Btrfs: Add fallocate support v2
[safe/jmp/linux-2.6] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20
21 /* temporary define until extent_map moves out of btrfs */
22 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
23                                        unsigned long extra_flags,
24                                        void (*ctor)(void *, struct kmem_cache *,
25                                                     unsigned long));
26
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29
30 static LIST_HEAD(buffers);
31 static LIST_HEAD(states);
32
33 #define LEAK_DEBUG 1
34 #ifdef LEAK_DEBUG
35 static spinlock_t leak_lock = SPIN_LOCK_UNLOCKED;
36 #endif
37
38 #define BUFFER_LRU_MAX 64
39
40 struct tree_entry {
41         u64 start;
42         u64 end;
43         struct rb_node rb_node;
44 };
45
46 struct extent_page_data {
47         struct bio *bio;
48         struct extent_io_tree *tree;
49         get_extent_t *get_extent;
50 };
51
52 int __init extent_io_init(void)
53 {
54         extent_state_cache = btrfs_cache_create("extent_state",
55                                             sizeof(struct extent_state), 0,
56                                             NULL);
57         if (!extent_state_cache)
58                 return -ENOMEM;
59
60         extent_buffer_cache = btrfs_cache_create("extent_buffers",
61                                             sizeof(struct extent_buffer), 0,
62                                             NULL);
63         if (!extent_buffer_cache)
64                 goto free_state_cache;
65         return 0;
66
67 free_state_cache:
68         kmem_cache_destroy(extent_state_cache);
69         return -ENOMEM;
70 }
71
72 void extent_io_exit(void)
73 {
74         struct extent_state *state;
75         struct extent_buffer *eb;
76
77         while (!list_empty(&states)) {
78                 state = list_entry(states.next, struct extent_state, leak_list);
79                 printk("state leak: start %Lu end %Lu state %lu in tree %p refs %d\n", state->start, state->end, state->state, state->tree, atomic_read(&state->refs));
80                 list_del(&state->leak_list);
81                 kmem_cache_free(extent_state_cache, state);
82
83         }
84
85         while (!list_empty(&buffers)) {
86                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
87                 printk("buffer leak start %Lu len %lu refs %d\n", eb->start, eb->len, atomic_read(&eb->refs));
88                 list_del(&eb->leak_list);
89                 kmem_cache_free(extent_buffer_cache, eb);
90         }
91         if (extent_state_cache)
92                 kmem_cache_destroy(extent_state_cache);
93         if (extent_buffer_cache)
94                 kmem_cache_destroy(extent_buffer_cache);
95 }
96
97 void extent_io_tree_init(struct extent_io_tree *tree,
98                           struct address_space *mapping, gfp_t mask)
99 {
100         tree->state.rb_node = NULL;
101         tree->buffer.rb_node = NULL;
102         tree->ops = NULL;
103         tree->dirty_bytes = 0;
104         spin_lock_init(&tree->lock);
105         spin_lock_init(&tree->buffer_lock);
106         tree->mapping = mapping;
107 }
108 EXPORT_SYMBOL(extent_io_tree_init);
109
110 struct extent_state *alloc_extent_state(gfp_t mask)
111 {
112         struct extent_state *state;
113 #ifdef LEAK_DEBUG
114         unsigned long flags;
115 #endif
116
117         state = kmem_cache_alloc(extent_state_cache, mask);
118         if (!state)
119                 return state;
120         state->state = 0;
121         state->private = 0;
122         state->tree = NULL;
123 #ifdef LEAK_DEBUG
124         spin_lock_irqsave(&leak_lock, flags);
125         list_add(&state->leak_list, &states);
126         spin_unlock_irqrestore(&leak_lock, flags);
127 #endif
128         atomic_set(&state->refs, 1);
129         init_waitqueue_head(&state->wq);
130         return state;
131 }
132 EXPORT_SYMBOL(alloc_extent_state);
133
134 void free_extent_state(struct extent_state *state)
135 {
136         if (!state)
137                 return;
138         if (atomic_dec_and_test(&state->refs)) {
139 #ifdef LEAK_DEBUG
140                 unsigned long flags;
141 #endif
142                 WARN_ON(state->tree);
143 #ifdef LEAK_DEBUG
144                 spin_lock_irqsave(&leak_lock, flags);
145                 list_del(&state->leak_list);
146                 spin_unlock_irqrestore(&leak_lock, flags);
147 #endif
148                 kmem_cache_free(extent_state_cache, state);
149         }
150 }
151 EXPORT_SYMBOL(free_extent_state);
152
153 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
154                                    struct rb_node *node)
155 {
156         struct rb_node ** p = &root->rb_node;
157         struct rb_node * parent = NULL;
158         struct tree_entry *entry;
159
160         while(*p) {
161                 parent = *p;
162                 entry = rb_entry(parent, struct tree_entry, rb_node);
163
164                 if (offset < entry->start)
165                         p = &(*p)->rb_left;
166                 else if (offset > entry->end)
167                         p = &(*p)->rb_right;
168                 else
169                         return parent;
170         }
171
172         entry = rb_entry(node, struct tree_entry, rb_node);
173         rb_link_node(node, parent, p);
174         rb_insert_color(node, root);
175         return NULL;
176 }
177
178 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
179                                      struct rb_node **prev_ret,
180                                      struct rb_node **next_ret)
181 {
182         struct rb_root *root = &tree->state;
183         struct rb_node * n = root->rb_node;
184         struct rb_node *prev = NULL;
185         struct rb_node *orig_prev = NULL;
186         struct tree_entry *entry;
187         struct tree_entry *prev_entry = NULL;
188
189         while(n) {
190                 entry = rb_entry(n, struct tree_entry, rb_node);
191                 prev = n;
192                 prev_entry = entry;
193
194                 if (offset < entry->start)
195                         n = n->rb_left;
196                 else if (offset > entry->end)
197                         n = n->rb_right;
198                 else {
199                         return n;
200                 }
201         }
202
203         if (prev_ret) {
204                 orig_prev = prev;
205                 while(prev && offset > prev_entry->end) {
206                         prev = rb_next(prev);
207                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
208                 }
209                 *prev_ret = prev;
210                 prev = orig_prev;
211         }
212
213         if (next_ret) {
214                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
215                 while(prev && offset < prev_entry->start) {
216                         prev = rb_prev(prev);
217                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
218                 }
219                 *next_ret = prev;
220         }
221         return NULL;
222 }
223
224 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
225                                           u64 offset)
226 {
227         struct rb_node *prev = NULL;
228         struct rb_node *ret;
229
230         ret = __etree_search(tree, offset, &prev, NULL);
231         if (!ret) {
232                 return prev;
233         }
234         return ret;
235 }
236
237 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree,
238                                           u64 offset, struct rb_node *node)
239 {
240         struct rb_root *root = &tree->buffer;
241         struct rb_node ** p = &root->rb_node;
242         struct rb_node * parent = NULL;
243         struct extent_buffer *eb;
244
245         while(*p) {
246                 parent = *p;
247                 eb = rb_entry(parent, struct extent_buffer, rb_node);
248
249                 if (offset < eb->start)
250                         p = &(*p)->rb_left;
251                 else if (offset > eb->start)
252                         p = &(*p)->rb_right;
253                 else
254                         return eb;
255         }
256
257         rb_link_node(node, parent, p);
258         rb_insert_color(node, root);
259         return NULL;
260 }
261
262 static struct extent_buffer *buffer_search(struct extent_io_tree *tree,
263                                            u64 offset)
264 {
265         struct rb_root *root = &tree->buffer;
266         struct rb_node * n = root->rb_node;
267         struct extent_buffer *eb;
268
269         while(n) {
270                 eb = rb_entry(n, struct extent_buffer, rb_node);
271                 if (offset < eb->start)
272                         n = n->rb_left;
273                 else if (offset > eb->start)
274                         n = n->rb_right;
275                 else
276                         return eb;
277         }
278         return NULL;
279 }
280
281 /*
282  * utility function to look for merge candidates inside a given range.
283  * Any extents with matching state are merged together into a single
284  * extent in the tree.  Extents with EXTENT_IO in their state field
285  * are not merged because the end_io handlers need to be able to do
286  * operations on them without sleeping (or doing allocations/splits).
287  *
288  * This should be called with the tree lock held.
289  */
290 static int merge_state(struct extent_io_tree *tree,
291                        struct extent_state *state)
292 {
293         struct extent_state *other;
294         struct rb_node *other_node;
295
296         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
297                 return 0;
298
299         other_node = rb_prev(&state->rb_node);
300         if (other_node) {
301                 other = rb_entry(other_node, struct extent_state, rb_node);
302                 if (other->end == state->start - 1 &&
303                     other->state == state->state) {
304                         state->start = other->start;
305                         other->tree = NULL;
306                         rb_erase(&other->rb_node, &tree->state);
307                         free_extent_state(other);
308                 }
309         }
310         other_node = rb_next(&state->rb_node);
311         if (other_node) {
312                 other = rb_entry(other_node, struct extent_state, rb_node);
313                 if (other->start == state->end + 1 &&
314                     other->state == state->state) {
315                         other->start = state->start;
316                         state->tree = NULL;
317                         rb_erase(&state->rb_node, &tree->state);
318                         free_extent_state(state);
319                 }
320         }
321         return 0;
322 }
323
324 static void set_state_cb(struct extent_io_tree *tree,
325                          struct extent_state *state,
326                          unsigned long bits)
327 {
328         if (tree->ops && tree->ops->set_bit_hook) {
329                 tree->ops->set_bit_hook(tree->mapping->host, state->start,
330                                         state->end, state->state, bits);
331         }
332 }
333
334 static void clear_state_cb(struct extent_io_tree *tree,
335                            struct extent_state *state,
336                            unsigned long bits)
337 {
338         if (tree->ops && tree->ops->set_bit_hook) {
339                 tree->ops->clear_bit_hook(tree->mapping->host, state->start,
340                                           state->end, state->state, bits);
341         }
342 }
343
344 /*
345  * insert an extent_state struct into the tree.  'bits' are set on the
346  * struct before it is inserted.
347  *
348  * This may return -EEXIST if the extent is already there, in which case the
349  * state struct is freed.
350  *
351  * The tree lock is not taken internally.  This is a utility function and
352  * probably isn't what you want to call (see set/clear_extent_bit).
353  */
354 static int insert_state(struct extent_io_tree *tree,
355                         struct extent_state *state, u64 start, u64 end,
356                         int bits)
357 {
358         struct rb_node *node;
359
360         if (end < start) {
361                 printk("end < start %Lu %Lu\n", end, start);
362                 WARN_ON(1);
363         }
364         if (bits & EXTENT_DIRTY)
365                 tree->dirty_bytes += end - start + 1;
366         set_state_cb(tree, state, bits);
367         state->state |= bits;
368         state->start = start;
369         state->end = end;
370         node = tree_insert(&tree->state, end, &state->rb_node);
371         if (node) {
372                 struct extent_state *found;
373                 found = rb_entry(node, struct extent_state, rb_node);
374                 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
375                 free_extent_state(state);
376                 return -EEXIST;
377         }
378         state->tree = tree;
379         merge_state(tree, state);
380         return 0;
381 }
382
383 /*
384  * split a given extent state struct in two, inserting the preallocated
385  * struct 'prealloc' as the newly created second half.  'split' indicates an
386  * offset inside 'orig' where it should be split.
387  *
388  * Before calling,
389  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
390  * are two extent state structs in the tree:
391  * prealloc: [orig->start, split - 1]
392  * orig: [ split, orig->end ]
393  *
394  * The tree locks are not taken by this function. They need to be held
395  * by the caller.
396  */
397 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
398                        struct extent_state *prealloc, u64 split)
399 {
400         struct rb_node *node;
401         prealloc->start = orig->start;
402         prealloc->end = split - 1;
403         prealloc->state = orig->state;
404         orig->start = split;
405
406         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
407         if (node) {
408                 struct extent_state *found;
409                 found = rb_entry(node, struct extent_state, rb_node);
410                 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
411                 free_extent_state(prealloc);
412                 return -EEXIST;
413         }
414         prealloc->tree = tree;
415         return 0;
416 }
417
418 /*
419  * utility function to clear some bits in an extent state struct.
420  * it will optionally wake up any one waiting on this state (wake == 1), or
421  * forcibly remove the state from the tree (delete == 1).
422  *
423  * If no bits are set on the state struct after clearing things, the
424  * struct is freed and removed from the tree
425  */
426 static int clear_state_bit(struct extent_io_tree *tree,
427                             struct extent_state *state, int bits, int wake,
428                             int delete)
429 {
430         int ret = state->state & bits;
431
432         if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
433                 u64 range = state->end - state->start + 1;
434                 WARN_ON(range > tree->dirty_bytes);
435                 tree->dirty_bytes -= range;
436         }
437         clear_state_cb(tree, state, bits);
438         state->state &= ~bits;
439         if (wake)
440                 wake_up(&state->wq);
441         if (delete || state->state == 0) {
442                 if (state->tree) {
443                         clear_state_cb(tree, state, state->state);
444                         rb_erase(&state->rb_node, &tree->state);
445                         state->tree = NULL;
446                         free_extent_state(state);
447                 } else {
448                         WARN_ON(1);
449                 }
450         } else {
451                 merge_state(tree, state);
452         }
453         return ret;
454 }
455
456 /*
457  * clear some bits on a range in the tree.  This may require splitting
458  * or inserting elements in the tree, so the gfp mask is used to
459  * indicate which allocations or sleeping are allowed.
460  *
461  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
462  * the given range from the tree regardless of state (ie for truncate).
463  *
464  * the range [start, end] is inclusive.
465  *
466  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
467  * bits were already set, or zero if none of the bits were already set.
468  */
469 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
470                      int bits, int wake, int delete, gfp_t mask)
471 {
472         struct extent_state *state;
473         struct extent_state *prealloc = NULL;
474         struct rb_node *node;
475         unsigned long flags;
476         int err;
477         int set = 0;
478
479 again:
480         if (!prealloc && (mask & __GFP_WAIT)) {
481                 prealloc = alloc_extent_state(mask);
482                 if (!prealloc)
483                         return -ENOMEM;
484         }
485
486         spin_lock_irqsave(&tree->lock, flags);
487         /*
488          * this search will find the extents that end after
489          * our range starts
490          */
491         node = tree_search(tree, start);
492         if (!node)
493                 goto out;
494         state = rb_entry(node, struct extent_state, rb_node);
495         if (state->start > end)
496                 goto out;
497         WARN_ON(state->end < start);
498
499         /*
500          *     | ---- desired range ---- |
501          *  | state | or
502          *  | ------------- state -------------- |
503          *
504          * We need to split the extent we found, and may flip
505          * bits on second half.
