Btrfs: small fixes for find_lock_delalloc_range.
[safe/jmp/linux-2.6] / fs / btrfs / extent_map.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include "extent_map.h"
14
15 /* temporary define until extent_map moves out of btrfs */
16 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
17                                        unsigned long extra_flags,
18                                        void (*ctor)(void *, struct kmem_cache *,
19                                                     unsigned long));
20
21 static struct kmem_cache *extent_map_cache;
22 static struct kmem_cache *extent_state_cache;
23 static struct kmem_cache *extent_buffer_cache;
24
25 static LIST_HEAD(buffers);
26 static LIST_HEAD(states);
27
28 static spinlock_t state_lock = SPIN_LOCK_UNLOCKED;
29 #define BUFFER_LRU_MAX 64
30
31 struct tree_entry {
32         u64 start;
33         u64 end;
34         int in_tree;
35         struct rb_node rb_node;
36 };
37
38 void __init extent_map_init(void)
39 {
40         extent_map_cache = btrfs_cache_create("extent_map",
41                                             sizeof(struct extent_map), 0,
42                                             NULL);
43         extent_state_cache = btrfs_cache_create("extent_state",
44                                             sizeof(struct extent_state), 0,
45                                             NULL);
46         extent_buffer_cache = btrfs_cache_create("extent_buffers",
47                                             sizeof(struct extent_buffer), 0,
48                                             NULL);
49 }
50
51 void __exit extent_map_exit(void)
52 {
53         struct extent_state *state;
54
55         while (!list_empty(&states)) {
56                 state = list_entry(states.next, struct extent_state, list);
57                 printk("state leak: start %Lu end %Lu state %lu in tree %d refs %d\n", state->start, state->end, state->state, state->in_tree, atomic_read(&state->refs));
58                 list_del(&state->list);
59                 kmem_cache_free(extent_state_cache, state);
60
61         }
62
63         if (extent_map_cache)
64                 kmem_cache_destroy(extent_map_cache);
65         if (extent_state_cache)
66                 kmem_cache_destroy(extent_state_cache);
67         if (extent_buffer_cache)
68                 kmem_cache_destroy(extent_buffer_cache);
69 }
70
71 void extent_map_tree_init(struct extent_map_tree *tree,
72                           struct address_space *mapping, gfp_t mask)
73 {
74         tree->map.rb_node = NULL;
75         tree->state.rb_node = NULL;
76         tree->ops = NULL;
77         rwlock_init(&tree->lock);
78         spin_lock_init(&tree->lru_lock);
79         tree->mapping = mapping;
80         INIT_LIST_HEAD(&tree->buffer_lru);
81         tree->lru_size = 0;
82 }
83 EXPORT_SYMBOL(extent_map_tree_init);
84
85 void extent_map_tree_empty_lru(struct extent_map_tree *tree)
86 {
87         struct extent_buffer *eb;
88         while(!list_empty(&tree->buffer_lru)) {
89                 eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
90                                 lru);
91                 list_del(&eb->lru);
92                 free_extent_buffer(eb);
93         }
94 }
95 EXPORT_SYMBOL(extent_map_tree_empty_lru);
96
97 struct extent_map *alloc_extent_map(gfp_t mask)
98 {
99         struct extent_map *em;
100         em = kmem_cache_alloc(extent_map_cache, mask);
101         if (!em || IS_ERR(em))
102                 return em;
103         em->in_tree = 0;
104         atomic_set(&em->refs, 1);
105         return em;
106 }
107 EXPORT_SYMBOL(alloc_extent_map);
108
109 void free_extent_map(struct extent_map *em)
110 {
111         if (!em)
112                 return;
113         if (atomic_dec_and_test(&em->refs)) {
114                 WARN_ON(em->in_tree);
115                 kmem_cache_free(extent_map_cache, em);
116         }
117 }
118 EXPORT_SYMBOL(free_extent_map);
119
120
121 struct extent_state *alloc_extent_state(gfp_t mask)
122 {
123         struct extent_state *state;
124         unsigned long flags;
125
126         state = kmem_cache_alloc(extent_state_cache, mask);
127         if (!state || IS_ERR(state))
128                 return state;
129         state->state = 0;
130         state->in_tree = 0;
131         state->private = 0;
132
133         spin_lock_irqsave(&state_lock, flags);
134         list_add(&state->list, &states);
135         spin_unlock_irqrestore(&state_lock, flags);
136
137         atomic_set(&state->refs, 1);
138         init_waitqueue_head(&state->wq);
139         return state;
140 }
141 EXPORT_SYMBOL(alloc_extent_state);
142
143 void free_extent_state(struct extent_state *state)
144 {
145         unsigned long flags;
146         if (!state)
147                 return;
148         if (atomic_dec_and_test(&state->refs)) {
149                 WARN_ON(state->in_tree);
150                 spin_lock_irqsave(&state_lock, flags);
151                 list_del(&state->list);
152                 spin_unlock_irqrestore(&state_lock, flags);
153                 kmem_cache_free(extent_state_cache, state);
154         }
155 }
156 EXPORT_SYMBOL(free_extent_state);
157
158 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
159                                    struct rb_node *node)
160 {
161         struct rb_node ** p = &root->rb_node;
162         struct rb_node * parent = NULL;
163         struct tree_entry *entry;
164
165         while(*p) {
166                 parent = *p;
167                 entry = rb_entry(parent, struct tree_entry, rb_node);
168
169                 if (offset < entry->start)
170                         p = &(*p)->rb_left;
171                 else if (offset > entry->end)
172                         p = &(*p)->rb_right;
173                 else
174                         return parent;
175         }
176
177         entry = rb_entry(node, struct tree_entry, rb_node);
178         entry->in_tree = 1;
179         rb_link_node(node, parent, p);
180         rb_insert_color(node, root);
181         return NULL;
182 }
183
184 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
185                                    struct rb_node **prev_ret)
186 {
187         struct rb_node * n = root->rb_node;
188         struct rb_node *prev = NULL;
189         struct tree_entry *entry;
190         struct tree_entry *prev_entry = NULL;
191
192         while(n) {
193                 entry = rb_entry(n, struct tree_entry, rb_node);
194                 prev = n;
195                 prev_entry = entry;
196
197                 if (offset < entry->start)
198                         n = n->rb_left;
199                 else if (offset > entry->end)
200                         n = n->rb_right;
201                 else
202                         return n;
203         }
204         if (!prev_ret)
205                 return NULL;
206         while(prev && offset > prev_entry->end) {
207                 prev = rb_next(prev);
208                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
209         }
210         *prev_ret = prev;
211         return NULL;
212 }
213
214 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
215 {
216         struct rb_node *prev;
217         struct rb_node *ret;
218         ret = __tree_search(root, offset, &prev);
219         if (!ret)
220                 return prev;
221         return ret;
222 }
223
224 static int tree_delete(struct rb_root *root, u64 offset)
225 {
226         struct rb_node *node;
227         struct tree_entry *entry;
228
229         node = __tree_search(root, offset, NULL);
230         if (!node)
231                 return -ENOENT;
232         entry = rb_entry(node, struct tree_entry, rb_node);
233         entry->in_tree = 0;
234         rb_erase(node, root);
235         return 0;
236 }
237
238 /*
239  * add_extent_mapping tries a simple backward merge with existing
240  * mappings.  The extent_map struct passed in will be inserted into
241  * the tree directly (no copies made, just a reference taken).
242  */
243 int add_extent_mapping(struct extent_map_tree *tree,
244                        struct extent_map *em)
245 {
246         int ret = 0;
247         struct extent_map *prev = NULL;
248         struct rb_node *rb;
249
250         write_lock_irq(&tree->lock);
251         rb = tree_insert(&tree->map, em->end, &em->rb_node);
252         if (rb) {
253                 prev = rb_entry(rb, struct extent_map, rb_node);
254                 printk("found extent map %Lu %Lu on insert of %Lu %Lu\n", prev->start, prev->end, em->start, em->end);
255                 ret = -EEXIST;
256                 goto out;
257         }
258         atomic_inc(&em->refs);
259         if (em->start != 0) {
260                 rb = rb_prev(&em->rb_node);
261                 if (rb)
262                         prev = rb_entry(rb, struct extent_map, rb_node);
263                 if (prev && prev->end + 1 == em->start &&
264                     ((em->block_start == EXTENT_MAP_HOLE &&
265                       prev->block_start == EXTENT_MAP_HOLE) ||
266                      (em->block_start == EXTENT_MAP_INLINE &&
267                       prev->block_start == EXTENT_MAP_INLINE) ||
268                      (em->block_start == EXTENT_MAP_DELALLOC &&
269                       prev->block_start == EXTENT_MAP_DELALLOC) ||
270                      (em->block_start < EXTENT_MAP_DELALLOC - 1 &&
271                       em->block_start == prev->block_end + 1))) {
272                         em->start = prev->start;
273                         em->block_start = prev->block_start;
274                         rb_erase(&prev->rb_node, &tree->map);
275                         prev->in_tree = 0;
276                         free_extent_map(prev);
277                 }
278          }
279 out:
280         write_unlock_irq(&tree->lock);
281         return ret;
282 }
283 EXPORT_SYMBOL(add_extent_mapping);
284
285 /*
286  * lookup_extent_mapping returns the first extent_map struct in the
287  * tree that intersects the [start, end] (inclusive) range.  There may
288  * be additional objects in the tree that intersect, so check the object
289  * returned carefully to make sure you don't need additional lookups.
290  */
291 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
292                                          u64 start, u64 end)
293 {
294         struct extent_map *em;
295         struct rb_node *rb_node;
296
297         read_lock_irq(&tree->lock);
298         rb_node = tree_search(&tree->map, start);
299         if (!rb_node) {
300                 em = NULL;
301                 goto out;
302         }
303         if (IS_ERR(rb_node)) {
304                 em = ERR_PTR(PTR_ERR(rb_node));
305                 goto out;
306         }
307         em = rb_entry(rb_node, struct extent_map, rb_node);
308         if (em->end < start || em->start > end) {
309                 em = NULL;
310                 goto out;
311         }
312         atomic_inc(&em->refs);
313 out:
314         read_unlock_irq(&tree->lock);
315         return em;
316 }
317 EXPORT_SYMBOL(lookup_extent_mapping);
318
319 /*
320  * removes an extent_map struct from the tree.  No reference counts are
321  * dropped, and no checks are done to  see if the range is in use
322  */
323 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
324 {
325         int ret;
326
327         write_lock_irq(&tree->lock);
328         ret = tree_delete(&tree->map, em->end);
329         write_unlock_irq(&tree->lock);
330         return ret;
331 }
332 EXPORT_SYMBOL(remove_extent_mapping);
333
334 /*
335  * utility function to look for merge candidates inside a given range.
