4796 out_unlock:
4797         nr = trans->blocks_used;
4798         btrfs_end_transaction_throttle(trans, root);
4799 out_fail:
4800         if (drop_inode) {
4801                 inode_dec_link_count(inode);
4802                 iput(inode);
4803         }
4804         btrfs_btree_balance_dirty(root, nr);
4805         return err;
4806 }
4807
4808 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4809                                u64 alloc_hint, int mode)
4810 {
4811         struct btrfs_trans_handle *trans;
4812         struct btrfs_root *root = BTRFS_I(inode)->root;
4813         struct btrfs_key ins;
4814         u64 alloc_size;
4815         u64 cur_offset = start;
4816         u64 num_bytes = end - start;
4817         int ret = 0;
4818
4819         trans = btrfs_join_transaction(root, 1);
4820         BUG_ON(!trans);
4821         btrfs_set_trans_block_group(trans, inode);
4822
4823         while (num_bytes > 0) {
4824                 alloc_size = min(num_bytes, root->fs_info->max_extent);
4825                 ret = btrfs_reserve_extent(trans, root, alloc_size,
4826                                            root->sectorsize, 0, alloc_hint,
4827                                            (u64)-1, &ins, 1);
4828                 if (ret) {
4829                         WARN_ON(1);
4830                         goto out;
4831                 }
4832                 ret = insert_reserved_file_extent(trans, inode,
4833                                                   cur_offset, ins.objectid,
4834                                                   ins.offset, ins.offset,
4835                                                   ins.offset, 0, 0, 0,
4836                                                   BTRFS_FILE_EXTENT_PREALLOC);
4837                 BUG_ON(ret);
4838                 num_bytes -= ins.offset;
4839                 cur_offset += ins.offset;
4840                 alloc_hint = ins.objectid + ins.offset;
4841         }
4842 out:
4843         if (cur_offset > start) {
4844                 inode->i_ctime = CURRENT_TIME;
4845                 btrfs_set_flag(inode, PREALLOC);
4846                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4847                     cur_offset > i_size_read(inode))
4848                         btrfs_i_size_write(inode, cur_offset);
4849                 ret = btrfs_update_inode(trans, root, inode);
4850                 BUG_ON(ret);
4851         }
4852
4853         btrfs_end_transaction(trans, root);
4854         return ret;
4855 }
4856
4857 static long btrfs_fallocate(struct inode *inode, int mode,
4858                             loff_t offset, loff_t len)
4859 {
4860         u64 cur_offset;
4861         u64 last_byte;
4862         u64 alloc_start;
4863         u64 alloc_end;
4864         u64 alloc_hint = 0;
4865         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4866         struct extent_map *em;
4867         int ret;
4868
4869         alloc_start = offset & ~mask;
4870         alloc_end =  (offset + len + mask) & ~mask;
4871
4872         mutex_lock(&inode->i_mutex);
4873         if (alloc_start > inode->i_size) {
4874                 ret = btrfs_cont_expand(inode, alloc_start);
4875                 if (ret)
4876                         goto out;
4877         }
4878
4879         while (1) {
4880                 struct btrfs_ordered_extent *ordered;
4881                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4882                             alloc_end - 1, GFP_NOFS);
4883                 ordered = btrfs_lookup_first_ordered_extent(inode,
4884                                                             alloc_end - 1);
4885                 if (ordered &&
4886                     ordered->file_offset + ordered->len > alloc_start &&
4887                     ordered->file_offset < alloc_end) {
4888                         btrfs_put_ordered_extent(ordered);
4889                         unlock_extent(&BTRFS_I(inode)->io_tree,
4890                                       alloc_start, alloc_end - 1, GFP_NOFS);
4891                         btrfs_wait_ordered_range(inode, alloc_start,
4892                                                  alloc_end - alloc_start);
4893                 } else {
4894                         if (ordered)
4895                                 btrfs_put_ordered_extent(ordered);
4896                         break;
4897                 }
4898         }
4899
4900         cur_offset = alloc_start;
4901         while (1) {
4902                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4903                                       alloc_end - cur_offset, 0);
4904                 BUG_ON(IS_ERR(em) || !em);
4905                 last_byte = min(extent_map_end(em), alloc_end);
4906                 last_byte = (last_byte + mask) & ~mask;
4907                 if (em->block_start == EXTENT_MAP_HOLE) {
4908                         ret = prealloc_file_range(inode, cur_offset,
4909                                         last_byte, alloc_hint, mode);
4910                         if (ret < 0) {
4911                                 free_extent_map(em);
