Btrfs: add support for compat flags to btrfs
[safe/jmp/linux-2.6] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/version.h>
20 #include <linux/fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/scatterlist.h>
23 #include <linux/swap.h>
24 #include <linux/radix-tree.h>
25 #include <linux/writeback.h>
26 #include <linux/buffer_head.h> // for block_sync_page
27 #include <linux/workqueue.h>
28 #include <linux/kthread.h>
29 #include <linux/freezer.h>
30 #include "compat.h"
31 #include "crc32c.h"
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "volumes.h"
37 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "locking.h"
40 #include "ref-cache.h"
41 #include "tree-log.h"
42
43 #if 0
44 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
45 {
46         if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
47                 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
48                        (unsigned long long)extent_buffer_blocknr(buf),
49                        (unsigned long long)btrfs_header_blocknr(buf));
50                 return 1;
51         }
52         return 0;
53 }
54 #endif
55
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58
59 /*
60  * end_io_wq structs are used to do processing in task context when an IO is
61  * complete.  This is used during reads to verify checksums, and it is used
62  * by writes to insert metadata for new file extents after IO is complete.
63  */
64 struct end_io_wq {
65         struct bio *bio;
66         bio_end_io_t *end_io;
67         void *private;
68         struct btrfs_fs_info *info;
69         int error;
70         int metadata;
71         struct list_head list;
72         struct btrfs_work work;
73 };
74
75 /*
76  * async submit bios are used to offload expensive checksumming
77  * onto the worker threads.  They checksum file and metadata bios
78  * just before they are sent down the IO stack.
79  */
80 struct async_submit_bio {
81         struct inode *inode;
82         struct bio *bio;
83         struct list_head list;
84         extent_submit_bio_hook_t *submit_bio_start;
85         extent_submit_bio_hook_t *submit_bio_done;
86         int rw;
87         int mirror_num;
88         unsigned long bio_flags;
89         struct btrfs_work work;
90 };
91
92 /*
93  * extents on the btree inode are pretty simple, there's one extent
94  * that covers the entire device
95  */
96 static struct extent_map *btree_get_extent(struct inode *inode,
97                 struct page *page, size_t page_offset, u64 start, u64 len,
98                 int create)
99 {
100         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
101         struct extent_map *em;
102         int ret;
103
104         spin_lock(&em_tree->lock);
105         em = lookup_extent_mapping(em_tree, start, len);
106         if (em) {
107                 em->bdev =
108                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
109                 spin_unlock(&em_tree->lock);
110                 goto out;
111         }
112         spin_unlock(&em_tree->lock);
113
114         em = alloc_extent_map(GFP_NOFS);
115         if (!em) {
116                 em = ERR_PTR(-ENOMEM);
117                 goto out;
118         }
119         em->start = 0;
120         em->len = (u64)-1;
121         em->block_len = (u64)-1;
122         em->block_start = 0;
123         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
124
125         spin_lock(&em_tree->lock);
126         ret = add_extent_mapping(em_tree, em);
127         if (ret == -EEXIST) {
128                 u64 failed_start = em->start;
129                 u64 failed_len = em->len;
130
131                 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
132                        em->start, em->len, em->block_start);
133                 free_extent_map(em);
134                 em = lookup_extent_mapping(em_tree, start, len);
135                 if (em) {
136                         printk("after failing, found %Lu %Lu %Lu\n",
137                                em->start, em->len, em->block_start);
138                         ret = 0;
139                 } else {
140                         em = lookup_extent_mapping(em_tree, failed_start,
141                                                    failed_len);
142                         if (em) {
143                                 printk("double failure lookup gives us "
144                                        "%Lu %Lu -> %Lu\n", em->start,
145                                        em->len, em->block_start);
146                                 free_extent_map(em);
147                         }
148                         ret = -EIO;
149                 }
150         } else if (ret) {
151                 free_extent_map(em);
152                 em = NULL;
153         }
154         spin_unlock(&em_tree->lock);
155
156         if (ret)
157                 em = ERR_PTR(ret);
158 out:
159         return em;
160 }
161
162 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
163 {
164         return btrfs_crc32c(seed, data, len);
165 }
166
167 void btrfs_csum_final(u32 crc, char *result)
168 {
169         *(__le32 *)result = ~cpu_to_le32(crc);
170 }
171
172 /*
173  * compute the csum for a btree block, and either verify it or write it
174  * into the csum field of the block.
175  */
176 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
177                            int verify)
178 {
179         char result[BTRFS_CRC32_SIZE];
180         unsigned long len;
181         unsigned long cur_len;
182         unsigned long offset = BTRFS_CSUM_SIZE;
183         char *map_token = NULL;
184         char *kaddr;
185         unsigned long map_start;
186         unsigned long map_len;
187         int err;
188         u32 crc = ~(u32)0;
189
190         len = buf->len - offset;
191         while(len > 0) {
192                 err = map_private_extent_buffer(buf, offset, 32,
193                                         &map_token, &kaddr,
194                                         &map_start, &map_len, KM_USER0);
195                 if (err) {
196                         printk("failed to map extent buffer! %lu\n",
197                                offset);
198                         return 1;
199                 }
200                 cur_len = min(len, map_len - (offset - map_start));
201                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
202                                       crc, cur_len);
203                 len -= cur_len;
204                 offset += cur_len;
205                 unmap_extent_buffer(buf, map_token, KM_USER0);
206         }
207         btrfs_csum_final(crc, result);
208
209         if (verify) {
210                 /* FIXME, this is not good */
211                 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
212                         u32 val;
213                         u32 found = 0;
214                         memcpy(&found, result, BTRFS_CRC32_SIZE);
215
216                         read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
217                         printk("btrfs: %s checksum verify failed on %llu "
218                                "wanted %X found %X level %d\n",
219                                root->fs_info->sb->s_id,
220                                buf->start, val, found, btrfs_header_level(buf));
221                         return 1;
222                 }
223         } else {
224                 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
225         }
226         return 0;
227 }
228
229 /*
230  * we can't consider a given block up to date unless the transid of the
231  * block matches the transid in the parent node's pointer.  This is how we
232  * detect blocks that either didn't get written at all or got written
233  * in the wrong place.
234  */
235 static int verify_parent_transid(struct extent_io_tree *io_tree,
236                                  struct extent_buffer *eb, u64 parent_transid)
237 {
238         int ret;
239
240         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
241                 return 0;
242
243         lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
244         if (extent_buffer_uptodate(io_tree, eb) &&
245             btrfs_header_generation(eb) == parent_transid) {
246                 ret = 0;
247                 goto out;
248         }
249         printk("parent transid verify failed on %llu wanted %llu found %llu\n",
250                (unsigned long long)eb->start,
251                (unsigned long long)parent_transid,
252                (unsigned long long)btrfs_header_generation(eb));
253         ret = 1;
254         clear_extent_buffer_uptodate(io_tree, eb);
255 out:
256         unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
257                       GFP_NOFS);
258         return ret;
259 }
260
261 /*
262  * helper to read a given tree block, doing retries as required when
263  * the checksums don't match and we have alternate mirrors to try.
