Btrfs: add support for multiple csum algorithms
[safe/jmp/linux-2.6] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/version.h>
20 #include <linux/fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/scatterlist.h>
23 #include <linux/swap.h>
24 #include <linux/radix-tree.h>
25 #include <linux/writeback.h>
26 #include <linux/buffer_head.h> // for block_sync_page
27 #include <linux/workqueue.h>
28 #include <linux/kthread.h>
29 #include <linux/freezer.h>
30 #include "compat.h"
31 #include "crc32c.h"
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "volumes.h"
37 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "locking.h"
40 #include "ref-cache.h"
41 #include "tree-log.h"
42
43 #if 0
44 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
45 {
46         if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
47                 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
48                        (unsigned long long)extent_buffer_blocknr(buf),
49                        (unsigned long long)btrfs_header_blocknr(buf));
50                 return 1;
51         }
52         return 0;
53 }
54 #endif
55
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58
59 /*
60  * end_io_wq structs are used to do processing in task context when an IO is
61  * complete.  This is used during reads to verify checksums, and it is used
62  * by writes to insert metadata for new file extents after IO is complete.
63  */
64 struct end_io_wq {
65         struct bio *bio;
66         bio_end_io_t *end_io;
67         void *private;
68         struct btrfs_fs_info *info;
69         int error;
70         int metadata;
71         struct list_head list;
72         struct btrfs_work work;
73 };
74
75 /*
76  * async submit bios are used to offload expensive checksumming
77  * onto the worker threads.  They checksum file and metadata bios
78  * just before they are sent down the IO stack.
79  */
80 struct async_submit_bio {
81         struct inode *inode;
82         struct bio *bio;
83         struct list_head list;
84         extent_submit_bio_hook_t *submit_bio_start;
85         extent_submit_bio_hook_t *submit_bio_done;
86         int rw;
87         int mirror_num;
88         unsigned long bio_flags;
89         struct btrfs_work work;
90 };
91
92 /*
93  * extents on the btree inode are pretty simple, there's one extent
94  * that covers the entire device
95  */
96 static struct extent_map *btree_get_extent(struct inode *inode,
97                 struct page *page, size_t page_offset, u64 start, u64 len,
98                 int create)
99 {
100         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
101         struct extent_map *em;
102         int ret;
103
104         spin_lock(&em_tree->lock);
105         em = lookup_extent_mapping(em_tree, start, len);
106         if (em) {
107                 em->bdev =
108                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
109                 spin_unlock(&em_tree->lock);
110                 goto out;
111         }
112         spin_unlock(&em_tree->lock);
113
114         em = alloc_extent_map(GFP_NOFS);
115         if (!em) {
116                 em = ERR_PTR(-ENOMEM);
117                 goto out;
118         }
119         em->start = 0;
120         em->len = (u64)-1;
121         em->block_len = (u64)-1;
122         em->block_start = 0;
123         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
124
125         spin_lock(&em_tree->lock);
126         ret = add_extent_mapping(em_tree, em);
127         if (ret == -EEXIST) {
128                 u64 failed_start = em->start;
129                 u64 failed_len = em->len;
130
131                 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
132                        em->start, em->len, em->block_start);
133                 free_extent_map(em);
134                 em = lookup_extent_mapping(em_tree, start, len);
135                 if (em) {
136                         printk("after failing, found %Lu %Lu %Lu\n",
137                                em->start, em->len, em->block_start);
138                         ret = 0;
139                 } else {
140                         em = lookup_extent_mapping(em_tree, failed_start,
141                                                    failed_len);
142                         if (em) {
143                                 printk("double failure lookup gives us "
144                                        "%Lu %Lu -> %Lu\n", em->start,
145                                        em->len, em->block_start);
146                                 free_extent_map(em);
147                         }
148                         ret = -EIO;
149                 }
150         } else if (ret) {
151                 free_extent_map(em);
152                 em = NULL;
153         }
154         spin_unlock(&em_tree->lock);
155
156         if (ret)
157                 em = ERR_PTR(ret);
158 out:
159         return em;
160 }
161
162 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
163 {
164         return btrfs_crc32c(seed, data, len);
165 }
166
167 void btrfs_csum_final(u32 crc, char *result)
168 {
169         *(__le32 *)result = ~cpu_to_le32(crc);
170 }
171
172 /*
173  * compute the csum for a btree block, and either verify it or write it
174  * into the csum field of the block.
175  */
176 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
177                            int verify)
178 {
179         u16 csum_size =
180                 btrfs_super_csum_size(&root->fs_info->super_copy);
181         char *result = NULL;
182         unsigned long len;
183         unsigned long cur_len;
184         unsigned long offset = BTRFS_CSUM_SIZE;
185         char *map_token = NULL;
186         char *kaddr;
187         unsigned long map_start;
188         unsigned long map_len;
189         int err;
190         u32 crc = ~(u32)0;
191         unsigned long inline_result;
192
193         len = buf->len - offset;
194         while(len > 0) {
195                 err = map_private_extent_buffer(buf, offset, 32,
196                                         &map_token, &kaddr,
197                                         &map_start, &map_len, KM_USER0);
198                 if (err) {
199                         printk("failed to map extent buffer! %lu\n",
200                                offset);
201                         return 1;
202                 }
203                 cur_len = min(len, map_len - (offset - map_start));
204                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
205                                       crc, cur_len);
206                 len -= cur_len;
207                 offset += cur_len;
208                 unmap_extent_buffer(buf, map_token, KM_USER0);
209         }
210         if (csum_size > sizeof(inline_result)) {
211                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
212                 if (!result)
213                         return 1;
214         } else {
215                 result = (char *)&inline_result;
216         }
217
218         btrfs_csum_final(crc, result);
219
220         if (verify) {
221                 /* FIXME, this is not good */
222                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
223                         u32 val;
224                         u32 found = 0;
225                         memcpy(&found, result, csum_size);
226
227                         read_extent_buffer(buf, &val, 0, csum_size);
228                         printk("btrfs: %s checksum verify failed on %llu "
229                                "wanted %X found %X level %d\n",
230                                root->fs_info->sb->s_id,
231                                buf->start, val, found, btrfs_header_level(buf));
232                         if (result != (char *)&inline_result)
233                                 kfree(result);
234                         return 1;
235                 }
236         } else {
237                 write_extent_buffer(buf, result, 0, csum_size);
238         }
239         if (result != (char *)&inline_result)
240                 kfree(result);
241         return 0;
242 }
243
244 /*
245  * we can't consider a given block up to date unless the transid of the
246  * block matches the transid in the parent node's pointer.  This is how we
247  * detect blocks that either didn't get written at all or got written
248  * in the wrong place.
249  */
250 static int verify_parent_transid(struct extent_io_tree *io_tree,
251                                  struct extent_buffer *eb, u64 parent_transid)
252 {
253         int ret;
254
255         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
256                 return 0;
257
258         lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
259         if (extent_buffer_uptodate(io_tree, eb) &&
260             btrfs_header_generation(eb) == parent_transid) {
261                 ret = 0;
262                 goto out;
263         }
264         printk("parent transid verify failed on %llu wanted %llu found %llu\n",
265                (unsigned long long)eb->start,
266                (unsigned long long)parent_transid,
267                (unsigned long long)btrfs_header_generation(eb));
268         ret = 1;
269         clear_extent_buffer_uptodate(io_tree, eb);
270 out:
271         unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
272                       GFP_NOFS);
273         return ret;
274 }
275
276 /*
277  * helper to read a given tree block, doing retries as required when
278  * the checksums don't match and we have alternate mirrors to try.
