Btrfs: make some funcs static
[safe/jmp/linux-2.6] / fs / btrfs / extent-tree.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "kerncompat.h"
4 #include "radix-tree.h"
5 #include "ctree.h"
6 #include "disk-io.h"
7 #include "print-tree.h"
8
9 static int find_free_extent(struct btrfs_root *orig_root, u64 num_blocks,
10                             u64 search_start, u64 search_end,
11                             struct btrfs_key *ins);
12 static int finish_current_insert(struct btrfs_root *extent_root);
13 static int run_pending(struct btrfs_root *extent_root);
14
15 /*
16  * pending extents are blocks that we're trying to allocate in the extent
17  * map while trying to grow the map because of other allocations.  To avoid
18  * recursing, they are tagged in the radix tree and cleaned up after
19  * other allocations are done.  The pending tag is also used in the same
20  * manner for deletes.
21  */
22 #define CTREE_EXTENT_PENDING_DEL 0
23
24 static int inc_block_ref(struct btrfs_root *root, u64 blocknr)
25 {
26         struct btrfs_path path;
27         int ret;
28         struct btrfs_key key;
29         struct btrfs_leaf *l;
30         struct btrfs_extent_item *item;
31         struct btrfs_key ins;
32         u32 refs;
33
34         find_free_extent(root->extent_root, 0, 0, (u64)-1, &ins);
35         btrfs_init_path(&path);
36         key.objectid = blocknr;
37         key.flags = 0;
38         key.offset = 1;
39         ret = btrfs_search_slot(root->extent_root, &key, &path, 0, 1);
40         if (ret != 0)
41                 BUG();
42         BUG_ON(ret != 0);
43         l = &path.nodes[0]->leaf;
44         item = (struct btrfs_extent_item *)(l->data +
45                                             btrfs_item_offset(l->items +
46                                                               path.slots[0]));
47         refs = btrfs_extent_refs(item);
48         btrfs_set_extent_refs(item, refs + 1);
49
50         BUG_ON(list_empty(&path.nodes[0]->dirty));
51         btrfs_release_path(root->extent_root, &path);
52         finish_current_insert(root->extent_root);
53         run_pending(root->extent_root);
54         return 0;
55 }
56
57 static int lookup_block_ref(struct btrfs_root *root, u64 blocknr, u32 *refs)
58 {
59         struct btrfs_path path;
60         int ret;
61         struct btrfs_key key;
62         struct btrfs_leaf *l;
63         struct btrfs_extent_item *item;
64         btrfs_init_path(&path);
65         key.objectid = blocknr;
66         key.flags = 0;
67         key.offset = 1;
68         ret = btrfs_search_slot(root->extent_root, &key, &path, 0, 0);
69         if (ret != 0)
70                 BUG();
71         l = &path.nodes[0]->leaf;
72         item = (struct btrfs_extent_item *)(l->data +
73                                       btrfs_item_offset(l->items +
74                                                         path.slots[0]));
75         *refs = btrfs_extent_refs(item);
76         btrfs_release_path(root->extent_root, &path);
77         return 0;
78 }
79
80 int btrfs_inc_ref(struct btrfs_root *root, struct btrfs_buffer *buf)
81 {
82         u64 blocknr;
83         int i;
84
85         if (root == root->extent_root)
86                 return 0;
87         if (btrfs_is_leaf(&buf->node))
88                 return 0;
89
90         for (i = 0; i < btrfs_header_nritems(&buf->node.header); i++) {
91                 blocknr = btrfs_node_blockptr(&buf->node, i);
92                 inc_block_ref(root, blocknr);
93         }
94         return 0;
95 }
96
97 int btrfs_finish_extent_commit(struct btrfs_root *root)
98 {
99         struct btrfs_root *extent_root = root->extent_root;
100         unsigned long gang[8];
101         int ret;
102         int i;
103
104         while(1) {
105                 ret = radix_tree_gang_lookup(&extent_root->pinned_radix,
106                                                  (void **)gang, 0,
107                                                  ARRAY_SIZE(gang));
108                 if (!ret)
