Btrfs: Do fsync log replay when mount -o ro, except when on readonly media
[safe/jmp/linux-2.6] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/version.h>
20 #include <linux/fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/scatterlist.h>
23 #include <linux/swap.h>
24 #include <linux/radix-tree.h>
25 #include <linux/writeback.h>
26 #include <linux/buffer_head.h> // for block_sync_page
27 #include <linux/workqueue.h>
28 #include <linux/kthread.h>
29 # include <linux/freezer.h>
30 #include "crc32c.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "ref-cache.h"
40 #include "tree-log.h"
41
42 #if 0
43 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
44 {
45         if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
46                 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
47                        (unsigned long long)extent_buffer_blocknr(buf),
48                        (unsigned long long)btrfs_header_blocknr(buf));
49                 return 1;
50         }
51         return 0;
52 }
53 #endif
54
55 static struct extent_io_ops btree_extent_io_ops;
56 static void end_workqueue_fn(struct btrfs_work *work);
57
58 /*
59  * end_io_wq structs are used to do processing in task context when an IO is
60  * complete.  This is used during reads to verify checksums, and it is used
61  * by writes to insert metadata for new file extents after IO is complete.
62  */
63 struct end_io_wq {
64         struct bio *bio;
65         bio_end_io_t *end_io;
66         void *private;
67         struct btrfs_fs_info *info;
68         int error;
69         int metadata;
70         struct list_head list;
71         struct btrfs_work work;
72 };
73
74 /*
75  * async submit bios are used to offload expensive checksumming
76  * onto the worker threads.  They checksum file and metadata bios
77  * just before they are sent down the IO stack.
78  */
79 struct async_submit_bio {
80         struct inode *inode;
81         struct bio *bio;
82         struct list_head list;
83         extent_submit_bio_hook_t *submit_bio_start;
84         extent_submit_bio_hook_t *submit_bio_done;
85         int rw;
86         int mirror_num;
87         unsigned long bio_flags;
88         struct btrfs_work work;
89 };
90
91 /*
92  * extents on the btree inode are pretty simple, there's one extent
93  * that covers the entire device
94  */
95 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
96                                     size_t page_offset, u64 start, u64 len,
97                                     int create)
98 {
99         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
100         struct extent_map *em;
101         int ret;
102
103         spin_lock(&em_tree->lock);
104         em = lookup_extent_mapping(em_tree, start, len);
105         if (em) {
106                 em->bdev =
107                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
108                 spin_unlock(&em_tree->lock);
109                 goto out;
110         }
111         spin_unlock(&em_tree->lock);
112
113         em = alloc_extent_map(GFP_NOFS);
114         if (!em) {
115                 em = ERR_PTR(-ENOMEM);
116                 goto out;
117         }
118         em->start = 0;
119         em->len = (u64)-1;
120         em->block_len = (u64)-1;
121         em->block_start = 0;
122         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
123
124         spin_lock(&em_tree->lock);
125         ret = add_extent_mapping(em_tree, em);
126         if (ret == -EEXIST) {
127                 u64 failed_start = em->start;
128                 u64 failed_len = em->len;
129
130                 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
131                        em->start, em->len, em->block_start);
132                 free_extent_map(em);
133                 em = lookup_extent_mapping(em_tree, start, len);
134                 if (em) {
135                         printk("after failing, found %Lu %Lu %Lu\n",
136                                em->start, em->len, em->block_start);
137                         ret = 0;
138                 } else {
139                         em = lookup_extent_mapping(em_tree, failed_start,
140                                                    failed_len);
141                         if (em) {
142                                 printk("double failure lookup gives us "
143                                        "%Lu %Lu -> %Lu\n", em->start,
144                                        em->len, em->block_start);
145                                 free_extent_map(em);
146                         }
147                         ret = -EIO;
148                 }
149         } else if (ret) {
150                 free_extent_map(em);
151                 em = NULL;
152         }
153         spin_unlock(&em_tree->lock);
154
155         if (ret)
156                 em = ERR_PTR(ret);
157 out:
158         return em;
159 }
160
161 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
162 {
163         return btrfs_crc32c(seed, data, len);
164 }
165
166 void btrfs_csum_final(u32 crc, char *result)
167 {
168         *(__le32 *)result = ~cpu_to_le32(crc);
169 }
170
171 /*
172  * compute the csum for a btree block, and either verify it or write it
173  * into the csum field of the block.
174  */
175 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
176                            int verify)
177 {
178         char result[BTRFS_CRC32_SIZE];
179         unsigned long len;
180         unsigned long cur_len;
181         unsigned long offset = BTRFS_CSUM_SIZE;
182         char *map_token = NULL;
183         char *kaddr;
184         unsigned long map_start;
185         unsigned long map_len;
186         int err;
187         u32 crc = ~(u32)0;
188
189         len = buf->len - offset;
190         while(len > 0) {
191                 err = map_private_extent_buffer(buf, offset, 32,
192                                         &map_token, &kaddr,
193                                         &map_start, &map_len, KM_USER0);
194                 if (err) {
195                         printk("failed to map extent buffer! %lu\n",
196                                offset);
197                         return 1;
198                 }
199                 cur_len = min(len, map_len - (offset - map_start));
200                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
201                                       crc, cur_len);
202                 len -= cur_len;
203                 offset += cur_len;
204                 unmap_extent_buffer(buf, map_token, KM_USER0);
205         }
206         btrfs_csum_final(crc, result);
207
208         if (verify) {
209                 /* FIXME, this is not good */
210                 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
211                         u32 val;
212                         u32 found = 0;
213                         memcpy(&found, result, BTRFS_CRC32_SIZE);
214
215                         read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
216                         printk("btrfs: %s checksum verify failed on %llu "
217                                "wanted %X found %X level %d\n",
218                                root->fs_info->sb->s_id,
219                                buf->start, val, found, btrfs_header_level(buf));
220                         return 1;
221                 }
222         } else {
223                 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
224         }
225         return 0;
226 }
227
228 /*
229  * we can't consider a given block up to date unless the transid of the
230  * block matches the transid in the parent node's pointer.  This is how we
231  * detect blocks that either didn't get written at all or got written
232  * in the wrong place.
233  */
234 static int verify_parent_transid(struct extent_io_tree *io_tree,
235                                  struct extent_buffer *eb, u64 parent_transid)
236 {
237         int ret;
238
239         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
240                 return 0;
241
242         lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
243         if (extent_buffer_uptodate(io_tree, eb) &&
244             btrfs_header_generation(eb) == parent_transid) {
245                 ret = 0;
246                 goto out;
247         }
248         printk("parent transid verify failed on %llu wanted %llu found %llu\n",
249                (unsigned long long)eb->start,
250                (unsigned long long)parent_transid,
251                (unsigned long long)btrfs_header_generation(eb));
252         ret = 1;
253         clear_extent_buffer_uptodate(io_tree, eb);
254 out:
255         unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
256                       GFP_NOFS);
257         return ret;
258 }
259
260 /*
261  * helper to read a given tree block, doing retries as required when
262  * the checksums don't match and we have alternate mirrors to try.
