Btrfs: optimize set extent bit
[safe/jmp/linux-2.6] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19
20 static struct kmem_cache *extent_state_cache;
21 static struct kmem_cache *extent_buffer_cache;
22
23 static LIST_HEAD(buffers);
24 static LIST_HEAD(states);
25
26 #define LEAK_DEBUG 0
27 #if LEAK_DEBUG
28 static DEFINE_SPINLOCK(leak_lock);
29 #endif
30
31 #define BUFFER_LRU_MAX 64
32
33 struct tree_entry {
34         u64 start;
35         u64 end;
36         struct rb_node rb_node;
37 };
38
39 struct extent_page_data {
40         struct bio *bio;
41         struct extent_io_tree *tree;
42         get_extent_t *get_extent;
43
44         /* tells writepage not to lock the state bits for this range
45          * it still does the unlocking
46          */
47         unsigned int extent_locked:1;
48
49         /* tells the submit_bio code to use a WRITE_SYNC */
50         unsigned int sync_io:1;
51 };
52
53 int __init extent_io_init(void)
54 {
55         extent_state_cache = kmem_cache_create("extent_state",
56                         sizeof(struct extent_state), 0,
57                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
58         if (!extent_state_cache)
59                 return -ENOMEM;
60
61         extent_buffer_cache = kmem_cache_create("extent_buffers",
62                         sizeof(struct extent_buffer), 0,
63                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
64         if (!extent_buffer_cache)
65                 goto free_state_cache;
66         return 0;
67
68 free_state_cache:
69         kmem_cache_destroy(extent_state_cache);
70         return -ENOMEM;
71 }
72
73 void extent_io_exit(void)
74 {
75         struct extent_state *state;
76         struct extent_buffer *eb;
77
78         while (!list_empty(&states)) {
79                 state = list_entry(states.next, struct extent_state, leak_list);
80                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
81                        "state %lu in tree %p refs %d\n",
82                        (unsigned long long)state->start,
83                        (unsigned long long)state->end,
84                        state->state, state->tree, atomic_read(&state->refs));
85                 list_del(&state->leak_list);
86                 kmem_cache_free(extent_state_cache, state);
87
88         }
89
90         while (!list_empty(&buffers)) {
91                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
92                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
93                        "refs %d\n", (unsigned long long)eb->start,
94                        eb->len, atomic_read(&eb->refs));
95                 list_del(&eb->leak_list);
96                 kmem_cache_free(extent_buffer_cache, eb);
97         }
98         if (extent_state_cache)
99                 kmem_cache_destroy(extent_state_cache);
100         if (extent_buffer_cache)
101                 kmem_cache_destroy(extent_buffer_cache);
102 }
103
104 void extent_io_tree_init(struct extent_io_tree *tree,
105                           struct address_space *mapping, gfp_t mask)
106 {
107         tree->state.rb_node = NULL;
108         tree->buffer.rb_node = NULL;
109         tree->ops = NULL;
110         tree->dirty_bytes = 0;
111         spin_lock_init(&tree->lock);
112         spin_lock_init(&tree->buffer_lock);
113         tree->mapping = mapping;
114 }
115
116 static struct extent_state *alloc_extent_state(gfp_t mask)
117 {
118         struct extent_state *state;
119 #if LEAK_DEBUG
120         unsigned long flags;
121 #endif
122
123         state = kmem_cache_alloc(extent_state_cache, mask);
124         if (!state)
125                 return state;
126         state->state = 0;
127         state->private = 0;
128         state->tree = NULL;
129 #if LEAK_DEBUG
130         spin_lock_irqsave(&leak_lock, flags);
131         list_add(&state->leak_list, &states);
132         spin_unlock_irqrestore(&leak_lock, flags);
133 #endif
134         atomic_set(&state->refs, 1);
135         init_waitqueue_head(&state->wq);
136         return state;
137 }
138
139 static void free_extent_state(struct extent_state *state)
140 {
141         if (!state)
142                 return;
143         if (atomic_dec_and_test(&state->refs)) {
144 #if LEAK_DEBUG
145                 unsigned long flags;
146 #endif
147                 WARN_ON(state->tree);
148 #if LEAK_DEBUG
149                 spin_lock_irqsave(&leak_lock, flags);
150                 list_del(&state->leak_list);
151                 spin_unlock_irqrestore(&leak_lock, flags);
152 #endif
153                 kmem_cache_free(extent_state_cache, state);
154         }
155 }
156
157 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
158                                    struct rb_node *node)
159 {
160         struct rb_node **p = &root->rb_node;
161         struct rb_node *parent = NULL;
162         struct tree_entry *entry;
163
164         while (*p) {
165                 parent = *p;
166                 entry = rb_entry(parent, struct tree_entry, rb_node);
167
168                 if (offset < entry->start)
169                         p = &(*p)->rb_left;
170                 else if (offset > entry->end)
171                         p = &(*p)->rb_right;
172                 else
173                         return parent;
174         }
175
176         entry = rb_entry(node, struct tree_entry, rb_node);
177         rb_link_node(node, parent, p);
178         rb_insert_color(node, root);
179         return NULL;
180 }
181
182 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
183                                      struct rb_node **prev_ret,
184                                      struct rb_node **next_ret)
185 {
186         struct rb_root *root = &tree->state;
187         struct rb_node *n = root->rb_node;
188         struct rb_node *prev = NULL;
189         struct rb_node *orig_prev = NULL;
190         struct tree_entry *entry;
191         struct tree_entry *prev_entry = NULL;
192
193         while (n) {
194                 entry = rb_entry(n, struct tree_entry, rb_node);
195                 prev = n;
196                 prev_entry = entry;
197
198                 if (offset < entry->start)
199                         n = n->rb_left;
200                 else if (offset > entry->end)
201                         n = n->rb_right;
202                 else
203                         return n;
204         }
205
206         if (prev_ret) {
207                 orig_prev = prev;
208                 while (prev && offset > prev_entry->end) {
209                         prev = rb_next(prev);
210                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
211                 }
212                 *prev_ret = prev;
213                 prev = orig_prev;
214         }
215
216         if (next_ret) {
217                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
218                 while (prev && offset < prev_entry->start) {
219                         prev = rb_prev(prev);
220                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
221                 }
222                 *next_ret = prev;
223         }
224         return NULL;
225 }
226
227 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
228                                           u64 offset)
229 {
230         struct rb_node *prev = NULL;
231         struct rb_node *ret;
232
233         ret = __etree_search(tree, offset, &prev, NULL);
234         if (!ret)
235                 return prev;
236         return ret;
237 }
238
239 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree,
240                                           u64 offset, struct rb_node *node)
241 {
242         struct rb_root *root = &tree->buffer;
243         struct rb_node **p = &root->rb_node;
244         struct rb_node *parent = NULL;
245         struct extent_buffer *eb;
246
247         while (*p) {
248                 parent = *p;
249                 eb = rb_entry(parent, struct extent_buffer, rb_node);
250
251                 if (offset < eb->start)
252                         p = &(*p)->rb_left;
253                 else if (offset > eb->start)
254                         p = &(*p)->rb_right;
255                 else
256                         return eb;
257         }
258
259         rb_link_node(node, parent, p);
260         rb_insert_color(node, root);
261         return NULL;
262 }
263
264 static struct extent_buffer *buffer_search(struct extent_io_tree *tree,
265                                            u64 offset)
266 {
267         struct rb_root *root = &tree->buffer;
268         struct rb_node *n = root->rb_node;
269         struct extent_buffer *eb;
270
271         while (n) {
272                 eb = rb_entry(n, struct extent_buffer, rb_node);
273                 if (offset < eb->start)
274                         n = n->rb_left;
275                 else if (offset > eb->start)
276                         n = n->rb_right;
277                 else
278                         return eb;
279         }
280         return NULL;
281 }
282
283 /*
284  * utility function to look for merge candidates inside a given range.
285  * Any extents with matching state are merged together into a single
286  * extent in the tree.  Extents with EXTENT_IO in their state field
287  * are not merged because the end_io handlers need to be able to do
288  * operations on them without sleeping (or doing allocations/splits).
289  *
290  * This should be called with the tree lock held.
291  */
292 static int merge_state(struct extent_io_tree *tree,
293                        struct extent_state *state)
294 {
295         struct extent_state *other;
296         struct rb_node *other_node;
297
298         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
299                 return 0;
300
301         other_node = rb_prev(&state->rb_node);
302         if (other_node) {
303                 other = rb_entry(other_node, struct extent_state, rb_node);
304                 if (other->end == state->start - 1 &&
305                     other->state == state->state) {
306                         state->start = other->start;
307                         other->tree = NULL;
308                         rb_erase(&other->rb_node, &tree->state);
309                         free_extent_state(other);
310                 }
311         }
312         other_node = rb_next(&state->rb_node);
313         if (other_node) {
314                 other = rb_entry(other_node, struct extent_state, rb_node);
315                 if (other->start == state->end + 1 &&
316                     other->state == state->state) {
317                         other->start = state->start;
318                         state->tree = NULL;
319                         rb_erase(&state->rb_node, &tree->state);
320                         free_extent_state(state);
321                 }
322         }
323         return 0;
324 }
325
326 static void set_state_cb(struct extent_io_tree *tree,
327                          struct extent_state *state,
328                          unsigned long bits)
329 {
330         if (tree->ops && tree->ops->set_bit_hook) {
331                 tree->ops->set_bit_hook(tree->mapping->host, state->start,
332                                         state->end, state->state, bits);
333         }
334 }
335
336 static void clear_state_cb(struct extent_io_tree *tree,
337                            struct extent_state *state,
338                            unsigned long bits)
339 {
340         if (tree->ops && tree->ops->clear_bit_hook) {
341                 tree->ops->clear_bit_hook(tree->mapping->host, state->start,
342                                           state->end, state->state, bits);
343         }
344 }
345
346 /*
347  * insert an extent_state struct into the tree.  'bits' are set on the
348  * struct before it is inserted.
349  *
350  * This may return -EEXIST if the extent is already there, in which case the
351  * state struct is freed.
352  *
353  * The tree lock is not taken internally.  This is a utility function and
354  * probably isn't what you want to call (see set/clear_extent_bit).
355  */
356 static int insert_state(struct extent_io_tree *tree,
357                         struct extent_state *state, u64 start, u64 end,
358                         int bits)
359 {
360         struct rb_node *node;
361
362         if (end < start) {
363                 printk(KERN_ERR "btrfs end < start %llu %llu\n",
364                        (unsigned long long)end,
365                        (unsigned long long)start);
366                 WARN_ON(1);
367         }
368         if (bits & EXTENT_DIRTY)
369                 tree->dirty_bytes += end - start + 1;
370         set_state_cb(tree, state, bits);
371         state->state |= bits;
372         state->start = start;
373         state->end = end;
374         node = tree_insert(&tree->state, end, &state->rb_node);
375         if (node) {
376                 struct extent_state *found;
377                 found = rb_entry(node, struct extent_state, rb_node);
378                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
379                        "%llu %llu\n", (unsigned long long)found->start,
380                        (unsigned long long)found->end,
381                        (unsigned long long)start, (unsigned long long)end);
382                 free_extent_state(state);
383                 return -EEXIST;
384         }
385         state->tree = tree;
386         merge_state(tree, state);
387         return 0;
388 }
389
390 /*
391  * split a given extent state struct in two, inserting the preallocated
392  * struct 'prealloc' as the newly created second half.  'split' indicates an
393  * offset inside 'orig' where it should be split.
394  *
395  * Before calling,
396  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
397  * are two extent state structs in the tree:
398  * prealloc: [orig->start, split - 1]
399  * orig: [ split, orig->end ]
400  *
401  * The tree locks are not taken by this function. They need to be held
402  * by the caller.
403  */
404 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
405                        struct extent_state *prealloc, u64 split)
406 {
407         struct rb_node *node;
408         prealloc->start = orig->start;
409         prealloc->end = split - 1;
410         prealloc->state = orig->state;
411         orig->start = split;
412
413         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
414         if (node) {
415                 free_extent_state(prealloc);
416                 return -EEXIST;
417         }
418         prealloc->tree = tree;
419         return 0;
420 }
421
422 /*
423  * utility function to clear some bits in an extent state struct.
424  * it will optionally wake up any one waiting on this state (wake == 1), or
425  * forcibly remove the state from the tree (delete == 1).
426  *
427  * If no bits are set on the state struct after clearing things, the
428  * struct is freed and removed from the tree
429  */
430 static int clear_state_bit(struct extent_io_tree *tree,
431                             struct extent_state *state, int bits, int wake,
432                             int delete)
433 {
434         int ret = state->state & bits;
435
436         if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
437                 u64 range = state->end - state->start + 1;
438                 WARN_ON(range > tree->dirty_bytes);
439                 tree->dirty_bytes -= range;
440         }
441         clear_state_cb(tree, state, bits);
442         state->state &= ~bits;
443         if (wake)
444                 wake_up(&state->wq);
445         if (delete || state->state == 0) {
446                 if (state->tree) {
447                         clear_state_cb(tree, state, state->state);
448                         rb_erase(&state->rb_node, &tree->state);
449                         state->tree = NULL;
450                         free_extent_state(state);
451                 } else {
452                         WARN_ON(1);
453                 }
454         } else {
455                 merge_state(tree, state);
456         }
457         return ret;
458 }
459
460 /*
461  * clear some bits on a range in the tree.  This may require splitting
462  * or inserting elements in the tree, so the gfp mask is used to
463  * indicate which allocations or sleeping are allowed.
464  *
465  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
466  * the given range from the tree regardless of state (ie for truncate).
467  *
468  * the range [start, end] is inclusive.
469  *
470  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
471  * bits were already set, or zero if none of the bits were already set.