279  */
280 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
281                                           struct extent_buffer *eb,
282                                           u64 start, u64 parent_transid)
283 {
284         struct extent_io_tree *io_tree;
285         int ret;
286         int num_copies = 0;
287         int mirror_num = 0;
288
289         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
290         while (1) {
291                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
292                                                btree_get_extent, mirror_num);
293                 if (!ret &&
294                     !verify_parent_transid(io_tree, eb, parent_transid))
295                         return ret;
296 printk("read extent buffer pages failed with ret %d mirror no %d\n", ret, mirror_num);
297                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
298                                               eb->start, eb->len);
299                 if (num_copies == 1)
300                         return ret;
301
302                 mirror_num++;
303                 if (mirror_num > num_copies)
304                         return ret;
305         }
306         return -EIO;
307 }
308
309 /*
310  * checksum a dirty tree block before IO.  This has extra checks to make
311  * sure we only fill in the checksum field in the first page of a multi-page block
312  */
313 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
314 {
315         struct extent_io_tree *tree;
316         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
317         u64 found_start;
318         int found_level;
319         unsigned long len;
320         struct extent_buffer *eb;
321         int ret;
322
323         tree = &BTRFS_I(page->mapping->host)->io_tree;
324
325         if (page->private == EXTENT_PAGE_PRIVATE)
326                 goto out;
327         if (!page->private)
328                 goto out;
329         len = page->private >> 2;
330         if (len == 0) {
331                 WARN_ON(1);
332         }
333         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
334         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
335                                              btrfs_header_generation(eb));
336         BUG_ON(ret);
337         found_start = btrfs_header_bytenr(eb);
338         if (found_start != start) {
339                 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
340                        start, found_start, len);
341                 WARN_ON(1);
342                 goto err;
343         }
344         if (eb->first_page != page) {
345                 printk("bad first page %lu %lu\n", eb->first_page->index,
346                        page->index);
347                 WARN_ON(1);
348                 goto err;
349         }
350         if (!PageUptodate(page)) {
351                 printk("csum not up to date page %lu\n", page->index);
352                 WARN_ON(1);
353                 goto err;
354         }
355         found_level = btrfs_header_level(eb);
356
357         csum_tree_block(root, eb, 0);
358 err:
359         free_extent_buffer(eb);
360 out:
361         return 0;
362 }
363
364 static int check_tree_block_fsid(struct btrfs_root *root,
365                                  struct extent_buffer *eb)
366 {
367         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
368         u8 fsid[BTRFS_UUID_SIZE];
369         int ret = 1;
370
371         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
372                            BTRFS_FSID_SIZE);
373         while (fs_devices) {
374                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
375                         ret = 0;
376                         break;
377                 }
378                 fs_devices = fs_devices->seed;
379         }
380         return ret;
381 }
382
383 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
384                                struct extent_state *state)
385 {
386         struct extent_io_tree *tree;
387         u64 found_start;
388         int found_level;
389         unsigned long len;
390         struct extent_buffer *eb;
391         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
392         int ret = 0;
393
394         tree = &BTRFS_I(page->mapping->host)->io_tree;
395         if (page->private == EXTENT_PAGE_PRIVATE)
396                 goto out;
397         if (!page->private)
398                 goto out;
399         len = page->private >> 2;
400         if (len == 0) {
401                 WARN_ON(1);
402         }
403         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
404
405         found_start = btrfs_header_bytenr(eb);
406         if (found_start != start) {
407                 printk("bad tree block start %llu %llu\n",
408                        (unsigned long long)found_start,
409                        (unsigned long long)eb->start);
410                 ret = -EIO;
411                 goto err;
412         }
413         if (eb->first_page != page) {
414                 printk("bad first page %lu %lu\n", eb->first_page->index,
415                        page->index);
416                 WARN_ON(1);
417                 ret = -EIO;
418                 goto err;
419         }
420         if (check_tree_block_fsid(root, eb)) {
421                 printk("bad fsid on block %Lu\n", eb->start);
422                 ret = -EIO;
423                 goto err;
424         }
425         found_level = btrfs_header_level(eb);
426
427         ret = csum_tree_block(root, eb, 1);
428         if (ret)
429                 ret = -EIO;
430
431         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
432         end = eb->start + end - 1;
433 err:
434         free_extent_buffer(eb);
435 out:
436         return ret;
437 }
438
439 static void end_workqueue_bio(struct bio *bio, int err)
440 {
441         struct end_io_wq *end_io_wq = bio->bi_private;
442         struct btrfs_fs_info *fs_info;
443
444         fs_info = end_io_wq->info;
445         end_io_wq->error = err;
446         end_io_wq->work.func = end_workqueue_fn;
447         end_io_wq->work.flags = 0;
448         if (bio->bi_rw & (1 << BIO_RW))
449                 btrfs_queue_worker(&fs_info->endio_write_workers,
450                                    &end_io_wq->work);
451         else
452                 btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
453 }
454
455 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
456                         int metadata)
457 {
458         struct end_io_wq *end_io_wq;
459         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
460         if (!end_io_wq)
461                 return -ENOMEM;
462
463         end_io_wq->private = bio->bi_private;
464         end_io_wq->end_io = bio->bi_end_io;
465         end_io_wq->info = info;
466         end_io_wq->error = 0;
467         end_io_wq->bio = bio;
468         end_io_wq->metadata = metadata;
469
470         bio->bi_private = end_io_wq;
471         bio->bi_end_io = end_workqueue_bio;
472         return 0;
473 }
474
475 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
476 {
477         unsigned long limit = min_t(unsigned long,
478                                     info->workers.max_workers,
479                                     info->fs_devices->open_devices);
480         return 256 * limit;
481 }
482
483 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
484 {
485         return atomic_read(&info->nr_async_bios) >
486                 btrfs_async_submit_limit(info);
487 }
488
489 static void run_one_async_start(struct btrfs_work *work)
490 {
491         struct btrfs_fs_info *fs_info;
492         struct async_submit_bio *async;
493
494         async = container_of(work, struct  async_submit_bio, work);
495         fs_info = BTRFS_I(async->inode)->root->fs_info;
496         async->submit_bio_start(async->inode, async->rw, async->bio,
497                                async->mirror_num, async->bio_flags);
498 }
499
500 static void run_one_async_done(struct btrfs_work *work)
501 {
502         struct btrfs_fs_info *fs_info;
503         struct async_submit_bio *async;
504         int limit;
505
506         async = container_of(work, struct  async_submit_bio, work);
507         fs_info = BTRFS_I(async->inode)->root->fs_info;
508
509         limit = btrfs_async_submit_limit(fs_info);
510         limit = limit * 2 / 3;
511
512         atomic_dec(&fs_info->nr_async_submits);
513
514         if (atomic_read(&fs_info->nr_async_submits) < limit &&
515             waitqueue_active(&fs_info->async_submit_wait))
516                 wake_up(&fs_info->async_submit_wait);
517
518         async->submit_bio_done(async->inode, async->rw, async->bio,
519                                async->mirror_num, async->bio_flags);
520 }
521
522 static void run_one_async_free(struct btrfs_work *work)
523 {
524         struct async_submit_bio *async;
525
526         async = container_of(work, struct  async_submit_bio, work);
527         kfree(async);
528 }
529
530 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
531                         int rw, struct bio *bio, int mirror_num,
532                         unsigned long bio_flags,
533                         extent_submit_bio_hook_t *submit_bio_start,
534                         extent_submit_bio_hook_t *submit_bio_done)
535 {
536         struct async_submit_bio *async;
537
538         async = kmalloc(sizeof(*async), GFP_NOFS);
539         if (!async)
540                 return -ENOMEM;
541
542         async->inode = inode;
543         async->rw = rw;
544         async->bio = bio;
545         async->mirror_num = mirror_num;
546         async->submit_bio_start = submit_bio_start;
547         async->submit_bio_done = submit_bio_done;
548
549         async->work.func = run_one_async_start;
550         async->work.ordered_func = run_one_async_done;
551         async->work.ordered_free = run_one_async_free;
552
553         async->work.flags = 0;
554         async->bio_flags = bio_flags;
555
556         atomic_inc(&fs_info->nr_async_submits);
557         btrfs_queue_worker(&fs_info->workers, &async->work);
558 #if 0
559         int limit = btrfs_async_submit_limit(fs_info);
560         if (atomic_read(&fs_info->nr_async_submits) > limit) {
561                 wait_event_timeout(fs_info->async_submit_wait,
562                            (atomic_read(&fs_info->nr_async_submits) < limit),
563                            HZ/10);
564
565                 wait_event_timeout(fs_info->async_submit_wait,
566                            (atomic_read(&fs_info->nr_async_bios) < limit),
567                            HZ/10);
568         }
569 #endif
570         while(atomic_read(&fs_info->async_submit_draining) &&
571               atomic_read(&fs_info->nr_async_submits)) {
572                 wait_event(fs_info->async_submit_wait,
573                            (atomic_read(&fs_info->nr_async_submits) == 0));
574         }
575
576         return 0;
577 }
578
579 static int btree_csum_one_bio(struct bio *bio)
580 {
581         struct bio_vec *bvec = bio->bi_io_vec;
582         int bio_index = 0;
583         struct btrfs_root *root;
584
585         WARN_ON(bio->bi_vcnt <= 0);
586         while(bio_index < bio->bi_vcnt) {
587                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
588                 csum_dirty_buffer(root, bvec->bv_page);
589                 bio_index++;
590                 bvec++;
591         }
592         return 0;
593 }
594
595 static int __btree_submit_bio_start(struct inode *inode, int rw,
596                                     struct bio *bio, int mirror_num,
597                                     unsigned long bio_flags)
598 {
599         /*
600          * when we're called for a write, we're already in the async
