0da1ae4ee407dd6ce3674f193548dff3e7248e5a
[safe/jmp/linux-2.6] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48
49 struct btrfs_iget_args {
50         u64 ino;
51         struct btrfs_root *root;
52 };
53
54 static struct inode_operations btrfs_dir_inode_operations;
55 static struct inode_operations btrfs_symlink_inode_operations;
56 static struct inode_operations btrfs_dir_ro_inode_operations;
57 static struct inode_operations btrfs_special_inode_operations;
58 static struct inode_operations btrfs_file_inode_operations;
59 static struct address_space_operations btrfs_aops;
60 static struct address_space_operations btrfs_symlink_aops;
61 static struct file_operations btrfs_dir_file_operations;
62 static struct extent_io_ops btrfs_extent_io_ops;
63
64 static struct kmem_cache *btrfs_inode_cachep;
65 struct kmem_cache *btrfs_trans_handle_cachep;
66 struct kmem_cache *btrfs_transaction_cachep;
67 struct kmem_cache *btrfs_bit_radix_cachep;
68 struct kmem_cache *btrfs_path_cachep;
69
70 #define S_SHIFT 12
71 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
72         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
73         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
74         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
75         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
76         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
77         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
78         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
79 };
80
81 static void btrfs_truncate(struct inode *inode);
82
83 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
84                            int for_del)
85 {
86         u64 total;
87         u64 used;
88         u64 thresh;
89         unsigned long flags;
90         int ret = 0;
91
92         spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
93         total = btrfs_super_total_bytes(&root->fs_info->super_copy);
94         used = btrfs_super_bytes_used(&root->fs_info->super_copy);
95         if (for_del)
96                 thresh = total * 90;
97         else
98                 thresh = total * 85;
99
100         do_div(thresh, 100);
101
102         if (used + root->fs_info->delalloc_bytes + num_required > thresh)
103                 ret = -ENOSPC;
104         spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
105         return ret;
106 }
107
108 static int cow_file_range(struct inode *inode, u64 start, u64 end)
109 {
110         struct btrfs_root *root = BTRFS_I(inode)->root;
111         struct btrfs_trans_handle *trans;
112         u64 alloc_hint = 0;
113         u64 num_bytes;
114         u64 cur_alloc_size;
115         u64 blocksize = root->sectorsize;
116         u64 orig_num_bytes;
117         struct btrfs_key ins;
118         struct extent_map *em;
119         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
120         int ret = 0;
121
122         trans = btrfs_join_transaction(root, 1);
123         BUG_ON(!trans);
124         btrfs_set_trans_block_group(trans, inode);
125
126         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
127         num_bytes = max(blocksize,  num_bytes);
128         orig_num_bytes = num_bytes;
129
130         if (alloc_hint == EXTENT_MAP_INLINE)
131                 goto out;
132
133         BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy));
134         mutex_lock(&BTRFS_I(inode)->extent_mutex);
135         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1);
136         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
137
138         while(num_bytes > 0) {
139                 cur_alloc_size = min(num_bytes, root->fs_info->max_extent);
140                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
141                                            root->sectorsize, 0, 0,
142                                            (u64)-1, &ins, 1);
143                 if (ret) {
144                         WARN_ON(1);
145                         goto out;
146                 }
147                 em = alloc_extent_map(GFP_NOFS);
148                 em->start = start;
149                 em->len = ins.offset;
150                 em->block_start = ins.objectid;
151                 em->bdev = root->fs_info->fs_devices->latest_bdev;
152                 mutex_lock(&BTRFS_I(inode)->extent_mutex);
153                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
154                 while(1) {
155                         spin_lock(&em_tree->lock);
156                         ret = add_extent_mapping(em_tree, em);
157                         spin_unlock(&em_tree->lock);
158                         if (ret != -EEXIST) {
159                                 free_extent_map(em);
160                                 break;
161                         }
162                         btrfs_drop_extent_cache(inode, start,
163                                                 start + ins.offset - 1);
164                 }
165                 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
166
167                 cur_alloc_size = ins.offset;
168                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
169                                                ins.offset, 0);
170                 BUG_ON(ret);
171                 if (num_bytes < cur_alloc_size) {
172                         printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes,
173                                cur_alloc_size);
174                         break;
175                 }
176                 num_bytes -= cur_alloc_size;
177                 alloc_hint = ins.objectid + ins.offset;
178                 start += cur_alloc_size;
179         }
180 out:
181         btrfs_end_transaction(trans, root);
182         return ret;
183 }
184
185 static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end)
186 {
187         u64 extent_start;
188         u64 extent_end;
189         u64 bytenr;
190         u64 loops = 0;
191         u64 total_fs_bytes;
192         struct btrfs_root *root = BTRFS_I(inode)->root;
193         struct btrfs_block_group_cache *block_group;
194         struct btrfs_trans_handle *trans;
195         struct extent_buffer *leaf;
196         int found_type;
197         struct btrfs_path *path;
198         struct btrfs_file_extent_item *item;
199         int ret;
200         int err = 0;
201         struct btrfs_key found_key;
202
203         total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
204         path = btrfs_alloc_path();
205         BUG_ON(!path);
206         trans = btrfs_join_transaction(root, 1);
207         BUG_ON(!trans);
208 again:
209         ret = btrfs_lookup_file_extent(NULL, root, path,
210                                        inode->i_ino, start, 0);
211         if (ret < 0) {
212                 err = ret;
213                 goto out;
214         }
215
216         if (ret != 0) {
217                 if (path->slots[0] == 0)
218                         goto not_found;
219                 path->slots[0]--;
220         }
221
222         leaf = path->nodes[0];
223         item = btrfs_item_ptr(leaf, path->slots[0],
224                               struct btrfs_file_extent_item);
225
226         /* are we inside the extent that was found? */
227         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
228         found_type = btrfs_key_type(&found_key);
229         if (found_key.objectid != inode->i_ino ||
230             found_type != BTRFS_EXTENT_DATA_KEY)
231                 goto not_found;
232
233         found_type = btrfs_file_extent_type(leaf, item);
234         extent_start = found_key.offset;
235         if (found_type == BTRFS_FILE_EXTENT_REG) {
236                 u64 extent_num_bytes;
237
238                 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
239                 extent_end = extent_start + extent_num_bytes;
240                 err = 0;
241
242                 if (loops && start != extent_start)
243                         goto not_found;
244
245                 if (start < extent_start || start >= extent_end)
246                         goto not_found;
247
248                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
249                 if (bytenr == 0)
250                         goto not_found;
251
252                 if (btrfs_cross_ref_exists(trans, root, &found_key, bytenr))
253                         goto not_found;
254                 /*
255                  * we may be called by the resizer, make sure we're inside
256                  * the limits of the FS
257                  */
258                 block_group = btrfs_lookup_block_group(root->fs_info,
259                                                        bytenr);
260                 if (!block_group || block_group->ro)
261                         goto not_found;
262
263                 bytenr += btrfs_file_extent_offset(leaf, item);
264                 extent_num_bytes = min(end + 1, extent_end) - start;
265                 ret = btrfs_add_ordered_extent(inode, start, bytenr,
266                                                 extent_num_bytes, 1);
267                 if (ret) {
268                         err = ret;
269                         goto out;
270                 }
271
272                 btrfs_release_path(root, path);
273                 start = extent_end;
274                 if (start <= end) {
275                         loops++;
276                         goto again;
277                 }
278         } else {
279 not_found:
280                 btrfs_end_transaction(trans, root);
281                 btrfs_free_path(path);
282                 return cow_file_range(inode, start, end);
283         }
284 out:
285         WARN_ON(err);
286         btrfs_end_transaction(trans, root);
287         btrfs_free_path(path);
288         return err;
289 }
290
291 static int run_delalloc_range(struct inode *inode, u64 start, u64 end)
292 {
293         struct btrfs_root *root = BTRFS_I(inode)->root;
294         int ret;
295
296         if (btrfs_test_opt(root, NODATACOW) ||
297             btrfs_test_flag(inode, NODATACOW))
298                 ret = run_delalloc_nocow(inode, start, end);
299         else
300                 ret = cow_file_range(inode, start, end);
301
302         return ret;
303 }
304
305 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
306                        unsigned long old, unsigned long bits)
307 {
308         unsigned long flags;
309         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
310                 struct btrfs_root *root = BTRFS_I(inode)->root;
311                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
312                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
313                 root->fs_info->delalloc_bytes += end - start + 1;
314                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
315                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
316                                       &root->fs_info->delalloc_inodes);
317                 }
318                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
319         }
320         return 0;
321 }
322
323 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
324                          unsigned long old, unsigned long bits)
325 {
326         if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
327                 struct btrfs_root *root = BTRFS_I(inode)->root;
328                 unsigned long flags;
329
330                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
331                 if (end - start + 1 > root->fs_info->delalloc_bytes) {
332                         printk("warning: delalloc account %Lu %Lu\n",
333                                end - start + 1, root->fs_info->delalloc_bytes);
334                         root->fs_info->delalloc_bytes = 0;
335                         BTRFS_I(inode)->delalloc_bytes = 0;
336                 } else {
337                         root->fs_info->delalloc_bytes -= end - start + 1;
338                         BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
339                 }
340                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
341                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
342                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
343                 }
344                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
345         }
346         return 0;
347 }
348
349 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
350                          size_t size, struct bio *bio)
351 {
352         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
353         struct btrfs_mapping_tree *map_tree;
354         u64 logical = bio->bi_sector << 9;
355         u64 length = 0;
356         u64 map_length;
357         int ret;
358
359         length = bio->bi_size;
360         map_tree = &root->fs_info->mapping_tree;
361         map_length = length;
362         ret = btrfs_map_block(map_tree, READ, logical,
363                               &map_length, NULL, 0);
364
365         if (map_length < length + size) {
366                 return 1;
367         }
368         return 0;
369 }
370
371 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
372                           int mirror_num)
373 {
374         struct btrfs_root *root = BTRFS_I(inode)->root;
375         int ret = 0;
376
377         ret = btrfs_csum_one_bio(root, inode, bio);
378         BUG_ON(ret);
379
380         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
381 }
382
383 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
384                           int mirror_num)
385 {
386         struct btrfs_root *root = BTRFS_I(inode)->root;
387         int ret = 0;
388
389         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
390         BUG_ON(ret);
391
392         if (btrfs_test_opt(root, NODATASUM) ||
393             btrfs_test_flag(inode, NODATASUM)) {
394                 goto mapit;
395         }
396
397         if (!(rw & (1 << BIO_RW))) {
398                 btrfs_lookup_bio_sums(root, inode, bio);
399                 goto mapit;
400         }
401         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
402                                    inode, rw, bio, mirror_num,
403                                    __btrfs_submit_bio_hook);
404 mapit:
405         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
406 }
407
408 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
409                              struct inode *inode, u64 file_offset,
410                              struct list_head *list)
411 {
412         struct list_head *cur;
413         struct btrfs_ordered_sum *sum;
414
415         btrfs_set_trans_block_group(trans, inode);
416         list_for_each(cur, list) {
417                 sum = list_entry(cur, struct btrfs_ordered_sum, list);
418                 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
419                                        inode, sum);
420         }
421         return 0;
422 }
423
424 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
425 {
426         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
427                                    GFP_NOFS);
428 }
429
430 struct btrfs_writepage_fixup {
431         struct page *page;
432         struct btrfs_work work;
433 };
434
435 /* see btrfs_writepage_start_hook for details on why this is required */
436 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
437 {
438         struct btrfs_writepage_fixup *fixup;
439         struct btrfs_ordered_extent *ordered;
440         struct page *page;
441         struct inode *inode;
442         u64 page_start;
443         u64 page_end;
444
445         fixup = container_of(work, struct btrfs_writepage_fixup, work);
446         page = fixup->page;
447 again:
448         lock_page(page);
449         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
450                 ClearPageChecked(page);
451                 goto out_page;
452         }
453
454         inode = page->mapping->host;
455         page_start = page_offset(page);
456         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
457
458         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
459
460         /* already ordered? We're done */
461         if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
462                              EXTENT_ORDERED, 0)) {
463                 goto out;
464         }
465
466         ordered = btrfs_lookup_ordered_extent(inode, page_start);
467         if (ordered) {
468                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
469                               page_end, GFP_NOFS);
470                 unlock_page(page);
471                 btrfs_start_ordered_extent(inode, ordered, 1);
472                 goto again;
473         }
474
475         btrfs_set_extent_delalloc(inode, page_start, page_end);
476         ClearPageChecked(page);
477 out:
478         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
479 out_page:
480         unlock_page(page);
481         page_cache_release(page);
482 }
483
484 /*
485  * There are a few paths in the higher layers of the kernel that directly
486  * set the page dirty bit without asking the filesystem if it is a
487  * good idea.  This causes problems because we want to make sure COW
488  * properly happens and the data=ordered rules are followed.
489  *
490  * In our case any range that doesn't have the EXTENT_ORDERED bit set
491  * hasn't been properly setup for IO.  We kick off an async process
492  * to fix it up.  The async helper will wait for ordered extents, set
493  * the delalloc bit and make it safe to write the page.