264  */
265 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
266                                           struct extent_buffer *eb,
267                                           u64 start, u64 parent_transid)
268 {
269         struct extent_io_tree *io_tree;
270         int ret;
271         int num_copies = 0;
272         int mirror_num = 0;
273
274         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
275         while (1) {
276                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
277                                                btree_get_extent, mirror_num);
278                 if (!ret &&
279                     !verify_parent_transid(io_tree, eb, parent_transid))
280                         return ret;
281 printk("read extent buffer pages failed with ret %d mirror no %d\n", ret, mirror_num);
282                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
283                                               eb->start, eb->len);
284                 if (num_copies == 1)
285                         return ret;
286
287                 mirror_num++;
288                 if (mirror_num > num_copies)
289                         return ret;
290         }
291         return -EIO;
292 }
293
294 /*
295  * checksum a dirty tree block before IO.  This has extra checks to make
296  * sure we only fill in the checksum field in the first page of a multi-page block
297  */
298 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
299 {
300         struct extent_io_tree *tree;
301         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
302         u64 found_start;
303         int found_level;
304         unsigned long len;
305         struct extent_buffer *eb;
306         int ret;
307
308         tree = &BTRFS_I(page->mapping->host)->io_tree;
309
310         if (page->private == EXTENT_PAGE_PRIVATE)
311                 goto out;
312         if (!page->private)
313                 goto out;
314         len = page->private >> 2;
315         if (len == 0) {
316                 WARN_ON(1);
317         }
318         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
319         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
320                                              btrfs_header_generation(eb));
321         BUG_ON(ret);
322         found_start = btrfs_header_bytenr(eb);
323         if (found_start != start) {
324                 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
325                        start, found_start, len);
326                 WARN_ON(1);
327                 goto err;
328         }
329         if (eb->first_page != page) {
330                 printk("bad first page %lu %lu\n", eb->first_page->index,
331                        page->index);
332                 WARN_ON(1);
333                 goto err;
334         }
335         if (!PageUptodate(page)) {
336                 printk("csum not up to date page %lu\n", page->index);
337                 WARN_ON(1);
338                 goto err;
339         }
340         found_level = btrfs_header_level(eb);
341
342         csum_tree_block(root, eb, 0);
343 err:
344         free_extent_buffer(eb);
345 out:
346         return 0;
347 }
348
349 static int check_tree_block_fsid(struct btrfs_root *root,
350                                  struct extent_buffer *eb)
351 {
352         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
353         u8 fsid[BTRFS_UUID_SIZE];
354         int ret = 1;
355
356         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
357                            BTRFS_FSID_SIZE);
358         while (fs_devices) {
359                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
360                         ret = 0;
361                         break;
362                 }
363                 fs_devices = fs_devices->seed;
364         }
365         return ret;
366 }
367
368 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
369                                struct extent_state *state)
370 {
371         struct extent_io_tree *tree;
372         u64 found_start;
373         int found_level;
374         unsigned long len;
375         struct extent_buffer *eb;
376         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
377         int ret = 0;
378
379         tree = &BTRFS_I(page->mapping->host)->io_tree;
380         if (page->private == EXTENT_PAGE_PRIVATE)
381                 goto out;
382         if (!page->private)
383                 goto out;
384         len = page->private >> 2;
385         if (len == 0) {
386                 WARN_ON(1);
387         }
388         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
389
390         found_start = btrfs_header_bytenr(eb);
391         if (found_start != start) {
392                 printk("bad tree block start %llu %llu\n",
393                        (unsigned long long)found_start,
394                        (unsigned long long)eb->start);
395                 ret = -EIO;
396                 goto err;
397         }
398         if (eb->first_page != page) {
399                 printk("bad first page %lu %lu\n", eb->first_page->index,
400                        page->index);
401                 WARN_ON(1);
402                 ret = -EIO;
403                 goto err;
404         }
405         if (check_tree_block_fsid(root, eb)) {
406                 printk("bad fsid on block %Lu\n", eb->start);
407                 ret = -EIO;
408                 goto err;
409         }
410         found_level = btrfs_header_level(eb);
411
412         ret = csum_tree_block(root, eb, 1);
413         if (ret)
414                 ret = -EIO;
415
416         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
417         end = eb->start + end - 1;
418 err:
419         free_extent_buffer(eb);
420 out:
421         return ret;
422 }
423
424 static void end_workqueue_bio(struct bio *bio, int err)
425 {
426         struct end_io_wq *end_io_wq = bio->bi_private;
427         struct btrfs_fs_info *fs_info;
428
429         fs_info = end_io_wq->info;
430         end_io_wq->error = err;
431         end_io_wq->work.func = end_workqueue_fn;
432         end_io_wq->work.flags = 0;
433         if (bio->bi_rw & (1 << BIO_RW))
434                 btrfs_queue_worker(&fs_info->endio_write_workers,
435                                    &end_io_wq->work);
436         else
437                 btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
438 }
439
440 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
441                         int metadata)
442 {
443         struct end_io_wq *end_io_wq;
444         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
445         if (!end_io_wq)
446                 return -ENOMEM;
447
448         end_io_wq->private = bio->bi_private;
449         end_io_wq->end_io = bio->bi_end_io;
450         end_io_wq->info = info;
451         end_io_wq->error = 0;
452         end_io_wq->bio = bio;
453         end_io_wq->metadata = metadata;
454
455         bio->bi_private = end_io_wq;
456         bio->bi_end_io = end_workqueue_bio;
457         return 0;
458 }
459
460 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
461 {
462         unsigned long limit = min_t(unsigned long,
463                                     info->workers.max_workers,
464                                     info->fs_devices->open_devices);
465         return 256 * limit;
466 }
467
468 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
469 {
470         return atomic_read(&info->nr_async_bios) >
471                 btrfs_async_submit_limit(info);
472 }
473
474 static void run_one_async_start(struct btrfs_work *work)
475 {
476         struct btrfs_fs_info *fs_info;
477         struct async_submit_bio *async;
478
479         async = container_of(work, struct  async_submit_bio, work);
480         fs_info = BTRFS_I(async->inode)->root->fs_info;
481         async->submit_bio_start(async->inode, async->rw, async->bio,
482                                async->mirror_num, async->bio_flags);
483 }
484
485 static void run_one_async_done(struct btrfs_work *work)
486 {
487         struct btrfs_fs_info *fs_info;
488         struct async_submit_bio *async;
489         int limit;
490
491         async = container_of(work, struct  async_submit_bio, work);
492         fs_info = BTRFS_I(async->inode)->root->fs_info;
493
494         limit = btrfs_async_submit_limit(fs_info);
495         limit = limit * 2 / 3;
496
497         atomic_dec(&fs_info->nr_async_submits);
498
499         if (atomic_read(&fs_info->nr_async_submits) < limit &&
500             waitqueue_active(&fs_info->async_submit_wait))
501                 wake_up(&fs_info->async_submit_wait);
502
503         async->submit_bio_done(async->inode, async->rw, async->bio,
504                                async->mirror_num, async->bio_flags);
505 }
506
507 static void run_one_async_free(struct btrfs_work *work)
508 {
509         struct async_submit_bio *async;
510
511         async = container_of(work, struct  async_submit_bio, work);
512         kfree(async);
513 }
514
515 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
516                         int rw, struct bio *bio, int mirror_num,
517                         unsigned long bio_flags,
518                         extent_submit_bio_hook_t *submit_bio_start,
519                         extent_submit_bio_hook_t *submit_bio_done)
520 {
521         struct async_submit_bio *async;
522
523         async = kmalloc(sizeof(*async), GFP_NOFS);
524         if (!async)
525                 return -ENOMEM;
526
527         async->inode = inode;
528         async->rw = rw;
529         async->bio = bio;
530         async->mirror_num = mirror_num;
531         async->submit_bio_start = submit_bio_start;
532         async->submit_bio_done = submit_bio_done;
533
534         async->work.func = run_one_async_start;
535         async->work.ordered_func = run_one_async_done;
536         async->work.ordered_free = run_one_async_free;
537
538         async->work.flags = 0;
539         async->bio_flags = bio_flags;
540
541         atomic_inc(&fs_info->nr_async_submits);
542         btrfs_queue_worker(&fs_info->workers, &async->work);
543 #if 0
544         int limit = btrfs_async_submit_limit(fs_info);
545         if (atomic_read(&fs_info->nr_async_submits) > limit) {
546                 wait_event_timeout(fs_info->async_submit_wait,
547                            (atomic_read(&fs_info->nr_async_submits) < limit),
548                            HZ/10);
549
550                 wait_event_timeout(fs_info->async_submit_wait,
551                            (atomic_read(&fs_info->nr_async_bios) < limit),
552                            HZ/10);
553         }
554 #endif
555         while(atomic_read(&fs_info->async_submit_draining) &&
556               atomic_read(&fs_info->nr_async_submits)) {
557                 wait_event(fs_info->async_submit_wait,
558                            (atomic_read(&fs_info->nr_async_submits) == 0));
559         }
560
561         return 0;
562 }
563
564 static int btree_csum_one_bio(struct bio *bio)
565 {
566         struct bio_vec *bvec = bio->bi_io_vec;
567         int bio_index = 0;
568         struct btrfs_root *root;
569
570         WARN_ON(bio->bi_vcnt <= 0);
571         while(bio_index < bio->bi_vcnt) {
572                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
573                 csum_dirty_buffer(root, bvec->bv_page);
574                 bio_index++;
575                 bvec++;
576         }
577         return 0;
578 }
579
580 static int __btree_submit_bio_start(struct inode *inode, int rw,
581                                     struct bio *bio, int mirror_num,
582                                     unsigned long bio_flags)
583 {
584         /*
585          * when we're called for a write, we're already in the async