601          * submission context.  Just jump into btrfs_map_bio
602          */
603         btree_csum_one_bio(bio);
604         return 0;
605 }
606
607 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
608                                  int mirror_num, unsigned long bio_flags)
609 {
610         /*
611          * when we're called for a write, we're already in the async
612          * submission context.  Just jump into btrfs_map_bio
613          */
614         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
615 }
616
617 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
618                                  int mirror_num, unsigned long bio_flags)
619 {
620         /*
621          * kthread helpers are used to submit writes so that checksumming
622          * can happen in parallel across all CPUs
623          */
624         if (!(rw & (1 << BIO_RW))) {
625                 int ret;
626                 /*
627                  * called for a read, do the setup so that checksum validation
628                  * can happen in the async kernel threads
629                  */
630                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
631                                           bio, 1);
632                 BUG_ON(ret);
633
634                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
635                                      mirror_num, 0);
636         }
637         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
638                                    inode, rw, bio, mirror_num, 0,
639                                    __btree_submit_bio_start,
640                                    __btree_submit_bio_done);
641 }
642
643 static int btree_writepage(struct page *page, struct writeback_control *wbc)
644 {
645         struct extent_io_tree *tree;
646         tree = &BTRFS_I(page->mapping->host)->io_tree;
647
648         if (current->flags & PF_MEMALLOC) {
649                 redirty_page_for_writepage(wbc, page);
650                 unlock_page(page);
651                 return 0;
652         }
653         return extent_write_full_page(tree, page, btree_get_extent, wbc);
654 }
655
656 static int btree_writepages(struct address_space *mapping,
657                             struct writeback_control *wbc)
658 {
659         struct extent_io_tree *tree;
660         tree = &BTRFS_I(mapping->host)->io_tree;
661         if (wbc->sync_mode == WB_SYNC_NONE) {
662                 u64 num_dirty;
663                 u64 start = 0;
664                 unsigned long thresh = 32 * 1024 * 1024;
665
666                 if (wbc->for_kupdate)
667                         return 0;
668
669                 num_dirty = count_range_bits(tree, &start, (u64)-1,
670                                              thresh, EXTENT_DIRTY);
671                 if (num_dirty < thresh) {
672                         return 0;
673                 }
674         }
675         return extent_writepages(tree, mapping, btree_get_extent, wbc);
676 }
677
678 static int btree_readpage(struct file *file, struct page *page)
679 {
680         struct extent_io_tree *tree;
681         tree = &BTRFS_I(page->mapping->host)->io_tree;
682         return extent_read_full_page(tree, page, btree_get_extent);
683 }
684
685 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
686 {
687         struct extent_io_tree *tree;
688         struct extent_map_tree *map;
689         int ret;
690
691         if (PageWriteback(page) || PageDirty(page))
692             return 0;
693
694         tree = &BTRFS_I(page->mapping->host)->io_tree;
695         map = &BTRFS_I(page->mapping->host)->extent_tree;
696
697         ret = try_release_extent_state(map, tree, page, gfp_flags);
698         if (!ret) {
699                 return 0;
700         }
701
702         ret = try_release_extent_buffer(tree, page);
703         if (ret == 1) {
704                 ClearPagePrivate(page);
705                 set_page_private(page, 0);
706                 page_cache_release(page);
707         }
708
709         return ret;
710 }
711
712 static void btree_invalidatepage(struct page *page, unsigned long offset)
713 {
714         struct extent_io_tree *tree;
715         tree = &BTRFS_I(page->mapping->host)->io_tree;
716         extent_invalidatepage(tree, page, offset);
717         btree_releasepage(page, GFP_NOFS);
718         if (PagePrivate(page)) {
719                 printk("warning page private not zero on page %Lu\n",
720                        page_offset(page));
721                 ClearPagePrivate(page);
722                 set_page_private(page, 0);
723                 page_cache_release(page);
724         }
725 }
726
727 #if 0
728 static int btree_writepage(struct page *page, struct writeback_control *wbc)
729 {
730         struct buffer_head *bh;
731         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
732         struct buffer_head *head;
733         if (!page_has_buffers(page)) {
734                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
735                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
736         }
737         head = page_buffers(page);
738         bh = head;
739         do {
740                 if (buffer_dirty(bh))
741                         csum_tree_block(root, bh, 0);
742                 bh = bh->b_this_page;
743         } while (bh != head);
744         return block_write_full_page(page, btree_get_block, wbc);
745 }
746 #endif
747
748 static struct address_space_operations btree_aops = {
749         .readpage       = btree_readpage,
750         .writepage      = btree_writepage,
751         .writepages     = btree_writepages,
752         .releasepage    = btree_releasepage,
753         .invalidatepage = btree_invalidatepage,
754         .sync_page      = block_sync_page,
755 };
756
757 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
758                          u64 parent_transid)
759 {
760         struct extent_buffer *buf = NULL;
761         struct inode *btree_inode = root->fs_info->btree_inode;
762         int ret = 0;
763
764         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
765         if (!buf)
766                 return 0;
767         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
768                                  buf, 0, 0, btree_get_extent, 0);
769         free_extent_buffer(buf);
770         return ret;
771 }
772
773 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
774                                             u64 bytenr, u32 blocksize)
775 {
776         struct inode *btree_inode = root->fs_info->btree_inode;
777         struct extent_buffer *eb;
778         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
779                                 bytenr, blocksize, GFP_NOFS);
780         return eb;
781 }
782
783 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
784                                                  u64 bytenr, u32 blocksize)
785 {
786         struct inode *btree_inode = root->fs_info->btree_inode;
787         struct extent_buffer *eb;
788
789         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
790                                  bytenr, blocksize, NULL, GFP_NOFS);
791         return eb;
792 }
793
794
795 int btrfs_write_tree_block(struct extent_buffer *buf)
796 {
797         return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
798                                       buf->start + buf->len - 1, WB_SYNC_ALL);
799 }
800
801 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
802 {
803         return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
804                                   buf->start, buf->start + buf->len -1);
805 }
806
807 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
808                                       u32 blocksize, u64 parent_transid)
809 {
810         struct extent_buffer *buf = NULL;
811         struct inode *btree_inode = root->fs_info->btree_inode;
812         struct extent_io_tree *io_tree;
813         int ret;
814
815         io_tree = &BTRFS_I(btree_inode)->io_tree;
816
817         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
818         if (!buf)
819                 return NULL;
820
821         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
822
823         if (ret == 0) {
824                 buf->flags |= EXTENT_UPTODATE;
825         } else {
826                 WARN_ON(1);
827         }
828         return buf;
829
830 }
831
832 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
833                      struct extent_buffer *buf)
834 {
835         struct inode *btree_inode = root->fs_info->btree_inode;
836         if (btrfs_header_generation(buf) ==
837             root->fs_info->running_transaction->transid) {
838                 WARN_ON(!btrfs_tree_locked(buf));
839                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
840                                           buf);
841         }
842         return 0;
843 }
844
845 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
846                         u32 stripesize, struct btrfs_root *root,
847                         struct btrfs_fs_info *fs_info,
848                         u64 objectid)
849 {
850         root->node = NULL;
851         root->commit_root = NULL;
852         root->ref_tree = NULL;
853         root->sectorsize = sectorsize;
854         root->nodesize = nodesize;
855         root->leafsize = leafsize;
856         root->stripesize = stripesize;
857         root->ref_cows = 0;
858         root->track_dirty = 0;
859
860         root->fs_info = fs_info;
861         root->objectid = objectid;
862         root->last_trans = 0;
863         root->highest_inode = 0;
864         root->last_inode_alloc = 0;
865         root->name = NULL;
866         root->in_sysfs = 0;
867
868         INIT_LIST_HEAD(&root->dirty_list);
869         INIT_LIST_HEAD(&root->orphan_list);
870         INIT_LIST_HEAD(&root->dead_list);
871         spin_lock_init(&root->node_lock);
872         spin_lock_init(&root->list_lock);
873         mutex_init(&root->objectid_mutex);
874         mutex_init(&root->log_mutex);
875         extent_io_tree_init(&root->dirty_log_pages,
876                              fs_info->btree_inode->i_mapping, GFP_NOFS);
877
878         btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
879         root->ref_tree = &root->ref_tree_struct;
880
881         memset(&root->root_key, 0, sizeof(root->root_key));
882         memset(&root->root_item, 0, sizeof(root->root_item));
883         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
884         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
885         root->defrag_trans_start = fs_info->generation;
886         init_completion(&root->kobj_unregister);
887         root->defrag_running = 0;
888         root->defrag_level = 0;
889         root->root_key.objectid = objectid;
890         root->anon_super.s_root = NULL;
891         root->anon_super.s_dev = 0;
892         INIT_LIST_HEAD(&root->anon_super.s_list);
893         INIT_LIST_HEAD(&root->anon_super.s_instances);
894         init_rwsem(&root->anon_super.s_umount);
895
896         return 0;
897 }
898
899 static int find_and_setup_root(struct btrfs_root *tree_root,
900                                struct btrfs_fs_info *fs_info,
901                                u64 objectid,
902                                struct btrfs_root *root)
903 {
904         int ret;
905         u32 blocksize;
906         u64 generation;
907
908         __setup_root(tree_root->nodesize, tree_root->leafsize,
909                      tree_root->sectorsize, tree_root->stripesize,
910                      root, fs_info, objectid);
911         ret = btrfs_find_last_root(tree_root, objectid,
912                                    &root->root_item, &root->root_key);
913         BUG_ON(ret);