506          *
507          * If the extent we found extends past our range, we
508          * just split and search again.  It'll get split again
509          * the next time though.
510          *
511          * If the extent we found is inside our range, we clear
512          * the desired bit on it.
513          */
514
515         if (state->start < start) {
516                 if (!prealloc)
517                         prealloc = alloc_extent_state(GFP_ATOMIC);
518                 err = split_state(tree, state, prealloc, start);
519                 BUG_ON(err == -EEXIST);
520                 prealloc = NULL;
521                 if (err)
522                         goto out;
523                 if (state->end <= end) {
524                         start = state->end + 1;
525                         set |= clear_state_bit(tree, state, bits,
526                                         wake, delete);
527                 } else {
528                         start = state->start;
529                 }
530                 goto search_again;
531         }
532         /*
533          * | ---- desired range ---- |
534          *                        | state |
535          * We need to split the extent, and clear the bit
536          * on the first half
537          */
538         if (state->start <= end && state->end > end) {
539                 if (!prealloc)
540                         prealloc = alloc_extent_state(GFP_ATOMIC);
541                 err = split_state(tree, state, prealloc, end + 1);
542                 BUG_ON(err == -EEXIST);
543
544                 if (wake)
545                         wake_up(&state->wq);
546                 set |= clear_state_bit(tree, prealloc, bits,
547                                        wake, delete);
548                 prealloc = NULL;
549                 goto out;
550         }
551
552         start = state->end + 1;
553         set |= clear_state_bit(tree, state, bits, wake, delete);
554         goto search_again;
555
556 out:
557         spin_unlock_irqrestore(&tree->lock, flags);
558         if (prealloc)
559                 free_extent_state(prealloc);
560
561         return set;
562
563 search_again:
564         if (start > end)
565                 goto out;
566         spin_unlock_irqrestore(&tree->lock, flags);
567         if (mask & __GFP_WAIT)
568                 cond_resched();
569         goto again;
570 }
571 EXPORT_SYMBOL(clear_extent_bit);
572
573 static int wait_on_state(struct extent_io_tree *tree,
574                          struct extent_state *state)
575 {
576         DEFINE_WAIT(wait);
577         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
578         spin_unlock_irq(&tree->lock);
579         schedule();
580         spin_lock_irq(&tree->lock);
581         finish_wait(&state->wq, &wait);
582         return 0;
583 }
584
585 /*
586  * waits for one or more bits to clear on a range in the state tree.
587  * The range [start, end] is inclusive.
588  * The tree lock is taken by this function
589  */
590 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
591 {
592         struct extent_state *state;
593         struct rb_node *node;
594
595         spin_lock_irq(&tree->lock);
596 again:
597         while (1) {
598                 /*
599                  * this search will find all the extents that end after
600                  * our range starts
601                  */
602                 node = tree_search(tree, start);
603                 if (!node)
604                         break;
605
606                 state = rb_entry(node, struct extent_state, rb_node);
607
608                 if (state->start > end)
609                         goto out;
610
611                 if (state->state & bits) {
612                         start = state->start;
613                         atomic_inc(&state->refs);
614                         wait_on_state(tree, state);
615                         free_extent_state(state);
616                         goto again;
617                 }
618                 start = state->end + 1;
619
620                 if (start > end)
621                         break;
622
623                 if (need_resched()) {
624                         spin_unlock_irq(&tree->lock);
625                         cond_resched();
626                         spin_lock_irq(&tree->lock);
627                 }
628         }
629 out:
630         spin_unlock_irq(&tree->lock);
631         return 0;
632 }
633 EXPORT_SYMBOL(wait_extent_bit);
634
635 static void set_state_bits(struct extent_io_tree *tree,
636                            struct extent_state *state,
637                            int bits)
638 {
639         if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
640                 u64 range = state->end - state->start + 1;
641                 tree->dirty_bytes += range;
642         }
643         set_state_cb(tree, state, bits);
644         state->state |= bits;
645 }
646
647 /*
648  * set some bits on a range in the tree.  This may require allocations
649  * or sleeping, so the gfp mask is used to indicate what is allowed.
650  *
651  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
652  * range already has the desired bits set.  The start of the existing
653  * range is returned in failed_start in this case.
654  *
655  * [start, end] is inclusive
656  * This takes the tree lock.
657  */
658 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
659                    int exclusive, u64 *failed_start, gfp_t mask)
660 {
661         struct extent_state *state;
662         struct extent_state *prealloc = NULL;
663         struct rb_node *node;
664         unsigned long flags;
665         int err = 0;
666         int set;
667         u64 last_start;
668         u64 last_end;
669 again:
670         if (!prealloc && (mask & __GFP_WAIT)) {
671                 prealloc = alloc_extent_state(mask);
672                 if (!prealloc)
673                         return -ENOMEM;
674         }
675
676         spin_lock_irqsave(&tree->lock, flags);
677         /*
678          * this search will find all the extents that end after
679          * our range starts.
680          */
681         node = tree_search(tree, start);
682         if (!node) {
683                 err = insert_state(tree, prealloc, start, end, bits);
684                 prealloc = NULL;
685                 BUG_ON(err == -EEXIST);
686                 goto out;
687         }
688
689         state = rb_entry(node, struct extent_state, rb_node);
690         last_start = state->start;
691         last_end = state->end;
692
693         /*
694          * | ---- desired range ---- |
695          * | state |
696          *
697          * Just lock what we found and keep going
698          */
699         if (state->start == start && state->end <= end) {
700                 set = state->state & bits;
701                 if (set && exclusive) {
702                         *failed_start = state->start;
703                         err = -EEXIST;
704                         goto out;
705                 }
706                 set_state_bits(tree, state, bits);
707                 start = state->end + 1;
708                 merge_state(tree, state);
709                 goto search_again;
710         }
711
712         /*
713          *     | ---- desired range ---- |
714          * | state |
715          *   or
716          * | ------------- state -------------- |
717          *
718          * We need to split the extent we found, and may flip bits on
719          * second half.
720          *
721          * If the extent we found extends past our
722          * range, we just split and search again.  It'll get split
723          * again the next time though.
724          *
725          * If the extent we found is inside our range, we set the
726          * desired bit on it.
727          */
728         if (state->start < start) {
729                 set = state->state & bits;
730                 if (exclusive && set) {
731                         *failed_start = start;
732                         err = -EEXIST;
733                         goto out;
734                 }
735                 err = split_state(tree, state, prealloc, start);
736                 BUG_ON(err == -EEXIST);
737                 prealloc = NULL;
738                 if (err)
739                         goto out;
740                 if (state->end <= end) {
741                         set_state_bits(tree, state, bits);
742                         start = state->end + 1;
743                         merge_state(tree, state);
744                 } else {
745                         start = state->start;
746                 }
747                 goto search_again;
748         }
749         /*
750          * | ---- desired range ---- |
751          *     | state | or               | state |
752          *
753          * There's a hole, we need to insert something in it and
754          * ignore the extent we found.
755          */
756         if (state->start > start) {
757                 u64 this_end;
758                 if (end < last_start)
759                         this_end = end;
760                 else
761                         this_end = last_start -1;
762                 err = insert_state(tree, prealloc, start, this_end,
763                                    bits);
764                 prealloc = NULL;
765                 BUG_ON(err == -EEXIST);
766                 if (err)
767                         goto out;
768                 start = this_end + 1;
769                 goto search_again;
770         }
771         /*
772          * | ---- desired range ---- |
773          *                        | state |
774          * We need to split the extent, and set the bit
775          * on the first half
776          */
777         if (state->start <= end && state->end > end) {
778                 set = state->state & bits;
779                 if (exclusive && set) {
780                         *failed_start = start;
781                         err = -EEXIST;
782                         goto out;
783                 }
784                 err = split_state(tree, state, prealloc, end + 1);
785                 BUG_ON(err == -EEXIST);
786
787                 set_state_bits(tree, prealloc, bits);
788                 merge_state(tree, prealloc);
789                 prealloc = NULL;
790                 goto out;
791         }
792
793         goto search_again;
794
795 out:
796         spin_unlock_irqrestore(&tree->lock, flags);
797         if (prealloc)
798                 free_extent_state(prealloc);
799
800         return err;
801
802 search_again:
803         if (start > end)
804                 goto out;
805         spin_unlock_irqrestore(&tree->lock, flags);
806         if (mask & __GFP_WAIT)
807                 cond_resched();
808         goto again;
809 }
810 EXPORT_SYMBOL(set_extent_bit);
811
812 /* wrappers around set/clear extent bit */
813 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
814                      gfp_t mask)
815 {
816         return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
817                               mask);
818 }
819 EXPORT_SYMBOL(set_extent_dirty);
820
821 int set_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
822                        gfp_t mask)
823 {
824         return set_extent_bit(tree, start, end, EXTENT_ORDERED, 0, NULL, mask);
825 }
826 EXPORT_SYMBOL(set_extent_ordered);
827
828 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
829                     int bits, gfp_t mask)
830 {
831         return set_extent_bit(tree, start, end, bits, 0, NULL,
832                               mask);
833 }
834 EXPORT_SYMBOL(set_extent_bits);
835
836 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
837                       int bits, gfp_t mask)
838 {
839         return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
840 }
841 EXPORT_SYMBOL(clear_extent_bits);
842
843 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
844                      gfp_t mask)
845 {
846         return set_extent_bit(tree, start, end,
847                               EXTENT_DELALLOC | EXTENT_DIRTY,
848                               0, NULL, mask);
849 }
850 EXPORT_SYMBOL(set_extent_delalloc);
851
852 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
853                        gfp_t mask)
854 {
855         return clear_extent_bit(tree, start, end,
856                                 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
857 }
858 EXPORT_SYMBOL(clear_extent_dirty);
859
860 int clear_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
861                          gfp_t mask)
862 {
863         return clear_extent_bit(tree, start, end, EXTENT_ORDERED, 1, 0, mask);
864 }
865 EXPORT_SYMBOL(clear_extent_ordered);
866
867 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
868                      gfp_t mask)
869 {
870         return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
871                               mask);
872 }
873 EXPORT_SYMBOL(set_extent_new);
874
875 int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
876                        gfp_t mask)
877 {
878         return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
879 }
880 EXPORT_SYMBOL(clear_extent_new);
881
882 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
883                         gfp_t mask)
884 {
885         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
886                               mask);
887 }
888 EXPORT_SYMBOL(set_extent_uptodate);
889
890 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
891                           gfp_t mask)
892 {
893         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
894 }
895 EXPORT_SYMBOL(clear_extent_uptodate);
896
897 int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
898                          gfp_t mask)
899 {
900         return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
901                               0, NULL, mask);
902 }
903 EXPORT_SYMBOL(set_extent_writeback);
904
905 int clear_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
906                            gfp_t mask)
907 {
908         return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
909 }
910 EXPORT_SYMBOL(clear_extent_writeback);
911
912 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
913 {
914         return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
915 }
916 EXPORT_SYMBOL(wait_on_extent_writeback);
917
918 /*
919  * either insert or lock state struct between start and end use mask to tell
920  * us if waiting is desired.
921  */
922 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
923 {
924         int err;
925         u64 failed_start;
926         while (1) {
927                 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
928                                      &failed_start, mask);
929                 if (err == -EEXIST && (mask & __GFP_WAIT)) {
930                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
931                         start = failed_start;
932                 } else {
933                         break;
934                 }
935                 WARN_ON(start > end);
936         }
937         return err;
938 }
939 EXPORT_SYMBOL(lock_extent);
940
941 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
942                     gfp_t mask)
943 {
944         int err;
945         u64 failed_start;
946
947         err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
948                              &failed_start, mask);
949         if (err == -EEXIST) {
950                 if (failed_start > start)
951                         clear_extent_bit(tree, start, failed_start - 1,
952                                          EXTENT_LOCKED, 1, 0, mask);
953                 return 0;
954         }
955         return 1;
956 }
957 EXPORT_SYMBOL(try_lock_extent);
958
959 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
960                   gfp_t mask)
961 {
962         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
963 }
964 EXPORT_SYMBOL(unlock_extent);
965
966 /*
967  * helper function to set pages and extents in the tree dirty
968  */
969 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
970 {
971         unsigned long index = start >> PAGE_CACHE_SHIFT;
972         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
973         struct page *page;
974
975         while (index <= end_index) {
976                 page = find_get_page(tree->mapping, index);
977                 BUG_ON(!page);
978                 __set_page_dirty_nobuffers(page);
979                 page_cache_release(page);
980                 index++;
981         }
982         set_extent_dirty(tree, start, end, GFP_NOFS);
983         return 0;
984 }
985 EXPORT_SYMBOL(set_range_dirty);
986
987 /*
988  * helper function to set both pages and extents in the tree writeback
989  */
990 int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
991 {
992         unsigned long index = start >> PAGE_CACHE_SHIFT;
993         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
994         struct page *page;
995
996         while (index <= end_index) {
997                 page = find_get_page(tree->mapping, index);
998                 BUG_ON(!page);
999                 set_page_writeback(page);
1000                 page_cache_release(page);
1001                 index++;
1002         }
1003         set_extent_writeback(tree, start, end, GFP_NOFS);
1004         return 0;
1005 }
1006 EXPORT_SYMBOL(set_range_writeback);
1007
1008 /*
1009  * find the first offset in the io tree with 'bits' set. zero is
1010  * returned if we find something, and *start_ret and *end_ret are
1011  * set to reflect the state struct that was found.
1012  *
1013  * If nothing was found, 1 is returned, < 0 on error
1014  */
1015 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1016                           u64 *start_ret, u64 *end_ret, int bits)
1017 {
1018         struct rb_node *node;
1019         struct extent_state *state;
1020         int ret = 1;
1021
1022         spin_lock_irq(&tree->lock);
1023         /*
1024          * this search will find all the extents that end after
1025          * our range starts.