494  */
495 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
496 {
497         struct inode *inode = page->mapping->host;
498         struct btrfs_writepage_fixup *fixup;
499         struct btrfs_root *root = BTRFS_I(inode)->root;
500         int ret;
501
502         ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
503                              EXTENT_ORDERED, 0);
504         if (ret)
505                 return 0;
506
507         if (PageChecked(page))
508                 return -EAGAIN;
509
510         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
511         if (!fixup)
512                 return -EAGAIN;
513
514         SetPageChecked(page);
515         page_cache_get(page);
516         fixup->work.func = btrfs_writepage_fixup_worker;
517         fixup->page = page;
518         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
519         return -EAGAIN;
520 }
521
522 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
523 {
524         struct btrfs_root *root = BTRFS_I(inode)->root;
525         struct btrfs_trans_handle *trans;
526         struct btrfs_ordered_extent *ordered_extent;
527         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
528         u64 alloc_hint = 0;
529         struct list_head list;
530         struct btrfs_key ins;
531         int ret;
532
533         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
534         if (!ret)
535                 return 0;
536
537         trans = btrfs_join_transaction(root, 1);
538
539         ordered_extent = btrfs_lookup_ordered_extent(inode, start);
540         BUG_ON(!ordered_extent);
541         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
542                 goto nocow;
543
544         lock_extent(io_tree, ordered_extent->file_offset,
545                     ordered_extent->file_offset + ordered_extent->len - 1,
546                     GFP_NOFS);
547
548         INIT_LIST_HEAD(&list);
549
550         ins.objectid = ordered_extent->start;
551         ins.offset = ordered_extent->len;
552         ins.type = BTRFS_EXTENT_ITEM_KEY;
553
554         ret = btrfs_alloc_reserved_extent(trans, root, root->root_key.objectid,
555                                           trans->transid, inode->i_ino,
556                                           ordered_extent->file_offset, &ins);
557         BUG_ON(ret);
558
559         mutex_lock(&BTRFS_I(inode)->extent_mutex);
560
561         ret = btrfs_drop_extents(trans, root, inode,
562                                  ordered_extent->file_offset,
563                                  ordered_extent->file_offset +
564                                  ordered_extent->len,
565                                  ordered_extent->file_offset, &alloc_hint);
566         BUG_ON(ret);
567         ret = btrfs_insert_file_extent(trans, root, inode->i_ino,
568                                        ordered_extent->file_offset,
569                                        ordered_extent->start,
570                                        ordered_extent->len,
571                                        ordered_extent->len, 0);
572         BUG_ON(ret);
573
574         btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
575                                 ordered_extent->file_offset +
576                                 ordered_extent->len - 1);
577         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
578
579         inode->i_blocks += ordered_extent->len >> 9;
580         unlock_extent(io_tree, ordered_extent->file_offset,
581                     ordered_extent->file_offset + ordered_extent->len - 1,
582                     GFP_NOFS);
583 nocow:
584         add_pending_csums(trans, inode, ordered_extent->file_offset,
585                           &ordered_extent->list);
586
587         btrfs_ordered_update_i_size(inode, ordered_extent);
588         btrfs_remove_ordered_extent(inode, ordered_extent);
589
590         /* once for us */
591         btrfs_put_ordered_extent(ordered_extent);
592         /* once for the tree */
593         btrfs_put_ordered_extent(ordered_extent);
594
595         btrfs_update_inode(trans, root, inode);
596         btrfs_end_transaction(trans, root);
597         return 0;
598 }
599
600 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
601                                 struct extent_state *state, int uptodate)
602 {
603         return btrfs_finish_ordered_io(page->mapping->host, start, end);
604 }
605
606 struct io_failure_record {
607         struct page *page;
608         u64 start;
609         u64 len;
610         u64 logical;
611         int last_mirror;
612 };
613
614 int btrfs_io_failed_hook(struct bio *failed_bio,
615                          struct page *page, u64 start, u64 end,
616                          struct extent_state *state)
617 {
618         struct io_failure_record *failrec = NULL;
619         u64 private;
620         struct extent_map *em;
621         struct inode *inode = page->mapping->host;
622         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
623         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
624         struct bio *bio;
625         int num_copies;
626         int ret;
627         int rw;
628         u64 logical;
629
630         ret = get_state_private(failure_tree, start, &private);
631         if (ret) {
632                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
633                 if (!failrec)
634                         return -ENOMEM;
635                 failrec->start = start;
636                 failrec->len = end - start + 1;
637                 failrec->last_mirror = 0;
638
639                 spin_lock(&em_tree->lock);
640                 em = lookup_extent_mapping(em_tree, start, failrec->len);
641                 if (em->start > start || em->start + em->len < start) {
642                         free_extent_map(em);
643                         em = NULL;
644                 }
645                 spin_unlock(&em_tree->lock);
646
647                 if (!em || IS_ERR(em)) {
648                         kfree(failrec);
649                         return -EIO;
650                 }
651                 logical = start - em->start;
652                 logical = em->block_start + logical;
653                 failrec->logical = logical;
654                 free_extent_map(em);
655                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
656                                 EXTENT_DIRTY, GFP_NOFS);
657                 set_state_private(failure_tree, start,
658                                  (u64)(unsigned long)failrec);
659         } else {
660                 failrec = (struct io_failure_record *)(unsigned long)private;
661         }
662         num_copies = btrfs_num_copies(
663                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
664                               failrec->logical, failrec->len);
665         failrec->last_mirror++;
666         if (!state) {
667                 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
668                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
669                                                     failrec->start,
670                                                     EXTENT_LOCKED);
671                 if (state && state->start != failrec->start)
672                         state = NULL;
673                 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
674         }
675         if (!state || failrec->last_mirror > num_copies) {
676                 set_state_private(failure_tree, failrec->start, 0);
677                 clear_extent_bits(failure_tree, failrec->start,
678                                   failrec->start + failrec->len - 1,
679                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
680                 kfree(failrec);
681                 return -EIO;
682         }
683         bio = bio_alloc(GFP_NOFS, 1);
684         bio->bi_private = state;
685         bio->bi_end_io = failed_bio->bi_end_io;
686         bio->bi_sector = failrec->logical >> 9;
687         bio->bi_bdev = failed_bio->bi_bdev;
688         bio->bi_size = 0;
689         bio_add_page(bio, page, failrec->len, start - page_offset(page));
690         if (failed_bio->bi_rw & (1 << BIO_RW))
691                 rw = WRITE;
692         else
693                 rw = READ;
694
695         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
696                                                       failrec->last_mirror);
697         return 0;
698 }
699
700 int btrfs_clean_io_failures(struct inode *inode, u64 start)
701 {
702         u64 private;
703         u64 private_failure;
704         struct io_failure_record *failure;
705         int ret;
706
707         private = 0;
708         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
709                              (u64)-1, 1, EXTENT_DIRTY)) {
710                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
711                                         start, &private_failure);
712                 if (ret == 0) {
713                         failure = (struct io_failure_record *)(unsigned long)
714                                    private_failure;
715                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
716                                           failure->start, 0);
717                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
718                                           failure->start,
719                                           failure->start + failure->len - 1,
720                                           EXTENT_DIRTY | EXTENT_LOCKED,
721                                           GFP_NOFS);
722                         kfree(failure);
723                 }
724         }
725         return 0;
726 }
727
728 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
729                                struct extent_state *state)
730 {
731         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
732         struct inode *inode = page->mapping->host;
733         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
734         char *kaddr;
735         u64 private = ~(u32)0;
736         int ret;
737         struct btrfs_root *root = BTRFS_I(inode)->root;
738         u32 csum = ~(u32)0;
739         unsigned long flags;
740
741         if (btrfs_test_opt(root, NODATASUM) ||
742             btrfs_test_flag(inode, NODATASUM))
743                 return 0;
744         if (state && state->start == start) {
745                 private = state->private;
746                 ret = 0;
747         } else {
748                 ret = get_state_private(io_tree, start, &private);
749         }
750         local_irq_save(flags);
751         kaddr = kmap_atomic(page, KM_IRQ0);
752         if (ret) {
753                 goto zeroit;
754         }
755         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
756         btrfs_csum_final(csum, (char *)&csum);
757         if (csum != private) {
758                 goto zeroit;
759         }
760         kunmap_atomic(kaddr, KM_IRQ0);
761         local_irq_restore(flags);
762
763         /* if the io failure tree for this inode is non-empty,
764          * check to see if we've recovered from a failed IO
765          */
766         btrfs_clean_io_failures(inode, start);
767         return 0;
768
769 zeroit:
770         printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
771                page->mapping->host->i_ino, (unsigned long long)start, csum,
772                private);
773         memset(kaddr + offset, 1, end - start + 1);
774         flush_dcache_page(page);
775         kunmap_atomic(kaddr, KM_IRQ0);
776         local_irq_restore(flags);
777         if (private == 0)
778                 return 0;
779         return -EIO;
780 }
781
782 /*
783  * This creates an orphan entry for the given inode in case something goes
784  * wrong in the middle of an unlink/truncate.
785  */
786 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
787 {
788         struct btrfs_root *root = BTRFS_I(inode)->root;
789         int ret = 0;
790
791         spin_lock(&root->list_lock);
792
793         /* already on the orphan list, we're good */
794         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
795                 spin_unlock(&root->list_lock);
796                 return 0;
797         }
798
799         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
800
801         spin_unlock(&root->list_lock);
802
803         /*
804          * insert an orphan item to track this unlinked/truncated file
805          */
806         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
807
808         return ret;
809 }
810
811 /*
812  * We have done the truncate/delete so we can go ahead and remove the orphan
813  * item for this particular inode.
814  */
815 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
816 {
817         struct btrfs_root *root = BTRFS_I(inode)->root;
818         int ret = 0;
819
820         spin_lock(&root->list_lock);
821
822         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
823                 spin_unlock(&root->list_lock);
824                 return 0;
825         }
826
827         list_del_init(&BTRFS_I(inode)->i_orphan);
828         if (!trans) {
829                 spin_unlock(&root->list_lock);
830                 return 0;
831         }
832
833         spin_unlock(&root->list_lock);
834
835         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
836
837         return ret;
838 }
839
840 /*
841  * this cleans up any orphans that may be left on the list from the last use
842  * of this root.
843  */
844 void btrfs_orphan_cleanup(struct btrfs_root *root)
845 {
846         struct btrfs_path *path;
847         struct extent_buffer *leaf;
848         struct btrfs_item *item;
849         struct btrfs_key key, found_key;
850         struct btrfs_trans_handle *trans;
851         struct inode *inode;
852         int ret = 0, nr_unlink = 0, nr_truncate = 0;
853
854         /* don't do orphan cleanup if the fs is readonly. */
855         if (root->inode->i_sb->s_flags & MS_RDONLY)
856                 return;
857
858         path = btrfs_alloc_path();
859         if (!path)
860                 return;
861         path->reada = -1;
862
863         key.objectid = BTRFS_ORPHAN_OBJECTID;
864         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
865         key.offset = (u64)-1;
866
867         trans = btrfs_start_transaction(root, 1);
868         btrfs_set_trans_block_group(trans, root->inode);
869
870         while (1) {
871                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
872                 if (ret < 0) {
873                         printk(KERN_ERR "Error searching slot for orphan: %d"
874                                "\n", ret);
875                         break;
876                 }
877
878                 /*
879                  * if ret == 0 means we found what we were searching for, which
880                  * is weird, but possible, so only screw with path if we didnt
881                  * find the key and see if we have stuff that matches
882                  */
883                 if (ret > 0) {
884                         if (path->slots[0] == 0)
885                                 break;
886                         path->slots[0]--;
887                 }
888
889                 /* pull out the item */
890                 leaf = path->nodes[0];
891                 item = btrfs_item_nr(leaf, path->slots[0]);
892                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
893
894                 /* make sure the item matches what we want */
895                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
896                         break;
897                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
898                         break;
899
900                 /* release the path since we're done with it */
901                 btrfs_release_path(root, path);
902
903                 /*
904                  * this is where we are basically btrfs_lookup, without the
905                  * crossing root thing.  we store the inode number in the
906                  * offset of the orphan item.
907                  */
908                 inode = btrfs_iget_locked(root->inode->i_sb,
909                                           found_key.offset, root);
910                 if (!inode)
911                         break;
912
913                 if (inode->i_state & I_NEW) {
914                         BTRFS_I(inode)->root = root;
915
916                         /* have to set the location manually */
917                         BTRFS_I(inode)->location.objectid = inode->i_ino;
918                         BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
919                         BTRFS_I(inode)->location.offset = 0;
920
921                         btrfs_read_locked_inode(inode);
922                         unlock_new_inode(inode);
923                 }
924
925                 /*
926                  * add this inode to the orphan list so btrfs_orphan_del does
927                  * the proper thing when we hit it
928                  */
929                 spin_lock(&root->list_lock);
930                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
931                 spin_unlock(&root->list_lock);
932
933                 /*
934                  * if this is a bad inode, means we actually succeeded in
935                  * removing the inode, but not the orphan record, which means
936                  * we need to manually delete the orphan since iput will just
937                  * do a destroy_inode
938                  */
939                 if (is_bad_inode(inode)) {
940                         btrfs_orphan_del(trans, inode);
941                         iput(inode);
942                         continue;
943                 }
944
945                 /* if we have links, this was a truncate, lets do that */
946                 if (inode->i_nlink) {
947                         nr_truncate++;
948                         btrfs_truncate(inode);
949                 } else {
950                         nr_unlink++;
951                 }
952
953                 /* this will do delete_inode and everything for us */
954                 iput(inode);
955         }
956
957         if (nr_unlink)
958                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
959         if (nr_truncate)
960                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
961
962         btrfs_free_path(path);
963         btrfs_end_transaction(trans, root);
964 }
965
966 void btrfs_read_locked_inode(struct inode *inode)
967 {
968         struct btrfs_path *path;
969         struct extent_buffer *leaf;
970         struct btrfs_inode_item *inode_item;
971         struct btrfs_timespec *tspec;
972         struct btrfs_root *root = BTRFS_I(inode)->root;
973         struct btrfs_key location;
974         u64 alloc_group_block;
975         u32 rdev;
976         int ret;
977
978         path = btrfs_alloc_path();
979         BUG_ON(!path);
980         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
981
982         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
983         if (ret)
984                 goto make_bad;
985
986         leaf = path->nodes[0];
987         inode_item = btrfs_item_ptr(leaf, path->slots[0],
988                                     struct btrfs_inode_item);
989
990         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
991         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
992         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
993         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
994         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
995
996         tspec = btrfs_inode_atime(inode_item);
997         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
998         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
999
1000         tspec = btrfs_inode_mtime(inode_item);
1001         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1002         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1003
1004         tspec = btrfs_inode_ctime(inode_item);
1005         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1006         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1007
1008         inode->i_blocks = btrfs_inode_nblocks(leaf, inode_item);
1009         inode->i_generation = btrfs_inode_generation(leaf, inode_item);
1010         inode->i_rdev = 0;
1011         rdev = btrfs_inode_rdev(leaf, inode_item);
1012
1013         BTRFS_I(inode)->index_cnt = (u64)-1;
1014
1015         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1016         BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1017                                                        alloc_group_block);