914
915         generation = btrfs_root_generation(&root->root_item);
916         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
917         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
918                                      blocksize, generation);
919         BUG_ON(!root->node);
920         return 0;
921 }
922
923 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
924                              struct btrfs_fs_info *fs_info)
925 {
926         struct extent_buffer *eb;
927         struct btrfs_root *log_root_tree = fs_info->log_root_tree;
928         u64 start = 0;
929         u64 end = 0;
930         int ret;
931
932         if (!log_root_tree)
933                 return 0;
934
935         while(1) {
936                 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
937                                     0, &start, &end, EXTENT_DIRTY);
938                 if (ret)
939                         break;
940
941                 clear_extent_dirty(&log_root_tree->dirty_log_pages,
942                                    start, end, GFP_NOFS);
943         }
944         eb = fs_info->log_root_tree->node;
945
946         WARN_ON(btrfs_header_level(eb) != 0);
947         WARN_ON(btrfs_header_nritems(eb) != 0);
948
949         ret = btrfs_free_reserved_extent(fs_info->tree_root,
950                                 eb->start, eb->len);
951         BUG_ON(ret);
952
953         free_extent_buffer(eb);
954         kfree(fs_info->log_root_tree);
955         fs_info->log_root_tree = NULL;
956         return 0;
957 }
958
959 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
960                              struct btrfs_fs_info *fs_info)
961 {
962         struct btrfs_root *root;
963         struct btrfs_root *tree_root = fs_info->tree_root;
964
965         root = kzalloc(sizeof(*root), GFP_NOFS);
966         if (!root)
967                 return -ENOMEM;
968
969         __setup_root(tree_root->nodesize, tree_root->leafsize,
970                      tree_root->sectorsize, tree_root->stripesize,
971                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
972
973         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
974         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
975         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
976         root->ref_cows = 0;
977
978         root->node = btrfs_alloc_free_block(trans, root, root->leafsize,
979                                             0, BTRFS_TREE_LOG_OBJECTID,
980                                             trans->transid, 0, 0, 0);
981
982         btrfs_set_header_nritems(root->node, 0);
983         btrfs_set_header_level(root->node, 0);
984         btrfs_set_header_bytenr(root->node, root->node->start);
985         btrfs_set_header_generation(root->node, trans->transid);
986         btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
987
988         write_extent_buffer(root->node, root->fs_info->fsid,
989                             (unsigned long)btrfs_header_fsid(root->node),
990                             BTRFS_FSID_SIZE);
991         btrfs_mark_buffer_dirty(root->node);
992         btrfs_tree_unlock(root->node);
993         fs_info->log_root_tree = root;
994         return 0;
995 }
996
997 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
998                                                struct btrfs_key *location)
999 {
1000         struct btrfs_root *root;
1001         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1002         struct btrfs_path *path;
1003         struct extent_buffer *l;
1004         u64 highest_inode;
1005         u64 generation;
1006         u32 blocksize;
1007         int ret = 0;
1008
1009         root = kzalloc(sizeof(*root), GFP_NOFS);
1010         if (!root)
1011                 return ERR_PTR(-ENOMEM);
1012         if (location->offset == (u64)-1) {
1013                 ret = find_and_setup_root(tree_root, fs_info,
1014                                           location->objectid, root);
1015                 if (ret) {
1016                         kfree(root);
1017                         return ERR_PTR(ret);
1018                 }
1019                 goto insert;
1020         }
1021
1022         __setup_root(tree_root->nodesize, tree_root->leafsize,
1023                      tree_root->sectorsize, tree_root->stripesize,
1024                      root, fs_info, location->objectid);
1025
1026         path = btrfs_alloc_path();
1027         BUG_ON(!path);
1028         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1029         if (ret != 0) {
1030                 if (ret > 0)
1031                         ret = -ENOENT;
1032                 goto out;
1033         }
1034         l = path->nodes[0];
1035         read_extent_buffer(l, &root->root_item,
1036                btrfs_item_ptr_offset(l, path->slots[0]),
1037                sizeof(root->root_item));
1038         memcpy(&root->root_key, location, sizeof(*location));
1039         ret = 0;
1040 out:
1041         btrfs_release_path(root, path);
1042         btrfs_free_path(path);
1043         if (ret) {
1044                 kfree(root);
1045                 return ERR_PTR(ret);
1046         }
1047         generation = btrfs_root_generation(&root->root_item);
1048         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1049         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1050                                      blocksize, generation);
1051         BUG_ON(!root->node);
1052 insert:
1053         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1054                 root->ref_cows = 1;
1055                 ret = btrfs_find_highest_inode(root, &highest_inode);
1056                 if (ret == 0) {
1057                         root->highest_inode = highest_inode;
1058                         root->last_inode_alloc = highest_inode;
1059                 }
1060         }
1061         return root;
1062 }
1063
1064 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1065                                         u64 root_objectid)
1066 {
1067         struct btrfs_root *root;
1068
1069         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1070                 return fs_info->tree_root;
1071         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1072                 return fs_info->extent_root;
1073
1074         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1075                                  (unsigned long)root_objectid);
1076         return root;
1077 }
1078
1079 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1080                                               struct btrfs_key *location)
1081 {
1082         struct btrfs_root *root;
1083         int ret;
1084
1085         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1086                 return fs_info->tree_root;
1087         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1088                 return fs_info->extent_root;
1089         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1090                 return fs_info->chunk_root;
1091         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1092                 return fs_info->dev_root;
1093
1094         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1095                                  (unsigned long)location->objectid);
1096         if (root)
1097                 return root;
1098
1099         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1100         if (IS_ERR(root))
1101                 return root;
1102
1103         set_anon_super(&root->anon_super, NULL);
1104
1105         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1106                                 (unsigned long)root->root_key.objectid,
1107                                 root);
1108         if (ret) {
1109                 free_extent_buffer(root->node);
1110                 kfree(root);
1111                 return ERR_PTR(ret);
1112         }
1113         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1114                 ret = btrfs_find_dead_roots(fs_info->tree_root,
1115                                             root->root_key.objectid, root);
1116                 BUG_ON(ret);
1117                 btrfs_orphan_cleanup(root);
1118         }
1119         return root;
1120 }
1121
1122 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1123                                       struct btrfs_key *location,
1124                                       const char *name, int namelen)
1125 {
1126         struct btrfs_root *root;
1127         int ret;
1128
1129         root = btrfs_read_fs_root_no_name(fs_info, location);
1130         if (!root)
1131                 return NULL;
1132
1133         if (root->in_sysfs)
1134                 return root;
1135
1136         ret = btrfs_set_root_name(root, name, namelen);
1137         if (ret) {
1138                 free_extent_buffer(root->node);
1139                 kfree(root);
1140                 return ERR_PTR(ret);
1141         }
1142 #if 0
1143         ret = btrfs_sysfs_add_root(root);
1144         if (ret) {
1145                 free_extent_buffer(root->node);
1146                 kfree(root->name);
1147                 kfree(root);
1148                 return ERR_PTR(ret);
1149         }
1150 #endif
1151         root->in_sysfs = 1;
1152         return root;
1153 }
1154 #if 0
1155 static int add_hasher(struct btrfs_fs_info *info, char *type) {
1156         struct btrfs_hasher *hasher;
1157
1158         hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
1159         if (!hasher)
1160                 return -ENOMEM;
1161         hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
1162         if (!hasher->hash_tfm) {
1163                 kfree(hasher);
1164                 return -EINVAL;
1165         }
1166         spin_lock(&info->hash_lock);
1167         list_add(&hasher->list, &info->hashers);
1168         spin_unlock(&info->hash_lock);
1169         return 0;
1170 }
1171 #endif
1172
1173 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1174 {
1175         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1176         int ret = 0;
1177         struct list_head *cur;
1178         struct btrfs_device *device;
1179         struct backing_dev_info *bdi;
1180 #if 0
1181         if ((bdi_bits & (1 << BDI_write_congested)) &&
1182             btrfs_congested_async(info, 0))
1183                 return 1;
1184 #endif
1185         list_for_each(cur, &info->fs_devices->devices) {
1186                 device = list_entry(cur, struct btrfs_device, dev_list);
1187                 if (!device->bdev)
1188                         continue;
1189                 bdi = blk_get_backing_dev_info(device->bdev);
1190                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1191                         ret = 1;
1192                         break;
1193                 }
1194         }
1195         return ret;
1196 }
1197
1198 /*
1199  * this unplugs every device on the box, and it is only used when page
1200  * is null
1201  */
1202 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1203 {
1204         struct list_head *cur;
1205         struct btrfs_device *device;
1206         struct btrfs_fs_info *info;
1207
1208         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1209         list_for_each(cur, &info->fs_devices->devices) {
1210                 device = list_entry(cur, struct btrfs_device, dev_list);
1211                 bdi = blk_get_backing_dev_info(device->bdev);
1212                 if (bdi->unplug_io_fn) {
1213                         bdi->unplug_io_fn(bdi, page);
1214                 }
1215         }
1216 }
1217
1218 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1219 {
1220         struct inode *inode;
1221         struct extent_map_tree *em_tree;
1222         struct extent_map *em;