586          * submission context.  Just jump into btrfs_map_bio
587          */
588         btree_csum_one_bio(bio);
589         return 0;
590 }
591
592 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
593                                  int mirror_num, unsigned long bio_flags)
594 {
595         /*
596          * when we're called for a write, we're already in the async
597          * submission context.  Just jump into btrfs_map_bio
598          */
599         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
600 }
601
602 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
603                                  int mirror_num, unsigned long bio_flags)
604 {
605         /*
606          * kthread helpers are used to submit writes so that checksumming
607          * can happen in parallel across all CPUs
608          */
609         if (!(rw & (1 << BIO_RW))) {
610                 int ret;
611                 /*
612                  * called for a read, do the setup so that checksum validation
613                  * can happen in the async kernel threads
614                  */
615                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
616                                           bio, 1);
617                 BUG_ON(ret);
618
619                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
620                                      mirror_num, 0);
621         }
622         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
623                                    inode, rw, bio, mirror_num, 0,
624                                    __btree_submit_bio_start,
625                                    __btree_submit_bio_done);
626 }
627
628 static int btree_writepage(struct page *page, struct writeback_control *wbc)
629 {
630         struct extent_io_tree *tree;
631         tree = &BTRFS_I(page->mapping->host)->io_tree;
632
633         if (current->flags & PF_MEMALLOC) {
634                 redirty_page_for_writepage(wbc, page);
635                 unlock_page(page);
636                 return 0;
637         }
638         return extent_write_full_page(tree, page, btree_get_extent, wbc);
639 }
640
641 static int btree_writepages(struct address_space *mapping,
642                             struct writeback_control *wbc)
643 {
644         struct extent_io_tree *tree;
645         tree = &BTRFS_I(mapping->host)->io_tree;
646         if (wbc->sync_mode == WB_SYNC_NONE) {
647                 u64 num_dirty;
648                 u64 start = 0;
649                 unsigned long thresh = 32 * 1024 * 1024;
650
651                 if (wbc->for_kupdate)
652                         return 0;
653
654                 num_dirty = count_range_bits(tree, &start, (u64)-1,
655                                              thresh, EXTENT_DIRTY);
656                 if (num_dirty < thresh) {
657                         return 0;
658                 }
659         }
660         return extent_writepages(tree, mapping, btree_get_extent, wbc);
661 }
662
663 static int btree_readpage(struct file *file, struct page *page)
664 {
665         struct extent_io_tree *tree;
666         tree = &BTRFS_I(page->mapping->host)->io_tree;
667         return extent_read_full_page(tree, page, btree_get_extent);
668 }
669
670 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
671 {
672         struct extent_io_tree *tree;
673         struct extent_map_tree *map;
674         int ret;
675
676         if (PageWriteback(page) || PageDirty(page))
677             return 0;
678
679         tree = &BTRFS_I(page->mapping->host)->io_tree;
680         map = &BTRFS_I(page->mapping->host)->extent_tree;
681
682         ret = try_release_extent_state(map, tree, page, gfp_flags);
683         if (!ret) {
684                 return 0;
685         }
686
687         ret = try_release_extent_buffer(tree, page);
688         if (ret == 1) {
689                 ClearPagePrivate(page);
690                 set_page_private(page, 0);
691                 page_cache_release(page);
692         }
693
694         return ret;
695 }
696
697 static void btree_invalidatepage(struct page *page, unsigned long offset)
698 {
699         struct extent_io_tree *tree;
700         tree = &BTRFS_I(page->mapping->host)->io_tree;
701         extent_invalidatepage(tree, page, offset);
702         btree_releasepage(page, GFP_NOFS);
703         if (PagePrivate(page)) {
704                 printk("warning page private not zero on page %Lu\n",
705                        page_offset(page));
706                 ClearPagePrivate(page);
707                 set_page_private(page, 0);
708                 page_cache_release(page);
709         }
710 }
711
712 #if 0
713 static int btree_writepage(struct page *page, struct writeback_control *wbc)
714 {
715         struct buffer_head *bh;
716         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
717         struct buffer_head *head;
718         if (!page_has_buffers(page)) {
719                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
720                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
721         }
722         head = page_buffers(page);
723         bh = head;
724         do {
725                 if (buffer_dirty(bh))
726                         csum_tree_block(root, bh, 0);
727                 bh = bh->b_this_page;
728         } while (bh != head);
729         return block_write_full_page(page, btree_get_block, wbc);
730 }
731 #endif
732
733 static struct address_space_operations btree_aops = {
734         .readpage       = btree_readpage,
735         .writepage      = btree_writepage,
736         .writepages     = btree_writepages,
737         .releasepage    = btree_releasepage,
738         .invalidatepage = btree_invalidatepage,
739         .sync_page      = block_sync_page,
740 };
741
742 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
743                          u64 parent_transid)
744 {
745         struct extent_buffer *buf = NULL;
746         struct inode *btree_inode = root->fs_info->btree_inode;
747         int ret = 0;
748
749         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
750         if (!buf)
751                 return 0;
752         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
753                                  buf, 0, 0, btree_get_extent, 0);
754         free_extent_buffer(buf);
755         return ret;
756 }
757
758 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
759                                             u64 bytenr, u32 blocksize)
760 {
761         struct inode *btree_inode = root->fs_info->btree_inode;
762         struct extent_buffer *eb;
763         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
764                                 bytenr, blocksize, GFP_NOFS);
765         return eb;
766 }
767
768 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
769                                                  u64 bytenr, u32 blocksize)
770 {
771         struct inode *btree_inode = root->fs_info->btree_inode;
772         struct extent_buffer *eb;
773
774         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
775                                  bytenr, blocksize, NULL, GFP_NOFS);
776         return eb;
777 }
778
779
780 int btrfs_write_tree_block(struct extent_buffer *buf)
781 {
782         return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
783                                       buf->start + buf->len - 1, WB_SYNC_ALL);
784 }
785
786 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
787 {
788         return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
789                                   buf->start, buf->start + buf->len -1);
790 }
791
792 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
793                                       u32 blocksize, u64 parent_transid)
794 {
795         struct extent_buffer *buf = NULL;
796         struct inode *btree_inode = root->fs_info->btree_inode;
797         struct extent_io_tree *io_tree;
798         int ret;
799
800         io_tree = &BTRFS_I(btree_inode)->io_tree;
801
802         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
803         if (!buf)
804                 return NULL;
805
806         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
807
808         if (ret == 0) {
809                 buf->flags |= EXTENT_UPTODATE;
810         } else {
811                 WARN_ON(1);
812         }
813         return buf;
814
815 }
816
817 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
818                      struct extent_buffer *buf)
819 {
820         struct inode *btree_inode = root->fs_info->btree_inode;
821         if (btrfs_header_generation(buf) ==
822             root->fs_info->running_transaction->transid) {
823                 WARN_ON(!btrfs_tree_locked(buf));
824                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
825                                           buf);
826         }
827         return 0;
828 }
829
830 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
831                         u32 stripesize, struct btrfs_root *root,
832                         struct btrfs_fs_info *fs_info,
833                         u64 objectid)
834 {
835         root->node = NULL;
836         root->commit_root = NULL;
837         root->ref_tree = NULL;
838         root->sectorsize = sectorsize;
839         root->nodesize = nodesize;
840         root->leafsize = leafsize;
841         root->stripesize = stripesize;
842         root->ref_cows = 0;
843         root->track_dirty = 0;
844
845         root->fs_info = fs_info;
846         root->objectid = objectid;
847         root->last_trans = 0;
848         root->highest_inode = 0;
849         root->last_inode_alloc = 0;
850         root->name = NULL;
851         root->in_sysfs = 0;
852
853         INIT_LIST_HEAD(&root->dirty_list);
854         INIT_LIST_HEAD(&root->orphan_list);
855         INIT_LIST_HEAD(&root->dead_list);
856         spin_lock_init(&root->node_lock);
857         spin_lock_init(&root->list_lock);
858         mutex_init(&root->objectid_mutex);
859         mutex_init(&root->log_mutex);
860         extent_io_tree_init(&root->dirty_log_pages,
861                              fs_info->btree_inode->i_mapping, GFP_NOFS);
862
863         btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
864         root->ref_tree = &root->ref_tree_struct;
865
866         memset(&root->root_key, 0, sizeof(root->root_key));
867         memset(&root->root_item, 0, sizeof(root->root_item));
868         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
869         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
870         root->defrag_trans_start = fs_info->generation;
871         init_completion(&root->kobj_unregister);
872         root->defrag_running = 0;
873         root->defrag_level = 0;
874         root->root_key.objectid = objectid;
875         root->anon_super.s_root = NULL;
876         root->anon_super.s_dev = 0;
877         INIT_LIST_HEAD(&root->anon_super.s_list);
878         INIT_LIST_HEAD(&root->anon_super.s_instances);
879         init_rwsem(&root->anon_super.s_umount);
880
881         return 0;
882 }
883
884 static int find_and_setup_root(struct btrfs_root *tree_root,
885                                struct btrfs_fs_info *fs_info,
886                                u64 objectid,
887                                struct btrfs_root *root)
888 {
889         int ret;
890         u32 blocksize;
891         u64 generation;
892
893         __setup_root(tree_root->nodesize, tree_root->leafsize,
894                      tree_root->sectorsize, tree_root->stripesize,
895                      root, fs_info, objectid);
896         ret = btrfs_find_last_root(tree_root, objectid,
897                                    &root->root_item, &root->root_key);
898         BUG_ON(ret);