1026          */
1027         node = tree_search(tree, start);
1028         if (!node) {
1029                 goto out;
1030         }
1031
1032         while(1) {
1033                 state = rb_entry(node, struct extent_state, rb_node);
1034                 if (state->end >= start && (state->state & bits)) {
1035                         *start_ret = state->start;
1036                         *end_ret = state->end;
1037                         ret = 0;
1038                         break;
1039                 }
1040                 node = rb_next(node);
1041                 if (!node)
1042                         break;
1043         }
1044 out:
1045         spin_unlock_irq(&tree->lock);
1046         return ret;
1047 }
1048 EXPORT_SYMBOL(find_first_extent_bit);
1049
1050 /* find the first state struct with 'bits' set after 'start', and
1051  * return it.  tree->lock must be held.  NULL will returned if
1052  * nothing was found after 'start'
1053  */
1054 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1055                                                  u64 start, int bits)
1056 {
1057         struct rb_node *node;
1058         struct extent_state *state;
1059
1060         /*
1061          * this search will find all the extents that end after
1062          * our range starts.
1063          */
1064         node = tree_search(tree, start);
1065         if (!node) {
1066                 goto out;
1067         }
1068
1069         while(1) {
1070                 state = rb_entry(node, struct extent_state, rb_node);
1071                 if (state->end >= start && (state->state & bits)) {
1072                         return state;
1073                 }
1074                 node = rb_next(node);
1075                 if (!node)
1076                         break;
1077         }
1078 out:
1079         return NULL;
1080 }
1081 EXPORT_SYMBOL(find_first_extent_bit_state);
1082
1083 /*
1084  * find a contiguous range of bytes in the file marked as delalloc, not
1085  * more than 'max_bytes'.  start and end are used to return the range,
1086  *
1087  * 1 is returned if we find something, 0 if nothing was in the tree
1088  */
1089 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1090                                         u64 *start, u64 *end, u64 max_bytes)
1091 {
1092         struct rb_node *node;
1093         struct extent_state *state;
1094         u64 cur_start = *start;
1095         u64 found = 0;
1096         u64 total_bytes = 0;
1097
1098         spin_lock_irq(&tree->lock);
1099
1100         /*
1101          * this search will find all the extents that end after
1102          * our range starts.
1103          */
1104         node = tree_search(tree, cur_start);
1105         if (!node) {
1106                 if (!found)
1107                         *end = (u64)-1;
1108                 goto out;
1109         }
1110
1111         while(1) {
1112                 state = rb_entry(node, struct extent_state, rb_node);
1113                 if (found && (state->start != cur_start ||
1114                               (state->state & EXTENT_BOUNDARY))) {
1115                         goto out;
1116                 }
1117                 if (!(state->state & EXTENT_DELALLOC)) {
1118                         if (!found)
1119                                 *end = state->end;
1120                         goto out;
1121                 }
1122                 if (!found)
1123                         *start = state->start;
1124                 found++;
1125                 *end = state->end;
1126                 cur_start = state->end + 1;
1127                 node = rb_next(node);
1128                 if (!node)
1129                         break;
1130                 total_bytes += state->end - state->start + 1;
1131                 if (total_bytes >= max_bytes)
1132                         break;
1133         }
1134 out:
1135         spin_unlock_irq(&tree->lock);
1136         return found;
1137 }
1138
1139 static noinline int __unlock_for_delalloc(struct inode *inode,
1140                                           struct page *locked_page,
1141                                           u64 start, u64 end)
1142 {
1143         int ret;
1144         struct page *pages[16];
1145         unsigned long index = start >> PAGE_CACHE_SHIFT;
1146         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1147         unsigned long nr_pages = end_index - index + 1;
1148         int i;
1149
1150         if (index == locked_page->index && end_index == index)
1151                 return 0;
1152
1153         while(nr_pages > 0) {
1154                 ret = find_get_pages_contig(inode->i_mapping, index,
1155                                      min(nr_pages, ARRAY_SIZE(pages)), pages);
1156                 for (i = 0; i < ret; i++) {
1157                         if (pages[i] != locked_page)
1158                                 unlock_page(pages[i]);
1159                         page_cache_release(pages[i]);
1160                 }
1161                 nr_pages -= ret;
1162                 index += ret;
1163                 cond_resched();
1164         }
1165         return 0;
1166 }
1167
1168 static noinline int lock_delalloc_pages(struct inode *inode,
1169                                         struct page *locked_page,
1170                                         u64 delalloc_start,
1171                                         u64 delalloc_end)
1172 {
1173         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1174         unsigned long start_index = index;
1175         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1176         unsigned long pages_locked = 0;
1177         struct page *pages[16];
1178         unsigned long nrpages;
1179         int ret;
1180         int i;
1181
1182         /* the caller is responsible for locking the start index */
1183         if (index == locked_page->index && index == end_index)
1184                 return 0;
1185
1186         /* skip the page at the start index */
1187         nrpages = end_index - index + 1;
1188         while(nrpages > 0) {
1189                 ret = find_get_pages_contig(inode->i_mapping, index,
1190                                      min(nrpages, ARRAY_SIZE(pages)), pages);
1191                 if (ret == 0) {
1192                         ret = -EAGAIN;
1193                         goto done;
1194                 }
1195                 /* now we have an array of pages, lock them all */
1196                 for (i = 0; i < ret; i++) {
1197                         /*
1198                          * the caller is taking responsibility for
1199                          * locked_page
1200                          */
1201                         if (pages[i] != locked_page)
1202                                 lock_page(pages[i]);
1203                         page_cache_release(pages[i]);
1204                 }
1205                 pages_locked += ret;
1206                 nrpages -= ret;
1207                 index += ret;
1208                 cond_resched();
1209         }
1210         ret = 0;
1211 done:
1212         if (ret && pages_locked) {
1213                 __unlock_for_delalloc(inode, locked_page,
1214                               delalloc_start,
1215                               ((u64)(start_index + pages_locked - 1)) <<
1216                               PAGE_CACHE_SHIFT);
1217         }
1218         return ret;
1219 }
1220
1221 /*
1222  * find a contiguous range of bytes in the file marked as delalloc, not
1223  * more than 'max_bytes'.  start and end are used to return the range,
1224  *
1225  * 1 is returned if we find something, 0 if nothing was in the tree
1226  */
1227 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1228                                              struct extent_io_tree *tree,
1229                                              struct page *locked_page,
1230                                              u64 *start, u64 *end,
1231                                              u64 max_bytes)
1232 {
1233         u64 delalloc_start;
1234         u64 delalloc_end;
1235         u64 found;
1236         int ret;
1237         int loops = 0;
1238
1239 again:
1240         /* step one, find a bunch of delalloc bytes starting at start */
1241         delalloc_start = *start;
1242         delalloc_end = 0;
1243         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1244                                     max_bytes);
1245         if (!found) {
1246                 *start = delalloc_start;
1247                 *end = delalloc_end;
1248                 return found;
1249         }
1250
1251         /*
1252          * make sure to limit the number of pages we try to lock down
1253          * if we're looping.
1254          */
1255         if (delalloc_end + 1 - delalloc_start > max_bytes && loops) {
1256                 delalloc_end = (delalloc_start + PAGE_CACHE_SIZE - 1) &
1257                         ~((u64)PAGE_CACHE_SIZE - 1);
1258         }
1259         /* step two, lock all the pages after the page that has start */
1260         ret = lock_delalloc_pages(inode, locked_page,
1261                                   delalloc_start, delalloc_end);
1262         if (ret == -EAGAIN) {
1263                 /* some of the pages are gone, lets avoid looping by
1264                  * shortening the size of the delalloc range we're searching
1265                  */
1266                 if (!loops) {
1267                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1268                         max_bytes = PAGE_CACHE_SIZE - offset;
1269                         loops = 1;
1270                         goto again;
1271                 } else {
1272                         found = 0;
1273                         goto out_failed;
1274                 }
1275         }
1276         BUG_ON(ret);
1277
1278         /* step three, lock the state bits for the whole range */
1279         lock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1280
1281         /* then test to make sure it is all still delalloc */
1282         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1283                              EXTENT_DELALLOC, 1);
1284         if (!ret) {
1285                 unlock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1286                 __unlock_for_delalloc(inode, locked_page,
1287                               delalloc_start, delalloc_end);
1288                 cond_resched();
1289                 goto again;
1290         }
1291         *start = delalloc_start;
1292         *end = delalloc_end;
1293 out_failed:
1294         return found;
1295 }
1296
1297 int extent_clear_unlock_delalloc(struct inode *inode,
1298                                 struct extent_io_tree *tree,
1299                                 u64 start, u64 end, struct page *locked_page,
1300                                 int clear_dirty, int set_writeback,
1301                                 int end_writeback)
1302 {
1303         int ret;
1304         struct page *pages[16];
1305         unsigned long index = start >> PAGE_CACHE_SHIFT;
1306         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1307         unsigned long nr_pages = end_index - index + 1;
1308         int i;
1309         int clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC;
1310
1311         if (clear_dirty)
1312                 clear_bits |= EXTENT_DIRTY;
1313
1314         clear_extent_bit(tree, start, end, clear_bits, 1, 0, GFP_NOFS);
1315
1316         while(nr_pages > 0) {
1317                 ret = find_get_pages_contig(inode->i_mapping, index,
1318                                      min(nr_pages, ARRAY_SIZE(pages)), pages);
1319                 for (i = 0; i < ret; i++) {
1320                         if (pages[i] == locked_page) {
1321                                 page_cache_release(pages[i]);
1322                                 continue;
1323                         }
1324                         if (clear_dirty)
1325                                 clear_page_dirty_for_io(pages[i]);
1326                         if (set_writeback)
1327                                 set_page_writeback(pages[i]);
1328                         if (end_writeback)
1329                                 end_page_writeback(pages[i]);
1330                         unlock_page(pages[i]);
1331                         page_cache_release(pages[i]);
1332                 }
1333                 nr_pages -= ret;
1334                 index += ret;
1335                 cond_resched();
1336         }
1337         return 0;
1338 }
1339 EXPORT_SYMBOL(extent_clear_unlock_delalloc);
1340
1341 /*
1342  * count the number of bytes in the tree that have a given bit(s)
1343  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1344  * cached.  The total number found is returned.
1345  */
1346 u64 count_range_bits(struct extent_io_tree *tree,
1347                      u64 *start, u64 search_end, u64 max_bytes,
1348                      unsigned long bits)
1349 {
1350         struct rb_node *node;
1351         struct extent_state *state;
1352         u64 cur_start = *start;
1353         u64 total_bytes = 0;
1354         int found = 0;
1355
1356         if (search_end <= cur_start) {
1357                 printk("search_end %Lu start %Lu\n", search_end, cur_start);
1358                 WARN_ON(1);
1359                 return 0;
1360         }
1361
1362         spin_lock_irq(&tree->lock);
1363         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1364                 total_bytes = tree->dirty_bytes;
1365                 goto out;
1366         }
1367         /*
1368          * this search will find all the extents that end after
1369          * our range starts.
1370          */
1371         node = tree_search(tree, cur_start);
1372         if (!node) {
1373                 goto out;
1374         }
1375
1376         while(1) {
1377                 state = rb_entry(node, struct extent_state, rb_node);
1378                 if (state->start > search_end)
1379                         break;
1380                 if (state->end >= cur_start && (state->state & bits)) {
1381                         total_bytes += min(search_end, state->end) + 1 -
1382                                        max(cur_start, state->start);
1383                         if (total_bytes >= max_bytes)
1384                                 break;
1385                         if (!found) {
1386                                 *start = state->start;
1387                                 found = 1;
1388                         }
1389                 }
1390                 node = rb_next(node);
1391                 if (!node)
1392                         break;
1393         }
1394 out:
1395         spin_unlock_irq(&tree->lock);
1396         return total_bytes;
1397 }
1398 /*
1399  * helper function to lock both pages and extents in the tree.
1400  * pages must be locked first.
1401  */
1402 int lock_range(struct extent_io_tree *tree, u64 start, u64 end)
1403 {
1404         unsigned long index = start >> PAGE_CACHE_SHIFT;
1405         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1406         struct page *page;
1407         int err;
1408
1409         while (index <= end_index) {
1410                 page = grab_cache_page(tree->mapping, index);
1411                 if (!page) {
1412                         err = -ENOMEM;
1413                         goto failed;
1414                 }
1415                 if (IS_ERR(page)) {
1416                         err = PTR_ERR(page);
1417                         goto failed;
1418                 }
1419                 index++;
1420         }
1421         lock_extent(tree, start, end, GFP_NOFS);
1422         return 0;
1423
1424 failed:
1425         /*
1426          * we failed above in getting the page at 'index', so we undo here
1427          * up to but not including the page at 'index'
1428          */
1429         end_index = index;
1430         index = start >> PAGE_CACHE_SHIFT;
1431         while (index < end_index) {
1432                 page = find_get_page(tree->mapping, index);
1433                 unlock_page(page);
1434                 page_cache_release(page);
1435                 index++;
1436         }
1437         return err;
1438 }
1439 EXPORT_SYMBOL(lock_range);
1440
1441 /*
1442  * helper function to unlock both pages and extents in the tree.
1443  */
1444 int unlock_range(struct extent_io_tree *tree, u64 start, u64 end)
1445 {
1446         unsigned long index = start >> PAGE_CACHE_SHIFT;
1447         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1448         struct page *page;
1449
1450         while (index <= end_index) {
1451                 page = find_get_page(tree->mapping, index);
1452                 unlock_page(page);
1453                 page_cache_release(page);
1454                 index++;
1455         }
1456         unlock_extent(tree, start, end, GFP_NOFS);
1457         return 0;
1458 }
1459 EXPORT_SYMBOL(unlock_range);
1460
1461 /*
1462  * set the private field for a given byte offset in the tree.  If there isn't
1463  * an extent_state there already, this does nothing.
1464  */
1465 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1466 {
1467         struct rb_node *node;
1468         struct extent_state *state;
1469         int ret = 0;
1470
1471         spin_lock_irq(&tree->lock);
1472         /*
1473          * this search will find all the extents that end after
1474          * our range starts.