336  * Any extents with matching state are merged together into a single
337  * extent in the tree.  Extents with EXTENT_IO in their state field
338  * are not merged because the end_io handlers need to be able to do
339  * operations on them without sleeping (or doing allocations/splits).
340  *
341  * This should be called with the tree lock held.
342  */
343 static int merge_state(struct extent_map_tree *tree,
344                        struct extent_state *state)
345 {
346         struct extent_state *other;
347         struct rb_node *other_node;
348
349         if (state->state & EXTENT_IOBITS)
350                 return 0;
351
352         other_node = rb_prev(&state->rb_node);
353         if (other_node) {
354                 other = rb_entry(other_node, struct extent_state, rb_node);
355                 if (other->end == state->start - 1 &&
356                     other->state == state->state) {
357                         state->start = other->start;
358                         other->in_tree = 0;
359                         rb_erase(&other->rb_node, &tree->state);
360                         free_extent_state(other);
361                 }
362         }
363         other_node = rb_next(&state->rb_node);
364         if (other_node) {
365                 other = rb_entry(other_node, struct extent_state, rb_node);
366                 if (other->start == state->end + 1 &&
367                     other->state == state->state) {
368                         other->start = state->start;
369                         state->in_tree = 0;
370                         rb_erase(&state->rb_node, &tree->state);
371                         free_extent_state(state);
372                 }
373         }
374         return 0;
375 }
376
377 /*
378  * insert an extent_state struct into the tree.  'bits' are set on the
379  * struct before it is inserted.
380  *
381  * This may return -EEXIST if the extent is already there, in which case the
382  * state struct is freed.
383  *
384  * The tree lock is not taken internally.  This is a utility function and
385  * probably isn't what you want to call (see set/clear_extent_bit).
386  */
387 static int insert_state(struct extent_map_tree *tree,
388                         struct extent_state *state, u64 start, u64 end,
389                         int bits)
390 {
391         struct rb_node *node;
392
393         if (end < start) {
394                 printk("end < start %Lu %Lu\n", end, start);
395                 WARN_ON(1);
396         }
397         state->state |= bits;
398         state->start = start;
399         state->end = end;
400         node = tree_insert(&tree->state, end, &state->rb_node);
401         if (node) {
402                 struct extent_state *found;
403                 found = rb_entry(node, struct extent_state, rb_node);
404                 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
405                 free_extent_state(state);
406                 return -EEXIST;
407         }
408         merge_state(tree, state);
409         return 0;
410 }
411
412 /*
413  * split a given extent state struct in two, inserting the preallocated
414  * struct 'prealloc' as the newly created second half.  'split' indicates an
415  * offset inside 'orig' where it should be split.
416  *
417  * Before calling,
418  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
419  * are two extent state structs in the tree:
420  * prealloc: [orig->start, split - 1]
421  * orig: [ split, orig->end ]
422  *
423  * The tree locks are not taken by this function. They need to be held
424  * by the caller.
425  */
426 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
427                        struct extent_state *prealloc, u64 split)
428 {
429         struct rb_node *node;
430         prealloc->start = orig->start;
431         prealloc->end = split - 1;
432         prealloc->state = orig->state;
433         orig->start = split;
434
435         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
436         if (node) {
437                 struct extent_state *found;
438                 found = rb_entry(node, struct extent_state, rb_node);
439                 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
440                 free_extent_state(prealloc);
441                 return -EEXIST;
442         }
443         return 0;
444 }
445
446 /*
447  * utility function to clear some bits in an extent state struct.
448  * it will optionally wake up any one waiting on this state (wake == 1), or
449  * forcibly remove the state from the tree (delete == 1).
450  *
451  * If no bits are set on the state struct after clearing things, the
452  * struct is freed and removed from the tree
453  */
454 static int clear_state_bit(struct extent_map_tree *tree,
455                             struct extent_state *state, int bits, int wake,
456                             int delete)
457 {
458         int ret = state->state & bits;
459         state->state &= ~bits;
460         if (wake)
461                 wake_up(&state->wq);
462         if (delete || state->state == 0) {
463                 if (state->in_tree) {
464                         rb_erase(&state->rb_node, &tree->state);
465                         state->in_tree = 0;
466                         free_extent_state(state);
467                 } else {
468                         WARN_ON(1);
469                 }
470         } else {
471                 merge_state(tree, state);
472         }
473         return ret;
474 }
475
476 /*
477  * clear some bits on a range in the tree.  This may require splitting
478  * or inserting elements in the tree, so the gfp mask is used to
479  * indicate which allocations or sleeping are allowed.
480  *
481  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
482  * the given range from the tree regardless of state (ie for truncate).
483  *
484  * the range [start, end] is inclusive.
485  *
486  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
487  * bits were already set, or zero if none of the bits were already set.
488  */
489 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
490                      int bits, int wake, int delete, gfp_t mask)
491 {
492         struct extent_state *state;
493         struct extent_state *prealloc = NULL;
494         struct rb_node *node;
495         unsigned long flags;
496         int err;
497         int set = 0;
498
499 again:
500         if (!prealloc && (mask & __GFP_WAIT)) {
501                 prealloc = alloc_extent_state(mask);
502                 if (!prealloc)
503                         return -ENOMEM;
504         }
505
506         write_lock_irqsave(&tree->lock, flags);
507         /*
508          * this search will find the extents that end after
509          * our range starts
510          */
511         node = tree_search(&tree->state, start);
512         if (!node)
513                 goto out;
514         state = rb_entry(node, struct extent_state, rb_node);
515         if (state->start > end)
516                 goto out;
517         WARN_ON(state->end < start);
518
519         /*
520          *     | ---- desired range ---- |
521          *  | state | or
522          *  | ------------- state -------------- |
523          *
524          * We need to split the extent we found, and may flip
525          * bits on second half.
526          *
527          * If the extent we found extends past our range, we
528          * just split and search again.  It'll get split again
529          * the next time though.
530          *
531          * If the extent we found is inside our range, we clear
532          * the desired bit on it.
533          */
534
535         if (state->start < start) {
536                 err = split_state(tree, state, prealloc, start);
537                 BUG_ON(err == -EEXIST);
538                 prealloc = NULL;
539                 if (err)
540                         goto out;
541                 if (state->end <= end) {
542                         start = state->end + 1;
543                         set |= clear_state_bit(tree, state, bits,
544                                         wake, delete);
545                 } else {
546                         start = state->start;
547                 }
548                 goto search_again;
549         }
550         /*
551          * | ---- desired range ---- |
552          *                        | state |
553          * We need to split the extent, and clear the bit
554          * on the first half
555          */
556         if (state->start <= end && state->end > end) {
557                 err = split_state(tree, state, prealloc, end + 1);
558                 BUG_ON(err == -EEXIST);
559
560                 if (wake)
561                         wake_up(&state->wq);
562                 set |= clear_state_bit(tree, prealloc, bits,
563                                        wake, delete);
564                 prealloc = NULL;
565                 goto out;
566         }
567
568         start = state->end + 1;
569         set |= clear_state_bit(tree, state, bits, wake, delete);
570         goto search_again;
571
572 out:
573         write_unlock_irqrestore(&tree->lock, flags);
574         if (prealloc)
575                 free_extent_state(prealloc);
576
577         return set;
578
579 search_again:
580         if (start > end)
581                 goto out;
582         write_unlock_irqrestore(&tree->lock, flags);
583         if (mask & __GFP_WAIT)
584                 cond_resched();
585         goto again;
586 }
587 EXPORT_SYMBOL(clear_extent_bit);
588
589 static int wait_on_state(struct extent_map_tree *tree,
590                          struct extent_state *state)
591 {
592         DEFINE_WAIT(wait);
593         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
594         read_unlock_irq(&tree->lock);
595         schedule();
596         read_lock_irq(&tree->lock);
597         finish_wait(&state->wq, &wait);
598         return 0;
599 }
600
601 /*
602  * waits for one or more bits to clear on a range in the state tree.
603  * The range [start, end] is inclusive.
604  * The tree lock is taken by this function
605  */
606 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
607 {
608         struct extent_state *state;
609         struct rb_node *node;
610
611         read_lock_irq(&tree->lock);
612 again:
613         while (1) {
614                 /*
615                  * this search will find all the extents that end after
616                  * our range starts
617                  */
618                 node = tree_search(&tree->state, start);
619                 if (!node)
620                         break;
621
622                 state = rb_entry(node, struct extent_state, rb_node);
623
624                 if (state->start > end)
625                         goto out;
626
627                 if (state->state & bits) {
628                         start = state->start;
629                         atomic_inc(&state->refs);
630                         wait_on_state(tree, state);
631                         free_extent_state(state);
632                         goto again;
633                 }
634                 start = state->end + 1;
635
636                 if (start > end)
637                         break;
638
639                 if (need_resched()) {
640                         read_unlock_irq(&tree->lock);
641                         cond_resched();
642                         read_lock_irq(&tree->lock);
643                 }
644         }
645 out:
646         read_unlock_irq(&tree->lock);
647         return 0;
648 }
649 EXPORT_SYMBOL(wait_extent_bit);
650
651 /*
652  * set some bits on a range in the tree.  This may require allocations
653  * or sleeping, so the gfp mask is used to indicate what is allowed.
654  *
655  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
656  * range already has the desired bits set.  The start of the existing
657  * range is returned in failed_start in this case.
658  *
659  * [start, end] is inclusive
660  * This takes the tree lock.
661  */
662 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
663                    int exclusive, u64 *failed_start, gfp_t mask)
664 {
665         struct extent_state *state;
666         struct extent_state *prealloc = NULL;
667         struct rb_node *node;
668         unsigned long flags;
669         int err = 0;
670         int set;
671         u64 last_start;
672         u64 last_end;
673 again:
674         if (!prealloc && (mask & __GFP_WAIT)) {
675                 prealloc = alloc_extent_state(mask);
676                 if (!prealloc)
677                         return -ENOMEM;
678         }
679
680         write_lock_irqsave(&tree->lock, flags);
681         /*
682          * this search will find all the extents that end after
683          * our range starts.