109                         break;
110                 for (i = 0; i < ret; i++) {
111                         radix_tree_delete(&extent_root->pinned_radix, gang[i]);
112                 }
113         }
114         extent_root->last_insert.objectid = 0;
115         extent_root->last_insert.offset = 0;
116         return 0;
117 }
118
119 static int finish_current_insert(struct btrfs_root *extent_root)
120 {
121         struct btrfs_key ins;
122         struct btrfs_extent_item extent_item;
123         int i;
124         int ret;
125
126         btrfs_set_extent_refs(&extent_item, 1);
127         btrfs_set_extent_owner(&extent_item,
128                 btrfs_header_parentid(&extent_root->node->node.header));
129         ins.offset = 1;
130         ins.flags = 0;
131
132         for (i = 0; i < extent_root->current_insert.flags; i++) {
133                 ins.objectid = extent_root->current_insert.objectid + i;
134                 ret = btrfs_insert_item(extent_root, &ins, &extent_item,
135                                   sizeof(extent_item));
136                 BUG_ON(ret);
137         }
138         extent_root->current_insert.offset = 0;
139         return 0;
140 }
141
142 /*
143  * remove an extent from the root, returns 0 on success
144  */
145 static int __free_extent(struct btrfs_root *root, u64 blocknr, u64 num_blocks)
146 {
147         struct btrfs_path path;
148         struct btrfs_key key;
149         struct btrfs_root *extent_root = root->extent_root;
150         int ret;
151         struct btrfs_item *item;
152         struct btrfs_extent_item *ei;
153         struct btrfs_key ins;
154         u32 refs;
155
156         key.objectid = blocknr;
157         key.flags = 0;
158         key.offset = num_blocks;
159
160         find_free_extent(root, 0, 0, (u64)-1, &ins);
161         btrfs_init_path(&path);
162         ret = btrfs_search_slot(extent_root, &key, &path, -1, 1);
163         if (ret) {
164                 printf("failed to find %Lu\n", key.objectid);
165                 btrfs_print_tree(extent_root, extent_root->node);
166                 printf("failed to find %Lu\n", key.objectid);
167                 BUG();
168         }
169         item = path.nodes[0]->leaf.items + path.slots[0];
170         ei = (struct btrfs_extent_item *)(path.nodes[0]->leaf.data +
171                                     btrfs_item_offset(item));
172         BUG_ON(ei->refs == 0);
173         refs = btrfs_extent_refs(ei) - 1;
174         btrfs_set_extent_refs(ei, refs);
175         if (refs == 0) {
176                 if (root == extent_root) {
177                         int err;
178                         radix_tree_preload(GFP_KERNEL);
179                         err = radix_tree_insert(&extent_root->pinned_radix,
180                                           blocknr, (void *)blocknr);
181                         BUG_ON(err);
182                         radix_tree_preload_end();
183                 }
184                 ret = btrfs_del_item(extent_root, &path);
185                 if (root != extent_root &&
186                     extent_root->last_insert.objectid < blocknr)
187                         extent_root->last_insert.objectid = blocknr;
188                 if (ret)
189                         BUG();
190         }
191         btrfs_release_path(extent_root, &path);
192         finish_current_insert(extent_root);
193         return ret;
194 }
195
196 /*
197  * find all the blocks marked as pending in the radix tree and remove
198  * them from the extent map
199  */
200 static int del_pending_extents(struct btrfs_root *extent_root)
201 {
202         int ret;
203         struct btrfs_buffer *gang[4];
204         int i;
205
206         while(1) {
207                 ret = radix_tree_gang_lookup_tag(&extent_root->cache_radix,
208                                                  (void **)gang, 0,
209                                                  ARRAY_SIZE(gang),
210                                                  CTREE_EXTENT_PENDING_DEL);