263  */
264 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
265                                           struct extent_buffer *eb,
266                                           u64 start, u64 parent_transid)
267 {
268         struct extent_io_tree *io_tree;
269         int ret;
270         int num_copies = 0;
271         int mirror_num = 0;
272
273         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
274         while (1) {
275                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
276                                                btree_get_extent, mirror_num);
277                 if (!ret &&
278                     !verify_parent_transid(io_tree, eb, parent_transid))
279                         return ret;
280 printk("read extent buffer pages failed with ret %d mirror no %d\n", ret, mirror_num);
281                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
282                                               eb->start, eb->len);
283                 if (num_copies == 1)
284                         return ret;
285
286                 mirror_num++;
287                 if (mirror_num > num_copies)
288                         return ret;
289         }
290         return -EIO;
291 }
292
293 /*
294  * checksum a dirty tree block before IO.  This has extra checks to make
295  * sure we only fill in the checksum field in the first page of a multi-page block
296  */
297 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
298 {
299         struct extent_io_tree *tree;
300         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
301         u64 found_start;
302         int found_level;
303         unsigned long len;
304         struct extent_buffer *eb;
305         int ret;
306
307         tree = &BTRFS_I(page->mapping->host)->io_tree;
308
309         if (page->private == EXTENT_PAGE_PRIVATE)
310                 goto out;
311         if (!page->private)
312                 goto out;
313         len = page->private >> 2;
314         if (len == 0) {
315                 WARN_ON(1);
316         }
317         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
318         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
319                                              btrfs_header_generation(eb));
320         BUG_ON(ret);
321         found_start = btrfs_header_bytenr(eb);
322         if (found_start != start) {
323                 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
324                        start, found_start, len);
325                 WARN_ON(1);
326                 goto err;
327         }
328         if (eb->first_page != page) {
329                 printk("bad first page %lu %lu\n", eb->first_page->index,
330                        page->index);
331                 WARN_ON(1);
332                 goto err;
333         }
334         if (!PageUptodate(page)) {
335                 printk("csum not up to date page %lu\n", page->index);
336                 WARN_ON(1);
337                 goto err;
338         }
339         found_level = btrfs_header_level(eb);
340
341         csum_tree_block(root, eb, 0);
342 err:
343         free_extent_buffer(eb);
344 out:
345         return 0;
346 }
347
348 static int check_tree_block_fsid(struct btrfs_root *root,
349                                  struct extent_buffer *eb)
350 {
351         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
352         u8 fsid[BTRFS_UUID_SIZE];
353         int ret = 1;
354
355         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
356                            BTRFS_FSID_SIZE);
357         while (fs_devices) {
358                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
359                         ret = 0;
360                         break;
361                 }
362                 fs_devices = fs_devices->seed;
363         }
364         return ret;
365 }
366
367 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
368                                struct extent_state *state)
369 {
370         struct extent_io_tree *tree;
371         u64 found_start;
372         int found_level;
373         unsigned long len;
374         struct extent_buffer *eb;
375         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
376         int ret = 0;
377
378         tree = &BTRFS_I(page->mapping->host)->io_tree;
379         if (page->private == EXTENT_PAGE_PRIVATE)
380                 goto out;
381         if (!page->private)
382                 goto out;
383         len = page->private >> 2;
384         if (len == 0) {
385                 WARN_ON(1);
386         }
387         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
388
389         found_start = btrfs_header_bytenr(eb);
390         if (found_start != start) {
391                 printk("bad tree block start %llu %llu\n",
392                        (unsigned long long)found_start,
393                        (unsigned long long)eb->start);
394                 ret = -EIO;
395                 goto err;
396         }
397         if (eb->first_page != page) {
398                 printk("bad first page %lu %lu\n", eb->first_page->index,
399                        page->index);
400                 WARN_ON(1);
401                 ret = -EIO;
402                 goto err;
403         }
404         if (check_tree_block_fsid(root, eb)) {
405                 printk("bad fsid on block %Lu\n", eb->start);
406                 ret = -EIO;
407                 goto err;
408         }
409         found_level = btrfs_header_level(eb);
410
411         ret = csum_tree_block(root, eb, 1);
412         if (ret)
413                 ret = -EIO;
414
415         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
416         end = eb->start + end - 1;
417 err:
418         free_extent_buffer(eb);
419 out:
420         return ret;
421 }
422
423 static void end_workqueue_bio(struct bio *bio, int err)
424 {
425         struct end_io_wq *end_io_wq = bio->bi_private;
426         struct btrfs_fs_info *fs_info;
427
428         fs_info = end_io_wq->info;
429         end_io_wq->error = err;
430         end_io_wq->work.func = end_workqueue_fn;
431         end_io_wq->work.flags = 0;
432         if (bio->bi_rw & (1 << BIO_RW))
433                 btrfs_queue_worker(&fs_info->endio_write_workers,
434                                    &end_io_wq->work);
435         else
436                 btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
437 }
438
439 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
440                         int metadata)
441 {
442         struct end_io_wq *end_io_wq;
443         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
444         if (!end_io_wq)
445                 return -ENOMEM;
446
447         end_io_wq->private = bio->bi_private;
448         end_io_wq->end_io = bio->bi_end_io;
449         end_io_wq->info = info;
450         end_io_wq->error = 0;
451         end_io_wq->bio = bio;
452         end_io_wq->metadata = metadata;
453
454         bio->bi_private = end_io_wq;
455         bio->bi_end_io = end_workqueue_bio;
456         return 0;
457 }
458
459 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
460 {
461         unsigned long limit = min_t(unsigned long,
462                                     info->workers.max_workers,
463                                     info->fs_devices->open_devices);
464         return 256 * limit;
465 }
466
467 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
468 {
469         return atomic_read(&info->nr_async_bios) >
470                 btrfs_async_submit_limit(info);
471 }
472
473 static void run_one_async_start(struct btrfs_work *work)
474 {
475         struct btrfs_fs_info *fs_info;
476         struct async_submit_bio *async;
477
478         async = container_of(work, struct  async_submit_bio, work);
479         fs_info = BTRFS_I(async->inode)->root->fs_info;
480         async->submit_bio_start(async->inode, async->rw, async->bio,
481                                async->mirror_num, async->bio_flags);
482 }
483
484 static void run_one_async_done(struct btrfs_work *work)
485 {
486         struct btrfs_fs_info *fs_info;
487         struct async_submit_bio *async;
488         int limit;
489
490         async = container_of(work, struct  async_submit_bio, work);
491         fs_info = BTRFS_I(async->inode)->root->fs_info;
492
493         limit = btrfs_async_submit_limit(fs_info);
494         limit = limit * 2 / 3;
495
496         atomic_dec(&fs_info->nr_async_submits);
497
498         if (atomic_read(&fs_info->nr_async_submits) < limit &&
499             waitqueue_active(&fs_info->async_submit_wait))
500                 wake_up(&fs_info->async_submit_wait);
501
502         async->submit_bio_done(async->inode, async->rw, async->bio,
503                                async->mirror_num, async->bio_flags);
504 }
505
506 static void run_one_async_free(struct btrfs_work *work)
507 {
508         struct async_submit_bio *async;
509
510         async = container_of(work, struct  async_submit_bio, work);
511         kfree(async);
512 }
513
514 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
515                         int rw, struct bio *bio, int mirror_num,
516                         unsigned long bio_flags,
517                         extent_submit_bio_hook_t *submit_bio_start,
518                         extent_submit_bio_hook_t *submit_bio_done)
519 {
520         struct async_submit_bio *async;
521
522         async = kmalloc(sizeof(*async), GFP_NOFS);
523         if (!async)
524                 return -ENOMEM;
525
526         async->inode = inode;
527         async->rw = rw;
528         async->bio = bio;
529         async->mirror_num = mirror_num;
530         async->submit_bio_start = submit_bio_start;
531         async->submit_bio_done = submit_bio_done;
532
533         async->work.func = run_one_async_start;
534         async->work.ordered_func = run_one_async_done;
535         async->work.ordered_free = run_one_async_free;
536
537         async->work.flags = 0;
538         async->bio_flags = bio_flags;
539
540         atomic_inc(&fs_info->nr_async_submits);
541         btrfs_queue_worker(&fs_info->workers, &async->work);
542 #if 0
543         int limit = btrfs_async_submit_limit(fs_info);
544         if (atomic_read(&fs_info->nr_async_submits) > limit) {
545                 wait_event_timeout(fs_info->async_submit_wait,
546                            (atomic_read(&fs_info->nr_async_submits) < limit),
547                            HZ/10);
548
549                 wait_event_timeout(fs_info->async_submit_wait,
550                            (atomic_read(&fs_info->nr_async_bios) < limit),
551                            HZ/10);
552         }
553 #endif
554         while(atomic_read(&fs_info->async_submit_draining) &&
555               atomic_read(&fs_info->nr_async_submits)) {
556                 wait_event(fs_info->async_submit_wait,
557                            (atomic_read(&fs_info->nr_async_submits) == 0));
558         }
559
560         return 0;
561 }
562
563 static int btree_csum_one_bio(struct bio *bio)
564 {
565         struct bio_vec *bvec = bio->bi_io_vec;
566         int bio_index = 0;
567         struct btrfs_root *root;
568
569         WARN_ON(bio->bi_vcnt <= 0);
570         while(bio_index < bio->bi_vcnt) {
571                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
572                 csum_dirty_buffer(root, bvec->bv_page);
573                 bio_index++;
574                 bvec++;
575         }
576         return 0;
577 }
578
579 static int __btree_submit_bio_start(struct inode *inode, int rw,
580                                     struct bio *bio, int mirror_num,
581                                     unsigned long bio_flags)
582 {
583         /*
584          * when we're called for a write, we're already in the async