1475          */
1476         node = tree_search(tree, start);
1477         if (!node) {
1478                 ret = -ENOENT;
1479                 goto out;
1480         }
1481         state = rb_entry(node, struct extent_state, rb_node);
1482         if (state->start != start) {
1483                 ret = -ENOENT;
1484                 goto out;
1485         }
1486         state->private = private;
1487 out:
1488         spin_unlock_irq(&tree->lock);
1489         return ret;
1490 }
1491
1492 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1493 {
1494         struct rb_node *node;
1495         struct extent_state *state;
1496         int ret = 0;
1497
1498         spin_lock_irq(&tree->lock);
1499         /*
1500          * this search will find all the extents that end after
1501          * our range starts.
1502          */
1503         node = tree_search(tree, start);
1504         if (!node) {
1505                 ret = -ENOENT;
1506                 goto out;
1507         }
1508         state = rb_entry(node, struct extent_state, rb_node);
1509         if (state->start != start) {
1510                 ret = -ENOENT;
1511                 goto out;
1512         }
1513         *private = state->private;
1514 out:
1515         spin_unlock_irq(&tree->lock);
1516         return ret;
1517 }
1518
1519 /*
1520  * searches a range in the state tree for a given mask.
1521  * If 'filled' == 1, this returns 1 only if every extent in the tree
1522  * has the bits set.  Otherwise, 1 is returned if any bit in the
1523  * range is found set.
1524  */
1525 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1526                    int bits, int filled)
1527 {
1528         struct extent_state *state = NULL;
1529         struct rb_node *node;
1530         int bitset = 0;
1531         unsigned long flags;
1532
1533         spin_lock_irqsave(&tree->lock, flags);
1534         node = tree_search(tree, start);
1535         while (node && start <= end) {
1536                 state = rb_entry(node, struct extent_state, rb_node);
1537
1538                 if (filled && state->start > start) {
1539                         bitset = 0;
1540                         break;
1541                 }
1542
1543                 if (state->start > end)
1544                         break;
1545
1546                 if (state->state & bits) {
1547                         bitset = 1;
1548                         if (!filled)
1549                                 break;
1550                 } else if (filled) {
1551                         bitset = 0;
1552                         break;
1553                 }
1554                 start = state->end + 1;
1555                 if (start > end)
1556                         break;
1557                 node = rb_next(node);
1558                 if (!node) {
1559                         if (filled)
1560                                 bitset = 0;
1561                         break;
1562                 }
1563         }
1564         spin_unlock_irqrestore(&tree->lock, flags);
1565         return bitset;
1566 }
1567 EXPORT_SYMBOL(test_range_bit);
1568
1569 /*
1570  * helper function to set a given page up to date if all the
1571  * extents in the tree for that page are up to date
1572  */
1573 static int check_page_uptodate(struct extent_io_tree *tree,
1574                                struct page *page)
1575 {
1576         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1577         u64 end = start + PAGE_CACHE_SIZE - 1;
1578         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1579                 SetPageUptodate(page);
1580         return 0;
1581 }
1582
1583 /*
1584  * helper function to unlock a page if all the extents in the tree
1585  * for that page are unlocked
1586  */
1587 static int check_page_locked(struct extent_io_tree *tree,
1588                              struct page *page)
1589 {
1590         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1591         u64 end = start + PAGE_CACHE_SIZE - 1;
1592         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1593                 unlock_page(page);
1594         return 0;
1595 }
1596
1597 /*
1598  * helper function to end page writeback if all the extents
1599  * in the tree for that page are done with writeback
1600  */
1601 static int check_page_writeback(struct extent_io_tree *tree,
1602                              struct page *page)
1603 {
1604         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1605         u64 end = start + PAGE_CACHE_SIZE - 1;
1606         if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1607                 end_page_writeback(page);
1608         return 0;
1609 }
1610
1611 /* lots and lots of room for performance fixes in the end_bio funcs */
1612
1613 /*
1614  * after a writepage IO is done, we need to:
1615  * clear the uptodate bits on error
1616  * clear the writeback bits in the extent tree for this IO
1617  * end_page_writeback if the page has no more pending IO
1618  *
1619  * Scheduling is not allowed, so the extent state tree is expected
1620  * to have one and only one object corresponding to this IO.
1621  */
1622 static void end_bio_extent_writepage(struct bio *bio, int err)
1623 {
1624         int uptodate = err == 0;
1625         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1626         struct extent_io_tree *tree;
1627         u64 start;
1628         u64 end;
1629         int whole_page;
1630         int ret;
1631
1632         do {
1633                 struct page *page = bvec->bv_page;
1634                 tree = &BTRFS_I(page->mapping->host)->io_tree;
1635
1636                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1637                          bvec->bv_offset;
1638                 end = start + bvec->bv_len - 1;
1639
1640                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1641                         whole_page = 1;
1642                 else
1643                         whole_page = 0;
1644
1645                 if (--bvec >= bio->bi_io_vec)
1646                         prefetchw(&bvec->bv_page->flags);
1647                 if (tree->ops && tree->ops->writepage_end_io_hook) {
1648                         ret = tree->ops->writepage_end_io_hook(page, start,
1649                                                        end, NULL, uptodate);
1650                         if (ret)
1651                                 uptodate = 0;
1652                 }
1653
1654                 if (!uptodate && tree->ops &&
1655                     tree->ops->writepage_io_failed_hook) {
1656                         ret = tree->ops->writepage_io_failed_hook(bio, page,
1657                                                          start, end, NULL);
1658                         if (ret == 0) {
1659                                 uptodate = (err == 0);
1660                                 continue;
1661                         }
1662                 }
1663
1664                 if (!uptodate) {
1665                         clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1666                         ClearPageUptodate(page);
1667                         SetPageError(page);
1668                 }
1669
1670                 clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1671
1672                 if (whole_page)
1673                         end_page_writeback(page);
1674                 else
1675                         check_page_writeback(tree, page);
1676         } while (bvec >= bio->bi_io_vec);
1677
1678         bio_put(bio);
1679 }
1680
1681 /*
1682  * after a readpage IO is done, we need to:
1683  * clear the uptodate bits on error
1684  * set the uptodate bits if things worked
1685  * set the page up to date if all extents in the tree are uptodate
1686  * clear the lock bit in the extent tree
1687  * unlock the page if there are no other extents locked for it
1688  *
1689  * Scheduling is not allowed, so the extent state tree is expected
1690  * to have one and only one object corresponding to this IO.
1691  */
1692 static void end_bio_extent_readpage(struct bio *bio, int err)
1693 {
1694         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1695         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1696         struct extent_io_tree *tree;
1697         u64 start;
1698         u64 end;
1699         int whole_page;
1700         int ret;
1701
1702         do {
1703                 struct page *page = bvec->bv_page;
1704                 tree = &BTRFS_I(page->mapping->host)->io_tree;
1705
1706                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1707                         bvec->bv_offset;
1708                 end = start + bvec->bv_len - 1;
1709
1710                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1711                         whole_page = 1;
1712                 else
1713                         whole_page = 0;
1714
1715                 if (--bvec >= bio->bi_io_vec)
1716                         prefetchw(&bvec->bv_page->flags);
1717
1718                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1719                         ret = tree->ops->readpage_end_io_hook(page, start, end,
1720                                                               NULL);
1721                         if (ret)
1722                                 uptodate = 0;
1723                 }
1724                 if (!uptodate && tree->ops &&
1725                     tree->ops->readpage_io_failed_hook) {
1726                         ret = tree->ops->readpage_io_failed_hook(bio, page,
1727                                                          start, end, NULL);
1728                         if (ret == 0) {
1729                                 uptodate =
1730                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
1731                                 continue;
1732                         }
1733                 }
1734
1735                 if (uptodate)
1736                         set_extent_uptodate(tree, start, end,
1737                                             GFP_ATOMIC);
1738                 unlock_extent(tree, start, end, GFP_ATOMIC);
1739
1740                 if (whole_page) {
1741                         if (uptodate) {
1742                                 SetPageUptodate(page);
1743                         } else {
1744                                 ClearPageUptodate(page);
1745                                 SetPageError(page);
1746                         }
1747                         unlock_page(page);
1748                 } else {
1749                         if (uptodate) {
1750                                 check_page_uptodate(tree, page);
1751                         } else {
1752                                 ClearPageUptodate(page);
1753                                 SetPageError(page);
1754                         }
1755                         check_page_locked(tree, page);
1756                 }
1757         } while (bvec >= bio->bi_io_vec);
1758
1759         bio_put(bio);
1760 }
1761
1762 /*
1763  * IO done from prepare_write is pretty simple, we just unlock
1764  * the structs in the extent tree when done, and set the uptodate bits
1765  * as appropriate.
1766  */
1767 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1768 {
1769         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1770         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1771         struct extent_io_tree *tree;
1772         u64 start;
1773         u64 end;
1774
1775         do {
1776                 struct page *page = bvec->bv_page;
1777                 tree = &BTRFS_I(page->mapping->host)->io_tree;
1778
1779                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1780                         bvec->bv_offset;
1781                 end = start + bvec->bv_len - 1;
1782
1783                 if (--bvec >= bio->bi_io_vec)
1784                         prefetchw(&bvec->bv_page->flags);
1785
1786                 if (uptodate) {
1787                         set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1788                 } else {
1789                         ClearPageUptodate(page);
1790                         SetPageError(page);
1791                 }
1792
1793                 unlock_extent(tree, start, end, GFP_ATOMIC);
1794
1795         } while (bvec >= bio->bi_io_vec);
1796
1797         bio_put(bio);
1798 }
1799
1800 static struct bio *
1801 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1802                  gfp_t gfp_flags)
1803 {
1804         struct bio *bio;
1805
1806         bio = bio_alloc(gfp_flags, nr_vecs);
1807
1808         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1809                 while (!bio && (nr_vecs /= 2))
1810                         bio = bio_alloc(gfp_flags, nr_vecs);
1811         }
1812
1813         if (bio) {
1814                 bio->bi_size = 0;
1815                 bio->bi_bdev = bdev;
1816                 bio->bi_sector = first_sector;
1817         }
1818         return bio;
1819 }
1820
1821 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1822                           unsigned long bio_flags)
1823 {
1824         int ret = 0;
1825         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1826         struct page *page = bvec->bv_page;
1827         struct extent_io_tree *tree = bio->bi_private;
1828         u64 start;
1829         u64 end;
1830
1831         start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1832         end = start + bvec->bv_len - 1;
1833
1834         bio->bi_private = NULL;
1835
1836         bio_get(bio);
1837
1838         if (tree->ops && tree->ops->submit_bio_hook)
1839                 tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1840                                            mirror_num, bio_flags);
1841         else
1842                 submit_bio(rw, bio);
1843         if (bio_flagged(bio, BIO_EOPNOTSUPP))
1844                 ret = -EOPNOTSUPP;
1845         bio_put(bio);
1846         return ret;
1847 }
1848
1849 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1850                               struct page *page, sector_t sector,
1851                               size_t size, unsigned long offset,
1852                               struct block_device *bdev,
1853                               struct bio **bio_ret,
1854                               unsigned long max_pages,
1855                               bio_end_io_t end_io_func,
1856                               int mirror_num,
1857                               unsigned long prev_bio_flags,
1858                               unsigned long bio_flags)
1859 {
1860         int ret = 0;
1861         struct bio *bio;
1862         int nr;
1863         int contig = 0;
1864         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1865         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1866         size_t page_size = min(size, PAGE_CACHE_SIZE);
1867
1868         if (bio_ret && *bio_ret) {
1869                 bio = *bio_ret;
1870                 if (old_compressed)
1871                         contig = bio->bi_sector == sector;
1872                 else
1873                         contig = bio->bi_sector + (bio->bi_size >> 9) ==
1874                                 sector;
1875
1876                 if (prev_bio_flags != bio_flags || !contig ||
1877                     (tree->ops && tree->ops->merge_bio_hook &&
1878                      tree->ops->merge_bio_hook(page, offset, page_size, bio,
1879                                                bio_flags)) ||
1880                     bio_add_page(bio, page, page_size, offset) < page_size) {
1881                         ret = submit_one_bio(rw, bio, mirror_num,
1882                                              prev_bio_flags);
1883                         bio = NULL;
1884                 } else {
1885                         return 0;
1886                 }
1887         }
1888         if (this_compressed)
1889                 nr = BIO_MAX_PAGES;
1890         else
1891                 nr = bio_get_nr_vecs(bdev);
1892
1893         bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1894         if (!bio) {
1895                 printk("failed to allocate bio nr %d\n", nr);
1896         }
1897
1898         bio_add_page(bio, page, page_size, offset);
1899         bio->bi_end_io = end_io_func;
1900         bio->bi_private = tree;
1901
1902         if (bio_ret) {
1903                 *bio_ret = bio;
1904         } else {
1905                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1906         }
1907
1908         return ret;
1909 }
1910
1911 void set_page_extent_mapped(struct page *page)
1912 {
1913         if (!PagePrivate(page)) {
1914                 SetPagePrivate(page);
1915                 page_cache_get(page);
1916                 set_page_private(page, EXTENT_PAGE_PRIVATE);
1917         }
1918 }
1919
1920 void set_page_extent_head(struct page *page, unsigned long len)
1921 {
1922         set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1923 }
1924
1925 /*
1926  * basic readpage implementation.  Locked extent state structs are inserted
1927  * into the tree that are removed when the IO is done (by the end_io
1928  * handlers)
1929  */
1930 static int __extent_read_full_page(struct extent_io_tree *tree,
1931                                    struct page *page,
1932                                    get_extent_t *get_extent,
1933                                    struct bio **bio, int mirror_num,
1934                                    unsigned long *bio_flags)
1935 {
1936         struct inode *inode = page->mapping->host;
1937         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1938         u64 page_end = start + PAGE_CACHE_SIZE - 1;
1939         u64 end;
1940         u64 cur = start;
1941         u64 extent_offset;
1942         u64 last_byte = i_size_read(inode);
1943         u64 block_start;
1944         u64 cur_end;
1945         sector_t sector;
1946         struct extent_map *em;
1947         struct block_device *bdev;
1948         int ret;
1949         int nr = 0;
1950         size_t page_offset = 0;
1951         size_t iosize;
1952         size_t disk_io_size;
