8f4c40033e929d26fa9d792efb713b8bf15ff8e7
[safe/jmp/linux-2.6] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/version.h>
20 #include <linux/fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/scatterlist.h>
23 #include <linux/swap.h>
24 #include <linux/radix-tree.h>
25 #include <linux/writeback.h>
26 #include <linux/buffer_head.h> // for block_sync_page
27 #include <linux/workqueue.h>
28 #include <linux/kthread.h>
29 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
30 # include <linux/freezer.h>
31 #else
32 # include <linux/sched.h>
33 #endif
34 #include "crc32c.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43
44 #if 0
45 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
46 {
47         if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
48                 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
49                        (unsigned long long)extent_buffer_blocknr(buf),
50                        (unsigned long long)btrfs_header_blocknr(buf));
51                 return 1;
52         }
53         return 0;
54 }
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59
60 struct end_io_wq {
61         struct bio *bio;
62         bio_end_io_t *end_io;
63         void *private;
64         struct btrfs_fs_info *info;
65         int error;
66         int metadata;
67         struct list_head list;
68         struct btrfs_work work;
69 };
70
71 struct async_submit_bio {
72         struct inode *inode;
73         struct bio *bio;
74         struct list_head list;
75         extent_submit_bio_hook_t *submit_bio_hook;
76         int rw;
77         int mirror_num;
78         struct btrfs_work work;
79 };
80
81 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
82                                     size_t page_offset, u64 start, u64 len,
83                                     int create)
84 {
85         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
86         struct extent_map *em;
87         int ret;
88
89         spin_lock(&em_tree->lock);
90         em = lookup_extent_mapping(em_tree, start, len);
91         if (em) {
92                 em->bdev =
93                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
94                 spin_unlock(&em_tree->lock);
95                 goto out;
96         }
97         spin_unlock(&em_tree->lock);
98
99         em = alloc_extent_map(GFP_NOFS);
100         if (!em) {
101                 em = ERR_PTR(-ENOMEM);
102                 goto out;
103         }
104         em->start = 0;
105         em->len = (u64)-1;
106         em->block_start = 0;
107         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
108
109         spin_lock(&em_tree->lock);
110         ret = add_extent_mapping(em_tree, em);
111         if (ret == -EEXIST) {
112                 u64 failed_start = em->start;
113                 u64 failed_len = em->len;
114
115                 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
116                        em->start, em->len, em->block_start);
117                 free_extent_map(em);
118                 em = lookup_extent_mapping(em_tree, start, len);
119                 if (em) {
120                         printk("after failing, found %Lu %Lu %Lu\n",
121                                em->start, em->len, em->block_start);
122                         ret = 0;
123                 } else {
124                         em = lookup_extent_mapping(em_tree, failed_start,
125                                                    failed_len);
126                         if (em) {
127                                 printk("double failure lookup gives us "
128                                        "%Lu %Lu -> %Lu\n", em->start,
129                                        em->len, em->block_start);
130                                 free_extent_map(em);
131                         }
132                         ret = -EIO;
133                 }
134         } else if (ret) {
135                 free_extent_map(em);
136                 em = NULL;
137         }
138         spin_unlock(&em_tree->lock);
139
140         if (ret)
141                 em = ERR_PTR(ret);
142 out:
143         return em;
144 }
145
146 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
147 {
148         return btrfs_crc32c(seed, data, len);
149 }
150
151 void btrfs_csum_final(u32 crc, char *result)
152 {
153         *(__le32 *)result = ~cpu_to_le32(crc);
154 }
155
156 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
157                            int verify)
158 {
159         char result[BTRFS_CRC32_SIZE];
160         unsigned long len;
161         unsigned long cur_len;
162         unsigned long offset = BTRFS_CSUM_SIZE;
163         char *map_token = NULL;
164         char *kaddr;
165         unsigned long map_start;
166         unsigned long map_len;
167         int err;
168         u32 crc = ~(u32)0;
169
170         len = buf->len - offset;
171         while(len > 0) {
172                 err = map_private_extent_buffer(buf, offset, 32,
173                                         &map_token, &kaddr,