585          * submission context.  Just jump into btrfs_map_bio
586          */
587         btree_csum_one_bio(bio);
588         return 0;
589 }
590
591 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
592                                  int mirror_num, unsigned long bio_flags)
593 {
594         /*
595          * when we're called for a write, we're already in the async
596          * submission context.  Just jump into btrfs_map_bio
597          */
598         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
599 }
600
601 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
602                                  int mirror_num, unsigned long bio_flags)
603 {
604         /*
605          * kthread helpers are used to submit writes so that checksumming
606          * can happen in parallel across all CPUs
607          */
608         if (!(rw & (1 << BIO_RW))) {
609                 int ret;
610                 /*
611                  * called for a read, do the setup so that checksum validation
612                  * can happen in the async kernel threads
613                  */
614                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
615                                           bio, 1);
616                 BUG_ON(ret);
617
618                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
619                                      mirror_num, 0);
620         }
621         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
622                                    inode, rw, bio, mirror_num, 0,
623                                    __btree_submit_bio_start,
624                                    __btree_submit_bio_done);
625 }
626
627 static int btree_writepage(struct page *page, struct writeback_control *wbc)
628 {
629         struct extent_io_tree *tree;
630         tree = &BTRFS_I(page->mapping->host)->io_tree;
631
632         if (current->flags & PF_MEMALLOC) {
633                 redirty_page_for_writepage(wbc, page);
634                 unlock_page(page);
635                 return 0;
636         }
637         return extent_write_full_page(tree, page, btree_get_extent, wbc);
638 }
639
640 static int btree_writepages(struct address_space *mapping,
641                             struct writeback_control *wbc)
642 {
643         struct extent_io_tree *tree;
644         tree = &BTRFS_I(mapping->host)->io_tree;
645         if (wbc->sync_mode == WB_SYNC_NONE) {
646                 u64 num_dirty;
647                 u64 start = 0;
648                 unsigned long thresh = 32 * 1024 * 1024;
649
650                 if (wbc->for_kupdate)
651                         return 0;
652
653                 num_dirty = count_range_bits(tree, &start, (u64)-1,
654                                              thresh, EXTENT_DIRTY);
655                 if (num_dirty < thresh) {
656                         return 0;
657                 }
658         }
659         return extent_writepages(tree, mapping, btree_get_extent, wbc);
660 }
661
662 int btree_readpage(struct file *file, struct page *page)
663 {
664         struct extent_io_tree *tree;
665         tree = &BTRFS_I(page->mapping->host)->io_tree;
666         return extent_read_full_page(tree, page, btree_get_extent);
667 }
668
669 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
670 {
671         struct extent_io_tree *tree;
672         struct extent_map_tree *map;
673         int ret;
674
675         if (PageWriteback(page) || PageDirty(page))
676             return 0;
677
678         tree = &BTRFS_I(page->mapping->host)->io_tree;
679         map = &BTRFS_I(page->mapping->host)->extent_tree;
680
681         ret = try_release_extent_state(map, tree, page, gfp_flags);
682         if (!ret) {
683                 return 0;
684         }
685
686         ret = try_release_extent_buffer(tree, page);
687         if (ret == 1) {
688                 ClearPagePrivate(page);
689                 set_page_private(page, 0);
690                 page_cache_release(page);
691         }
692
693         return ret;
694 }
695
696 static void btree_invalidatepage(struct page *page, unsigned long offset)
697 {
698         struct extent_io_tree *tree;
699         tree = &BTRFS_I(page->mapping->host)->io_tree;
700         extent_invalidatepage(tree, page, offset);
701         btree_releasepage(page, GFP_NOFS);
702         if (PagePrivate(page)) {
703                 printk("warning page private not zero on page %Lu\n",
704                        page_offset(page));
705                 ClearPagePrivate(page);
706                 set_page_private(page, 0);
707                 page_cache_release(page);
708         }
709 }
710
711 #if 0
712 static int btree_writepage(struct page *page, struct writeback_control *wbc)
713 {
714         struct buffer_head *bh;
715         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
716         struct buffer_head *head;
717         if (!page_has_buffers(page)) {
718                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
719                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
720         }
721         head = page_buffers(page);
722         bh = head;
723         do {
724                 if (buffer_dirty(bh))
725                         csum_tree_block(root, bh, 0);
726                 bh = bh->b_this_page;
727         } while (bh != head);
728         return block_write_full_page(page, btree_get_block, wbc);
729 }
730 #endif
731
732 static struct address_space_operations btree_aops = {
733         .readpage       = btree_readpage,
734         .writepage      = btree_writepage,
735         .writepages     = btree_writepages,
736         .releasepage    = btree_releasepage,
737         .invalidatepage = btree_invalidatepage,
738         .sync_page      = block_sync_page,
739 };
740
741 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
742                          u64 parent_transid)
743 {
744         struct extent_buffer *buf = NULL;
745         struct inode *btree_inode = root->fs_info->btree_inode;
746         int ret = 0;
747
748         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
749         if (!buf)
750                 return 0;
751         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
752                                  buf, 0, 0, btree_get_extent, 0);
753         free_extent_buffer(buf);
754         return ret;
755 }
756
757 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
758                                             u64 bytenr, u32 blocksize)
759 {
760         struct inode *btree_inode = root->fs_info->btree_inode;
761         struct extent_buffer *eb;
762         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
763                                 bytenr, blocksize, GFP_NOFS);
764         return eb;
765 }
766
767 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
768                                                  u64 bytenr, u32 blocksize)
769 {
770         struct inode *btree_inode = root->fs_info->btree_inode;
771         struct extent_buffer *eb;
772
773         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
774                                  bytenr, blocksize, NULL, GFP_NOFS);
775         return eb;
776 }
777
778
779 int btrfs_write_tree_block(struct extent_buffer *buf)
780 {
781         return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
782                                       buf->start + buf->len - 1, WB_SYNC_ALL);
783 }
784
785 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
786 {
787         return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
788                                   buf->start, buf->start + buf->len -1);
789 }
790
791 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
792                                       u32 blocksize, u64 parent_transid)
793 {
794         struct extent_buffer *buf = NULL;
795         struct inode *btree_inode = root->fs_info->btree_inode;
796         struct extent_io_tree *io_tree;
797         int ret;
798
799         io_tree = &BTRFS_I(btree_inode)->io_tree;
800
801         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
802         if (!buf)
803                 return NULL;
804
805         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
806
807         if (ret == 0) {
808                 buf->flags |= EXTENT_UPTODATE;
809         } else {
810                 WARN_ON(1);
811         }
812         return buf;
813
814 }
815
816 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
817                      struct extent_buffer *buf)
818 {
819         struct inode *btree_inode = root->fs_info->btree_inode;
820         if (btrfs_header_generation(buf) ==
821             root->fs_info->running_transaction->transid) {
822                 WARN_ON(!btrfs_tree_locked(buf));
823                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
824                                           buf);
825         }
826         return 0;
827 }
828
829 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
830                         u32 stripesize, struct btrfs_root *root,
831                         struct btrfs_fs_info *fs_info,
832                         u64 objectid)
833 {
834         root->node = NULL;
835         root->commit_root = NULL;
836         root->ref_tree = NULL;
837         root->sectorsize = sectorsize;
838         root->nodesize = nodesize;
839         root->leafsize = leafsize;
840         root->stripesize = stripesize;
841         root->ref_cows = 0;
842         root->track_dirty = 0;
843
844         root->fs_info = fs_info;
845         root->objectid = objectid;
846         root->last_trans = 0;
847         root->highest_inode = 0;
848         root->last_inode_alloc = 0;
849         root->name = NULL;
850         root->in_sysfs = 0;
851
852         INIT_LIST_HEAD(&root->dirty_list);
853         INIT_LIST_HEAD(&root->orphan_list);
854         INIT_LIST_HEAD(&root->dead_list);
855         spin_lock_init(&root->node_lock);
856         spin_lock_init(&root->list_lock);
857         mutex_init(&root->objectid_mutex);
858         mutex_init(&root->log_mutex);
859         extent_io_tree_init(&root->dirty_log_pages,
860                              fs_info->btree_inode->i_mapping, GFP_NOFS);
861
862         btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
863         root->ref_tree = &root->ref_tree_struct;
864
865         memset(&root->root_key, 0, sizeof(root->root_key));
866         memset(&root->root_item, 0, sizeof(root->root_item));
867         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
868         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
869         root->defrag_trans_start = fs_info->generation;
870         init_completion(&root->kobj_unregister);
871         root->defrag_running = 0;
872         root->defrag_level = 0;
873         root->root_key.objectid = objectid;
874         root->anon_super.s_root = NULL;
875         root->anon_super.s_dev = 0;
876         INIT_LIST_HEAD(&root->anon_super.s_list);
877         INIT_LIST_HEAD(&root->anon_super.s_instances);
878         init_rwsem(&root->anon_super.s_umount);
879
880         return 0;
881 }
882
883 static int find_and_setup_root(struct btrfs_root *tree_root,
884                                struct btrfs_fs_info *fs_info,
885                                u64 objectid,
886                                struct btrfs_root *root)
887 {
888         int ret;
889         u32 blocksize;
890         u64 generation;
891
892         __setup_root(tree_root->nodesize, tree_root->leafsize,
893                      tree_root->sectorsize, tree_root->stripesize,
894                      root, fs_info, objectid);
895         ret = btrfs_find_last_root(tree_root, objectid,
896                                    &root->root_item, &root->root_key);
