Btrfs: Add mount -o degraded to allow mounts to continue with missing devices
[safe/jmp/linux-2.6] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h> // for block_sync_page
26 #include <linux/workqueue.h>
27 #include "crc32c.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "transaction.h"
31 #include "btrfs_inode.h"
32 #include "volumes.h"
33 #include "print-tree.h"
34
35 #if 0
36 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
37 {
38         if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
39                 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
40                        (unsigned long long)extent_buffer_blocknr(buf),
41                        (unsigned long long)btrfs_header_blocknr(buf));
42                 return 1;
43         }
44         return 0;
45 }
46 #endif
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static struct workqueue_struct *end_io_workqueue;
50 static struct workqueue_struct *async_submit_workqueue;
51
52 struct end_io_wq {
53         struct bio *bio;
54         bio_end_io_t *end_io;
55         void *private;
56         struct btrfs_fs_info *info;
57         int error;
58         int metadata;
59         struct list_head list;
60 };
61
62 struct async_submit_bio {
63         struct inode *inode;
64         struct bio *bio;
65         struct list_head list;
66         extent_submit_bio_hook_t *submit_bio_hook;
67         int rw;
68         int mirror_num;
69 };
70
71 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
72                                     size_t page_offset, u64 start, u64 len,
73                                     int create)
74 {
75         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
76         struct extent_map *em;
77         int ret;
78
79         spin_lock(&em_tree->lock);
80         em = lookup_extent_mapping(em_tree, start, len);
81         if (em) {
82                 em->bdev =
83                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
84                 spin_unlock(&em_tree->lock);
85                 goto out;
86         }
87         spin_unlock(&em_tree->lock);
88
89         em = alloc_extent_map(GFP_NOFS);
90         if (!em) {
91                 em = ERR_PTR(-ENOMEM);
92                 goto out;
93         }
94         em->start = 0;
95         em->len = (u64)-1;
96         em->block_start = 0;
97         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
98
99         spin_lock(&em_tree->lock);
100         ret = add_extent_mapping(em_tree, em);
101         if (ret == -EEXIST) {
102                 u64 failed_start = em->start;
103                 u64 failed_len = em->len;
104
105                 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
106                        em->start, em->len, em->block_start);
107                 free_extent_map(em);
108                 em = lookup_extent_mapping(em_tree, start, len);
109                 if (em) {
110                         printk("after failing, found %Lu %Lu %Lu\n",
111                                em->start, em->len, em->block_start);
112                         ret = 0;
113                 } else {
114                         em = lookup_extent_mapping(em_tree, failed_start,
115                                                    failed_len);
116                         if (em) {
117                                 printk("double failure lookup gives us "
118                                        "%Lu %Lu -> %Lu\n", em->start,
119                                        em->len, em->block_start);
120                                 free_extent_map(em);
121                         }
122                         ret = -EIO;
123                 }
124         } else if (ret) {
125                 free_extent_map(em);
126                 em = NULL;
127         }
128         spin_unlock(&em_tree->lock);
129
130         if (ret)
131                 em = ERR_PTR(ret);
132 out:
133         return em;
134 }
135
136 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
137 {
138         return btrfs_crc32c(seed, data, len);
139 }
140
141 void btrfs_csum_final(u32 crc, char *result)
142 {
143         *(__le32 *)result = ~cpu_to_le32(crc);
144 }
145
146 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
147                            int verify)
148 {
149         char result[BTRFS_CRC32_SIZE];
150         unsigned long len;
151         unsigned long cur_len;
152         unsigned long offset = BTRFS_CSUM_SIZE;
153         char *map_token = NULL;
154         char *kaddr;
155         unsigned long map_start;
156         unsigned long map_len;
157         int err;
158         u32 crc = ~(u32)0;
159
160         len = buf->len - offset;
161         while(len > 0) {
162                 err = map_private_extent_buffer(buf, offset, 32,
163                                         &map_token, &kaddr,
164                                         &map_start, &map_len, KM_USER0);
165                 if (err) {
166                         printk("failed to map extent buffer! %lu\n",
167                                offset);
168                         return 1;
169                 }
170                 cur_len = min(len, map_len - (offset - map_start));
171                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
172                                       crc, cur_len);
173                 len -= cur_len;
174                 offset += cur_len;
175                 unmap_extent_buffer(buf, map_token, KM_USER0);
176         }
177         btrfs_csum_final(crc, result);
178
179         if (verify) {
180                 int from_this_trans = 0;
181
182                 if (root->fs_info->running_transaction &&
183                     btrfs_header_generation(buf) ==
184                     root->fs_info->running_transaction->transid)
185                         from_this_trans = 1;
186
187                 /* FIXME, this is not good */
188                 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
189                         u32 val;
190                         u32 found = 0;
191                         memcpy(&found, result, BTRFS_CRC32_SIZE);
192
193                         read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
194                         printk("btrfs: %s checksum verify failed on %llu "
195                                "wanted %X found %X from_this_trans %d "
196                                "level %d\n",
197                                root->fs_info->sb->s_id,
198                                buf->start, val, found, from_this_trans,
199                                btrfs_header_level(buf));
200                         return 1;
201                 }
202         } else {
203                 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
204         }
205         return 0;
206 }
207
208 static int verify_parent_transid(struct extent_io_tree *io_tree,
209                                  struct extent_buffer *eb, u64 parent_transid)
210 {
211         int ret;
212
213         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
214                 return 0;
215
216         lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
217         if (extent_buffer_uptodate(io_tree, eb) &&
218             btrfs_header_generation(eb) == parent_transid) {
219                 ret = 0;
220                 goto out;
221         }
222         printk("parent transid verify failed on %llu wanted %llu found %llu\n",
223                (unsigned long long)eb->start,
224                (unsigned long long)parent_transid,
225                (unsigned long long)btrfs_header_generation(eb));
226         ret = 1;
227 out:
228         clear_extent_buffer_uptodate(io_tree, eb);
229         unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
230                       GFP_NOFS);
231         return ret;
232
233 }
234
235 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
236                                           struct extent_buffer *eb,
237                                           u64 start, u64 parent_transid)
238 {
239         struct extent_io_tree *io_tree;
240         int ret;
241         int num_copies = 0;
242         int mirror_num = 0;
243
244         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
245         while (1) {
246                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
247                                                btree_get_extent, mirror_num);
248                 if (!ret &&
249                     !verify_parent_transid(io_tree, eb, parent_transid))
250                         return ret;
251
252                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
253                                               eb->start, eb->len);
254                 if (num_copies == 1)
255                         return ret;
256