4912                                 break;
4913                         }
4914                 }
4915                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4916                         alloc_hint = em->block_start;
4917                 free_extent_map(em);
4918
4919                 cur_offset = last_byte;
4920                 if (cur_offset >= alloc_end) {
4921                         ret = 0;
4922                         break;
4923                 }
4924         }
4925         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4926                       GFP_NOFS);
4927 out:
4928         mutex_unlock(&inode->i_mutex);
4929         return ret;
4930 }
4931
4932 static int btrfs_set_page_dirty(struct page *page)
4933 {
4934         return __set_page_dirty_nobuffers(page);
4935 }
4936
4937 static int btrfs_permission(struct inode *inode, int mask)
4938 {
4939         if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4940                 return -EACCES;
4941         return generic_permission(inode, mask, btrfs_check_acl);
4942 }
4943
4944 static struct inode_operations btrfs_dir_inode_operations = {
4945         .getattr        = btrfs_getattr,
4946         .lookup         = btrfs_lookup,
4947         .create         = btrfs_create,
4948         .unlink         = btrfs_unlink,
4949         .link           = btrfs_link,
4950         .mkdir          = btrfs_mkdir,
4951         .rmdir          = btrfs_rmdir,
4952         .rename         = btrfs_rename,
4953         .symlink        = btrfs_symlink,
4954         .setattr        = btrfs_setattr,
4955         .mknod          = btrfs_mknod,
4956         .setxattr       = btrfs_setxattr,
4957         .getxattr       = btrfs_getxattr,
4958         .listxattr      = btrfs_listxattr,
4959         .removexattr    = btrfs_removexattr,
4960         .permission     = btrfs_permission,
4961 };
4962 static struct inode_operations btrfs_dir_ro_inode_operations = {
4963         .lookup         = btrfs_lookup,
4964         .permission     = btrfs_permission,
4965 };
4966 static struct file_operations btrfs_dir_file_operations = {
4967         .llseek         = generic_file_llseek,
4968         .read           = generic_read_dir,
4969         .readdir        = btrfs_real_readdir,
4970         .unlocked_ioctl = btrfs_ioctl,
4971 #ifdef CONFIG_COMPAT
4972         .compat_ioctl   = btrfs_ioctl,
4973 #endif
4974         .release        = btrfs_release_file,
4975         .fsync          = btrfs_sync_file,
4976 };
4977
4978 static struct extent_io_ops btrfs_extent_io_ops = {
4979         .fill_delalloc = run_delalloc_range,
4980         .submit_bio_hook = btrfs_submit_bio_hook,
4981         .merge_bio_hook = btrfs_merge_bio_hook,
4982         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4983         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
4984         .writepage_start_hook = btrfs_writepage_start_hook,
4985         .readpage_io_failed_hook = btrfs_io_failed_hook,
4986         .set_bit_hook = btrfs_set_bit_hook,
4987         .clear_bit_hook = btrfs_clear_bit_hook,
4988 };
4989
4990 static struct address_space_operations btrfs_aops = {
4991         .readpage       = btrfs_readpage,
4992         .writepage      = btrfs_writepage,
4993         .writepages     = btrfs_writepages,
4994         .readpages      = btrfs_readpages,
4995         .sync_page      = block_sync_page,
4996         .bmap           = btrfs_bmap,
4997         .direct_IO      = btrfs_direct_IO,
4998         .invalidatepage = btrfs_invalidatepage,
4999         .releasepage    = btrfs_releasepage,
5000         .set_page_dirty = btrfs_set_page_dirty,
5001 };
5002
5003 static struct address_space_operations btrfs_symlink_aops = {
5004         .readpage       = btrfs_readpage,
5005         .writepage      = btrfs_writepage,
5006         .invalidatepage = btrfs_invalidatepage,
5007         .releasepage    = btrfs_releasepage,
5008 };
5009
5010 static struct inode_operations btrfs_file_inode_operations = {
5011         .truncate       = btrfs_truncate,
5012         .getattr        = btrfs_getattr,
5013         .setattr        = btrfs_setattr,
5014         .setxattr       = btrfs_setxattr,
5015         .getxattr       = btrfs_getxattr,
5016         .listxattr      = btrfs_listxattr,
5017         .removexattr    = btrfs_removexattr,
5018         .permission     = btrfs_permission,
5019         .fallocate      = btrfs_fallocate,
5020 };
5021 static struct inode_operations btrfs_special_inode_operations = {
5022         .getattr        = btrfs_getattr,
5023         .setattr        = btrfs_setattr,
5024         .permission     = btrfs_permission,
5025         .setxattr       = btrfs_setxattr,
5026         .getxattr       = btrfs_getxattr,
5027         .listxattr      = btrfs_listxattr,
5028         .removexattr    = btrfs_removexattr,
5029 };
5030 static struct inode_operations btrfs_symlink_inode_operations = {
5031         .readlink       = generic_readlink,
5032         .follow_link    = page_follow_link_light,
5033         .put_link       = page_put_link,
5034         .permission     = btrfs_permission,
5035 };