472  */
473 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
474                      int bits, int wake, int delete, gfp_t mask)
475 {
476         struct extent_state *state;
477         struct extent_state *prealloc = NULL;
478         struct rb_node *node;
479         u64 last_end;
480         int err;
481         int set = 0;
482
483 again:
484         if (!prealloc && (mask & __GFP_WAIT)) {
485                 prealloc = alloc_extent_state(mask);
486                 if (!prealloc)
487                         return -ENOMEM;
488         }
489
490         spin_lock(&tree->lock);
491         /*
492          * this search will find the extents that end after
493          * our range starts
494          */
495         node = tree_search(tree, start);
496         if (!node)
497                 goto out;
498         state = rb_entry(node, struct extent_state, rb_node);
499         if (state->start > end)
500                 goto out;
501         WARN_ON(state->end < start);
502         last_end = state->end;
503
504         /*
505          *     | ---- desired range ---- |
506          *  | state | or
507          *  | ------------- state -------------- |
508          *
509          * We need to split the extent we found, and may flip
510          * bits on second half.
511          *
512          * If the extent we found extends past our range, we
513          * just split and search again.  It'll get split again
514          * the next time though.
515          *
516          * If the extent we found is inside our range, we clear
517          * the desired bit on it.
518          */
519
520         if (state->start < start) {
521                 if (!prealloc)
522                         prealloc = alloc_extent_state(GFP_ATOMIC);
523                 err = split_state(tree, state, prealloc, start);
524                 BUG_ON(err == -EEXIST);
525                 prealloc = NULL;
526                 if (err)
527                         goto out;
528                 if (state->end <= end) {
529                         set |= clear_state_bit(tree, state, bits,
530                                         wake, delete);
531                         if (last_end == (u64)-1)
532                                 goto out;
533                         start = last_end + 1;
534                 } else {
535                         start = state->start;
536                 }
537                 goto search_again;
538         }
539         /*
540          * | ---- desired range ---- |
541          *                        | state |
542          * We need to split the extent, and clear the bit
543          * on the first half
544          */
545         if (state->start <= end && state->end > end) {
546                 if (!prealloc)
547                         prealloc = alloc_extent_state(GFP_ATOMIC);
548                 err = split_state(tree, state, prealloc, end + 1);
549                 BUG_ON(err == -EEXIST);
550
551                 if (wake)
552                         wake_up(&state->wq);
553                 set |= clear_state_bit(tree, prealloc, bits,
554                                        wake, delete);
555                 prealloc = NULL;
556                 goto out;
557         }
558
559         set |= clear_state_bit(tree, state, bits, wake, delete);
560         if (last_end == (u64)-1)
561                 goto out;
562         start = last_end + 1;
563         goto search_again;
564
565 out:
566         spin_unlock(&tree->lock);
567         if (prealloc)
568                 free_extent_state(prealloc);
569
570         return set;
571
572 search_again:
573         if (start > end)
574                 goto out;
575         spin_unlock(&tree->lock);
576         if (mask & __GFP_WAIT)
577                 cond_resched();
578         goto again;
579 }
580
581 static int wait_on_state(struct extent_io_tree *tree,
582                          struct extent_state *state)
583                 __releases(tree->lock)
584                 __acquires(tree->lock)
585 {
586         DEFINE_WAIT(wait);
587         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
588         spin_unlock(&tree->lock);
589         schedule();
590         spin_lock(&tree->lock);
591         finish_wait(&state->wq, &wait);
592         return 0;
593 }
594
595 /*
596  * waits for one or more bits to clear on a range in the state tree.
597  * The range [start, end] is inclusive.
598  * The tree lock is taken by this function
599  */
600 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
601 {
602         struct extent_state *state;
603         struct rb_node *node;
604
605         spin_lock(&tree->lock);
606 again:
607         while (1) {
608                 /*
609                  * this search will find all the extents that end after
610                  * our range starts
611                  */
612                 node = tree_search(tree, start);
613                 if (!node)
614                         break;
615
616                 state = rb_entry(node, struct extent_state, rb_node);
617
618                 if (state->start > end)
619                         goto out;
620
621                 if (state->state & bits) {
622                         start = state->start;
623                         atomic_inc(&state->refs);
624                         wait_on_state(tree, state);
625                         free_extent_state(state);
626                         goto again;
627                 }
628                 start = state->end + 1;
629
630                 if (start > end)
631                         break;
632
633                 if (need_resched()) {
634                         spin_unlock(&tree->lock);
635                         cond_resched();
636                         spin_lock(&tree->lock);
637                 }
638         }
639 out:
640         spin_unlock(&tree->lock);
641         return 0;
642 }
643
644 static void set_state_bits(struct extent_io_tree *tree,
645                            struct extent_state *state,
646                            int bits)
647 {
648         if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
649                 u64 range = state->end - state->start + 1;
650                 tree->dirty_bytes += range;
651         }
652         set_state_cb(tree, state, bits);
653         state->state |= bits;
654 }
655
656 /*
657  * set some bits on a range in the tree.  This may require allocations
658  * or sleeping, so the gfp mask is used to indicate what is allowed.
659  *
660  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
661  * range already has the desired bits set.  The start of the existing
662  * range is returned in failed_start in this case.
663  *
664  * [start, end] is inclusive
665  * This takes the tree lock.
666  */
667 static int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
668                           int bits, int exclusive, u64 *failed_start,
669                           gfp_t mask)
670 {
671         struct extent_state *state;
672         struct extent_state *prealloc = NULL;
673         struct rb_node *node;
674         int err = 0;
675         int set;
676         u64 last_start;
677         u64 last_end;
678 again:
679         if (!prealloc && (mask & __GFP_WAIT)) {
680                 prealloc = alloc_extent_state(mask);
681                 if (!prealloc)
682                         return -ENOMEM;
683         }
684
685         spin_lock(&tree->lock);
686         /*
687          * this search will find all the extents that end after
688          * our range starts.
689          */
690         node = tree_search(tree, start);
691         if (!node) {
692                 err = insert_state(tree, prealloc, start, end, bits);
693                 prealloc = NULL;
694                 BUG_ON(err == -EEXIST);
695                 goto out;
696         }
697         state = rb_entry(node, struct extent_state, rb_node);
698 hit_next:
699         last_start = state->start;
700         last_end = state->end;
701
702         /*
703          * | ---- desired range ---- |
704          * | state |
705          *
706          * Just lock what we found and keep going
707          */
708         if (state->start == start && state->end <= end) {
709                 struct rb_node *next_node;
710                 set = state->state & bits;
711                 if (set && exclusive) {
712                         *failed_start = state->start;
713                         err = -EEXIST;
714                         goto out;
715                 }
716                 set_state_bits(tree, state, bits);
717                 merge_state(tree, state);
718                 if (last_end == (u64)-1)
719                         goto out;
720
721                 start = last_end + 1;
722                 if (start < end && prealloc && !need_resched()) {
723                         next_node = rb_next(node);
724                         if (next_node) {
725                                 state = rb_entry(next_node, struct extent_state,
726                                                  rb_node);
727                                 if (state->start == start)
728                                         goto hit_next;
729                         }
730                 }
731                 goto search_again;
732         }
733
734         /*
735          *     | ---- desired range ---- |
736          * | state |
737          *   or
738          * | ------------- state -------------- |
739          *
740          * We need to split the extent we found, and may flip bits on
741          * second half.
742          *
743          * If the extent we found extends past our
744          * range, we just split and search again.  It'll get split
745          * again the next time though.
746          *
747          * If the extent we found is inside our range, we set the
748          * desired bit on it.
749          */
750         if (state->start < start) {
751                 set = state->state & bits;
752                 if (exclusive && set) {
753                         *failed_start = start;
754                         err = -EEXIST;
755                         goto out;
756                 }
757                 err = split_state(tree, state, prealloc, start);
758                 BUG_ON(err == -EEXIST);
759                 prealloc = NULL;
760                 if (err)
761                         goto out;
762                 if (state->end <= end) {
763                         set_state_bits(tree, state, bits);
764                         merge_state(tree, state);
765                         if (last_end == (u64)-1)
766                                 goto out;
767                         start = last_end + 1;
768                 } else {
769                         start = state->start;
770                 }
771                 goto search_again;
772         }
773         /*
774          * | ---- desired range ---- |
775          *     | state | or               | state |
776          *
777          * There's a hole, we need to insert something in it and
778          * ignore the extent we found.
779          */
780         if (state->start > start) {
781                 u64 this_end;
782                 if (end < last_start)
783                         this_end = end;
784                 else
785                         this_end = last_start - 1;
786                 err = insert_state(tree, prealloc, start, this_end,
787                                    bits);
788                 prealloc = NULL;
789                 BUG_ON(err == -EEXIST);
790                 if (err)
791                         goto out;
792                 start = this_end + 1;
793                 goto search_again;
794         }
795         /*
796          * | ---- desired range ---- |
797          *                        | state |
798          * We need to split the extent, and set the bit
799          * on the first half
800          */
801         if (state->start <= end && state->end > end) {
802                 set = state->state & bits;
803                 if (exclusive && set) {
804                         *failed_start = start;
805                         err = -EEXIST;
806                         goto out;
807                 }
808                 err = split_state(tree, state, prealloc, end + 1);
809                 BUG_ON(err == -EEXIST);
810
811                 set_state_bits(tree, prealloc, bits);
812                 merge_state(tree, prealloc);
813                 prealloc = NULL;
814                 goto out;
815         }
816
817         goto search_again;
818
819 out:
820         spin_unlock(&tree->lock);
821         if (prealloc)
822                 free_extent_state(prealloc);
823
824         return err;
825
826 search_again:
827         if (start > end)
828                 goto out;
829         spin_unlock(&tree->lock);
830         if (mask & __GFP_WAIT)
831                 cond_resched();
832         goto again;
833 }
834
835 /* wrappers around set/clear extent bit */
836 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
837                      gfp_t mask)
838 {
839         return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
840                               mask);
841 }
842
843 int set_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
844                        gfp_t mask)
845 {
846         return set_extent_bit(tree, start, end, EXTENT_ORDERED, 0, NULL, mask);
847 }
848
849 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
850                     int bits, gfp_t mask)
851 {
852         return set_extent_bit(tree, start, end, bits, 0, NULL,
853                               mask);
854 }
855
856 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
857                       int bits, gfp_t mask)
858 {
859         return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
860 }
861
862 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
863                      gfp_t mask)
864 {
865         return set_extent_bit(tree, start, end,
866                               EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
867                               0, NULL, mask);
868 }
869
870 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
871                        gfp_t mask)
872 {
873         return clear_extent_bit(tree, start, end,
874                                 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
875 }
876
877 int clear_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
878                          gfp_t mask)
879 {
880         return clear_extent_bit(tree, start, end, EXTENT_ORDERED, 1, 0, mask);
881 }
882
883 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
884                      gfp_t mask)
885 {
886         return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
887                               mask);
888 }
889
890 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
891                        gfp_t mask)
892 {
893         return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
894 }
895
896 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
897                         gfp_t mask)
898 {
899         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
900                               mask);
901 }
902
903 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
904                                  u64 end, gfp_t mask)
905 {
906         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
907 }
908
909 static int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
910                          gfp_t mask)
911 {
912         return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
913                               0, NULL, mask);
914 }
915
916 static int clear_extent_writeback(struct extent_io_tree *tree, u64 start,
917                                   u64 end, gfp_t mask)
918 {
919         return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
920 }
921
922 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
923 {
924         return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
925 }
926
927 /*
928  * either insert or lock state struct between start and end use mask to tell
929  * us if waiting is desired.
930  */
931 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
932 {
933         int err;
934         u64 failed_start;
935         while (1) {
936                 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
937                                      &failed_start, mask);
938                 if (err == -EEXIST && (mask & __GFP_WAIT)) {
939                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
940                         start = failed_start;
941                 } else {
942                         break;
943                 }
944                 WARN_ON(start > end);
945         }
946         return err;
947 }
948
949 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
950                     gfp_t mask)
951 {
952         int err;
953         u64 failed_start;
954
955         err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
956                              &failed_start, mask);
957         if (err == -EEXIST) {
958                 if (failed_start > start)
959                         clear_extent_bit(tree, start, failed_start - 1,
960                                          EXTENT_LOCKED, 1, 0, mask);
961                 return 0;
962         }
963         return 1;
964 }
965
966 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
967                   gfp_t mask)
968 {
969         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
970 }
971
972 /*
973  * helper function to set pages and extents in the tree dirty
974  */
975 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
976 {
977         unsigned long index = start >> PAGE_CACHE_SHIFT;
978         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
979         struct page *page;
980
981         while (index <= end_index) {
982                 page = find_get_page(tree->mapping, index);
983                 BUG_ON(!page);
984                 __set_page_dirty_nobuffers(page);
985                 page_cache_release(page);
986                 index++;
987         }
988         set_extent_dirty(tree, start, end, GFP_NOFS);
989         return 0;
990 }
991
992 /*
993  * helper function to set both pages and extents in the tree writeback
994  */
995 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
996 {
997         unsigned long index = start >> PAGE_CACHE_SHIFT;
998         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
999         struct page *page;
1000
1001         while (index <= end_index) {
1002                 page = find_get_page(tree->mapping, index);
1003                 BUG_ON(!page);
1004                 set_page_writeback(page);
1005                 page_cache_release(page);
1006                 index++;
1007         }
1008         set_extent_writeback(tree, start, end, GFP_NOFS);
1009         return 0;
1010 }
1011
1012 /*
1013  * find the first offset in the io tree with 'bits' set. zero is
1014  * returned if we find something, and *start_ret and *end_ret are
1015  * set to reflect the state struct that was found.
1016  *
1017  * If nothing was found, 1 is returned, < 0 on error
1018  */
1019 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1020                           u64 *start_ret, u64 *end_ret, int bits)
1021 {
1022         struct rb_node *node;
1023         struct extent_state *state;
1024         int ret = 1;
1025
1026         spin_lock(&tree->lock);
1027         /*
1028          * this search will find all the extents that end after
1029          * our range starts.
1030          */
1031         node = tree_search(tree, start);
1032         if (!node)
1033                 goto out;
1034
1035         while (1) {
1036                 state = rb_entry(node, struct extent_state, rb_node);
1037                 if (state->end >= start && (state->state & bits)) {
1038                         *start_ret = state->start;
1039                         *end_ret = state->end;
1040                         ret = 0;
1041                         break;
1042                 }
1043                 node = rb_next(node);
1044                 if (!node)
1045                         break;
1046         }
1047 out:
1048         spin_unlock(&tree->lock);
1049         return ret;
1050 }
1051
1052 /* find the first state struct with 'bits' set after 'start', and
1053  * return it.  tree->lock must be held.  NULL will returned if
1054  * nothing was found after 'start'
1055  */
1056 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1057                                                  u64 start, int bits)
1058 {
1059         struct rb_node *node;
1060         struct extent_state *state;
1061
1062         /*
1063          * this search will find all the extents that end after
1064          * our range starts.