684          */
685         node = tree_search(&tree->state, start);
686         if (!node) {
687                 err = insert_state(tree, prealloc, start, end, bits);
688                 prealloc = NULL;
689                 BUG_ON(err == -EEXIST);
690                 goto out;
691         }
692
693         state = rb_entry(node, struct extent_state, rb_node);
694         last_start = state->start;
695         last_end = state->end;
696
697         /*
698          * | ---- desired range ---- |
699          * | state |
700          *
701          * Just lock what we found and keep going
702          */
703         if (state->start == start && state->end <= end) {
704                 set = state->state & bits;
705                 if (set && exclusive) {
706                         *failed_start = state->start;
707                         err = -EEXIST;
708                         goto out;
709                 }
710                 state->state |= bits;
711                 start = state->end + 1;
712                 merge_state(tree, state);
713                 goto search_again;
714         }
715
716         /*
717          *     | ---- desired range ---- |
718          * | state |
719          *   or
720          * | ------------- state -------------- |
721          *
722          * We need to split the extent we found, and may flip bits on
723          * second half.
724          *
725          * If the extent we found extends past our
726          * range, we just split and search again.  It'll get split
727          * again the next time though.
728          *
729          * If the extent we found is inside our range, we set the
730          * desired bit on it.
731          */
732         if (state->start < start) {
733                 set = state->state & bits;
734                 if (exclusive && set) {
735                         *failed_start = start;
736                         err = -EEXIST;
737                         goto out;
738                 }
739                 err = split_state(tree, state, prealloc, start);
740                 BUG_ON(err == -EEXIST);
741                 prealloc = NULL;
742                 if (err)
743                         goto out;
744                 if (state->end <= end) {
745                         state->state |= bits;
746                         start = state->end + 1;
747                         merge_state(tree, state);
748                 } else {
749                         start = state->start;
750                 }
751                 goto search_again;
752         }
753         /*
754          * | ---- desired range ---- |
755          *     | state | or               | state |
756          *
757          * There's a hole, we need to insert something in it and
758          * ignore the extent we found.
759          */
760         if (state->start > start) {
761                 u64 this_end;
762                 if (end < last_start)
763                         this_end = end;
764                 else
765                         this_end = last_start -1;
766                 err = insert_state(tree, prealloc, start, this_end,
767                                    bits);
768                 prealloc = NULL;
769                 BUG_ON(err == -EEXIST);
770                 if (err)
771                         goto out;
772                 start = this_end + 1;
773                 goto search_again;
774         }
775         /*
776          * | ---- desired range ---- |
777          *                        | state |
778          * We need to split the extent, and set the bit
779          * on the first half
780          */
781         if (state->start <= end && state->end > end) {
782                 set = state->state & bits;
783                 if (exclusive && set) {
784                         *failed_start = start;
785                         err = -EEXIST;
786                         goto out;
787                 }
788                 err = split_state(tree, state, prealloc, end + 1);
789                 BUG_ON(err == -EEXIST);
790
791                 prealloc->state |= bits;
792                 merge_state(tree, prealloc);
793                 prealloc = NULL;
794                 goto out;
795         }
796
797         goto search_again;
798
799 out:
800         write_unlock_irqrestore(&tree->lock, flags);
801         if (prealloc)
802                 free_extent_state(prealloc);
803
804         return err;
805
806 search_again:
807         if (start > end)
808                 goto out;
809         write_unlock_irqrestore(&tree->lock, flags);
810         if (mask & __GFP_WAIT)
811                 cond_resched();
812         goto again;
813 }
814 EXPORT_SYMBOL(set_extent_bit);
815
816 /* wrappers around set/clear extent bit */
817 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
818                      gfp_t mask)
819 {
820         return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
821                               mask);
822 }
823 EXPORT_SYMBOL(set_extent_dirty);
824
825 int set_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
826                     int bits, gfp_t mask)
827 {
828         return set_extent_bit(tree, start, end, bits, 0, NULL,
829                               mask);
830 }
831 EXPORT_SYMBOL(set_extent_bits);
832
833 int clear_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
834                       int bits, gfp_t mask)
835 {
836         return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
837 }
838 EXPORT_SYMBOL(clear_extent_bits);
839
840 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
841                      gfp_t mask)
842 {
843         return set_extent_bit(tree, start, end,
844                               EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
845                               mask);
846 }
847 EXPORT_SYMBOL(set_extent_delalloc);
848
849 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
850                        gfp_t mask)
851 {
852         return clear_extent_bit(tree, start, end,
853                                 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
854 }
855 EXPORT_SYMBOL(clear_extent_dirty);
856
857 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
858                      gfp_t mask)
859 {
860         return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
861                               mask);
862 }
863 EXPORT_SYMBOL(set_extent_new);
864
865 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
866                        gfp_t mask)
867 {
868         return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
869 }
870 EXPORT_SYMBOL(clear_extent_new);
871
872 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
873                         gfp_t mask)
874 {
875         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
876                               mask);
877 }
878 EXPORT_SYMBOL(set_extent_uptodate);
879
880 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
881                           gfp_t mask)
882 {
883         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
884 }
885 EXPORT_SYMBOL(clear_extent_uptodate);
886
887 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
888                          gfp_t mask)
889 {
890         return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
891                               0, NULL, mask);
892 }
893 EXPORT_SYMBOL(set_extent_writeback);
894
895 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
896                            gfp_t mask)
897 {
898         return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
899 }
900 EXPORT_SYMBOL(clear_extent_writeback);
901
902 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
903 {
904         return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
905 }
906 EXPORT_SYMBOL(wait_on_extent_writeback);
907
908 /*
909  * locks a range in ascending order, waiting for any locked regions
910  * it hits on the way.  [start,end] are inclusive, and this will sleep.
911  */
912 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
913 {
914         int err;
915         u64 failed_start;
916         while (1) {
917                 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
918                                      &failed_start, mask);
919                 if (err == -EEXIST && (mask & __GFP_WAIT)) {
920                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
921                         start = failed_start;
922                 } else {
923                         break;
924                 }
925                 WARN_ON(start > end);
926         }
927         return err;
928 }
929 EXPORT_SYMBOL(lock_extent);
930
931 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
932                   gfp_t mask)
933 {
934         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
935 }
936 EXPORT_SYMBOL(unlock_extent);
937
938 /*
939  * helper function to set pages and extents in the tree dirty
940  */
941 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
942 {
943         unsigned long index = start >> PAGE_CACHE_SHIFT;
944         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
945         struct page *page;
946
947         while (index <= end_index) {
948                 page = find_get_page(tree->mapping, index);
949                 BUG_ON(!page);
950                 __set_page_dirty_nobuffers(page);
951                 page_cache_release(page);
952                 index++;
953         }
954         set_extent_dirty(tree, start, end, GFP_NOFS);
955         return 0;
956 }
957 EXPORT_SYMBOL(set_range_dirty);
958
959 /*
960  * helper function to set both pages and extents in the tree writeback
961  */
962 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
963 {
964         unsigned long index = start >> PAGE_CACHE_SHIFT;
965         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
966         struct page *page;
967
968         while (index <= end_index) {
969                 page = find_get_page(tree->mapping, index);
970                 BUG_ON(!page);
971                 set_page_writeback(page);
972                 page_cache_release(page);
973                 index++;
974         }
975         set_extent_writeback(tree, start, end, GFP_NOFS);
976         return 0;
977 }
978 EXPORT_SYMBOL(set_range_writeback);
979
980 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
981                           u64 *start_ret, u64 *end_ret, int bits)
982 {
983         struct rb_node *node;
984         struct extent_state *state;
985         int ret = 1;
986
987         read_lock_irq(&tree->lock);
988         /*
989          * this search will find all the extents that end after
990          * our range starts.
991          */
992         node = tree_search(&tree->state, start);
993         if (!node || IS_ERR(node)) {
994                 goto out;
995         }
996
997         while(1) {
998                 state = rb_entry(node, struct extent_state, rb_node);
999                 if (state->end >= start && (state->state & bits)) {
1000                         *start_ret = state->start;
1001                         *end_ret = state->end;
1002                         ret = 0;
1003                         break;
1004                 }
1005                 node = rb_next(node);
1006                 if (!node)
1007                         break;
1008         }
1009 out:
1010         read_unlock_irq(&tree->lock);
1011         return ret;
1012 }
1013 EXPORT_SYMBOL(find_first_extent_bit);
1014
1015 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
1016                              u64 start, u64 lock_start, u64 *end, u64 max_bytes)
1017 {
1018         struct rb_node *node;
1019         struct extent_state *state;
1020         u64 cur_start = start;
1021         u64 found = 0;
1022         u64 total_bytes = 0;
1023
1024         write_lock_irq(&tree->lock);
1025         /*
1026          * this search will find all the extents that end after
1027          * our range starts.
1028          */
1029 search_again:
1030         node = tree_search(&tree->state, cur_start);
1031         if (!node || IS_ERR(node)) {
1032                 goto out;
1033         }
1034
1035         while(1) {
1036                 state = rb_entry(node, struct extent_state, rb_node);
1037                 if (state->start != cur_start) {
1038                         goto out;
1039                 }
1040                 if (!(state->state & EXTENT_DELALLOC)) {
1041                         goto out;
1042                 }
1043                 if (state->start >= lock_start) {
1044                         if (state->state & EXTENT_LOCKED) {
1045                                 DEFINE_WAIT(wait);
1046                                 atomic_inc(&state->refs);
1047                                 prepare_to_wait(&state->wq, &wait,
1048                                                 TASK_UNINTERRUPTIBLE);
1049                                 write_unlock_irq(&tree->lock);
1050                                 schedule();
1051                                 write_lock_irq(&tree->lock);
1052                                 finish_wait(&state->wq, &wait);
1053                                 free_extent_state(state);
1054                                 goto search_again;
1055                         }
1056                         state->state |= EXTENT_LOCKED;
1057                 }
1058                 found++;
1059                 *end = state->end;
1060                 cur_start = state->end + 1;
1061                 node = rb_next(node);
1062                 if (!node)
1063                         break;
1064                 total_bytes += state->end - state->start + 1;
1065                 if (total_bytes >= max_bytes)
1066                         break;
1067         }
1068 out:
1069         write_unlock_irq(&tree->lock);
1070         return found;
1071 }
1072
1073 /*
1074  * helper function to lock both pages and extents in the tree.
1075  * pages must be locked first.