257                 mirror_num++;
258                 if (mirror_num > num_copies)
259                         return ret;
260         }
261         return -EIO;
262 }
263
264 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
265 {
266         struct extent_io_tree *tree;
267         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
268         u64 found_start;
269         int found_level;
270         unsigned long len;
271         struct extent_buffer *eb;
272         int ret;
273
274         tree = &BTRFS_I(page->mapping->host)->io_tree;
275
276         if (page->private == EXTENT_PAGE_PRIVATE)
277                 goto out;
278         if (!page->private)
279                 goto out;
280         len = page->private >> 2;
281         if (len == 0) {
282                 WARN_ON(1);
283         }
284         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
285         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
286                                              btrfs_header_generation(eb));
287         BUG_ON(ret);
288         btrfs_clear_buffer_defrag(eb);
289         found_start = btrfs_header_bytenr(eb);
290         if (found_start != start) {
291                 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
292                        start, found_start, len);
293                 WARN_ON(1);
294                 goto err;
295         }
296         if (eb->first_page != page) {
297                 printk("bad first page %lu %lu\n", eb->first_page->index,
298                        page->index);
299                 WARN_ON(1);
300                 goto err;
301         }
302         if (!PageUptodate(page)) {
303                 printk("csum not up to date page %lu\n", page->index);
304                 WARN_ON(1);
305                 goto err;
306         }
307         found_level = btrfs_header_level(eb);
308         spin_lock(&root->fs_info->hash_lock);
309         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
310         spin_unlock(&root->fs_info->hash_lock);
311         csum_tree_block(root, eb, 0);
312 err:
313         free_extent_buffer(eb);
314 out:
315         return 0;
316 }
317
318 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
319 {
320         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
321
322         csum_dirty_buffer(root, page);
323         return 0;
324 }
325
326 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
327                                struct extent_state *state)
328 {
329         struct extent_io_tree *tree;
330         u64 found_start;
331         int found_level;
332         unsigned long len;
333         struct extent_buffer *eb;
334         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
335         int ret = 0;
336
337         tree = &BTRFS_I(page->mapping->host)->io_tree;
338         if (page->private == EXTENT_PAGE_PRIVATE)
339                 goto out;
340         if (!page->private)
341                 goto out;
342         len = page->private >> 2;
343         if (len == 0) {
344                 WARN_ON(1);
345         }
346         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
347
348         btrfs_clear_buffer_defrag(eb);
349         found_start = btrfs_header_bytenr(eb);
350         if (found_start != start) {
351                 ret = -EIO;
352                 goto err;
353         }
354         if (eb->first_page != page) {
355                 printk("bad first page %lu %lu\n", eb->first_page->index,
356                        page->index);
357                 WARN_ON(1);
358                 ret = -EIO;
359                 goto err;
360         }
361         if (memcmp_extent_buffer(eb, root->fs_info->fsid,
362                                  (unsigned long)btrfs_header_fsid(eb),
363                                  BTRFS_FSID_SIZE)) {
364                 printk("bad fsid on block %Lu\n", eb->start);
365                 ret = -EIO;
366                 goto err;
367         }
368         found_level = btrfs_header_level(eb);
369
370         ret = csum_tree_block(root, eb, 1);
371         if (ret)
372                 ret = -EIO;
373
374         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
375         end = eb->start + end - 1;
376         release_extent_buffer_tail_pages(eb);
377 err:
378         free_extent_buffer(eb);
379 out:
380         return ret;
381 }
382
383 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
384 static void end_workqueue_bio(struct bio *bio, int err)
385 #else
386 static int end_workqueue_bio(struct bio *bio,
387                                    unsigned int bytes_done, int err)
388 #endif
389 {
390         struct end_io_wq *end_io_wq = bio->bi_private;
391         struct btrfs_fs_info *fs_info;
392         unsigned long flags;
393
394 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
395         if (bio->bi_size)
396                 return 1;
397 #endif
398
399         fs_info = end_io_wq->info;
400         spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
401         end_io_wq->error = err;
402         list_add_tail(&end_io_wq->list, &fs_info->end_io_work_list);
403         spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
404         queue_work(end_io_workqueue, &fs_info->end_io_work);
405
406 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
407         return 0;
408 #endif
409 }
410
411 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
412                         int metadata)
413 {
414         struct end_io_wq *end_io_wq;
415         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
416         if (!end_io_wq)
417                 return -ENOMEM;
418
419         end_io_wq->private = bio->bi_private;
420         end_io_wq->end_io = bio->bi_end_io;
421         end_io_wq->info = info;
422         end_io_wq->error = 0;
423         end_io_wq->bio = bio;
424         end_io_wq->metadata = metadata;
425
426         bio->bi_private = end_io_wq;
427         bio->bi_end_io = end_workqueue_bio;
428         return 0;
429 }
430
431 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
432                         int rw, struct bio *bio, int mirror_num,
433                         extent_submit_bio_hook_t *submit_bio_hook)
434 {
435         struct async_submit_bio *async;
436
437         /*
438          * inline writerback should stay inline, only hop to the async
439          * queue if we're pdflush
440          */
441         if (!current_is_pdflush())
442                 return submit_bio_hook(inode, rw, bio, mirror_num);
443
444         async = kmalloc(sizeof(*async), GFP_NOFS);
445         if (!async)
446                 return -ENOMEM;
447
448         async->inode = inode;
449         async->rw = rw;
450         async->bio = bio;
451         async->mirror_num = mirror_num;
452         async->submit_bio_hook = submit_bio_hook;
453
454         spin_lock(&fs_info->async_submit_work_lock);
455         list_add_tail(&async->list, &fs_info->async_submit_work_list);
456         spin_unlock(&fs_info->async_submit_work_lock);
457
458         queue_work(async_submit_workqueue, &fs_info->async_submit_work);
459         return 0;
460 }
461
462 static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
463                                  int mirror_num)
464 {
465         struct btrfs_root *root = BTRFS_I(inode)->root;
466         u64 offset;
467         int ret;
468
469         offset = bio->bi_sector << 9;
470
471         if (rw & (1 << BIO_RW)) {
472                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
473         }
474
475         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
476         BUG_ON(ret);
477
478         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
479 }
480
481 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
482                                  int mirror_num)
483 {
484         if (!(rw & (1 << BIO_RW))) {
485                 return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
486         }
487         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
488                                    inode, rw, bio, mirror_num,
489                                    __btree_submit_bio_hook);
490 }
491
492 static int btree_writepage(struct page *page, struct writeback_control *wbc)
493 {
494         struct extent_io_tree *tree;
495         tree = &BTRFS_I(page->mapping->host)->io_tree;
496         return extent_write_full_page(tree, page, btree_get_extent, wbc);
497 }
498
499 static int btree_writepages(struct address_space *mapping,
500                             struct writeback_control *wbc)
501 {
502         struct extent_io_tree *tree;
503         tree = &BTRFS_I(mapping->host)->io_tree;
504         if (wbc->sync_mode == WB_SYNC_NONE) {
505                 u64 num_dirty;
506                 u64 start = 0;
507                 unsigned long thresh = 96 * 1024 * 1024;