1065          */
1066         node = tree_search(tree, start);
1067         if (!node)
1068                 goto out;
1069
1070         while (1) {
1071                 state = rb_entry(node, struct extent_state, rb_node);
1072                 if (state->end >= start && (state->state & bits))
1073                         return state;
1074
1075                 node = rb_next(node);
1076                 if (!node)
1077                         break;
1078         }
1079 out:
1080         return NULL;
1081 }
1082
1083 /*
1084  * find a contiguous range of bytes in the file marked as delalloc, not
1085  * more than 'max_bytes'.  start and end are used to return the range,
1086  *
1087  * 1 is returned if we find something, 0 if nothing was in the tree
1088  */
1089 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1090                                         u64 *start, u64 *end, u64 max_bytes)
1091 {
1092         struct rb_node *node;
1093         struct extent_state *state;
1094         u64 cur_start = *start;
1095         u64 found = 0;
1096         u64 total_bytes = 0;
1097
1098         spin_lock(&tree->lock);
1099
1100         /*
1101          * this search will find all the extents that end after
1102          * our range starts.
1103          */
1104         node = tree_search(tree, cur_start);
1105         if (!node) {
1106                 if (!found)
1107                         *end = (u64)-1;
1108                 goto out;
1109         }
1110
1111         while (1) {
1112                 state = rb_entry(node, struct extent_state, rb_node);
1113                 if (found && (state->start != cur_start ||
1114                               (state->state & EXTENT_BOUNDARY))) {
1115                         goto out;
1116                 }
1117                 if (!(state->state & EXTENT_DELALLOC)) {
1118                         if (!found)
1119                                 *end = state->end;
1120                         goto out;
1121                 }
1122                 if (!found)
1123                         *start = state->start;
1124                 found++;
1125                 *end = state->end;
1126                 cur_start = state->end + 1;
1127                 node = rb_next(node);
1128                 if (!node)
1129                         break;
1130                 total_bytes += state->end - state->start + 1;
1131                 if (total_bytes >= max_bytes)
1132                         break;
1133         }
1134 out:
1135         spin_unlock(&tree->lock);
1136         return found;
1137 }
1138
1139 static noinline int __unlock_for_delalloc(struct inode *inode,
1140                                           struct page *locked_page,
1141                                           u64 start, u64 end)
1142 {
1143         int ret;
1144         struct page *pages[16];
1145         unsigned long index = start >> PAGE_CACHE_SHIFT;
1146         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1147         unsigned long nr_pages = end_index - index + 1;
1148         int i;
1149
1150         if (index == locked_page->index && end_index == index)
1151                 return 0;
1152
1153         while (nr_pages > 0) {
1154                 ret = find_get_pages_contig(inode->i_mapping, index,
1155                                      min_t(unsigned long, nr_pages,
1156                                      ARRAY_SIZE(pages)), pages);
1157                 for (i = 0; i < ret; i++) {
1158                         if (pages[i] != locked_page)
1159                                 unlock_page(pages[i]);
1160                         page_cache_release(pages[i]);
1161                 }
1162                 nr_pages -= ret;
1163                 index += ret;
1164                 cond_resched();
1165         }
1166         return 0;
1167 }
1168
1169 static noinline int lock_delalloc_pages(struct inode *inode,
1170                                         struct page *locked_page,
1171                                         u64 delalloc_start,
1172                                         u64 delalloc_end)
1173 {
1174         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1175         unsigned long start_index = index;
1176         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1177         unsigned long pages_locked = 0;
1178         struct page *pages[16];
1179         unsigned long nrpages;
1180         int ret;
1181         int i;
1182
1183         /* the caller is responsible for locking the start index */
1184         if (index == locked_page->index && index == end_index)
1185                 return 0;
1186
1187         /* skip the page at the start index */
1188         nrpages = end_index - index + 1;
1189         while (nrpages > 0) {
1190                 ret = find_get_pages_contig(inode->i_mapping, index,
1191                                      min_t(unsigned long,
1192                                      nrpages, ARRAY_SIZE(pages)), pages);
1193                 if (ret == 0) {
1194                         ret = -EAGAIN;
1195                         goto done;
1196                 }
1197                 /* now we have an array of pages, lock them all */
1198                 for (i = 0; i < ret; i++) {
1199                         /*
1200                          * the caller is taking responsibility for
1201                          * locked_page
1202                          */
1203                         if (pages[i] != locked_page) {
1204                                 lock_page(pages[i]);
1205                                 if (!PageDirty(pages[i]) ||
1206                                     pages[i]->mapping != inode->i_mapping) {
1207                                         ret = -EAGAIN;
1208                                         unlock_page(pages[i]);
1209                                         page_cache_release(pages[i]);
1210                                         goto done;
1211                                 }
1212                         }
1213                         page_cache_release(pages[i]);
1214                         pages_locked++;
1215                 }
1216                 nrpages -= ret;
1217                 index += ret;
1218                 cond_resched();
1219         }
1220         ret = 0;
1221 done:
1222         if (ret && pages_locked) {
1223                 __unlock_for_delalloc(inode, locked_page,
1224                               delalloc_start,
1225                               ((u64)(start_index + pages_locked - 1)) <<
1226                               PAGE_CACHE_SHIFT);
1227         }
1228         return ret;
1229 }
1230
1231 /*
1232  * find a contiguous range of bytes in the file marked as delalloc, not
1233  * more than 'max_bytes'.  start and end are used to return the range,
1234  *
1235  * 1 is returned if we find something, 0 if nothing was in the tree
1236  */
1237 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1238                                              struct extent_io_tree *tree,
1239                                              struct page *locked_page,
1240                                              u64 *start, u64 *end,
1241                                              u64 max_bytes)
1242 {
1243         u64 delalloc_start;
1244         u64 delalloc_end;
1245         u64 found;
1246         int ret;
1247         int loops = 0;
1248
1249 again:
1250         /* step one, find a bunch of delalloc bytes starting at start */
1251         delalloc_start = *start;
1252         delalloc_end = 0;
1253         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1254                                     max_bytes);
1255         if (!found || delalloc_end <= *start) {
1256                 *start = delalloc_start;
1257                 *end = delalloc_end;
1258                 return found;
1259         }
1260
1261         /*
1262          * start comes from the offset of locked_page.  We have to lock
1263          * pages in order, so we can't process delalloc bytes before
1264          * locked_page
1265          */
1266         if (delalloc_start < *start)
1267                 delalloc_start = *start;
1268
1269         /*
1270          * make sure to limit the number of pages we try to lock down
1271          * if we're looping.
1272          */
1273         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1274                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1275
1276         /* step two, lock all the pages after the page that has start */
1277         ret = lock_delalloc_pages(inode, locked_page,
1278                                   delalloc_start, delalloc_end);
1279         if (ret == -EAGAIN) {
1280                 /* some of the pages are gone, lets avoid looping by
1281                  * shortening the size of the delalloc range we're searching
1282                  */
1283                 if (!loops) {
1284                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1285                         max_bytes = PAGE_CACHE_SIZE - offset;
1286                         loops = 1;
1287                         goto again;
1288                 } else {
1289                         found = 0;
1290                         goto out_failed;
1291                 }
1292         }
1293         BUG_ON(ret);
1294
1295         /* step three, lock the state bits for the whole range */
1296         lock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1297
1298         /* then test to make sure it is all still delalloc */
1299         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1300                              EXTENT_DELALLOC, 1);
1301         if (!ret) {
1302                 unlock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1303                 __unlock_for_delalloc(inode, locked_page,
1304                               delalloc_start, delalloc_end);
1305                 cond_resched();
1306                 goto again;
1307         }
1308         *start = delalloc_start;
1309         *end = delalloc_end;
1310 out_failed:
1311         return found;
1312 }
1313
1314 int extent_clear_unlock_delalloc(struct inode *inode,
1315                                 struct extent_io_tree *tree,
1316                                 u64 start, u64 end, struct page *locked_page,
1317                                 int unlock_pages,
1318                                 int clear_unlock,
1319                                 int clear_delalloc, int clear_dirty,
1320                                 int set_writeback,
1321                                 int end_writeback)
1322 {
1323         int ret;
1324         struct page *pages[16];
1325         unsigned long index = start >> PAGE_CACHE_SHIFT;
1326         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1327         unsigned long nr_pages = end_index - index + 1;
1328         int i;
1329         int clear_bits = 0;
1330
1331         if (clear_unlock)
1332                 clear_bits |= EXTENT_LOCKED;
1333         if (clear_dirty)
1334                 clear_bits |= EXTENT_DIRTY;
1335
1336         if (clear_delalloc)
1337                 clear_bits |= EXTENT_DELALLOC;
1338
1339         clear_extent_bit(tree, start, end, clear_bits, 1, 0, GFP_NOFS);
1340         if (!(unlock_pages || clear_dirty || set_writeback || end_writeback))
1341                 return 0;
1342
1343         while (nr_pages > 0) {
1344                 ret = find_get_pages_contig(inode->i_mapping, index,
1345                                      min_t(unsigned long,
1346                                      nr_pages, ARRAY_SIZE(pages)), pages);
1347                 for (i = 0; i < ret; i++) {
1348                         if (pages[i] == locked_page) {
1349                                 page_cache_release(pages[i]);
1350                                 continue;
1351                         }
1352                         if (clear_dirty)
1353                                 clear_page_dirty_for_io(pages[i]);
1354                         if (set_writeback)
1355                                 set_page_writeback(pages[i]);
1356                         if (end_writeback)
1357                                 end_page_writeback(pages[i]);
1358                         if (unlock_pages)
1359                                 unlock_page(pages[i]);
1360                         page_cache_release(pages[i]);
1361                 }
1362                 nr_pages -= ret;
1363                 index += ret;
1364                 cond_resched();
1365         }
1366         return 0;
1367 }
1368
1369 /*
1370  * count the number of bytes in the tree that have a given bit(s)
1371  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1372  * cached.  The total number found is returned.
1373  */
1374 u64 count_range_bits(struct extent_io_tree *tree,
1375                      u64 *start, u64 search_end, u64 max_bytes,
1376                      unsigned long bits)
1377 {
1378         struct rb_node *node;
1379         struct extent_state *state;
1380         u64 cur_start = *start;
1381         u64 total_bytes = 0;
1382         int found = 0;
1383
1384         if (search_end <= cur_start) {
1385                 WARN_ON(1);
1386                 return 0;
1387         }
1388
1389         spin_lock(&tree->lock);
1390         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1391                 total_bytes = tree->dirty_bytes;
1392                 goto out;
1393         }
1394         /*
1395          * this search will find all the extents that end after
1396          * our range starts.
1397          */
1398         node = tree_search(tree, cur_start);
1399         if (!node)
1400                 goto out;
1401
1402         while (1) {
1403                 state = rb_entry(node, struct extent_state, rb_node);
1404                 if (state->start > search_end)
1405                         break;
1406                 if (state->end >= cur_start && (state->state & bits)) {
1407                         total_bytes += min(search_end, state->end) + 1 -
1408                                        max(cur_start, state->start);
1409                         if (total_bytes >= max_bytes)
1410                                 break;
1411                         if (!found) {
1412                                 *start = state->start;
1413                                 found = 1;
1414                         }
1415                 }
1416                 node = rb_next(node);
1417                 if (!node)
1418                         break;
1419         }
1420 out:
1421         spin_unlock(&tree->lock);
1422         return total_bytes;
1423 }
1424
1425 /*
1426  * set the private field for a given byte offset in the tree.  If there isn't
1427  * an extent_state there already, this does nothing.
1428  */
1429 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1430 {
1431         struct rb_node *node;
1432         struct extent_state *state;
1433         int ret = 0;
1434
1435         spin_lock(&tree->lock);
1436         /*
1437          * this search will find all the extents that end after
1438          * our range starts.
1439          */
1440         node = tree_search(tree, start);
1441         if (!node) {
1442                 ret = -ENOENT;
1443                 goto out;
1444         }
1445         state = rb_entry(node, struct extent_state, rb_node);
1446         if (state->start != start) {
1447                 ret = -ENOENT;
1448                 goto out;
1449         }
1450         state->private = private;
1451 out:
1452         spin_unlock(&tree->lock);
1453         return ret;
1454 }
1455
1456 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1457 {
1458         struct rb_node *node;
1459         struct extent_state *state;
1460         int ret = 0;
1461
1462         spin_lock(&tree->lock);
1463         /*
1464          * this search will find all the extents that end after
1465          * our range starts.
1466          */
1467         node = tree_search(tree, start);
1468         if (!node) {
1469                 ret = -ENOENT;
1470                 goto out;
1471         }
1472         state = rb_entry(node, struct extent_state, rb_node);
1473         if (state->start != start) {
1474                 ret = -ENOENT;
1475                 goto out;
1476         }
1477         *private = state->private;
1478 out:
1479         spin_unlock(&tree->lock);
1480         return ret;
1481 }
1482
1483 /*
1484  * searches a range in the state tree for a given mask.
1485  * If 'filled' == 1, this returns 1 only if every extent in the tree
1486  * has the bits set.  Otherwise, 1 is returned if any bit in the
1487  * range is found set.