1076  */
1077 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1078 {
1079         unsigned long index = start >> PAGE_CACHE_SHIFT;
1080         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1081         struct page *page;
1082         int err;
1083
1084         while (index <= end_index) {
1085                 page = grab_cache_page(tree->mapping, index);
1086                 if (!page) {
1087                         err = -ENOMEM;
1088                         goto failed;
1089                 }
1090                 if (IS_ERR(page)) {
1091                         err = PTR_ERR(page);
1092                         goto failed;
1093                 }
1094                 index++;
1095         }
1096         lock_extent(tree, start, end, GFP_NOFS);
1097         return 0;
1098
1099 failed:
1100         /*
1101          * we failed above in getting the page at 'index', so we undo here
1102          * up to but not including the page at 'index'
1103          */
1104         end_index = index;
1105         index = start >> PAGE_CACHE_SHIFT;
1106         while (index < end_index) {
1107                 page = find_get_page(tree->mapping, index);
1108                 unlock_page(page);
1109                 page_cache_release(page);
1110                 index++;
1111         }
1112         return err;
1113 }
1114 EXPORT_SYMBOL(lock_range);
1115
1116 /*
1117  * helper function to unlock both pages and extents in the tree.
1118  */
1119 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1120 {
1121         unsigned long index = start >> PAGE_CACHE_SHIFT;
1122         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1123         struct page *page;
1124
1125         while (index <= end_index) {
1126                 page = find_get_page(tree->mapping, index);
1127                 unlock_page(page);
1128                 page_cache_release(page);
1129                 index++;
1130         }
1131         unlock_extent(tree, start, end, GFP_NOFS);
1132         return 0;
1133 }
1134 EXPORT_SYMBOL(unlock_range);
1135
1136 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1137 {
1138         struct rb_node *node;
1139         struct extent_state *state;
1140         int ret = 0;
1141
1142         write_lock_irq(&tree->lock);
1143         /*
1144          * this search will find all the extents that end after
1145          * our range starts.
1146          */
1147         node = tree_search(&tree->state, start);
1148         if (!node || IS_ERR(node)) {
1149                 ret = -ENOENT;
1150                 goto out;
1151         }
1152         state = rb_entry(node, struct extent_state, rb_node);
1153         if (state->start != start) {
1154                 ret = -ENOENT;
1155                 goto out;
1156         }
1157         state->private = private;
1158 out:
1159         write_unlock_irq(&tree->lock);
1160         return ret;
1161 }
1162
1163 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1164 {
1165         struct rb_node *node;
1166         struct extent_state *state;
1167         int ret = 0;
1168
1169         read_lock_irq(&tree->lock);
1170         /*
1171          * this search will find all the extents that end after
1172          * our range starts.
1173          */
1174         node = tree_search(&tree->state, start);
1175         if (!node || IS_ERR(node)) {
1176                 ret = -ENOENT;
1177                 goto out;
1178         }
1179         state = rb_entry(node, struct extent_state, rb_node);
1180         if (state->start != start) {
1181                 ret = -ENOENT;
1182                 goto out;
1183         }
1184         *private = state->private;
1185 out:
1186         read_unlock_irq(&tree->lock);
1187         return ret;
1188 }
1189
1190 /*
1191  * searches a range in the state tree for a given mask.
1192  * If 'filled' == 1, this returns 1 only if ever extent in the tree
1193  * has the bits set.  Otherwise, 1 is returned if any bit in the
1194  * range is found set.
1195  */
1196 int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1197                    int bits, int filled)
1198 {
1199         struct extent_state *state = NULL;
1200         struct rb_node *node;
1201         int bitset = 0;
1202
1203         read_lock_irq(&tree->lock);
1204         node = tree_search(&tree->state, start);
1205         while (node && start <= end) {
1206                 state = rb_entry(node, struct extent_state, rb_node);
1207                 if (state->start > end)
1208                         break;
1209
1210                 if (filled && state->start > start) {
1211                         bitset = 0;
1212                         break;
1213                 }
1214                 if (state->state & bits) {
1215                         bitset = 1;
1216                         if (!filled)
1217                                 break;
1218                 } else if (filled) {
1219                         bitset = 0;
1220                         break;
1221                 }
1222                 start = state->end + 1;
1223                 if (start > end)
1224                         break;
1225                 node = rb_next(node);
1226         }
1227         read_unlock_irq(&tree->lock);
1228         return bitset;
1229 }
1230 EXPORT_SYMBOL(test_range_bit);
1231
1232 /*
1233  * helper function to set a given page up to date if all the
1234  * extents in the tree for that page are up to date
1235  */
1236 static int check_page_uptodate(struct extent_map_tree *tree,
1237                                struct page *page)
1238 {
1239         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1240         u64 end = start + PAGE_CACHE_SIZE - 1;
1241         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1242                 SetPageUptodate(page);
1243         return 0;
1244 }
1245
1246 /*
1247  * helper function to unlock a page if all the extents in the tree
1248  * for that page are unlocked
1249  */
1250 static int check_page_locked(struct extent_map_tree *tree,
1251                              struct page *page)
1252 {
1253         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1254         u64 end = start + PAGE_CACHE_SIZE - 1;
1255         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1256                 unlock_page(page);
1257         return 0;
1258 }
1259
1260 /*
1261  * helper function to end page writeback if all the extents
1262  * in the tree for that page are done with writeback
1263  */
1264 static int check_page_writeback(struct extent_map_tree *tree,
1265                              struct page *page)
1266 {
1267         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1268         u64 end = start + PAGE_CACHE_SIZE - 1;
1269         if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1270                 end_page_writeback(page);
1271         return 0;
1272 }
1273
1274 /* lots and lots of room for performance fixes in the end_bio funcs */
1275
1276 /*
1277  * after a writepage IO is done, we need to:
1278  * clear the uptodate bits on error
1279  * clear the writeback bits in the extent tree for this IO
1280  * end_page_writeback if the page has no more pending IO
1281  *
1282  * Scheduling is not allowed, so the extent state tree is expected
1283  * to have one and only one object corresponding to this IO.
1284  */
1285 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1286 static void end_bio_extent_writepage(struct bio *bio, int err)
1287 #else
1288 static int end_bio_extent_writepage(struct bio *bio,
1289                                    unsigned int bytes_done, int err)
1290 #endif
1291 {
1292         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1293         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1294         struct extent_map_tree *tree = bio->bi_private;
1295         u64 start;
1296         u64 end;
1297         int whole_page;
1298
1299 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1300         if (bio->bi_size)
1301                 return 1;
1302 #endif
1303
1304         do {
1305                 struct page *page = bvec->bv_page;
1306                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1307                          bvec->bv_offset;
1308                 end = start + bvec->bv_len - 1;
1309
1310                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1311                         whole_page = 1;
1312                 else
1313                         whole_page = 0;
1314
1315                 if (--bvec >= bio->bi_io_vec)
1316                         prefetchw(&bvec->bv_page->flags);
1317
1318                 if (!uptodate) {
1319                         clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1320                         ClearPageUptodate(page);
1321                         SetPageError(page);
1322                 }
1323                 clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1324
1325                 if (whole_page)
1326                         end_page_writeback(page);
1327                 else
1328                         check_page_writeback(tree, page);
1329                 if (tree->ops && tree->ops->writepage_end_io_hook)
1330                         tree->ops->writepage_end_io_hook(page, start, end);
1331         } while (bvec >= bio->bi_io_vec);
1332
1333         bio_put(bio);
1334 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1335         return 0;
1336 #endif
1337 }
1338
1339 /*
1340  * after a readpage IO is done, we need to:
1341  * clear the uptodate bits on error
1342  * set the uptodate bits if things worked
1343  * set the page up to date if all extents in the tree are uptodate
1344  * clear the lock bit in the extent tree
1345  * unlock the page if there are no other extents locked for it
1346  *
1347  * Scheduling is not allowed, so the extent state tree is expected
1348  * to have one and only one object corresponding to this IO.
1349  */
1350 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1351 static void end_bio_extent_readpage(struct bio *bio, int err)
1352 #else
1353 static int end_bio_extent_readpage(struct bio *bio,
1354                                    unsigned int bytes_done, int err)
1355 #endif
1356 {
1357         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1358         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1359         struct extent_map_tree *tree = bio->bi_private;
1360         u64 start;
1361         u64 end;
1362         int whole_page;
1363         int ret;
1364
1365 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1366         if (bio->bi_size)
1367                 return 1;
1368 #endif
1369
1370         do {
1371                 struct page *page = bvec->bv_page;
1372                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1373                         bvec->bv_offset;
1374                 end = start + bvec->bv_len - 1;
1375
1376                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1377                         whole_page = 1;
1378                 else
1379                         whole_page = 0;
1380
1381                 if (--bvec >= bio->bi_io_vec)
1382                         prefetchw(&bvec->bv_page->flags);
1383
1384                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1385                         ret = tree->ops->readpage_end_io_hook(page, start, end);
1386                         if (ret)
1387                                 uptodate = 0;
1388                 }
1389                 if (uptodate) {
1390                         set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1391                         if (whole_page)
1392                                 SetPageUptodate(page);
1393                         else
1394                                 check_page_uptodate(tree, page);
1395                 } else {
1396                         ClearPageUptodate(page);
1397                         SetPageError(page);
1398                 }
1399
1400                 unlock_extent(tree, start, end, GFP_ATOMIC);
1401
1402                 if (whole_page)
1403                         unlock_page(page);
1404                 else
1405                         check_page_locked(tree, page);
1406         } while (bvec >= bio->bi_io_vec);
1407
1408         bio_put(bio);
1409 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1410         return 0;
1411 #endif
1412 }
1413
1414 /*
1415  * IO done from prepare_write is pretty simple, we just unlock
1416  * the structs in the extent tree when done, and set the uptodate bits
1417  * as appropriate.