174                                         &map_start, &map_len, KM_USER0);
175                 if (err) {
176                         printk("failed to map extent buffer! %lu\n",
177                                offset);
178                         return 1;
179                 }
180                 cur_len = min(len, map_len - (offset - map_start));
181                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
182                                       crc, cur_len);
183                 len -= cur_len;
184                 offset += cur_len;
185                 unmap_extent_buffer(buf, map_token, KM_USER0);
186         }
187         btrfs_csum_final(crc, result);
188
189         if (verify) {
190                 int from_this_trans = 0;
191
192                 if (root->fs_info->running_transaction &&
193                     btrfs_header_generation(buf) ==
194                     root->fs_info->running_transaction->transid)
195                         from_this_trans = 1;
196
197                 /* FIXME, this is not good */
198                 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
199                         u32 val;
200                         u32 found = 0;
201                         memcpy(&found, result, BTRFS_CRC32_SIZE);
202
203                         read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
204                         printk("btrfs: %s checksum verify failed on %llu "
205                                "wanted %X found %X from_this_trans %d "
206                                "level %d\n",
207                                root->fs_info->sb->s_id,
208                                buf->start, val, found, from_this_trans,
209                                btrfs_header_level(buf));
210                         return 1;
211                 }
212         } else {
213                 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
214         }
215         return 0;
216 }
217
218 static int verify_parent_transid(struct extent_io_tree *io_tree,
219                                  struct extent_buffer *eb, u64 parent_transid)
220 {
221         int ret;
222
223         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
224                 return 0;
225
226         lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
227         if (extent_buffer_uptodate(io_tree, eb) &&
228             btrfs_header_generation(eb) == parent_transid) {
229                 ret = 0;
230                 goto out;
231         }
232         printk("parent transid verify failed on %llu wanted %llu found %llu\n",
233                (unsigned long long)eb->start,
234                (unsigned long long)parent_transid,
235                (unsigned long long)btrfs_header_generation(eb));
236         ret = 1;
237 out:
238         clear_extent_buffer_uptodate(io_tree, eb);
239         unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
240                       GFP_NOFS);
241         return ret;
242
243 }
244
245 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
246                                           struct extent_buffer *eb,
247                                           u64 start, u64 parent_transid)
248 {
249         struct extent_io_tree *io_tree;
250         int ret;
251         int num_copies = 0;
252         int mirror_num = 0;
253
254         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
255         while (1) {
256                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
257                                                btree_get_extent, mirror_num);
258                 if (!ret &&
259                     !verify_parent_transid(io_tree, eb, parent_transid))
260                         return ret;
261
262                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
263                                               eb->start, eb->len);
264                 if (num_copies == 1)
265                         return ret;
266
267                 mirror_num++;
268                 if (mirror_num > num_copies)
269                         return ret;
270         }
271         return -EIO;
272 }
273
274 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
275 {
276         struct extent_io_tree *tree;
277         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
278         u64 found_start;
279         int found_level;
280         unsigned long len;
281         struct extent_buffer *eb;
282         int ret;
283
284         tree = &BTRFS_I(page->mapping->host)->io_tree;
285
286         if (page->private == EXTENT_PAGE_PRIVATE)
287                 goto out;
288         if (!page->private)
289                 goto out;
290         len = page->private >> 2;
291         if (len == 0) {
292                 WARN_ON(1);
293         }
294         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
295         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
296                                              btrfs_header_generation(eb));
297         BUG_ON(ret);