1488  */
1489 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1490                    int bits, int filled)
1491 {
1492         struct extent_state *state = NULL;
1493         struct rb_node *node;
1494         int bitset = 0;
1495
1496         spin_lock(&tree->lock);
1497         node = tree_search(tree, start);
1498         while (node && start <= end) {
1499                 state = rb_entry(node, struct extent_state, rb_node);
1500
1501                 if (filled && state->start > start) {
1502                         bitset = 0;
1503                         break;
1504                 }
1505
1506                 if (state->start > end)
1507                         break;
1508
1509                 if (state->state & bits) {
1510                         bitset = 1;
1511                         if (!filled)
1512                                 break;
1513                 } else if (filled) {
1514                         bitset = 0;
1515                         break;
1516                 }
1517                 start = state->end + 1;
1518                 if (start > end)
1519                         break;
1520                 node = rb_next(node);
1521                 if (!node) {
1522                         if (filled)
1523                                 bitset = 0;
1524                         break;
1525                 }
1526         }
1527         spin_unlock(&tree->lock);
1528         return bitset;
1529 }
1530
1531 /*
1532  * helper function to set a given page up to date if all the
1533  * extents in the tree for that page are up to date
1534  */
1535 static int check_page_uptodate(struct extent_io_tree *tree,
1536                                struct page *page)
1537 {
1538         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1539         u64 end = start + PAGE_CACHE_SIZE - 1;
1540         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1541                 SetPageUptodate(page);
1542         return 0;
1543 }
1544
1545 /*
1546  * helper function to unlock a page if all the extents in the tree
1547  * for that page are unlocked
1548  */
1549 static int check_page_locked(struct extent_io_tree *tree,
1550                              struct page *page)
1551 {
1552         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1553         u64 end = start + PAGE_CACHE_SIZE - 1;
1554         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1555                 unlock_page(page);
1556         return 0;
1557 }
1558
1559 /*
1560  * helper function to end page writeback if all the extents
1561  * in the tree for that page are done with writeback
1562  */
1563 static int check_page_writeback(struct extent_io_tree *tree,
1564                              struct page *page)
1565 {
1566         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1567         u64 end = start + PAGE_CACHE_SIZE - 1;
1568         if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1569                 end_page_writeback(page);
1570         return 0;
1571 }
1572
1573 /* lots and lots of room for performance fixes in the end_bio funcs */
1574
1575 /*
1576  * after a writepage IO is done, we need to:
1577  * clear the uptodate bits on error
1578  * clear the writeback bits in the extent tree for this IO
1579  * end_page_writeback if the page has no more pending IO
1580  *
1581  * Scheduling is not allowed, so the extent state tree is expected
1582  * to have one and only one object corresponding to this IO.
1583  */
1584 static void end_bio_extent_writepage(struct bio *bio, int err)
1585 {
1586         int uptodate = err == 0;
1587         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1588         struct extent_io_tree *tree;
1589         u64 start;
1590         u64 end;
1591         int whole_page;
1592         int ret;
1593
1594         do {
1595                 struct page *page = bvec->bv_page;
1596                 tree = &BTRFS_I(page->mapping->host)->io_tree;
1597
1598                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1599                          bvec->bv_offset;
1600                 end = start + bvec->bv_len - 1;
1601
1602                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1603                         whole_page = 1;
1604                 else
1605                         whole_page = 0;
1606
1607                 if (--bvec >= bio->bi_io_vec)
1608                         prefetchw(&bvec->bv_page->flags);
1609                 if (tree->ops && tree->ops->writepage_end_io_hook) {
1610                         ret = tree->ops->writepage_end_io_hook(page, start,
1611                                                        end, NULL, uptodate);
1612                         if (ret)
1613                                 uptodate = 0;
1614                 }
1615
1616                 if (!uptodate && tree->ops &&
1617                     tree->ops->writepage_io_failed_hook) {
1618                         ret = tree->ops->writepage_io_failed_hook(bio, page,
1619                                                          start, end, NULL);
1620                         if (ret == 0) {
1621                                 uptodate = (err == 0);
1622                                 continue;
1623                         }
1624                 }
1625
1626                 if (!uptodate) {
1627                         clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1628                         ClearPageUptodate(page);
1629                         SetPageError(page);
1630                 }
1631
1632                 clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1633
1634                 if (whole_page)
1635                         end_page_writeback(page);
1636                 else
1637                         check_page_writeback(tree, page);
1638         } while (bvec >= bio->bi_io_vec);
1639
1640         bio_put(bio);
1641 }
1642
1643 /*
1644  * after a readpage IO is done, we need to:
1645  * clear the uptodate bits on error
1646  * set the uptodate bits if things worked
1647  * set the page up to date if all extents in the tree are uptodate
1648  * clear the lock bit in the extent tree
1649  * unlock the page if there are no other extents locked for it
1650  *
1651  * Scheduling is not allowed, so the extent state tree is expected
1652  * to have one and only one object corresponding to this IO.
1653  */
1654 static void end_bio_extent_readpage(struct bio *bio, int err)
1655 {
1656         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1657         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1658         struct extent_io_tree *tree;
1659         u64 start;
1660         u64 end;
1661         int whole_page;
1662         int ret;
1663
1664         if (err)
1665                 uptodate = 0;
1666
1667         do {
1668                 struct page *page = bvec->bv_page;
1669                 tree = &BTRFS_I(page->mapping->host)->io_tree;
1670
1671                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1672                         bvec->bv_offset;
1673                 end = start + bvec->bv_len - 1;
1674
1675                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1676                         whole_page = 1;
1677                 else
1678                         whole_page = 0;
1679
1680                 if (--bvec >= bio->bi_io_vec)
1681                         prefetchw(&bvec->bv_page->flags);
1682
1683                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1684                         ret = tree->ops->readpage_end_io_hook(page, start, end,
1685                                                               NULL);
1686                         if (ret)
1687                                 uptodate = 0;
1688                 }
1689                 if (!uptodate && tree->ops &&
1690                     tree->ops->readpage_io_failed_hook) {
1691                         ret = tree->ops->readpage_io_failed_hook(bio, page,
1692                                                          start, end, NULL);
1693                         if (ret == 0) {
1694                                 uptodate =
1695                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
1696                                 if (err)
1697                                         uptodate = 0;
1698                                 continue;
1699                         }
1700                 }
1701
1702                 if (uptodate) {
1703                         set_extent_uptodate(tree, start, end,
1704                                             GFP_ATOMIC);
1705                 }
1706                 unlock_extent(tree, start, end, GFP_ATOMIC);
1707
1708                 if (whole_page) {
1709                         if (uptodate) {
1710                                 SetPageUptodate(page);
1711                         } else {
1712                                 ClearPageUptodate(page);
1713                                 SetPageError(page);
1714                         }
1715                         unlock_page(page);
1716                 } else {
1717                         if (uptodate) {
1718                                 check_page_uptodate(tree, page);
1719                         } else {
1720                                 ClearPageUptodate(page);
1721                                 SetPageError(page);
1722                         }
1723                         check_page_locked(tree, page);
1724                 }
1725         } while (bvec >= bio->bi_io_vec);
1726
1727         bio_put(bio);
1728 }
1729
1730 /*
1731  * IO done from prepare_write is pretty simple, we just unlock
1732  * the structs in the extent tree when done, and set the uptodate bits
1733  * as appropriate.
1734  */
1735 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1736 {
1737         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1738         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1739         struct extent_io_tree *tree;
1740         u64 start;
1741         u64 end;
1742
1743         do {
1744                 struct page *page = bvec->bv_page;
1745                 tree = &BTRFS_I(page->mapping->host)->io_tree;
1746
1747                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1748                         bvec->bv_offset;
1749                 end = start + bvec->bv_len - 1;
1750
1751                 if (--bvec >= bio->bi_io_vec)
1752                         prefetchw(&bvec->bv_page->flags);
1753
1754                 if (uptodate) {
1755                         set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1756                 } else {
1757                         ClearPageUptodate(page);
1758                         SetPageError(page);
1759                 }
1760
1761                 unlock_extent(tree, start, end, GFP_ATOMIC);
1762
1763         } while (bvec >= bio->bi_io_vec);
1764
1765         bio_put(bio);
1766 }
1767
1768 static struct bio *
1769 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1770                  gfp_t gfp_flags)
1771 {
1772         struct bio *bio;
1773
1774         bio = bio_alloc(gfp_flags, nr_vecs);
1775
1776         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1777                 while (!bio && (nr_vecs /= 2))
1778                         bio = bio_alloc(gfp_flags, nr_vecs);
1779         }
1780
1781         if (bio) {
1782                 bio->bi_size = 0;
1783                 bio->bi_bdev = bdev;
1784                 bio->bi_sector = first_sector;
1785         }
1786         return bio;
1787 }
1788
1789 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1790                           unsigned long bio_flags)
1791 {
1792         int ret = 0;
1793         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1794         struct page *page = bvec->bv_page;
1795         struct extent_io_tree *tree = bio->bi_private;
1796         u64 start;
1797         u64 end;
1798
1799         start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1800         end = start + bvec->bv_len - 1;
1801
1802         bio->bi_private = NULL;
1803
1804         bio_get(bio);
1805
1806         if (tree->ops && tree->ops->submit_bio_hook)
1807                 tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1808                                            mirror_num, bio_flags);
1809         else
1810                 submit_bio(rw, bio);
1811         if (bio_flagged(bio, BIO_EOPNOTSUPP))
1812                 ret = -EOPNOTSUPP;
1813         bio_put(bio);
1814         return ret;
1815 }
1816
1817 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1818                               struct page *page, sector_t sector,
1819                               size_t size, unsigned long offset,
1820                               struct block_device *bdev,
1821                               struct bio **bio_ret,
1822                               unsigned long max_pages,
1823                               bio_end_io_t end_io_func,
1824                               int mirror_num,
1825                               unsigned long prev_bio_flags,
1826                               unsigned long bio_flags)
1827 {
1828         int ret = 0;
1829         struct bio *bio;
1830         int nr;
1831         int contig = 0;
1832         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1833         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1834         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1835
1836         if (bio_ret && *bio_ret) {
1837                 bio = *bio_ret;
1838                 if (old_compressed)
1839                         contig = bio->bi_sector == sector;
1840                 else
1841                         contig = bio->bi_sector + (bio->bi_size >> 9) ==
1842                                 sector;
1843
1844                 if (prev_bio_flags != bio_flags || !contig ||
1845                     (tree->ops && tree->ops->merge_bio_hook &&
1846                      tree->ops->merge_bio_hook(page, offset, page_size, bio,
1847                                                bio_flags)) ||
1848                     bio_add_page(bio, page, page_size, offset) < page_size) {
1849                         ret = submit_one_bio(rw, bio, mirror_num,
1850                                              prev_bio_flags);
1851                         bio = NULL;
1852                 } else {
1853                         return 0;
1854                 }
1855         }
1856         if (this_compressed)
1857                 nr = BIO_MAX_PAGES;
1858         else
1859                 nr = bio_get_nr_vecs(bdev);
1860
1861         bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1862
1863         bio_add_page(bio, page, page_size, offset);
1864         bio->bi_end_io = end_io_func;
1865         bio->bi_private = tree;
1866
1867         if (bio_ret)
1868                 *bio_ret = bio;
1869         else
1870                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1871
1872         return ret;
1873 }
1874
1875 void set_page_extent_mapped(struct page *page)
1876 {
1877         if (!PagePrivate(page)) {
1878                 SetPagePrivate(page);
1879                 page_cache_get(page);
1880                 set_page_private(page, EXTENT_PAGE_PRIVATE);
1881         }
1882 }
1883
1884 static void set_page_extent_head(struct page *page, unsigned long len)
1885 {
1886         set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1887 }
1888
1889 /*
1890  * basic readpage implementation.  Locked extent state structs are inserted
1891  * into the tree that are removed when the IO is done (by the end_io
1892  * handlers)
1893  */
1894 static int __extent_read_full_page(struct extent_io_tree *tree,
1895                                    struct page *page,
1896                                    get_extent_t *get_extent,
1897                                    struct bio **bio, int mirror_num,
1898                                    unsigned long *bio_flags)
1899 {
1900         struct inode *inode = page->mapping->host;
1901         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1902         u64 page_end = start + PAGE_CACHE_SIZE - 1;
1903         u64 end;
1904         u64 cur = start;
1905         u64 extent_offset;
1906         u64 last_byte = i_size_read(inode);
1907         u64 block_start;
1908         u64 cur_end;
1909         sector_t sector;
1910         struct extent_map *em;
1911         struct block_device *bdev;
1912         int ret;
1913         int nr = 0;
1914         size_t page_offset = 0;
1915         size_t iosize;
1916         size_t disk_io_size;
1917         size_t blocksize = inode->i_sb->s_blocksize;
1918         unsigned long this_bio_flag = 0;
1919
1920         set_page_extent_mapped(page);
1921
1922         end = page_end;
1923         lock_extent(tree, start, end, GFP_NOFS);
1924
1925         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1926                 char *userpage;
1927                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
1928
1929                 if (zero_offset) {
1930                         iosize = PAGE_CACHE_SIZE - zero_offset;
1931                         userpage = kmap_atomic(page, KM_USER0);
1932                         memset(userpage + zero_offset, 0, iosize);
1933                         flush_dcache_page(page);
1934                         kunmap_atomic(userpage, KM_USER0);
1935                 }
1936         }
1937         while (cur <= end) {
1938                 if (cur >= last_byte) {
1939                         char *userpage;
1940                         iosize = PAGE_CACHE_SIZE - page_offset;
1941                         userpage = kmap_atomic(page, KM_USER0);
1942                         memset(userpage + page_offset, 0, iosize);
1943                         flush_dcache_page(page);
1944                         kunmap_atomic(userpage, KM_USER0);
1945                         set_extent_uptodate(tree, cur, cur + iosize - 1,
1946                                             GFP_NOFS);
1947                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1948                         break;
1949                 }
1950                 em = get_extent(inode, page, page_offset, cur,