897         BUG_ON(ret);
898
899         generation = btrfs_root_generation(&root->root_item);
900         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
901         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
902                                      blocksize, generation);
903         BUG_ON(!root->node);
904         return 0;
905 }
906
907 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
908                              struct btrfs_fs_info *fs_info)
909 {
910         struct extent_buffer *eb;
911         struct btrfs_root *log_root_tree = fs_info->log_root_tree;
912         u64 start = 0;
913         u64 end = 0;
914         int ret;
915
916         if (!log_root_tree)
917                 return 0;
918
919         while(1) {
920                 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
921                                     0, &start, &end, EXTENT_DIRTY);
922                 if (ret)
923                         break;
924
925                 clear_extent_dirty(&log_root_tree->dirty_log_pages,
926                                    start, end, GFP_NOFS);
927         }
928         eb = fs_info->log_root_tree->node;
929
930         WARN_ON(btrfs_header_level(eb) != 0);
931         WARN_ON(btrfs_header_nritems(eb) != 0);
932
933         ret = btrfs_free_reserved_extent(fs_info->tree_root,
934                                 eb->start, eb->len);
935         BUG_ON(ret);
936
937         free_extent_buffer(eb);
938         kfree(fs_info->log_root_tree);
939         fs_info->log_root_tree = NULL;
940         return 0;
941 }
942
943 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
944                              struct btrfs_fs_info *fs_info)
945 {
946         struct btrfs_root *root;
947         struct btrfs_root *tree_root = fs_info->tree_root;
948
949         root = kzalloc(sizeof(*root), GFP_NOFS);
950         if (!root)
951                 return -ENOMEM;
952
953         __setup_root(tree_root->nodesize, tree_root->leafsize,
954                      tree_root->sectorsize, tree_root->stripesize,
955                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
956
957         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
958         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
959         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
960         root->ref_cows = 0;
961
962         root->node = btrfs_alloc_free_block(trans, root, root->leafsize,
963                                             0, BTRFS_TREE_LOG_OBJECTID,
964                                             trans->transid, 0, 0, 0);
965
966         btrfs_set_header_nritems(root->node, 0);
967         btrfs_set_header_level(root->node, 0);
968         btrfs_set_header_bytenr(root->node, root->node->start);
969         btrfs_set_header_generation(root->node, trans->transid);
970         btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
971
972         write_extent_buffer(root->node, root->fs_info->fsid,
973                             (unsigned long)btrfs_header_fsid(root->node),
974                             BTRFS_FSID_SIZE);
975         btrfs_mark_buffer_dirty(root->node);
976         btrfs_tree_unlock(root->node);
977         fs_info->log_root_tree = root;
978         return 0;
979 }
980
981 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
982                                                struct btrfs_key *location)
983 {
984         struct btrfs_root *root;
985         struct btrfs_fs_info *fs_info = tree_root->fs_info;
986         struct btrfs_path *path;
987         struct extent_buffer *l;
988         u64 highest_inode;
989         u64 generation;
990         u32 blocksize;
991         int ret = 0;
992
993         root = kzalloc(sizeof(*root), GFP_NOFS);
994         if (!root)
995                 return ERR_PTR(-ENOMEM);
996         if (location->offset == (u64)-1) {
997                 ret = find_and_setup_root(tree_root, fs_info,
998                                           location->objectid, root);
999                 if (ret) {
1000                         kfree(root);
1001                         return ERR_PTR(ret);
1002                 }
1003                 goto insert;
1004         }
1005
1006         __setup_root(tree_root->nodesize, tree_root->leafsize,
1007                      tree_root->sectorsize, tree_root->stripesize,
1008                      root, fs_info, location->objectid);
1009
1010         path = btrfs_alloc_path();
1011         BUG_ON(!path);
1012         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1013         if (ret != 0) {
1014                 if (ret > 0)
1015                         ret = -ENOENT;
1016                 goto out;
1017         }
1018         l = path->nodes[0];
1019         read_extent_buffer(l, &root->root_item,
1020                btrfs_item_ptr_offset(l, path->slots[0]),
1021                sizeof(root->root_item));
1022         memcpy(&root->root_key, location, sizeof(*location));
1023         ret = 0;
1024 out:
1025         btrfs_release_path(root, path);
1026         btrfs_free_path(path);
1027         if (ret) {
1028                 kfree(root);
1029                 return ERR_PTR(ret);
1030         }
1031         generation = btrfs_root_generation(&root->root_item);
1032         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1033         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1034                                      blocksize, generation);
1035         BUG_ON(!root->node);
1036 insert:
1037         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1038                 root->ref_cows = 1;
1039                 ret = btrfs_find_highest_inode(root, &highest_inode);
1040                 if (ret == 0) {
1041                         root->highest_inode = highest_inode;
1042                         root->last_inode_alloc = highest_inode;
1043                 }
1044         }
1045         return root;
1046 }
1047
1048 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1049                                         u64 root_objectid)
1050 {
1051         struct btrfs_root *root;
1052
1053         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1054                 return fs_info->tree_root;
1055         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1056                 return fs_info->extent_root;
1057
1058         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1059                                  (unsigned long)root_objectid);
1060         return root;
1061 }
1062
1063 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1064                                               struct btrfs_key *location)
1065 {
1066         struct btrfs_root *root;
1067         int ret;
1068
1069         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1070                 return fs_info->tree_root;
1071         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1072                 return fs_info->extent_root;
1073         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1074                 return fs_info->chunk_root;
1075         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1076                 return fs_info->dev_root;
1077
1078         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1079                                  (unsigned long)location->objectid);
1080         if (root)
1081                 return root;
1082
1083         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1084         if (IS_ERR(root))
1085                 return root;
1086
1087         set_anon_super(&root->anon_super, NULL);
1088
1089         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1090                                 (unsigned long)root->root_key.objectid,
1091                                 root);
1092         if (ret) {
1093                 free_extent_buffer(root->node);
1094                 kfree(root);
1095                 return ERR_PTR(ret);
1096         }
1097         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1098                 ret = btrfs_find_dead_roots(fs_info->tree_root,
1099                                             root->root_key.objectid, root);
1100                 BUG_ON(ret);
1101                 btrfs_orphan_cleanup(root);
1102         }
1103         return root;
1104 }
1105
1106 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1107                                       struct btrfs_key *location,
1108                                       const char *name, int namelen)
1109 {
1110         struct btrfs_root *root;
1111         int ret;
1112
1113         root = btrfs_read_fs_root_no_name(fs_info, location);
1114         if (!root)
1115                 return NULL;
1116
1117         if (root->in_sysfs)
1118                 return root;
1119
1120         ret = btrfs_set_root_name(root, name, namelen);
1121         if (ret) {
1122                 free_extent_buffer(root->node);
1123                 kfree(root);
1124                 return ERR_PTR(ret);
1125         }
1126 #if 0
1127         ret = btrfs_sysfs_add_root(root);
1128         if (ret) {
1129                 free_extent_buffer(root->node);
1130                 kfree(root->name);
1131                 kfree(root);
1132                 return ERR_PTR(ret);
1133         }
1134 #endif
1135         root->in_sysfs = 1;
1136         return root;
1137 }
1138 #if 0
1139 static int add_hasher(struct btrfs_fs_info *info, char *type) {
1140         struct btrfs_hasher *hasher;
1141
1142         hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
1143         if (!hasher)
1144                 return -ENOMEM;
1145         hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
1146         if (!hasher->hash_tfm) {
1147                 kfree(hasher);
1148                 return -EINVAL;
1149         }
1150         spin_lock(&info->hash_lock);
1151         list_add(&hasher->list, &info->hashers);
1152         spin_unlock(&info->hash_lock);
1153         return 0;
1154 }
1155 #endif
1156
1157 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1158 {
1159         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1160         int ret = 0;
1161         struct list_head *cur;
1162         struct btrfs_device *device;
1163         struct backing_dev_info *bdi;
1164 #if 0
1165         if ((bdi_bits & (1 << BDI_write_congested)) &&
1166             btrfs_congested_async(info, 0))
1167                 return 1;
1168 #endif
1169         list_for_each(cur, &info->fs_devices->devices) {
1170                 device = list_entry(cur, struct btrfs_device, dev_list);
1171                 if (!device->bdev)
1172                         continue;
1173                 bdi = blk_get_backing_dev_info(device->bdev);
1174                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1175                         ret = 1;
1176                         break;
1177                 }
1178         }
1179         return ret;
1180 }
1181
1182 /*
1183  * this unplugs every device on the box, and it is only used when page
1184  * is null
1185  */
1186 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1187 {
1188         struct list_head *cur;
1189         struct btrfs_device *device;
1190         struct btrfs_fs_info *info;
1191
1192         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1193         list_for_each(cur, &info->fs_devices->devices) {
1194                 device = list_entry(cur, struct btrfs_device, dev_list);
1195                 bdi = blk_get_backing_dev_info(device->bdev);
1196                 if (bdi->unplug_io_fn) {
1197                         bdi->unplug_io_fn(bdi, page);
1198                 }
1199         }
1200 }
1201
1202 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1203 {
1204         struct inode *inode;
1205         struct extent_map_tree *em_tree;