1953         size_t blocksize = inode->i_sb->s_blocksize;
1954         unsigned long this_bio_flag = 0;
1955
1956         set_page_extent_mapped(page);
1957
1958         end = page_end;
1959         lock_extent(tree, start, end, GFP_NOFS);
1960
1961         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1962                 char *userpage;
1963                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
1964
1965                 if (zero_offset) {
1966                         iosize = PAGE_CACHE_SIZE - zero_offset;
1967                         userpage = kmap_atomic(page, KM_USER0);
1968                         memset(userpage + zero_offset, 0, iosize);
1969                         flush_dcache_page(page);
1970                         kunmap_atomic(userpage, KM_USER0);
1971                 }
1972         }
1973         while (cur <= end) {
1974                 if (cur >= last_byte) {
1975                         char *userpage;
1976                         iosize = PAGE_CACHE_SIZE - page_offset;
1977                         userpage = kmap_atomic(page, KM_USER0);
1978                         memset(userpage + page_offset, 0, iosize);
1979                         flush_dcache_page(page);
1980                         kunmap_atomic(userpage, KM_USER0);
1981                         set_extent_uptodate(tree, cur, cur + iosize - 1,
1982                                             GFP_NOFS);
1983                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1984                         break;
1985                 }
1986                 em = get_extent(inode, page, page_offset, cur,
1987                                 end - cur + 1, 0);
1988                 if (IS_ERR(em) || !em) {
1989                         SetPageError(page);
1990                         unlock_extent(tree, cur, end, GFP_NOFS);
1991                         break;
1992                 }
1993                 extent_offset = cur - em->start;
1994                 if (extent_map_end(em) <= cur) {
1995 printk("bad mapping em [%Lu %Lu] cur %Lu\n", em->start, extent_map_end(em), cur);
1996                 }
1997                 BUG_ON(extent_map_end(em) <= cur);
1998                 if (end < cur) {
1999 printk("2bad mapping end %Lu cur %Lu\n", end, cur);
2000                 }
2001                 BUG_ON(end < cur);
2002
2003                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2004                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2005
2006                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2007                 cur_end = min(extent_map_end(em) - 1, end);
2008                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2009                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2010                         disk_io_size = em->block_len;
2011                         sector = em->block_start >> 9;
2012                 } else {
2013                         sector = (em->block_start + extent_offset) >> 9;
2014                         disk_io_size = iosize;
2015                 }
2016                 bdev = em->bdev;
2017                 block_start = em->block_start;
2018                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2019                         block_start = EXTENT_MAP_HOLE;
2020                 free_extent_map(em);
2021                 em = NULL;
2022
2023                 /* we've found a hole, just zero and go on */
2024                 if (block_start == EXTENT_MAP_HOLE) {
2025                         char *userpage;
2026                         userpage = kmap_atomic(page, KM_USER0);
2027                         memset(userpage + page_offset, 0, iosize);
2028                         flush_dcache_page(page);
2029                         kunmap_atomic(userpage, KM_USER0);
2030
2031                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2032                                             GFP_NOFS);
2033                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2034                         cur = cur + iosize;
2035                         page_offset += iosize;
2036                         continue;
2037                 }
2038                 /* the get_extent function already copied into the page */
2039                 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
2040                         check_page_uptodate(tree, page);
2041                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2042                         cur = cur + iosize;
2043                         page_offset += iosize;
2044                         continue;
2045                 }
2046                 /* we have an inline extent but it didn't get marked up
2047                  * to date.  Error out
2048                  */
2049                 if (block_start == EXTENT_MAP_INLINE) {
2050                         SetPageError(page);
2051                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2052                         cur = cur + iosize;
2053                         page_offset += iosize;
2054                         continue;
2055                 }
2056
2057                 ret = 0;
2058                 if (tree->ops && tree->ops->readpage_io_hook) {
2059                         ret = tree->ops->readpage_io_hook(page, cur,
2060                                                           cur + iosize - 1);
2061                 }
2062                 if (!ret) {
2063                         unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2064                         pnr -= page->index;
2065                         ret = submit_extent_page(READ, tree, page,
2066                                          sector, disk_io_size, page_offset,
2067                                          bdev, bio, pnr,
2068                                          end_bio_extent_readpage, mirror_num,
2069                                          *bio_flags,
2070                                          this_bio_flag);
2071                         nr++;
2072                         *bio_flags = this_bio_flag;
2073                 }
2074                 if (ret)
2075                         SetPageError(page);
2076                 cur = cur + iosize;
2077                 page_offset += iosize;
2078         }
2079         if (!nr) {
2080                 if (!PageError(page))
2081                         SetPageUptodate(page);
2082                 unlock_page(page);
2083         }
2084         return 0;
2085 }
2086
2087 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2088                             get_extent_t *get_extent)
2089 {
2090         struct bio *bio = NULL;
2091         unsigned long bio_flags = 0;
2092         int ret;
2093
2094         ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2095                                       &bio_flags);
2096         if (bio)
2097                 submit_one_bio(READ, bio, 0, bio_flags);
2098         return ret;
2099 }
2100 EXPORT_SYMBOL(extent_read_full_page);
2101
2102 /*
2103  * the writepage semantics are similar to regular writepage.  extent
2104  * records are inserted to lock ranges in the tree, and as dirty areas
2105  * are found, they are marked writeback.  Then the lock bits are removed
2106  * and the end_io handler clears the writeback ranges
2107  */
2108 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2109                               void *data)
2110 {
2111         struct inode *inode = page->mapping->host;
2112         struct extent_page_data *epd = data;
2113         struct extent_io_tree *tree = epd->tree;
2114         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2115         u64 delalloc_start;
2116         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2117         u64 end;
2118         u64 cur = start;
2119         u64 extent_offset;
2120         u64 last_byte = i_size_read(inode);
2121         u64 block_start;
2122         u64 iosize;
2123         u64 unlock_start;
2124         sector_t sector;
2125         struct extent_map *em;
2126         struct block_device *bdev;
2127         int ret;
2128         int nr = 0;
2129         size_t pg_offset = 0;
2130         size_t blocksize;
2131         loff_t i_size = i_size_read(inode);
2132         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2133         u64 nr_delalloc;
2134         u64 delalloc_end;
2135         int page_started;
2136         int compressed;
2137
2138         WARN_ON(!PageLocked(page));
2139         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2140         if (page->index > end_index ||
2141            (page->index == end_index && !pg_offset)) {
2142                 page->mapping->a_ops->invalidatepage(page, 0);
2143                 unlock_page(page);
2144                 return 0;
2145         }
2146
2147         if (page->index == end_index) {
2148                 char *userpage;
2149
2150                 userpage = kmap_atomic(page, KM_USER0);
2151                 memset(userpage + pg_offset, 0,
2152                        PAGE_CACHE_SIZE - pg_offset);
2153                 kunmap_atomic(userpage, KM_USER0);
2154                 flush_dcache_page(page);
2155         }
2156         pg_offset = 0;
2157
2158         set_page_extent_mapped(page);
2159
2160         delalloc_start = start;
2161         delalloc_end = 0;
2162         page_started = 0;
2163         while(delalloc_end < page_end) {
2164                 nr_delalloc = find_lock_delalloc_range(inode, tree,
2165                                                        page,
2166                                                        &delalloc_start,
2167                                                        &delalloc_end,
2168                                                        128 * 1024 * 1024);
2169                 if (nr_delalloc == 0) {
2170                         delalloc_start = delalloc_end + 1;
2171                         continue;
2172                 }
2173                 tree->ops->fill_delalloc(inode, page, delalloc_start,
2174                                          delalloc_end, &page_started);
2175                 delalloc_start = delalloc_end + 1;
2176         }
2177
2178         /* did the fill delalloc function already unlock and start the IO? */
2179         if (page_started) {
2180                 return 0;
2181         }
2182
2183         lock_extent(tree, start, page_end, GFP_NOFS);
2184         unlock_start = start;
2185
2186         if (tree->ops && tree->ops->writepage_start_hook) {
2187                 ret = tree->ops->writepage_start_hook(page, start,
2188                                                       page_end);
2189                 if (ret == -EAGAIN) {
2190                         unlock_extent(tree, start, page_end, GFP_NOFS);
2191                         redirty_page_for_writepage(wbc, page);
2192                         unlock_page(page);
2193                         return 0;
2194                 }
2195         }
2196
2197         end = page_end;
2198         if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
2199                 printk("found delalloc bits after lock_extent\n");
2200         }
2201
2202         if (last_byte <= start) {
2203                 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
2204                 unlock_extent(tree, start, page_end, GFP_NOFS);
2205                 if (tree->ops && tree->ops->writepage_end_io_hook)
2206                         tree->ops->writepage_end_io_hook(page, start,
2207                                                          page_end, NULL, 1);
2208                 unlock_start = page_end + 1;
2209                 goto done;
2210         }
2211
2212         set_extent_uptodate(tree, start, page_end, GFP_NOFS);
2213         blocksize = inode->i_sb->s_blocksize;
2214
2215         while (cur <= end) {
2216                 if (cur >= last_byte) {
2217                         clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
2218                         unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2219                         if (tree->ops && tree->ops->writepage_end_io_hook)
2220                                 tree->ops->writepage_end_io_hook(page, cur,
2221                                                          page_end, NULL, 1);
2222                         unlock_start = page_end + 1;
2223                         break;
2224                 }
2225                 em = epd->get_extent(inode, page, pg_offset, cur,
2226                                      end - cur + 1, 1);
2227                 if (IS_ERR(em) || !em) {
2228                         SetPageError(page);
2229                         break;
2230                 }
2231
2232                 extent_offset = cur - em->start;
2233                 BUG_ON(extent_map_end(em) <= cur);
2234                 BUG_ON(end < cur);
2235                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2236                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2237                 sector = (em->block_start + extent_offset) >> 9;
2238                 bdev = em->bdev;
2239                 block_start = em->block_start;
2240                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2241                 free_extent_map(em);
2242                 em = NULL;
2243
2244                 /*
2245                  * compressed and inline extents are written through other
2246                  * paths in the FS
2247                  */
2248                 if (compressed || block_start == EXTENT_MAP_HOLE ||
2249                     block_start == EXTENT_MAP_INLINE) {
2250                         clear_extent_dirty(tree, cur,
2251                                            cur + iosize - 1, GFP_NOFS);
2252
2253                         unlock_extent(tree, unlock_start, cur + iosize -1,
2254                                       GFP_NOFS);
2255
2256                         /*
2257                          * end_io notification does not happen here for
2258                          * compressed extents
2259                          */
2260                         if (!compressed && tree->ops &&
2261                             tree->ops->writepage_end_io_hook)
2262                                 tree->ops->writepage_end_io_hook(page, cur,
2263                                                          cur + iosize - 1,
2264                                                          NULL, 1);
2265                         else if (compressed) {
2266                                 /* we don't want to end_page_writeback on
2267                                  * a compressed extent.  this happens
2268                                  * elsewhere
2269                                  */
2270                                 nr++;
2271                         }
2272
2273                         cur += iosize;
2274                         pg_offset += iosize;
2275                         unlock_start = cur;
2276                         continue;
2277                 }
2278                 /* leave this out until we have a page_mkwrite call */
2279                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2280                                    EXTENT_DIRTY, 0)) {
2281                         cur = cur + iosize;
2282                         pg_offset += iosize;
2283                         continue;
2284                 }
2285
2286                 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
2287                 if (tree->ops && tree->ops->writepage_io_hook) {
2288                         ret = tree->ops->writepage_io_hook(page, cur,
2289                                                 cur + iosize - 1);
2290                 } else {
2291                         ret = 0;
2292                 }
2293                 if (ret) {
2294                         SetPageError(page);
2295                 } else {
2296                         unsigned long max_nr = end_index + 1;
2297
2298                         set_range_writeback(tree, cur, cur + iosize - 1);
2299                         if (!PageWriteback(page)) {
2300                                 printk("warning page %lu not writeback, "
2301                                        "cur %llu end %llu\n", page->index,
2302                                        (unsigned long long)cur,
2303                                        (unsigned long long)end);
2304                         }
2305
2306                         ret = submit_extent_page(WRITE, tree, page, sector,
2307                                                  iosize, pg_offset, bdev,
2308                                                  &epd->bio, max_nr,
2309                                                  end_bio_extent_writepage,
2310                                                  0, 0, 0);
2311                         if (ret)
2312                                 SetPageError(page);
2313                 }
2314                 cur = cur + iosize;
2315                 pg_offset += iosize;
2316                 nr++;
2317         }
2318 done:
2319         if (nr == 0) {
2320                 /* make sure the mapping tag for page dirty gets cleared */
2321                 set_page_writeback(page);
2322                 end_page_writeback(page);
2323         }
2324         if (unlock_start <= page_end)
2325                 unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2326         unlock_page(page);
2327         return 0;
2328 }
2329
2330 /**
2331  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2332  * @mapping: address space structure to write
2333  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2334  * @writepage: function called for each page
2335  * @data: data passed to writepage function
2336  *
2337  * If a page is already under I/O, write_cache_pages() skips it, even
2338  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2339  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2340  * and msync() need to guarantee that all the data which was dirty at the time
2341  * the call was made get new I/O started against them.  If wbc->sync_mode is
2342  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2343  * existing IO to complete.