1223         struct address_space *mapping;
1224         u64 offset;
1225
1226         /* the generic O_DIRECT read code does this */
1227         if (1 || !page) {
1228                 __unplug_io_fn(bdi, page);
1229                 return;
1230         }
1231
1232         /*
1233          * page->mapping may change at any time.  Get a consistent copy
1234          * and use that for everything below
1235          */
1236         smp_mb();
1237         mapping = page->mapping;
1238         if (!mapping)
1239                 return;
1240
1241         inode = mapping->host;
1242
1243         /*
1244          * don't do the expensive searching for a small number of
1245          * devices
1246          */
1247         if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1248                 __unplug_io_fn(bdi, page);
1249                 return;
1250         }
1251
1252         offset = page_offset(page);
1253
1254         em_tree = &BTRFS_I(inode)->extent_tree;
1255         spin_lock(&em_tree->lock);
1256         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1257         spin_unlock(&em_tree->lock);
1258         if (!em) {
1259                 __unplug_io_fn(bdi, page);
1260                 return;
1261         }
1262
1263         if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1264                 free_extent_map(em);
1265                 __unplug_io_fn(bdi, page);
1266                 return;
1267         }
1268         offset = offset - em->start;
1269         btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1270                           em->block_start + offset, page);
1271         free_extent_map(em);
1272 }
1273
1274 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1275 {
1276         bdi_init(bdi);
1277         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1278         bdi->state              = 0;
1279         bdi->capabilities       = default_backing_dev_info.capabilities;
1280         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
1281         bdi->unplug_io_data     = info;
1282         bdi->congested_fn       = btrfs_congested_fn;
1283         bdi->congested_data     = info;
1284         return 0;
1285 }
1286
1287 static int bio_ready_for_csum(struct bio *bio)
1288 {
1289         u64 length = 0;
1290         u64 buf_len = 0;
1291         u64 start = 0;
1292         struct page *page;
1293         struct extent_io_tree *io_tree = NULL;
1294         struct btrfs_fs_info *info = NULL;
1295         struct bio_vec *bvec;
1296         int i;
1297         int ret;
1298
1299         bio_for_each_segment(bvec, bio, i) {
1300                 page = bvec->bv_page;
1301                 if (page->private == EXTENT_PAGE_PRIVATE) {
1302                         length += bvec->bv_len;
1303                         continue;
1304                 }
1305                 if (!page->private) {
1306                         length += bvec->bv_len;
1307                         continue;
1308                 }
1309                 length = bvec->bv_len;
1310                 buf_len = page->private >> 2;
1311                 start = page_offset(page) + bvec->bv_offset;
1312                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1313                 info = BTRFS_I(page->mapping->host)->root->fs_info;
1314         }
1315         /* are we fully contained in this bio? */
1316         if (buf_len <= length)
1317                 return 1;
1318
1319         ret = extent_range_uptodate(io_tree, start + length,
1320                                     start + buf_len - 1);
1321         if (ret == 1)
1322                 return ret;
1323         return ret;
1324 }
1325
1326 /*
1327  * called by the kthread helper functions to finally call the bio end_io
1328  * functions.  This is where read checksum verification actually happens
1329  */
1330 static void end_workqueue_fn(struct btrfs_work *work)
1331 {
1332         struct bio *bio;
1333         struct end_io_wq *end_io_wq;
1334         struct btrfs_fs_info *fs_info;
1335         int error;
1336
1337         end_io_wq = container_of(work, struct end_io_wq, work);
1338         bio = end_io_wq->bio;
1339         fs_info = end_io_wq->info;
1340
1341         /* metadata bios are special because the whole tree block must
1342          * be checksummed at once.  This makes sure the entire block is in
1343          * ram and up to date before trying to verify things.  For
1344          * blocksize <= pagesize, it is basically a noop
1345          */
1346         if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1347                 btrfs_queue_worker(&fs_info->endio_workers,
1348                                    &end_io_wq->work);
1349                 return;
1350         }
1351         error = end_io_wq->error;
1352         bio->bi_private = end_io_wq->private;
1353         bio->bi_end_io = end_io_wq->end_io;
1354         kfree(end_io_wq);
1355         bio_endio(bio, error);
1356 }
1357
1358 static int cleaner_kthread(void *arg)
1359 {
1360         struct btrfs_root *root = arg;
1361
1362         do {
1363                 smp_mb();
1364                 if (root->fs_info->closing)
1365                         break;
1366
1367                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1368                 mutex_lock(&root->fs_info->cleaner_mutex);
1369                 btrfs_clean_old_snapshots(root);
1370                 mutex_unlock(&root->fs_info->cleaner_mutex);
1371
1372                 if (freezing(current)) {
1373                         refrigerator();
1374                 } else {
1375                         smp_mb();
1376                         if (root->fs_info->closing)
1377                                 break;
1378                         set_current_state(TASK_INTERRUPTIBLE);
1379                         schedule();
1380                         __set_current_state(TASK_RUNNING);
1381                 }
1382         } while (!kthread_should_stop());
1383         return 0;
1384 }
1385
1386 static int transaction_kthread(void *arg)
1387 {
1388         struct btrfs_root *root = arg;
1389         struct btrfs_trans_handle *trans;
1390         struct btrfs_transaction *cur;
1391         unsigned long now;
1392         unsigned long delay;
1393         int ret;
1394
1395         do {
1396                 smp_mb();
1397                 if (root->fs_info->closing)
1398                         break;
1399
1400                 delay = HZ * 30;
1401                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1402                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1403
1404                 if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
1405                         printk("btrfs: total reference cache size %Lu\n",
1406                                 root->fs_info->total_ref_cache_size);
1407                 }
1408
1409                 mutex_lock(&root->fs_info->trans_mutex);
1410                 cur = root->fs_info->running_transaction;
1411                 if (!cur) {
1412                         mutex_unlock(&root->fs_info->trans_mutex);
1413                         goto sleep;
1414                 }
1415
1416                 now = get_seconds();
1417                 if (now < cur->start_time || now - cur->start_time < 30) {
1418                         mutex_unlock(&root->fs_info->trans_mutex);
1419                         delay = HZ * 5;
1420                         goto sleep;
1421                 }
1422                 mutex_unlock(&root->fs_info->trans_mutex);
1423                 trans = btrfs_start_transaction(root, 1);
1424                 ret = btrfs_commit_transaction(trans, root);
1425 sleep:
1426                 wake_up_process(root->fs_info->cleaner_kthread);
1427                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1428
1429                 if (freezing(current)) {
1430                         refrigerator();
1431                 } else {
1432                         if (root->fs_info->closing)
1433                                 break;
1434                         set_current_state(TASK_INTERRUPTIBLE);
1435                         schedule_timeout(delay);
1436                         __set_current_state(TASK_RUNNING);
1437                 }
1438         } while (!kthread_should_stop());
1439         return 0;
1440 }
1441
1442 struct btrfs_root *open_ctree(struct super_block *sb,
1443                               struct btrfs_fs_devices *fs_devices,
1444                               char *options)
1445 {
1446         u32 sectorsize;
1447         u32 nodesize;
1448         u32 leafsize;
1449         u32 blocksize;
1450         u32 stripesize;
1451         u64 generation;
1452         u64 features;
1453         struct btrfs_key location;
1454         struct buffer_head *bh;
1455         struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1456                                                  GFP_NOFS);
1457         struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1458                                                GFP_NOFS);
1459         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1460                                                 GFP_NOFS);
1461         struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1462                                                 GFP_NOFS);
1463         struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1464                                               GFP_NOFS);
1465         struct btrfs_root *log_tree_root;
1466
1467         int ret;
1468         int err = -EINVAL;
1469
1470         struct btrfs_super_block *disk_super;
1471
1472         if (!extent_root || !tree_root || !fs_info ||
1473             !chunk_root || !dev_root) {
1474                 err = -ENOMEM;
1475                 goto fail;
1476         }
1477         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1478         INIT_LIST_HEAD(&fs_info->trans_list);
1479         INIT_LIST_HEAD(&fs_info->dead_roots);
1480         INIT_LIST_HEAD(&fs_info->hashers);
1481         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1482         spin_lock_init(&fs_info->hash_lock);
1483         spin_lock_init(&fs_info->delalloc_lock);
1484         spin_lock_init(&fs_info->new_trans_lock);
1485         spin_lock_init(&fs_info->ref_cache_lock);
1486
1487         init_completion(&fs_info->kobj_unregister);
1488         fs_info->tree_root = tree_root;
1489         fs_info->extent_root = extent_root;
1490         fs_info->chunk_root = chunk_root;
1491         fs_info->dev_root = dev_root;
1492         fs_info->fs_devices = fs_devices;
1493         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1494         INIT_LIST_HEAD(&fs_info->space_info);
1495         btrfs_mapping_init(&fs_info->mapping_tree);
1496         atomic_set(&fs_info->nr_async_submits, 0);
1497         atomic_set(&fs_info->async_delalloc_pages, 0);
1498         atomic_set(&fs_info->async_submit_draining, 0);
1499         atomic_set(&fs_info->nr_async_bios, 0);
1500         atomic_set(&fs_info->throttles, 0);
1501         atomic_set(&fs_info->throttle_gen, 0);
1502         fs_info->sb = sb;
1503         fs_info->max_extent = (u64)-1;
1504         fs_info->max_inline = 8192 * 1024;
1505         setup_bdi(fs_info, &fs_info->bdi);
1506         fs_info->btree_inode = new_inode(sb);
1507         fs_info->btree_inode->i_ino = 1;
1508         fs_info->btree_inode->i_nlink = 1;
1509
1510         fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
1511
1512         INIT_LIST_HEAD(&fs_info->ordered_extents);
1513         spin_lock_init(&fs_info->ordered_extent_lock);
1514
1515         sb->s_blocksize = 4096;
1516         sb->s_blocksize_bits = blksize_bits(4096);
1517
1518         /*
1519          * we set the i_size on the btree inode to the max possible int.