1418  */
1419 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1420 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1421 #else
1422 static int end_bio_extent_preparewrite(struct bio *bio,
1423                                        unsigned int bytes_done, int err)
1424 #endif
1425 {
1426         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1427         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1428         struct extent_map_tree *tree = bio->bi_private;
1429         u64 start;
1430         u64 end;
1431
1432 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1433         if (bio->bi_size)
1434                 return 1;
1435 #endif
1436
1437         do {
1438                 struct page *page = bvec->bv_page;
1439                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1440                         bvec->bv_offset;
1441                 end = start + bvec->bv_len - 1;
1442
1443                 if (--bvec >= bio->bi_io_vec)
1444                         prefetchw(&bvec->bv_page->flags);
1445
1446                 if (uptodate) {
1447                         set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1448                 } else {
1449                         ClearPageUptodate(page);
1450                         SetPageError(page);
1451                 }
1452
1453                 unlock_extent(tree, start, end, GFP_ATOMIC);
1454
1455         } while (bvec >= bio->bi_io_vec);
1456
1457         bio_put(bio);
1458 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1459         return 0;
1460 #endif
1461 }
1462
1463 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1464                               struct page *page, sector_t sector,
1465                               size_t size, unsigned long offset,
1466                               struct block_device *bdev,
1467                               bio_end_io_t end_io_func)
1468 {
1469         struct bio *bio;
1470         int ret = 0;
1471
1472         bio = bio_alloc(GFP_NOIO, 1);
1473
1474         bio->bi_sector = sector;
1475         bio->bi_bdev = bdev;
1476         bio->bi_io_vec[0].bv_page = page;
1477         bio->bi_io_vec[0].bv_len = size;
1478         bio->bi_io_vec[0].bv_offset = offset;
1479
1480         bio->bi_vcnt = 1;
1481         bio->bi_idx = 0;
1482         bio->bi_size = size;
1483
1484         bio->bi_end_io = end_io_func;
1485         bio->bi_private = tree;
1486
1487         bio_get(bio);
1488         submit_bio(rw, bio);
1489
1490         if (bio_flagged(bio, BIO_EOPNOTSUPP))
1491                 ret = -EOPNOTSUPP;
1492
1493         bio_put(bio);
1494         return ret;
1495 }
1496
1497 void set_page_extent_mapped(struct page *page)
1498 {
1499         if (!PagePrivate(page)) {
1500                 SetPagePrivate(page);
1501                 WARN_ON(!page->mapping->a_ops->invalidatepage);
1502                 set_page_private(page, EXTENT_PAGE_PRIVATE);
1503                 page_cache_get(page);
1504         }
1505 }
1506
1507 /*
1508  * basic readpage implementation.  Locked extent state structs are inserted
1509  * into the tree that are removed when the IO is done (by the end_io
1510  * handlers)
1511  */
1512 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1513                           get_extent_t *get_extent)
1514 {
1515         struct inode *inode = page->mapping->host;
1516         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1517         u64 page_end = start + PAGE_CACHE_SIZE - 1;
1518         u64 end;
1519         u64 cur = start;
1520         u64 extent_offset;
1521         u64 last_byte = i_size_read(inode);
1522         u64 block_start;
1523         u64 cur_end;
1524         sector_t sector;
1525         struct extent_map *em;
1526         struct block_device *bdev;
1527         int ret;
1528         int nr = 0;
1529         size_t page_offset = 0;
1530         size_t iosize;
1531         size_t blocksize = inode->i_sb->s_blocksize;
1532
1533         set_page_extent_mapped(page);
1534
1535         end = page_end;
1536         lock_extent(tree, start, end, GFP_NOFS);
1537
1538         while (cur <= end) {
1539                 if (cur >= last_byte) {
1540                         iosize = PAGE_CACHE_SIZE - page_offset;
1541                         zero_user_page(page, page_offset, iosize, KM_USER0);
1542                         set_extent_uptodate(tree, cur, cur + iosize - 1,
1543                                             GFP_NOFS);
1544                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1545                         break;
1546                 }
1547                 em = get_extent(inode, page, page_offset, cur, end, 0);
1548                 if (IS_ERR(em) || !em) {
1549                         SetPageError(page);
1550                         unlock_extent(tree, cur, end, GFP_NOFS);
1551                         break;
1552                 }
1553
1554                 extent_offset = cur - em->start;
1555                 BUG_ON(em->end < cur);
1556                 BUG_ON(end < cur);
1557
1558                 iosize = min(em->end - cur, end - cur) + 1;
1559                 cur_end = min(em->end, end);
1560                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1561                 sector = (em->block_start + extent_offset) >> 9;
1562                 bdev = em->bdev;
1563                 block_start = em->block_start;
1564                 free_extent_map(em);
1565                 em = NULL;
1566
1567                 /* we've found a hole, just zero and go on */
1568                 if (block_start == EXTENT_MAP_HOLE) {
1569                         zero_user_page(page, page_offset, iosize, KM_USER0);
1570                         set_extent_uptodate(tree, cur, cur + iosize - 1,
1571                                             GFP_NOFS);
1572                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1573                         cur = cur + iosize;
1574                         page_offset += iosize;
1575                         continue;
1576                 }
1577                 /* the get_extent function already copied into the page */
1578                 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1579                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1580                         cur = cur + iosize;
1581                         page_offset += iosize;
1582                         continue;
1583                 }
1584
1585                 ret = 0;
1586                 if (tree->ops && tree->ops->readpage_io_hook) {
1587                         ret = tree->ops->readpage_io_hook(page, cur,
1588                                                           cur + iosize - 1);
1589                 }
1590                 if (!ret) {
1591                         ret = submit_extent_page(READ, tree, page,
1592                                                  sector, iosize, page_offset,
1593                                                  bdev, end_bio_extent_readpage);
1594                 }
1595                 if (ret)
1596                         SetPageError(page);
1597                 cur = cur + iosize;
1598                 page_offset += iosize;
1599                 nr++;
1600         }
1601         if (!nr) {
1602                 if (!PageError(page))
1603                         SetPageUptodate(page);
1604                 unlock_page(page);
1605         }
1606         return 0;
1607 }
1608 EXPORT_SYMBOL(extent_read_full_page);
1609
1610 /*
1611  * the writepage semantics are similar to regular writepage.  extent
1612  * records are inserted to lock ranges in the tree, and as dirty areas
1613  * are found, they are marked writeback.  Then the lock bits are removed
1614  * and the end_io handler clears the writeback ranges
1615  */
1616 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
1617                           get_extent_t *get_extent,
1618                           struct writeback_control *wbc)
1619 {
1620         struct inode *inode = page->mapping->host;
1621         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1622         u64 page_end = start + PAGE_CACHE_SIZE - 1;
1623         u64 end;
1624         u64 cur = start;
1625         u64 extent_offset;
1626         u64 last_byte = i_size_read(inode);
1627         u64 block_start;
1628         u64 iosize;
1629         sector_t sector;
1630         struct extent_map *em;
1631         struct block_device *bdev;
1632         int ret;
1633         int nr = 0;
1634         size_t page_offset = 0;
1635         size_t blocksize;
1636         loff_t i_size = i_size_read(inode);
1637         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1638         u64 nr_delalloc;
1639         u64 delalloc_end;
1640
1641         WARN_ON(!PageLocked(page));
1642         if (page->index > end_index) {
1643                 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1644                 unlock_page(page);
1645                 return 0;
1646         }
1647
1648         if (page->index == end_index) {
1649                 size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1650                 zero_user_page(page, offset,
1651                                PAGE_CACHE_SIZE - offset, KM_USER0);
1652         }
1653
1654         set_page_extent_mapped(page);
1655
1656         lock_extent(tree, start, page_end, GFP_NOFS);
1657         nr_delalloc = find_lock_delalloc_range(tree, start, page_end + 1,
1658                                                &delalloc_end,
1659                                                128 * 1024 * 1024);
1660         if (nr_delalloc) {
1661                 tree->ops->fill_delalloc(inode, start, delalloc_end);
1662                 if (delalloc_end >= page_end + 1) {
1663                         clear_extent_bit(tree, page_end + 1, delalloc_end,
1664                                          EXTENT_LOCKED | EXTENT_DELALLOC,
1665                                          1, 0, GFP_NOFS);
1666                 }
1667                 clear_extent_bit(tree, start, page_end, EXTENT_DELALLOC,
1668                                  0, 0, GFP_NOFS);
1669                 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1670                         printk("found delalloc bits after clear extent_bit\n");
1671                 }
1672         } else if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1673                 printk("found delalloc bits after find_delalloc_range returns 0\n");
1674         }
1675
1676         end = page_end;
1677         if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1678                 printk("found delalloc bits after lock_extent\n");
1679         }
1680
1681         if (last_byte <= start) {
1682                 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1683                 goto done;
1684         }
1685
1686         set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1687         blocksize = inode->i_sb->s_blocksize;
1688
1689         while (cur <= end) {
1690                 if (cur >= last_byte) {
1691                         clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1692                         break;
1693                 }
1694                 em = get_extent(inode, page, page_offset, cur, end, 1);
1695                 if (IS_ERR(em) || !em) {
1696                         SetPageError(page);
1697                         break;
1698                 }
1699
1700                 extent_offset = cur - em->start;
1701                 BUG_ON(em->end < cur);
1702                 BUG_ON(end < cur);
1703                 iosize = min(em->end - cur, end - cur) + 1;
1704                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1705                 sector = (em->block_start + extent_offset) >> 9;
1706                 bdev = em->bdev;
1707                 block_start = em->block_start;
1708                 free_extent_map(em);
1709                 em = NULL;
1710
1711                 if (block_start == EXTENT_MAP_HOLE ||
1712                     block_start == EXTENT_MAP_INLINE) {
1713                         clear_extent_dirty(tree, cur,
1714                                            cur + iosize - 1, GFP_NOFS);
1715                         cur = cur + iosize;
1716                         page_offset += iosize;
1717                         continue;
1718                 }
1719
1720                 /* leave this out until we have a page_mkwrite call */
1721                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1722                                    EXTENT_DIRTY, 0)) {
1723                         cur = cur + iosize;
1724                         page_offset += iosize;
1725                         continue;
1726                 }
1727                 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1728                 if (tree->ops && tree->ops->writepage_io_hook) {
1729                         ret = tree->ops->writepage_io_hook(page, cur,
1730                                                 cur + iosize - 1);
1731                 } else {
1732                         ret = 0;
1733                 }
1734                 if (ret)
1735                         SetPageError(page);
1736                 else {
1737                         set_range_writeback(tree, cur, cur + iosize - 1);