899
900         generation = btrfs_root_generation(&root->root_item);
901         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
902         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
903                                      blocksize, generation);
904         BUG_ON(!root->node);
905         return 0;
906 }
907
908 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
909                              struct btrfs_fs_info *fs_info)
910 {
911         struct extent_buffer *eb;
912         struct btrfs_root *log_root_tree = fs_info->log_root_tree;
913         u64 start = 0;
914         u64 end = 0;
915         int ret;
916
917         if (!log_root_tree)
918                 return 0;
919
920         while(1) {
921                 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
922                                     0, &start, &end, EXTENT_DIRTY);
923                 if (ret)
924                         break;
925
926                 clear_extent_dirty(&log_root_tree->dirty_log_pages,
927                                    start, end, GFP_NOFS);
928         }
929         eb = fs_info->log_root_tree->node;
930
931         WARN_ON(btrfs_header_level(eb) != 0);
932         WARN_ON(btrfs_header_nritems(eb) != 0);
933
934         ret = btrfs_free_reserved_extent(fs_info->tree_root,
935                                 eb->start, eb->len);
936         BUG_ON(ret);
937
938         free_extent_buffer(eb);
939         kfree(fs_info->log_root_tree);
940         fs_info->log_root_tree = NULL;
941         return 0;
942 }
943
944 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
945                              struct btrfs_fs_info *fs_info)
946 {
947         struct btrfs_root *root;
948         struct btrfs_root *tree_root = fs_info->tree_root;
949
950         root = kzalloc(sizeof(*root), GFP_NOFS);
951         if (!root)
952                 return -ENOMEM;
953
954         __setup_root(tree_root->nodesize, tree_root->leafsize,
955                      tree_root->sectorsize, tree_root->stripesize,
956                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
957
958         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
959         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
960         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
961         root->ref_cows = 0;
962
963         root->node = btrfs_alloc_free_block(trans, root, root->leafsize,
964                                             0, BTRFS_TREE_LOG_OBJECTID,
965                                             trans->transid, 0, 0, 0);
966
967         btrfs_set_header_nritems(root->node, 0);
968         btrfs_set_header_level(root->node, 0);
969         btrfs_set_header_bytenr(root->node, root->node->start);
970         btrfs_set_header_generation(root->node, trans->transid);
971         btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
972
973         write_extent_buffer(root->node, root->fs_info->fsid,
974                             (unsigned long)btrfs_header_fsid(root->node),
975                             BTRFS_FSID_SIZE);
976         btrfs_mark_buffer_dirty(root->node);
977         btrfs_tree_unlock(root->node);
978         fs_info->log_root_tree = root;
979         return 0;
980 }
981
982 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
983                                                struct btrfs_key *location)
984 {
985         struct btrfs_root *root;
986         struct btrfs_fs_info *fs_info = tree_root->fs_info;
987         struct btrfs_path *path;
988         struct extent_buffer *l;
989         u64 highest_inode;
990         u64 generation;
991         u32 blocksize;
992         int ret = 0;
993
994         root = kzalloc(sizeof(*root), GFP_NOFS);
995         if (!root)
996                 return ERR_PTR(-ENOMEM);
997         if (location->offset == (u64)-1) {
998                 ret = find_and_setup_root(tree_root, fs_info,
999                                           location->objectid, root);
1000                 if (ret) {
1001                         kfree(root);
1002                         return ERR_PTR(ret);
1003                 }
1004                 goto insert;
1005         }
1006
1007         __setup_root(tree_root->nodesize, tree_root->leafsize,
1008                      tree_root->sectorsize, tree_root->stripesize,
1009                      root, fs_info, location->objectid);
1010
1011         path = btrfs_alloc_path();
1012         BUG_ON(!path);
1013         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1014         if (ret != 0) {
1015                 if (ret > 0)
1016                         ret = -ENOENT;
1017                 goto out;
1018         }
1019         l = path->nodes[0];
1020         read_extent_buffer(l, &root->root_item,
1021                btrfs_item_ptr_offset(l, path->slots[0]),
1022                sizeof(root->root_item));
1023         memcpy(&root->root_key, location, sizeof(*location));
1024         ret = 0;
1025 out:
1026         btrfs_release_path(root, path);
1027         btrfs_free_path(path);
1028         if (ret) {
1029                 kfree(root);
1030                 return ERR_PTR(ret);
1031         }
1032         generation = btrfs_root_generation(&root->root_item);
1033         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1034         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1035                                      blocksize, generation);
1036         BUG_ON(!root->node);
1037 insert:
1038         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1039                 root->ref_cows = 1;
1040                 ret = btrfs_find_highest_inode(root, &highest_inode);
1041                 if (ret == 0) {
1042                         root->highest_inode = highest_inode;
1043                         root->last_inode_alloc = highest_inode;
1044                 }
1045         }
1046         return root;
1047 }
1048
1049 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1050                                         u64 root_objectid)
1051 {
1052         struct btrfs_root *root;
1053
1054         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1055                 return fs_info->tree_root;
1056         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1057                 return fs_info->extent_root;
1058
1059         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1060                                  (unsigned long)root_objectid);
1061         return root;
1062 }
1063
1064 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1065                                               struct btrfs_key *location)
1066 {
1067         struct btrfs_root *root;
1068         int ret;
1069
1070         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1071                 return fs_info->tree_root;
1072         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1073                 return fs_info->extent_root;
1074         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1075                 return fs_info->chunk_root;
1076         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1077                 return fs_info->dev_root;
1078
1079         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1080                                  (unsigned long)location->objectid);
1081         if (root)
1082                 return root;
1083
1084         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1085         if (IS_ERR(root))
1086                 return root;
1087
1088         set_anon_super(&root->anon_super, NULL);
1089
1090         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1091                                 (unsigned long)root->root_key.objectid,
1092                                 root);
1093         if (ret) {
1094                 free_extent_buffer(root->node);
1095                 kfree(root);
1096                 return ERR_PTR(ret);
1097         }
1098         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1099                 ret = btrfs_find_dead_roots(fs_info->tree_root,
1100                                             root->root_key.objectid, root);
1101                 BUG_ON(ret);
1102                 btrfs_orphan_cleanup(root);
1103         }
1104         return root;
1105 }
1106
1107 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1108                                       struct btrfs_key *location,
1109                                       const char *name, int namelen)
1110 {
1111         struct btrfs_root *root;
1112         int ret;
1113
1114         root = btrfs_read_fs_root_no_name(fs_info, location);
1115         if (!root)
1116                 return NULL;
1117
1118         if (root->in_sysfs)
1119                 return root;
1120
1121         ret = btrfs_set_root_name(root, name, namelen);
1122         if (ret) {
1123                 free_extent_buffer(root->node);
1124                 kfree(root);
1125                 return ERR_PTR(ret);
1126         }
1127 #if 0
1128         ret = btrfs_sysfs_add_root(root);
1129         if (ret) {
1130                 free_extent_buffer(root->node);
1131                 kfree(root->name);
1132                 kfree(root);
1133                 return ERR_PTR(ret);
1134         }
1135 #endif
1136         root->in_sysfs = 1;
1137         return root;
1138 }
1139 #if 0
1140 static int add_hasher(struct btrfs_fs_info *info, char *type) {
1141         struct btrfs_hasher *hasher;
1142
1143         hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
1144         if (!hasher)
1145                 return -ENOMEM;
1146         hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
1147         if (!hasher->hash_tfm) {
1148                 kfree(hasher);
1149                 return -EINVAL;
1150         }
1151         spin_lock(&info->hash_lock);
1152         list_add(&hasher->list, &info->hashers);
1153         spin_unlock(&info->hash_lock);
1154         return 0;
1155 }
1156 #endif
1157
1158 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1159 {
1160         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1161         int ret = 0;
1162         struct list_head *cur;
1163         struct btrfs_device *device;
1164         struct backing_dev_info *bdi;
1165 #if 0
1166         if ((bdi_bits & (1 << BDI_write_congested)) &&
1167             btrfs_congested_async(info, 0))
1168                 return 1;
1169 #endif
1170         list_for_each(cur, &info->fs_devices->devices) {
1171                 device = list_entry(cur, struct btrfs_device, dev_list);
1172                 if (!device->bdev)
1173                         continue;
1174                 bdi = blk_get_backing_dev_info(device->bdev);
1175                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1176                         ret = 1;
1177                         break;
1178                 }
1179         }
1180         return ret;
1181 }
1182
1183 /*
1184  * this unplugs every device on the box, and it is only used when page
1185  * is null
1186  */
1187 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1188 {
1189         struct list_head *cur;
1190         struct btrfs_device *device;
1191         struct btrfs_fs_info *info;
1192
1193         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1194         list_for_each(cur, &info->fs_devices->devices) {
1195                 device = list_entry(cur, struct btrfs_device, dev_list);
1196                 bdi = blk_get_backing_dev_info(device->bdev);
1197                 if (bdi->unplug_io_fn) {
1198                         bdi->unplug_io_fn(bdi, page);
1199                 }
1200         }
1201 }
1202
1203 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1204 {
1205         struct inode *inode;
1206         struct extent_map_tree *em_tree;
1207         struct extent_map *em;