1018         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1019         if (!BTRFS_I(inode)->block_group) {
1020                 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1021                                                  NULL, 0,
1022                                                  BTRFS_BLOCK_GROUP_METADATA, 0);
1023         }
1024         btrfs_free_path(path);
1025         inode_item = NULL;
1026
1027         switch (inode->i_mode & S_IFMT) {
1028         case S_IFREG:
1029                 inode->i_mapping->a_ops = &btrfs_aops;
1030                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1031                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1032                 inode->i_fop = &btrfs_file_operations;
1033                 inode->i_op = &btrfs_file_inode_operations;
1034                 break;
1035         case S_IFDIR:
1036                 inode->i_fop = &btrfs_dir_file_operations;
1037                 if (root == root->fs_info->tree_root)
1038                         inode->i_op = &btrfs_dir_ro_inode_operations;
1039                 else
1040                         inode->i_op = &btrfs_dir_inode_operations;
1041                 break;
1042         case S_IFLNK:
1043                 inode->i_op = &btrfs_symlink_inode_operations;
1044                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1045                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1046                 break;
1047         default:
1048                 init_special_inode(inode, inode->i_mode, rdev);
1049                 break;
1050         }
1051         return;
1052
1053 make_bad:
1054         btrfs_free_path(path);
1055         make_bad_inode(inode);
1056 }
1057
1058 static void fill_inode_item(struct extent_buffer *leaf,
1059                             struct btrfs_inode_item *item,
1060                             struct inode *inode)
1061 {
1062         btrfs_set_inode_uid(leaf, item, inode->i_uid);
1063         btrfs_set_inode_gid(leaf, item, inode->i_gid);
1064         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1065         btrfs_set_inode_mode(leaf, item, inode->i_mode);
1066         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1067
1068         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1069                                inode->i_atime.tv_sec);
1070         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1071                                 inode->i_atime.tv_nsec);
1072
1073         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1074                                inode->i_mtime.tv_sec);
1075         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1076                                 inode->i_mtime.tv_nsec);
1077
1078         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1079                                inode->i_ctime.tv_sec);
1080         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1081                                 inode->i_ctime.tv_nsec);
1082
1083         btrfs_set_inode_nblocks(leaf, item, inode->i_blocks);
1084         btrfs_set_inode_generation(leaf, item, inode->i_generation);
1085         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1086         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1087         btrfs_set_inode_block_group(leaf, item,
1088                                     BTRFS_I(inode)->block_group->key.objectid);
1089 }
1090
1091 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1092                               struct btrfs_root *root,
1093                               struct inode *inode)
1094 {
1095         struct btrfs_inode_item *inode_item;
1096         struct btrfs_path *path;
1097         struct extent_buffer *leaf;
1098         int ret;
1099
1100         path = btrfs_alloc_path();
1101         BUG_ON(!path);
1102         ret = btrfs_lookup_inode(trans, root, path,
1103                                  &BTRFS_I(inode)->location, 1);
1104         if (ret) {
1105                 if (ret > 0)
1106                         ret = -ENOENT;
1107                 goto failed;
1108         }
1109
1110         leaf = path->nodes[0];
1111         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1112                                   struct btrfs_inode_item);
1113
1114         fill_inode_item(leaf, inode_item, inode);
1115         btrfs_mark_buffer_dirty(leaf);
1116         btrfs_set_inode_last_trans(trans, inode);
1117         ret = 0;
1118 failed:
1119         btrfs_free_path(path);
1120         return ret;
1121 }
1122
1123
1124 static int btrfs_unlink_trans(struct btrfs_trans_handle *trans,
1125                               struct btrfs_root *root,
1126                               struct inode *dir,
1127                               struct dentry *dentry)
1128 {
1129         struct btrfs_path *path;
1130         const char *name = dentry->d_name.name;
1131         int name_len = dentry->d_name.len;
1132         int ret = 0;
1133         struct extent_buffer *leaf;
1134         struct btrfs_dir_item *di;
1135         struct btrfs_key key;
1136         u64 index;
1137
1138         path = btrfs_alloc_path();
1139         if (!path) {
1140                 ret = -ENOMEM;
1141                 goto err;
1142         }
1143
1144         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1145                                     name, name_len, -1);
1146         if (IS_ERR(di)) {
1147                 ret = PTR_ERR(di);
1148                 goto err;
1149         }
1150         if (!di) {
1151                 ret = -ENOENT;
1152                 goto err;
1153         }
1154         leaf = path->nodes[0];
1155         btrfs_dir_item_key_to_cpu(leaf, di, &key);
1156         ret = btrfs_delete_one_dir_name(trans, root, path, di);
1157         if (ret)
1158                 goto err;
1159         btrfs_release_path(root, path);
1160
1161         ret = btrfs_del_inode_ref(trans, root, name, name_len,
1162                                   dentry->d_inode->i_ino,
1163                                   dentry->d_parent->d_inode->i_ino, &index);
1164         if (ret) {
1165                 printk("failed to delete reference to %.*s, "
1166                        "inode %lu parent %lu\n", name_len, name,
1167                        dentry->d_inode->i_ino,
1168                        dentry->d_parent->d_inode->i_ino);
1169                 goto err;
1170         }
1171
1172         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1173                                          index, name, name_len, -1);
1174         if (IS_ERR(di)) {
1175                 ret = PTR_ERR(di);
1176                 goto err;
1177         }
1178         if (!di) {
1179                 ret = -ENOENT;
1180                 goto err;
1181         }
1182         ret = btrfs_delete_one_dir_name(trans, root, path, di);
1183         btrfs_release_path(root, path);
1184
1185         dentry->d_inode->i_ctime = dir->i_ctime;
1186 err:
1187         btrfs_free_path(path);
1188         if (!ret) {
1189                 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1190                 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1191                 btrfs_update_inode(trans, root, dir);
1192 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1193                 dentry->d_inode->i_nlink--;
1194 #else
1195                 drop_nlink(dentry->d_inode);
1196 #endif
1197                 ret = btrfs_update_inode(trans, root, dentry->d_inode);
1198                 dir->i_sb->s_dirt = 1;
1199         }
1200         return ret;
1201 }
1202
1203 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1204 {
1205         struct btrfs_root *root;
1206         struct btrfs_trans_handle *trans;
1207         struct inode *inode = dentry->d_inode;
1208         int ret;
1209         unsigned long nr = 0;
1210
1211         root = BTRFS_I(dir)->root;
1212
1213         ret = btrfs_check_free_space(root, 1, 1);
1214         if (ret)
1215                 goto fail;
1216
1217         trans = btrfs_start_transaction(root, 1);
1218
1219         btrfs_set_trans_block_group(trans, dir);
1220         ret = btrfs_unlink_trans(trans, root, dir, dentry);
1221
1222         if (inode->i_nlink == 0)
1223                 ret = btrfs_orphan_add(trans, inode);
1224
1225         nr = trans->blocks_used;
1226
1227         btrfs_end_transaction_throttle(trans, root);
1228 fail:
1229         btrfs_btree_balance_dirty(root, nr);
1230         return ret;
1231 }
1232
1233 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1234 {
1235         struct inode *inode = dentry->d_inode;
1236         int err = 0;
1237         int ret;
1238         struct btrfs_root *root = BTRFS_I(dir)->root;
1239         struct btrfs_trans_handle *trans;
1240         unsigned long nr = 0;
1241
1242         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1243                 return -ENOTEMPTY;
1244         }
1245
1246         ret = btrfs_check_free_space(root, 1, 1);
1247         if (ret)
1248                 goto fail;
1249
1250         trans = btrfs_start_transaction(root, 1);
1251         btrfs_set_trans_block_group(trans, dir);
1252
1253         err = btrfs_orphan_add(trans, inode);
1254         if (err)
1255                 goto fail_trans;
1256
1257         /* now the directory is empty */
1258         err = btrfs_unlink_trans(trans, root, dir, dentry);
1259         if (!err) {
1260                 btrfs_i_size_write(inode, 0);
1261         }
1262
1263 fail_trans:
1264         nr = trans->blocks_used;
1265         ret = btrfs_end_transaction_throttle(trans, root);
1266 fail:
1267         btrfs_btree_balance_dirty(root, nr);
1268
1269         if (ret && !err)
1270                 err = ret;
1271         return err;
1272 }
1273
1274 /*
1275  * this can truncate away extent items, csum items and directory items.
1276  * It starts at a high offset and removes keys until it can't find
1277  * any higher than i_size.
1278  *
1279  * csum items that cross the new i_size are truncated to the new size
1280  * as well.
1281  *
1282  * min_type is the minimum key type to truncate down to.  If set to 0, this
1283  * will kill all the items on this inode, including the INODE_ITEM_KEY.
1284  */
1285 static int btrfs_truncate_in_trans(struct btrfs_trans_handle *trans,
1286                                    struct btrfs_root *root,
1287                                    struct inode *inode,
1288                                    u32 min_type)
1289 {
1290         int ret;
1291         struct btrfs_path *path;
1292         struct btrfs_key key;
1293         struct btrfs_key found_key;
1294         u32 found_type;
1295         struct extent_buffer *leaf;
1296         struct btrfs_file_extent_item *fi;
1297         u64 extent_start = 0;
1298         u64 extent_num_bytes = 0;
1299         u64 item_end = 0;
1300         u64 root_gen = 0;
1301         u64 root_owner = 0;
1302         int found_extent;
1303         int del_item;
1304         int pending_del_nr = 0;
1305         int pending_del_slot = 0;
1306         int extent_type = -1;
1307         u64 mask = root->sectorsize - 1;
1308
1309         btrfs_drop_extent_cache(inode, inode->i_size & (~mask), (u64)-1);
1310         path = btrfs_alloc_path();
1311         path->reada = -1;
1312         BUG_ON(!path);
1313
1314         /* FIXME, add redo link to tree so we don't leak on crash */
1315         key.objectid = inode->i_ino;
1316         key.offset = (u64)-1;
1317         key.type = (u8)-1;
1318
1319         btrfs_init_path(path);
1320 search_again:
1321         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1322         if (ret < 0) {
1323                 goto error;
1324         }
1325         if (ret > 0) {
1326                 BUG_ON(path->slots[0] == 0);
1327                 path->slots[0]--;
1328         }
1329
1330         while(1) {
1331                 fi = NULL;
1332                 leaf = path->nodes[0];
1333                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1334                 found_type = btrfs_key_type(&found_key);
1335
1336                 if (found_key.objectid != inode->i_ino)
1337                         break;
1338
1339                 if (found_type < min_type)
1340                         break;
1341
1342                 item_end = found_key.offset;
1343                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
1344                         fi = btrfs_item_ptr(leaf, path->slots[0],
1345                                             struct btrfs_file_extent_item);
1346                         extent_type = btrfs_file_extent_type(leaf, fi);
1347                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1348                                 item_end +=
1349                                     btrfs_file_extent_num_bytes(leaf, fi);
1350                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1351                                 struct btrfs_item *item = btrfs_item_nr(leaf,
1352                                                                 path->slots[0]);
1353                                 item_end += btrfs_file_extent_inline_len(leaf,
1354                                                                          item);
1355                         }
1356                         item_end--;
1357                 }
1358                 if (found_type == BTRFS_CSUM_ITEM_KEY) {
1359                         ret = btrfs_csum_truncate(trans, root, path,
1360                                                   inode->i_size);
1361                         BUG_ON(ret);
1362                 }
1363                 if (item_end < inode->i_size) {
1364                         if (found_type == BTRFS_DIR_ITEM_KEY) {
1365                                 found_type = BTRFS_INODE_ITEM_KEY;
1366                         } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
1367                                 found_type = BTRFS_CSUM_ITEM_KEY;
1368                         } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
1369                                 found_type = BTRFS_XATTR_ITEM_KEY;
1370                         } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
1371                                 found_type = BTRFS_INODE_REF_KEY;
1372                         } else if (found_type) {
1373                                 found_type--;
1374                         } else {
1375                                 break;
1376                         }
1377                         btrfs_set_key_type(&key, found_type);
1378                         goto next;
1379                 }
1380                 if (found_key.offset >= inode->i_size)
1381                         del_item = 1;
1382                 else
1383                         del_item = 0;
1384                 found_extent = 0;
1385
1386                 /* FIXME, shrink the extent if the ref count is only 1 */
1387                 if (found_type != BTRFS_EXTENT_DATA_KEY)
1388                         goto delete;
1389
1390                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1391                         u64 num_dec;
1392                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
1393                         if (!del_item) {
1394                                 u64 orig_num_bytes =
1395                                         btrfs_file_extent_num_bytes(leaf, fi);
1396                                 extent_num_bytes = inode->i_size -
1397                                         found_key.offset + root->sectorsize - 1;
1398                                 extent_num_bytes = extent_num_bytes &
1399                                         ~((u64)root->sectorsize - 1);
1400                                 btrfs_set_file_extent_num_bytes(leaf, fi,
1401                                                          extent_num_bytes);
1402                                 num_dec = (orig_num_bytes -
1403                                            extent_num_bytes);
1404                                 if (extent_start != 0)
1405                                         dec_i_blocks(inode, num_dec);
1406                                 btrfs_mark_buffer_dirty(leaf);
1407                         } else {
1408                                 extent_num_bytes =
1409                                         btrfs_file_extent_disk_num_bytes(leaf,
1410                                                                          fi);
1411                                 /* FIXME blocksize != 4096 */
1412                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
1413                                 if (extent_start != 0) {
1414                                         found_extent = 1;
1415                                         dec_i_blocks(inode, num_dec);
1416                                 }
1417                                 root_gen = btrfs_header_generation(leaf);
1418                                 root_owner = btrfs_header_owner(leaf);
1419                         }
1420                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1421                         if (!del_item) {
1422                                 u32 newsize = inode->i_size - found_key.offset;
1423                                 dec_i_blocks(inode, item_end + 1 -
1424                                             found_key.offset - newsize);
1425                                 newsize =
1426                                     btrfs_file_extent_calc_inline_size(newsize);
1427                                 ret = btrfs_truncate_item(trans, root, path,
1428                                                           newsize, 1);
1429                                 BUG_ON(ret);
1430                         } else {
1431                                 dec_i_blocks(inode, item_end + 1 -
1432                                              found_key.offset);
1433                         }
1434                 }
1435 delete:
1436                 if (del_item) {
1437                         if (!pending_del_nr) {
1438                                 /* no pending yet, add ourselves */
1439                                 pending_del_slot = path->slots[0];
1440                                 pending_del_nr = 1;
1441                         } else if (pending_del_nr &&
1442                                    path->slots[0] + 1 == pending_del_slot) {
1443                                 /* hop on the pending chunk */
1444                                 pending_del_nr++;
1445                                 pending_del_slot = path->slots[0];
1446                         } else {
1447                                 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
1448                         }
1449                 } else {
1450                         break;
1451                 }
1452                 if (found_extent) {
1453                         ret = btrfs_free_extent(trans, root, extent_start,
1454                                                 extent_num_bytes,
1455                                                 root_owner,
1456                                                 root_gen, inode->i_ino,
1457                                                 found_key.offset, 0);
1458                         BUG_ON(ret);
1459                 }
1460 next:
1461                 if (path->slots[0] == 0) {
1462                         if (pending_del_nr)
1463                                 goto del_pending;
1464                         btrfs_release_path(root, path);
1465                         goto search_again;
1466                 }
1467
1468                 path->slots[0]--;
1469                 if (pending_del_nr &&
1470                     path->slots[0] + 1 != pending_del_slot) {
1471                         struct btrfs_key debug;
1472 del_pending:
1473                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
1474                                               pending_del_slot);
1475                         ret = btrfs_del_items(trans, root, path,
1476                                               pending_del_slot,
1477                                               pending_del_nr);
1478                         BUG_ON(ret);
1479                         pending_del_nr = 0;
1480                         btrfs_release_path(root, path);
1481                         goto search_again;
1482                 }
1483         }
1484         ret = 0;
1485 error:
1486         if (pending_del_nr) {
1487                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
1488                                       pending_del_nr);
1489         }
1490         btrfs_free_path(path);
1491         inode->i_sb->s_dirt = 1;
1492         return ret;
1493 }
1494
1495 /*
1496  * taken from block_truncate_page, but does cow as it zeros out
1497  * any bytes left in the last page in the file.