1951                                 end - cur + 1, 0);
1952                 if (IS_ERR(em) || !em) {
1953                         SetPageError(page);
1954                         unlock_extent(tree, cur, end, GFP_NOFS);
1955                         break;
1956                 }
1957                 extent_offset = cur - em->start;
1958                 BUG_ON(extent_map_end(em) <= cur);
1959                 BUG_ON(end < cur);
1960
1961                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1962                         this_bio_flag = EXTENT_BIO_COMPRESSED;
1963
1964                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1965                 cur_end = min(extent_map_end(em) - 1, end);
1966                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1967                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
1968                         disk_io_size = em->block_len;
1969                         sector = em->block_start >> 9;
1970                 } else {
1971                         sector = (em->block_start + extent_offset) >> 9;
1972                         disk_io_size = iosize;
1973                 }
1974                 bdev = em->bdev;
1975                 block_start = em->block_start;
1976                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1977                         block_start = EXTENT_MAP_HOLE;
1978                 free_extent_map(em);
1979                 em = NULL;
1980
1981                 /* we've found a hole, just zero and go on */
1982                 if (block_start == EXTENT_MAP_HOLE) {
1983                         char *userpage;
1984                         userpage = kmap_atomic(page, KM_USER0);
1985                         memset(userpage + page_offset, 0, iosize);
1986                         flush_dcache_page(page);
1987                         kunmap_atomic(userpage, KM_USER0);
1988
1989                         set_extent_uptodate(tree, cur, cur + iosize - 1,
1990                                             GFP_NOFS);
1991                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1992                         cur = cur + iosize;
1993                         page_offset += iosize;
1994                         continue;
1995                 }
1996                 /* the get_extent function already copied into the page */
1997                 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1998                         check_page_uptodate(tree, page);
1999                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2000                         cur = cur + iosize;
2001                         page_offset += iosize;
2002                         continue;
2003                 }
2004                 /* we have an inline extent but it didn't get marked up
2005                  * to date.  Error out
2006                  */
2007                 if (block_start == EXTENT_MAP_INLINE) {
2008                         SetPageError(page);
2009                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2010                         cur = cur + iosize;
2011                         page_offset += iosize;
2012                         continue;
2013                 }
2014
2015                 ret = 0;
2016                 if (tree->ops && tree->ops->readpage_io_hook) {
2017                         ret = tree->ops->readpage_io_hook(page, cur,
2018                                                           cur + iosize - 1);
2019                 }
2020                 if (!ret) {
2021                         unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2022                         pnr -= page->index;
2023                         ret = submit_extent_page(READ, tree, page,
2024                                          sector, disk_io_size, page_offset,
2025                                          bdev, bio, pnr,
2026                                          end_bio_extent_readpage, mirror_num,
2027                                          *bio_flags,
2028                                          this_bio_flag);
2029                         nr++;
2030                         *bio_flags = this_bio_flag;
2031                 }
2032                 if (ret)
2033                         SetPageError(page);
2034                 cur = cur + iosize;
2035                 page_offset += iosize;
2036         }
2037         if (!nr) {
2038                 if (!PageError(page))
2039                         SetPageUptodate(page);
2040                 unlock_page(page);
2041         }
2042         return 0;
2043 }
2044
2045 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2046                             get_extent_t *get_extent)
2047 {
2048         struct bio *bio = NULL;
2049         unsigned long bio_flags = 0;
2050         int ret;
2051
2052         ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2053                                       &bio_flags);
2054         if (bio)
2055                 submit_one_bio(READ, bio, 0, bio_flags);
2056         return ret;
2057 }
2058
2059 static noinline void update_nr_written(struct page *page,
2060                                       struct writeback_control *wbc,
2061                                       unsigned long nr_written)
2062 {
2063         wbc->nr_to_write -= nr_written;
2064         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2065             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2066                 page->mapping->writeback_index = page->index + nr_written;
2067 }
2068
2069 /*
2070  * the writepage semantics are similar to regular writepage.  extent
2071  * records are inserted to lock ranges in the tree, and as dirty areas
2072  * are found, they are marked writeback.  Then the lock bits are removed
2073  * and the end_io handler clears the writeback ranges
2074  */
2075 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2076                               void *data)
2077 {
2078         struct inode *inode = page->mapping->host;
2079         struct extent_page_data *epd = data;
2080         struct extent_io_tree *tree = epd->tree;
2081         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2082         u64 delalloc_start;
2083         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2084         u64 end;
2085         u64 cur = start;
2086         u64 extent_offset;
2087         u64 last_byte = i_size_read(inode);
2088         u64 block_start;
2089         u64 iosize;
2090         u64 unlock_start;
2091         sector_t sector;
2092         struct extent_map *em;
2093         struct block_device *bdev;
2094         int ret;
2095         int nr = 0;
2096         size_t pg_offset = 0;
2097         size_t blocksize;
2098         loff_t i_size = i_size_read(inode);
2099         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2100         u64 nr_delalloc;
2101         u64 delalloc_end;
2102         int page_started;
2103         int compressed;
2104         int write_flags;
2105         unsigned long nr_written = 0;
2106
2107         if (wbc->sync_mode == WB_SYNC_ALL)
2108                 write_flags = WRITE_SYNC_PLUG;
2109         else
2110                 write_flags = WRITE;
2111
2112         WARN_ON(!PageLocked(page));
2113         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2114         if (page->index > end_index ||
2115            (page->index == end_index && !pg_offset)) {
2116                 page->mapping->a_ops->invalidatepage(page, 0);
2117                 unlock_page(page);
2118                 return 0;
2119         }
2120
2121         if (page->index == end_index) {
2122                 char *userpage;
2123
2124                 userpage = kmap_atomic(page, KM_USER0);
2125                 memset(userpage + pg_offset, 0,
2126                        PAGE_CACHE_SIZE - pg_offset);
2127                 kunmap_atomic(userpage, KM_USER0);
2128                 flush_dcache_page(page);
2129         }
2130         pg_offset = 0;
2131
2132         set_page_extent_mapped(page);
2133
2134         delalloc_start = start;
2135         delalloc_end = 0;
2136         page_started = 0;
2137         if (!epd->extent_locked) {
2138                 /*
2139                  * make sure the wbc mapping index is at least updated
2140                  * to this page.
2141                  */
2142                 update_nr_written(page, wbc, 0);
2143
2144                 while (delalloc_end < page_end) {
2145                         nr_delalloc = find_lock_delalloc_range(inode, tree,
2146                                                        page,
2147                                                        &delalloc_start,
2148                                                        &delalloc_end,
2149                                                        128 * 1024 * 1024);
2150                         if (nr_delalloc == 0) {
2151                                 delalloc_start = delalloc_end + 1;
2152                                 continue;
2153                         }
2154                         tree->ops->fill_delalloc(inode, page, delalloc_start,
2155                                                  delalloc_end, &page_started,
2156                                                  &nr_written);
2157                         delalloc_start = delalloc_end + 1;
2158                 }
2159
2160                 /* did the fill delalloc function already unlock and start
2161                  * the IO?
2162                  */
2163                 if (page_started) {
2164                         ret = 0;
2165                         /*
2166                          * we've unlocked the page, so we can't update
2167                          * the mapping's writeback index, just update
2168                          * nr_to_write.
2169                          */
2170                         wbc->nr_to_write -= nr_written;
2171                         goto done_unlocked;
2172                 }
2173         }
2174         lock_extent(tree, start, page_end, GFP_NOFS);
2175
2176         unlock_start = start;
2177
2178         if (tree->ops && tree->ops->writepage_start_hook) {
2179                 ret = tree->ops->writepage_start_hook(page, start,
2180                                                       page_end);
2181                 if (ret == -EAGAIN) {
2182                         unlock_extent(tree, start, page_end, GFP_NOFS);
2183                         redirty_page_for_writepage(wbc, page);
2184                         update_nr_written(page, wbc, nr_written);
2185                         unlock_page(page);
2186                         ret = 0;
2187                         goto done_unlocked;
2188                 }
2189         }
2190
2191         /*
2192          * we don't want to touch the inode after unlocking the page,
2193          * so we update the mapping writeback index now
2194          */
2195         update_nr_written(page, wbc, nr_written + 1);
2196
2197         end = page_end;
2198         if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0))
2199                 printk(KERN_ERR "btrfs delalloc bits after lock_extent\n");
2200
2201         if (last_byte <= start) {
2202                 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
2203                 unlock_extent(tree, start, page_end, GFP_NOFS);
2204                 if (tree->ops && tree->ops->writepage_end_io_hook)
2205                         tree->ops->writepage_end_io_hook(page, start,
2206                                                          page_end, NULL, 1);
2207                 unlock_start = page_end + 1;
2208                 goto done;
2209         }
2210
2211         set_extent_uptodate(tree, start, page_end, GFP_NOFS);
2212         blocksize = inode->i_sb->s_blocksize;
2213
2214         while (cur <= end) {
2215                 if (cur >= last_byte) {
2216                         clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
2217                         unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2218                         if (tree->ops && tree->ops->writepage_end_io_hook)
2219                                 tree->ops->writepage_end_io_hook(page, cur,
2220                                                          page_end, NULL, 1);
2221                         unlock_start = page_end + 1;
2222                         break;
2223                 }
2224                 em = epd->get_extent(inode, page, pg_offset, cur,
2225                                      end - cur + 1, 1);
2226                 if (IS_ERR(em) || !em) {
2227                         SetPageError(page);
2228                         break;
2229                 }
2230
2231                 extent_offset = cur - em->start;
2232                 BUG_ON(extent_map_end(em) <= cur);
2233                 BUG_ON(end < cur);
2234                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2235                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2236                 sector = (em->block_start + extent_offset) >> 9;
2237                 bdev = em->bdev;
2238                 block_start = em->block_start;
2239                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2240                 free_extent_map(em);
2241                 em = NULL;
2242
2243                 /*
2244                  * compressed and inline extents are written through other
2245                  * paths in the FS
2246                  */
2247                 if (compressed || block_start == EXTENT_MAP_HOLE ||
2248                     block_start == EXTENT_MAP_INLINE) {
2249                         clear_extent_dirty(tree, cur,
2250                                            cur + iosize - 1, GFP_NOFS);
2251
2252                         unlock_extent(tree, unlock_start, cur + iosize - 1,
2253                                       GFP_NOFS);
2254
2255                         /*
2256                          * end_io notification does not happen here for
2257                          * compressed extents
2258                          */
2259                         if (!compressed && tree->ops &&
2260                             tree->ops->writepage_end_io_hook)
2261                                 tree->ops->writepage_end_io_hook(page, cur,
2262                                                          cur + iosize - 1,
2263                                                          NULL, 1);
2264                         else if (compressed) {
2265                                 /* we don't want to end_page_writeback on
2266                                  * a compressed extent.  this happens
2267                                  * elsewhere
2268                                  */
2269                                 nr++;
2270                         }
2271
2272                         cur += iosize;
2273                         pg_offset += iosize;
2274                         unlock_start = cur;
2275                         continue;
2276                 }
2277                 /* leave this out until we have a page_mkwrite call */
2278                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2279                                    EXTENT_DIRTY, 0)) {
2280                         cur = cur + iosize;
2281                         pg_offset += iosize;
2282                         continue;
2283                 }
2284
2285                 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
2286                 if (tree->ops && tree->ops->writepage_io_hook) {
2287                         ret = tree->ops->writepage_io_hook(page, cur,
2288                                                 cur + iosize - 1);
2289                 } else {
2290                         ret = 0;
2291                 }
2292                 if (ret) {
2293                         SetPageError(page);
2294                 } else {
2295                         unsigned long max_nr = end_index + 1;
2296
2297                         set_range_writeback(tree, cur, cur + iosize - 1);
2298                         if (!PageWriteback(page)) {
2299                                 printk(KERN_ERR "btrfs warning page %lu not "
2300                                        "writeback, cur %llu end %llu\n",
2301                                        page->index, (unsigned long long)cur,
2302                                        (unsigned long long)end);
2303                         }
2304
2305                         ret = submit_extent_page(write_flags, tree, page,
2306                                                  sector, iosize, pg_offset,
2307                                                  bdev, &epd->bio, max_nr,
2308                                                  end_bio_extent_writepage,
2309                                                  0, 0, 0);
2310                         if (ret)
2311                                 SetPageError(page);
2312                 }
2313                 cur = cur + iosize;
2314                 pg_offset += iosize;
2315                 nr++;
2316         }
2317 done:
2318         if (nr == 0) {
2319                 /* make sure the mapping tag for page dirty gets cleared */
2320                 set_page_writeback(page);
2321                 end_page_writeback(page);
2322         }
2323         if (unlock_start <= page_end)
2324                 unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2325         unlock_page(page);
2326
2327 done_unlocked:
2328
2329         return 0;
2330 }
2331
2332 /**
2333  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2334  * @mapping: address space structure to write
2335  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2336  * @writepage: function called for each page
2337  * @data: data passed to writepage function
2338  *
2339  * If a page is already under I/O, write_cache_pages() skips it, even
2340  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2341  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2342  * and msync() need to guarantee that all the data which was dirty at the time
2343  * the call was made get new I/O started against them.  If wbc->sync_mode is
2344  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2345  * existing IO to complete.