1208         struct address_space *mapping;
1209         u64 offset;
1210
1211         /* the generic O_DIRECT read code does this */
1212         if (1 || !page) {
1213                 __unplug_io_fn(bdi, page);
1214                 return;
1215         }
1216
1217         /*
1218          * page->mapping may change at any time.  Get a consistent copy
1219          * and use that for everything below
1220          */
1221         smp_mb();
1222         mapping = page->mapping;
1223         if (!mapping)
1224                 return;
1225
1226         inode = mapping->host;
1227
1228         /*
1229          * don't do the expensive searching for a small number of
1230          * devices
1231          */
1232         if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1233                 __unplug_io_fn(bdi, page);
1234                 return;
1235         }
1236
1237         offset = page_offset(page);
1238
1239         em_tree = &BTRFS_I(inode)->extent_tree;
1240         spin_lock(&em_tree->lock);
1241         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1242         spin_unlock(&em_tree->lock);
1243         if (!em) {
1244                 __unplug_io_fn(bdi, page);
1245                 return;
1246         }
1247
1248         if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1249                 free_extent_map(em);
1250                 __unplug_io_fn(bdi, page);
1251                 return;
1252         }
1253         offset = offset - em->start;
1254         btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1255                           em->block_start + offset, page);
1256         free_extent_map(em);
1257 }
1258
1259 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1260 {
1261         bdi_init(bdi);
1262         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1263         bdi->state              = 0;
1264         bdi->capabilities       = default_backing_dev_info.capabilities;
1265         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
1266         bdi->unplug_io_data     = info;
1267         bdi->congested_fn       = btrfs_congested_fn;
1268         bdi->congested_data     = info;
1269         return 0;
1270 }
1271
1272 static int bio_ready_for_csum(struct bio *bio)
1273 {
1274         u64 length = 0;
1275         u64 buf_len = 0;
1276         u64 start = 0;
1277         struct page *page;
1278         struct extent_io_tree *io_tree = NULL;
1279         struct btrfs_fs_info *info = NULL;
1280         struct bio_vec *bvec;
1281         int i;
1282         int ret;
1283
1284         bio_for_each_segment(bvec, bio, i) {
1285                 page = bvec->bv_page;
1286                 if (page->private == EXTENT_PAGE_PRIVATE) {
1287                         length += bvec->bv_len;
1288                         continue;
1289                 }
1290                 if (!page->private) {
1291                         length += bvec->bv_len;
1292                         continue;
1293                 }
1294                 length = bvec->bv_len;
1295                 buf_len = page->private >> 2;
1296                 start = page_offset(page) + bvec->bv_offset;
1297                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1298                 info = BTRFS_I(page->mapping->host)->root->fs_info;
1299         }
1300         /* are we fully contained in this bio? */
1301         if (buf_len <= length)
1302                 return 1;
1303
1304         ret = extent_range_uptodate(io_tree, start + length,
1305                                     start + buf_len - 1);
1306         if (ret == 1)
1307                 return ret;
1308         return ret;
1309 }
1310
1311 /*
1312  * called by the kthread helper functions to finally call the bio end_io
1313  * functions.  This is where read checksum verification actually happens
1314  */
1315 static void end_workqueue_fn(struct btrfs_work *work)
1316 {
1317         struct bio *bio;
1318         struct end_io_wq *end_io_wq;
1319         struct btrfs_fs_info *fs_info;
1320         int error;
1321
1322         end_io_wq = container_of(work, struct end_io_wq, work);
1323         bio = end_io_wq->bio;
1324         fs_info = end_io_wq->info;
1325
1326         /* metadata bios are special because the whole tree block must
1327          * be checksummed at once.  This makes sure the entire block is in
1328          * ram and up to date before trying to verify things.  For
1329          * blocksize <= pagesize, it is basically a noop
1330          */
1331         if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1332                 btrfs_queue_worker(&fs_info->endio_workers,
1333                                    &end_io_wq->work);
1334                 return;
1335         }
1336         error = end_io_wq->error;
1337         bio->bi_private = end_io_wq->private;
1338         bio->bi_end_io = end_io_wq->end_io;
1339         kfree(end_io_wq);
1340         bio_endio(bio, error);
1341 }
1342
1343 static int cleaner_kthread(void *arg)
1344 {
1345         struct btrfs_root *root = arg;
1346
1347         do {
1348                 smp_mb();
1349                 if (root->fs_info->closing)
1350                         break;
1351
1352                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1353                 mutex_lock(&root->fs_info->cleaner_mutex);
1354                 btrfs_clean_old_snapshots(root);
1355                 mutex_unlock(&root->fs_info->cleaner_mutex);
1356
1357                 if (freezing(current)) {
1358                         refrigerator();
1359                 } else {
1360                         smp_mb();
1361                         if (root->fs_info->closing)
1362                                 break;
1363                         set_current_state(TASK_INTERRUPTIBLE);
1364                         schedule();
1365                         __set_current_state(TASK_RUNNING);
1366                 }
1367         } while (!kthread_should_stop());
1368         return 0;
1369 }
1370
1371 static int transaction_kthread(void *arg)
1372 {
1373         struct btrfs_root *root = arg;
1374         struct btrfs_trans_handle *trans;
1375         struct btrfs_transaction *cur;
1376         unsigned long now;
1377         unsigned long delay;
1378         int ret;
1379
1380         do {
1381                 smp_mb();
1382                 if (root->fs_info->closing)
1383                         break;
1384
1385                 delay = HZ * 30;
1386                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1387                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1388
1389                 if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
1390                         printk("btrfs: total reference cache size %Lu\n",
1391                                 root->fs_info->total_ref_cache_size);
1392                 }
1393
1394                 mutex_lock(&root->fs_info->trans_mutex);
1395                 cur = root->fs_info->running_transaction;
1396                 if (!cur) {
1397                         mutex_unlock(&root->fs_info->trans_mutex);
1398                         goto sleep;
1399                 }
1400
1401                 now = get_seconds();
1402                 if (now < cur->start_time || now - cur->start_time < 30) {
1403                         mutex_unlock(&root->fs_info->trans_mutex);
1404                         delay = HZ * 5;
1405                         goto sleep;
1406                 }
1407                 mutex_unlock(&root->fs_info->trans_mutex);
1408                 trans = btrfs_start_transaction(root, 1);
1409                 ret = btrfs_commit_transaction(trans, root);
1410 sleep:
1411                 wake_up_process(root->fs_info->cleaner_kthread);
1412                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1413
1414                 if (freezing(current)) {
1415                         refrigerator();
1416                 } else {
1417                         if (root->fs_info->closing)
1418                                 break;
1419                         set_current_state(TASK_INTERRUPTIBLE);
1420                         schedule_timeout(delay);
1421                         __set_current_state(TASK_RUNNING);
1422                 }
1423         } while (!kthread_should_stop());
1424         return 0;
1425 }
1426
1427 struct btrfs_root *open_ctree(struct super_block *sb,
1428                               struct btrfs_fs_devices *fs_devices,
1429                               char *options)
1430 {
1431         u32 sectorsize;
1432         u32 nodesize;
1433         u32 leafsize;
1434         u32 blocksize;
1435         u32 stripesize;
1436         u64 generation;
1437         u64 features;
1438         struct btrfs_key location;
1439         struct buffer_head *bh;
1440         struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1441                                                  GFP_NOFS);
1442         struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1443                                                GFP_NOFS);
1444         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1445                                                 GFP_NOFS);
1446         struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1447                                                 GFP_NOFS);
1448         struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1449                                               GFP_NOFS);
1450         struct btrfs_root *log_tree_root;
1451
1452         int ret;
1453         int err = -EINVAL;
1454
1455         struct btrfs_super_block *disk_super;
1456
1457         if (!extent_root || !tree_root || !fs_info ||
1458             !chunk_root || !dev_root) {
1459                 err = -ENOMEM;
1460                 goto fail;
1461         }
1462         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1463         INIT_LIST_HEAD(&fs_info->trans_list);
1464         INIT_LIST_HEAD(&fs_info->dead_roots);
1465         INIT_LIST_HEAD(&fs_info->hashers);
1466         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1467         spin_lock_init(&fs_info->hash_lock);
1468         spin_lock_init(&fs_info->delalloc_lock);
1469         spin_lock_init(&fs_info->new_trans_lock);
1470         spin_lock_init(&fs_info->ref_cache_lock);
1471
1472         init_completion(&fs_info->kobj_unregister);
1473         fs_info->tree_root = tree_root;
1474         fs_info->extent_root = extent_root;
1475         fs_info->chunk_root = chunk_root;
1476         fs_info->dev_root = dev_root;
1477         fs_info->fs_devices = fs_devices;
1478         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1479         INIT_LIST_HEAD(&fs_info->space_info);
1480         btrfs_mapping_init(&fs_info->mapping_tree);
1481         atomic_set(&fs_info->nr_async_submits, 0);
1482         atomic_set(&fs_info->async_delalloc_pages, 0);
1483         atomic_set(&fs_info->async_submit_draining, 0);
1484         atomic_set(&fs_info->nr_async_bios, 0);
1485         atomic_set(&fs_info->throttles, 0);
1486         atomic_set(&fs_info->throttle_gen, 0);
1487         fs_info->sb = sb;
1488         fs_info->max_extent = (u64)-1;
1489         fs_info->max_inline = 8192 * 1024;
1490         setup_bdi(fs_info, &fs_info->bdi);
1491         fs_info->btree_inode = new_inode(sb);
1492         fs_info->btree_inode->i_ino = 1;
1493         fs_info->btree_inode->i_nlink = 1;
1494
1495         fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
1496
1497         INIT_LIST_HEAD(&fs_info->ordered_extents);
1498         spin_lock_init(&fs_info->ordered_extent_lock);
1499
1500         sb->s_blocksize = 4096;
1501         sb->s_blocksize_bits = blksize_bits(4096);
1502
1503         /*
1504          * we set the i_size on the btree inode to the max possible int.