1520          * the real end of the address space is determined by all of
1521          * the devices in the system
1522          */
1523         fs_info->btree_inode->i_size = OFFSET_MAX;
1524         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1525         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1526
1527         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1528                              fs_info->btree_inode->i_mapping,
1529                              GFP_NOFS);
1530         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1531                              GFP_NOFS);
1532
1533         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1534
1535         spin_lock_init(&fs_info->block_group_cache_lock);
1536         fs_info->block_group_cache_tree.rb_node = NULL;
1537
1538         extent_io_tree_init(&fs_info->pinned_extents,
1539                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1540         extent_io_tree_init(&fs_info->pending_del,
1541                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1542         extent_io_tree_init(&fs_info->extent_ins,
1543                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1544         fs_info->do_barriers = 1;
1545
1546         INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
1547         btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
1548         btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
1549
1550         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1551         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1552                sizeof(struct btrfs_key));
1553         insert_inode_hash(fs_info->btree_inode);
1554
1555         mutex_init(&fs_info->trans_mutex);
1556         mutex_init(&fs_info->tree_log_mutex);
1557         mutex_init(&fs_info->drop_mutex);
1558         mutex_init(&fs_info->extent_ins_mutex);
1559         mutex_init(&fs_info->pinned_mutex);
1560         mutex_init(&fs_info->chunk_mutex);
1561         mutex_init(&fs_info->transaction_kthread_mutex);
1562         mutex_init(&fs_info->cleaner_mutex);
1563         mutex_init(&fs_info->volume_mutex);
1564         mutex_init(&fs_info->tree_reloc_mutex);
1565         init_waitqueue_head(&fs_info->transaction_throttle);
1566         init_waitqueue_head(&fs_info->transaction_wait);
1567         init_waitqueue_head(&fs_info->async_submit_wait);
1568         init_waitqueue_head(&fs_info->tree_log_wait);
1569         atomic_set(&fs_info->tree_log_commit, 0);
1570         atomic_set(&fs_info->tree_log_writers, 0);
1571         fs_info->tree_log_transid = 0;
1572
1573 #if 0
1574         ret = add_hasher(fs_info, "crc32c");
1575         if (ret) {
1576                 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1577                 err = -ENOMEM;
1578                 goto fail_iput;
1579         }
1580 #endif
1581         __setup_root(4096, 4096, 4096, 4096, tree_root,
1582                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1583
1584
1585         bh = __bread(fs_devices->latest_bdev,
1586                      BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
1587         if (!bh)
1588                 goto fail_iput;
1589
1590         memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1591         brelse(bh);
1592
1593         memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1594
1595         disk_super = &fs_info->super_copy;
1596         if (!btrfs_super_root(disk_super))
1597                 goto fail_iput;
1598
1599         ret = btrfs_parse_options(tree_root, options);
1600         if (ret) {
1601                 err = ret;
1602                 goto fail_iput;
1603         }
1604
1605         features = btrfs_super_incompat_flags(disk_super) &
1606                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1607         if (features) {
1608                 printk(KERN_ERR "BTRFS: couldn't mount because of "
1609                        "unsupported optional features (%Lx).\n",
1610                        features);
1611                 err = -EINVAL;
1612                 goto fail_iput;
1613         }
1614
1615         features = btrfs_super_compat_ro_flags(disk_super) &
1616                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1617         if (!(sb->s_flags & MS_RDONLY) && features) {
1618                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1619                        "unsupported option features (%Lx).\n",
1620                        features);
1621                 err = -EINVAL;
1622                 goto fail_iput;
1623         }
1624
1625         /*
1626          * we need to start all the end_io workers up front because the
1627          * queue work function gets called at interrupt time, and so it
1628          * cannot dynamically grow.
1629          */
1630         btrfs_init_workers(&fs_info->workers, "worker",
1631                            fs_info->thread_pool_size);
1632
1633         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1634                            fs_info->thread_pool_size);
1635
1636         btrfs_init_workers(&fs_info->submit_workers, "submit",
1637                            min_t(u64, fs_devices->num_devices,
1638                            fs_info->thread_pool_size));
1639
1640         /* a higher idle thresh on the submit workers makes it much more
1641          * likely that bios will be send down in a sane order to the
1642          * devices
1643          */
1644         fs_info->submit_workers.idle_thresh = 64;
1645
1646         fs_info->workers.idle_thresh = 16;
1647         fs_info->workers.ordered = 1;
1648
1649         fs_info->delalloc_workers.idle_thresh = 2;
1650         fs_info->delalloc_workers.ordered = 1;
1651
1652         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1653         btrfs_init_workers(&fs_info->endio_workers, "endio",
1654                            fs_info->thread_pool_size);
1655         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1656                            fs_info->thread_pool_size);
1657
1658         /*
1659          * endios are largely parallel and should have a very
1660          * low idle thresh
1661          */
1662         fs_info->endio_workers.idle_thresh = 4;
1663         fs_info->endio_write_workers.idle_thresh = 64;
1664
1665         btrfs_start_workers(&fs_info->workers, 1);
1666         btrfs_start_workers(&fs_info->submit_workers, 1);
1667         btrfs_start_workers(&fs_info->delalloc_workers, 1);
1668         btrfs_start_workers(&fs_info->fixup_workers, 1);
1669         btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1670         btrfs_start_workers(&fs_info->endio_write_workers,
1671                             fs_info->thread_pool_size);
1672
1673         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1674         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1675                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1676
1677         nodesize = btrfs_super_nodesize(disk_super);
1678         leafsize = btrfs_super_leafsize(disk_super);
1679         sectorsize = btrfs_super_sectorsize(disk_super);
1680         stripesize = btrfs_super_stripesize(disk_super);
1681         tree_root->nodesize = nodesize;
1682         tree_root->leafsize = leafsize;
1683         tree_root->sectorsize = sectorsize;
1684         tree_root->stripesize = stripesize;
1685
1686         sb->s_blocksize = sectorsize;
1687         sb->s_blocksize_bits = blksize_bits(sectorsize);
1688
1689         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1690                     sizeof(disk_super->magic))) {
1691                 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1692                 goto fail_sb_buffer;
1693         }
1694
1695         mutex_lock(&fs_info->chunk_mutex);
1696         ret = btrfs_read_sys_array(tree_root);
1697         mutex_unlock(&fs_info->chunk_mutex);
1698         if (ret) {
1699                 printk("btrfs: failed to read the system array on %s\n",
1700                        sb->s_id);
1701                 goto fail_sys_array;
1702         }
1703
1704         blocksize = btrfs_level_size(tree_root,
1705                                      btrfs_super_chunk_root_level(disk_super));
1706         generation = btrfs_super_chunk_root_generation(disk_super);
1707
1708         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1709                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1710
1711         chunk_root->node = read_tree_block(chunk_root,
1712                                            btrfs_super_chunk_root(disk_super),
1713                                            blocksize, generation);
1714         BUG_ON(!chunk_root->node);
1715
1716         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1717                  (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1718                  BTRFS_UUID_SIZE);
1719
1720         mutex_lock(&fs_info->chunk_mutex);
1721         ret = btrfs_read_chunk_tree(chunk_root);
1722         mutex_unlock(&fs_info->chunk_mutex);
1723         if (ret) {
1724                 printk("btrfs: failed to read chunk tree on %s\n", sb->s_id);
1725                 goto fail_chunk_root;
1726         }
1727
1728         btrfs_close_extra_devices(fs_devices);
1729
1730         blocksize = btrfs_level_size(tree_root,
1731                                      btrfs_super_root_level(disk_super));
1732         generation = btrfs_super_generation(disk_super);
1733
1734         tree_root->node = read_tree_block(tree_root,
1735                                           btrfs_super_root(disk_super),
1736                                           blocksize, generation);
1737         if (!tree_root->node)
1738                 goto fail_chunk_root;
1739
1740
1741         ret = find_and_setup_root(tree_root, fs_info,
1742                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1743         if (ret)
1744                 goto fail_tree_root;
1745         extent_root->track_dirty = 1;
1746
1747         ret = find_and_setup_root(tree_root, fs_info,
1748                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1749         dev_root->track_dirty = 1;
1750
1751         if (ret)
1752                 goto fail_extent_root;
1753
1754         btrfs_read_block_groups(extent_root);