1498  */
1499 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
1500 {
1501         struct inode *inode = mapping->host;
1502         struct btrfs_root *root = BTRFS_I(inode)->root;
1503         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1504         struct btrfs_ordered_extent *ordered;
1505         char *kaddr;
1506         u32 blocksize = root->sectorsize;
1507         pgoff_t index = from >> PAGE_CACHE_SHIFT;
1508         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1509         struct page *page;
1510         int ret = 0;
1511         u64 page_start;
1512         u64 page_end;
1513
1514         if ((offset & (blocksize - 1)) == 0)
1515                 goto out;
1516
1517         ret = -ENOMEM;
1518 again:
1519         page = grab_cache_page(mapping, index);
1520         if (!page)
1521                 goto out;
1522
1523         page_start = page_offset(page);
1524         page_end = page_start + PAGE_CACHE_SIZE - 1;
1525
1526         if (!PageUptodate(page)) {
1527                 ret = btrfs_readpage(NULL, page);
1528                 lock_page(page);
1529                 if (page->mapping != mapping) {
1530                         unlock_page(page);
1531                         page_cache_release(page);
1532                         goto again;
1533                 }
1534                 if (!PageUptodate(page)) {
1535                         ret = -EIO;
1536                         goto out_unlock;
1537                 }
1538         }
1539         wait_on_page_writeback(page);
1540
1541         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
1542         set_page_extent_mapped(page);
1543
1544         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1545         if (ordered) {
1546                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1547                 unlock_page(page);
1548                 page_cache_release(page);
1549                 btrfs_start_ordered_extent(inode, ordered, 1);
1550                 btrfs_put_ordered_extent(ordered);
1551                 goto again;
1552         }
1553
1554         btrfs_set_extent_delalloc(inode, page_start, page_end);
1555         ret = 0;
1556         if (offset != PAGE_CACHE_SIZE) {
1557                 kaddr = kmap(page);
1558                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1559                 flush_dcache_page(page);
1560                 kunmap(page);
1561         }
1562         ClearPageChecked(page);
1563         set_page_dirty(page);
1564         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1565
1566 out_unlock:
1567         unlock_page(page);
1568         page_cache_release(page);
1569 out:
1570         return ret;
1571 }
1572
1573 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
1574 {
1575         struct inode *inode = dentry->d_inode;
1576         int err;
1577
1578         err = inode_change_ok(inode, attr);
1579         if (err)
1580                 return err;
1581
1582         if (S_ISREG(inode->i_mode) &&
1583             attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
1584                 struct btrfs_trans_handle *trans;
1585                 struct btrfs_root *root = BTRFS_I(inode)->root;
1586                 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1587
1588                 u64 mask = root->sectorsize - 1;
1589                 u64 hole_start = (inode->i_size + mask) & ~mask;
1590                 u64 block_end = (attr->ia_size + mask) & ~mask;
1591                 u64 hole_size;
1592                 u64 alloc_hint = 0;
1593
1594                 if (attr->ia_size <= hole_start)
1595                         goto out;
1596
1597                 err = btrfs_check_free_space(root, 1, 0);
1598                 if (err)
1599                         goto fail;
1600
1601                 btrfs_truncate_page(inode->i_mapping, inode->i_size);
1602
1603                 hole_size = block_end - hole_start;
1604                 while(1) {
1605                         struct btrfs_ordered_extent *ordered;
1606                         btrfs_wait_ordered_range(inode, hole_start, hole_size);
1607
1608                         lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1609                         ordered = btrfs_lookup_ordered_extent(inode, hole_start);
1610                         if (ordered) {
1611                                 unlock_extent(io_tree, hole_start,
1612                                               block_end - 1, GFP_NOFS);
1613                                 btrfs_put_ordered_extent(ordered);
1614                         } else {
1615                                 break;
1616                         }
1617                 }
1618
1619                 trans = btrfs_start_transaction(root, 1);
1620                 btrfs_set_trans_block_group(trans, inode);
1621                 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1622                 err = btrfs_drop_extents(trans, root, inode,
1623                                          hole_start, block_end, hole_start,
1624                                          &alloc_hint);
1625
1626                 if (alloc_hint != EXTENT_MAP_INLINE) {
1627                         err = btrfs_insert_file_extent(trans, root,
1628                                                        inode->i_ino,
1629                                                        hole_start, 0, 0,
1630                                                        hole_size, 0);
1631                         btrfs_drop_extent_cache(inode, hole_start,
1632                                                 (u64)-1);
1633                         btrfs_check_file(root, inode);
1634                 }
1635                 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1636                 btrfs_end_transaction(trans, root);
1637                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1638                 if (err)
1639                         return err;
1640         }
1641 out:
1642         err = inode_setattr(inode, attr);
1643
1644         if (!err && ((attr->ia_valid & ATTR_MODE)))
1645                 err = btrfs_acl_chmod(inode);
1646 fail:
1647         return err;
1648 }
1649
1650 void btrfs_delete_inode(struct inode *inode)
1651 {
1652         struct btrfs_trans_handle *trans;
1653         struct btrfs_root *root = BTRFS_I(inode)->root;
1654         unsigned long nr;
1655         int ret;
1656
1657         truncate_inode_pages(&inode->i_data, 0);
1658         if (is_bad_inode(inode)) {
1659                 btrfs_orphan_del(NULL, inode);
1660                 goto no_delete;
1661         }
1662         btrfs_wait_ordered_range(inode, 0, (u64)-1);
1663
1664         btrfs_i_size_write(inode, 0);
1665         trans = btrfs_start_transaction(root, 1);
1666
1667         btrfs_set_trans_block_group(trans, inode);
1668         ret = btrfs_truncate_in_trans(trans, root, inode, 0);
1669         if (ret) {
1670                 btrfs_orphan_del(NULL, inode);
1671                 goto no_delete_lock;
1672         }
1673
1674         btrfs_orphan_del(trans, inode);
1675
1676         nr = trans->blocks_used;
1677         clear_inode(inode);
1678
1679         btrfs_end_transaction(trans, root);
1680         btrfs_btree_balance_dirty(root, nr);
1681         return;
1682
1683 no_delete_lock:
1684         nr = trans->blocks_used;
1685         btrfs_end_transaction(trans, root);
1686         btrfs_btree_balance_dirty(root, nr);
1687 no_delete:
1688         clear_inode(inode);
1689 }
1690
1691 /*
1692  * this returns the key found in the dir entry in the location pointer.
1693  * If no dir entries were found, location->objectid is 0.
1694  */
1695 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
1696                                struct btrfs_key *location)
1697 {
1698         const char *name = dentry->d_name.name;
1699         int namelen = dentry->d_name.len;
1700         struct btrfs_dir_item *di;
1701         struct btrfs_path *path;
1702         struct btrfs_root *root = BTRFS_I(dir)->root;
1703         int ret = 0;
1704
1705         if (namelen == 1 && strcmp(name, ".") == 0) {
1706                 location->objectid = dir->i_ino;
1707                 location->type = BTRFS_INODE_ITEM_KEY;
1708                 location->offset = 0;
1709                 return 0;
1710         }
1711         path = btrfs_alloc_path();
1712         BUG_ON(!path);
1713
1714         if (namelen == 2 && strcmp(name, "..") == 0) {
1715                 struct btrfs_key key;
1716                 struct extent_buffer *leaf;
1717                 int slot;
1718
1719                 key.objectid = dir->i_ino;
1720                 key.offset = (u64)-1;
1721                 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1722                 if (ret < 0 || path->slots[0] == 0)
1723                         goto out_err;
1724                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1725                 BUG_ON(ret == 0);
1726                 ret = 0;
1727                 leaf = path->nodes[0];
1728                 slot = path->slots[0] - 1;
1729
1730                 btrfs_item_key_to_cpu(leaf, &key, slot);
1731                 if (key.objectid != dir->i_ino ||
1732                     key.type != BTRFS_INODE_REF_KEY) {
1733                         goto out_err;
1734                 }
1735                 location->objectid = key.offset;
1736                 location->type = BTRFS_INODE_ITEM_KEY;
1737                 location->offset = 0;
1738                 goto out;
1739         }
1740
1741         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
1742                                     namelen, 0);
1743         if (IS_ERR(di))
1744                 ret = PTR_ERR(di);
1745         if (!di || IS_ERR(di)) {
1746                 goto out_err;
1747         }
1748         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
1749 out:
1750         btrfs_free_path(path);
1751         return ret;
1752 out_err:
1753         location->objectid = 0;
1754         goto out;
1755 }
1756
1757 /*
1758  * when we hit a tree root in a directory, the btrfs part of the inode
1759  * needs to be changed to reflect the root directory of the tree root.  This
1760  * is kind of like crossing a mount point.
1761  */
1762 static int fixup_tree_root_location(struct btrfs_root *root,
1763                              struct btrfs_key *location,
1764                              struct btrfs_root **sub_root,
1765                              struct dentry *dentry)
1766 {
1767         struct btrfs_root_item *ri;
1768
1769         if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
1770                 return 0;
1771         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1772                 return 0;
1773
1774         *sub_root = btrfs_read_fs_root(root->fs_info, location,
1775                                         dentry->d_name.name,
1776                                         dentry->d_name.len);
1777         if (IS_ERR(*sub_root))
1778                 return PTR_ERR(*sub_root);
1779
1780         ri = &(*sub_root)->root_item;
1781         location->objectid = btrfs_root_dirid(ri);
1782         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
1783         location->offset = 0;
1784
1785         return 0;
1786 }
1787
1788 static int btrfs_init_locked_inode(struct inode *inode, void *p)
1789 {
1790         struct btrfs_iget_args *args = p;
1791         inode->i_ino = args->ino;
1792         BTRFS_I(inode)->root = args->root;
1793         BTRFS_I(inode)->delalloc_bytes = 0;
1794         inode->i_mapping->writeback_index = 0;
1795         BTRFS_I(inode)->disk_i_size = 0;
1796         BTRFS_I(inode)->index_cnt = (u64)-1;
1797         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
1798         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
1799                              inode->i_mapping, GFP_NOFS);
1800         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
1801                              inode->i_mapping, GFP_NOFS);
1802         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
1803         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
1804         mutex_init(&BTRFS_I(inode)->csum_mutex);
1805         mutex_init(&BTRFS_I(inode)->extent_mutex);
1806         return 0;
1807 }
1808
1809 static int btrfs_find_actor(struct inode *inode, void *opaque)
1810 {
1811         struct btrfs_iget_args *args = opaque;
1812         return (args->ino == inode->i_ino &&
1813                 args->root == BTRFS_I(inode)->root);
1814 }
1815
1816 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
1817                             u64 root_objectid)
1818 {
1819         struct btrfs_iget_args args;
1820         args.ino = objectid;
1821         args.root = btrfs_lookup_fs_root(btrfs_sb(s)->fs_info, root_objectid);
1822
1823         if (!args.root)
1824                 return NULL;
1825
1826         return ilookup5(s, objectid, btrfs_find_actor, (void *)&args);
1827 }
1828
1829 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
1830                                 struct btrfs_root *root)
1831 {
1832         struct inode *inode;
1833         struct btrfs_iget_args args;
1834         args.ino = objectid;
1835         args.root = root;
1836
1837         inode = iget5_locked(s, objectid, btrfs_find_actor,
1838                              btrfs_init_locked_inode,
1839                              (void *)&args);
1840         return inode;
1841 }
1842
1843 /* Get an inode object given its location and corresponding root.
1844  * Returns in *is_new if the inode was read from disk
1845  */
1846 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
1847                          struct btrfs_root *root, int *is_new)
1848 {
1849         struct inode *inode;
1850
1851         inode = btrfs_iget_locked(s, location->objectid, root);
1852         if (!inode)
1853                 return ERR_PTR(-EACCES);
1854
1855         if (inode->i_state & I_NEW) {
1856                 BTRFS_I(inode)->root = root;
1857                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
1858                 btrfs_read_locked_inode(inode);
1859                 unlock_new_inode(inode);
1860                 if (is_new)
1861                         *is_new = 1;
1862         } else {
1863                 if (is_new)
1864                         *is_new = 0;
1865         }
1866
1867         return inode;
1868 }
1869
1870 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
1871                                    struct nameidata *nd)
1872 {
1873         struct inode * inode;
1874         struct btrfs_inode *bi = BTRFS_I(dir);
1875         struct btrfs_root *root = bi->root;
1876         struct btrfs_root *sub_root = root;
1877         struct btrfs_key location;
1878         int ret, new, do_orphan = 0;
1879
1880         if (dentry->d_name.len > BTRFS_NAME_LEN)
1881                 return ERR_PTR(-ENAMETOOLONG);
1882
1883         ret = btrfs_inode_by_name(dir, dentry, &location);
1884
1885         if (ret < 0)
1886                 return ERR_PTR(ret);
1887
1888         inode = NULL;
1889         if (location.objectid) {
1890                 ret = fixup_tree_root_location(root, &location, &sub_root,
1891                                                 dentry);
1892                 if (ret < 0)
1893                         return ERR_PTR(ret);
1894                 if (ret > 0)
1895                         return ERR_PTR(-ENOENT);
1896                 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
1897                 if (IS_ERR(inode))
1898                         return ERR_CAST(inode);
1899
1900                 /* the inode and parent dir are two different roots */
1901                 if (new && root != sub_root) {
1902                         igrab(inode);
1903                         sub_root->inode = inode;
1904                         do_orphan = 1;
1905                 }
1906         }
1907
1908         if (unlikely(do_orphan))
1909                 btrfs_orphan_cleanup(sub_root);
1910
1911         return d_splice_alias(inode, dentry);
1912 }
1913
1914 static unsigned char btrfs_filetype_table[] = {
1915         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
1916 };
1917
1918 static int btrfs_real_readdir(struct file *filp, void *dirent,
1919                               filldir_t filldir)
1920 {
1921         struct inode *inode = filp->f_dentry->d_inode;
1922         struct btrfs_root *root = BTRFS_I(inode)->root;
1923         struct btrfs_item *item;
1924         struct btrfs_dir_item *di;
1925         struct btrfs_key key;
1926         struct btrfs_key found_key;
1927         struct btrfs_path *path;
1928         int ret;
1929         u32 nritems;
1930         struct extent_buffer *leaf;
1931         int slot;
1932         int advance;
1933         unsigned char d_type;
1934         int over = 0;
1935         u32 di_cur;
1936         u32 di_total;
1937         u32 di_len;
1938         int key_type = BTRFS_DIR_INDEX_KEY;
1939         char tmp_name[32];
1940         char *name_ptr;
1941         int name_len;
1942
1943         /* FIXME, use a real flag for deciding about the key type */
1944         if (root->fs_info->tree_root == root)
1945                 key_type = BTRFS_DIR_ITEM_KEY;
1946
1947         /* special case for "." */
1948         if (filp->f_pos == 0) {