1505          * the real end of the address space is determined by all of
1506          * the devices in the system
1507          */
1508         fs_info->btree_inode->i_size = OFFSET_MAX;
1509         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1510         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1511
1512         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1513                              fs_info->btree_inode->i_mapping,
1514                              GFP_NOFS);
1515         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1516                              GFP_NOFS);
1517
1518         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1519
1520         spin_lock_init(&fs_info->block_group_cache_lock);
1521         fs_info->block_group_cache_tree.rb_node = NULL;
1522
1523         extent_io_tree_init(&fs_info->pinned_extents,
1524                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1525         extent_io_tree_init(&fs_info->pending_del,
1526                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1527         extent_io_tree_init(&fs_info->extent_ins,
1528                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1529         fs_info->do_barriers = 1;
1530
1531         INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
1532         btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
1533         btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
1534
1535         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1536         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1537                sizeof(struct btrfs_key));
1538         insert_inode_hash(fs_info->btree_inode);
1539
1540         mutex_init(&fs_info->trans_mutex);
1541         mutex_init(&fs_info->tree_log_mutex);
1542         mutex_init(&fs_info->drop_mutex);
1543         mutex_init(&fs_info->extent_ins_mutex);
1544         mutex_init(&fs_info->pinned_mutex);
1545         mutex_init(&fs_info->chunk_mutex);
1546         mutex_init(&fs_info->transaction_kthread_mutex);
1547         mutex_init(&fs_info->cleaner_mutex);
1548         mutex_init(&fs_info->volume_mutex);
1549         mutex_init(&fs_info->tree_reloc_mutex);
1550         init_waitqueue_head(&fs_info->transaction_throttle);
1551         init_waitqueue_head(&fs_info->transaction_wait);
1552         init_waitqueue_head(&fs_info->async_submit_wait);
1553         init_waitqueue_head(&fs_info->tree_log_wait);
1554         atomic_set(&fs_info->tree_log_commit, 0);
1555         atomic_set(&fs_info->tree_log_writers, 0);
1556         fs_info->tree_log_transid = 0;
1557
1558 #if 0
1559         ret = add_hasher(fs_info, "crc32c");
1560         if (ret) {
1561                 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1562                 err = -ENOMEM;
1563                 goto fail_iput;
1564         }
1565 #endif
1566         __setup_root(4096, 4096, 4096, 4096, tree_root,
1567                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1568
1569
1570         bh = __bread(fs_devices->latest_bdev,
1571                      BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
1572         if (!bh)
1573                 goto fail_iput;
1574
1575         memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1576         brelse(bh);
1577
1578         memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1579
1580         disk_super = &fs_info->super_copy;
1581         if (!btrfs_super_root(disk_super))
1582                 goto fail_sb_buffer;
1583
1584         ret = btrfs_parse_options(tree_root, options);
1585         if (ret) {
1586                 err = ret;
1587                 goto fail_sb_buffer;
1588         }
1589
1590         features = btrfs_super_incompat_flags(disk_super) &
1591                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1592         if (features) {
1593                 printk(KERN_ERR "BTRFS: couldn't mount because of "
1594                        "unsupported optional features (%Lx).\n",
1595                        features);
1596                 err = -EINVAL;
1597                 goto fail_sb_buffer;
1598         }
1599
1600         features = btrfs_super_compat_ro_flags(disk_super) &
1601                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1602         if (!(sb->s_flags & MS_RDONLY) && features) {
1603                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1604                        "unsupported option features (%Lx).\n",
1605                        features);
1606                 err = -EINVAL;
1607                 goto fail_sb_buffer;
1608         }
1609
1610         /*
1611          * we need to start all the end_io workers up front because the
1612          * queue work function gets called at interrupt time, and so it
1613          * cannot dynamically grow.
1614          */
1615         btrfs_init_workers(&fs_info->workers, "worker",
1616                            fs_info->thread_pool_size);
1617
1618         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1619                            fs_info->thread_pool_size);
1620
1621         btrfs_init_workers(&fs_info->submit_workers, "submit",
1622                            min_t(u64, fs_devices->num_devices,
1623                            fs_info->thread_pool_size));
1624
1625         /* a higher idle thresh on the submit workers makes it much more
1626          * likely that bios will be send down in a sane order to the
1627          * devices
1628          */
1629         fs_info->submit_workers.idle_thresh = 64;
1630
1631         fs_info->workers.idle_thresh = 16;
1632         fs_info->workers.ordered = 1;
1633
1634         fs_info->delalloc_workers.idle_thresh = 2;
1635         fs_info->delalloc_workers.ordered = 1;
1636
1637         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1638         btrfs_init_workers(&fs_info->endio_workers, "endio",
1639                            fs_info->thread_pool_size);
1640         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1641                            fs_info->thread_pool_size);
1642
1643         /*
1644          * endios are largely parallel and should have a very
1645          * low idle thresh
1646          */
1647         fs_info->endio_workers.idle_thresh = 4;
1648         fs_info->endio_write_workers.idle_thresh = 64;
1649
1650         btrfs_start_workers(&fs_info->workers, 1);
1651         btrfs_start_workers(&fs_info->submit_workers, 1);
1652         btrfs_start_workers(&fs_info->delalloc_workers, 1);
1653         btrfs_start_workers(&fs_info->fixup_workers, 1);
1654         btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1655         btrfs_start_workers(&fs_info->endio_write_workers,
1656                             fs_info->thread_pool_size);
1657
1658         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1659         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1660                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1661
1662         nodesize = btrfs_super_nodesize(disk_super);
1663         leafsize = btrfs_super_leafsize(disk_super);
1664         sectorsize = btrfs_super_sectorsize(disk_super);
1665         stripesize = btrfs_super_stripesize(disk_super);
1666         tree_root->nodesize = nodesize;
1667         tree_root->leafsize = leafsize;
1668         tree_root->sectorsize = sectorsize;
1669         tree_root->stripesize = stripesize;
1670
1671         sb->s_blocksize = sectorsize;
1672         sb->s_blocksize_bits = blksize_bits(sectorsize);
1673
1674         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1675                     sizeof(disk_super->magic))) {
1676                 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1677                 goto fail_sb_buffer;
1678         }
1679
1680         mutex_lock(&fs_info->chunk_mutex);
1681         ret = btrfs_read_sys_array(tree_root);
1682         mutex_unlock(&fs_info->chunk_mutex);
1683         if (ret) {
1684                 printk("btrfs: failed to read the system array on %s\n",
1685                        sb->s_id);
1686                 goto fail_sys_array;
1687         }
1688
1689         blocksize = btrfs_level_size(tree_root,
1690                                      btrfs_super_chunk_root_level(disk_super));
1691         generation = btrfs_super_chunk_root_generation(disk_super);
1692
1693         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1694                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1695
1696         chunk_root->node = read_tree_block(chunk_root,
1697                                            btrfs_super_chunk_root(disk_super),
1698                                            blocksize, generation);
1699         BUG_ON(!chunk_root->node);
1700
1701         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1702                  (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1703                  BTRFS_UUID_SIZE);
1704
1705         mutex_lock(&fs_info->chunk_mutex);
1706         ret = btrfs_read_chunk_tree(chunk_root);
1707         mutex_unlock(&fs_info->chunk_mutex);
1708         if (ret) {
1709                 printk("btrfs: failed to read chunk tree on %s\n", sb->s_id);
1710                 goto fail_chunk_root;
1711         }
1712
1713         btrfs_close_extra_devices(fs_devices);
1714
1715         blocksize = btrfs_level_size(tree_root,
1716                                      btrfs_super_root_level(disk_super));
1717         generation = btrfs_super_generation(disk_super);
1718
1719         tree_root->node = read_tree_block(tree_root,
1720                                           btrfs_super_root(disk_super),
1721                                           blocksize, generation);
1722         if (!tree_root->node)
1723                 goto fail_chunk_root;
1724
1725
1726         ret = find_and_setup_root(tree_root, fs_info,
1727                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1728         if (ret)
1729                 goto fail_tree_root;
1730         extent_root->track_dirty = 1;
1731
1732         ret = find_and_setup_root(tree_root, fs_info,
1733                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1734         dev_root->track_dirty = 1;
1735
1736         if (ret)
1737                 goto fail_extent_root;
1738
1739         btrfs_read_block_groups(extent_root);