1206         struct extent_map *em;
1207         struct address_space *mapping;
1208         u64 offset;
1209
1210         /* the generic O_DIRECT read code does this */
1211         if (1 || !page) {
1212                 __unplug_io_fn(bdi, page);
1213                 return;
1214         }
1215
1216         /*
1217          * page->mapping may change at any time.  Get a consistent copy
1218          * and use that for everything below
1219          */
1220         smp_mb();
1221         mapping = page->mapping;
1222         if (!mapping)
1223                 return;
1224
1225         inode = mapping->host;
1226
1227         /*
1228          * don't do the expensive searching for a small number of
1229          * devices
1230          */
1231         if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1232                 __unplug_io_fn(bdi, page);
1233                 return;
1234         }
1235
1236         offset = page_offset(page);
1237
1238         em_tree = &BTRFS_I(inode)->extent_tree;
1239         spin_lock(&em_tree->lock);
1240         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1241         spin_unlock(&em_tree->lock);
1242         if (!em) {
1243                 __unplug_io_fn(bdi, page);
1244                 return;
1245         }
1246
1247         if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1248                 free_extent_map(em);
1249                 __unplug_io_fn(bdi, page);
1250                 return;
1251         }
1252         offset = offset - em->start;
1253         btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1254                           em->block_start + offset, page);
1255         free_extent_map(em);
1256 }
1257
1258 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1259 {
1260         bdi_init(bdi);
1261         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1262         bdi->state              = 0;
1263         bdi->capabilities       = default_backing_dev_info.capabilities;
1264         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
1265         bdi->unplug_io_data     = info;
1266         bdi->congested_fn       = btrfs_congested_fn;
1267         bdi->congested_data     = info;
1268         return 0;
1269 }
1270
1271 static int bio_ready_for_csum(struct bio *bio)
1272 {
1273         u64 length = 0;
1274         u64 buf_len = 0;
1275         u64 start = 0;
1276         struct page *page;
1277         struct extent_io_tree *io_tree = NULL;
1278         struct btrfs_fs_info *info = NULL;
1279         struct bio_vec *bvec;
1280         int i;
1281         int ret;
1282
1283         bio_for_each_segment(bvec, bio, i) {
1284                 page = bvec->bv_page;
1285                 if (page->private == EXTENT_PAGE_PRIVATE) {
1286                         length += bvec->bv_len;
1287                         continue;
1288                 }
1289                 if (!page->private) {
1290                         length += bvec->bv_len;
1291                         continue;
1292                 }
1293                 length = bvec->bv_len;
1294                 buf_len = page->private >> 2;
1295                 start = page_offset(page) + bvec->bv_offset;
1296                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1297                 info = BTRFS_I(page->mapping->host)->root->fs_info;
1298         }
1299         /* are we fully contained in this bio? */
1300         if (buf_len <= length)
1301                 return 1;
1302
1303         ret = extent_range_uptodate(io_tree, start + length,
1304                                     start + buf_len - 1);
1305         if (ret == 1)
1306                 return ret;
1307         return ret;
1308 }
1309
1310 /*
1311  * called by the kthread helper functions to finally call the bio end_io
1312  * functions.  This is where read checksum verification actually happens
1313  */
1314 static void end_workqueue_fn(struct btrfs_work *work)
1315 {
1316         struct bio *bio;
1317         struct end_io_wq *end_io_wq;
1318         struct btrfs_fs_info *fs_info;
1319         int error;
1320
1321         end_io_wq = container_of(work, struct end_io_wq, work);
1322         bio = end_io_wq->bio;
1323         fs_info = end_io_wq->info;
1324
1325         /* metadata bios are special because the whole tree block must
1326          * be checksummed at once.  This makes sure the entire block is in
1327          * ram and up to date before trying to verify things.  For
1328          * blocksize <= pagesize, it is basically a noop
1329          */
1330         if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1331                 btrfs_queue_worker(&fs_info->endio_workers,
1332                                    &end_io_wq->work);
1333                 return;
1334         }
1335         error = end_io_wq->error;
1336         bio->bi_private = end_io_wq->private;
1337         bio->bi_end_io = end_io_wq->end_io;
1338         kfree(end_io_wq);
1339         bio_endio(bio, error);
1340 }
1341
1342 static int cleaner_kthread(void *arg)
1343 {
1344         struct btrfs_root *root = arg;
1345
1346         do {
1347                 smp_mb();
1348                 if (root->fs_info->closing)
1349                         break;
1350
1351                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1352                 mutex_lock(&root->fs_info->cleaner_mutex);
1353                 btrfs_clean_old_snapshots(root);
1354                 mutex_unlock(&root->fs_info->cleaner_mutex);
1355
1356                 if (freezing(current)) {
1357                         refrigerator();
1358                 } else {
1359                         smp_mb();
1360                         if (root->fs_info->closing)
1361                                 break;
1362                         set_current_state(TASK_INTERRUPTIBLE);
1363                         schedule();
1364                         __set_current_state(TASK_RUNNING);
1365                 }
1366         } while (!kthread_should_stop());
1367         return 0;
1368 }
1369
1370 static int transaction_kthread(void *arg)
1371 {
1372         struct btrfs_root *root = arg;
1373         struct btrfs_trans_handle *trans;
1374         struct btrfs_transaction *cur;
1375         unsigned long now;
1376         unsigned long delay;
1377         int ret;
1378
1379         do {
1380                 smp_mb();
1381                 if (root->fs_info->closing)
1382                         break;
1383
1384                 delay = HZ * 30;
1385                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1386                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1387
1388                 if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
1389                         printk("btrfs: total reference cache size %Lu\n",
1390                                 root->fs_info->total_ref_cache_size);
1391                 }
1392
1393                 mutex_lock(&root->fs_info->trans_mutex);
1394                 cur = root->fs_info->running_transaction;
1395                 if (!cur) {
1396                         mutex_unlock(&root->fs_info->trans_mutex);
1397                         goto sleep;
1398                 }
1399
1400                 now = get_seconds();
1401                 if (now < cur->start_time || now - cur->start_time < 30) {
1402                         mutex_unlock(&root->fs_info->trans_mutex);
1403                         delay = HZ * 5;
1404                         goto sleep;
1405                 }
1406                 mutex_unlock(&root->fs_info->trans_mutex);
1407                 trans = btrfs_start_transaction(root, 1);
1408                 ret = btrfs_commit_transaction(trans, root);
1409 sleep:
1410                 wake_up_process(root->fs_info->cleaner_kthread);
1411                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1412
1413                 if (freezing(current)) {
1414                         refrigerator();
1415                 } else {
1416                         if (root->fs_info->closing)
1417                                 break;
1418                         set_current_state(TASK_INTERRUPTIBLE);
1419                         schedule_timeout(delay);
1420                         __set_current_state(TASK_RUNNING);
1421                 }
1422         } while (!kthread_should_stop());
1423         return 0;
1424 }
1425
1426 struct btrfs_root *open_ctree(struct super_block *sb,
1427                               struct btrfs_fs_devices *fs_devices,
1428                               char *options)
1429 {
1430         u32 sectorsize;
1431         u32 nodesize;
1432         u32 leafsize;
1433         u32 blocksize;
1434         u32 stripesize;
1435         u64 generation;
1436         struct btrfs_key location;
1437         struct buffer_head *bh;
1438         struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1439                                                  GFP_NOFS);
1440         struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1441                                                GFP_NOFS);
1442         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1443                                                 GFP_NOFS);
1444         struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1445                                                 GFP_NOFS);
1446         struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1447                                               GFP_NOFS);
1448         struct btrfs_root *log_tree_root;
1449
1450         int ret;
1451         int err = -EINVAL;
1452
1453         struct btrfs_super_block *disk_super;
1454
1455         if (!extent_root || !tree_root || !fs_info ||
1456             !chunk_root || !dev_root) {
1457                 err = -ENOMEM;
1458                 goto fail;
1459         }
1460         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1461         INIT_LIST_HEAD(&fs_info->trans_list);
1462         INIT_LIST_HEAD(&fs_info->dead_roots);
1463         INIT_LIST_HEAD(&fs_info->hashers);
1464         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1465         spin_lock_init(&fs_info->hash_lock);
1466         spin_lock_init(&fs_info->delalloc_lock);
1467         spin_lock_init(&fs_info->new_trans_lock);
1468         spin_lock_init(&fs_info->ref_cache_lock);
1469
1470         init_completion(&fs_info->kobj_unregister);
1471         fs_info->tree_root = tree_root;
1472         fs_info->extent_root = extent_root;
1473         fs_info->chunk_root = chunk_root;
1474         fs_info->dev_root = dev_root;
1475         fs_info->fs_devices = fs_devices;
1476         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1477         INIT_LIST_HEAD(&fs_info->space_info);
1478         btrfs_mapping_init(&fs_info->mapping_tree);
1479         atomic_set(&fs_info->nr_async_submits, 0);
1480         atomic_set(&fs_info->async_delalloc_pages, 0);
1481         atomic_set(&fs_info->async_submit_draining, 0);
1482         atomic_set(&fs_info->nr_async_bios, 0);
1483         atomic_set(&fs_info->throttles, 0);
1484         atomic_set(&fs_info->throttle_gen, 0);
1485         fs_info->sb = sb;
1486         fs_info->max_extent = (u64)-1;
1487         fs_info->max_inline = 8192 * 1024;
1488         setup_bdi(fs_info, &fs_info->bdi);
1489         fs_info->btree_inode = new_inode(sb);
1490         fs_info->btree_inode->i_ino = 1;
1491         fs_info->btree_inode->i_nlink = 1;
1492
1493         fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
1494
1495         INIT_LIST_HEAD(&fs_info->ordered_extents);
1496         spin_lock_init(&fs_info->ordered_extent_lock);
1497
1498         sb->s_blocksize = 4096;
1499         sb->s_blocksize_bits = blksize_bits(4096);
1500
1501         /*
1502          * we set the i_size on the btree inode to the max possible int.