1949                 over = filldir(dirent, ".", 1,
1950                                1, inode->i_ino,
1951                                DT_DIR);
1952                 if (over)
1953                         return 0;
1954                 filp->f_pos = 1;
1955         }
1956
1957         key.objectid = inode->i_ino;
1958         path = btrfs_alloc_path();
1959         path->reada = 2;
1960
1961         /* special case for .., just use the back ref */
1962         if (filp->f_pos == 1) {
1963                 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1964                 key.offset = (u64)-1;
1965                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1966                 if (ret < 0 || path->slots[0] == 0) {
1967                         btrfs_release_path(root, path);
1968                         goto read_dir_items;
1969                 }
1970                 BUG_ON(ret == 0);
1971                 leaf = path->nodes[0];
1972                 slot = path->slots[0] - 1;
1973                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1974                 btrfs_release_path(root, path);
1975                 if (found_key.objectid != key.objectid ||
1976                     found_key.type != BTRFS_INODE_REF_KEY)
1977                         goto read_dir_items;
1978                 over = filldir(dirent, "..", 2,
1979                                2, found_key.offset, DT_DIR);
1980                 if (over)
1981                         goto nopos;
1982                 filp->f_pos = 2;
1983         }
1984
1985 read_dir_items:
1986         btrfs_set_key_type(&key, key_type);
1987         key.offset = filp->f_pos;
1988
1989         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1990         if (ret < 0)
1991                 goto err;
1992         advance = 0;
1993         while(1) {
1994                 leaf = path->nodes[0];
1995                 nritems = btrfs_header_nritems(leaf);
1996                 slot = path->slots[0];
1997                 if (advance || slot >= nritems) {
1998                         if (slot >= nritems -1) {
1999                                 ret = btrfs_next_leaf(root, path);
2000                                 if (ret)
2001                                         break;
2002                                 leaf = path->nodes[0];
2003                                 nritems = btrfs_header_nritems(leaf);
2004                                 slot = path->slots[0];
2005                         } else {
2006                                 slot++;
2007                                 path->slots[0]++;
2008                         }
2009                 }
2010                 advance = 1;
2011                 item = btrfs_item_nr(leaf, slot);
2012                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2013
2014                 if (found_key.objectid != key.objectid)
2015                         break;
2016                 if (btrfs_key_type(&found_key) != key_type)
2017                         break;
2018                 if (found_key.offset < filp->f_pos)
2019                         continue;
2020
2021                 filp->f_pos = found_key.offset;
2022                 advance = 1;
2023                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2024                 di_cur = 0;
2025                 di_total = btrfs_item_size(leaf, item);
2026                 while(di_cur < di_total) {
2027                         struct btrfs_key location;
2028
2029                         name_len = btrfs_dir_name_len(leaf, di);
2030                         if (name_len < 32) {
2031                                 name_ptr = tmp_name;
2032                         } else {
2033                                 name_ptr = kmalloc(name_len, GFP_NOFS);
2034                                 BUG_ON(!name_ptr);
2035                         }
2036                         read_extent_buffer(leaf, name_ptr,
2037                                            (unsigned long)(di + 1), name_len);
2038
2039                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2040                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
2041                         over = filldir(dirent, name_ptr, name_len,
2042                                        found_key.offset,
2043                                        location.objectid,
2044                                        d_type);
2045
2046                         if (name_ptr != tmp_name)
2047                                 kfree(name_ptr);
2048
2049                         if (over)
2050                                 goto nopos;
2051                         di_len = btrfs_dir_name_len(leaf, di) +
2052                                 btrfs_dir_data_len(leaf, di) +sizeof(*di);
2053                         di_cur += di_len;
2054                         di = (struct btrfs_dir_item *)((char *)di + di_len);
2055                 }
2056         }
2057         if (key_type == BTRFS_DIR_INDEX_KEY)
2058                 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2059         else
2060                 filp->f_pos++;
2061 nopos:
2062         ret = 0;
2063 err:
2064         btrfs_free_path(path);
2065         return ret;
2066 }
2067
2068 /* Kernels earlier than 2.6.28 still have the NFS deadlock where nfsd
2069    will call the file system's ->lookup() method from within its
2070    filldir callback, which in turn was called from the file system's
2071    ->readdir() method. And will deadlock for many file systems. */
2072 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
2073
2074 struct nfshack_dirent {
2075         u64             ino;
2076         loff_t          offset;
2077         int             namlen;
2078         unsigned int    d_type;
2079         char            name[];
2080 };
2081
2082 struct nfshack_readdir {
2083         char            *dirent;
2084         size_t          used;
2085 };
2086
2087
2088
2089 static int btrfs_nfshack_filldir(void *__buf, const char *name, int namlen,
2090                               loff_t offset, u64 ino, unsigned int d_type)
2091 {
2092         struct nfshack_readdir *buf = __buf;
2093         struct nfshack_dirent *de = (void *)(buf->dirent + buf->used);
2094         unsigned int reclen;
2095
2096         reclen = ALIGN(sizeof(struct nfshack_dirent) + namlen, sizeof(u64));
2097         if (buf->used + reclen > PAGE_SIZE)
2098                 return -EINVAL;
2099
2100         de->namlen = namlen;
2101         de->offset = offset;
2102         de->ino = ino;
2103         de->d_type = d_type;
2104         memcpy(de->name, name, namlen);
2105         buf->used += reclen;
2106
2107         return 0;
2108 }
2109
2110 static int btrfs_nfshack_readdir(struct file *file, void *dirent,
2111                                  filldir_t filldir)
2112 {
2113         struct nfshack_readdir buf;
2114         struct nfshack_dirent *de;
2115         int err;
2116         int size;
2117         loff_t offset;
2118
2119         buf.dirent = (void *)__get_free_page(GFP_KERNEL);
2120         if (!buf.dirent)
2121                 return -ENOMEM;
2122
2123         offset = file->f_pos;
2124
2125         while (1) {
2126                 unsigned int reclen;
2127
2128                 buf.used = 0;
2129
2130                 err = btrfs_real_readdir(file, &buf, btrfs_nfshack_filldir);
2131                 if (err)
2132                         break;
2133
2134                 size = buf.used;
2135
2136                 if (!size)
2137                         break;
2138
2139                 de = (struct nfshack_dirent *)buf.dirent;
2140                 while (size > 0) {
2141                         offset = de->offset;
2142
2143                         if (filldir(dirent, de->name, de->namlen, de->offset,
2144                                     de->ino, de->d_type))
2145                                 goto done;
2146                         offset = file->f_pos;
2147
2148                         reclen = ALIGN(sizeof(*de) + de->namlen,
2149                                        sizeof(u64));
2150                         size -= reclen;
2151                         de = (struct nfshack_dirent *)((char *)de + reclen);
2152                 }
2153         }
2154
2155  done:
2156         free_page((unsigned long)buf.dirent);
2157         file->f_pos = offset;
2158
2159         return err;
2160 }
2161 #endif
2162
2163 int btrfs_write_inode(struct inode *inode, int wait)
2164 {
2165         struct btrfs_root *root = BTRFS_I(inode)->root;
2166         struct btrfs_trans_handle *trans;
2167         int ret = 0;
2168
2169         if (root->fs_info->closing > 1)
2170                 return 0;
2171
2172         if (wait) {
2173                 trans = btrfs_join_transaction(root, 1);
2174                 btrfs_set_trans_block_group(trans, inode);
2175                 ret = btrfs_commit_transaction(trans, root);
2176         }
2177         return ret;
2178 }
2179
2180 /*
2181  * This is somewhat expensive, updating the tree every time the
2182  * inode changes.  But, it is most likely to find the inode in cache.
2183  * FIXME, needs more benchmarking...there are no reasons other than performance
2184  * to keep or drop this code.
2185  */
2186 void btrfs_dirty_inode(struct inode *inode)
2187 {
2188         struct btrfs_root *root = BTRFS_I(inode)->root;
2189         struct btrfs_trans_handle *trans;
2190
2191         trans = btrfs_join_transaction(root, 1);
2192         btrfs_set_trans_block_group(trans, inode);
2193         btrfs_update_inode(trans, root, inode);
2194         btrfs_end_transaction(trans, root);
2195 }
2196
2197 static int btrfs_set_inode_index_count(struct inode *inode)
2198 {
2199         struct btrfs_root *root = BTRFS_I(inode)->root;
2200         struct btrfs_key key, found_key;
2201         struct btrfs_path *path;
2202         struct extent_buffer *leaf;
2203         int ret;
2204
2205         key.objectid = inode->i_ino;
2206         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2207         key.offset = (u64)-1;
2208
2209         path = btrfs_alloc_path();
2210         if (!path)
2211                 return -ENOMEM;
2212
2213         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2214         if (ret < 0)
2215                 goto out;
2216         /* FIXME: we should be able to handle this */
2217         if (ret == 0)
2218                 goto out;
2219         ret = 0;
2220
2221         /*
2222          * MAGIC NUMBER EXPLANATION:
2223          * since we search a directory based on f_pos we have to start at 2
2224          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2225          * else has to start at 2
2226          */
2227         if (path->slots[0] == 0) {
2228                 BTRFS_I(inode)->index_cnt = 2;
2229                 goto out;
2230         }
2231
2232         path->slots[0]--;
2233
2234         leaf = path->nodes[0];
2235         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2236
2237         if (found_key.objectid != inode->i_ino ||
2238             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2239                 BTRFS_I(inode)->index_cnt = 2;
2240                 goto out;
2241         }
2242
2243         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2244 out:
2245         btrfs_free_path(path);
2246         return ret;
2247 }
2248
2249 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
2250                                  u64 *index)
2251 {
2252         int ret = 0;
2253
2254         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2255                 ret = btrfs_set_inode_index_count(dir);
2256                 if (ret)
2257                         return ret;
2258         }
2259
2260         *index = BTRFS_I(dir)->index_cnt;
2261         BTRFS_I(dir)->index_cnt++;
2262
2263         return ret;
2264 }
2265
2266 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2267                                      struct btrfs_root *root,
2268                                      struct inode *dir,
2269                                      const char *name, int name_len,
2270                                      u64 ref_objectid,
2271                                      u64 objectid,
2272                                      struct btrfs_block_group_cache *group,
2273                                      int mode, u64 *index)
2274 {
2275         struct inode *inode;
2276         struct btrfs_inode_item *inode_item;
2277         struct btrfs_block_group_cache *new_inode_group;
2278         struct btrfs_key *location;
2279         struct btrfs_path *path;
2280         struct btrfs_inode_ref *ref;
2281         struct btrfs_key key[2];
2282         u32 sizes[2];
2283         unsigned long ptr;
2284         int ret;
2285         int owner;
2286
2287         path = btrfs_alloc_path();
2288         BUG_ON(!path);
2289
2290         inode = new_inode(root->fs_info->sb);
2291         if (!inode)
2292                 return ERR_PTR(-ENOMEM);
2293
2294         if (dir) {
2295                 ret = btrfs_set_inode_index(dir, inode, index);
2296                 if (ret)
2297                         return ERR_PTR(ret);
2298         }
2299         /*
2300          * index_cnt is ignored for everything but a dir,
2301          * btrfs_get_inode_index_count has an explanation for the magic
2302          * number
2303          */
2304         BTRFS_I(inode)->index_cnt = 2;
2305
2306         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2307         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2308                              inode->i_mapping, GFP_NOFS);
2309         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2310                              inode->i_mapping, GFP_NOFS);
2311         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2312         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2313         mutex_init(&BTRFS_I(inode)->csum_mutex);
2314         mutex_init(&BTRFS_I(inode)->extent_mutex);
2315         BTRFS_I(inode)->delalloc_bytes = 0;
2316         inode->i_mapping->writeback_index = 0;
2317         BTRFS_I(inode)->disk_i_size = 0;
2318         BTRFS_I(inode)->root = root;
2319
2320         if (mode & S_IFDIR)
2321                 owner = 0;
2322         else
2323                 owner = 1;
2324         new_inode_group = btrfs_find_block_group(root, group, 0,
2325                                        BTRFS_BLOCK_GROUP_METADATA, owner);
2326         if (!new_inode_group) {
2327                 printk("find_block group failed\n");
2328                 new_inode_group = group;
2329         }
2330         BTRFS_I(inode)->block_group = new_inode_group;
2331         BTRFS_I(inode)->flags = 0;
2332
2333         key[0].objectid = objectid;
2334         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2335         key[0].offset = 0;
2336
2337         key[1].objectid = objectid;
2338         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2339         key[1].offset = ref_objectid;
2340
2341         sizes[0] = sizeof(struct btrfs_inode_item);
2342         sizes[1] = name_len + sizeof(*ref);
2343
2344         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2345         if (ret != 0)
2346                 goto fail;
2347
2348         if (objectid > root->highest_inode)
2349                 root->highest_inode = objectid;
2350
2351         inode->i_uid = current->fsuid;
2352         inode->i_gid = current->fsgid;
2353         inode->i_mode = mode;
2354         inode->i_ino = objectid;
2355         inode->i_blocks = 0;
2356         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2357         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2358                                   struct btrfs_inode_item);
2359         fill_inode_item(path->nodes[0], inode_item, inode);
2360
2361         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2362                              struct btrfs_inode_ref);
2363         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2364         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
2365         ptr = (unsigned long)(ref + 1);
2366         write_extent_buffer(path->nodes[0], name, ptr, name_len);
2367
2368         btrfs_mark_buffer_dirty(path->nodes[0]);
2369         btrfs_free_path(path);
2370
2371         location = &BTRFS_I(inode)->location;
2372         location->objectid = objectid;
2373         location->offset = 0;
2374         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2375
2376         insert_inode_hash(inode);
2377         return inode;
2378 fail:
2379         if (dir)
2380                 BTRFS_I(dir)->index_cnt--;
2381         btrfs_free_path(path);
2382         return ERR_PTR(ret);
2383 }
2384
2385 static inline u8 btrfs_inode_type(struct inode *inode)
2386 {
2387         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2388 }
2389
2390 static int btrfs_add_link(struct btrfs_trans_handle *trans,
2391                             struct dentry *dentry, struct inode *inode,
2392                             int add_backref, u64 index)
2393 {
2394         int ret;
2395         struct btrfs_key key;
2396         struct btrfs_root *root = BTRFS_I(dentry->d_parent->d_inode)->root;
2397         struct inode *parent_inode = dentry->d_parent->d_inode;
2398
2399         key.objectid = inode->i_ino;