298         found_start = btrfs_header_bytenr(eb);
299         if (found_start != start) {
300                 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
301                        start, found_start, len);
302                 WARN_ON(1);
303                 goto err;
304         }
305         if (eb->first_page != page) {
306                 printk("bad first page %lu %lu\n", eb->first_page->index,
307                        page->index);
308                 WARN_ON(1);
309                 goto err;
310         }
311         if (!PageUptodate(page)) {
312                 printk("csum not up to date page %lu\n", page->index);
313                 WARN_ON(1);
314                 goto err;
315         }
316         found_level = btrfs_header_level(eb);
317         spin_lock(&root->fs_info->hash_lock);
318         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
319         spin_unlock(&root->fs_info->hash_lock);
320         csum_tree_block(root, eb, 0);
321 err:
322         free_extent_buffer(eb);
323 out:
324         return 0;
325 }
326
327 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
328 {
329         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
330
331         csum_dirty_buffer(root, page);
332         return 0;
333 }
334
335 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
336                                struct extent_state *state)
337 {
338         struct extent_io_tree *tree;
339         u64 found_start;
340         int found_level;
341         unsigned long len;
342         struct extent_buffer *eb;
343         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
344         int ret = 0;
345
346         tree = &BTRFS_I(page->mapping->host)->io_tree;
347         if (page->private == EXTENT_PAGE_PRIVATE)
348                 goto out;
349         if (!page->private)
350                 goto out;
351         len = page->private >> 2;
352         if (len == 0) {
353                 WARN_ON(1);
354         }
355         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
356
357         found_start = btrfs_header_bytenr(eb);
358         if (found_start != start) {
359                 ret = -EIO;
360                 goto err;
361         }
362         if (eb->first_page != page) {
363                 printk("bad first page %lu %lu\n", eb->first_page->index,
364                        page->index);
365                 WARN_ON(1);
366                 ret = -EIO;
367                 goto err;
368         }
369         if (memcmp_extent_buffer(eb, root->fs_info->fsid,
370                                  (unsigned long)btrfs_header_fsid(eb),
371                                  BTRFS_FSID_SIZE)) {
372                 printk("bad fsid on block %Lu\n", eb->start);
373                 ret = -EIO;
374                 goto err;
375         }
376         found_level = btrfs_header_level(eb);
377
378         ret = csum_tree_block(root, eb, 1);
379         if (ret)
380                 ret = -EIO;
381
382         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
383         end = eb->start + end - 1;
384         release_extent_buffer_tail_pages(eb);
385 err:
386         free_extent_buffer(eb);
387 out:
388         return ret;
389 }
390
391 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
392 static void end_workqueue_bio(struct bio *bio, int err)
393 #else
394 static int end_workqueue_bio(struct bio *bio,
395                                    unsigned int bytes_done, int err)
396 #endif
397 {
398         struct end_io_wq *end_io_wq = bio->bi_private;
399         struct btrfs_fs_info *fs_info;
400
401 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
402         if (bio->bi_size)
403                 return 1;
404 #endif
405
406         fs_info = end_io_wq->info;
407         end_io_wq->error = err;
408         end_io_wq->work.func = end_workqueue_fn;
409         end_io_wq->work.flags = 0;
410         btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
411
412 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
413         return 0;
414 #endif
415 }
416
417 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
418                         int metadata)
419 {
420         struct end_io_wq *end_io_wq;
421         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
422         if (!end_io_wq)
423                 return -ENOMEM;
424
425         end_io_wq->private = bio->bi_private;
426         end_io_wq->end_io = bio->bi_end_io;
427         end_io_wq->info = info;
428         end_io_wq->error = 0;
429         end_io_wq->bio = bio;
430         end_io_wq->metadata = metadata;
431
432         bio->bi_private = end_io_wq;
433         bio->bi_end_io = end_workqueue_bio;
434         return 0;
435 }
436
437 static void run_one_async_submit(struct btrfs_work *work)
438 {
439         struct btrfs_fs_info *fs_info;
440         struct async_submit_bio *async;
441
442         async = container_of(work, struct  async_submit_bio, work);
443         fs_info = BTRFS_I(async->inode)->root->fs_info;
444         atomic_dec(&fs_info->nr_async_submits);