1755
1756         fs_info->generation = generation + 1;
1757         fs_info->last_trans_committed = generation;
1758         fs_info->data_alloc_profile = (u64)-1;
1759         fs_info->metadata_alloc_profile = (u64)-1;
1760         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1761         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1762                                                "btrfs-cleaner");
1763         if (!fs_info->cleaner_kthread)
1764                 goto fail_extent_root;
1765
1766         fs_info->transaction_kthread = kthread_run(transaction_kthread,
1767                                                    tree_root,
1768                                                    "btrfs-transaction");
1769         if (!fs_info->transaction_kthread)
1770                 goto fail_cleaner;
1771
1772         if (btrfs_super_log_root(disk_super) != 0) {
1773                 u64 bytenr = btrfs_super_log_root(disk_super);
1774
1775                 if (fs_devices->rw_devices == 0) {
1776                         printk("Btrfs log replay required on RO media\n");
1777                         err = -EIO;
1778                         goto fail_trans_kthread;
1779                 }
1780                 blocksize =
1781                      btrfs_level_size(tree_root,
1782                                       btrfs_super_log_root_level(disk_super));
1783
1784                 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1785                                                       GFP_NOFS);
1786
1787                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1788                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1789
1790                 log_tree_root->node = read_tree_block(tree_root, bytenr,
1791                                                       blocksize,
1792                                                       generation + 1);
1793                 ret = btrfs_recover_log_trees(log_tree_root);
1794                 BUG_ON(ret);
1795
1796                 if (sb->s_flags & MS_RDONLY) {
1797                         ret =  btrfs_commit_super(tree_root);
1798                         BUG_ON(ret);
1799                 }
1800         }
1801
1802         if (!(sb->s_flags & MS_RDONLY)) {
1803                 ret = btrfs_cleanup_reloc_trees(tree_root);
1804                 BUG_ON(ret);
1805         }
1806
1807         location.objectid = BTRFS_FS_TREE_OBJECTID;
1808         location.type = BTRFS_ROOT_ITEM_KEY;
1809         location.offset = (u64)-1;
1810
1811         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1812         if (!fs_info->fs_root)
1813                 goto fail_trans_kthread;
1814         return tree_root;
1815
1816 fail_trans_kthread:
1817         kthread_stop(fs_info->transaction_kthread);
1818 fail_cleaner:
1819         kthread_stop(fs_info->cleaner_kthread);
1820
1821         /*
1822          * make sure we're done with the btree inode before we stop our
1823          * kthreads
1824          */
1825         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1826         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1827
1828 fail_extent_root:
1829         free_extent_buffer(extent_root->node);
1830 fail_tree_root:
1831         free_extent_buffer(tree_root->node);
1832 fail_chunk_root:
1833         free_extent_buffer(chunk_root->node);
1834 fail_sys_array:
1835         free_extent_buffer(dev_root->node);
1836 fail_sb_buffer:
1837         btrfs_stop_workers(&fs_info->fixup_workers);
1838         btrfs_stop_workers(&fs_info->delalloc_workers);
1839         btrfs_stop_workers(&fs_info->workers);
1840         btrfs_stop_workers(&fs_info->endio_workers);
1841         btrfs_stop_workers(&fs_info->endio_write_workers);
1842         btrfs_stop_workers(&fs_info->submit_workers);
1843 fail_iput:
1844         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1845         iput(fs_info->btree_inode);
1846 fail:
1847         btrfs_close_devices(fs_info->fs_devices);
1848         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1849
1850         kfree(extent_root);
1851         kfree(tree_root);
1852         bdi_destroy(&fs_info->bdi);
1853         kfree(fs_info);
1854         kfree(chunk_root);
1855         kfree(dev_root);
1856         return ERR_PTR(err);
1857 }
1858
1859 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1860 {
1861         char b[BDEVNAME_SIZE];
1862
1863         if (uptodate) {
1864                 set_buffer_uptodate(bh);
1865         } else {
1866                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1867                         printk(KERN_WARNING "lost page write due to "
1868                                         "I/O error on %s\n",
1869                                        bdevname(bh->b_bdev, b));
1870                 }
1871                 /* note, we dont' set_buffer_write_io_error because we have
1872                  * our own ways of dealing with the IO errors
1873                  */
1874                 clear_buffer_uptodate(bh);
1875         }
1876         unlock_buffer(bh);
1877         put_bh(bh);
1878 }
1879
1880 static int write_all_supers(struct btrfs_root *root)
1881 {
1882         struct list_head *cur;
1883         struct list_head *head = &root->fs_info->fs_devices->devices;
1884         struct btrfs_device *dev;
1885         struct btrfs_super_block *sb;
1886         struct btrfs_dev_item *dev_item;
1887         struct buffer_head *bh;
1888         int ret;
1889         int do_barriers;
1890         int max_errors;
1891         int total_errors = 0;
1892         u32 crc;
1893         u64 flags;
1894
1895         max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1896         do_barriers = !btrfs_test_opt(root, NOBARRIER);
1897
1898         sb = &root->fs_info->super_for_commit;
1899         dev_item = &sb->dev_item;
1900         list_for_each(cur, head) {
1901                 dev = list_entry(cur, struct btrfs_device, dev_list);
1902                 if (!dev->bdev) {
1903                         total_errors++;
1904                         continue;
1905                 }
1906                 if (!dev->in_fs_metadata || !dev->writeable)
1907                         continue;
1908
1909                 btrfs_set_stack_device_generation(dev_item, 0);
1910                 btrfs_set_stack_device_type(dev_item, dev->type);
1911                 btrfs_set_stack_device_id(dev_item, dev->devid);
1912                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1913                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1914                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1915                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1916                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1917                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1918                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
1919                 flags = btrfs_super_flags(sb);
1920                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1921
1922
1923                 crc = ~(u32)0;
1924                 crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
1925                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1926                 btrfs_csum_final(crc, sb->csum);
1927
1928                 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
1929                               BTRFS_SUPER_INFO_SIZE);
1930
1931                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
1932                 dev->pending_io = bh;
1933
1934                 get_bh(bh);
1935                 set_buffer_uptodate(bh);
1936                 lock_buffer(bh);
1937                 bh->b_end_io = btrfs_end_buffer_write_sync;
1938
1939                 if (do_barriers && dev->barriers) {
1940                         ret = submit_bh(WRITE_BARRIER, bh);
1941                         if (ret == -EOPNOTSUPP) {
1942                                 printk("btrfs: disabling barriers on dev %s\n",
1943                                        dev->name);
1944                                 set_buffer_uptodate(bh);
1945                                 dev->barriers = 0;
1946                                 get_bh(bh);
1947                                 lock_buffer(bh);
1948                                 ret = submit_bh(WRITE, bh);
1949                         }
1950                 } else {
1951                         ret = submit_bh(WRITE, bh);
1952                 }
1953                 if (ret)
1954                         total_errors++;
1955         }
1956         if (total_errors > max_errors) {
1957                 printk("btrfs: %d errors while writing supers\n", total_errors);
1958                 BUG();
1959         }
1960         total_errors = 0;
1961
1962         list_for_each(cur, head) {
1963                 dev = list_entry(cur, struct btrfs_device, dev_list);
1964                 if (!dev->bdev)
1965                         continue;
1966                 if (!dev->in_fs_metadata || !dev->writeable)
1967                         continue;
1968
1969                 BUG_ON(!dev->pending_io);
1970                 bh = dev->pending_io;
1971                 wait_on_buffer(bh);
1972                 if (!buffer_uptodate(dev->pending_io)) {
1973                         if (do_barriers && dev->barriers) {
1974                                 printk("btrfs: disabling barriers on dev %s\n",
1975                                        dev->name);
1976                                 set_buffer_uptodate(bh);
1977                                 get_bh(bh);
1978                                 lock_buffer(bh);
1979                                 dev->barriers = 0;
1980                                 ret = submit_bh(WRITE, bh);
1981                                 BUG_ON(ret);
1982                                 wait_on_buffer(bh);
1983                                 if (!buffer_uptodate(bh))
1984                                         total_errors++;
1985                         } else {
1986                                 total_errors++;
1987                         }
1988
1989                 }
1990                 dev->pending_io = NULL;
1991                 brelse(bh);
1992         }
1993         if (total_errors > max_errors) {