2400         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
2401         key.offset = 0;
2402
2403         ret = btrfs_insert_dir_item(trans, root,
2404                                     dentry->d_name.name, dentry->d_name.len,
2405                                     dentry->d_parent->d_inode->i_ino,
2406                                     &key, btrfs_inode_type(inode),
2407                                     index);
2408         if (ret == 0) {
2409                 if (add_backref) {
2410                         ret = btrfs_insert_inode_ref(trans, root,
2411                                              dentry->d_name.name,
2412                                              dentry->d_name.len,
2413                                              inode->i_ino,
2414                                              parent_inode->i_ino,
2415                                              index);
2416                 }
2417                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
2418                                    dentry->d_name.len * 2);
2419                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
2420                 ret = btrfs_update_inode(trans, root,
2421                                          dentry->d_parent->d_inode);
2422         }
2423         return ret;
2424 }
2425
2426 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
2427                             struct dentry *dentry, struct inode *inode,
2428                             int backref, u64 index)
2429 {
2430         int err = btrfs_add_link(trans, dentry, inode, backref, index);
2431         if (!err) {
2432                 d_instantiate(dentry, inode);
2433                 return 0;
2434         }
2435         if (err > 0)
2436                 err = -EEXIST;
2437         return err;
2438 }
2439
2440 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
2441                         int mode, dev_t rdev)
2442 {
2443         struct btrfs_trans_handle *trans;
2444         struct btrfs_root *root = BTRFS_I(dir)->root;
2445         struct inode *inode = NULL;
2446         int err;
2447         int drop_inode = 0;
2448         u64 objectid;
2449         unsigned long nr = 0;
2450         u64 index = 0;
2451
2452         if (!new_valid_dev(rdev))
2453                 return -EINVAL;
2454
2455         err = btrfs_check_free_space(root, 1, 0);
2456         if (err)
2457                 goto fail;
2458
2459         trans = btrfs_start_transaction(root, 1);
2460         btrfs_set_trans_block_group(trans, dir);
2461
2462         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2463         if (err) {
2464                 err = -ENOSPC;
2465                 goto out_unlock;
2466         }
2467
2468         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2469                                 dentry->d_name.len,
2470                                 dentry->d_parent->d_inode->i_ino, objectid,
2471                                 BTRFS_I(dir)->block_group, mode, &index);
2472         err = PTR_ERR(inode);
2473         if (IS_ERR(inode))
2474                 goto out_unlock;
2475
2476         err = btrfs_init_acl(inode, dir);
2477         if (err) {
2478                 drop_inode = 1;
2479                 goto out_unlock;
2480         }
2481
2482         btrfs_set_trans_block_group(trans, inode);
2483         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2484         if (err)
2485                 drop_inode = 1;
2486         else {
2487                 inode->i_op = &btrfs_special_inode_operations;
2488                 init_special_inode(inode, inode->i_mode, rdev);
2489                 btrfs_update_inode(trans, root, inode);
2490         }
2491         dir->i_sb->s_dirt = 1;
2492         btrfs_update_inode_block_group(trans, inode);
2493         btrfs_update_inode_block_group(trans, dir);
2494 out_unlock:
2495         nr = trans->blocks_used;
2496         btrfs_end_transaction_throttle(trans, root);
2497 fail:
2498         if (drop_inode) {
2499                 inode_dec_link_count(inode);
2500                 iput(inode);
2501         }
2502         btrfs_btree_balance_dirty(root, nr);
2503         return err;
2504 }
2505
2506 static int btrfs_create(struct inode *dir, struct dentry *dentry,
2507                         int mode, struct nameidata *nd)
2508 {
2509         struct btrfs_trans_handle *trans;
2510         struct btrfs_root *root = BTRFS_I(dir)->root;
2511         struct inode *inode = NULL;
2512         int err;
2513         int drop_inode = 0;
2514         unsigned long nr = 0;
2515         u64 objectid;
2516         u64 index = 0;
2517
2518         err = btrfs_check_free_space(root, 1, 0);
2519         if (err)
2520                 goto fail;
2521         trans = btrfs_start_transaction(root, 1);
2522         btrfs_set_trans_block_group(trans, dir);
2523
2524         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2525         if (err) {
2526                 err = -ENOSPC;
2527                 goto out_unlock;
2528         }
2529
2530         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2531                                 dentry->d_name.len,
2532                                 dentry->d_parent->d_inode->i_ino,
2533                                 objectid, BTRFS_I(dir)->block_group, mode,
2534                                 &index);
2535         err = PTR_ERR(inode);
2536         if (IS_ERR(inode))
2537                 goto out_unlock;
2538
2539         err = btrfs_init_acl(inode, dir);
2540         if (err) {
2541                 drop_inode = 1;
2542                 goto out_unlock;
2543         }
2544
2545         btrfs_set_trans_block_group(trans, inode);
2546         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2547         if (err)
2548                 drop_inode = 1;
2549         else {
2550                 inode->i_mapping->a_ops = &btrfs_aops;
2551                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2552                 inode->i_fop = &btrfs_file_operations;
2553                 inode->i_op = &btrfs_file_inode_operations;
2554                 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2555                 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2556                                      inode->i_mapping, GFP_NOFS);
2557                 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2558                                      inode->i_mapping, GFP_NOFS);
2559                 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2560                 mutex_init(&BTRFS_I(inode)->csum_mutex);
2561                 mutex_init(&BTRFS_I(inode)->extent_mutex);
2562                 BTRFS_I(inode)->delalloc_bytes = 0;
2563                 BTRFS_I(inode)->disk_i_size = 0;
2564                 inode->i_mapping->writeback_index = 0;
2565                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2566                 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2567         }
2568         dir->i_sb->s_dirt = 1;
2569         btrfs_update_inode_block_group(trans, inode);
2570         btrfs_update_inode_block_group(trans, dir);
2571 out_unlock:
2572         nr = trans->blocks_used;
2573         btrfs_end_transaction_throttle(trans, root);
2574 fail:
2575         if (drop_inode) {
2576                 inode_dec_link_count(inode);
2577                 iput(inode);
2578         }
2579         btrfs_btree_balance_dirty(root, nr);
2580         return err;
2581 }
2582
2583 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
2584                       struct dentry *dentry)
2585 {
2586         struct btrfs_trans_handle *trans;
2587         struct btrfs_root *root = BTRFS_I(dir)->root;
2588         struct inode *inode = old_dentry->d_inode;
2589         u64 index;
2590         unsigned long nr = 0;
2591         int err;
2592         int drop_inode = 0;
2593
2594         if (inode->i_nlink == 0)
2595                 return -ENOENT;
2596
2597 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
2598         inode->i_nlink++;
2599 #else
2600         inc_nlink(inode);
2601 #endif
2602         err = btrfs_check_free_space(root, 1, 0);
2603         if (err)
2604                 goto fail;
2605         err = btrfs_set_inode_index(dir, inode, &index);
2606         if (err)
2607                 goto fail;
2608
2609         trans = btrfs_start_transaction(root, 1);
2610
2611         btrfs_set_trans_block_group(trans, dir);
2612         atomic_inc(&inode->i_count);
2613
2614         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
2615
2616         if (err)
2617                 drop_inode = 1;
2618
2619         dir->i_sb->s_dirt = 1;
2620         btrfs_update_inode_block_group(trans, dir);
2621         err = btrfs_update_inode(trans, root, inode);
2622
2623         if (err)
2624                 drop_inode = 1;
2625
2626         nr = trans->blocks_used;
2627         btrfs_end_transaction_throttle(trans, root);
2628 fail:
2629         if (drop_inode) {
2630                 inode_dec_link_count(inode);
2631                 iput(inode);
2632         }
2633         btrfs_btree_balance_dirty(root, nr);
2634         return err;
2635 }
2636
2637 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2638 {
2639         struct inode *inode = NULL;
2640         struct btrfs_trans_handle *trans;
2641         struct btrfs_root *root = BTRFS_I(dir)->root;
2642         int err = 0;
2643         int drop_on_err = 0;
2644         u64 objectid = 0;
2645         u64 index = 0;
2646         unsigned long nr = 1;
2647
2648         err = btrfs_check_free_space(root, 1, 0);
2649         if (err)
2650                 goto out_unlock;
2651
2652         trans = btrfs_start_transaction(root, 1);
2653         btrfs_set_trans_block_group(trans, dir);
2654
2655         if (IS_ERR(trans)) {
2656                 err = PTR_ERR(trans);
2657                 goto out_unlock;
2658         }
2659
2660         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2661         if (err) {
2662                 err = -ENOSPC;
2663                 goto out_unlock;
2664         }
2665
2666         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2667                                 dentry->d_name.len,
2668                                 dentry->d_parent->d_inode->i_ino, objectid,
2669                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
2670                                 &index);
2671         if (IS_ERR(inode)) {
2672                 err = PTR_ERR(inode);
2673                 goto out_fail;
2674         }
2675
2676         drop_on_err = 1;
2677
2678         err = btrfs_init_acl(inode, dir);
2679         if (err)
2680                 goto out_fail;
2681
2682         inode->i_op = &btrfs_dir_inode_operations;
2683         inode->i_fop = &btrfs_dir_file_operations;
2684         btrfs_set_trans_block_group(trans, inode);
2685
2686         btrfs_i_size_write(inode, 0);
2687         err = btrfs_update_inode(trans, root, inode);
2688         if (err)
2689                 goto out_fail;
2690
2691         err = btrfs_add_link(trans, dentry, inode, 0, index);
2692         if (err)
2693                 goto out_fail;
2694
2695         d_instantiate(dentry, inode);
2696         drop_on_err = 0;
2697         dir->i_sb->s_dirt = 1;
2698         btrfs_update_inode_block_group(trans, inode);
2699         btrfs_update_inode_block_group(trans, dir);
2700
2701 out_fail:
2702         nr = trans->blocks_used;
2703         btrfs_end_transaction_throttle(trans, root);
2704
2705 out_unlock:
2706         if (drop_on_err)
2707                 iput(inode);
2708         btrfs_btree_balance_dirty(root, nr);
2709         return err;
2710 }
2711
2712 static int merge_extent_mapping(struct extent_map_tree *em_tree,
2713                                 struct extent_map *existing,
2714                                 struct extent_map *em,
2715                                 u64 map_start, u64 map_len)
2716 {
2717         u64 start_diff;
2718
2719         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
2720         start_diff = map_start - em->start;
2721         em->start = map_start;
2722         em->len = map_len;
2723         if (em->block_start < EXTENT_MAP_LAST_BYTE)
2724                 em->block_start += start_diff;
2725         return add_extent_mapping(em_tree, em);
2726 }
2727
2728 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2729                                     size_t pg_offset, u64 start, u64 len,
2730                                     int create)
2731 {
2732         int ret;
2733         int err = 0;
2734         u64 bytenr;
2735         u64 extent_start = 0;
2736         u64 extent_end = 0;
2737         u64 objectid = inode->i_ino;
2738         u32 found_type;
2739         struct btrfs_path *path = NULL;
2740         struct btrfs_root *root = BTRFS_I(inode)->root;
2741         struct btrfs_file_extent_item *item;
2742         struct extent_buffer *leaf;
2743         struct btrfs_key found_key;
2744         struct extent_map *em = NULL;
2745         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2746         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2747         struct btrfs_trans_handle *trans = NULL;
2748
2749 again:
2750         spin_lock(&em_tree->lock);
2751         em = lookup_extent_mapping(em_tree, start, len);
2752         if (em)
2753                 em->bdev = root->fs_info->fs_devices->latest_bdev;
2754         spin_unlock(&em_tree->lock);
2755
2756         if (em) {
2757                 if (em->start > start || em->start + em->len <= start)
2758                         free_extent_map(em);
2759                 else if (em->block_start == EXTENT_MAP_INLINE && page)
2760                         free_extent_map(em);
2761                 else
2762                         goto out;
2763         }
2764         em = alloc_extent_map(GFP_NOFS);
2765         if (!em) {
2766                 err = -ENOMEM;
2767                 goto out;
2768         }
2769         em->bdev = root->fs_info->fs_devices->latest_bdev;
2770         em->start = EXTENT_MAP_HOLE;
2771         em->len = (u64)-1;
2772
2773         if (!path) {
2774                 path = btrfs_alloc_path();
2775                 BUG_ON(!path);
2776         }
2777
2778         ret = btrfs_lookup_file_extent(trans, root, path,
2779                                        objectid, start, trans != NULL);
2780         if (ret < 0) {
2781                 err = ret;
2782                 goto out;
2783         }
2784
2785         if (ret != 0) {
2786                 if (path->slots[0] == 0)
2787                         goto not_found;
2788                 path->slots[0]--;
2789         }
2790
2791         leaf = path->nodes[0];
2792         item = btrfs_item_ptr(leaf, path->slots[0],
2793                               struct btrfs_file_extent_item);
2794         /* are we inside the extent that was found? */
2795         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2796         found_type = btrfs_key_type(&found_key);
2797         if (found_key.objectid != objectid ||
2798             found_type != BTRFS_EXTENT_DATA_KEY) {
2799                 goto not_found;
2800         }
2801
2802         found_type = btrfs_file_extent_type(leaf, item);
2803         extent_start = found_key.offset;
2804         if (found_type == BTRFS_FILE_EXTENT_REG) {
2805                 extent_end = extent_start +
2806                        btrfs_file_extent_num_bytes(leaf, item);
2807                 err = 0;
2808                 if (start < extent_start || start >= extent_end) {
2809                         em->start = start;
2810                         if (start < extent_start) {
2811                                 if (start + len <= extent_start)
2812                                         goto not_found;
2813                                 em->len = extent_end - extent_start;
2814                         } else {
2815                                 em->len = len;
2816                         }
2817                         goto not_found_em;
2818                 }
2819                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
2820                 if (bytenr == 0) {
2821                         em->start = extent_start;
2822                         em->len = extent_end - extent_start;
2823                         em->block_start = EXTENT_MAP_HOLE;
2824                         goto insert;
2825                 }
2826                 bytenr += btrfs_file_extent_offset(leaf, item);
2827                 em->block_start = bytenr;
2828                 em->start = extent_start;
2829                 em->len = extent_end - extent_start;
2830                 goto insert;
2831         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
2832                 u64 page_start;
2833                 unsigned long ptr;
2834                 char *map;
2835                 size_t size;
2836                 size_t extent_offset;
2837                 size_t copy_size;
2838
2839                 size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf,
2840                                                     path->slots[0]));
2841                 extent_end = (extent_start + size + root->sectorsize - 1) &
2842                         ~((u64)root->sectorsize - 1);
2843                 if (start < extent_start || start >= extent_end) {
2844                         em->start = start;