445         async->submit_bio_hook(async->inode, async->rw, async->bio,
446                                async->mirror_num);
447         kfree(async);
448 }
449
450 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
451                         int rw, struct bio *bio, int mirror_num,
452                         extent_submit_bio_hook_t *submit_bio_hook)
453 {
454         struct async_submit_bio *async;
455
456         async = kmalloc(sizeof(*async), GFP_NOFS);
457         if (!async)
458                 return -ENOMEM;
459
460         async->inode = inode;
461         async->rw = rw;
462         async->bio = bio;
463         async->mirror_num = mirror_num;
464         async->submit_bio_hook = submit_bio_hook;
465         async->work.func = run_one_async_submit;
466         async->work.flags = 0;
467         atomic_inc(&fs_info->nr_async_submits);
468         btrfs_queue_worker(&fs_info->workers, &async->work);
469         return 0;
470 }
471
472 static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
473                                  int mirror_num)
474 {
475         struct btrfs_root *root = BTRFS_I(inode)->root;
476         u64 offset;
477         int ret;
478
479         offset = bio->bi_sector << 9;
480
481         /*
482          * when we're called for a write, we're already in the async
483          * submission context.  Just jump ingo btrfs_map_bio
484          */
485         if (rw & (1 << BIO_RW)) {
486                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
487                                      mirror_num, 0);
488         }
489
490         /*
491          * called for a read, do the setup so that checksum validation
492          * can happen in the async kernel threads
493          */
494         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
495         BUG_ON(ret);
496
497         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
498 }
499
500 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
501                                  int mirror_num)
502 {
503         /*
504          * kthread helpers are used to submit writes so that checksumming
505          * can happen in parallel across all CPUs
506          */
507         if (!(rw & (1 << BIO_RW))) {
508                 return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
509         }
510         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
511                                    inode, rw, bio, mirror_num,
512                                    __btree_submit_bio_hook);
513 }
514
515 static int btree_writepage(struct page *page, struct writeback_control *wbc)
516 {
517         struct extent_io_tree *tree;
518         tree = &BTRFS_I(page->mapping->host)->io_tree;
519         return extent_write_full_page(tree, page, btree_get_extent, wbc);
520 }
521
522 static int btree_writepages(struct address_space *mapping,
523                             struct writeback_control *wbc)
524 {
525         struct extent_io_tree *tree;
526         tree = &BTRFS_I(mapping->host)->io_tree;
527         if (wbc->sync_mode == WB_SYNC_NONE) {
528                 u64 num_dirty;
529                 u64 start = 0;
530                 unsigned long thresh = 96 * 1024 * 1024;
531
532                 if (wbc->for_kupdate)
533                         return 0;
534
535                 if (current_is_pdflush()) {
536                         thresh = 96 * 1024 * 1024;
537                 } else {
538                         thresh = 8 * 1024 * 1024;
539                 }
540                 num_dirty = count_range_bits(tree, &start, (u64)-1,
541                                              thresh, EXTENT_DIRTY);
542                 if (num_dirty < thresh) {
543                         return 0;
544                 }
545         }
546         return extent_writepages(tree, mapping, btree_get_extent, wbc);
547 }
548
549 int btree_readpage(struct file *file, struct page *page)
550 {
551         struct extent_io_tree *tree;
552         tree = &BTRFS_I(page->mapping->host)->io_tree;
553         return extent_read_full_page(tree, page, btree_get_extent);
554 }
555
556 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
557 {
558         struct extent_io_tree *tree;
559         struct extent_map_tree *map;
560         int ret;
561
562         if (page_count(page) > 3) {
563                 /* once for page->private, once for the caller, once
564                  * once for the page cache
565                  */
566                 return 0;
567         }
568         tree = &BTRFS_I(page->mapping->host)->io_tree;
569         map = &BTRFS_I(page->mapping->host)->extent_tree;
570         ret = try_release_extent_state(map, tree, page, gfp_flags);
571         if (ret == 1) {
572                 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
573                 ClearPagePrivate(page);
574                 set_page_private(page, 0);
575                 page_cache_release(page);
576         }
577         return ret;
578 }
579