211                 if (!ret)
212                         break;
213                 for (i = 0; i < ret; i++) {
214                         ret = __free_extent(extent_root, gang[i]->blocknr, 1);
215                         radix_tree_tag_clear(&extent_root->cache_radix,
216                                                 gang[i]->blocknr,
217                                                 CTREE_EXTENT_PENDING_DEL);
218                         btrfs_block_release(extent_root, gang[i]);
219                 }
220         }
221         return 0;
222 }
223
224 static int run_pending(struct btrfs_root *extent_root)
225 {
226         while(radix_tree_tagged(&extent_root->cache_radix,
227                                 CTREE_EXTENT_PENDING_DEL))
228                 del_pending_extents(extent_root);
229         return 0;
230 }
231
232
233 /*
234  * remove an extent from the root, returns 0 on success
235  */
236 int btrfs_free_extent(struct btrfs_root *root, u64 blocknr, u64 num_blocks)
237 {
238         struct btrfs_key key;
239         struct btrfs_root *extent_root = root->extent_root;
240         struct btrfs_buffer *t;
241         int pending_ret;
242         int ret;
243
244         if (root == extent_root) {
245                 t = find_tree_block(root, blocknr);
246                 radix_tree_tag_set(&root->cache_radix, blocknr,
247                                    CTREE_EXTENT_PENDING_DEL);
248                 return 0;
249         }
250         key.objectid = blocknr;
251         key.flags = 0;
252         key.offset = num_blocks;
253         ret = __free_extent(root, blocknr, num_blocks);
254         pending_ret = run_pending(root->extent_root);
255         return ret ? ret : pending_ret;
256 }
257
258 /*
259  * walks the btree of allocated extents and find a hole of a given size.
260  * The key ins is changed to record the hole:
261  * ins->objectid == block start
262  * ins->flags = 0
263  * ins->offset == number of blocks
264  * Any available blocks before search_start are skipped.
265  */
266 static int find_free_extent(struct btrfs_root *orig_root, u64 num_blocks,
267                             u64 search_start, u64 search_end,
268                             struct btrfs_key *ins)
269 {
270         struct btrfs_path path;
271         struct btrfs_key key;
272         int ret;
273         u64 hole_size = 0;
274         int slot = 0;
275         u64 last_block;
276         u64 test_block;
277         int start_found;
278         struct btrfs_leaf *l;
279         struct btrfs_root * root = orig_root->extent_root;
280         int total_needed = num_blocks;
281
282         total_needed += (btrfs_header_level(&root->node->node.header) + 1) * 3;
283         if (root->last_insert.objectid > search_start)
284                 search_start = root->last_insert.objectid;
285 check_failed:
286         btrfs_init_path(&path);
287         ins->objectid = search_start;
288         ins->offset = 0;
289         ins->flags = 0;
290         start_found = 0;
291         ret = btrfs_search_slot(root, ins, &path, 0, 0);
292         if (ret < 0)
293                 goto error;
294
295         if (path.slots[0] > 0)
296                 path.slots[0]--;
297
298         while (1) {
299                 l = &path.nodes[0]->leaf;
300                 slot = path.slots[0];
301                 if (slot >= btrfs_header_nritems(&l->header)) {
302                         ret = btrfs_next_leaf(root, &path);
303                         if (ret == 0)
304                                 continue;
305                         if (ret < 0)
306                                 goto error;
307                         if (!start_found) {
308                                 ins->objectid = search_start;
309                                 ins->offset = (u64)-1;
310                                 start_found = 1;
311                                 goto check_pending;
312                         }
313                         ins->objectid = last_block > search_start ?