2845                         if (start < extent_start) {
2846                                 if (start + len <= extent_start)
2847                                         goto not_found;
2848                                 em->len = extent_end - extent_start;
2849                         } else {
2850                                 em->len = len;
2851                         }
2852                         goto not_found_em;
2853                 }
2854                 em->block_start = EXTENT_MAP_INLINE;
2855
2856                 if (!page) {
2857                         em->start = extent_start;
2858                         em->len = size;
2859                         goto out;
2860                 }
2861
2862                 page_start = page_offset(page) + pg_offset;
2863                 extent_offset = page_start - extent_start;
2864                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
2865                                 size - extent_offset);
2866                 em->start = extent_start + extent_offset;
2867                 em->len = (copy_size + root->sectorsize - 1) &
2868                         ~((u64)root->sectorsize - 1);
2869                 map = kmap(page);
2870                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
2871                 if (create == 0 && !PageUptodate(page)) {
2872                         read_extent_buffer(leaf, map + pg_offset, ptr,
2873                                            copy_size);
2874                         flush_dcache_page(page);
2875                 } else if (create && PageUptodate(page)) {
2876                         if (!trans) {
2877                                 kunmap(page);
2878                                 free_extent_map(em);
2879                                 em = NULL;
2880                                 btrfs_release_path(root, path);
2881                                 trans = btrfs_join_transaction(root, 1);
2882                                 goto again;
2883                         }
2884                         write_extent_buffer(leaf, map + pg_offset, ptr,
2885                                             copy_size);
2886                         btrfs_mark_buffer_dirty(leaf);
2887                 }
2888                 kunmap(page);
2889                 set_extent_uptodate(io_tree, em->start,
2890                                     extent_map_end(em) - 1, GFP_NOFS);
2891                 goto insert;
2892         } else {
2893                 printk("unkknown found_type %d\n", found_type);
2894                 WARN_ON(1);
2895         }
2896 not_found:
2897         em->start = start;
2898         em->len = len;
2899 not_found_em:
2900         em->block_start = EXTENT_MAP_HOLE;
2901 insert:
2902         btrfs_release_path(root, path);
2903         if (em->start > start || extent_map_end(em) <= start) {
2904                 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
2905                 err = -EIO;
2906                 goto out;
2907         }
2908
2909         err = 0;
2910         spin_lock(&em_tree->lock);
2911         ret = add_extent_mapping(em_tree, em);
2912         /* it is possible that someone inserted the extent into the tree
2913          * while we had the lock dropped.  It is also possible that
2914          * an overlapping map exists in the tree
2915          */
2916         if (ret == -EEXIST) {
2917                 struct extent_map *existing;
2918
2919                 ret = 0;
2920
2921                 existing = lookup_extent_mapping(em_tree, start, len);
2922                 if (existing && (existing->start > start ||
2923                     existing->start + existing->len <= start)) {
2924                         free_extent_map(existing);
2925                         existing = NULL;
2926                 }
2927                 if (!existing) {
2928                         existing = lookup_extent_mapping(em_tree, em->start,
2929                                                          em->len);
2930                         if (existing) {
2931                                 err = merge_extent_mapping(em_tree, existing,
2932                                                            em, start,
2933                                                            root->sectorsize);
2934                                 free_extent_map(existing);
2935                                 if (err) {
2936                                         free_extent_map(em);
2937                                         em = NULL;
2938                                 }
2939                         } else {
2940                                 err = -EIO;
2941                                 printk("failing to insert %Lu %Lu\n",
2942                                        start, len);
2943                                 free_extent_map(em);
2944                                 em = NULL;
2945                         }
2946                 } else {
2947                         free_extent_map(em);
2948                         em = existing;
2949                         err = 0;
2950                 }
2951         }
2952         spin_unlock(&em_tree->lock);
2953 out:
2954         if (path)
2955                 btrfs_free_path(path);
2956         if (trans) {
2957                 ret = btrfs_end_transaction(trans, root);
2958                 if (!err) {
2959                         err = ret;
2960                 }
2961         }
2962         if (err) {
2963                 free_extent_map(em);
2964                 WARN_ON(1);
2965                 return ERR_PTR(err);
2966         }
2967         return em;
2968 }
2969
2970 #if 0 /* waiting for O_DIRECT reads */
2971 static int btrfs_get_block(struct inode *inode, sector_t iblock,
2972                         struct buffer_head *bh_result, int create)
2973 {
2974         struct extent_map *em;
2975         u64 start = (u64)iblock << inode->i_blkbits;
2976         struct btrfs_multi_bio *multi = NULL;
2977         struct btrfs_root *root = BTRFS_I(inode)->root;
2978         u64 len;
2979         u64 logical;
2980         u64 map_length;
2981         int ret = 0;
2982
2983         em = btrfs_get_extent(inode, NULL, 0, start, bh_result->b_size, 0);
2984
2985         if (!em || IS_ERR(em))
2986                 goto out;
2987
2988         if (em->start > start || em->start + em->len <= start) {
2989             goto out;
2990         }
2991
2992         if (em->block_start == EXTENT_MAP_INLINE) {
2993                 ret = -EINVAL;
2994                 goto out;
2995         }
2996
2997         len = em->start + em->len - start;
2998         len = min_t(u64, len, INT_LIMIT(typeof(bh_result->b_size)));
2999
3000         if (em->block_start == EXTENT_MAP_HOLE ||
3001             em->block_start == EXTENT_MAP_DELALLOC) {
3002                 bh_result->b_size = len;
3003                 goto out;
3004         }
3005
3006         logical = start - em->start;
3007         logical = em->block_start + logical;
3008
3009         map_length = len;
3010         ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
3011                               logical, &map_length, &multi, 0);
3012         BUG_ON(ret);
3013         bh_result->b_blocknr = multi->stripes[0].physical >> inode->i_blkbits;
3014         bh_result->b_size = min(map_length, len);
3015
3016         bh_result->b_bdev = multi->stripes[0].dev->bdev;
3017         set_buffer_mapped(bh_result);
3018         kfree(multi);
3019 out:
3020         free_extent_map(em);
3021         return ret;
3022 }
3023 #endif
3024
3025 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
3026                         const struct iovec *iov, loff_t offset,
3027                         unsigned long nr_segs)
3028 {
3029         return -EINVAL;
3030 #if 0
3031         struct file *file = iocb->ki_filp;
3032         struct inode *inode = file->f_mapping->host;
3033
3034         if (rw == WRITE)
3035                 return -EINVAL;
3036
3037         return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3038                                   offset, nr_segs, btrfs_get_block, NULL);
3039 #endif
3040 }
3041
3042 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
3043 {
3044         return extent_bmap(mapping, iblock, btrfs_get_extent);
3045 }
3046
3047 int btrfs_readpage(struct file *file, struct page *page)
3048 {
3049         struct extent_io_tree *tree;
3050         tree = &BTRFS_I(page->mapping->host)->io_tree;
3051         return extent_read_full_page(tree, page, btrfs_get_extent);
3052 }
3053
3054 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
3055 {
3056         struct extent_io_tree *tree;
3057
3058
3059         if (current->flags & PF_MEMALLOC) {
3060                 redirty_page_for_writepage(wbc, page);
3061                 unlock_page(page);
3062                 return 0;
3063         }
3064         tree = &BTRFS_I(page->mapping->host)->io_tree;
3065         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
3066 }
3067
3068 int btrfs_writepages(struct address_space *mapping,
3069                      struct writeback_control *wbc)
3070 {
3071         struct extent_io_tree *tree;
3072         tree = &BTRFS_I(mapping->host)->io_tree;
3073         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
3074 }
3075
3076 static int
3077 btrfs_readpages(struct file *file, struct address_space *mapping,
3078                 struct list_head *pages, unsigned nr_pages)
3079 {
3080         struct extent_io_tree *tree;
3081         tree = &BTRFS_I(mapping->host)->io_tree;
3082         return extent_readpages(tree, mapping, pages, nr_pages,
3083                                 btrfs_get_extent);
3084 }
3085 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3086 {
3087         struct extent_io_tree *tree;
3088         struct extent_map_tree *map;
3089         int ret;
3090
3091         tree = &BTRFS_I(page->mapping->host)->io_tree;
3092         map = &BTRFS_I(page->mapping->host)->extent_tree;
3093         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
3094         if (ret == 1) {
3095                 ClearPagePrivate(page);
3096                 set_page_private(page, 0);
3097                 page_cache_release(page);
3098         }
3099         return ret;
3100 }
3101
3102 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3103 {
3104         return __btrfs_releasepage(page, gfp_flags);
3105 }
3106
3107 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
3108 {
3109         struct extent_io_tree *tree;
3110         struct btrfs_ordered_extent *ordered;
3111         u64 page_start = page_offset(page);
3112         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3113
3114         wait_on_page_writeback(page);
3115         tree = &BTRFS_I(page->mapping->host)->io_tree;
3116         if (offset) {
3117                 btrfs_releasepage(page, GFP_NOFS);
3118                 return;
3119         }
3120
3121         lock_extent(tree, page_start, page_end, GFP_NOFS);
3122         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3123                                            page_offset(page));
3124         if (ordered) {
3125                 /*
3126                  * IO on this page will never be started, so we need
3127                  * to account for any ordered extents now
3128                  */
3129                 clear_extent_bit(tree, page_start, page_end,
3130                                  EXTENT_DIRTY | EXTENT_DELALLOC |
3131                                  EXTENT_LOCKED, 1, 0, GFP_NOFS);
3132                 btrfs_finish_ordered_io(page->mapping->host,
3133                                         page_start, page_end);
3134                 btrfs_put_ordered_extent(ordered);
3135                 lock_extent(tree, page_start, page_end, GFP_NOFS);
3136         }
3137         clear_extent_bit(tree, page_start, page_end,
3138                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3139                  EXTENT_ORDERED,
3140                  1, 1, GFP_NOFS);
3141         __btrfs_releasepage(page, GFP_NOFS);
3142
3143         ClearPageChecked(page);
3144         if (PagePrivate(page)) {
3145                 ClearPagePrivate(page);
3146                 set_page_private(page, 0);
3147                 page_cache_release(page);
3148         }
3149 }
3150
3151 /*
3152  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3153  * called from a page fault handler when a page is first dirtied. Hence we must
3154  * be careful to check for EOF conditions here. We set the page up correctly
3155  * for a written page which means we get ENOSPC checking when writing into
3156  * holes and correct delalloc and unwritten extent mapping on filesystems that
3157  * support these features.
3158  *
3159  * We are not allowed to take the i_mutex here so we have to play games to
3160  * protect against truncate races as the page could now be beyond EOF.  Because
3161  * vmtruncate() writes the inode size before removing pages, once we have the
3162  * page lock we can determine safely if the page is beyond EOF. If it is not
3163  * beyond EOF, then the page is guaranteed safe against truncation until we
3164  * unlock the page.
3165  */
3166 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3167 {
3168         struct inode *inode = fdentry(vma->vm_file)->d_inode;
3169         struct btrfs_root *root = BTRFS_I(inode)->root;
3170         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3171         struct btrfs_ordered_extent *ordered;
3172         char *kaddr;
3173         unsigned long zero_start;
3174         loff_t size;
3175         int ret;
3176         u64 page_start;
3177         u64 page_end;
3178
3179         ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3180         if (ret)
3181                 goto out;
3182
3183         ret = -EINVAL;
3184 again:
3185         lock_page(page);
3186         size = i_size_read(inode);
3187         page_start = page_offset(page);
3188         page_end = page_start + PAGE_CACHE_SIZE - 1;
3189
3190         if ((page->mapping != inode->i_mapping) ||
3191             (page_start >= size)) {
3192                 /* page got truncated out from underneath us */
3193                 goto out_unlock;
3194         }
3195         wait_on_page_writeback(page);
3196
3197         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3198         set_page_extent_mapped(page);
3199
3200         /*
3201          * we can't set the delalloc bits if there are pending ordered
3202          * extents.  Drop our locks and wait for them to finish
3203          */
3204         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3205         if (ordered) {
3206                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3207                 unlock_page(page);
3208                 btrfs_start_ordered_extent(inode, ordered, 1);
3209                 btrfs_put_ordered_extent(ordered);
3210                 goto again;
3211         }
3212
3213         btrfs_set_extent_delalloc(inode, page_start, page_end);
3214         ret = 0;
3215
3216         /* page is wholly or partially inside EOF */
3217         if (page_start + PAGE_CACHE_SIZE > size)
3218                 zero_start = size & ~PAGE_CACHE_MASK;
3219         else
3220                 zero_start = PAGE_CACHE_SIZE;
3221
3222         if (zero_start != PAGE_CACHE_SIZE) {
3223                 kaddr = kmap(page);
3224                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3225                 flush_dcache_page(page);
3226                 kunmap(page);
3227         }
3228         ClearPageChecked(page);
3229         set_page_dirty(page);
3230         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3231
3232 out_unlock:
3233         unlock_page(page);
3234 out:
3235         return ret;
3236 }
3237
3238 static void btrfs_truncate(struct inode *inode)
3239 {
3240         struct btrfs_root *root = BTRFS_I(inode)->root;
3241         int ret;
3242         struct btrfs_trans_handle *trans;
3243         unsigned long nr;
3244         u64 mask = root->sectorsize - 1;
3245
3246         if (!S_ISREG(inode->i_mode))
3247                 return;
3248         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3249                 return;
3250
3251         btrfs_truncate_page(inode->i_mapping, inode->i_size);
3252         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3253
3254         trans = btrfs_start_transaction(root, 1);
3255         btrfs_set_trans_block_group(trans, inode);
3256         btrfs_i_size_write(inode, inode->i_size);
3257
3258         ret = btrfs_orphan_add(trans, inode);
3259         if (ret)
3260                 goto out;
3261         /* FIXME, add redo link to tree so we don't leak on crash */
3262         ret = btrfs_truncate_in_trans(trans, root, inode,
3263                                       BTRFS_EXTENT_DATA_KEY);
3264         btrfs_update_inode(trans, root, inode);
3265
3266         ret = btrfs_orphan_del(trans, inode);
3267         BUG_ON(ret);
3268
3269 out:
3270         nr = trans->blocks_used;
3271         ret = btrfs_end_transaction_throttle(trans, root);
3272         BUG_ON(ret);
3273         btrfs_btree_balance_dirty(root, nr);
3274 }
3275
3276 /*
3277  * Invalidate a single dcache entry at the root of the filesystem.
3278  * Needed after creation of snapshot or subvolume.