580 static void btree_invalidatepage(struct page *page, unsigned long offset)
581 {
582         struct extent_io_tree *tree;
583         tree = &BTRFS_I(page->mapping->host)->io_tree;
584         extent_invalidatepage(tree, page, offset);
585         btree_releasepage(page, GFP_NOFS);
586         if (PagePrivate(page)) {
587                 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
588                 ClearPagePrivate(page);
589                 set_page_private(page, 0);
590                 page_cache_release(page);
591         }
592 }
593
594 #if 0
595 static int btree_writepage(struct page *page, struct writeback_control *wbc)
596 {
597         struct buffer_head *bh;
598         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
599         struct buffer_head *head;
600         if (!page_has_buffers(page)) {
601                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
602                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
603         }
604         head = page_buffers(page);
605         bh = head;
606         do {
607                 if (buffer_dirty(bh))
608                         csum_tree_block(root, bh, 0);
609                 bh = bh->b_this_page;
610         } while (bh != head);
611         return block_write_full_page(page, btree_get_block, wbc);
612 }
613 #endif
614
615 static struct address_space_operations btree_aops = {
616         .readpage       = btree_readpage,
617         .writepage      = btree_writepage,
618         .writepages     = btree_writepages,
619         .releasepage    = btree_releasepage,
620         .invalidatepage = btree_invalidatepage,
621         .sync_page      = block_sync_page,
622 };
623
624 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
625                          u64 parent_transid)
626 {
627         struct extent_buffer *buf = NULL;
628         struct inode *btree_inode = root->fs_info->btree_inode;
629         int ret = 0;
630
631         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
632         if (!buf)
633                 return 0;
634         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
635                                  buf, 0, 0, btree_get_extent, 0);
636         free_extent_buffer(buf);
637         return ret;
638 }
639
640 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
641                                             u64 bytenr, u32 blocksize)
642 {
643         struct inode *btree_inode = root->fs_info->btree_inode;
644         struct extent_buffer *eb;
645         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
646                                 bytenr, blocksize, GFP_NOFS);
647         return eb;
648 }
649
650 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
651                                                  u64 bytenr, u32 blocksize)
652 {
653         struct inode *btree_inode = root->fs_info->btree_inode;
654         struct extent_buffer *eb;
655
656         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
657                                  bytenr, blocksize, NULL, GFP_NOFS);
658         return eb;
659 }
660
661
662 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
663                                       u32 blocksize, u64 parent_transid)
664 {
665         struct extent_buffer *buf = NULL;
666         struct inode *btree_inode = root->fs_info->btree_inode;
667         struct extent_io_tree *io_tree;
668         int ret;
669
670         io_tree = &BTRFS_I(btree_inode)->io_tree;
671
672         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
673         if (!buf)
674                 return NULL;
675
676         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
677
678         if (ret == 0) {
679                 buf->flags |= EXTENT_UPTODATE;
680         }
681         return buf;
682
683 }
684
685 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
686                      struct extent_buffer *buf)
687 {
688         struct inode *btree_inode = root->fs_info->btree_inode;
689         if (btrfs_header_generation(buf) ==
690             root->fs_info->running_transaction->transid) {
691                 WARN_ON(!btrfs_tree_locked(buf));
692                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
693                                           buf);
694         }
695         return 0;
696 }
697
698 int wait_on_tree_block_writeback(struct btrfs_root *root,
699                                  struct extent_buffer *buf)
700 {
701         struct inode *btree_inode = root->fs_info->btree_inode;
702         wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
703                                         buf);
704         return 0;
705 }
706
707 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
708                         u32 stripesize, struct btrfs_root *root,
709                         struct btrfs_fs_info *fs_info,
710                         u64 objectid)
711 {
712         root->node = NULL;
713         root->inode = NULL;
714         root->commit_root = NULL;
715         root->sectorsize = sectorsize;