508
509                 if (wbc->for_kupdate)
510                         return 0;
511
512                 if (current_is_pdflush()) {
513                         thresh = 96 * 1024 * 1024;
514                 } else {
515                         thresh = 8 * 1024 * 1024;
516                 }
517                 num_dirty = count_range_bits(tree, &start, (u64)-1,
518                                              thresh, EXTENT_DIRTY);
519                 if (num_dirty < thresh) {
520                         return 0;
521                 }
522         }
523         return extent_writepages(tree, mapping, btree_get_extent, wbc);
524 }
525
526 int btree_readpage(struct file *file, struct page *page)
527 {
528         struct extent_io_tree *tree;
529         tree = &BTRFS_I(page->mapping->host)->io_tree;
530         return extent_read_full_page(tree, page, btree_get_extent);
531 }
532
533 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
534 {
535         struct extent_io_tree *tree;
536         struct extent_map_tree *map;
537         int ret;
538
539         if (page_count(page) > 3) {
540                 /* once for page->private, once for the caller, once
541                  * once for the page cache
542                  */
543                 return 0;
544         }
545         tree = &BTRFS_I(page->mapping->host)->io_tree;
546         map = &BTRFS_I(page->mapping->host)->extent_tree;
547         ret = try_release_extent_state(map, tree, page, gfp_flags);
548         if (ret == 1) {
549                 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
550                 ClearPagePrivate(page);
551                 set_page_private(page, 0);
552                 page_cache_release(page);
553         }
554         return ret;
555 }
556
557 static void btree_invalidatepage(struct page *page, unsigned long offset)
558 {
559         struct extent_io_tree *tree;
560         tree = &BTRFS_I(page->mapping->host)->io_tree;
561         extent_invalidatepage(tree, page, offset);
562         btree_releasepage(page, GFP_NOFS);
563         if (PagePrivate(page)) {
564                 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
565                 ClearPagePrivate(page);
566                 set_page_private(page, 0);
567                 page_cache_release(page);
568         }
569 }
570
571 #if 0
572 static int btree_writepage(struct page *page, struct writeback_control *wbc)
573 {
574         struct buffer_head *bh;
575         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
576         struct buffer_head *head;
577         if (!page_has_buffers(page)) {
578                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
579                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
580         }
581         head = page_buffers(page);
582         bh = head;
583         do {
584                 if (buffer_dirty(bh))
585                         csum_tree_block(root, bh, 0);
586                 bh = bh->b_this_page;
587         } while (bh != head);
588         return block_write_full_page(page, btree_get_block, wbc);
589 }
590 #endif
591
592 static struct address_space_operations btree_aops = {
593         .readpage       = btree_readpage,
594         .writepage      = btree_writepage,
595         .writepages     = btree_writepages,
596         .releasepage    = btree_releasepage,
597         .invalidatepage = btree_invalidatepage,
598         .sync_page      = block_sync_page,
599 };
600
601 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
602                          u64 parent_transid)
603 {
604         struct extent_buffer *buf = NULL;
605         struct inode *btree_inode = root->fs_info->btree_inode;
606         int ret = 0;
607
608         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
609         if (!buf)
610                 return 0;
611         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
612                                  buf, 0, 0, btree_get_extent, 0);
613         free_extent_buffer(buf);
614         return ret;
615 }
616
617 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
618                                             u64 bytenr, u32 blocksize)
619 {
620         struct inode *btree_inode = root->fs_info->btree_inode;
621         struct extent_buffer *eb;
622         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
623                                 bytenr, blocksize, GFP_NOFS);
624         return eb;
625 }
626
627 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
628                                                  u64 bytenr, u32 blocksize)
629 {
630         struct inode *btree_inode = root->fs_info->btree_inode;
631         struct extent_buffer *eb;
632
633         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
634                                  bytenr, blocksize, NULL, GFP_NOFS);
635         return eb;
636 }
637
638
639 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
640                                       u32 blocksize, u64 parent_transid)
641 {
642         struct extent_buffer *buf = NULL;
643         struct inode *btree_inode = root->fs_info->btree_inode;
644         struct extent_io_tree *io_tree;
645         int ret;
646
647         io_tree = &BTRFS_I(btree_inode)->io_tree;
648
649         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
650         if (!buf)
651                 return NULL;
652
653         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
654
655         if (ret == 0) {
656                 buf->flags |= EXTENT_UPTODATE;
657         }
658         return buf;
659
660 }
661
662 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
663                      struct extent_buffer *buf)
664 {
665         struct inode *btree_inode = root->fs_info->btree_inode;
666         if (btrfs_header_generation(buf) ==
667             root->fs_info->running_transaction->transid)
668                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
669                                           buf);
670         return 0;
671 }
672
673 int wait_on_tree_block_writeback(struct btrfs_root *root,
674                                  struct extent_buffer *buf)
675 {
676         struct inode *btree_inode = root->fs_info->btree_inode;
677         wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
678                                         buf);
679         return 0;
680 }
681
682 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
683                         u32 stripesize, struct btrfs_root *root,
684                         struct btrfs_fs_info *fs_info,
685                         u64 objectid)
686 {
687         root->node = NULL;
688         root->inode = NULL;
689         root->commit_root = NULL;
690         root->sectorsize = sectorsize;
691         root->nodesize = nodesize;
692         root->leafsize = leafsize;
693         root->stripesize = stripesize;
694         root->ref_cows = 0;
695         root->track_dirty = 0;
696
697         root->fs_info = fs_info;
698         root->objectid = objectid;
699         root->last_trans = 0;
700         root->highest_inode = 0;
701         root->last_inode_alloc = 0;
702         root->name = NULL;
703         root->in_sysfs = 0;
704
705         INIT_LIST_HEAD(&root->dirty_list);
706         memset(&root->root_key, 0, sizeof(root->root_key));
707         memset(&root->root_item, 0, sizeof(root->root_item));
708         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
709         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
710         init_completion(&root->kobj_unregister);
711         root->defrag_running = 0;
712         root->defrag_level = 0;
713         root->root_key.objectid = objectid;
714         return 0;
715 }
716
717 static int find_and_setup_root(struct btrfs_root *tree_root,
718                                struct btrfs_fs_info *fs_info,
719                                u64 objectid,
720                                struct btrfs_root *root)
721 {
722         int ret;
723         u32 blocksize;
724
725         __setup_root(tree_root->nodesize, tree_root->leafsize,
726                      tree_root->sectorsize, tree_root->stripesize,
727                      root, fs_info, objectid);
728         ret = btrfs_find_last_root(tree_root, objectid,
729                                    &root->root_item, &root->root_key);
730         BUG_ON(ret);
731
732         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
733         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
734                                      blocksize, 0);
735         BUG_ON(!root->node);
736         return 0;
737 }
738
739 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
740                                                struct btrfs_key *location)
741 {
742         struct btrfs_root *root;