1738                         ret = submit_extent_page(WRITE, tree, page, sector,
1739                                                  iosize, page_offset, bdev,
1740                                                  end_bio_extent_writepage);
1741                         if (ret)
1742                                 SetPageError(page);
1743                 }
1744                 cur = cur + iosize;
1745                 page_offset += iosize;
1746                 nr++;
1747         }
1748 done:
1749         unlock_extent(tree, start, page_end, GFP_NOFS);
1750         unlock_page(page);
1751         return 0;
1752 }
1753 EXPORT_SYMBOL(extent_write_full_page);
1754
1755 /*
1756  * basic invalidatepage code, this waits on any locked or writeback
1757  * ranges corresponding to the page, and then deletes any extent state
1758  * records from the tree
1759  */
1760 int extent_invalidatepage(struct extent_map_tree *tree,
1761                           struct page *page, unsigned long offset)
1762 {
1763         u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
1764         u64 end = start + PAGE_CACHE_SIZE - 1;
1765         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
1766
1767         start += (offset + blocksize -1) & ~(blocksize - 1);
1768         if (start > end)
1769                 return 0;
1770
1771         lock_extent(tree, start, end, GFP_NOFS);
1772         wait_on_extent_writeback(tree, start, end);
1773         clear_extent_bit(tree, start, end,
1774                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
1775                          1, 1, GFP_NOFS);
1776         return 0;
1777 }
1778 EXPORT_SYMBOL(extent_invalidatepage);
1779
1780 /*
1781  * simple commit_write call, set_range_dirty is used to mark both
1782  * the pages and the extent records as dirty
1783  */
1784 int extent_commit_write(struct extent_map_tree *tree,
1785                         struct inode *inode, struct page *page,
1786                         unsigned from, unsigned to)
1787 {
1788         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1789
1790         set_page_extent_mapped(page);
1791         set_page_dirty(page);
1792
1793         if (pos > inode->i_size) {
1794                 i_size_write(inode, pos);
1795                 mark_inode_dirty(inode);
1796         }
1797         return 0;
1798 }
1799 EXPORT_SYMBOL(extent_commit_write);
1800
1801 int extent_prepare_write(struct extent_map_tree *tree,
1802                          struct inode *inode, struct page *page,
1803                          unsigned from, unsigned to, get_extent_t *get_extent)
1804 {
1805         u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
1806         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
1807         u64 block_start;
1808         u64 orig_block_start;
1809         u64 block_end;
1810         u64 cur_end;
1811         struct extent_map *em;
1812         unsigned blocksize = 1 << inode->i_blkbits;
1813         size_t page_offset = 0;
1814         size_t block_off_start;
1815         size_t block_off_end;
1816         int err = 0;
1817         int iocount = 0;
1818         int ret = 0;
1819         int isnew;
1820
1821         set_page_extent_mapped(page);
1822
1823         block_start = (page_start + from) & ~((u64)blocksize - 1);
1824         block_end = (page_start + to - 1) | (blocksize - 1);
1825         orig_block_start = block_start;
1826
1827         lock_extent(tree, page_start, page_end, GFP_NOFS);
1828         while(block_start <= block_end) {
1829                 em = get_extent(inode, page, page_offset, block_start,
1830                                 block_end, 1);
1831                 if (IS_ERR(em) || !em) {
1832                         goto err;
1833                 }
1834                 cur_end = min(block_end, em->end);
1835                 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
1836                 block_off_end = block_off_start + blocksize;
1837                 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
1838
1839                 if (!PageUptodate(page) && isnew &&
1840                     (block_off_end > to || block_off_start < from)) {
1841                         void *kaddr;
1842
1843                         kaddr = kmap_atomic(page, KM_USER0);
1844                         if (block_off_end > to)
1845                                 memset(kaddr + to, 0, block_off_end - to);
1846                         if (block_off_start < from)
1847                                 memset(kaddr + block_off_start, 0,
1848                                        from - block_off_start);
1849                         flush_dcache_page(page);
1850                         kunmap_atomic(kaddr, KM_USER0);
1851                 }
1852                 if (!isnew && !PageUptodate(page) &&
1853                     (block_off_end > to || block_off_start < from) &&
1854                     !test_range_bit(tree, block_start, cur_end,
1855                                     EXTENT_UPTODATE, 1)) {
1856                         u64 sector;
1857                         u64 extent_offset = block_start - em->start;
1858                         size_t iosize;
1859                         sector = (em->block_start + extent_offset) >> 9;
1860                         iosize = (cur_end - block_start + blocksize - 1) &
1861                                 ~((u64)blocksize - 1);
1862                         /*
1863                          * we've already got the extent locked, but we
1864                          * need to split the state such that our end_bio
1865                          * handler can clear the lock.
1866                          */
1867                         set_extent_bit(tree, block_start,
1868                                        block_start + iosize - 1,
1869                                        EXTENT_LOCKED, 0, NULL, GFP_NOFS);
1870                         ret = submit_extent_page(READ, tree, page,
1871                                          sector, iosize, page_offset, em->bdev,
1872                                          end_bio_extent_preparewrite);
1873                         iocount++;
1874                         block_start = block_start + iosize;
1875                 } else {
1876                         set_extent_uptodate(tree, block_start, cur_end,
1877                                             GFP_NOFS);
1878                         unlock_extent(tree, block_start, cur_end, GFP_NOFS);
1879                         block_start = cur_end + 1;
1880                 }
1881                 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
1882                 free_extent_map(em);
1883         }
1884         if (iocount) {
1885                 wait_extent_bit(tree, orig_block_start,
1886                                 block_end, EXTENT_LOCKED);
1887         }
1888         check_page_uptodate(tree, page);
1889 err:
1890         /* FIXME, zero out newly allocated blocks on error */
1891         return err;
1892 }
1893 EXPORT_SYMBOL(extent_prepare_write);
1894
1895 /*
1896  * a helper for releasepage.  As long as there are no locked extents
1897  * in the range corresponding to the page, both state records and extent
1898  * map records are removed
1899  */
1900 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
1901 {
1902         struct extent_map *em;
1903         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1904         u64 end = start + PAGE_CACHE_SIZE - 1;
1905         u64 orig_start = start;
1906         int ret = 1;
1907
1908         while (start <= end) {
1909                 em = lookup_extent_mapping(tree, start, end);
1910                 if (!em || IS_ERR(em))
1911                         break;
1912                 if (!test_range_bit(tree, em->start, em->end,
1913                                     EXTENT_LOCKED, 0)) {
1914                         remove_extent_mapping(tree, em);
1915                         /* once for the rb tree */
1916                         free_extent_map(em);
1917                 }
1918                 start = em->end + 1;
1919                 /* once for us */
1920                 free_extent_map(em);
1921         }
1922         if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
1923                 ret = 0;
1924         else
1925                 clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
1926                                  1, 1, GFP_NOFS);
1927         return ret;
1928 }
1929 EXPORT_SYMBOL(try_release_extent_mapping);
1930
1931 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
1932                 get_extent_t *get_extent)
1933 {
1934         struct inode *inode = mapping->host;
1935         u64 start = iblock << inode->i_blkbits;
1936         u64 end = start + (1 << inode->i_blkbits) - 1;
1937         sector_t sector = 0;
1938         struct extent_map *em;
1939
1940         em = get_extent(inode, NULL, 0, start, end, 0);
1941         if (!em || IS_ERR(em))
1942                 return 0;
1943
1944         if (em->block_start == EXTENT_MAP_INLINE ||
1945             em->block_start == EXTENT_MAP_HOLE)
1946                 goto out;
1947
1948         sector = (em->block_start + start - em->start) >> inode->i_blkbits;
1949 out:
1950         free_extent_map(em);
1951         return sector;
1952 }
1953
1954 static int add_lru(struct extent_map_tree *tree, struct extent_buffer *eb)
1955 {
1956         if (list_empty(&eb->lru)) {
1957                 extent_buffer_get(eb);
1958                 list_add(&eb->lru, &tree->buffer_lru);
1959                 tree->lru_size++;
1960                 if (tree->lru_size >= BUFFER_LRU_MAX) {
1961                         struct extent_buffer *rm;
1962                         rm = list_entry(tree->buffer_lru.prev,
1963                                         struct extent_buffer, lru);
1964                         tree->lru_size--;
1965                         list_del(&rm->lru);
1966                         free_extent_buffer(rm);
1967                 }
1968         } else
1969                 list_move(&eb->lru, &tree->buffer_lru);
1970         return 0;
1971 }
1972 static struct extent_buffer *find_lru(struct extent_map_tree *tree,
1973                                       u64 start, unsigned long len)
1974 {
1975         struct list_head *lru = &tree->buffer_lru;
1976         struct list_head *cur = lru->next;
1977         struct extent_buffer *eb;
1978
1979         if (list_empty(lru))
1980                 return NULL;
1981
1982         do {
1983                 eb = list_entry(cur, struct extent_buffer, lru);
1984                 if (eb->start == start && eb->len == len) {
1985                         extent_buffer_get(eb);
1986                         return eb;
1987                 }
1988                 cur = cur->next;
1989         } while (cur != lru);
1990         return NULL;
1991 }
1992
1993 static inline unsigned long num_extent_pages(u64 start, u64 len)
1994 {
1995         return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
1996                 (start >> PAGE_CACHE_SHIFT);
1997 }
1998
1999 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2000                                               unsigned long i)
2001 {
2002         struct page *p;
2003         struct address_space *mapping;
2004
2005         if (i == 0)
2006                 return eb->first_page;
2007         i += eb->start >> PAGE_CACHE_SHIFT;
2008         mapping = eb->first_page->mapping;
2009         read_lock_irq(&mapping->tree_lock);
2010         p = radix_tree_lookup(&mapping->page_tree, i);
2011         read_unlock_irq(&mapping->tree_lock);
2012         return p;
2013 }
2014
2015 static struct extent_buffer *__alloc_extent_buffer(struct extent_map_tree *tree,
2016                                                    u64 start,
2017                                                    unsigned long len,
2018                                                    gfp_t mask)
2019 {
2020         struct extent_buffer *eb = NULL;
2021
2022         spin_lock(&tree->lru_lock);
2023         eb = find_lru(tree, start, len);
2024         if (eb) {
2025                 goto lru_add;
2026         }
2027         spin_unlock(&tree->lru_lock);
2028
2029         if (eb) {
2030                 memset(eb, 0, sizeof(*eb));
2031         } else {
2032                 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2033         }
2034         INIT_LIST_HEAD(&eb->lru);
2035         eb->start = start;
2036         eb->len = len;
2037         atomic_set(&eb->refs, 1);
2038
2039         spin_lock(&tree->lru_lock);
2040 lru_add:
2041         add_lru(tree, eb);
2042         spin_unlock(&tree->lru_lock);
2043         return eb;
2044 }
2045
2046 static void __free_extent_buffer(struct extent_buffer *eb)
2047 {
2048         kmem_cache_free(extent_buffer_cache, eb);
2049 }
2050
2051 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
2052                                           u64 start, unsigned long len,
2053                                           struct page *page0,
2054                                           gfp_t mask)
2055 {
2056         unsigned long num_pages = num_extent_pages(start, len);
2057         unsigned long i;
2058         unsigned long index = start >> PAGE_CACHE_SHIFT;