716         root->nodesize = nodesize;
717         root->leafsize = leafsize;
718         root->stripesize = stripesize;
719         root->ref_cows = 0;
720         root->track_dirty = 0;
721
722         root->fs_info = fs_info;
723         root->objectid = objectid;
724         root->last_trans = 0;
725         root->highest_inode = 0;
726         root->last_inode_alloc = 0;
727         root->name = NULL;
728         root->in_sysfs = 0;
729
730         INIT_LIST_HEAD(&root->dirty_list);
731         spin_lock_init(&root->node_lock);
732         mutex_init(&root->objectid_mutex);
733         memset(&root->root_key, 0, sizeof(root->root_key));
734         memset(&root->root_item, 0, sizeof(root->root_item));
735         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
736         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
737         root->defrag_trans_start = fs_info->generation;
738         init_completion(&root->kobj_unregister);
739         root->defrag_running = 0;
740         root->defrag_level = 0;
741         root->root_key.objectid = objectid;
742         return 0;
743 }
744
745 static int find_and_setup_root(struct btrfs_root *tree_root,
746                                struct btrfs_fs_info *fs_info,
747                                u64 objectid,
748                                struct btrfs_root *root)
749 {
750         int ret;
751         u32 blocksize;
752
753         __setup_root(tree_root->nodesize, tree_root->leafsize,
754                      tree_root->sectorsize, tree_root->stripesize,
755                      root, fs_info, objectid);
756         ret = btrfs_find_last_root(tree_root, objectid,
757                                    &root->root_item, &root->root_key);
758         BUG_ON(ret);
759
760         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
761         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
762                                      blocksize, 0);
763         BUG_ON(!root->node);
764         return 0;
765 }
766
767 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
768                                                struct btrfs_key *location)
769 {
770         struct btrfs_root *root;
771         struct btrfs_root *tree_root = fs_info->tree_root;
772         struct btrfs_path *path;
773         struct extent_buffer *l;
774         u64 highest_inode;
775         u32 blocksize;
776         int ret = 0;
777
778         root = kzalloc(sizeof(*root), GFP_NOFS);
779         if (!root)
780                 return ERR_PTR(-ENOMEM);
781         if (location->offset == (u64)-1) {
782                 ret = find_and_setup_root(tree_root, fs_info,
783                                           location->objectid, root);
784                 if (ret) {
785                         kfree(root);
786                         return ERR_PTR(ret);
787                 }
788                 goto insert;
789         }
790
791         __setup_root(tree_root->nodesize, tree_root->leafsize,
792                      tree_root->sectorsize, tree_root->stripesize,
793                      root, fs_info, location->objectid);
794
795         path = btrfs_alloc_path();
796         BUG_ON(!path);
797         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
798         if (ret != 0) {
799                 if (ret > 0)
800                         ret = -ENOENT;
801                 goto out;
802         }
803         l = path->nodes[0];
804         read_extent_buffer(l, &root->root_item,
805                btrfs_item_ptr_offset(l, path->slots[0]),
806                sizeof(root->root_item));
807         memcpy(&root->root_key, location, sizeof(*location));
808         ret = 0;
809 out:
810         btrfs_release_path(root, path);
811         btrfs_free_path(path);
812         if (ret) {
813                 kfree(root);
814                 return ERR_PTR(ret);
815         }
816         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
817         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
818                                      blocksize, 0);
819         BUG_ON(!root->node);
820 insert:
821         root->ref_cows = 1;
822         ret = btrfs_find_highest_inode(root, &highest_inode);
823         if (ret == 0) {
824                 root->highest_inode = highest_inode;
825                 root->last_inode_alloc = highest_inode;
826         }
827         return root;
828 }
829
830 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
831                                         u64 root_objectid)
832 {
833         struct btrfs_root *root;
834
835         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
836                 return fs_info->tree_root;
837         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
838                 return fs_info->extent_root;
839
840         root = radix_tree_lookup(&fs_info->fs_roots_radix,
841                                  (unsigned long)root_objectid);
842         return root;
843 }
844
845 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