743         struct btrfs_root *tree_root = fs_info->tree_root;
744         struct btrfs_path *path;
745         struct extent_buffer *l;
746         u64 highest_inode;
747         u32 blocksize;
748         int ret = 0;
749
750         root = kzalloc(sizeof(*root), GFP_NOFS);
751         if (!root)
752                 return ERR_PTR(-ENOMEM);
753         if (location->offset == (u64)-1) {
754                 ret = find_and_setup_root(tree_root, fs_info,
755                                           location->objectid, root);
756                 if (ret) {
757                         kfree(root);
758                         return ERR_PTR(ret);
759                 }
760                 goto insert;
761         }
762
763         __setup_root(tree_root->nodesize, tree_root->leafsize,
764                      tree_root->sectorsize, tree_root->stripesize,
765                      root, fs_info, location->objectid);
766
767         path = btrfs_alloc_path();
768         BUG_ON(!path);
769         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
770         if (ret != 0) {
771                 if (ret > 0)
772                         ret = -ENOENT;
773                 goto out;
774         }
775         l = path->nodes[0];
776         read_extent_buffer(l, &root->root_item,
777                btrfs_item_ptr_offset(l, path->slots[0]),
778                sizeof(root->root_item));
779         memcpy(&root->root_key, location, sizeof(*location));
780         ret = 0;
781 out:
782         btrfs_release_path(root, path);
783         btrfs_free_path(path);
784         if (ret) {
785                 kfree(root);
786                 return ERR_PTR(ret);
787         }
788         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
789         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
790                                      blocksize, 0);
791         BUG_ON(!root->node);
792 insert:
793         root->ref_cows = 1;
794         ret = btrfs_find_highest_inode(root, &highest_inode);
795         if (ret == 0) {
796                 root->highest_inode = highest_inode;
797                 root->last_inode_alloc = highest_inode;
798         }
799         return root;
800 }
801
802 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
803                                         u64 root_objectid)
804 {
805         struct btrfs_root *root;
806
807         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
808                 return fs_info->tree_root;
809         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
810                 return fs_info->extent_root;
811
812         root = radix_tree_lookup(&fs_info->fs_roots_radix,
813                                  (unsigned long)root_objectid);
814         return root;
815 }
816
817 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
818                                               struct btrfs_key *location)
819 {
820         struct btrfs_root *root;
821         int ret;
822
823         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
824                 return fs_info->tree_root;
825         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
826                 return fs_info->extent_root;
827         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
828                 return fs_info->chunk_root;
829         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
830                 return fs_info->dev_root;
831
832         root = radix_tree_lookup(&fs_info->fs_roots_radix,
833                                  (unsigned long)location->objectid);
834         if (root)
835                 return root;
836
837         root = btrfs_read_fs_root_no_radix(fs_info, location);
838         if (IS_ERR(root))
839                 return root;
840         ret = radix_tree_insert(&fs_info->fs_roots_radix,
841                                 (unsigned long)root->root_key.objectid,
842                                 root);
843         if (ret) {
844                 free_extent_buffer(root->node);
845                 kfree(root);
846                 return ERR_PTR(ret);
847         }
848         ret = btrfs_find_dead_roots(fs_info->tree_root,
849                                     root->root_key.objectid, root);
850         BUG_ON(ret);
851
852         return root;
853 }
854
855 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
856                                       struct btrfs_key *location,
857                                       const char *name, int namelen)
858 {
859         struct btrfs_root *root;
860         int ret;
861
862         root = btrfs_read_fs_root_no_name(fs_info, location);
863         if (!root)
864                 return NULL;
865
866         if (root->in_sysfs)
867                 return root;
868
869         ret = btrfs_set_root_name(root, name, namelen);
870         if (ret) {
871                 free_extent_buffer(root->node);
872                 kfree(root);
873                 return ERR_PTR(ret);
874         }
875
876         ret = btrfs_sysfs_add_root(root);
877         if (ret) {
878                 free_extent_buffer(root->node);
879                 kfree(root->name);
880                 kfree(root);
881                 return ERR_PTR(ret);
882         }
883         root->in_sysfs = 1;
884         return root;
885 }
886 #if 0
887 static int add_hasher(struct btrfs_fs_info *info, char *type) {
888         struct btrfs_hasher *hasher;
889
890         hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
891         if (!hasher)
892                 return -ENOMEM;
893         hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
894         if (!hasher->hash_tfm) {
895                 kfree(hasher);
896                 return -EINVAL;
897         }
898         spin_lock(&info->hash_lock);
899         list_add(&hasher->list, &info->hashers);
900         spin_unlock(&info->hash_lock);
901         return 0;
902 }
903 #endif
904
905 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
906 {
907         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
908         int ret = 0;
909         struct list_head *cur;
910         struct btrfs_device *device;
911         struct backing_dev_info *bdi;
912
913         list_for_each(cur, &info->fs_devices->devices) {
914                 device = list_entry(cur, struct btrfs_device, dev_list);
915                 if (!device->bdev)
916                         continue;
917                 bdi = blk_get_backing_dev_info(device->bdev);
918                 if (bdi && bdi_congested(bdi, bdi_bits)) {
919                         ret = 1;
920                         break;
921                 }
922         }
923         return ret;
924 }
925
926 /*
927  * this unplugs every device on the box, and it is only used when page
928  * is null
929  */
930 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
931 {
932         struct list_head *cur;
933         struct btrfs_device *device;
934         struct btrfs_fs_info *info;
935
936         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
937         list_for_each(cur, &info->fs_devices->devices) {
938                 device = list_entry(cur, struct btrfs_device, dev_list);
939                 bdi = blk_get_backing_dev_info(device->bdev);
940                 if (bdi->unplug_io_fn) {
941                         bdi->unplug_io_fn(bdi, page);
942                 }
943         }
944 }
945
946 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
947 {
948         struct inode *inode;
949         struct extent_map_tree *em_tree;
950         struct extent_map *em;
951         struct address_space *mapping;
952         u64 offset;
953
954         /* the generic O_DIRECT read code does this */
955         if (!page) {
956                 __unplug_io_fn(bdi, page);
957                 return;
958         }
959
960         /*
961          * page->mapping may change at any time.  Get a consistent copy
962          * and use that for everything below
963          */
964         smp_mb();
965         mapping = page->mapping;
966         if (!mapping)
967                 return;
968
969         inode = mapping->host;
970         offset = page_offset(page);
971
972         em_tree = &BTRFS_I(inode)->extent_tree;
973         spin_lock(&em_tree->lock);
974         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
975         spin_unlock(&em_tree->lock);
976         if (!em)
977                 return;
978
979         offset = offset - em->start;
980         btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
981                           em->block_start + offset, page);
982         free_extent_map(em);
983 }
984
985 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
986 {
987 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
988         bdi_init(bdi);
989 #endif