1994                 printk("btrfs: %d errors while writing supers\n", total_errors);
1995                 BUG();
1996         }
1997         return 0;
1998 }
1999
2000 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
2001                       *root)
2002 {
2003         int ret;
2004
2005         ret = write_all_supers(root);
2006         return ret;
2007 }
2008
2009 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2010 {
2011         radix_tree_delete(&fs_info->fs_roots_radix,
2012                           (unsigned long)root->root_key.objectid);
2013         if (root->anon_super.s_dev) {
2014                 down_write(&root->anon_super.s_umount);
2015                 kill_anon_super(&root->anon_super);
2016         }
2017 #if 0
2018         if (root->in_sysfs)
2019                 btrfs_sysfs_del_root(root);
2020 #endif
2021         if (root->node)
2022                 free_extent_buffer(root->node);
2023         if (root->commit_root)
2024                 free_extent_buffer(root->commit_root);
2025         if (root->name)
2026                 kfree(root->name);
2027         kfree(root);
2028         return 0;
2029 }
2030
2031 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2032 {
2033         int ret;
2034         struct btrfs_root *gang[8];
2035         int i;
2036
2037         while(1) {
2038                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2039                                              (void **)gang, 0,
2040                                              ARRAY_SIZE(gang));
2041                 if (!ret)
2042                         break;
2043                 for (i = 0; i < ret; i++)
2044                         btrfs_free_fs_root(fs_info, gang[i]);
2045         }
2046         return 0;
2047 }
2048
2049 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2050 {
2051         u64 root_objectid = 0;
2052         struct btrfs_root *gang[8];
2053         int i;
2054         int ret;
2055
2056         while (1) {
2057                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2058                                              (void **)gang, root_objectid,
2059                                              ARRAY_SIZE(gang));
2060                 if (!ret)
2061                         break;
2062                 for (i = 0; i < ret; i++) {
2063                         root_objectid = gang[i]->root_key.objectid;
2064                         ret = btrfs_find_dead_roots(fs_info->tree_root,
2065                                                     root_objectid, gang[i]);
2066                         BUG_ON(ret);
2067                         btrfs_orphan_cleanup(gang[i]);
2068                 }
2069                 root_objectid++;
2070         }
2071         return 0;
2072 }
2073
2074 int btrfs_commit_super(struct btrfs_root *root)
2075 {
2076         struct btrfs_trans_handle *trans;
2077         int ret;
2078
2079         mutex_lock(&root->fs_info->cleaner_mutex);
2080         btrfs_clean_old_snapshots(root);
2081         mutex_unlock(&root->fs_info->cleaner_mutex);
2082         trans = btrfs_start_transaction(root, 1);
2083         ret = btrfs_commit_transaction(trans, root);
2084         BUG_ON(ret);
2085         /* run commit again to drop the original snapshot */
2086         trans = btrfs_start_transaction(root, 1);
2087         btrfs_commit_transaction(trans, root);
2088         ret = btrfs_write_and_wait_transaction(NULL, root);
2089         BUG_ON(ret);
2090
2091         ret = write_ctree_super(NULL, root);
2092         return ret;
2093 }
2094
2095 int close_ctree(struct btrfs_root *root)
2096 {
2097         struct btrfs_fs_info *fs_info = root->fs_info;
2098         int ret;
2099
2100         fs_info->closing = 1;
2101         smp_mb();
2102
2103         kthread_stop(root->fs_info->transaction_kthread);
2104         kthread_stop(root->fs_info->cleaner_kthread);
2105
2106         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2107                 ret =  btrfs_commit_super(root);
2108                 if (ret) {
2109                         printk("btrfs: commit super returns %d\n", ret);
2110                 }
2111         }
2112
2113         if (fs_info->delalloc_bytes) {
2114                 printk("btrfs: at unmount delalloc count %Lu\n",
2115                        fs_info->delalloc_bytes);
2116         }
2117         if (fs_info->total_ref_cache_size) {
2118                 printk("btrfs: at umount reference cache size %Lu\n",
2119                         fs_info->total_ref_cache_size);
2120         }
2121
2122         if (fs_info->extent_root->node)
2123                 free_extent_buffer(fs_info->extent_root->node);
2124
2125         if (fs_info->tree_root->node)
2126                 free_extent_buffer(fs_info->tree_root->node);
2127
2128         if (root->fs_info->chunk_root->node);
2129                 free_extent_buffer(root->fs_info->chunk_root->node);
2130
2131         if (root->fs_info->dev_root->node);
2132                 free_extent_buffer(root->fs_info->dev_root->node);
2133
2134         btrfs_free_block_groups(root->fs_info);
2135
2136         del_fs_roots(fs_info);
2137
2138         iput(fs_info->btree_inode);
2139
2140         btrfs_stop_workers(&fs_info->fixup_workers);
2141         btrfs_stop_workers(&fs_info->delalloc_workers);
2142         btrfs_stop_workers(&fs_info->workers);
2143         btrfs_stop_workers(&fs_info->endio_workers);
2144         btrfs_stop_workers(&fs_info->endio_write_workers);
2145         btrfs_stop_workers(&fs_info->submit_workers);
2146
2147 #if 0
2148         while(!list_empty(&fs_info->hashers)) {
2149                 struct btrfs_hasher *hasher;
2150                 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
2151                                     hashers);
2152                 list_del(&hasher->hashers);
2153                 crypto_free_hash(&fs_info->hash_tfm);
2154                 kfree(hasher);
2155         }
2156 #endif
2157         btrfs_close_devices(fs_info->fs_devices);
2158         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2159
2160         bdi_destroy(&fs_info->bdi);
2161
2162         kfree(fs_info->extent_root);
2163         kfree(fs_info->tree_root);
2164         kfree(fs_info->chunk_root);
2165         kfree(fs_info->dev_root);
2166         return 0;
2167 }
2168
2169 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2170 {
2171         int ret;
2172         struct inode *btree_inode = buf->first_page->mapping->host;
2173
2174         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2175         if (!ret)
2176                 return ret;
2177
2178         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2179                                     parent_transid);
2180         return !ret;
2181 }
2182
2183 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2184 {
2185         struct inode *btree_inode = buf->first_page->mapping->host;
2186         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2187                                           buf);
2188 }
2189
2190 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2191 {
2192         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2193         u64 transid = btrfs_header_generation(buf);
2194         struct inode *btree_inode = root->fs_info->btree_inode;
2195
2196         WARN_ON(!btrfs_tree_locked(buf));
2197         if (transid != root->fs_info->generation) {
2198                 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
2199                         (unsigned long long)buf->start,
2200                         transid, root->fs_info->generation);
2201                 WARN_ON(1);
2202         }
2203         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
2204 }
2205
2206 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2207 {
2208         /*
2209          * looks as though older kernels can get into trouble with
2210          * this code, they end up stuck in balance_dirty_pages forever
2211          */
2212         struct extent_io_tree *tree;
2213         u64 num_dirty;
2214         u64 start = 0;
2215         unsigned long thresh = 32 * 1024 * 1024;
2216         tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
2217
2218         if (current_is_pdflush() || current->flags & PF_MEMALLOC)
2219                 return;
2220
2221         num_dirty = count_range_bits(tree, &start, (u64)-1,
2222                                      thresh, EXTENT_DIRTY);
2223         if (num_dirty > thresh) {
2224                 balance_dirty_pages_ratelimited_nr(
2225                                    root->fs_info->btree_inode->i_mapping, 1);
2226         }
2227         return;
2228 }
2229
2230 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2231 {
2232         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2233         int ret;
2234         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2235         if (ret == 0) {
2236                 buf->flags |= EXTENT_UPTODATE;
2237         }
2238         return ret;
2239 }
2240
2241 int btree_lock_page_hook(struct page *page)
2242 {
2243         struct inode *inode = page->mapping->host;
2244         struct btrfs_root *root = BTRFS_I(inode)->root;
2245         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2246         struct extent_buffer *eb;
2247         unsigned long len;
2248         u64 bytenr = page_offset(page);
2249
2250         if (page->private == EXTENT_PAGE_PRIVATE)
2251                 goto out;
2252
2253         len = page->private >> 2;
2254         eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2255         if (!eb)
2256                 goto out;
2257
2258         btrfs_tree_lock(eb);
2259         spin_lock(&root->fs_info->hash_lock);
2260         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2261         spin_unlock(&root->fs_info->hash_lock);
2262         btrfs_tree_unlock(eb);
2263         free_extent_buffer(eb);
2264 out:
2265         lock_page(page);
2266         return 0;
2267 }
2268
2269 static struct extent_io_ops btree_extent_io_ops = {
2270         .write_cache_pages_lock_hook = btree_lock_page_hook,
2271         .readpage_end_io_hook = btree_readpage_end_io_hook,
2272         .submit_bio_hook = btree_submit_bio_hook,
2273         /* note we're sharing with inode.c for the merge bio hook */
2274         .merge_bio_hook = btrfs_merge_bio_hook,
2275 };