2346  */
2347 static int extent_write_cache_pages(struct extent_io_tree *tree,
2348                              struct address_space *mapping,
2349                              struct writeback_control *wbc,
2350                              writepage_t writepage, void *data,
2351                              void (*flush_fn)(void *))
2352 {
2353         struct backing_dev_info *bdi = mapping->backing_dev_info;
2354         int ret = 0;
2355         int done = 0;
2356         struct pagevec pvec;
2357         int nr_pages;
2358         pgoff_t index;
2359         pgoff_t end;            /* Inclusive */
2360         int scanned = 0;
2361         int range_whole = 0;
2362
2363         pagevec_init(&pvec, 0);
2364         if (wbc->range_cyclic) {
2365                 index = mapping->writeback_index; /* Start from prev offset */
2366                 end = -1;
2367         } else {
2368                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2369                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2370                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2371                         range_whole = 1;
2372                 scanned = 1;
2373         }
2374 retry:
2375         while (!done && (index <= end) &&
2376                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2377                               PAGECACHE_TAG_DIRTY, min(end - index,
2378                                   (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2379                 unsigned i;
2380
2381                 scanned = 1;
2382                 for (i = 0; i < nr_pages; i++) {
2383                         struct page *page = pvec.pages[i];
2384
2385                         /*
2386                          * At this point we hold neither mapping->tree_lock nor
2387                          * lock on the page itself: the page may be truncated or
2388                          * invalidated (changing page->mapping to NULL), or even
2389                          * swizzled back from swapper_space to tmpfs file
2390                          * mapping
2391                          */
2392                         if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2393                                 tree->ops->write_cache_pages_lock_hook(page);
2394                         else
2395                                 lock_page(page);
2396
2397                         if (unlikely(page->mapping != mapping)) {
2398                                 unlock_page(page);
2399                                 continue;
2400                         }
2401
2402                         if (!wbc->range_cyclic && page->index > end) {
2403                                 done = 1;
2404                                 unlock_page(page);
2405                                 continue;
2406                         }
2407
2408                         if (wbc->sync_mode != WB_SYNC_NONE) {
2409                                 if (PageWriteback(page))
2410                                         flush_fn(data);
2411                                 wait_on_page_writeback(page);
2412                         }
2413
2414                         if (PageWriteback(page) ||
2415                             !clear_page_dirty_for_io(page)) {
2416                                 unlock_page(page);
2417                                 continue;
2418                         }
2419
2420                         ret = (*writepage)(page, wbc, data);
2421
2422                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2423                                 unlock_page(page);
2424                                 ret = 0;
2425                         }
2426                         if (ret || wbc->nr_to_write <= 0)
2427                                 done = 1;
2428                         if (wbc->nonblocking && bdi_write_congested(bdi)) {
2429                                 wbc->encountered_congestion = 1;
2430                                 done = 1;
2431                         }
2432                 }
2433                 pagevec_release(&pvec);
2434                 cond_resched();
2435         }
2436         if (!scanned && !done) {
2437                 /*
2438                  * We hit the last page and there is more work to be done: wrap
2439                  * back to the start of the file
2440                  */
2441                 scanned = 1;
2442                 index = 0;
2443                 goto retry;
2444         }
2445         return ret;
2446 }
2447
2448 static void flush_epd_write_bio(struct extent_page_data *epd)
2449 {
2450         if (epd->bio) {
2451                 if (epd->sync_io)
2452                         submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2453                 else
2454                         submit_one_bio(WRITE, epd->bio, 0, 0);
2455                 epd->bio = NULL;
2456         }
2457 }
2458
2459 static noinline void flush_write_bio(void *data)
2460 {
2461         struct extent_page_data *epd = data;
2462         flush_epd_write_bio(epd);
2463 }
2464
2465 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2466                           get_extent_t *get_extent,
2467                           struct writeback_control *wbc)
2468 {
2469         int ret;
2470         struct address_space *mapping = page->mapping;
2471         struct extent_page_data epd = {
2472                 .bio = NULL,
2473                 .tree = tree,
2474                 .get_extent = get_extent,
2475                 .extent_locked = 0,
2476                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2477         };
2478         struct writeback_control wbc_writepages = {
2479                 .bdi            = wbc->bdi,
2480                 .sync_mode      = wbc->sync_mode,
2481                 .older_than_this = NULL,
2482                 .nr_to_write    = 64,
2483                 .range_start    = page_offset(page) + PAGE_CACHE_SIZE,
2484                 .range_end      = (loff_t)-1,
2485         };
2486
2487         ret = __extent_writepage(page, wbc, &epd);
2488
2489         extent_write_cache_pages(tree, mapping, &wbc_writepages,
2490                                  __extent_writepage, &epd, flush_write_bio);
2491         flush_epd_write_bio(&epd);
2492         return ret;
2493 }
2494
2495 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2496                               u64 start, u64 end, get_extent_t *get_extent,
2497                               int mode)
2498 {
2499         int ret = 0;
2500         struct address_space *mapping = inode->i_mapping;
2501         struct page *page;
2502         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2503                 PAGE_CACHE_SHIFT;
2504
2505         struct extent_page_data epd = {
2506                 .bio = NULL,
2507                 .tree = tree,
2508                 .get_extent = get_extent,
2509                 .extent_locked = 1,
2510                 .sync_io = mode == WB_SYNC_ALL,
2511         };
2512         struct writeback_control wbc_writepages = {
2513                 .bdi            = inode->i_mapping->backing_dev_info,
2514                 .sync_mode      = mode,
2515                 .older_than_this = NULL,
2516                 .nr_to_write    = nr_pages * 2,
2517                 .range_start    = start,
2518                 .range_end      = end + 1,
2519         };
2520
2521         while (start <= end) {
2522                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2523                 if (clear_page_dirty_for_io(page))
2524                         ret = __extent_writepage(page, &wbc_writepages, &epd);
2525                 else {
2526                         if (tree->ops && tree->ops->writepage_end_io_hook)
2527                                 tree->ops->writepage_end_io_hook(page, start,
2528                                                  start + PAGE_CACHE_SIZE - 1,
2529                                                  NULL, 1);
2530                         unlock_page(page);
2531                 }
2532                 page_cache_release(page);
2533                 start += PAGE_CACHE_SIZE;
2534         }
2535
2536         flush_epd_write_bio(&epd);
2537         return ret;
2538 }
2539
2540 int extent_writepages(struct extent_io_tree *tree,
2541                       struct address_space *mapping,
2542                       get_extent_t *get_extent,
2543                       struct writeback_control *wbc)
2544 {
2545         int ret = 0;
2546         struct extent_page_data epd = {
2547                 .bio = NULL,
2548                 .tree = tree,
2549                 .get_extent = get_extent,
2550                 .extent_locked = 0,
2551                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2552         };
2553
2554         ret = extent_write_cache_pages(tree, mapping, wbc,
2555                                        __extent_writepage, &epd,
2556                                        flush_write_bio);
2557         flush_epd_write_bio(&epd);
2558         return ret;
2559 }
2560
2561 int extent_readpages(struct extent_io_tree *tree,
2562                      struct address_space *mapping,
2563                      struct list_head *pages, unsigned nr_pages,
2564                      get_extent_t get_extent)
2565 {
2566         struct bio *bio = NULL;
2567         unsigned page_idx;
2568         struct pagevec pvec;
2569         unsigned long bio_flags = 0;
2570
2571         pagevec_init(&pvec, 0);
2572         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2573                 struct page *page = list_entry(pages->prev, struct page, lru);
2574
2575                 prefetchw(&page->flags);
2576                 list_del(&page->lru);
2577                 /*
2578                  * what we want to do here is call add_to_page_cache_lru,
2579                  * but that isn't exported, so we reproduce it here
2580                  */
2581                 if (!add_to_page_cache(page, mapping,
2582                                         page->index, GFP_KERNEL)) {
2583
2584                         /* open coding of lru_cache_add, also not exported */
2585                         page_cache_get(page);
2586                         if (!pagevec_add(&pvec, page))
2587                                 __pagevec_lru_add_file(&pvec);
2588                         __extent_read_full_page(tree, page, get_extent,
2589                                                 &bio, 0, &bio_flags);
2590                 }
2591                 page_cache_release(page);
2592         }
2593         if (pagevec_count(&pvec))
2594                 __pagevec_lru_add_file(&pvec);
2595         BUG_ON(!list_empty(pages));
2596         if (bio)
2597                 submit_one_bio(READ, bio, 0, bio_flags);
2598         return 0;
2599 }
2600
2601 /*
2602  * basic invalidatepage code, this waits on any locked or writeback
2603  * ranges corresponding to the page, and then deletes any extent state
2604  * records from the tree
2605  */
2606 int extent_invalidatepage(struct extent_io_tree *tree,
2607                           struct page *page, unsigned long offset)
2608 {
2609         u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2610         u64 end = start + PAGE_CACHE_SIZE - 1;
2611         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2612
2613         start += (offset + blocksize - 1) & ~(blocksize - 1);
2614         if (start > end)
2615                 return 0;
2616
2617         lock_extent(tree, start, end, GFP_NOFS);
2618         wait_on_extent_writeback(tree, start, end);
2619         clear_extent_bit(tree, start, end,
2620                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2621                          1, 1, GFP_NOFS);
2622         return 0;
2623 }
2624
2625 /*
2626  * simple commit_write call, set_range_dirty is used to mark both
2627  * the pages and the extent records as dirty
2628  */
2629 int extent_commit_write(struct extent_io_tree *tree,
2630                         struct inode *inode, struct page *page,
2631                         unsigned from, unsigned to)
2632 {
2633         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2634
2635         set_page_extent_mapped(page);
2636         set_page_dirty(page);
2637
2638         if (pos > inode->i_size) {
2639                 i_size_write(inode, pos);
2640                 mark_inode_dirty(inode);
2641         }
2642         return 0;
2643 }
2644
2645 int extent_prepare_write(struct extent_io_tree *tree,
2646                          struct inode *inode, struct page *page,
2647                          unsigned from, unsigned to, get_extent_t *get_extent)
2648 {
2649         u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2650         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2651         u64 block_start;
2652         u64 orig_block_start;
2653         u64 block_end;
2654         u64 cur_end;
2655         struct extent_map *em;
2656         unsigned blocksize = 1 << inode->i_blkbits;
2657         size_t page_offset = 0;
2658         size_t block_off_start;
2659         size_t block_off_end;
2660         int err = 0;
2661         int iocount = 0;
2662         int ret = 0;
2663         int isnew;
2664
2665         set_page_extent_mapped(page);
2666
2667         block_start = (page_start + from) & ~((u64)blocksize - 1);
2668         block_end = (page_start + to - 1) | (blocksize - 1);
2669         orig_block_start = block_start;
2670
2671         lock_extent(tree, page_start, page_end, GFP_NOFS);
2672         while (block_start <= block_end) {
2673                 em = get_extent(inode, page, page_offset, block_start,
2674                                 block_end - block_start + 1, 1);
2675                 if (IS_ERR(em) || !em)
2676                         goto err;
2677
2678                 cur_end = min(block_end, extent_map_end(em) - 1);
2679                 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2680                 block_off_end = block_off_start + blocksize;
2681                 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2682
2683                 if (!PageUptodate(page) && isnew &&
2684                     (block_off_end > to || block_off_start < from)) {
2685                         void *kaddr;
2686
2687                         kaddr = kmap_atomic(page, KM_USER0);
2688                         if (block_off_end > to)
2689                                 memset(kaddr + to, 0, block_off_end - to);
2690                         if (block_off_start < from)
2691                                 memset(kaddr + block_off_start, 0,
2692                                        from - block_off_start);
2693                         flush_dcache_page(page);
2694                         kunmap_atomic(kaddr, KM_USER0);
2695                 }
2696                 if ((em->block_start != EXTENT_MAP_HOLE &&
2697                      em->block_start != EXTENT_MAP_INLINE) &&
2698                     !isnew && !PageUptodate(page) &&
2699                     (block_off_end > to || block_off_start < from) &&
2700                     !test_range_bit(tree, block_start, cur_end,
2701                                     EXTENT_UPTODATE, 1)) {
2702                         u64 sector;
2703                         u64 extent_offset = block_start - em->start;
2704                         size_t iosize;
2705                         sector = (em->block_start + extent_offset) >> 9;
2706                         iosize = (cur_end - block_start + blocksize) &
2707                                 ~((u64)blocksize - 1);
2708                         /*
2709                          * we've already got the extent locked, but we
2710                          * need to split the state such that our end_bio
2711                          * handler can clear the lock.
2712                          */
2713                         set_extent_bit(tree, block_start,
2714                                        block_start + iosize - 1,
2715                                        EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2716                         ret = submit_extent_page(READ, tree, page,
2717                                          sector, iosize, page_offset, em->bdev,
2718                                          NULL, 1,
2719                                          end_bio_extent_preparewrite, 0,
2720                                          0, 0);
2721                         iocount++;
2722                         block_start = block_start + iosize;
2723                 } else {
2724                         set_extent_uptodate(tree, block_start, cur_end,
2725                                             GFP_NOFS);
2726                         unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2727                         block_start = cur_end + 1;
2728                 }
2729                 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2730                 free_extent_map(em);
2731         }
2732         if (iocount) {
2733                 wait_extent_bit(tree, orig_block_start,
2734                                 block_end, EXTENT_LOCKED);
2735         }
2736         check_page_uptodate(tree, page);
2737 err:
2738         /* FIXME, zero out newly allocated blocks on error */
2739         return err;
2740 }
2741
2742 /*
2743  * a helper for releasepage, this tests for areas of the page that
2744  * are locked or under IO and drops the related state bits if it is safe
2745  * to drop the page.