990         bdi->ra_pages   = default_backing_dev_info.ra_pages;
991         bdi->state              = 0;
992         bdi->capabilities       = default_backing_dev_info.capabilities;
993         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
994         bdi->unplug_io_data     = info;
995         bdi->congested_fn       = btrfs_congested_fn;
996         bdi->congested_data     = info;
997         return 0;
998 }
999
1000 static int bio_ready_for_csum(struct bio *bio)
1001 {
1002         u64 length = 0;
1003         u64 buf_len = 0;
1004         u64 start = 0;
1005         struct page *page;
1006         struct extent_io_tree *io_tree = NULL;
1007         struct btrfs_fs_info *info = NULL;
1008         struct bio_vec *bvec;
1009         int i;
1010         int ret;
1011
1012         bio_for_each_segment(bvec, bio, i) {
1013                 page = bvec->bv_page;
1014                 if (page->private == EXTENT_PAGE_PRIVATE) {
1015                         length += bvec->bv_len;
1016                         continue;
1017                 }
1018                 if (!page->private) {
1019                         length += bvec->bv_len;
1020                         continue;
1021                 }
1022                 length = bvec->bv_len;
1023                 buf_len = page->private >> 2;
1024                 start = page_offset(page) + bvec->bv_offset;
1025                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1026                 info = BTRFS_I(page->mapping->host)->root->fs_info;
1027         }
1028         /* are we fully contained in this bio? */
1029         if (buf_len <= length)
1030                 return 1;
1031
1032         ret = extent_range_uptodate(io_tree, start + length,
1033                                     start + buf_len - 1);
1034         if (ret == 1)
1035                 return ret;
1036         return ret;
1037 }
1038
1039 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1040 static void btrfs_end_io_csum(void *p)
1041 #else
1042 static void btrfs_end_io_csum(struct work_struct *work)
1043 #endif
1044 {
1045 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1046         struct btrfs_fs_info *fs_info = p;
1047 #else
1048         struct btrfs_fs_info *fs_info = container_of(work,
1049                                                      struct btrfs_fs_info,
1050                                                      end_io_work);
1051 #endif
1052         unsigned long flags;
1053         struct end_io_wq *end_io_wq;
1054         struct bio *bio;
1055         struct list_head *next;
1056         int error;
1057         int was_empty;
1058
1059         while(1) {
1060                 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
1061                 if (list_empty(&fs_info->end_io_work_list)) {
1062                         spin_unlock_irqrestore(&fs_info->end_io_work_lock,
1063                                                flags);
1064                         return;
1065                 }
1066                 next = fs_info->end_io_work_list.next;
1067                 list_del(next);
1068                 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
1069
1070                 end_io_wq = list_entry(next, struct end_io_wq, list);
1071
1072                 bio = end_io_wq->bio;
1073                 if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1074                         spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
1075                         was_empty = list_empty(&fs_info->end_io_work_list);
1076                         list_add_tail(&end_io_wq->list,
1077                                       &fs_info->end_io_work_list);
1078                         spin_unlock_irqrestore(&fs_info->end_io_work_lock,
1079                                                flags);
1080                         if (was_empty)
1081                                 return;
1082                         continue;
1083                 }
1084                 error = end_io_wq->error;
1085                 bio->bi_private = end_io_wq->private;
1086                 bio->bi_end_io = end_io_wq->end_io;
1087                 kfree(end_io_wq);
1088 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1089                 bio_endio(bio, bio->bi_size, error);
1090 #else
1091                 bio_endio(bio, error);
1092 #endif
1093         }
1094 }
1095
1096 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1097 static void btrfs_async_submit_work(void *p)
1098 #else
1099 static void btrfs_async_submit_work(struct work_struct *work)
1100 #endif
1101 {
1102 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1103         struct btrfs_fs_info *fs_info = p;
1104 #else
1105         struct btrfs_fs_info *fs_info = container_of(work,
1106                                                      struct btrfs_fs_info,
1107                                                      async_submit_work);
1108 #endif
1109         struct async_submit_bio *async;
1110         struct list_head *next;
1111
1112         while(1) {
1113                 spin_lock(&fs_info->async_submit_work_lock);
1114                 if (list_empty(&fs_info->async_submit_work_list)) {
1115                         spin_unlock(&fs_info->async_submit_work_lock);
1116                         return;
1117                 }
1118                 next = fs_info->async_submit_work_list.next;
1119                 list_del(next);
1120                 spin_unlock(&fs_info->async_submit_work_lock);
1121
1122                 async = list_entry(next, struct async_submit_bio, list);
1123                 async->submit_bio_hook(async->inode, async->rw, async->bio,
1124                                        async->mirror_num);
1125                 kfree(async);
1126         }
1127 }
1128
1129 struct btrfs_root *open_ctree(struct super_block *sb,
1130                               struct btrfs_fs_devices *fs_devices,
1131                               char *options)
1132 {
1133         u32 sectorsize;
1134         u32 nodesize;
1135         u32 leafsize;
1136         u32 blocksize;
1137         u32 stripesize;
1138         struct buffer_head *bh;
1139         struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
1140                                                  GFP_NOFS);
1141         struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
1142                                                GFP_NOFS);
1143         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1144                                                 GFP_NOFS);
1145         struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
1146                                                 GFP_NOFS);
1147         struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
1148                                               GFP_NOFS);
1149         int ret;
1150         int err = -EINVAL;
1151         struct btrfs_super_block *disk_super;
1152
1153         if (!extent_root || !tree_root || !fs_info) {
1154                 err = -ENOMEM;
1155                 goto fail;
1156         }
1157         end_io_workqueue = create_workqueue("btrfs-end-io");
1158         BUG_ON(!end_io_workqueue);
1159         async_submit_workqueue = create_workqueue("btrfs-async-submit");
1160
1161         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1162         INIT_LIST_HEAD(&fs_info->trans_list);
1163         INIT_LIST_HEAD(&fs_info->dead_roots);
1164         INIT_LIST_HEAD(&fs_info->hashers);
1165         INIT_LIST_HEAD(&fs_info->end_io_work_list);
1166         INIT_LIST_HEAD(&fs_info->async_submit_work_list);
1167         spin_lock_init(&fs_info->hash_lock);
1168         spin_lock_init(&fs_info->end_io_work_lock);
1169         spin_lock_init(&fs_info->async_submit_work_lock);
1170         spin_lock_init(&fs_info->delalloc_lock);
1171         spin_lock_init(&fs_info->new_trans_lock);
1172
1173         init_completion(&fs_info->kobj_unregister);
1174         fs_info->tree_root = tree_root;
1175         fs_info->extent_root = extent_root;
1176         fs_info->chunk_root = chunk_root;
1177         fs_info->dev_root = dev_root;
1178         fs_info->fs_devices = fs_devices;
1179         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1180         INIT_LIST_HEAD(&fs_info->space_info);
1181         btrfs_mapping_init(&fs_info->mapping_tree);
1182         fs_info->sb = sb;
1183         fs_info->max_extent = (u64)-1;
1184         fs_info->max_inline = 8192 * 1024;
1185         setup_bdi(fs_info, &fs_info->bdi);
1186         fs_info->btree_inode = new_inode(sb);
1187         fs_info->btree_inode->i_ino = 1;
1188         fs_info->btree_inode->i_nlink = 1;
1189
1190         sb->s_blocksize = 4096;
1191         sb->s_blocksize_bits = blksize_bits(4096);
1192
1193         /*
1194          * we set the i_size on the btree inode to the max possible int.