2344  */
2345 int extent_write_cache_pages(struct extent_io_tree *tree,
2346                              struct address_space *mapping,
2347                              struct writeback_control *wbc,
2348                              writepage_t writepage, void *data)
2349 {
2350         struct backing_dev_info *bdi = mapping->backing_dev_info;
2351         int ret = 0;
2352         int done = 0;
2353         struct pagevec pvec;
2354         int nr_pages;
2355         pgoff_t index;
2356         pgoff_t end;            /* Inclusive */
2357         int scanned = 0;
2358         int range_whole = 0;
2359
2360         if (wbc->nonblocking && bdi_write_congested(bdi)) {
2361                 wbc->encountered_congestion = 1;
2362                 return 0;
2363         }
2364
2365         pagevec_init(&pvec, 0);
2366         if (wbc->range_cyclic) {
2367                 index = mapping->writeback_index; /* Start from prev offset */
2368                 end = -1;
2369         } else {
2370                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2371                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2372                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2373                         range_whole = 1;
2374                 scanned = 1;
2375         }
2376 retry:
2377         while (!done && (index <= end) &&
2378                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2379                                               PAGECACHE_TAG_DIRTY,
2380                                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2381                 unsigned i;
2382
2383                 scanned = 1;
2384                 for (i = 0; i < nr_pages; i++) {
2385                         struct page *page = pvec.pages[i];
2386
2387                         /*
2388                          * At this point we hold neither mapping->tree_lock nor
2389                          * lock on the page itself: the page may be truncated or
2390                          * invalidated (changing page->mapping to NULL), or even
2391                          * swizzled back from swapper_space to tmpfs file
2392                          * mapping
2393                          */
2394                         if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2395                                 tree->ops->write_cache_pages_lock_hook(page);
2396                         else
2397                                 lock_page(page);
2398
2399                         if (unlikely(page->mapping != mapping)) {
2400                                 unlock_page(page);
2401                                 continue;
2402                         }
2403
2404                         if (!wbc->range_cyclic && page->index > end) {
2405                                 done = 1;
2406                                 unlock_page(page);
2407                                 continue;
2408                         }
2409
2410                         if (wbc->sync_mode != WB_SYNC_NONE)
2411                                 wait_on_page_writeback(page);
2412
2413                         if (PageWriteback(page) ||
2414                             !clear_page_dirty_for_io(page)) {
2415                                 unlock_page(page);
2416                                 continue;
2417                         }
2418
2419                         ret = (*writepage)(page, wbc, data);
2420
2421                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2422                                 unlock_page(page);
2423                                 ret = 0;
2424                         }
2425                         if (ret || (--(wbc->nr_to_write) <= 0))
2426                                 done = 1;
2427                         if (wbc->nonblocking && bdi_write_congested(bdi)) {
2428                                 wbc->encountered_congestion = 1;
2429                                 done = 1;
2430                         }
2431                 }
2432                 pagevec_release(&pvec);
2433                 cond_resched();
2434         }
2435         if (!scanned && !done) {
2436                 /*
2437                  * We hit the last page and there is more work to be done: wrap
2438                  * back to the start of the file
2439                  */
2440                 scanned = 1;
2441                 index = 0;
2442                 goto retry;
2443         }
2444         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2445                 mapping->writeback_index = index;
2446
2447         if (wbc->range_cont)
2448                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2449         return ret;
2450 }
2451 EXPORT_SYMBOL(extent_write_cache_pages);
2452
2453 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2454                           get_extent_t *get_extent,
2455                           struct writeback_control *wbc)
2456 {
2457         int ret;
2458         struct address_space *mapping = page->mapping;
2459         struct extent_page_data epd = {
2460                 .bio = NULL,
2461                 .tree = tree,
2462                 .get_extent = get_extent,
2463         };
2464         struct writeback_control wbc_writepages = {
2465                 .bdi            = wbc->bdi,
2466                 .sync_mode      = WB_SYNC_NONE,
2467                 .older_than_this = NULL,
2468                 .nr_to_write    = 64,
2469                 .range_start    = page_offset(page) + PAGE_CACHE_SIZE,
2470                 .range_end      = (loff_t)-1,
2471         };
2472
2473
2474         ret = __extent_writepage(page, wbc, &epd);
2475
2476         extent_write_cache_pages(tree, mapping, &wbc_writepages,
2477                                  __extent_writepage, &epd);
2478         if (epd.bio) {
2479                 submit_one_bio(WRITE, epd.bio, 0, 0);
2480         }
2481         return ret;
2482 }
2483 EXPORT_SYMBOL(extent_write_full_page);
2484
2485
2486 int extent_writepages(struct extent_io_tree *tree,
2487                       struct address_space *mapping,
2488                       get_extent_t *get_extent,
2489                       struct writeback_control *wbc)
2490 {
2491         int ret = 0;
2492         struct extent_page_data epd = {
2493                 .bio = NULL,
2494                 .tree = tree,
2495                 .get_extent = get_extent,
2496         };
2497
2498         ret = extent_write_cache_pages(tree, mapping, wbc,
2499                                        __extent_writepage, &epd);
2500         if (epd.bio) {
2501                 submit_one_bio(WRITE, epd.bio, 0, 0);
2502         }
2503         return ret;
2504 }
2505 EXPORT_SYMBOL(extent_writepages);
2506
2507 int extent_readpages(struct extent_io_tree *tree,
2508                      struct address_space *mapping,
2509                      struct list_head *pages, unsigned nr_pages,
2510                      get_extent_t get_extent)
2511 {
2512         struct bio *bio = NULL;
2513         unsigned page_idx;
2514         struct pagevec pvec;
2515         unsigned long bio_flags = 0;
2516
2517         pagevec_init(&pvec, 0);
2518         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2519                 struct page *page = list_entry(pages->prev, struct page, lru);
2520
2521                 prefetchw(&page->flags);
2522                 list_del(&page->lru);
2523                 /*
2524                  * what we want to do here is call add_to_page_cache_lru,
2525                  * but that isn't exported, so we reproduce it here
2526                  */
2527                 if (!add_to_page_cache(page, mapping,
2528                                         page->index, GFP_KERNEL)) {
2529
2530                         /* open coding of lru_cache_add, also not exported */
2531                         page_cache_get(page);
2532                         if (!pagevec_add(&pvec, page))
2533                                 __pagevec_lru_add(&pvec);
2534                         __extent_read_full_page(tree, page, get_extent,
2535                                                 &bio, 0, &bio_flags);
2536                 }
2537                 page_cache_release(page);
2538         }
2539         if (pagevec_count(&pvec))
2540                 __pagevec_lru_add(&pvec);
2541         BUG_ON(!list_empty(pages));
2542         if (bio)
2543                 submit_one_bio(READ, bio, 0, bio_flags);
2544         return 0;
2545 }
2546 EXPORT_SYMBOL(extent_readpages);
2547
2548 /*
2549  * basic invalidatepage code, this waits on any locked or writeback
2550  * ranges corresponding to the page, and then deletes any extent state
2551  * records from the tree
2552  */
2553 int extent_invalidatepage(struct extent_io_tree *tree,
2554                           struct page *page, unsigned long offset)
2555 {
2556         u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2557         u64 end = start + PAGE_CACHE_SIZE - 1;
2558         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2559
2560         start += (offset + blocksize -1) & ~(blocksize - 1);
2561         if (start > end)
2562                 return 0;
2563
2564         lock_extent(tree, start, end, GFP_NOFS);
2565         wait_on_extent_writeback(tree, start, end);
2566         clear_extent_bit(tree, start, end,
2567                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2568                          1, 1, GFP_NOFS);
2569         return 0;
2570 }
2571 EXPORT_SYMBOL(extent_invalidatepage);
2572
2573 /*
2574  * simple commit_write call, set_range_dirty is used to mark both
2575  * the pages and the extent records as dirty
2576  */
2577 int extent_commit_write(struct extent_io_tree *tree,
2578                         struct inode *inode, struct page *page,
2579                         unsigned from, unsigned to)
2580 {
2581         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2582
2583         set_page_extent_mapped(page);
2584         set_page_dirty(page);
2585
2586         if (pos > inode->i_size) {
2587                 i_size_write(inode, pos);
2588                 mark_inode_dirty(inode);
2589         }
2590         return 0;
2591 }
2592 EXPORT_SYMBOL(extent_commit_write);
2593
2594 int extent_prepare_write(struct extent_io_tree *tree,
2595                          struct inode *inode, struct page *page,
2596                          unsigned from, unsigned to, get_extent_t *get_extent)
2597 {
2598         u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2599         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2600         u64 block_start;
2601         u64 orig_block_start;
2602         u64 block_end;
2603         u64 cur_end;
2604         struct extent_map *em;
2605         unsigned blocksize = 1 << inode->i_blkbits;
2606         size_t page_offset = 0;
2607         size_t block_off_start;
2608         size_t block_off_end;
2609         int err = 0;
2610         int iocount = 0;
2611         int ret = 0;
2612         int isnew;
2613
2614         set_page_extent_mapped(page);
2615
2616         block_start = (page_start + from) & ~((u64)blocksize - 1);
2617         block_end = (page_start + to - 1) | (blocksize - 1);
2618         orig_block_start = block_start;
2619
2620         lock_extent(tree, page_start, page_end, GFP_NOFS);
2621         while(block_start <= block_end) {
2622                 em = get_extent(inode, page, page_offset, block_start,
2623                                 block_end - block_start + 1, 1);
2624                 if (IS_ERR(em) || !em) {
2625                         goto err;
2626                 }
2627                 cur_end = min(block_end, extent_map_end(em) - 1);
2628                 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2629                 block_off_end = block_off_start + blocksize;
2630                 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2631
2632                 if (!PageUptodate(page) && isnew &&
2633                     (block_off_end > to || block_off_start < from)) {
2634                         void *kaddr;
2635
2636                         kaddr = kmap_atomic(page, KM_USER0);
2637                         if (block_off_end > to)
2638                                 memset(kaddr + to, 0, block_off_end - to);
2639                         if (block_off_start < from)
2640                                 memset(kaddr + block_off_start, 0,
2641                                        from - block_off_start);
2642                         flush_dcache_page(page);
2643                         kunmap_atomic(kaddr, KM_USER0);
2644                 }
2645                 if ((em->block_start != EXTENT_MAP_HOLE &&
2646                      em->block_start != EXTENT_MAP_INLINE) &&
2647                     !isnew && !PageUptodate(page) &&
2648                     (block_off_end > to || block_off_start < from) &&
2649                     !test_range_bit(tree, block_start, cur_end,
2650                                     EXTENT_UPTODATE, 1)) {
2651                         u64 sector;
2652                         u64 extent_offset = block_start - em->start;
2653                         size_t iosize;
2654                         sector = (em->block_start + extent_offset) >> 9;
2655                         iosize = (cur_end - block_start + blocksize) &
2656                                 ~((u64)blocksize - 1);
2657                         /*
2658                          * we've already got the extent locked, but we
2659                          * need to split the state such that our end_bio
2660                          * handler can clear the lock.
2661                          */
2662                         set_extent_bit(tree, block_start,
2663                                        block_start + iosize - 1,
2664                                        EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2665                         ret = submit_extent_page(READ, tree, page,
2666                                          sector, iosize, page_offset, em->bdev,
2667                                          NULL, 1,
2668                                          end_bio_extent_preparewrite, 0,
2669                                          0, 0);
2670                         iocount++;
2671                         block_start = block_start + iosize;
2672                 } else {
2673                         set_extent_uptodate(tree, block_start, cur_end,
2674                                             GFP_NOFS);
2675                         unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2676                         block_start = cur_end + 1;
2677                 }
2678                 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2679                 free_extent_map(em);
2680         }
2681         if (iocount) {
2682                 wait_extent_bit(tree, orig_block_start,
2683                                 block_end, EXTENT_LOCKED);
2684         }
2685         check_page_uptodate(tree, page);
2686 err:
2687         /* FIXME, zero out newly allocated blocks on error */
2688         return err;
2689 }
2690 EXPORT_SYMBOL(extent_prepare_write);
2691
2692 /*
2693  * a helper for releasepage, this tests for areas of the page that
2694  * are locked or under IO and drops the related state bits if it is safe
2695  * to drop the page.
2696  */
2697 int try_release_extent_state(struct extent_map_tree *map,
2698                              struct extent_io_tree *tree, struct page *page,
2699                              gfp_t mask)
2700 {
2701         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2702         u64 end = start + PAGE_CACHE_SIZE - 1;
2703         int ret = 1;
2704
2705         if (test_range_bit(tree, start, end,
2706                            EXTENT_IOBITS | EXTENT_ORDERED, 0))
2707                 ret = 0;
2708         else {
2709                 if ((mask & GFP_NOFS) == GFP_NOFS)
2710                         mask = GFP_NOFS;
2711                 clear_extent_bit(tree, start, end, EXTENT_UPTODATE,
2712                                  1, 1, mask);
2713         }
2714         return ret;
2715 }
2716 EXPORT_SYMBOL(try_release_extent_state);
2717
2718 /*
2719  * a helper for releasepage.  As long as there are no locked extents
2720  * in the range corresponding to the page, both state records and extent
2721  * map records are removed
2722  */
2723 int try_release_extent_mapping(struct extent_map_tree *map,
2724                                struct extent_io_tree *tree, struct page *page,
2725                                gfp_t mask)
2726 {
2727         struct extent_map *em;
2728         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2729         u64 end = start + PAGE_CACHE_SIZE - 1;
2730
2731         if ((mask & __GFP_WAIT) &&
2732             page->mapping->host->i_size > 16 * 1024 * 1024) {
2733                 u64 len;
2734                 while (start <= end) {
2735                         len = end - start + 1;
2736                         spin_lock(&map->lock);
2737                         em = lookup_extent_mapping(map, start, len);
2738                         if (!em || IS_ERR(em)) {
2739                                 spin_unlock(&map->lock);
2740                                 break;
2741                         }
2742                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2743                             em->start != start) {
2744                                 spin_unlock(&map->lock);
2745                                 free_extent_map(em);
2746                                 break;
2747                         }
2748                         if (!test_range_bit(tree, em->start,
2749                                             extent_map_end(em) - 1,
2750                                             EXTENT_LOCKED | EXTENT_WRITEBACK |
2751                                             EXTENT_ORDERED,
2752                                             0)) {
2753                                 remove_extent_mapping(map, em);
2754                                 /* once for the rb tree */
2755                                 free_extent_map(em);
2756                         }
2757                         start = extent_map_end(em);
2758                         spin_unlock(&map->lock);
2759
2760                         /* once for us */
2761                         free_extent_map(em);
2762                 }
2763         }
2764         return try_release_extent_state(map, tree, page, mask);
2765 }
2766 EXPORT_SYMBOL(try_release_extent_mapping);
2767
2768 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2769                 get_extent_t *get_extent)
2770 {
2771         struct inode *inode = mapping->host;
2772         u64 start = iblock << inode->i_blkbits;
2773         sector_t sector = 0;
2774         size_t blksize = (1 << inode->i_blkbits);
2775         struct extent_map *em;
2776
2777         lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2778                     GFP_NOFS);
2779         em = get_extent(inode, NULL, 0, start, blksize, 0);
2780         unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2781                       GFP_NOFS);
2782         if (!em || IS_ERR(em))
2783                 return 0;
2784
2785         if (em->block_start > EXTENT_MAP_LAST_BYTE)
2786                 goto out;
2787
2788         sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2789 out:
2790         free_extent_map(em);
2791         return sector;
2792 }
2793
2794 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2795                                               unsigned long i)
2796 {
2797         struct page *p;
2798         struct address_space *mapping;
2799
2800         if (i == 0)
2801                 return eb->first_page;
2802         i += eb->start >> PAGE_CACHE_SHIFT;
2803         mapping = eb->first_page->mapping;
2804         if (!mapping)
2805                 return NULL;
2806
2807         /*
2808          * extent_buffer_page is only called after pinning the page
2809          * by increasing the reference count.  So we know the page must
2810          * be in the radix tree.