3279  */
3280 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3281                                   int namelen)
3282 {
3283         struct dentry *alias, *entry;
3284         struct qstr qstr;
3285
3286         alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3287         if (alias) {
3288                 qstr.name = name;
3289                 qstr.len = namelen;
3290                 /* change me if btrfs ever gets a d_hash operation */
3291                 qstr.hash = full_name_hash(qstr.name, qstr.len);
3292                 entry = d_lookup(alias, &qstr);
3293                 dput(alias);
3294                 if (entry) {
3295                         d_invalidate(entry);
3296                         dput(entry);
3297                 }
3298         }
3299 }
3300
3301 int btrfs_create_subvol_root(struct btrfs_root *new_root,
3302                 struct btrfs_trans_handle *trans, u64 new_dirid,
3303                 struct btrfs_block_group_cache *block_group)
3304 {
3305         struct inode *inode;
3306         u64 index = 0;
3307
3308         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3309                                 new_dirid, block_group, S_IFDIR | 0700, &index);
3310         if (IS_ERR(inode))
3311                 return PTR_ERR(inode);
3312         inode->i_op = &btrfs_dir_inode_operations;
3313         inode->i_fop = &btrfs_dir_file_operations;
3314         new_root->inode = inode;
3315
3316         inode->i_nlink = 1;
3317         btrfs_i_size_write(inode, 0);
3318
3319         return btrfs_update_inode(trans, new_root, inode);
3320 }
3321
3322 unsigned long btrfs_force_ra(struct address_space *mapping,
3323                               struct file_ra_state *ra, struct file *file,
3324                               pgoff_t offset, pgoff_t last_index)
3325 {
3326         pgoff_t req_size = last_index - offset + 1;
3327
3328 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3329         offset = page_cache_readahead(mapping, ra, file, offset, req_size);
3330         return offset;
3331 #else
3332         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3333         return offset + req_size;
3334 #endif
3335 }
3336
3337 struct inode *btrfs_alloc_inode(struct super_block *sb)
3338 {
3339         struct btrfs_inode *ei;
3340
3341         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3342         if (!ei)
3343                 return NULL;
3344         ei->last_trans = 0;
3345         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3346         ei->i_acl = BTRFS_ACL_NOT_CACHED;
3347         ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3348         INIT_LIST_HEAD(&ei->i_orphan);
3349         return &ei->vfs_inode;
3350 }
3351
3352 void btrfs_destroy_inode(struct inode *inode)
3353 {
3354         struct btrfs_ordered_extent *ordered;
3355         WARN_ON(!list_empty(&inode->i_dentry));
3356         WARN_ON(inode->i_data.nrpages);
3357
3358         if (BTRFS_I(inode)->i_acl &&
3359             BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3360                 posix_acl_release(BTRFS_I(inode)->i_acl);
3361         if (BTRFS_I(inode)->i_default_acl &&
3362             BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3363                 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3364
3365         spin_lock(&BTRFS_I(inode)->root->list_lock);
3366         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3367                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3368                        " list\n", inode->i_ino);
3369                 dump_stack();
3370         }
3371         spin_unlock(&BTRFS_I(inode)->root->list_lock);
3372
3373         while(1) {
3374                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3375                 if (!ordered)
3376                         break;
3377                 else {
3378                         printk("found ordered extent %Lu %Lu\n",
3379                                ordered->file_offset, ordered->len);
3380                         btrfs_remove_ordered_extent(inode, ordered);
3381                         btrfs_put_ordered_extent(ordered);
3382                         btrfs_put_ordered_extent(ordered);
3383                 }
3384         }
3385         btrfs_drop_extent_cache(inode, 0, (u64)-1);
3386         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
3387 }
3388
3389 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3390 static void init_once(void *foo)
3391 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3392 static void init_once(struct kmem_cache * cachep, void *foo)
3393 #else
3394 static void init_once(void * foo, struct kmem_cache * cachep,
3395                       unsigned long flags)
3396 #endif
3397 {
3398         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
3399
3400         inode_init_once(&ei->vfs_inode);
3401 }
3402
3403 void btrfs_destroy_cachep(void)
3404 {
3405         if (btrfs_inode_cachep)
3406                 kmem_cache_destroy(btrfs_inode_cachep);
3407         if (btrfs_trans_handle_cachep)
3408                 kmem_cache_destroy(btrfs_trans_handle_cachep);
3409         if (btrfs_transaction_cachep)
3410                 kmem_cache_destroy(btrfs_transaction_cachep);
3411         if (btrfs_bit_radix_cachep)
3412                 kmem_cache_destroy(btrfs_bit_radix_cachep);
3413         if (btrfs_path_cachep)
3414                 kmem_cache_destroy(btrfs_path_cachep);
3415 }
3416
3417 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
3418                                        unsigned long extra_flags,
3419 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3420                                        void (*ctor)(void *)
3421 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3422                                        void (*ctor)(struct kmem_cache *, void *)
3423 #else
3424                                        void (*ctor)(void *, struct kmem_cache *,
3425                                                     unsigned long)
3426 #endif
3427                                      )
3428 {
3429         return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
3430                                  SLAB_MEM_SPREAD | extra_flags), ctor
3431 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3432                                  ,NULL
3433 #endif
3434                                 );
3435 }
3436
3437 int btrfs_init_cachep(void)
3438 {
3439         btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
3440                                           sizeof(struct btrfs_inode),
3441                                           0, init_once);
3442         if (!btrfs_inode_cachep)
3443                 goto fail;
3444         btrfs_trans_handle_cachep =
3445                         btrfs_cache_create("btrfs_trans_handle_cache",
3446                                            sizeof(struct btrfs_trans_handle),
3447                                            0, NULL);
3448         if (!btrfs_trans_handle_cachep)
3449                 goto fail;
3450         btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
3451                                              sizeof(struct btrfs_transaction),
3452                                              0, NULL);
3453         if (!btrfs_transaction_cachep)
3454                 goto fail;
3455         btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
3456                                          sizeof(struct btrfs_path),
3457                                          0, NULL);
3458         if (!btrfs_path_cachep)
3459                 goto fail;
3460         btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
3461                                               SLAB_DESTROY_BY_RCU, NULL);
3462         if (!btrfs_bit_radix_cachep)
3463                 goto fail;
3464         return 0;
3465 fail:
3466         btrfs_destroy_cachep();
3467         return -ENOMEM;
3468 }
3469
3470 static int btrfs_getattr(struct vfsmount *mnt,
3471                          struct dentry *dentry, struct kstat *stat)
3472 {
3473         struct inode *inode = dentry->d_inode;
3474         generic_fillattr(inode, stat);
3475         stat->blksize = PAGE_CACHE_SIZE;
3476         stat->blocks = inode->i_blocks + (BTRFS_I(inode)->delalloc_bytes >> 9);
3477         return 0;
3478 }
3479
3480 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
3481                            struct inode * new_dir,struct dentry *new_dentry)
3482 {
3483         struct btrfs_trans_handle *trans;
3484         struct btrfs_root *root = BTRFS_I(old_dir)->root;
3485         struct inode *new_inode = new_dentry->d_inode;
3486         struct inode *old_inode = old_dentry->d_inode;
3487         struct timespec ctime = CURRENT_TIME;
3488         u64 index = 0;
3489         int ret;
3490
3491         if (S_ISDIR(old_inode->i_mode) && new_inode &&
3492             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
3493                 return -ENOTEMPTY;
3494         }
3495
3496         ret = btrfs_check_free_space(root, 1, 0);
3497         if (ret)
3498                 goto out_unlock;
3499
3500         trans = btrfs_start_transaction(root, 1);
3501
3502         btrfs_set_trans_block_group(trans, new_dir);
3503
3504         old_dentry->d_inode->i_nlink++;
3505         old_dir->i_ctime = old_dir->i_mtime = ctime;
3506         new_dir->i_ctime = new_dir->i_mtime = ctime;
3507         old_inode->i_ctime = ctime;
3508
3509         ret = btrfs_unlink_trans(trans, root, old_dir, old_dentry);
3510         if (ret)
3511                 goto out_fail;
3512
3513         if (new_inode) {
3514                 new_inode->i_ctime = CURRENT_TIME;
3515                 ret = btrfs_unlink_trans(trans, root, new_dir, new_dentry);
3516                 if (ret)
3517                         goto out_fail;
3518                 if (new_inode->i_nlink == 0) {
3519                         ret = btrfs_orphan_add(trans, new_inode);
3520                         if (ret)
3521                                 goto out_fail;
3522                 }
3523         }
3524         ret = btrfs_set_inode_index(new_dir, old_inode, &index);
3525         if (ret)
3526                 goto out_fail;
3527
3528         ret = btrfs_add_link(trans, new_dentry, old_inode, 1, index);
3529         if (ret)
3530                 goto out_fail;
3531
3532 out_fail:
3533         btrfs_end_transaction_throttle(trans, root);
3534 out_unlock:
3535         return ret;
3536 }
3537
3538 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
3539 {
3540         struct list_head *head = &root->fs_info->delalloc_inodes;
3541         struct btrfs_inode *binode;
3542         unsigned long flags;
3543
3544         spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3545         while(!list_empty(head)) {
3546                 binode = list_entry(head->next, struct btrfs_inode,
3547                                     delalloc_inodes);
3548                 atomic_inc(&binode->vfs_inode.i_count);
3549                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3550                 filemap_write_and_wait(binode->vfs_inode.i_mapping);
3551                 iput(&binode->vfs_inode);
3552                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3553         }
3554         spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3555         return 0;
3556 }
3557
3558 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
3559                          const char *symname)
3560 {
3561         struct btrfs_trans_handle *trans;
3562         struct btrfs_root *root = BTRFS_I(dir)->root;
3563         struct btrfs_path *path;
3564         struct btrfs_key key;
3565         struct inode *inode = NULL;
3566         int err;
3567         int drop_inode = 0;
3568         u64 objectid;
3569         u64 index = 0 ;
3570         int name_len;
3571         int datasize;
3572         unsigned long ptr;
3573         struct btrfs_file_extent_item *ei;
3574         struct extent_buffer *leaf;
3575         unsigned long nr = 0;
3576
3577         name_len = strlen(symname) + 1;
3578         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
3579                 return -ENAMETOOLONG;
3580
3581         err = btrfs_check_free_space(root, 1, 0);
3582         if (err)
3583                 goto out_fail;
3584
3585         trans = btrfs_start_transaction(root, 1);
3586         btrfs_set_trans_block_group(trans, dir);
3587
3588         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3589         if (err) {
3590                 err = -ENOSPC;
3591                 goto out_unlock;
3592         }
3593
3594         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3595                                 dentry->d_name.len,
3596                                 dentry->d_parent->d_inode->i_ino, objectid,
3597                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
3598                                 &index);
3599         err = PTR_ERR(inode);
3600         if (IS_ERR(inode))
3601                 goto out_unlock;
3602
3603         err = btrfs_init_acl(inode, dir);
3604         if (err) {
3605                 drop_inode = 1;
3606                 goto out_unlock;
3607         }
3608
3609         btrfs_set_trans_block_group(trans, inode);
3610         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3611         if (err)
3612                 drop_inode = 1;
3613         else {
3614                 inode->i_mapping->a_ops = &btrfs_aops;
3615                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3616                 inode->i_fop = &btrfs_file_operations;
3617                 inode->i_op = &btrfs_file_inode_operations;
3618                 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3619                 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3620                                      inode->i_mapping, GFP_NOFS);
3621                 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3622                                      inode->i_mapping, GFP_NOFS);
3623                 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3624                 mutex_init(&BTRFS_I(inode)->csum_mutex);
3625                 mutex_init(&BTRFS_I(inode)->extent_mutex);
3626                 BTRFS_I(inode)->delalloc_bytes = 0;
3627                 BTRFS_I(inode)->disk_i_size = 0;
3628                 inode->i_mapping->writeback_index = 0;
3629                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3630                 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3631         }
3632         dir->i_sb->s_dirt = 1;
3633         btrfs_update_inode_block_group(trans, inode);
3634         btrfs_update_inode_block_group(trans, dir);
3635         if (drop_inode)
3636                 goto out_unlock;
3637
3638         path = btrfs_alloc_path();
3639         BUG_ON(!path);
3640         key.objectid = inode->i_ino;
3641         key.offset = 0;
3642         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
3643         datasize = btrfs_file_extent_calc_inline_size(name_len);
3644         err = btrfs_insert_empty_item(trans, root, path, &key,
3645                                       datasize);
3646         if (err) {
3647                 drop_inode = 1;
3648                 goto out_unlock;
3649         }
3650         leaf = path->nodes[0];
3651         ei = btrfs_item_ptr(leaf, path->slots[0],
3652                             struct btrfs_file_extent_item);
3653         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
3654         btrfs_set_file_extent_type(leaf, ei,
3655                                    BTRFS_FILE_EXTENT_INLINE);
3656         ptr = btrfs_file_extent_inline_start(ei);
3657         write_extent_buffer(leaf, symname, ptr, name_len);
3658         btrfs_mark_buffer_dirty(leaf);
3659         btrfs_free_path(path);
3660
3661         inode->i_op = &btrfs_symlink_inode_operations;
3662         inode->i_mapping->a_ops = &btrfs_symlink_aops;
3663         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3664         btrfs_i_size_write(inode, name_len - 1);
3665         err = btrfs_update_inode(trans, root, inode);
3666         if (err)
3667                 drop_inode = 1;
3668
3669 out_unlock:
3670         nr = trans->blocks_used;
3671         btrfs_end_transaction_throttle(trans, root);
3672 out_fail:
3673         if (drop_inode) {
3674                 inode_dec_link_count(inode);
3675                 iput(inode);
3676         }
3677         btrfs_btree_balance_dirty(root, nr);
3678         return err;
3679 }
3680
3681 static int btrfs_set_page_dirty(struct page *page)
3682 {
3683         return __set_page_dirty_nobuffers(page);
3684 }
3685
3686 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3687 static int btrfs_permission(struct inode *inode, int mask)
3688 #else
3689 static int btrfs_permission(struct inode *inode, int mask,
3690                             struct nameidata *nd)
3691 #endif
3692 {
3693         if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
3694                 return -EACCES;
3695         return generic_permission(inode, mask, btrfs_check_acl);
3696 }
3697
3698 static struct inode_operations btrfs_dir_inode_operations = {
3699         .lookup         = btrfs_lookup,
3700         .create         = btrfs_create,
3701         .unlink         = btrfs_unlink,
3702         .link           = btrfs_link,
3703         .mkdir          = btrfs_mkdir,
3704         .rmdir          = btrfs_rmdir,
3705         .rename         = btrfs_rename,
3706         .symlink        = btrfs_symlink,
3707         .setattr        = btrfs_setattr,
3708         .mknod          = btrfs_mknod,
3709         .setxattr       = generic_setxattr,
3710         .getxattr       = generic_getxattr,
3711         .listxattr      = btrfs_listxattr,
3712         .removexattr    = generic_removexattr,
3713         .permission     = btrfs_permission,
3714 };
3715 static struct inode_operations btrfs_dir_ro_inode_operations = {
3716         .lookup         = btrfs_lookup,
3717         .permission     = btrfs_permission,
3718 };
3719 static struct file_operations btrfs_dir_file_operations = {
3720         .llseek         = generic_file_llseek,
3721         .read           = generic_read_dir,
3722 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
3723         .readdir        = btrfs_nfshack_readdir,
3724 #else /* NFSd readdir/lookup deadlock is fixed */
3725         .readdir        = btrfs_real_readdir,
3726 #endif
3727         .unlocked_ioctl = btrfs_ioctl,
3728 #ifdef CONFIG_COMPAT
3729         .compat_ioctl   = btrfs_ioctl,
3730 #endif
3731         .release        = btrfs_release_file,
3732 };
3733
3734 static struct extent_io_ops btrfs_extent_io_ops = {
3735         .fill_delalloc = run_delalloc_range,
3736         .submit_bio_hook = btrfs_submit_bio_hook,
3737         .merge_bio_hook = btrfs_merge_bio_hook,
3738         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
3739         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
3740         .writepage_start_hook = btrfs_writepage_start_hook,
3741         .readpage_io_failed_hook = btrfs_io_failed_hook,
3742         .set_bit_hook = btrfs_set_bit_hook,
3743         .clear_bit_hook = btrfs_clear_bit_hook,
3744 };
3745
3746 static struct address_space_operations btrfs_aops = {
3747         .readpage       = btrfs_readpage,
3748         .writepage      = btrfs_writepage,
3749         .writepages     = btrfs_writepages,
3750         .readpages      = btrfs_readpages,
3751         .sync_page      = block_sync_page,
3752         .bmap           = btrfs_bmap,
3753         .direct_IO      = btrfs_direct_IO,
3754         .invalidatepage = btrfs_invalidatepage,
3755         .releasepage    = btrfs_releasepage,
3756         .set_page_dirty = btrfs_set_page_dirty,
3757 };
3758
3759 static struct address_space_operations btrfs_symlink_aops = {
3760         .readpage       = btrfs_readpage,
3761         .writepage      = btrfs_writepage,
3762         .invalidatepage = btrfs_invalidatepage,
3763         .releasepage    = btrfs_releasepage,
3764 };
3765
3766 static struct inode_operations btrfs_file_inode_operations = {
3767         .truncate       = btrfs_truncate,
3768         .getattr        = btrfs_getattr,
3769         .setattr        = btrfs_setattr,
3770         .setxattr       = generic_setxattr,
3771         .getxattr       = generic_getxattr,
3772         .listxattr      = btrfs_listxattr,
3773         .removexattr    = generic_removexattr,
3774         .permission     = btrfs_permission,
3775 };
3776 static struct inode_operations btrfs_special_inode_operations = {
3777         .getattr        = btrfs_getattr,
3778         .setattr        = btrfs_setattr,
3779         .permission     = btrfs_permission,
3780         .setxattr       = generic_setxattr,
3781         .getxattr       = generic_getxattr,
3782         .listxattr      = btrfs_listxattr,
3783         .removexattr    = generic_removexattr,
3784 };
3785 static struct inode_operations btrfs_symlink_inode_operations = {
3786         .readlink       = generic_readlink,
3787         .follow_link    = page_follow_link_light,
3788         .put_link       = page_put_link,
3789         .permission     = btrfs_permission,
3790 };