1195          * the real end of the address space is determined by all of
1196          * the devices in the system
1197          */
1198         fs_info->btree_inode->i_size = OFFSET_MAX;
1199         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1200         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1201
1202         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1203                              fs_info->btree_inode->i_mapping,
1204                              GFP_NOFS);
1205         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1206                              GFP_NOFS);
1207
1208         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1209
1210         extent_io_tree_init(&fs_info->free_space_cache,
1211                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1212         extent_io_tree_init(&fs_info->block_group_cache,
1213                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1214         extent_io_tree_init(&fs_info->pinned_extents,
1215                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1216         extent_io_tree_init(&fs_info->pending_del,
1217                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1218         extent_io_tree_init(&fs_info->extent_ins,
1219                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1220         fs_info->do_barriers = 1;
1221
1222 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1223         INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum, fs_info);
1224         INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work,
1225                   fs_info);
1226         INIT_WORK(&fs_info->trans_work, btrfs_transaction_cleaner, fs_info);
1227 #else
1228         INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum);
1229         INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work);
1230         INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner);
1231 #endif
1232         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1233         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1234                sizeof(struct btrfs_key));
1235         insert_inode_hash(fs_info->btree_inode);
1236         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1237
1238         mutex_init(&fs_info->trans_mutex);
1239         mutex_init(&fs_info->fs_mutex);
1240
1241 #if 0
1242         ret = add_hasher(fs_info, "crc32c");
1243         if (ret) {
1244                 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1245                 err = -ENOMEM;
1246                 goto fail_iput;
1247         }
1248 #endif
1249         __setup_root(4096, 4096, 4096, 4096, tree_root,
1250                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1251
1252
1253         bh = __bread(fs_devices->latest_bdev,
1254                      BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
1255         if (!bh)
1256                 goto fail_iput;
1257
1258         memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1259         brelse(bh);
1260
1261         memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1262
1263         disk_super = &fs_info->super_copy;
1264         if (!btrfs_super_root(disk_super))
1265                 goto fail_sb_buffer;
1266
1267         btrfs_parse_options(options, tree_root, NULL);
1268
1269         if (btrfs_super_num_devices(disk_super) > fs_devices->num_devices) {
1270                 printk("Btrfs: wanted %llu devices, but found %llu\n",
1271                        (unsigned long long)btrfs_super_num_devices(disk_super),
1272                        (unsigned long long)fs_devices->num_devices);
1273                 if (btrfs_test_opt(tree_root, DEGRADED))
1274                         printk("continuing in degraded mode\n");
1275                 else {
1276                         goto fail_sb_buffer;
1277                 }
1278         }
1279
1280         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1281
1282         nodesize = btrfs_super_nodesize(disk_super);
1283         leafsize = btrfs_super_leafsize(disk_super);
1284         sectorsize = btrfs_super_sectorsize(disk_super);
1285         stripesize = btrfs_super_stripesize(disk_super);
1286         tree_root->nodesize = nodesize;
1287         tree_root->leafsize = leafsize;
1288         tree_root->sectorsize = sectorsize;
1289         tree_root->stripesize = stripesize;
1290
1291         sb->s_blocksize = sectorsize;
1292         sb->s_blocksize_bits = blksize_bits(sectorsize);
1293
1294         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1295                     sizeof(disk_super->magic))) {
1296                 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1297                 goto fail_sb_buffer;
1298         }
1299
1300         mutex_lock(&fs_info->fs_mutex);
1301
1302         ret = btrfs_read_sys_array(tree_root);
1303         if (ret) {
1304                 printk("btrfs: failed to read the system array on %s\n",
1305                        sb->s_id);
1306                 goto fail_sys_array;
1307         }
1308
1309         blocksize = btrfs_level_size(tree_root,
1310                                      btrfs_super_chunk_root_level(disk_super));
1311
1312         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1313                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1314
1315         chunk_root->node = read_tree_block(chunk_root,
1316                                            btrfs_super_chunk_root(disk_super),
1317                                            blocksize, 0);
1318         BUG_ON(!chunk_root->node);
1319
1320         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1321                  (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1322                  BTRFS_UUID_SIZE);
1323
1324         ret = btrfs_read_chunk_tree(chunk_root);
1325         BUG_ON(ret);
1326
1327         btrfs_close_extra_devices(fs_devices);
1328
1329         blocksize = btrfs_level_size(tree_root,
1330                                      btrfs_super_root_level(disk_super));
1331
1332
1333         tree_root->node = read_tree_block(tree_root,
1334                                           btrfs_super_root(disk_super),
1335                                           blocksize, 0);
1336         if (!tree_root->node)
1337                 goto fail_sb_buffer;
1338
1339
1340         ret = find_and_setup_root(tree_root, fs_info,
1341                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1342         if (ret)
1343                 goto fail_tree_root;
1344         extent_root->track_dirty = 1;
1345
1346         ret = find_and_setup_root(tree_root, fs_info,
1347                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1348         dev_root->track_dirty = 1;
1349
1350         if (ret)
1351                 goto fail_extent_root;
1352
1353         btrfs_read_block_groups(extent_root);
1354
1355         fs_info->generation = btrfs_super_generation(disk_super) + 1;
1356         fs_info->data_alloc_profile = (u64)-1;
1357         fs_info->metadata_alloc_profile = (u64)-1;
1358         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1359
1360         mutex_unlock(&fs_info->fs_mutex);
1361         return tree_root;
1362
1363 fail_extent_root:
1364         free_extent_buffer(extent_root->node);
1365 fail_tree_root:
1366         free_extent_buffer(tree_root->node);
1367 fail_sys_array:
1368         mutex_unlock(&fs_info->fs_mutex);
1369 fail_sb_buffer:
1370         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1371 fail_iput:
1372         iput(fs_info->btree_inode);
1373 fail:
1374         btrfs_close_devices(fs_info->fs_devices);
1375         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1376
1377         kfree(extent_root);
1378         kfree(tree_root);
1379 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1380         bdi_destroy(&fs_info->bdi);
1381 #endif
1382         kfree(fs_info);
1383         return ERR_PTR(err);
1384 }
1385
1386 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1387 {
1388         char b[BDEVNAME_SIZE];
1389
1390         if (uptodate) {
1391                 set_buffer_uptodate(bh);
1392         } else {