1740
1741         fs_info->generation = generation + 1;
1742         fs_info->last_trans_committed = generation;
1743         fs_info->data_alloc_profile = (u64)-1;
1744         fs_info->metadata_alloc_profile = (u64)-1;
1745         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1746         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1747                                                "btrfs-cleaner");
1748         if (!fs_info->cleaner_kthread)
1749                 goto fail_extent_root;
1750
1751         fs_info->transaction_kthread = kthread_run(transaction_kthread,
1752                                                    tree_root,
1753                                                    "btrfs-transaction");
1754         if (!fs_info->transaction_kthread)
1755                 goto fail_cleaner;
1756
1757         if (btrfs_super_log_root(disk_super) != 0) {
1758                 u64 bytenr = btrfs_super_log_root(disk_super);
1759
1760                 if (fs_devices->rw_devices == 0) {
1761                         printk("Btrfs log replay required on RO media\n");
1762                         err = -EIO;
1763                         goto fail_trans_kthread;
1764                 }
1765                 blocksize =
1766                      btrfs_level_size(tree_root,
1767                                       btrfs_super_log_root_level(disk_super));
1768
1769                 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1770                                                       GFP_NOFS);
1771
1772                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1773                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1774
1775                 log_tree_root->node = read_tree_block(tree_root, bytenr,
1776                                                       blocksize,
1777                                                       generation + 1);
1778                 ret = btrfs_recover_log_trees(log_tree_root);
1779                 BUG_ON(ret);
1780
1781                 if (sb->s_flags & MS_RDONLY) {
1782                         ret =  btrfs_commit_super(tree_root);
1783                         BUG_ON(ret);
1784                 }
1785         }
1786
1787         if (!(sb->s_flags & MS_RDONLY)) {
1788                 ret = btrfs_cleanup_reloc_trees(tree_root);
1789                 BUG_ON(ret);
1790         }
1791
1792         location.objectid = BTRFS_FS_TREE_OBJECTID;
1793         location.type = BTRFS_ROOT_ITEM_KEY;
1794         location.offset = (u64)-1;
1795
1796         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1797         if (!fs_info->fs_root)
1798                 goto fail_trans_kthread;
1799         return tree_root;
1800
1801 fail_trans_kthread:
1802         kthread_stop(fs_info->transaction_kthread);
1803 fail_cleaner:
1804         kthread_stop(fs_info->cleaner_kthread);
1805
1806         /*
1807          * make sure we're done with the btree inode before we stop our
1808          * kthreads
1809          */
1810         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1811         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1812
1813 fail_extent_root:
1814         free_extent_buffer(extent_root->node);
1815 fail_tree_root:
1816         free_extent_buffer(tree_root->node);
1817 fail_chunk_root:
1818         free_extent_buffer(chunk_root->node);
1819 fail_sys_array:
1820         free_extent_buffer(dev_root->node);
1821 fail_sb_buffer:
1822         btrfs_stop_workers(&fs_info->fixup_workers);
1823         btrfs_stop_workers(&fs_info->delalloc_workers);
1824         btrfs_stop_workers(&fs_info->workers);
1825         btrfs_stop_workers(&fs_info->endio_workers);
1826         btrfs_stop_workers(&fs_info->endio_write_workers);
1827         btrfs_stop_workers(&fs_info->submit_workers);
1828 fail_iput:
1829         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1830         iput(fs_info->btree_inode);
1831 fail:
1832         btrfs_close_devices(fs_info->fs_devices);
1833         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1834
1835         kfree(extent_root);
1836         kfree(tree_root);
1837         bdi_destroy(&fs_info->bdi);
1838         kfree(fs_info);
1839         kfree(chunk_root);
1840         kfree(dev_root);
1841         return ERR_PTR(err);
1842 }
1843
1844 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1845 {
1846         char b[BDEVNAME_SIZE];
1847
1848         if (uptodate) {
1849                 set_buffer_uptodate(bh);
1850         } else {
1851                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1852                         printk(KERN_WARNING "lost page write due to "
1853                                         "I/O error on %s\n",
1854                                        bdevname(bh->b_bdev, b));
1855                 }
1856                 /* note, we dont' set_buffer_write_io_error because we have
1857                  * our own ways of dealing with the IO errors
1858                  */
1859                 clear_buffer_uptodate(bh);
1860         }
1861         unlock_buffer(bh);
1862         put_bh(bh);
1863 }
1864
1865 static int write_all_supers(struct btrfs_root *root)
1866 {
1867         struct list_head *cur;
1868         struct list_head *head = &root->fs_info->fs_devices->devices;
1869         struct btrfs_device *dev;
1870         struct btrfs_super_block *sb;
1871         struct btrfs_dev_item *dev_item;
1872         struct buffer_head *bh;
1873         int ret;
1874         int do_barriers;
1875         int max_errors;
1876         int total_errors = 0;
1877         u32 crc;
1878         u64 flags;
1879
1880         max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1881         do_barriers = !btrfs_test_opt(root, NOBARRIER);
1882
1883         sb = &root->fs_info->super_for_commit;
1884         dev_item = &sb->dev_item;
1885         list_for_each(cur, head) {
1886                 dev = list_entry(cur, struct btrfs_device, dev_list);
1887                 if (!dev->bdev) {
1888                         total_errors++;
1889                         continue;
1890                 }
1891                 if (!dev->in_fs_metadata || !dev->writeable)
1892                         continue;
1893
1894                 btrfs_set_stack_device_generation(dev_item, 0);
1895                 btrfs_set_stack_device_type(dev_item, dev->type);
1896                 btrfs_set_stack_device_id(dev_item, dev->devid);
1897                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1898                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1899                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1900                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1901                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1902                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1903                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
1904                 flags = btrfs_super_flags(sb);
1905                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1906
1907
1908                 crc = ~(u32)0;
1909                 crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
1910                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1911                 btrfs_csum_final(crc, sb->csum);
1912
1913                 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
1914                               BTRFS_SUPER_INFO_SIZE);
1915
1916                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
1917                 dev->pending_io = bh;
1918
1919                 get_bh(bh);
1920                 set_buffer_uptodate(bh);
1921                 lock_buffer(bh);
1922                 bh->b_end_io = btrfs_end_buffer_write_sync;
1923
1924                 if (do_barriers && dev->barriers) {
1925                         ret = submit_bh(WRITE_BARRIER, bh);
1926                         if (ret == -EOPNOTSUPP) {
1927                                 printk("btrfs: disabling barriers on dev %s\n",
1928                                        dev->name);
1929                                 set_buffer_uptodate(bh);
1930                                 dev->barriers = 0;
1931                                 get_bh(bh);
1932                                 lock_buffer(bh);
1933                                 ret = submit_bh(WRITE, bh);
1934                         }
1935                 } else {
1936                         ret = submit_bh(WRITE, bh);
1937                 }
1938                 if (ret)
1939                         total_errors++;
1940         }
1941         if (total_errors > max_errors) {
1942                 printk("btrfs: %d errors while writing supers\n", total_errors);
1943                 BUG();
1944         }
1945         total_errors = 0;
1946
1947         list_for_each(cur, head) {
1948                 dev = list_entry(cur, struct btrfs_device, dev_list);
1949                 if (!dev->bdev)
1950                         continue;
1951                 if (!dev->in_fs_metadata || !dev->writeable)
1952                         continue;
1953
1954                 BUG_ON(!dev->pending_io);
1955                 bh = dev->pending_io;
1956                 wait_on_buffer(bh);
1957                 if (!buffer_uptodate(dev->pending_io)) {
1958                         if (do_barriers && dev->barriers) {
1959                                 printk("btrfs: disabling barriers on dev %s\n",
1960                                        dev->name);
1961                                 set_buffer_uptodate(bh);
1962                                 get_bh(bh);
1963                                 lock_buffer(bh);
1964                                 dev->barriers = 0;
1965                                 ret = submit_bh(WRITE, bh);
1966                                 BUG_ON(ret);
1967                                 wait_on_buffer(bh);
1968                                 if (!buffer_uptodate(bh))
1969                                         total_errors++;
1970                         } else {
1971                                 total_errors++;
1972                         }
1973
1974                 }
1975                 dev->pending_io = NULL;
1976                 brelse(bh);
1977         }
1978         if (total_errors > max_errors) {