2746  */
2747 int try_release_extent_state(struct extent_map_tree *map,
2748                              struct extent_io_tree *tree, struct page *page,
2749                              gfp_t mask)
2750 {
2751         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2752         u64 end = start + PAGE_CACHE_SIZE - 1;
2753         int ret = 1;
2754
2755         if (test_range_bit(tree, start, end,
2756                            EXTENT_IOBITS | EXTENT_ORDERED, 0))
2757                 ret = 0;
2758         else {
2759                 if ((mask & GFP_NOFS) == GFP_NOFS)
2760                         mask = GFP_NOFS;
2761                 clear_extent_bit(tree, start, end, EXTENT_UPTODATE,
2762                                  1, 1, mask);
2763         }
2764         return ret;
2765 }
2766
2767 /*
2768  * a helper for releasepage.  As long as there are no locked extents
2769  * in the range corresponding to the page, both state records and extent
2770  * map records are removed
2771  */
2772 int try_release_extent_mapping(struct extent_map_tree *map,
2773                                struct extent_io_tree *tree, struct page *page,
2774                                gfp_t mask)
2775 {
2776         struct extent_map *em;
2777         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2778         u64 end = start + PAGE_CACHE_SIZE - 1;
2779
2780         if ((mask & __GFP_WAIT) &&
2781             page->mapping->host->i_size > 16 * 1024 * 1024) {
2782                 u64 len;
2783                 while (start <= end) {
2784                         len = end - start + 1;
2785                         spin_lock(&map->lock);
2786                         em = lookup_extent_mapping(map, start, len);
2787                         if (!em || IS_ERR(em)) {
2788                                 spin_unlock(&map->lock);
2789                                 break;
2790                         }
2791                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2792                             em->start != start) {
2793                                 spin_unlock(&map->lock);
2794                                 free_extent_map(em);
2795                                 break;
2796                         }
2797                         if (!test_range_bit(tree, em->start,
2798                                             extent_map_end(em) - 1,
2799                                             EXTENT_LOCKED | EXTENT_WRITEBACK |
2800                                             EXTENT_ORDERED,
2801                                             0)) {
2802                                 remove_extent_mapping(map, em);
2803                                 /* once for the rb tree */
2804                                 free_extent_map(em);
2805                         }
2806                         start = extent_map_end(em);
2807                         spin_unlock(&map->lock);
2808
2809                         /* once for us */
2810                         free_extent_map(em);
2811                 }
2812         }
2813         return try_release_extent_state(map, tree, page, mask);
2814 }
2815
2816 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2817                 get_extent_t *get_extent)
2818 {
2819         struct inode *inode = mapping->host;
2820         u64 start = iblock << inode->i_blkbits;
2821         sector_t sector = 0;
2822         size_t blksize = (1 << inode->i_blkbits);
2823         struct extent_map *em;
2824
2825         lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2826                     GFP_NOFS);
2827         em = get_extent(inode, NULL, 0, start, blksize, 0);
2828         unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2829                       GFP_NOFS);
2830         if (!em || IS_ERR(em))
2831                 return 0;
2832
2833         if (em->block_start > EXTENT_MAP_LAST_BYTE)
2834                 goto out;
2835
2836         sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2837 out:
2838         free_extent_map(em);
2839         return sector;
2840 }
2841
2842 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2843                 __u64 start, __u64 len, get_extent_t *get_extent)
2844 {
2845         int ret;
2846         u64 off = start;
2847         u64 max = start + len;
2848         u32 flags = 0;
2849         u64 disko = 0;
2850         struct extent_map *em = NULL;
2851         int end = 0;
2852         u64 em_start = 0, em_len = 0;
2853         unsigned long emflags;
2854         ret = 0;
2855
2856         if (len == 0)
2857                 return -EINVAL;
2858
2859         lock_extent(&BTRFS_I(inode)->io_tree, start, start + len,
2860                 GFP_NOFS);
2861         em = get_extent(inode, NULL, 0, off, max - off, 0);
2862         if (!em)
2863                 goto out;
2864         if (IS_ERR(em)) {
2865                 ret = PTR_ERR(em);
2866                 goto out;
2867         }
2868         while (!end) {
2869                 off = em->start + em->len;
2870                 if (off >= max)
2871                         end = 1;
2872
2873                 em_start = em->start;
2874                 em_len = em->len;
2875
2876                 disko = 0;
2877                 flags = 0;
2878
2879                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
2880                         end = 1;
2881                         flags |= FIEMAP_EXTENT_LAST;
2882                 } else if (em->block_start == EXTENT_MAP_HOLE) {
2883                         flags |= FIEMAP_EXTENT_UNWRITTEN;
2884                 } else if (em->block_start == EXTENT_MAP_INLINE) {
2885                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
2886                                   FIEMAP_EXTENT_NOT_ALIGNED);
2887                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
2888                         flags |= (FIEMAP_EXTENT_DELALLOC |
2889                                   FIEMAP_EXTENT_UNKNOWN);
2890                 } else {
2891                         disko = em->block_start;
2892                 }
2893                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2894                         flags |= FIEMAP_EXTENT_ENCODED;
2895
2896                 emflags = em->flags;
2897                 free_extent_map(em);
2898                 em = NULL;
2899
2900                 if (!end) {
2901                         em = get_extent(inode, NULL, 0, off, max - off, 0);
2902                         if (!em)
2903                                 goto out;
2904                         if (IS_ERR(em)) {
2905                                 ret = PTR_ERR(em);
2906                                 goto out;
2907                         }
2908                         emflags = em->flags;
2909                 }
2910                 if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) {
2911                         flags |= FIEMAP_EXTENT_LAST;
2912                         end = 1;
2913                 }
2914
2915                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
2916                                         em_len, flags);
2917                 if (ret)
2918                         goto out_free;
2919         }
2920 out_free:
2921         free_extent_map(em);
2922 out:
2923         unlock_extent(&BTRFS_I(inode)->io_tree, start, start + len,
2924                         GFP_NOFS);
2925         return ret;
2926 }
2927
2928 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2929                                               unsigned long i)
2930 {
2931         struct page *p;
2932         struct address_space *mapping;
2933
2934         if (i == 0)
2935                 return eb->first_page;
2936         i += eb->start >> PAGE_CACHE_SHIFT;
2937         mapping = eb->first_page->mapping;
2938         if (!mapping)
2939                 return NULL;
2940
2941         /*
2942          * extent_buffer_page is only called after pinning the page
2943          * by increasing the reference count.  So we know the page must
2944          * be in the radix tree.
2945          */
2946         rcu_read_lock();
2947         p = radix_tree_lookup(&mapping->page_tree, i);
2948         rcu_read_unlock();
2949
2950         return p;
2951 }
2952
2953 static inline unsigned long num_extent_pages(u64 start, u64 len)
2954 {
2955         return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2956                 (start >> PAGE_CACHE_SHIFT);
2957 }
2958
2959 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
2960                                                    u64 start,
2961                                                    unsigned long len,
2962                                                    gfp_t mask)
2963 {
2964         struct extent_buffer *eb = NULL;
2965 #if LEAK_DEBUG
2966         unsigned long flags;
2967 #endif
2968
2969         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2970         eb->start = start;
2971         eb->len = len;
2972         spin_lock_init(&eb->lock);
2973         init_waitqueue_head(&eb->lock_wq);
2974
2975 #if LEAK_DEBUG
2976         spin_lock_irqsave(&leak_lock, flags);
2977         list_add(&eb->leak_list, &buffers);
2978         spin_unlock_irqrestore(&leak_lock, flags);
2979 #endif
2980         atomic_set(&eb->refs, 1);
2981
2982         return eb;
2983 }
2984
2985 static void __free_extent_buffer(struct extent_buffer *eb)
2986 {
2987 #if LEAK_DEBUG
2988         unsigned long flags;
2989         spin_lock_irqsave(&leak_lock, flags);
2990         list_del(&eb->leak_list);
2991         spin_unlock_irqrestore(&leak_lock, flags);
2992 #endif
2993         kmem_cache_free(extent_buffer_cache, eb);
2994 }
2995
2996 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
2997                                           u64 start, unsigned long len,
2998                                           struct page *page0,
2999                                           gfp_t mask)
3000 {
3001         unsigned long num_pages = num_extent_pages(start, len);
3002         unsigned long i;
3003         unsigned long index = start >> PAGE_CACHE_SHIFT;
3004         struct extent_buffer *eb;
3005         struct extent_buffer *exists = NULL;
3006         struct page *p;
3007         struct address_space *mapping = tree->mapping;
3008         int uptodate = 1;
3009
3010         spin_lock(&tree->buffer_lock);
3011         eb = buffer_search(tree, start);
3012         if (eb) {
3013                 atomic_inc(&eb->refs);
3014                 spin_unlock(&tree->buffer_lock);
3015                 mark_page_accessed(eb->first_page);
3016                 return eb;
3017         }
3018         spin_unlock(&tree->buffer_lock);
3019
3020         eb = __alloc_extent_buffer(tree, start, len, mask);
3021         if (!eb)
3022                 return NULL;
3023
3024         if (page0) {
3025                 eb->first_page = page0;
3026                 i = 1;
3027                 index++;
3028                 page_cache_get(page0);
3029                 mark_page_accessed(page0);
3030                 set_page_extent_mapped(page0);
3031                 set_page_extent_head(page0, len);
3032                 uptodate = PageUptodate(page0);
3033         } else {
3034                 i = 0;
3035         }
3036         for (; i < num_pages; i++, index++) {
3037                 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3038                 if (!p) {
3039                         WARN_ON(1);
3040                         goto free_eb;
3041                 }
3042                 set_page_extent_mapped(p);
3043                 mark_page_accessed(p);
3044                 if (i == 0) {
3045                         eb->first_page = p;
3046                         set_page_extent_head(p, len);
3047                 } else {
3048                         set_page_private(p, EXTENT_PAGE_PRIVATE);
3049                 }
3050                 if (!PageUptodate(p))
3051                         uptodate = 0;
3052                 unlock_page(p);
3053         }
3054         if (uptodate)
3055                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3056
3057         spin_lock(&tree->buffer_lock);
3058         exists = buffer_tree_insert(tree, start, &eb->rb_node);
3059         if (exists) {
3060                 /* add one reference for the caller */
3061                 atomic_inc(&exists->refs);
3062                 spin_unlock(&tree->buffer_lock);
3063                 goto free_eb;
3064         }
3065         spin_unlock(&tree->buffer_lock);
3066
3067         /* add one reference for the tree */
3068         atomic_inc(&eb->refs);
3069         return eb;
3070
3071 free_eb:
3072         if (!atomic_dec_and_test(&eb->refs))
3073                 return exists;
3074         for (index = 1; index < i; index++)
3075                 page_cache_release(extent_buffer_page(eb, index));
3076         page_cache_release(extent_buffer_page(eb, 0));
3077         __free_extent_buffer(eb);
3078         return exists;
3079 }
3080
3081 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3082                                          u64 start, unsigned long len,
3083                                           gfp_t mask)
3084 {
3085         struct extent_buffer *eb;
3086
3087         spin_lock(&tree->buffer_lock);
3088         eb = buffer_search(tree, start);
3089         if (eb)
3090                 atomic_inc(&eb->refs);
3091         spin_unlock(&tree->buffer_lock);
3092
3093         if (eb)
3094                 mark_page_accessed(eb->first_page);
3095
3096         return eb;
3097 }
3098
3099 void free_extent_buffer(struct extent_buffer *eb)
3100 {
3101         if (!eb)
3102                 return;
3103
3104         if (!atomic_dec_and_test(&eb->refs))
3105                 return;
3106
3107         WARN_ON(1);
3108 }
3109
3110 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3111                               struct extent_buffer *eb)
3112 {
3113         unsigned long i;
3114         unsigned long num_pages;
3115         struct page *page;
3116
3117         num_pages = num_extent_pages(eb->start, eb->len);
3118
3119         for (i = 0; i < num_pages; i++) {
3120                 page = extent_buffer_page(eb, i);
3121                 if (!PageDirty(page))
3122                         continue;
3123
3124                 lock_page(page);
3125                 if (i == 0)
3126                         set_page_extent_head(page, eb->len);
3127                 else
3128                         set_page_private(page, EXTENT_PAGE_PRIVATE);
3129
3130                 clear_page_dirty_for_io(page);
3131                 spin_lock_irq(&page->mapping->tree_lock);
3132                 if (!PageDirty(page)) {
3133                         radix_tree_tag_clear(&page->mapping->page_tree,
3134                                                 page_index(page),
3135                                                 PAGECACHE_TAG_DIRTY);
3136                 }
3137                 spin_unlock_irq(&page->mapping->tree_lock);
3138                 unlock_page(page);
3139         }
3140         return 0;
3141 }
3142
3143 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3144                                     struct extent_buffer *eb)
3145 {
3146         return wait_on_extent_writeback(tree, eb->start,
3147                                         eb->start + eb->len - 1);
3148 }
3149
3150 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3151                              struct extent_buffer *eb)
3152 {
3153         unsigned long i;
3154         unsigned long num_pages;
3155         int was_dirty = 0;
3156
3157         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3158         num_pages = num_extent_pages(eb->start, eb->len);
3159         for (i = 0; i < num_pages; i++)
3160                 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3161         return was_dirty;
3162 }
3163
3164 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3165                                 struct extent_buffer *eb)
3166 {
3167         unsigned long i;
3168         struct page *page;
3169         unsigned long num_pages;
3170
3171         num_pages = num_extent_pages(eb->start, eb->len);
3172         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3173
3174         clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3175                               GFP_NOFS);
3176         for (i = 0; i < num_pages; i++) {
3177                 page = extent_buffer_page(eb, i);
3178                 if (page)
3179                         ClearPageUptodate(page);
3180         }
3181         return 0;
3182 }
3183
3184 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3185                                 struct extent_buffer *eb)
3186 {
3187         unsigned long i;
3188         struct page *page;
3189         unsigned long num_pages;
3190
3191         num_pages = num_extent_pages(eb->start, eb->len);
3192
3193         set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3194                             GFP_NOFS);
3195         for (i = 0; i < num_pages; i++) {
3196                 page = extent_buffer_page(eb, i);
3197                 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3198                     ((i == num_pages - 1) &&
3199                      ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3200                         check_page_uptodate(tree, page);
3201                         continue;
3202                 }
3203                 SetPageUptodate(page);
3204         }
3205         return 0;
3206 }
3207
3208 int extent_range_uptodate(struct extent_io_tree *tree,
3209                           u64 start, u64 end)
3210 {
3211         struct page *page;
3212         int ret;
3213         int pg_uptodate = 1;
3214         int uptodate;
3215         unsigned long index;
3216
3217         ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1);
3218         if (ret)
3219                 return 1;
3220         while (start <= end) {
3221                 index = start >> PAGE_CACHE_SHIFT;
3222                 page = find_get_page(tree->mapping, index);
3223                 uptodate = PageUptodate(page);
3224                 page_cache_release(page);
3225                 if (!uptodate) {
3226                         pg_uptodate = 0;
3227                         break;
3228                 }
3229                 start += PAGE_CACHE_SIZE;
3230         }
3231         return pg_uptodate;
3232 }
3233
3234 int extent_buffer_uptodate(struct extent_io_tree *tree,
3235                            struct extent_buffer *eb)
3236 {
3237         int ret = 0;
3238         unsigned long num_pages;
3239         unsigned long i;
3240         struct page *page;
3241         int pg_uptodate = 1;
3242
3243         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3244                 return 1;
3245
3246         ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3247                            EXTENT_UPTODATE, 1);
3248         if (ret)