1393                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1394                         printk(KERN_WARNING "lost page write due to "
1395                                         "I/O error on %s\n",
1396                                        bdevname(bh->b_bdev, b));
1397                 }
1398                 /* note, we dont' set_buffer_write_io_error because we have
1399                  * our own ways of dealing with the IO errors
1400                  */
1401                 clear_buffer_uptodate(bh);
1402         }
1403         unlock_buffer(bh);
1404         put_bh(bh);
1405 }
1406
1407 int write_all_supers(struct btrfs_root *root)
1408 {
1409         struct list_head *cur;
1410         struct list_head *head = &root->fs_info->fs_devices->devices;
1411         struct btrfs_device *dev;
1412         struct btrfs_super_block *sb;
1413         struct btrfs_dev_item *dev_item;
1414         struct buffer_head *bh;
1415         int ret;
1416         int do_barriers;
1417         int max_errors;
1418         int total_errors = 0;
1419         u32 crc;
1420         u64 flags;
1421
1422         max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1423         do_barriers = !btrfs_test_opt(root, NOBARRIER);
1424
1425         sb = &root->fs_info->super_for_commit;
1426         dev_item = &sb->dev_item;
1427         list_for_each(cur, head) {
1428                 dev = list_entry(cur, struct btrfs_device, dev_list);
1429                 if (!dev->bdev) {
1430                         total_errors++;
1431                         continue;
1432                 }
1433                 if (!dev->in_fs_metadata)
1434                         continue;
1435
1436                 btrfs_set_stack_device_type(dev_item, dev->type);
1437                 btrfs_set_stack_device_id(dev_item, dev->devid);
1438                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1439                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1440                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1441                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1442                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1443                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1444                 flags = btrfs_super_flags(sb);
1445                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1446
1447
1448                 crc = ~(u32)0;
1449                 crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
1450                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1451                 btrfs_csum_final(crc, sb->csum);
1452
1453                 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
1454                               BTRFS_SUPER_INFO_SIZE);
1455
1456                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
1457                 dev->pending_io = bh;
1458
1459                 get_bh(bh);
1460                 set_buffer_uptodate(bh);
1461                 lock_buffer(bh);
1462                 bh->b_end_io = btrfs_end_buffer_write_sync;
1463
1464                 if (do_barriers && dev->barriers) {
1465                         ret = submit_bh(WRITE_BARRIER, bh);
1466                         if (ret == -EOPNOTSUPP) {
1467                                 printk("btrfs: disabling barriers on dev %s\n",
1468                                        dev->name);
1469                                 set_buffer_uptodate(bh);
1470                                 dev->barriers = 0;
1471                                 get_bh(bh);
1472                                 lock_buffer(bh);
1473                                 ret = submit_bh(WRITE, bh);
1474                         }
1475                 } else {
1476                         ret = submit_bh(WRITE, bh);
1477                 }
1478                 if (ret)
1479                         total_errors++;
1480         }
1481         if (total_errors > max_errors) {
1482                 printk("btrfs: %d errors while writing supers\n", total_errors);
1483                 BUG();
1484         }
1485         total_errors = 0;
1486
1487         list_for_each(cur, head) {
1488                 dev = list_entry(cur, struct btrfs_device, dev_list);
1489                 if (!dev->bdev)
1490                         continue;
1491                 if (!dev->in_fs_metadata)
1492                         continue;
1493
1494                 BUG_ON(!dev->pending_io);
1495                 bh = dev->pending_io;
1496                 wait_on_buffer(bh);
1497                 if (!buffer_uptodate(dev->pending_io)) {
1498                         if (do_barriers && dev->barriers) {
1499                                 printk("btrfs: disabling barriers on dev %s\n",
1500                                        dev->name);
1501                                 set_buffer_uptodate(bh);
1502                                 get_bh(bh);
1503                                 lock_buffer(bh);
1504                                 dev->barriers = 0;
1505                                 ret = submit_bh(WRITE, bh);
1506                                 BUG_ON(ret);
1507                                 wait_on_buffer(bh);
1508                                 if (!buffer_uptodate(bh))
1509                                         total_errors++;
1510                         } else {
1511                                 total_errors++;
1512                         }
1513
1514                 }
1515                 dev->pending_io = NULL;
1516                 brelse(bh);
1517         }
1518         if (total_errors > max_errors) {
1519                 printk("btrfs: %d errors while writing supers\n", total_errors);
1520                 BUG();
1521         }
1522         return 0;
1523 }
1524
1525 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1526                       *root)
1527 {
1528         int ret;
1529
1530         ret = write_all_supers(root);
1531         return ret;
1532 }
1533
1534 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1535 {
1536         radix_tree_delete(&fs_info->fs_roots_radix,
1537                           (unsigned long)root->root_key.objectid);
1538         if (root->in_sysfs)
1539                 btrfs_sysfs_del_root(root);
1540         if (root->inode)
1541                 iput(root->inode);
1542         if (root->node)
1543                 free_extent_buffer(root->node);
1544         if (root->commit_root)
1545                 free_extent_buffer(root->commit_root);
1546         if (root->name)
1547                 kfree(root->name);
1548         kfree(root);
1549         return 0;
1550 }
1551
1552 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1553 {
1554         int ret;
1555         struct btrfs_root *gang[8];
1556         int i;
1557
1558         while(1) {
1559                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1560                                              (void **)gang, 0,
1561                                              ARRAY_SIZE(gang));
1562                 if (!ret)
1563                         break;
1564                 for (i = 0; i < ret; i++)
1565                         btrfs_free_fs_root(fs_info, gang[i]);
1566         }
1567         return 0;
1568 }
1569
1570 int close_ctree(struct btrfs_root *root)
1571 {
1572         int ret;
1573         struct btrfs_trans_handle *trans;
1574         struct btrfs_fs_info *fs_info = root->fs_info;
1575
1576         fs_info->closing = 1;
1577         btrfs_transaction_flush_work(root);
1578         mutex_lock(&fs_info->fs_mutex);
1579         btrfs_defrag_dirty_roots(root->fs_info);
1580         trans = btrfs_start_transaction(root, 1);
1581         ret = btrfs_commit_transaction(trans, root);
1582         /* run commit again to  drop the original snapshot */
1583         trans = btrfs_start_transaction(root, 1);
1584         btrfs_commit_transaction(trans, root);
1585         ret = btrfs_write_and_wait_transaction(NULL, root);
1586         BUG_ON(ret);
1587
1588         write_ctree_super(NULL, root);
1589         mutex_unlock(&fs_info->fs_mutex);
1590
1591         btrfs_transaction_flush_work(root);
1592
1593         if (fs_info->delalloc_bytes) {
1594                 printk("btrfs: at unmount delalloc count %Lu\n",