2059         struct extent_buffer *eb;
2060         struct page *p;
2061         struct address_space *mapping = tree->mapping;
2062         int uptodate = 1;
2063
2064         eb = __alloc_extent_buffer(tree, start, len, mask);
2065         if (!eb || IS_ERR(eb))
2066                 return NULL;
2067
2068         if (eb->flags & EXTENT_BUFFER_FILLED)
2069                 return eb;
2070
2071         if (page0) {
2072                 eb->first_page = page0;
2073                 i = 1;
2074                 index++;
2075                 page_cache_get(page0);
2076                 mark_page_accessed(page0);
2077                 set_page_extent_mapped(page0);
2078                 set_page_private(page0, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2079                                  len << 2);
2080         } else {
2081                 i = 0;
2082         }
2083         for (; i < num_pages; i++, index++) {
2084                 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2085                 if (!p) {
2086                         WARN_ON(1);
2087                         /* make sure the free only frees the pages we've
2088                          * grabbed a reference on
2089                          */
2090                         eb->len = i << PAGE_CACHE_SHIFT;
2091                         eb->start &= ~((u64)PAGE_CACHE_SIZE - 1);
2092                         goto fail;
2093                 }
2094                 set_page_extent_mapped(p);
2095                 mark_page_accessed(p);
2096                 if (i == 0) {
2097                         eb->first_page = p;
2098                         set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2099                                          len << 2);
2100                 } else {
2101                         set_page_private(p, EXTENT_PAGE_PRIVATE);
2102                 }
2103                 if (!PageUptodate(p))
2104                         uptodate = 0;
2105                 unlock_page(p);
2106         }
2107         if (uptodate)
2108                 eb->flags |= EXTENT_UPTODATE;
2109         eb->flags |= EXTENT_BUFFER_FILLED;
2110         return eb;
2111 fail:
2112         free_extent_buffer(eb);
2113         return NULL;
2114 }
2115 EXPORT_SYMBOL(alloc_extent_buffer);
2116
2117 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
2118                                          u64 start, unsigned long len,
2119                                           gfp_t mask)
2120 {
2121         unsigned long num_pages = num_extent_pages(start, len);
2122         unsigned long i; unsigned long index = start >> PAGE_CACHE_SHIFT;
2123         struct extent_buffer *eb;
2124         struct page *p;
2125         struct address_space *mapping = tree->mapping;
2126         int uptodate = 1;
2127
2128         eb = __alloc_extent_buffer(tree, start, len, mask);
2129         if (!eb || IS_ERR(eb))
2130                 return NULL;
2131
2132         if (eb->flags & EXTENT_BUFFER_FILLED)
2133                 return eb;
2134
2135         for (i = 0; i < num_pages; i++, index++) {
2136                 p = find_lock_page(mapping, index);
2137                 if (!p) {
2138                         /* make sure the free only frees the pages we've
2139                          * grabbed a reference on
2140                          */
2141                         eb->len = i << PAGE_CACHE_SHIFT;
2142                         eb->start &= ~((u64)PAGE_CACHE_SIZE - 1);
2143                         goto fail;
2144                 }
2145                 set_page_extent_mapped(p);
2146                 mark_page_accessed(p);
2147
2148                 if (i == 0) {
2149                         eb->first_page = p;
2150                         set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2151                                          len << 2);
2152                 } else {
2153                         set_page_private(p, EXTENT_PAGE_PRIVATE);
2154                 }
2155
2156                 if (!PageUptodate(p))
2157                         uptodate = 0;
2158                 unlock_page(p);
2159         }
2160         if (uptodate)
2161                 eb->flags |= EXTENT_UPTODATE;
2162         eb->flags |= EXTENT_BUFFER_FILLED;
2163         return eb;
2164 fail:
2165         free_extent_buffer(eb);
2166         return NULL;
2167 }
2168 EXPORT_SYMBOL(find_extent_buffer);
2169
2170 void free_extent_buffer(struct extent_buffer *eb)
2171 {
2172         unsigned long i;
2173         unsigned long num_pages;
2174
2175         if (!eb)
2176                 return;
2177
2178         if (!atomic_dec_and_test(&eb->refs))
2179                 return;
2180
2181         num_pages = num_extent_pages(eb->start, eb->len);
2182
2183         for (i = 0; i < num_pages; i++) {
2184                 page_cache_release(extent_buffer_page(eb, i));
2185         }
2186         __free_extent_buffer(eb);
2187 }
2188 EXPORT_SYMBOL(free_extent_buffer);
2189
2190 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2191                               struct extent_buffer *eb)
2192 {
2193         int set;
2194         unsigned long i;
2195         unsigned long num_pages;
2196         struct page *page;
2197
2198         u64 start = eb->start;
2199         u64 end = start + eb->len - 1;
2200
2201         set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2202         num_pages = num_extent_pages(eb->start, eb->len);
2203
2204         for (i = 0; i < num_pages; i++) {
2205                 page = extent_buffer_page(eb, i);
2206                 lock_page(page);
2207                 /*
2208                  * if we're on the last page or the first page and the
2209                  * block isn't aligned on a page boundary, do extra checks
2210                  * to make sure we don't clean page that is partially dirty
2211                  */
2212                 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2213                     ((i == num_pages - 1) &&
2214                      ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2215                         start = (u64)page->index << PAGE_CACHE_SHIFT;
2216                         end  = start + PAGE_CACHE_SIZE - 1;
2217                         if (test_range_bit(tree, start, end,
2218                                            EXTENT_DIRTY, 0)) {
2219                                 unlock_page(page);
2220                                 continue;
2221                         }
2222                 }
2223                 clear_page_dirty_for_io(page);
2224                 unlock_page(page);
2225         }
2226         return 0;
2227 }
2228 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2229
2230 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2231                                     struct extent_buffer *eb)
2232 {
2233         return wait_on_extent_writeback(tree, eb->start,
2234                                         eb->start + eb->len - 1);
2235 }
2236 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2237
2238 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2239                              struct extent_buffer *eb)
2240 {
2241         unsigned long i;
2242         unsigned long num_pages;
2243
2244         num_pages = num_extent_pages(eb->start, eb->len);
2245         for (i = 0; i < num_pages; i++) {
2246                 struct page *page = extent_buffer_page(eb, i);
2247                 /* writepage may need to do something special for the
2248                  * first page, we have to make sure page->private is
2249                  * properly set.  releasepage may drop page->private
2250                  * on us if the page isn't already dirty.
2251                  */
2252                 if (i == 0) {
2253                         lock_page(page);
2254                         set_page_private(page,
2255                                          EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2256                                          eb->len << 2);
2257                 }
2258                 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2259                 if (i == 0)
2260                         unlock_page(page);
2261         }
2262         return set_extent_dirty(tree, eb->start,
2263                                 eb->start + eb->len - 1, GFP_NOFS);
2264 }
2265 EXPORT_SYMBOL(set_extent_buffer_dirty);
2266
2267 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2268                                 struct extent_buffer *eb)
2269 {
2270         unsigned long i;
2271         struct page *page;
2272         unsigned long num_pages;
2273
2274         num_pages = num_extent_pages(eb->start, eb->len);
2275
2276         set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2277                             GFP_NOFS);
2278         for (i = 0; i < num_pages; i++) {
2279                 page = extent_buffer_page(eb, i);
2280                 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2281                     ((i == num_pages - 1) &&
2282                      ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2283                         check_page_uptodate(tree, page);
2284                         continue;
2285                 }
2286                 SetPageUptodate(page);
2287         }
2288         return 0;
2289 }
2290 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2291
2292 int extent_buffer_uptodate(struct extent_map_tree *tree,
2293                              struct extent_buffer *eb)
2294 {
2295         if (eb->flags & EXTENT_UPTODATE)
2296                 return 1;
2297         return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2298                            EXTENT_UPTODATE, 1);
2299 }
2300 EXPORT_SYMBOL(extent_buffer_uptodate);
2301
2302 int read_extent_buffer_pages(struct extent_map_tree *tree,
2303                              struct extent_buffer *eb,
2304                              u64 start,
2305                              int wait)
2306 {
2307         unsigned long i;
2308         unsigned long start_i;
2309         struct page *page;
2310         int err;
2311         int ret = 0;
2312         unsigned long num_pages;
2313
2314         if (eb->flags & EXTENT_UPTODATE)
2315                 return 0;
2316
2317         if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2318                            EXTENT_UPTODATE, 1)) {
2319                 return 0;
2320         }
2321         if (start) {
2322                 WARN_ON(start < eb->start);
2323                 start_i = (start >> PAGE_CACHE_SHIFT) -
2324                         (eb->start >> PAGE_CACHE_SHIFT);
2325         } else {
2326                 start_i = 0;
2327         }
2328
2329         num_pages = num_extent_pages(eb->start, eb->len);
2330         for (i = start_i; i < num_pages; i++) {
2331                 page = extent_buffer_page(eb, i);
2332                 if (PageUptodate(page)) {
2333                         continue;
2334                 }
2335                 if (!wait) {
2336                         if (TestSetPageLocked(page)) {
2337                                 continue;
2338                         }
2339                 } else {
2340                         lock_page(page);
2341                 }
2342                 if (!PageUptodate(page)) {
2343                         err = page->mapping->a_ops->readpage(NULL, page);
2344                         if (err) {
2345                                 ret = err;
2346                         }
2347                 } else {
2348                         unlock_page(page);
2349                 }
2350         }
2351
2352         if (ret || !wait) {
2353                 return ret;
2354         }
2355
2356         for (i = start_i; i < num_pages; i++) {
2357                 page = extent_buffer_page(eb, i);
2358                 wait_on_page_locked(page);
2359                 if (!PageUptodate(page)) {
2360                         ret = -EIO;
2361                 }
2362         }
2363         if (!ret)
2364                 eb->flags |= EXTENT_UPTODATE;
2365         return ret;
2366 }
2367 EXPORT_SYMBOL(read_extent_buffer_pages);
2368
2369 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2370                         unsigned long start,
2371                         unsigned long len)
2372 {
2373         size_t cur;
2374         size_t offset;
2375         struct page *page;
2376         char *kaddr;
2377         char *dst = (char *)dstv;
2378         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2379         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2380         unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2381
2382         WARN_ON(start > eb->len);
2383         WARN_ON(start + len > eb->start + eb->len);
2384
2385         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2386
2387         while(len > 0) {
2388                 page = extent_buffer_page(eb, i);
2389                 if (!PageUptodate(page)) {
2390                         printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2391                         WARN_ON(1);
2392                 }
2393                 WARN_ON(!PageUptodate(page));
2394
2395                 cur = min(len, (PAGE_CACHE_SIZE - offset));
2396                 kaddr = kmap_atomic(page, KM_USER1);