3249                 return ret;
3250
3251         num_pages = num_extent_pages(eb->start, eb->len);
3252         for (i = 0; i < num_pages; i++) {
3253                 page = extent_buffer_page(eb, i);
3254                 if (!PageUptodate(page)) {
3255                         pg_uptodate = 0;
3256                         break;
3257                 }
3258         }
3259         return pg_uptodate;
3260 }
3261
3262 int read_extent_buffer_pages(struct extent_io_tree *tree,
3263                              struct extent_buffer *eb,
3264                              u64 start, int wait,
3265                              get_extent_t *get_extent, int mirror_num)
3266 {
3267         unsigned long i;
3268         unsigned long start_i;
3269         struct page *page;
3270         int err;
3271         int ret = 0;
3272         int locked_pages = 0;
3273         int all_uptodate = 1;
3274         int inc_all_pages = 0;
3275         unsigned long num_pages;
3276         struct bio *bio = NULL;
3277         unsigned long bio_flags = 0;
3278
3279         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3280                 return 0;
3281
3282         if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3283                            EXTENT_UPTODATE, 1)) {
3284                 return 0;
3285         }
3286
3287         if (start) {
3288                 WARN_ON(start < eb->start);
3289                 start_i = (start >> PAGE_CACHE_SHIFT) -
3290                         (eb->start >> PAGE_CACHE_SHIFT);
3291         } else {
3292                 start_i = 0;
3293         }
3294
3295         num_pages = num_extent_pages(eb->start, eb->len);
3296         for (i = start_i; i < num_pages; i++) {
3297                 page = extent_buffer_page(eb, i);
3298                 if (!wait) {
3299                         if (!trylock_page(page))
3300                                 goto unlock_exit;
3301                 } else {
3302                         lock_page(page);
3303                 }
3304                 locked_pages++;
3305                 if (!PageUptodate(page))
3306                         all_uptodate = 0;
3307         }
3308         if (all_uptodate) {
3309                 if (start_i == 0)
3310                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3311                 goto unlock_exit;
3312         }
3313
3314         for (i = start_i; i < num_pages; i++) {
3315                 page = extent_buffer_page(eb, i);
3316                 if (inc_all_pages)
3317                         page_cache_get(page);
3318                 if (!PageUptodate(page)) {
3319                         if (start_i == 0)
3320                                 inc_all_pages = 1;
3321                         ClearPageError(page);
3322                         err = __extent_read_full_page(tree, page,
3323                                                       get_extent, &bio,
3324                                                       mirror_num, &bio_flags);
3325                         if (err)
3326                                 ret = err;
3327                 } else {
3328                         unlock_page(page);
3329                 }
3330         }
3331
3332         if (bio)
3333                 submit_one_bio(READ, bio, mirror_num, bio_flags);
3334
3335         if (ret || !wait)
3336                 return ret;
3337
3338         for (i = start_i; i < num_pages; i++) {
3339                 page = extent_buffer_page(eb, i);
3340                 wait_on_page_locked(page);
3341                 if (!PageUptodate(page))
3342                         ret = -EIO;
3343         }
3344
3345         if (!ret)
3346                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3347         return ret;
3348
3349 unlock_exit:
3350         i = start_i;
3351         while (locked_pages > 0) {
3352                 page = extent_buffer_page(eb, i);
3353                 i++;
3354                 unlock_page(page);
3355                 locked_pages--;
3356         }
3357         return ret;
3358 }
3359
3360 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3361                         unsigned long start,
3362                         unsigned long len)
3363 {
3364         size_t cur;
3365         size_t offset;
3366         struct page *page;
3367         char *kaddr;
3368         char *dst = (char *)dstv;
3369         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3370         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3371
3372         WARN_ON(start > eb->len);
3373         WARN_ON(start + len > eb->start + eb->len);
3374
3375         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3376
3377         while (len > 0) {
3378                 page = extent_buffer_page(eb, i);
3379
3380                 cur = min(len, (PAGE_CACHE_SIZE - offset));
3381                 kaddr = kmap_atomic(page, KM_USER1);
3382                 memcpy(dst, kaddr + offset, cur);
3383                 kunmap_atomic(kaddr, KM_USER1);
3384
3385                 dst += cur;
3386                 len -= cur;
3387                 offset = 0;
3388                 i++;
3389         }
3390 }
3391
3392 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3393                                unsigned long min_len, char **token, char **map,
3394                                unsigned long *map_start,
3395                                unsigned long *map_len, int km)
3396 {
3397         size_t offset = start & (PAGE_CACHE_SIZE - 1);
3398         char *kaddr;
3399         struct page *p;
3400         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3401         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3402         unsigned long end_i = (start_offset + start + min_len - 1) >>
3403                 PAGE_CACHE_SHIFT;
3404
3405         if (i != end_i)
3406                 return -EINVAL;
3407
3408         if (i == 0) {
3409                 offset = start_offset;
3410                 *map_start = 0;
3411         } else {
3412                 offset = 0;
3413                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3414         }
3415
3416         if (start + min_len > eb->len) {
3417                 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3418                        "wanted %lu %lu\n", (unsigned long long)eb->start,
3419                        eb->len, start, min_len);
3420                 WARN_ON(1);
3421         }
3422
3423         p = extent_buffer_page(eb, i);
3424         kaddr = kmap_atomic(p, km);
3425         *token = kaddr;
3426         *map = kaddr + offset;
3427         *map_len = PAGE_CACHE_SIZE - offset;
3428         return 0;
3429 }
3430
3431 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3432                       unsigned long min_len,
3433                       char **token, char **map,
3434                       unsigned long *map_start,
3435                       unsigned long *map_len, int km)
3436 {
3437         int err;
3438         int save = 0;
3439         if (eb->map_token) {
3440                 unmap_extent_buffer(eb, eb->map_token, km);
3441                 eb->map_token = NULL;
3442                 save = 1;
3443         }
3444         err = map_private_extent_buffer(eb, start, min_len, token, map,
3445                                        map_start, map_len, km);
3446         if (!err && save) {
3447                 eb->map_token = *token;
3448                 eb->kaddr = *map;
3449                 eb->map_start = *map_start;
3450                 eb->map_len = *map_len;
3451         }
3452         return err;
3453 }
3454
3455 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3456 {
3457         kunmap_atomic(token, km);
3458 }
3459
3460 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3461                           unsigned long start,
3462                           unsigned long len)
3463 {
3464         size_t cur;
3465         size_t offset;
3466         struct page *page;
3467         char *kaddr;
3468         char *ptr = (char *)ptrv;
3469         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3470         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3471         int ret = 0;
3472
3473         WARN_ON(start > eb->len);
3474         WARN_ON(start + len > eb->start + eb->len);
3475
3476         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3477
3478         while (len > 0) {
3479                 page = extent_buffer_page(eb, i);
3480
3481                 cur = min(len, (PAGE_CACHE_SIZE - offset));
3482
3483                 kaddr = kmap_atomic(page, KM_USER0);
3484                 ret = memcmp(ptr, kaddr + offset, cur);
3485                 kunmap_atomic(kaddr, KM_USER0);
3486                 if (ret)
3487                         break;
3488
3489                 ptr += cur;
3490                 len -= cur;
3491                 offset = 0;
3492                 i++;
3493         }
3494         return ret;
3495 }
3496
3497 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3498                          unsigned long start, unsigned long len)
3499 {
3500         size_t cur;
3501         size_t offset;
3502         struct page *page;
3503         char *kaddr;
3504         char *src = (char *)srcv;
3505         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3506         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3507
3508         WARN_ON(start > eb->len);
3509         WARN_ON(start + len > eb->start + eb->len);
3510
3511         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3512
3513         while (len > 0) {
3514                 page = extent_buffer_page(eb, i);
3515                 WARN_ON(!PageUptodate(page));
3516
3517                 cur = min(len, PAGE_CACHE_SIZE - offset);
3518                 kaddr = kmap_atomic(page, KM_USER1);
3519                 memcpy(kaddr + offset, src, cur);
3520                 kunmap_atomic(kaddr, KM_USER1);
3521
3522                 src += cur;
3523                 len -= cur;
3524                 offset = 0;
3525                 i++;
3526         }
3527 }
3528
3529 void memset_extent_buffer(struct extent_buffer *eb, char c,
3530                           unsigned long start, unsigned long len)
3531 {
3532         size_t cur;
3533         size_t offset;
3534         struct page *page;
3535         char *kaddr;
3536         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3537         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3538
3539         WARN_ON(start > eb->len);
3540         WARN_ON(start + len > eb->start + eb->len);
3541
3542         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3543
3544         while (len > 0) {
3545                 page = extent_buffer_page(eb, i);
3546                 WARN_ON(!PageUptodate(page));
3547
3548                 cur = min(len, PAGE_CACHE_SIZE - offset);
3549                 kaddr = kmap_atomic(page, KM_USER0);
3550                 memset(kaddr + offset, c, cur);
3551                 kunmap_atomic(kaddr, KM_USER0);
3552
3553                 len -= cur;
3554                 offset = 0;
3555                 i++;
3556         }
3557 }
3558
3559 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3560                         unsigned long dst_offset, unsigned long src_offset,
3561                         unsigned long len)
3562 {
3563         u64 dst_len = dst->len;
3564         size_t cur;
3565         size_t offset;
3566         struct page *page;
3567         char *kaddr;
3568         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3569         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3570
3571         WARN_ON(src->len != dst_len);
3572
3573         offset = (start_offset + dst_offset) &
3574                 ((unsigned long)PAGE_CACHE_SIZE - 1);
3575
3576         while (len > 0) {
3577                 page = extent_buffer_page(dst, i);
3578                 WARN_ON(!PageUptodate(page));
3579
3580                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3581
3582                 kaddr = kmap_atomic(page, KM_USER0);
3583                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3584                 kunmap_atomic(kaddr, KM_USER0);
3585
3586                 src_offset += cur;
3587                 len -= cur;
3588                 offset = 0;
3589                 i++;
3590         }
3591 }
3592
3593 static void move_pages(struct page *dst_page, struct page *src_page,
3594                        unsigned long dst_off, unsigned long src_off,
3595                        unsigned long len)
3596 {
3597         char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3598         if (dst_page == src_page) {
3599                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3600         } else {
3601                 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3602                 char *p = dst_kaddr + dst_off + len;
3603                 char *s = src_kaddr + src_off + len;
3604
3605                 while (len--)
3606                         *--p = *--s;
3607
3608                 kunmap_atomic(src_kaddr, KM_USER1);
3609         }
3610         kunmap_atomic(dst_kaddr, KM_USER0);
3611 }
3612
3613 static void copy_pages(struct page *dst_page, struct page *src_page,
3614                        unsigned long dst_off, unsigned long src_off,
3615                        unsigned long len)
3616 {
3617         char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3618         char *src_kaddr;
3619
3620         if (dst_page != src_page)
3621                 src_kaddr = kmap_atomic(src_page, KM_USER1);
3622         else
3623                 src_kaddr = dst_kaddr;
3624
3625         memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3626         kunmap_atomic(dst_kaddr, KM_USER0);
3627         if (dst_page != src_page)
3628                 kunmap_atomic(src_kaddr, KM_USER1);
3629 }
3630
3631 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3632                            unsigned long src_offset, unsigned long len)
3633 {
3634         size_t cur;
3635         size_t dst_off_in_page;
3636         size_t src_off_in_page;
3637         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3638         unsigned long dst_i;
3639         unsigned long src_i;
3640
3641         if (src_offset + len > dst->len) {
3642                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3643                        "len %lu dst len %lu\n", src_offset, len, dst->len);
3644                 BUG_ON(1);
3645         }
3646         if (dst_offset + len > dst->len) {
3647                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3648                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
3649                 BUG_ON(1);
3650         }
3651
3652         while (len > 0) {
3653                 dst_off_in_page = (start_offset + dst_offset) &
3654                         ((unsigned long)PAGE_CACHE_SIZE - 1);
3655                 src_off_in_page = (start_offset + src_offset) &
3656                         ((unsigned long)PAGE_CACHE_SIZE - 1);
3657
3658                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3659                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3660
3661                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3662                                                src_off_in_page));
3663                 cur = min_t(unsigned long, cur,
3664                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3665
3666                 copy_pages(extent_buffer_page(dst, dst_i),
3667                            extent_buffer_page(dst, src_i),
3668                            dst_off_in_page, src_off_in_page, cur);
3669
3670                 src_offset += cur;
3671                 dst_offset += cur;
3672                 len -= cur;
3673         }
3674 }
3675
3676 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3677                            unsigned long src_offset, unsigned long len)
3678 {
3679         size_t cur;
3680         size_t dst_off_in_page;
3681         size_t src_off_in_page;
3682         unsigned long dst_end = dst_offset + len - 1;
3683         unsigned long src_end = src_offset + len - 1;
3684         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3685         unsigned long dst_i;
3686         unsigned long src_i;
3687
3688         if (src_offset + len > dst->len) {
3689                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3690                        "len %lu len %lu\n", src_offset, len, dst->len);
3691                 BUG_ON(1);
3692         }
3693         if (dst_offset + len > dst->len) {
3694                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3695                        "len %lu len %lu\n", dst_offset, len, dst->len);
3696                 BUG_ON(1);
3697         }
3698         if (dst_offset < src_offset) {
3699                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3700                 return;
3701         }
3702         while (len > 0) {
3703                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3704                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3705
3706                 dst_off_in_page = (start_offset + dst_end) &
3707                         ((unsigned long)PAGE_CACHE_SIZE - 1);
3708                 src_off_in_page = (start_offset + src_end) &
3709                         ((unsigned long)PAGE_CACHE_SIZE - 1);
3710
3711                 cur = min_t(unsigned long, len, src_off_in_page + 1);
3712                 cur = min(cur, dst_off_in_page + 1);
3713                 move_pages(extent_buffer_page(dst, dst_i),
3714                            extent_buffer_page(dst, src_i),
3715                            dst_off_in_page - cur + 1,
3716                            src_off_in_page - cur + 1, cur);
3717
3718                 dst_end -= cur;
3719                 src_end -= cur;
3720                 len -= cur;
3721         }
3722 }
3723
3724 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3725 {
3726         u64 start = page_offset(page);
3727         struct extent_buffer *eb;
3728         int ret = 1;
3729         unsigned long i;
3730         unsigned long num_pages;
3731
3732         spin_lock(&tree->buffer_lock);
3733         eb = buffer_search(tree, start);
3734         if (!eb)
3735                 goto out;
3736
3737         if (atomic_read(&eb->refs) > 1) {
3738                 ret = 0;
3739                 goto out;
3740         }
3741         if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3742                 ret = 0;
3743                 goto out;
3744         }
3745         /* at this point we can safely release the extent buffer */
3746         num_pages = num_extent_pages(eb->start, eb->len);
3747         for (i = 0; i < num_pages; i++)
3748                 page_cache_release(extent_buffer_page(eb, i));
3749         rb_erase(&eb->rb_node, &tree->buffer);
3750         __free_extent_buffer(eb);
3751 out:
3752         spin_unlock(&tree->buffer_lock);
3753         return ret;
3754 }