1503          * the real end of the address space is determined by all of
1504          * the devices in the system
1505          */
1506         fs_info->btree_inode->i_size = OFFSET_MAX;
1507         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1508         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1509
1510         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1511                              fs_info->btree_inode->i_mapping,
1512                              GFP_NOFS);
1513         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1514                              GFP_NOFS);
1515
1516         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1517
1518         spin_lock_init(&fs_info->block_group_cache_lock);
1519         fs_info->block_group_cache_tree.rb_node = NULL;
1520
1521         extent_io_tree_init(&fs_info->pinned_extents,
1522                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1523         extent_io_tree_init(&fs_info->pending_del,
1524                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1525         extent_io_tree_init(&fs_info->extent_ins,
1526                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1527         fs_info->do_barriers = 1;
1528
1529         INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
1530         btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
1531         btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
1532
1533         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1534         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1535                sizeof(struct btrfs_key));
1536         insert_inode_hash(fs_info->btree_inode);
1537
1538         mutex_init(&fs_info->trans_mutex);
1539         mutex_init(&fs_info->tree_log_mutex);
1540         mutex_init(&fs_info->drop_mutex);
1541         mutex_init(&fs_info->extent_ins_mutex);
1542         mutex_init(&fs_info->pinned_mutex);
1543         mutex_init(&fs_info->chunk_mutex);
1544         mutex_init(&fs_info->transaction_kthread_mutex);
1545         mutex_init(&fs_info->cleaner_mutex);
1546         mutex_init(&fs_info->volume_mutex);
1547         mutex_init(&fs_info->tree_reloc_mutex);
1548         init_waitqueue_head(&fs_info->transaction_throttle);
1549         init_waitqueue_head(&fs_info->transaction_wait);
1550         init_waitqueue_head(&fs_info->async_submit_wait);
1551         init_waitqueue_head(&fs_info->tree_log_wait);
1552         atomic_set(&fs_info->tree_log_commit, 0);
1553         atomic_set(&fs_info->tree_log_writers, 0);
1554         fs_info->tree_log_transid = 0;
1555
1556 #if 0
1557         ret = add_hasher(fs_info, "crc32c");
1558         if (ret) {
1559                 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1560                 err = -ENOMEM;
1561                 goto fail_iput;
1562         }
1563 #endif
1564         __setup_root(4096, 4096, 4096, 4096, tree_root,
1565                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1566
1567
1568         bh = __bread(fs_devices->latest_bdev,
1569                      BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
1570         if (!bh)
1571                 goto fail_iput;
1572
1573         memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1574         brelse(bh);
1575
1576         memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1577
1578         disk_super = &fs_info->super_copy;
1579         if (!btrfs_super_root(disk_super))
1580                 goto fail_sb_buffer;
1581
1582         ret = btrfs_parse_options(tree_root, options);
1583         if (ret) {
1584                 err = ret;
1585                 goto fail_sb_buffer;
1586         }
1587
1588         /*
1589          * we need to start all the end_io workers up front because the
1590          * queue work function gets called at interrupt time, and so it
1591          * cannot dynamically grow.
1592          */
1593         btrfs_init_workers(&fs_info->workers, "worker",
1594                            fs_info->thread_pool_size);
1595
1596         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1597                            fs_info->thread_pool_size);
1598
1599         btrfs_init_workers(&fs_info->submit_workers, "submit",
1600                            min_t(u64, fs_devices->num_devices,
1601                            fs_info->thread_pool_size));
1602
1603         /* a higher idle thresh on the submit workers makes it much more
1604          * likely that bios will be send down in a sane order to the
1605          * devices
1606          */
1607         fs_info->submit_workers.idle_thresh = 64;
1608
1609         fs_info->workers.idle_thresh = 16;
1610         fs_info->workers.ordered = 1;
1611
1612         fs_info->delalloc_workers.idle_thresh = 2;
1613         fs_info->delalloc_workers.ordered = 1;
1614
1615         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1616         btrfs_init_workers(&fs_info->endio_workers, "endio",
1617                            fs_info->thread_pool_size);
1618         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1619                            fs_info->thread_pool_size);
1620
1621         /*
1622          * endios are largely parallel and should have a very
1623          * low idle thresh
1624          */
1625         fs_info->endio_workers.idle_thresh = 4;
1626         fs_info->endio_write_workers.idle_thresh = 64;
1627
1628         btrfs_start_workers(&fs_info->workers, 1);
1629         btrfs_start_workers(&fs_info->submit_workers, 1);
1630         btrfs_start_workers(&fs_info->delalloc_workers, 1);
1631         btrfs_start_workers(&fs_info->fixup_workers, 1);
1632         btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1633         btrfs_start_workers(&fs_info->endio_write_workers,
1634                             fs_info->thread_pool_size);
1635
1636         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1637         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1638                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1639
1640         nodesize = btrfs_super_nodesize(disk_super);
1641         leafsize = btrfs_super_leafsize(disk_super);
1642         sectorsize = btrfs_super_sectorsize(disk_super);
1643         stripesize = btrfs_super_stripesize(disk_super);
1644         tree_root->nodesize = nodesize;
1645         tree_root->leafsize = leafsize;
1646         tree_root->sectorsize = sectorsize;
1647         tree_root->stripesize = stripesize;
1648
1649         sb->s_blocksize = sectorsize;
1650         sb->s_blocksize_bits = blksize_bits(sectorsize);
1651
1652         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1653                     sizeof(disk_super->magic))) {
1654                 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1655                 goto fail_sb_buffer;
1656         }
1657
1658         mutex_lock(&fs_info->chunk_mutex);
1659         ret = btrfs_read_sys_array(tree_root);
1660         mutex_unlock(&fs_info->chunk_mutex);
1661         if (ret) {
1662                 printk("btrfs: failed to read the system array on %s\n",
1663                        sb->s_id);
1664                 goto fail_sys_array;
1665         }
1666
1667         blocksize = btrfs_level_size(tree_root,
1668                                      btrfs_super_chunk_root_level(disk_super));
1669         generation = btrfs_super_chunk_root_generation(disk_super);
1670
1671         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1672                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1673
1674         chunk_root->node = read_tree_block(chunk_root,
1675                                            btrfs_super_chunk_root(disk_super),
1676                                            blocksize, generation);
1677         BUG_ON(!chunk_root->node);
1678
1679         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1680                  (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1681                  BTRFS_UUID_SIZE);
1682
1683         mutex_lock(&fs_info->chunk_mutex);
1684         ret = btrfs_read_chunk_tree(chunk_root);
1685         mutex_unlock(&fs_info->chunk_mutex);
1686         if (ret) {
1687                 printk("btrfs: failed to read chunk tree on %s\n", sb->s_id);
1688                 goto fail_chunk_root;
1689         }
1690
1691         btrfs_close_extra_devices(fs_devices);
1692
1693         blocksize = btrfs_level_size(tree_root,
1694                                      btrfs_super_root_level(disk_super));
1695         generation = btrfs_super_generation(disk_super);
1696
1697         tree_root->node = read_tree_block(tree_root,
1698                                           btrfs_super_root(disk_super),
1699                                           blocksize, generation);
1700         if (!tree_root->node)
1701                 goto fail_chunk_root;
1702
1703
1704         ret = find_and_setup_root(tree_root, fs_info,
1705                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1706         if (ret)
1707                 goto fail_tree_root;
1708         extent_root->track_dirty = 1;
1709
1710         ret = find_and_setup_root(tree_root, fs_info,
1711                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1712         dev_root->track_dirty = 1;
1713
1714         if (ret)
1715                 goto fail_extent_root;
1716
1717         btrfs_read_block_groups(extent_root);
1718
1719         fs_info->generation = generation + 1;
1720         fs_info->last_trans_committed = generation;
1721         fs_info->data_alloc_profile = (u64)-1;
1722         fs_info->metadata_alloc_profile = (u64)-1;
1723         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1724         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1725                                                "btrfs-cleaner");
1726         if (!fs_info->cleaner_kthread)
1727                 goto fail_extent_root;
1728