314                                         last_block : search_start;
315                         ins->offset = (u64)-1;
316                         goto check_pending;
317                 }
318                 btrfs_disk_key_to_cpu(&key, &l->items[slot].key);
319                 if (key.objectid >= search_start) {
320                         if (start_found) {
321                                 if (last_block < search_start)
322                                         last_block = search_start;
323                                 hole_size = key.objectid - last_block;
324                                 if (hole_size > total_needed) {
325                                         ins->objectid = last_block;
326                                         ins->offset = hole_size;
327                                         goto check_pending;
328                                 }
329                         }
330                 }
331                 start_found = 1;
332                 last_block = key.objectid + key.offset;
333                 path.slots[0]++;
334         }
335         // FIXME -ENOSPC
336 check_pending:
337         /* we have to make sure we didn't find an extent that has already
338          * been allocated by the map tree or the original allocation
339          */
340         btrfs_release_path(root, &path);
341         BUG_ON(ins->objectid < search_start);
342         for (test_block = ins->objectid;
343              test_block < ins->objectid + total_needed; test_block++) {
344                 if (radix_tree_lookup(&root->pinned_radix, test_block)) {
345                         search_start = test_block + 1;
346                         goto check_failed;
347                 }
348         }
349         BUG_ON(root->current_insert.offset);
350         root->current_insert.offset = total_needed - num_blocks;
351         root->current_insert.objectid = ins->objectid + num_blocks;
352         root->current_insert.flags = 0;
353         root->last_insert.objectid = ins->objectid;
354         ins->offset = num_blocks;
355         return 0;
356 error:
357         btrfs_release_path(root, &path);
358         return ret;
359 }
360
361 /*
362  * finds a free extent and does all the dirty work required for allocation
363  * returns the key for the extent through ins, and a tree buffer for
364  * the first block of the extent through buf.
365  *
366  * returns 0 if everything worked, non-zero otherwise.
367  */
368 static int alloc_extent(struct btrfs_root *root, u64 num_blocks,
369                         u64 search_start, u64 search_end, u64 owner,
370                         struct btrfs_key *ins)
371 {
372         int ret;
373         int pending_ret;
374         struct btrfs_root *extent_root = root->extent_root;
375         struct btrfs_extent_item extent_item;
376
377         btrfs_set_extent_refs(&extent_item, 1);
378         btrfs_set_extent_owner(&extent_item, owner);
379
380         if (root == extent_root) {
381                 BUG_ON(extent_root->current_insert.offset == 0);
382                 BUG_ON(num_blocks != 1);
383                 BUG_ON(extent_root->current_insert.flags ==
384                        extent_root->current_insert.offset);
385                 ins->offset = 1;
386                 ins->objectid = extent_root->current_insert.objectid +
387                                 extent_root->current_insert.flags++;
388                 return 0;
389         }
390         ret = find_free_extent(root, num_blocks, search_start,
391                                search_end, ins);
392         if (ret)
393                 return ret;
394
395         ret = btrfs_insert_item(extent_root, ins, &extent_item,
396                           sizeof(extent_item));
397
398         finish_current_insert(extent_root);
399         pending_ret = run_pending(extent_root);
400         if (ret)
401                 return ret;
402         if (pending_ret)
403                 return pending_ret;
404         return 0;
405 }
406
407 /*
408  * helper function to allocate a block for a given tree
409  * returns the tree buffer or NULL.
410  */
411 struct btrfs_buffer *btrfs_alloc_free_block(struct btrfs_root *root)
412 {
413         struct btrfs_key ins;
414         int ret;
415         struct btrfs_buffer *buf;
416
417         ret = alloc_extent(root, 1, 0, (unsigned long)-1,
418                            btrfs_header_parentid(&root->node->node.header),
419                            &ins);
420         if (ret) {
421                 BUG();
422                 return NULL;
423         }
424         buf = find_tree_block(root, ins.objectid);
425         dirty_tree_block(root, buf);
426         return buf;
427 }
428
429 /*
430  * helper function for drop_snapshot, this walks down the tree dropping ref
431  * counts as it goes.