1595                        fs_info->delalloc_bytes);
1596         }
1597         if (fs_info->extent_root->node)
1598                 free_extent_buffer(fs_info->extent_root->node);
1599
1600         if (fs_info->tree_root->node)
1601                 free_extent_buffer(fs_info->tree_root->node);
1602
1603         if (root->fs_info->chunk_root->node);
1604                 free_extent_buffer(root->fs_info->chunk_root->node);
1605
1606         if (root->fs_info->dev_root->node);
1607                 free_extent_buffer(root->fs_info->dev_root->node);
1608
1609         btrfs_free_block_groups(root->fs_info);
1610         del_fs_roots(fs_info);
1611
1612         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1613
1614         extent_io_tree_empty_lru(&fs_info->free_space_cache);
1615         extent_io_tree_empty_lru(&fs_info->block_group_cache);
1616         extent_io_tree_empty_lru(&fs_info->pinned_extents);
1617         extent_io_tree_empty_lru(&fs_info->pending_del);
1618         extent_io_tree_empty_lru(&fs_info->extent_ins);
1619         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1620
1621         flush_workqueue(async_submit_workqueue);
1622         flush_workqueue(end_io_workqueue);
1623
1624         truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1625
1626         flush_workqueue(async_submit_workqueue);
1627         destroy_workqueue(async_submit_workqueue);
1628
1629         flush_workqueue(end_io_workqueue);
1630         destroy_workqueue(end_io_workqueue);
1631
1632         iput(fs_info->btree_inode);
1633 #if 0
1634         while(!list_empty(&fs_info->hashers)) {
1635                 struct btrfs_hasher *hasher;
1636                 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1637                                     hashers);
1638                 list_del(&hasher->hashers);
1639                 crypto_free_hash(&fs_info->hash_tfm);
1640                 kfree(hasher);
1641         }
1642 #endif
1643         btrfs_close_devices(fs_info->fs_devices);
1644         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1645
1646 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1647         bdi_destroy(&fs_info->bdi);
1648 #endif
1649
1650         kfree(fs_info->extent_root);
1651         kfree(fs_info->tree_root);
1652         kfree(fs_info->chunk_root);
1653         kfree(fs_info->dev_root);
1654         return 0;
1655 }
1656
1657 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
1658 {
1659         int ret;
1660         struct inode *btree_inode = buf->first_page->mapping->host;
1661
1662         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1663         if (!ret)
1664                 return ret;
1665
1666         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
1667                                     parent_transid);
1668         return !ret;
1669 }
1670
1671 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1672 {
1673         struct inode *btree_inode = buf->first_page->mapping->host;
1674         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1675                                           buf);
1676 }
1677
1678 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1679 {
1680         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1681         u64 transid = btrfs_header_generation(buf);
1682         struct inode *btree_inode = root->fs_info->btree_inode;
1683
1684         if (transid != root->fs_info->generation) {
1685                 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1686                         (unsigned long long)buf->start,
1687                         transid, root->fs_info->generation);
1688                 WARN_ON(1);
1689         }
1690         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1691 }
1692
1693 void btrfs_throttle(struct btrfs_root *root)
1694 {
1695         struct backing_dev_info *bdi;
1696
1697         bdi = &root->fs_info->bdi;
1698         if (root->fs_info->throttles && bdi_write_congested(bdi)) {
1699 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
1700                 congestion_wait(WRITE, HZ/20);
1701 #else
1702                 blk_congestion_wait(WRITE, HZ/20);
1703 #endif
1704         }
1705 }
1706
1707 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1708 {
1709         /*
1710          * looks as though older kernels can get into trouble with
1711          * this code, they end up stuck in balance_dirty_pages forever
1712          */
1713 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1714         struct extent_io_tree *tree;
1715         u64 num_dirty;
1716         u64 start = 0;
1717         unsigned long thresh = 16 * 1024 * 1024;
1718         tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
1719
1720         if (current_is_pdflush())
1721                 return;
1722
1723         num_dirty = count_range_bits(tree, &start, (u64)-1,
1724                                      thresh, EXTENT_DIRTY);
1725         if (num_dirty > thresh) {
1726                 balance_dirty_pages_ratelimited_nr(
1727                                    root->fs_info->btree_inode->i_mapping, 1);
1728         }
1729 #else
1730         return;
1731 #endif
1732 }
1733
1734 void btrfs_set_buffer_defrag(struct extent_buffer *buf)
1735 {
1736         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1737         struct inode *btree_inode = root->fs_info->btree_inode;
1738         set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1739                         buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
1740 }
1741
1742 void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
1743 {
1744         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1745         struct inode *btree_inode = root->fs_info->btree_inode;
1746         set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1747                         buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
1748                         GFP_NOFS);
1749 }
1750
1751 int btrfs_buffer_defrag(struct extent_buffer *buf)
1752 {
1753         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1754         struct inode *btree_inode = root->fs_info->btree_inode;
1755         return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1756                      buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
1757 }
1758
1759 int btrfs_buffer_defrag_done(struct extent_buffer *buf)
1760 {
1761         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1762         struct inode *btree_inode = root->fs_info->btree_inode;
1763         return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1764                      buf->start, buf->start + buf->len - 1,
1765                      EXTENT_DEFRAG_DONE, 0);
1766 }
1767
1768 int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
1769 {
1770         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1771         struct inode *btree_inode = root->fs_info->btree_inode;
1772         return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1773                      buf->start, buf->start + buf->len - 1,
1774                      EXTENT_DEFRAG_DONE, GFP_NOFS);
1775 }
1776
1777 int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
1778 {
1779         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1780         struct inode *btree_inode = root->fs_info->btree_inode;
1781         return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1782                      buf->start, buf->start + buf->len - 1,
1783                      EXTENT_DEFRAG, GFP_NOFS);
1784 }
1785
1786 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
1787 {
1788         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1789         int ret;
1790         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1791         if (ret == 0) {
1792                 buf->flags |= EXTENT_UPTODATE;
1793         }
1794         return ret;
1795 }
1796
1797 static struct extent_io_ops btree_extent_io_ops = {
1798         .writepage_io_hook = btree_writepage_io_hook,
1799         .readpage_end_io_hook = btree_readpage_end_io_hook,
1800         .submit_bio_hook = btree_submit_bio_hook,
1801         /* note we're sharing with inode.c for the merge bio hook */
1802         .merge_bio_hook = btrfs_merge_bio_hook,
1803 };