1729         fs_info->transaction_kthread = kthread_run(transaction_kthread,
1730                                                    tree_root,
1731                                                    "btrfs-transaction");
1732         if (!fs_info->transaction_kthread)
1733                 goto fail_cleaner;
1734
1735         if (btrfs_super_log_root(disk_super) != 0) {
1736                 u32 blocksize;
1737                 u64 bytenr = btrfs_super_log_root(disk_super);
1738
1739                 if (fs_devices->rw_devices == 0) {
1740                         printk("Btrfs log replay required on RO media\n");
1741                         err = -EIO;
1742                         goto fail_trans_kthread;
1743                 }
1744                 blocksize =
1745                      btrfs_level_size(tree_root,
1746                                       btrfs_super_log_root_level(disk_super));
1747
1748                 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1749                                                       GFP_NOFS);
1750
1751                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1752                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1753
1754                 log_tree_root->node = read_tree_block(tree_root, bytenr,
1755                                                       blocksize,
1756                                                       generation + 1);
1757                 ret = btrfs_recover_log_trees(log_tree_root);
1758                 BUG_ON(ret);
1759         }
1760
1761         if (!(sb->s_flags & MS_RDONLY)) {
1762                 ret = btrfs_cleanup_reloc_trees(tree_root);
1763                 BUG_ON(ret);
1764         }
1765
1766         location.objectid = BTRFS_FS_TREE_OBJECTID;
1767         location.type = BTRFS_ROOT_ITEM_KEY;
1768         location.offset = (u64)-1;
1769
1770         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1771         if (!fs_info->fs_root)
1772                 goto fail_trans_kthread;
1773         return tree_root;
1774
1775 fail_trans_kthread:
1776         kthread_stop(fs_info->transaction_kthread);
1777 fail_cleaner:
1778         kthread_stop(fs_info->cleaner_kthread);
1779
1780         /*
1781          * make sure we're done with the btree inode before we stop our
1782          * kthreads
1783          */
1784         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1785         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1786
1787 fail_extent_root:
1788         free_extent_buffer(extent_root->node);
1789 fail_tree_root:
1790         free_extent_buffer(tree_root->node);
1791 fail_chunk_root:
1792         free_extent_buffer(chunk_root->node);
1793 fail_sys_array:
1794         free_extent_buffer(dev_root->node);
1795 fail_sb_buffer:
1796         btrfs_stop_workers(&fs_info->fixup_workers);
1797         btrfs_stop_workers(&fs_info->delalloc_workers);
1798         btrfs_stop_workers(&fs_info->workers);
1799         btrfs_stop_workers(&fs_info->endio_workers);
1800         btrfs_stop_workers(&fs_info->endio_write_workers);
1801         btrfs_stop_workers(&fs_info->submit_workers);
1802 fail_iput:
1803         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1804         iput(fs_info->btree_inode);
1805 fail:
1806         btrfs_close_devices(fs_info->fs_devices);
1807         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1808
1809         kfree(extent_root);
1810         kfree(tree_root);
1811         bdi_destroy(&fs_info->bdi);
1812         kfree(fs_info);
1813         kfree(chunk_root);
1814         kfree(dev_root);
1815         return ERR_PTR(err);
1816 }
1817
1818 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1819 {
1820         char b[BDEVNAME_SIZE];
1821
1822         if (uptodate) {
1823                 set_buffer_uptodate(bh);
1824         } else {
1825                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1826                         printk(KERN_WARNING "lost page write due to "
1827                                         "I/O error on %s\n",
1828                                        bdevname(bh->b_bdev, b));
1829                 }
1830                 /* note, we dont' set_buffer_write_io_error because we have
1831                  * our own ways of dealing with the IO errors
1832                  */
1833                 clear_buffer_uptodate(bh);
1834         }
1835         unlock_buffer(bh);
1836         put_bh(bh);
1837 }
1838
1839 int write_all_supers(struct btrfs_root *root)
1840 {
1841         struct list_head *cur;
1842         struct list_head *head = &root->fs_info->fs_devices->devices;
1843         struct btrfs_device *dev;
1844         struct btrfs_super_block *sb;
1845         struct btrfs_dev_item *dev_item;
1846         struct buffer_head *bh;
1847         int ret;
1848         int do_barriers;
1849         int max_errors;
1850         int total_errors = 0;
1851         u32 crc;
1852         u64 flags;
1853
1854         max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1855         do_barriers = !btrfs_test_opt(root, NOBARRIER);
1856
1857         sb = &root->fs_info->super_for_commit;
1858         dev_item = &sb->dev_item;
1859         list_for_each(cur, head) {
1860                 dev = list_entry(cur, struct btrfs_device, dev_list);
1861                 if (!dev->bdev) {
1862                         total_errors++;
1863                         continue;
1864                 }
1865                 if (!dev->in_fs_metadata || !dev->writeable)
1866                         continue;
1867
1868                 btrfs_set_stack_device_generation(dev_item, 0);
1869                 btrfs_set_stack_device_type(dev_item, dev->type);
1870                 btrfs_set_stack_device_id(dev_item, dev->devid);
1871                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1872                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1873                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1874                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1875                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1876                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1877                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
1878                 flags = btrfs_super_flags(sb);
1879                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1880
1881
1882                 crc = ~(u32)0;
1883                 crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
1884                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1885                 btrfs_csum_final(crc, sb->csum);
1886
1887                 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
1888                               BTRFS_SUPER_INFO_SIZE);
1889
1890                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
1891                 dev->pending_io = bh;
1892
1893                 get_bh(bh);
1894                 set_buffer_uptodate(bh);
1895                 lock_buffer(bh);
1896                 bh->b_end_io = btrfs_end_buffer_write_sync;
1897
1898                 if (do_barriers && dev->barriers) {
1899                         ret = submit_bh(WRITE_BARRIER, bh);
1900                         if (ret == -EOPNOTSUPP) {
1901                                 printk("btrfs: disabling barriers on dev %s\n",
1902                                        dev->name);
1903                                 set_buffer_uptodate(bh);
1904                                 dev->barriers = 0;
1905                                 get_bh(bh);
1906                                 lock_buffer(bh);
1907                                 ret = submit_bh(WRITE, bh);
1908                         }
1909                 } else {
1910                         ret = submit_bh(WRITE, bh);
1911                 }
1912                 if (ret)
1913                         total_errors++;
1914         }
1915         if (total_errors > max_errors) {
1916                 printk("btrfs: %d errors while writing supers\n", total_errors);
1917                 BUG();
1918         }
1919         total_errors = 0;
1920
1921         list_for_each(cur, head) {
1922                 dev = list_entry(cur, struct btrfs_device, dev_list);
1923                 if (!dev->bdev)
1924                         continue;
1925                 if (!dev->in_fs_metadata || !dev->writeable)
1926                         continue;
1927
1928                 BUG_ON(!dev->pending_io);
1929                 bh = dev->pending_io;
1930                 wait_on_buffer(bh);
1931                 if (!buffer_uptodate(dev->pending_io)) {
1932                         if (do_barriers && dev->barriers) {
1933                                 printk("btrfs: disabling barriers on dev %s\n",
1934                                        dev->name);
1935                                 set_buffer_uptodate(bh);
1936                                 get_bh(bh);
1937                                 lock_buffer(bh);
1938                                 dev->barriers = 0;
1939                                 ret = submit_bh(WRITE, bh);
1940                                 BUG_ON(ret);
1941                                 wait_on_buffer(bh);
1942                                 if (!buffer_uptodate(bh))
1943                                         total_errors++;
1944                         } else {
1945                                 total_errors++;
1946                         }
1947
1948                 }
1949                 dev->pending_io = NULL;
1950                 brelse(bh);
1951         }
1952         if (total_errors > max_errors) {
1953                 printk("btrfs: %d errors while writing supers\n", total_errors);
1954                 BUG();
1955         }
1956         return 0;
1957 }
1958
1959 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1960                       *root)
1961 {
1962         int ret;
1963
1964         ret = write_all_supers(root);
1965         return ret;