2811          */
2812         rcu_read_lock();
2813         p = radix_tree_lookup(&mapping->page_tree, i);
2814         rcu_read_unlock();
2815
2816         return p;
2817 }
2818
2819 static inline unsigned long num_extent_pages(u64 start, u64 len)
2820 {
2821         return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2822                 (start >> PAGE_CACHE_SHIFT);
2823 }
2824
2825 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
2826                                                    u64 start,
2827                                                    unsigned long len,
2828                                                    gfp_t mask)
2829 {
2830         struct extent_buffer *eb = NULL;
2831 #ifdef LEAK_DEBUG
2832         unsigned long flags;
2833 #endif
2834
2835         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2836         eb->start = start;
2837         eb->len = len;
2838         mutex_init(&eb->mutex);
2839 #ifdef LEAK_DEBUG
2840         spin_lock_irqsave(&leak_lock, flags);
2841         list_add(&eb->leak_list, &buffers);
2842         spin_unlock_irqrestore(&leak_lock, flags);
2843 #endif
2844         atomic_set(&eb->refs, 1);
2845
2846         return eb;
2847 }
2848
2849 static void __free_extent_buffer(struct extent_buffer *eb)
2850 {
2851 #ifdef LEAK_DEBUG
2852         unsigned long flags;
2853         spin_lock_irqsave(&leak_lock, flags);
2854         list_del(&eb->leak_list);
2855         spin_unlock_irqrestore(&leak_lock, flags);
2856 #endif
2857         kmem_cache_free(extent_buffer_cache, eb);
2858 }
2859
2860 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
2861                                           u64 start, unsigned long len,
2862                                           struct page *page0,
2863                                           gfp_t mask)
2864 {
2865         unsigned long num_pages = num_extent_pages(start, len);
2866         unsigned long i;
2867         unsigned long index = start >> PAGE_CACHE_SHIFT;
2868         struct extent_buffer *eb;
2869         struct extent_buffer *exists = NULL;
2870         struct page *p;
2871         struct address_space *mapping = tree->mapping;
2872         int uptodate = 1;
2873
2874         spin_lock(&tree->buffer_lock);
2875         eb = buffer_search(tree, start);
2876         if (eb) {
2877                 atomic_inc(&eb->refs);
2878                 spin_unlock(&tree->buffer_lock);
2879                 mark_page_accessed(eb->first_page);
2880                 return eb;
2881         }
2882         spin_unlock(&tree->buffer_lock);
2883
2884         eb = __alloc_extent_buffer(tree, start, len, mask);
2885         if (!eb)
2886                 return NULL;
2887
2888         if (page0) {
2889                 eb->first_page = page0;
2890                 i = 1;
2891                 index++;
2892                 page_cache_get(page0);
2893                 mark_page_accessed(page0);
2894                 set_page_extent_mapped(page0);
2895                 set_page_extent_head(page0, len);
2896                 uptodate = PageUptodate(page0);
2897         } else {
2898                 i = 0;
2899         }
2900         for (; i < num_pages; i++, index++) {
2901                 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2902                 if (!p) {
2903                         WARN_ON(1);
2904                         goto free_eb;
2905                 }
2906                 set_page_extent_mapped(p);
2907                 mark_page_accessed(p);
2908                 if (i == 0) {
2909                         eb->first_page = p;
2910                         set_page_extent_head(p, len);
2911                 } else {
2912                         set_page_private(p, EXTENT_PAGE_PRIVATE);
2913                 }
2914                 if (!PageUptodate(p))
2915                         uptodate = 0;
2916                 unlock_page(p);
2917         }
2918         if (uptodate)
2919                 eb->flags |= EXTENT_UPTODATE;
2920         eb->flags |= EXTENT_BUFFER_FILLED;
2921
2922         spin_lock(&tree->buffer_lock);
2923         exists = buffer_tree_insert(tree, start, &eb->rb_node);
2924         if (exists) {
2925                 /* add one reference for the caller */
2926                 atomic_inc(&exists->refs);
2927                 spin_unlock(&tree->buffer_lock);
2928                 goto free_eb;
2929         }
2930         spin_unlock(&tree->buffer_lock);
2931
2932         /* add one reference for the tree */
2933         atomic_inc(&eb->refs);
2934         return eb;
2935
2936 free_eb:
2937         if (!atomic_dec_and_test(&eb->refs))
2938                 return exists;
2939         for (index = 1; index < i; index++)
2940                 page_cache_release(extent_buffer_page(eb, index));
2941         page_cache_release(extent_buffer_page(eb, 0));
2942         __free_extent_buffer(eb);
2943         return exists;
2944 }
2945 EXPORT_SYMBOL(alloc_extent_buffer);
2946
2947 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
2948                                          u64 start, unsigned long len,
2949                                           gfp_t mask)
2950 {
2951         struct extent_buffer *eb;
2952
2953         spin_lock(&tree->buffer_lock);
2954         eb = buffer_search(tree, start);
2955         if (eb)
2956                 atomic_inc(&eb->refs);
2957         spin_unlock(&tree->buffer_lock);
2958
2959         if (eb)
2960                 mark_page_accessed(eb->first_page);
2961
2962         return eb;
2963 }
2964 EXPORT_SYMBOL(find_extent_buffer);
2965
2966 void free_extent_buffer(struct extent_buffer *eb)
2967 {
2968         if (!eb)
2969                 return;
2970
2971         if (!atomic_dec_and_test(&eb->refs))
2972                 return;
2973
2974         WARN_ON(1);
2975 }
2976 EXPORT_SYMBOL(free_extent_buffer);
2977
2978 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
2979                               struct extent_buffer *eb)
2980 {
2981         int set;
2982         unsigned long i;
2983         unsigned long num_pages;
2984         struct page *page;
2985
2986         u64 start = eb->start;
2987         u64 end = start + eb->len - 1;
2988
2989         set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2990         num_pages = num_extent_pages(eb->start, eb->len);
2991
2992         for (i = 0; i < num_pages; i++) {
2993                 page = extent_buffer_page(eb, i);
2994                 lock_page(page);
2995                 if (i == 0)
2996                         set_page_extent_head(page, eb->len);
2997                 else
2998                         set_page_private(page, EXTENT_PAGE_PRIVATE);
2999
3000                 /*
3001                  * if we're on the last page or the first page and the
3002                  * block isn't aligned on a page boundary, do extra checks
3003                  * to make sure we don't clean page that is partially dirty
3004                  */
3005                 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3006                     ((i == num_pages - 1) &&
3007                      ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3008                         start = (u64)page->index << PAGE_CACHE_SHIFT;
3009                         end  = start + PAGE_CACHE_SIZE - 1;
3010                         if (test_range_bit(tree, start, end,
3011                                            EXTENT_DIRTY, 0)) {
3012                                 unlock_page(page);
3013                                 continue;
3014                         }
3015                 }
3016                 clear_page_dirty_for_io(page);
3017                 spin_lock_irq(&page->mapping->tree_lock);
3018                 if (!PageDirty(page)) {
3019                         radix_tree_tag_clear(&page->mapping->page_tree,
3020                                                 page_index(page),
3021                                                 PAGECACHE_TAG_DIRTY);
3022                 }
3023                 spin_unlock_irq(&page->mapping->tree_lock);
3024                 unlock_page(page);
3025         }
3026         return 0;
3027 }
3028 EXPORT_SYMBOL(clear_extent_buffer_dirty);
3029
3030 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3031                                     struct extent_buffer *eb)
3032 {
3033         return wait_on_extent_writeback(tree, eb->start,
3034                                         eb->start + eb->len - 1);
3035 }
3036 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
3037
3038 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3039                              struct extent_buffer *eb)
3040 {
3041         unsigned long i;
3042         unsigned long num_pages;
3043
3044         num_pages = num_extent_pages(eb->start, eb->len);
3045         for (i = 0; i < num_pages; i++) {
3046                 struct page *page = extent_buffer_page(eb, i);
3047                 /* writepage may need to do something special for the
3048                  * first page, we have to make sure page->private is
3049                  * properly set.  releasepage may drop page->private
3050                  * on us if the page isn't already dirty.
3051                  */
3052                 lock_page(page);
3053                 if (i == 0) {
3054                         set_page_extent_head(page, eb->len);
3055                 } else if (PagePrivate(page) &&
3056                            page->private != EXTENT_PAGE_PRIVATE) {
3057                         set_page_extent_mapped(page);
3058                 }
3059                 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3060                 set_extent_dirty(tree, page_offset(page),
3061                                  page_offset(page) + PAGE_CACHE_SIZE -1,
3062                                  GFP_NOFS);
3063                 unlock_page(page);
3064         }
3065         return 0;
3066 }
3067 EXPORT_SYMBOL(set_extent_buffer_dirty);
3068
3069 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3070                                 struct extent_buffer *eb)
3071 {
3072         unsigned long i;
3073         struct page *page;
3074         unsigned long num_pages;
3075
3076         num_pages = num_extent_pages(eb->start, eb->len);
3077         eb->flags &= ~EXTENT_UPTODATE;
3078
3079         clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3080                               GFP_NOFS);
3081         for (i = 0; i < num_pages; i++) {
3082                 page = extent_buffer_page(eb, i);
3083                 if (page)
3084                         ClearPageUptodate(page);
3085         }
3086         return 0;
3087 }
3088
3089 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3090                                 struct extent_buffer *eb)
3091 {
3092         unsigned long i;
3093         struct page *page;
3094         unsigned long num_pages;
3095
3096         num_pages = num_extent_pages(eb->start, eb->len);
3097
3098         set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3099                             GFP_NOFS);
3100         for (i = 0; i < num_pages; i++) {
3101                 page = extent_buffer_page(eb, i);
3102                 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3103                     ((i == num_pages - 1) &&
3104                      ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3105                         check_page_uptodate(tree, page);
3106                         continue;
3107                 }
3108                 SetPageUptodate(page);
3109         }
3110         return 0;
3111 }
3112 EXPORT_SYMBOL(set_extent_buffer_uptodate);
3113
3114 int extent_range_uptodate(struct extent_io_tree *tree,
3115                           u64 start, u64 end)
3116 {
3117         struct page *page;
3118         int ret;
3119         int pg_uptodate = 1;
3120         int uptodate;
3121         unsigned long index;
3122
3123         ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1);
3124         if (ret)
3125                 return 1;
3126         while(start <= end) {
3127                 index = start >> PAGE_CACHE_SHIFT;
3128                 page = find_get_page(tree->mapping, index);
3129                 uptodate = PageUptodate(page);
3130                 page_cache_release(page);
3131                 if (!uptodate) {
3132                         pg_uptodate = 0;
3133                         break;
3134                 }
3135                 start += PAGE_CACHE_SIZE;
3136         }
3137         return pg_uptodate;
3138 }
3139
3140 int extent_buffer_uptodate(struct extent_io_tree *tree,
3141                            struct extent_buffer *eb)
3142 {
3143         int ret = 0;
3144         unsigned long num_pages;
3145         unsigned long i;
3146         struct page *page;
3147         int pg_uptodate = 1;
3148
3149         if (eb->flags & EXTENT_UPTODATE)
3150                 return 1;
3151
3152         ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3153                            EXTENT_UPTODATE, 1);
3154         if (ret)
3155                 return ret;
3156
3157         num_pages = num_extent_pages(eb->start, eb->len);
3158         for (i = 0; i < num_pages; i++) {
3159                 page = extent_buffer_page(eb, i);
3160                 if (!PageUptodate(page)) {
3161                         pg_uptodate = 0;
3162                         break;
3163                 }
3164         }
3165         return pg_uptodate;
3166 }
3167 EXPORT_SYMBOL(extent_buffer_uptodate);
3168
3169 int read_extent_buffer_pages(struct extent_io_tree *tree,
3170                              struct extent_buffer *eb,
3171                              u64 start, int wait,
3172                              get_extent_t *get_extent, int mirror_num)
3173 {
3174         unsigned long i;
3175         unsigned long start_i;
3176         struct page *page;
3177         int err;
3178         int ret = 0;
3179         int locked_pages = 0;
3180         int all_uptodate = 1;
3181         int inc_all_pages = 0;
3182         unsigned long num_pages;
3183         struct bio *bio = NULL;
3184         unsigned long bio_flags = 0;
3185
3186         if (eb->flags & EXTENT_UPTODATE)
3187                 return 0;
3188
3189         if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3190                            EXTENT_UPTODATE, 1)) {
3191                 return 0;
3192         }
3193
3194         if (start) {
3195                 WARN_ON(start < eb->start);
3196                 start_i = (start >> PAGE_CACHE_SHIFT) -
3197                         (eb->start >> PAGE_CACHE_SHIFT);
3198         } else {
3199                 start_i = 0;
3200         }
3201
3202         num_pages = num_extent_pages(eb->start, eb->len);
3203         for (i = start_i; i < num_pages; i++) {
3204                 page = extent_buffer_page(eb, i);
3205                 if (!wait) {
3206                         if (!trylock_page(page))
3207                                 goto unlock_exit;
3208                 } else {
3209                         lock_page(page);
3210                 }
3211                 locked_pages++;
3212                 if (!PageUptodate(page)) {
3213                         all_uptodate = 0;
3214                 }
3215         }
3216         if (all_uptodate) {
3217                 if (start_i == 0)
3218                         eb->flags |= EXTENT_UPTODATE;
3219                 if (ret) {
3220                         printk("all up to date but ret is %d\n", ret);
3221                 }
3222                 goto unlock_exit;
3223         }
3224
3225         for (i = start_i; i < num_pages; i++) {
3226                 page = extent_buffer_page(eb, i);
3227                 if (inc_all_pages)
3228                         page_cache_get(page);
3229                 if (!PageUptodate(page)) {
3230                         if (start_i == 0)
3231                                 inc_all_pages = 1;
3232                         ClearPageError(page);
3233                         err = __extent_read_full_page(tree, page,
3234                                                       get_extent, &bio,
3235                                                       mirror_num, &bio_flags);
3236                         if (err) {
3237                                 ret = err;