2397                 memcpy(dst, kaddr + offset, cur);
2398                 kunmap_atomic(kaddr, KM_USER1);
2399
2400                 dst += cur;
2401                 len -= cur;
2402                 offset = 0;
2403                 i++;
2404         }
2405 }
2406 EXPORT_SYMBOL(read_extent_buffer);
2407
2408 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
2409                                unsigned long min_len, char **token, char **map,
2410                                unsigned long *map_start,
2411                                unsigned long *map_len, int km)
2412 {
2413         size_t offset = start & (PAGE_CACHE_SIZE - 1);
2414         char *kaddr;
2415         struct page *p;
2416         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2417         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2418         unsigned long end_i = (start_offset + start + min_len - 1) >>
2419                 PAGE_CACHE_SHIFT;
2420
2421         if (i != end_i)
2422                 return -EINVAL;
2423
2424         if (i == 0) {
2425                 offset = start_offset;
2426                 *map_start = 0;
2427         } else {
2428                 offset = 0;
2429                 *map_start = (i << PAGE_CACHE_SHIFT) - start_offset;
2430         }
2431         if (start + min_len > eb->len) {
2432 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
2433                 WARN_ON(1);
2434         }
2435
2436         p = extent_buffer_page(eb, i);
2437         WARN_ON(!PageUptodate(p));
2438         kaddr = kmap_atomic(p, km);
2439         *token = kaddr;
2440         *map = kaddr + offset;
2441         *map_len = PAGE_CACHE_SIZE - offset;
2442         return 0;
2443 }
2444 EXPORT_SYMBOL(map_private_extent_buffer);
2445
2446 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2447                       unsigned long min_len,
2448                       char **token, char **map,
2449                       unsigned long *map_start,
2450                       unsigned long *map_len, int km)
2451 {
2452         int err;
2453         int save = 0;
2454         if (eb->map_token) {
2455                 unmap_extent_buffer(eb, eb->map_token, km);
2456                 eb->map_token = NULL;
2457                 save = 1;
2458         }
2459         err = map_private_extent_buffer(eb, start, min_len, token, map,
2460                                        map_start, map_len, km);
2461         if (!err && save) {
2462                 eb->map_token = *token;
2463                 eb->kaddr = *map;
2464                 eb->map_start = *map_start;
2465                 eb->map_len = *map_len;
2466         }
2467         return err;
2468 }
2469 EXPORT_SYMBOL(map_extent_buffer);
2470
2471 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2472 {
2473         kunmap_atomic(token, km);
2474 }
2475 EXPORT_SYMBOL(unmap_extent_buffer);
2476
2477 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2478                           unsigned long start,
2479                           unsigned long len)
2480 {
2481         size_t cur;
2482         size_t offset;
2483         struct page *page;
2484         char *kaddr;
2485         char *ptr = (char *)ptrv;
2486         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2487         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2488         int ret = 0;
2489
2490         WARN_ON(start > eb->len);
2491         WARN_ON(start + len > eb->start + eb->len);
2492
2493         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2494
2495         while(len > 0) {
2496                 page = extent_buffer_page(eb, i);
2497                 WARN_ON(!PageUptodate(page));
2498
2499                 cur = min(len, (PAGE_CACHE_SIZE - offset));
2500
2501                 kaddr = kmap_atomic(page, KM_USER0);
2502                 ret = memcmp(ptr, kaddr + offset, cur);
2503                 kunmap_atomic(kaddr, KM_USER0);
2504                 if (ret)
2505                         break;
2506
2507                 ptr += cur;
2508                 len -= cur;
2509                 offset = 0;
2510                 i++;
2511         }
2512         return ret;
2513 }
2514 EXPORT_SYMBOL(memcmp_extent_buffer);
2515
2516 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2517                          unsigned long start, unsigned long len)
2518 {
2519         size_t cur;
2520         size_t offset;
2521         struct page *page;
2522         char *kaddr;
2523         char *src = (char *)srcv;
2524         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2525         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2526
2527         WARN_ON(start > eb->len);
2528         WARN_ON(start + len > eb->start + eb->len);
2529
2530         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2531
2532         while(len > 0) {
2533                 page = extent_buffer_page(eb, i);
2534                 WARN_ON(!PageUptodate(page));
2535
2536                 cur = min(len, PAGE_CACHE_SIZE - offset);
2537                 kaddr = kmap_atomic(page, KM_USER1);
2538                 memcpy(kaddr + offset, src, cur);
2539                 kunmap_atomic(kaddr, KM_USER1);
2540
2541                 src += cur;
2542                 len -= cur;
2543                 offset = 0;
2544                 i++;
2545         }
2546 }
2547 EXPORT_SYMBOL(write_extent_buffer);
2548
2549 void memset_extent_buffer(struct extent_buffer *eb, char c,
2550                           unsigned long start, unsigned long len)
2551 {
2552         size_t cur;
2553         size_t offset;
2554         struct page *page;
2555         char *kaddr;
2556         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2557         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2558
2559         WARN_ON(start > eb->len);
2560         WARN_ON(start + len > eb->start + eb->len);
2561
2562         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2563
2564         while(len > 0) {
2565                 page = extent_buffer_page(eb, i);
2566                 WARN_ON(!PageUptodate(page));
2567
2568                 cur = min(len, PAGE_CACHE_SIZE - offset);
2569                 kaddr = kmap_atomic(page, KM_USER0);
2570                 memset(kaddr + offset, c, cur);
2571                 kunmap_atomic(kaddr, KM_USER0);
2572
2573                 len -= cur;
2574                 offset = 0;
2575                 i++;
2576         }
2577 }
2578 EXPORT_SYMBOL(memset_extent_buffer);
2579
2580 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
2581                         unsigned long dst_offset, unsigned long src_offset,
2582                         unsigned long len)
2583 {
2584         u64 dst_len = dst->len;
2585         size_t cur;
2586         size_t offset;
2587         struct page *page;
2588         char *kaddr;
2589         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2590         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2591
2592         WARN_ON(src->len != dst_len);
2593
2594         offset = (start_offset + dst_offset) &
2595                 ((unsigned long)PAGE_CACHE_SIZE - 1);
2596
2597         while(len > 0) {
2598                 page = extent_buffer_page(dst, i);
2599                 WARN_ON(!PageUptodate(page));
2600
2601                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
2602
2603                 kaddr = kmap_atomic(page, KM_USER0);
2604                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
2605                 kunmap_atomic(kaddr, KM_USER0);
2606
2607                 src_offset += cur;
2608                 len -= cur;
2609                 offset = 0;
2610                 i++;
2611         }
2612 }
2613 EXPORT_SYMBOL(copy_extent_buffer);
2614
2615 static void move_pages(struct page *dst_page, struct page *src_page,
2616                        unsigned long dst_off, unsigned long src_off,
2617                        unsigned long len)
2618 {
2619         char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2620         if (dst_page == src_page) {
2621                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
2622         } else {
2623                 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
2624                 char *p = dst_kaddr + dst_off + len;
2625                 char *s = src_kaddr + src_off + len;
2626
2627                 while (len--)
2628                         *--p = *--s;
2629
2630                 kunmap_atomic(src_kaddr, KM_USER1);
2631         }
2632         kunmap_atomic(dst_kaddr, KM_USER0);
2633 }
2634
2635 static void copy_pages(struct page *dst_page, struct page *src_page,
2636                        unsigned long dst_off, unsigned long src_off,
2637                        unsigned long len)
2638 {
2639         char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2640         char *src_kaddr;
2641
2642         if (dst_page != src_page)
2643                 src_kaddr = kmap_atomic(src_page, KM_USER1);
2644         else
2645                 src_kaddr = dst_kaddr;
2646
2647         memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
2648         kunmap_atomic(dst_kaddr, KM_USER0);
2649         if (dst_page != src_page)
2650                 kunmap_atomic(src_kaddr, KM_USER1);
2651 }
2652
2653 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2654                            unsigned long src_offset, unsigned long len)
2655 {
2656         size_t cur;
2657         size_t dst_off_in_page;
2658         size_t src_off_in_page;
2659         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2660         unsigned long dst_i;
2661         unsigned long src_i;
2662
2663         if (src_offset + len > dst->len) {
2664                 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2665                        src_offset, len, dst->len);
2666                 BUG_ON(1);
2667         }
2668         if (dst_offset + len > dst->len) {
2669                 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2670                        dst_offset, len, dst->len);
2671                 BUG_ON(1);
2672         }
2673
2674         while(len > 0) {
2675                 dst_off_in_page = (start_offset + dst_offset) &
2676                         ((unsigned long)PAGE_CACHE_SIZE - 1);
2677                 src_off_in_page = (start_offset + src_offset) &
2678                         ((unsigned long)PAGE_CACHE_SIZE - 1);
2679
2680                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2681                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
2682
2683                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
2684                                                src_off_in_page));
2685                 cur = min_t(unsigned long, cur,
2686                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
2687
2688                 copy_pages(extent_buffer_page(dst, dst_i),
2689                            extent_buffer_page(dst, src_i),
2690                            dst_off_in_page, src_off_in_page, cur);
2691
2692                 src_offset += cur;
2693                 dst_offset += cur;
2694                 len -= cur;
2695         }
2696 }
2697 EXPORT_SYMBOL(memcpy_extent_buffer);
2698
2699 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2700                            unsigned long src_offset, unsigned long len)
2701 {
2702         size_t cur;
2703         size_t dst_off_in_page;
2704         size_t src_off_in_page;
2705         unsigned long dst_end = dst_offset + len - 1;
2706         unsigned long src_end = src_offset + len - 1;
2707         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2708         unsigned long dst_i;
2709         unsigned long src_i;
2710
2711         if (src_offset + len > dst->len) {
2712                 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2713                        src_offset, len, dst->len);
2714                 BUG_ON(1);
2715         }
2716         if (dst_offset + len > dst->len) {
2717                 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2718                        dst_offset, len, dst->len);
2719                 BUG_ON(1);
2720         }
2721         if (dst_offset < src_offset) {
2722                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
2723                 return;
2724         }
2725         while(len > 0) {
2726                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
2727                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
2728
2729                 dst_off_in_page = (start_offset + dst_end) &
2730                         ((unsigned long)PAGE_CACHE_SIZE - 1);
2731                 src_off_in_page = (start_offset + src_end) &
2732                         ((unsigned long)PAGE_CACHE_SIZE - 1);
2733
2734                 cur = min_t(unsigned long, len, src_off_in_page + 1);
2735                 cur = min(cur, dst_off_in_page + 1);
2736                 move_pages(extent_buffer_page(dst, dst_i),
2737                            extent_buffer_page(dst, src_i),
2738                            dst_off_in_page - cur + 1,
2739                            src_off_in_page - cur + 1, cur);
2740
2741                 dst_end -= cur;
2742                 src_end -= cur;
2743                 len -= cur;
2744         }
2745 }
2746 EXPORT_SYMBOL(memmove_extent_buffer);