1966 }
1967
1968 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1969 {
1970         radix_tree_delete(&fs_info->fs_roots_radix,
1971                           (unsigned long)root->root_key.objectid);
1972         if (root->anon_super.s_dev) {
1973                 down_write(&root->anon_super.s_umount);
1974                 kill_anon_super(&root->anon_super);
1975         }
1976 #if 0
1977         if (root->in_sysfs)
1978                 btrfs_sysfs_del_root(root);
1979 #endif
1980         if (root->node)
1981                 free_extent_buffer(root->node);
1982         if (root->commit_root)
1983                 free_extent_buffer(root->commit_root);
1984         if (root->name)
1985                 kfree(root->name);
1986         kfree(root);
1987         return 0;
1988 }
1989
1990 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1991 {
1992         int ret;
1993         struct btrfs_root *gang[8];
1994         int i;
1995
1996         while(1) {
1997                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1998                                              (void **)gang, 0,
1999                                              ARRAY_SIZE(gang));
2000                 if (!ret)
2001                         break;
2002                 for (i = 0; i < ret; i++)
2003                         btrfs_free_fs_root(fs_info, gang[i]);
2004         }
2005         return 0;
2006 }
2007
2008 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2009 {
2010         u64 root_objectid = 0;
2011         struct btrfs_root *gang[8];
2012         int i;
2013         int ret;
2014
2015         while (1) {
2016                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2017                                              (void **)gang, root_objectid,
2018                                              ARRAY_SIZE(gang));
2019                 if (!ret)
2020                         break;
2021                 for (i = 0; i < ret; i++) {
2022                         root_objectid = gang[i]->root_key.objectid;
2023                         ret = btrfs_find_dead_roots(fs_info->tree_root,
2024                                                     root_objectid, gang[i]);
2025                         BUG_ON(ret);
2026                         btrfs_orphan_cleanup(gang[i]);
2027                 }
2028                 root_objectid++;
2029         }
2030         return 0;
2031 }
2032
2033 int btrfs_commit_super(struct btrfs_root *root)
2034 {
2035         struct btrfs_trans_handle *trans;
2036         int ret;
2037
2038         mutex_lock(&root->fs_info->cleaner_mutex);
2039         btrfs_clean_old_snapshots(root);
2040         mutex_unlock(&root->fs_info->cleaner_mutex);
2041         trans = btrfs_start_transaction(root, 1);
2042         ret = btrfs_commit_transaction(trans, root);
2043         BUG_ON(ret);
2044         /* run commit again to drop the original snapshot */
2045         trans = btrfs_start_transaction(root, 1);
2046         btrfs_commit_transaction(trans, root);
2047         ret = btrfs_write_and_wait_transaction(NULL, root);
2048         BUG_ON(ret);
2049
2050         ret = write_ctree_super(NULL, root);
2051         return ret;
2052 }
2053
2054 int close_ctree(struct btrfs_root *root)
2055 {
2056         struct btrfs_fs_info *fs_info = root->fs_info;
2057         int ret;
2058
2059         fs_info->closing = 1;
2060         smp_mb();
2061
2062         kthread_stop(root->fs_info->transaction_kthread);
2063         kthread_stop(root->fs_info->cleaner_kthread);
2064
2065         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2066                 ret =  btrfs_commit_super(root);
2067                 if (ret) {
2068                         printk("btrfs: commit super returns %d\n", ret);
2069                 }
2070         }
2071
2072         if (fs_info->delalloc_bytes) {
2073                 printk("btrfs: at unmount delalloc count %Lu\n",
2074                        fs_info->delalloc_bytes);
2075         }
2076         if (fs_info->total_ref_cache_size) {
2077                 printk("btrfs: at umount reference cache size %Lu\n",
2078                         fs_info->total_ref_cache_size);
2079         }
2080
2081         if (fs_info->extent_root->node)
2082                 free_extent_buffer(fs_info->extent_root->node);
2083
2084         if (fs_info->tree_root->node)
2085                 free_extent_buffer(fs_info->tree_root->node);
2086
2087         if (root->fs_info->chunk_root->node);
2088                 free_extent_buffer(root->fs_info->chunk_root->node);
2089
2090         if (root->fs_info->dev_root->node);
2091                 free_extent_buffer(root->fs_info->dev_root->node);
2092
2093         btrfs_free_block_groups(root->fs_info);
2094
2095         del_fs_roots(fs_info);
2096
2097         iput(fs_info->btree_inode);
2098
2099         btrfs_stop_workers(&fs_info->fixup_workers);
2100         btrfs_stop_workers(&fs_info->delalloc_workers);
2101         btrfs_stop_workers(&fs_info->workers);
2102         btrfs_stop_workers(&fs_info->endio_workers);
2103         btrfs_stop_workers(&fs_info->endio_write_workers);
2104         btrfs_stop_workers(&fs_info->submit_workers);
2105
2106 #if 0
2107         while(!list_empty(&fs_info->hashers)) {
2108                 struct btrfs_hasher *hasher;
2109                 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
2110                                     hashers);
2111                 list_del(&hasher->hashers);
2112                 crypto_free_hash(&fs_info->hash_tfm);
2113                 kfree(hasher);
2114         }
2115 #endif
2116         btrfs_close_devices(fs_info->fs_devices);
2117         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2118
2119         bdi_destroy(&fs_info->bdi);
2120
2121         kfree(fs_info->extent_root);
2122         kfree(fs_info->tree_root);
2123         kfree(fs_info->chunk_root);
2124         kfree(fs_info->dev_root);
2125         return 0;
2126 }
2127
2128 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2129 {
2130         int ret;
2131         struct inode *btree_inode = buf->first_page->mapping->host;
2132
2133         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2134         if (!ret)
2135                 return ret;
2136
2137         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2138                                     parent_transid);
2139         return !ret;
2140 }
2141
2142 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2143 {
2144         struct inode *btree_inode = buf->first_page->mapping->host;
2145         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2146                                           buf);
2147 }
2148
2149 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2150 {
2151         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2152         u64 transid = btrfs_header_generation(buf);
2153         struct inode *btree_inode = root->fs_info->btree_inode;
2154
2155         WARN_ON(!btrfs_tree_locked(buf));
2156         if (transid != root->fs_info->generation) {
2157                 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
2158                         (unsigned long long)buf->start,
2159                         transid, root->fs_info->generation);
2160                 WARN_ON(1);
2161         }
2162         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
2163 }
2164
2165 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2166 {
2167         /*
2168          * looks as though older kernels can get into trouble with
2169          * this code, they end up stuck in balance_dirty_pages forever
2170          */
2171         struct extent_io_tree *tree;
2172         u64 num_dirty;
2173         u64 start = 0;
2174         unsigned long thresh = 32 * 1024 * 1024;
2175         tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
2176
2177         if (current_is_pdflush() || current->flags & PF_MEMALLOC)
2178                 return;
2179
2180         num_dirty = count_range_bits(tree, &start, (u64)-1,
2181                                      thresh, EXTENT_DIRTY);
2182         if (num_dirty > thresh) {
2183                 balance_dirty_pages_ratelimited_nr(
2184                                    root->fs_info->btree_inode->i_mapping, 1);
2185         }
2186         return;
2187 }
2188
2189 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2190 {
2191         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2192         int ret;
2193         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2194         if (ret == 0) {
2195                 buf->flags |= EXTENT_UPTODATE;
2196         }
2197         return ret;
2198 }
2199
2200 int btree_lock_page_hook(struct page *page)
2201 {
2202         struct inode *inode = page->mapping->host;
2203         struct btrfs_root *root = BTRFS_I(inode)->root;
2204         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2205         struct extent_buffer *eb;
2206         unsigned long len;
2207         u64 bytenr = page_offset(page);
2208
2209         if (page->private == EXTENT_PAGE_PRIVATE)
2210                 goto out;
2211
2212         len = page->private >> 2;
2213         eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2214         if (!eb)
2215                 goto out;
2216
2217         btrfs_tree_lock(eb);
2218         spin_lock(&root->fs_info->hash_lock);
2219         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2220         spin_unlock(&root->fs_info->hash_lock);
2221         btrfs_tree_unlock(eb);
2222         free_extent_buffer(eb);
2223 out:
2224         lock_page(page);
2225         return 0;
2226 }
2227
2228 static struct extent_io_ops btree_extent_io_ops = {
2229         .write_cache_pages_lock_hook = btree_lock_page_hook,
2230         .readpage_end_io_hook = btree_readpage_end_io_hook,
2231         .submit_bio_hook = btree_submit_bio_hook,
2232         /* note we're sharing with inode.c for the merge bio hook */
2233         .merge_bio_hook = btrfs_merge_bio_hook,
2234 };