3238                                 printk("err %d from __extent_read_full_page\n", ret);
3239                         }
3240                 } else {
3241                         unlock_page(page);
3242                 }
3243         }
3244
3245         if (bio)
3246                 submit_one_bio(READ, bio, mirror_num, bio_flags);
3247
3248         if (ret || !wait) {
3249                 if (ret)
3250                         printk("ret %d wait %d returning\n", ret, wait);
3251                 return ret;
3252         }
3253         for (i = start_i; i < num_pages; i++) {
3254                 page = extent_buffer_page(eb, i);
3255                 wait_on_page_locked(page);
3256                 if (!PageUptodate(page)) {
3257                         printk("page not uptodate after wait_on_page_locked\n");
3258                         ret = -EIO;
3259                 }
3260         }
3261         if (!ret)
3262                 eb->flags |= EXTENT_UPTODATE;
3263         return ret;
3264
3265 unlock_exit:
3266         i = start_i;
3267         while(locked_pages > 0) {
3268                 page = extent_buffer_page(eb, i);
3269                 i++;
3270                 unlock_page(page);
3271                 locked_pages--;
3272         }
3273         return ret;
3274 }
3275 EXPORT_SYMBOL(read_extent_buffer_pages);
3276
3277 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3278                         unsigned long start,
3279                         unsigned long len)
3280 {
3281         size_t cur;
3282         size_t offset;
3283         struct page *page;
3284         char *kaddr;
3285         char *dst = (char *)dstv;
3286         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3287         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3288
3289         WARN_ON(start > eb->len);
3290         WARN_ON(start + len > eb->start + eb->len);
3291
3292         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3293
3294         while(len > 0) {
3295                 page = extent_buffer_page(eb, i);
3296
3297                 cur = min(len, (PAGE_CACHE_SIZE - offset));
3298                 kaddr = kmap_atomic(page, KM_USER1);
3299                 memcpy(dst, kaddr + offset, cur);
3300                 kunmap_atomic(kaddr, KM_USER1);
3301
3302                 dst += cur;
3303                 len -= cur;
3304                 offset = 0;
3305                 i++;
3306         }
3307 }
3308 EXPORT_SYMBOL(read_extent_buffer);
3309
3310 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3311                                unsigned long min_len, char **token, char **map,
3312                                unsigned long *map_start,
3313                                unsigned long *map_len, int km)
3314 {
3315         size_t offset = start & (PAGE_CACHE_SIZE - 1);
3316         char *kaddr;
3317         struct page *p;
3318         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3319         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3320         unsigned long end_i = (start_offset + start + min_len - 1) >>
3321                 PAGE_CACHE_SHIFT;
3322
3323         if (i != end_i)
3324                 return -EINVAL;
3325
3326         if (i == 0) {
3327                 offset = start_offset;
3328                 *map_start = 0;
3329         } else {
3330                 offset = 0;
3331                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3332         }
3333         if (start + min_len > eb->len) {
3334 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
3335                 WARN_ON(1);
3336         }
3337
3338         p = extent_buffer_page(eb, i);
3339         kaddr = kmap_atomic(p, km);
3340         *token = kaddr;
3341         *map = kaddr + offset;
3342         *map_len = PAGE_CACHE_SIZE - offset;
3343         return 0;
3344 }
3345 EXPORT_SYMBOL(map_private_extent_buffer);
3346
3347 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3348                       unsigned long min_len,
3349                       char **token, char **map,
3350                       unsigned long *map_start,
3351                       unsigned long *map_len, int km)
3352 {
3353         int err;
3354         int save = 0;
3355         if (eb->map_token) {
3356                 unmap_extent_buffer(eb, eb->map_token, km);
3357                 eb->map_token = NULL;
3358                 save = 1;
3359         }
3360         err = map_private_extent_buffer(eb, start, min_len, token, map,
3361                                        map_start, map_len, km);
3362         if (!err && save) {
3363                 eb->map_token = *token;
3364                 eb->kaddr = *map;
3365                 eb->map_start = *map_start;
3366                 eb->map_len = *map_len;
3367         }
3368         return err;
3369 }
3370 EXPORT_SYMBOL(map_extent_buffer);
3371
3372 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3373 {
3374         kunmap_atomic(token, km);
3375 }
3376 EXPORT_SYMBOL(unmap_extent_buffer);
3377
3378 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3379                           unsigned long start,
3380                           unsigned long len)
3381 {
3382         size_t cur;
3383         size_t offset;
3384         struct page *page;
3385         char *kaddr;
3386         char *ptr = (char *)ptrv;
3387         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3388         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3389         int ret = 0;
3390
3391         WARN_ON(start > eb->len);
3392         WARN_ON(start + len > eb->start + eb->len);
3393
3394         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3395
3396         while(len > 0) {
3397                 page = extent_buffer_page(eb, i);
3398
3399                 cur = min(len, (PAGE_CACHE_SIZE - offset));
3400
3401                 kaddr = kmap_atomic(page, KM_USER0);
3402                 ret = memcmp(ptr, kaddr + offset, cur);
3403                 kunmap_atomic(kaddr, KM_USER0);
3404                 if (ret)
3405                         break;
3406
3407                 ptr += cur;
3408                 len -= cur;
3409                 offset = 0;
3410                 i++;
3411         }
3412         return ret;
3413 }
3414 EXPORT_SYMBOL(memcmp_extent_buffer);
3415
3416 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3417                          unsigned long start, unsigned long len)
3418 {
3419         size_t cur;
3420         size_t offset;
3421         struct page *page;
3422         char *kaddr;
3423         char *src = (char *)srcv;
3424         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3425         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3426
3427         WARN_ON(start > eb->len);
3428         WARN_ON(start + len > eb->start + eb->len);
3429
3430         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3431
3432         while(len > 0) {
3433                 page = extent_buffer_page(eb, i);
3434                 WARN_ON(!PageUptodate(page));
3435
3436                 cur = min(len, PAGE_CACHE_SIZE - offset);
3437                 kaddr = kmap_atomic(page, KM_USER1);
3438                 memcpy(kaddr + offset, src, cur);
3439                 kunmap_atomic(kaddr, KM_USER1);
3440
3441                 src += cur;
3442                 len -= cur;
3443                 offset = 0;
3444                 i++;
3445         }
3446 }
3447 EXPORT_SYMBOL(write_extent_buffer);
3448
3449 void memset_extent_buffer(struct extent_buffer *eb, char c,
3450                           unsigned long start, unsigned long len)
3451 {
3452         size_t cur;
3453         size_t offset;
3454         struct page *page;
3455         char *kaddr;
3456         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3457         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3458
3459         WARN_ON(start > eb->len);
3460         WARN_ON(start + len > eb->start + eb->len);
3461
3462         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3463
3464         while(len > 0) {
3465                 page = extent_buffer_page(eb, i);
3466                 WARN_ON(!PageUptodate(page));
3467
3468                 cur = min(len, PAGE_CACHE_SIZE - offset);
3469                 kaddr = kmap_atomic(page, KM_USER0);
3470                 memset(kaddr + offset, c, cur);
3471                 kunmap_atomic(kaddr, KM_USER0);
3472
3473                 len -= cur;
3474                 offset = 0;
3475                 i++;
3476         }
3477 }
3478 EXPORT_SYMBOL(memset_extent_buffer);
3479
3480 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3481                         unsigned long dst_offset, unsigned long src_offset,
3482                         unsigned long len)
3483 {
3484         u64 dst_len = dst->len;
3485         size_t cur;
3486         size_t offset;
3487         struct page *page;
3488         char *kaddr;
3489         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3490         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3491
3492         WARN_ON(src->len != dst_len);
3493
3494         offset = (start_offset + dst_offset) &
3495                 ((unsigned long)PAGE_CACHE_SIZE - 1);
3496
3497         while(len > 0) {
3498                 page = extent_buffer_page(dst, i);
3499                 WARN_ON(!PageUptodate(page));
3500
3501                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3502
3503                 kaddr = kmap_atomic(page, KM_USER0);
3504                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3505                 kunmap_atomic(kaddr, KM_USER0);
3506
3507                 src_offset += cur;
3508                 len -= cur;
3509                 offset = 0;
3510                 i++;
3511         }
3512 }
3513 EXPORT_SYMBOL(copy_extent_buffer);
3514
3515 static void move_pages(struct page *dst_page, struct page *src_page,
3516                        unsigned long dst_off, unsigned long src_off,
3517                        unsigned long len)
3518 {
3519         char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3520         if (dst_page == src_page) {
3521                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3522         } else {
3523                 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3524                 char *p = dst_kaddr + dst_off + len;
3525                 char *s = src_kaddr + src_off + len;
3526
3527                 while (len--)
3528                         *--p = *--s;
3529
3530                 kunmap_atomic(src_kaddr, KM_USER1);
3531         }
3532         kunmap_atomic(dst_kaddr, KM_USER0);
3533 }
3534
3535 static void copy_pages(struct page *dst_page, struct page *src_page,
3536                        unsigned long dst_off, unsigned long src_off,
3537                        unsigned long len)
3538 {
3539         char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3540         char *src_kaddr;
3541
3542         if (dst_page != src_page)
3543                 src_kaddr = kmap_atomic(src_page, KM_USER1);
3544         else
3545                 src_kaddr = dst_kaddr;
3546
3547         memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3548         kunmap_atomic(dst_kaddr, KM_USER0);
3549         if (dst_page != src_page)
3550                 kunmap_atomic(src_kaddr, KM_USER1);
3551 }
3552
3553 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3554                            unsigned long src_offset, unsigned long len)
3555 {
3556         size_t cur;
3557         size_t dst_off_in_page;
3558         size_t src_off_in_page;
3559         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3560         unsigned long dst_i;
3561         unsigned long src_i;
3562
3563         if (src_offset + len > dst->len) {
3564                 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3565                        src_offset, len, dst->len);
3566                 BUG_ON(1);
3567         }
3568         if (dst_offset + len > dst->len) {
3569                 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3570                        dst_offset, len, dst->len);
3571                 BUG_ON(1);
3572         }
3573
3574         while(len > 0) {
3575                 dst_off_in_page = (start_offset + dst_offset) &
3576                         ((unsigned long)PAGE_CACHE_SIZE - 1);
3577                 src_off_in_page = (start_offset + src_offset) &
3578                         ((unsigned long)PAGE_CACHE_SIZE - 1);
3579
3580                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3581                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3582
3583                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3584                                                src_off_in_page));
3585                 cur = min_t(unsigned long, cur,
3586                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3587
3588                 copy_pages(extent_buffer_page(dst, dst_i),
3589                            extent_buffer_page(dst, src_i),
3590                            dst_off_in_page, src_off_in_page, cur);
3591
3592                 src_offset += cur;
3593                 dst_offset += cur;
3594                 len -= cur;
3595         }
3596 }
3597 EXPORT_SYMBOL(memcpy_extent_buffer);
3598
3599 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3600                            unsigned long src_offset, unsigned long len)
3601 {
3602         size_t cur;
3603         size_t dst_off_in_page;
3604         size_t src_off_in_page;
3605         unsigned long dst_end = dst_offset + len - 1;
3606         unsigned long src_end = src_offset + len - 1;
3607         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3608         unsigned long dst_i;
3609         unsigned long src_i;
3610
3611         if (src_offset + len > dst->len) {
3612                 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3613                        src_offset, len, dst->len);
3614                 BUG_ON(1);
3615         }
3616         if (dst_offset + len > dst->len) {
3617                 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3618                        dst_offset, len, dst->len);
3619                 BUG_ON(1);
3620         }
3621         if (dst_offset < src_offset) {
3622                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3623                 return;
3624         }
3625         while(len > 0) {
3626                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3627                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3628
3629                 dst_off_in_page = (start_offset + dst_end) &
3630                         ((unsigned long)PAGE_CACHE_SIZE - 1);
3631                 src_off_in_page = (start_offset + src_end) &
3632                         ((unsigned long)PAGE_CACHE_SIZE - 1);
3633
3634                 cur = min_t(unsigned long, len, src_off_in_page + 1);
3635                 cur = min(cur, dst_off_in_page + 1);
3636                 move_pages(extent_buffer_page(dst, dst_i),
3637                            extent_buffer_page(dst, src_i),
3638                            dst_off_in_page - cur + 1,
3639                            src_off_in_page - cur + 1, cur);
3640
3641                 dst_end -= cur;
3642                 src_end -= cur;
3643                 len -= cur;
3644         }
3645 }
3646 EXPORT_SYMBOL(memmove_extent_buffer);
3647
3648 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3649 {
3650         u64 start = page_offset(page);
3651         struct extent_buffer *eb;
3652         int ret = 1;
3653         unsigned long i;
3654         unsigned long num_pages;
3655
3656         spin_lock(&tree->buffer_lock);
3657         eb = buffer_search(tree, start);
3658         if (!eb)
3659                 goto out;
3660
3661         if (atomic_read(&eb->refs) > 1) {
3662                 ret = 0;
3663                 goto out;
3664         }
3665         /* at this point we can safely release the extent buffer */
3666         num_pages = num_extent_pages(eb->start, eb->len);
3667         for (i = 0; i < num_pages; i++)
3668                 page_cache_release(extent_buffer_page(eb, i));
3669         rb_erase(&eb->rb_node, &tree->buffer);
3670         __free_extent_buffer(eb);
3671 out:
3672         spin_unlock(&tree->buffer_lock);
3673         return ret;
3674 }
3675 EXPORT_SYMBOL(try_release_extent_buffer);