1979                 printk("btrfs: %d errors while writing supers\n", total_errors);
1980                 BUG();
1981         }
1982         return 0;
1983 }
1984
1985 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1986                       *root)
1987 {
1988         int ret;
1989
1990         ret = write_all_supers(root);
1991         return ret;
1992 }
1993
1994 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1995 {
1996         radix_tree_delete(&fs_info->fs_roots_radix,
1997                           (unsigned long)root->root_key.objectid);
1998         if (root->anon_super.s_dev) {
1999                 down_write(&root->anon_super.s_umount);
2000                 kill_anon_super(&root->anon_super);
2001         }
2002 #if 0
2003         if (root->in_sysfs)
2004                 btrfs_sysfs_del_root(root);
2005 #endif
2006         if (root->node)
2007                 free_extent_buffer(root->node);
2008         if (root->commit_root)
2009                 free_extent_buffer(root->commit_root);
2010         if (root->name)
2011                 kfree(root->name);
2012         kfree(root);
2013         return 0;
2014 }
2015
2016 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2017 {
2018         int ret;
2019         struct btrfs_root *gang[8];
2020         int i;
2021
2022         while(1) {
2023                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2024                                              (void **)gang, 0,
2025                                              ARRAY_SIZE(gang));
2026                 if (!ret)
2027                         break;
2028                 for (i = 0; i < ret; i++)
2029                         btrfs_free_fs_root(fs_info, gang[i]);
2030         }
2031         return 0;
2032 }
2033
2034 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2035 {
2036         u64 root_objectid = 0;
2037         struct btrfs_root *gang[8];
2038         int i;
2039         int ret;
2040
2041         while (1) {
2042                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2043                                              (void **)gang, root_objectid,
2044                                              ARRAY_SIZE(gang));
2045                 if (!ret)
2046                         break;
2047                 for (i = 0; i < ret; i++) {
2048                         root_objectid = gang[i]->root_key.objectid;
2049                         ret = btrfs_find_dead_roots(fs_info->tree_root,
2050                                                     root_objectid, gang[i]);
2051                         BUG_ON(ret);
2052                         btrfs_orphan_cleanup(gang[i]);
2053                 }
2054                 root_objectid++;
2055         }
2056         return 0;
2057 }
2058
2059 int btrfs_commit_super(struct btrfs_root *root)
2060 {
2061         struct btrfs_trans_handle *trans;
2062         int ret;
2063
2064         mutex_lock(&root->fs_info->cleaner_mutex);
2065         btrfs_clean_old_snapshots(root);
2066         mutex_unlock(&root->fs_info->cleaner_mutex);
2067         trans = btrfs_start_transaction(root, 1);
2068         ret = btrfs_commit_transaction(trans, root);
2069         BUG_ON(ret);
2070         /* run commit again to drop the original snapshot */
2071         trans = btrfs_start_transaction(root, 1);
2072         btrfs_commit_transaction(trans, root);
2073         ret = btrfs_write_and_wait_transaction(NULL, root);
2074         BUG_ON(ret);
2075
2076         ret = write_ctree_super(NULL, root);
2077         return ret;
2078 }
2079
2080 int close_ctree(struct btrfs_root *root)
2081 {
2082         struct btrfs_fs_info *fs_info = root->fs_info;
2083         int ret;
2084
2085         fs_info->closing = 1;
2086         smp_mb();
2087
2088         kthread_stop(root->fs_info->transaction_kthread);
2089         kthread_stop(root->fs_info->cleaner_kthread);
2090
2091         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2092                 ret =  btrfs_commit_super(root);
2093                 if (ret) {
2094                         printk("btrfs: commit super returns %d\n", ret);
2095                 }
2096         }
2097
2098         if (fs_info->delalloc_bytes) {
2099                 printk("btrfs: at unmount delalloc count %Lu\n",
2100                        fs_info->delalloc_bytes);
2101         }
2102         if (fs_info->total_ref_cache_size) {
2103                 printk("btrfs: at umount reference cache size %Lu\n",
2104                         fs_info->total_ref_cache_size);
2105         }
2106
2107         if (fs_info->extent_root->node)
2108                 free_extent_buffer(fs_info->extent_root->node);
2109
2110         if (fs_info->tree_root->node)
2111                 free_extent_buffer(fs_info->tree_root->node);
2112
2113         if (root->fs_info->chunk_root->node);
2114                 free_extent_buffer(root->fs_info->chunk_root->node);
2115
2116         if (root->fs_info->dev_root->node);
2117                 free_extent_buffer(root->fs_info->dev_root->node);
2118
2119         btrfs_free_block_groups(root->fs_info);
2120
2121         del_fs_roots(fs_info);
2122
2123         iput(fs_info->btree_inode);
2124
2125         btrfs_stop_workers(&fs_info->fixup_workers);
2126         btrfs_stop_workers(&fs_info->delalloc_workers);
2127         btrfs_stop_workers(&fs_info->workers);
2128         btrfs_stop_workers(&fs_info->endio_workers);
2129         btrfs_stop_workers(&fs_info->endio_write_workers);
2130         btrfs_stop_workers(&fs_info->submit_workers);
2131
2132 #if 0
2133         while(!list_empty(&fs_info->hashers)) {
2134                 struct btrfs_hasher *hasher;
2135                 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
2136                                     hashers);
2137                 list_del(&hasher->hashers);
2138                 crypto_free_hash(&fs_info->hash_tfm);
2139                 kfree(hasher);
2140         }
2141 #endif
2142         btrfs_close_devices(fs_info->fs_devices);
2143         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2144
2145         bdi_destroy(&fs_info->bdi);
2146
2147         kfree(fs_info->extent_root);
2148         kfree(fs_info->tree_root);
2149         kfree(fs_info->chunk_root);
2150         kfree(fs_info->dev_root);
2151         return 0;
2152 }
2153
2154 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2155 {
2156         int ret;
2157         struct inode *btree_inode = buf->first_page->mapping->host;
2158
2159         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2160         if (!ret)
2161                 return ret;
2162
2163         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2164                                     parent_transid);
2165         return !ret;
2166 }
2167
2168 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2169 {
2170         struct inode *btree_inode = buf->first_page->mapping->host;
2171         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2172                                           buf);
2173 }
2174
2175 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2176 {
2177         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2178         u64 transid = btrfs_header_generation(buf);
2179         struct inode *btree_inode = root->fs_info->btree_inode;
2180
2181         WARN_ON(!btrfs_tree_locked(buf));
2182         if (transid != root->fs_info->generation) {
2183                 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
2184                         (unsigned long long)buf->start,
2185                         transid, root->fs_info->generation);
2186                 WARN_ON(1);
2187         }
2188         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
2189 }
2190
2191 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2192 {
2193         /*
2194          * looks as though older kernels can get into trouble with
2195          * this code, they end up stuck in balance_dirty_pages forever
2196          */
2197         struct extent_io_tree *tree;
2198         u64 num_dirty;
2199         u64 start = 0;
2200         unsigned long thresh = 32 * 1024 * 1024;
2201         tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
2202
2203         if (current_is_pdflush() || current->flags & PF_MEMALLOC)
2204                 return;
2205
2206         num_dirty = count_range_bits(tree, &start, (u64)-1,
2207                                      thresh, EXTENT_DIRTY);
2208         if (num_dirty > thresh) {
2209                 balance_dirty_pages_ratelimited_nr(
2210                                    root->fs_info->btree_inode->i_mapping, 1);
2211         }
2212         return;
2213 }
2214
2215 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2216 {
2217         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2218         int ret;
2219         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2220         if (ret == 0) {
2221                 buf->flags |= EXTENT_UPTODATE;
2222         }
2223         return ret;
2224 }
2225
2226 int btree_lock_page_hook(struct page *page)
2227 {
2228         struct inode *inode = page->mapping->host;
2229         struct btrfs_root *root = BTRFS_I(inode)->root;
2230         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2231         struct extent_buffer *eb;
2232         unsigned long len;
2233         u64 bytenr = page_offset(page);
2234
2235         if (page->private == EXTENT_PAGE_PRIVATE)
2236                 goto out;
2237
2238         len = page->private >> 2;
2239         eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2240         if (!eb)
2241                 goto out;
2242
2243         btrfs_tree_lock(eb);
2244         spin_lock(&root->fs_info->hash_lock);
2245         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2246         spin_unlock(&root->fs_info->hash_lock);
2247         btrfs_tree_unlock(eb);
2248         free_extent_buffer(eb);
2249 out:
2250         lock_page(page);
2251         return 0;
2252 }
2253
2254 static struct extent_io_ops btree_extent_io_ops = {
2255         .write_cache_pages_lock_hook = btree_lock_page_hook,
2256         .readpage_end_io_hook = btree_readpage_end_io_hook,
2257         .submit_bio_hook = btree_submit_bio_hook,
2258         /* note we're sharing with inode.c for the merge bio hook */
2259         .merge_bio_hook = btrfs_merge_bio_hook,
2260 };