432  */
433 static int walk_down_tree(struct btrfs_root *root,
434                           struct btrfs_path *path, int *level)
435 {
436         struct btrfs_buffer *next;
437         struct btrfs_buffer *cur;
438         u64 blocknr;
439         int ret;
440         u32 refs;
441
442         ret = lookup_block_ref(root, path->nodes[*level]->blocknr, &refs);
443         BUG_ON(ret);
444         if (refs > 1)
445                 goto out;
446         /*
447          * walk down to the last node level and free all the leaves
448          */
449         while(*level > 0) {
450                 cur = path->nodes[*level];
451                 if (path->slots[*level] >=
452                     btrfs_header_nritems(&cur->node.header))
453                         break;
454                 blocknr = btrfs_node_blockptr(&cur->node, path->slots[*level]);
455                 ret = lookup_block_ref(root, blocknr, &refs);
456                 if (refs != 1 || *level == 1) {
457                         path->slots[*level]++;
458                         ret = btrfs_free_extent(root, blocknr, 1);
459                         BUG_ON(ret);
460                         continue;
461                 }
462                 BUG_ON(ret);
463                 next = read_tree_block(root, blocknr);
464                 if (path->nodes[*level-1])
465                         btrfs_block_release(root, path->nodes[*level-1]);
466                 path->nodes[*level-1] = next;
467                 *level = btrfs_header_level(&next->node.header);
468                 path->slots[*level] = 0;
469         }
470 out:
471         ret = btrfs_free_extent(root, path->nodes[*level]->blocknr, 1);
472         btrfs_block_release(root, path->nodes[*level]);
473         path->nodes[*level] = NULL;
474         *level += 1;
475         BUG_ON(ret);
476         return 0;
477 }
478
479 /*
480  * helper for dropping snapshots.  This walks back up the tree in the path
481  * to find the first node higher up where we haven't yet gone through
482  * all the slots
483  */
484 static int walk_up_tree(struct btrfs_root *root, struct btrfs_path *path,
485                         int *level)
486 {
487         int i;
488         int slot;
489         int ret;
490         for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
491                 slot = path->slots[i];
492                 if (slot <
493                     btrfs_header_nritems(&path->nodes[i]->node.header)- 1) {
494                         path->slots[i]++;
495                         *level = i;
496                         return 0;
497                 } else {
498                         ret = btrfs_free_extent(root,
499                                           path->nodes[*level]->blocknr, 1);
500                         btrfs_block_release(root, path->nodes[*level]);
501                         path->nodes[*level] = NULL;
502                         *level = i + 1;
503                         BUG_ON(ret);
504                 }
505         }
506         return 1;
507 }
508
509 /*
510  * drop the reference count on the tree rooted at 'snap'.  This traverses
511  * the tree freeing any blocks that have a ref count of zero after being
512  * decremented.
513  */
514 int btrfs_drop_snapshot(struct btrfs_root *root, struct btrfs_buffer *snap)
515 {
516         int ret = 0;;
517         int wret;
518         int level;
519         struct btrfs_path path;
520         int i;
521         int orig_level;
522
523         btrfs_init_path(&path);
524
525         level = btrfs_header_level(&snap->node.header);
526         orig_level = level;
527         path.nodes[level] = snap;
528         path.slots[level] = 0;
529         while(1) {
530                 wret = walk_down_tree(root, &path, &level);
531                 if (wret > 0)
532                         break;
533                 if (wret < 0)
534                         ret = wret;
535
536                 wret = walk_up_tree(root, &path, &level);
537                 if (wret > 0)
538                         break;
539                 if (wret < 0)
540                         ret = wret;
541         }
542         for (i = 0; i <= orig_level; i++) {
543                 if (path.nodes[i]) {
544                         btrfs_block_release(root, path.nodes[i]);
545                 }
546         }
547         return ret;
548 }