846                                               struct btrfs_key *location)
847 {
848         struct btrfs_root *root;
849         int ret;
850
851         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
852                 return fs_info->tree_root;
853         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
854                 return fs_info->extent_root;
855         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
856                 return fs_info->chunk_root;
857         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
858                 return fs_info->dev_root;
859
860         root = radix_tree_lookup(&fs_info->fs_roots_radix,
861                                  (unsigned long)location->objectid);
862         if (root)
863                 return root;
864
865         root = btrfs_read_fs_root_no_radix(fs_info, location);
866         if (IS_ERR(root))
867                 return root;
868         ret = radix_tree_insert(&fs_info->fs_roots_radix,
869                                 (unsigned long)root->root_key.objectid,
870                                 root);
871         if (ret) {
872                 free_extent_buffer(root->node);
873                 kfree(root);
874                 return ERR_PTR(ret);
875         }
876         ret = btrfs_find_dead_roots(fs_info->tree_root,
877                                     root->root_key.objectid, root);
878         BUG_ON(ret);
879
880         return root;
881 }
882
883 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
884                                       struct btrfs_key *location,
885                                       const char *name, int namelen)
886 {
887         struct btrfs_root *root;
888         int ret;
889
890         root = btrfs_read_fs_root_no_name(fs_info, location);
891         if (!root)
892                 return NULL;
893
894         if (root->in_sysfs)
895                 return root;
896
897         ret = btrfs_set_root_name(root, name, namelen);
898         if (ret) {
899                 free_extent_buffer(root->node);
900                 kfree(root);
901                 return ERR_PTR(ret);
902         }
903
904         ret = btrfs_sysfs_add_root(root);
905         if (ret) {
906                 free_extent_buffer(root->node);
907                 kfree(root->name);
908                 kfree(root);
909                 return ERR_PTR(ret);
910         }
911         root->in_sysfs = 1;
912         return root;
913 }
914 #if 0
915 static int add_hasher(struct btrfs_fs_info *info, char *type) {
916         struct btrfs_hasher *hasher;
917
918         hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
919         if (!hasher)
920                 return -ENOMEM;
921         hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
922         if (!hasher->hash_tfm) {
923                 kfree(hasher);
924                 return -EINVAL;
925         }
926         spin_lock(&info->hash_lock);
927         list_add(&hasher->list, &info->hashers);
928         spin_unlock(&info->hash_lock);
929         return 0;
930 }
931 #endif
932
933 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
934 {
935         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
936         int ret = 0;
937         int limit = 256 * info->fs_devices->open_devices;
938         struct list_head *cur;
939         struct btrfs_device *device;
940         struct backing_dev_info *bdi;
941
942         if ((bdi_bits & (1 << BDI_write_congested)) &&
943             atomic_read(&info->nr_async_submits) > limit) {
944                 return 1;
945         }
946
947         list_for_each(cur, &info->fs_devices->devices) {
948                 device = list_entry(cur, struct btrfs_device, dev_list);
949                 if (!device->bdev)
950                         continue;
951                 bdi = blk_get_backing_dev_info(device->bdev);
952                 if (bdi && bdi_congested(bdi, bdi_bits)) {
953                         ret = 1;
954                         break;
955                 }
956         }
957         return ret;
958 }
959
960 /*
961  * this unplugs every device on the box, and it is only used when page
962  * is null
963  */
964 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
965 {
966         struct list_head *cur;
967         struct btrfs_device *device;
968         struct btrfs_fs_info *info;
969
970         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
971         list_for_each(cur, &info->fs_devices->devices) {
972                 device = list_entry(cur, struct btrfs_device, dev_list);
973                 bdi = blk_get_backing_dev_info(device->bdev);
974                 if (bdi->unplug_io_fn) {
975                         bdi->unplug_io_fn(bdi, page);
976                 }
977         }
978 }
979
980 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
981 {
982         struct inode *inode;
983         struct extent_map_tree *em_tree;
984         struct extent_map *em;
985         struct address_space *mapping;
986         u64 offset;
987
988         /* the generic O_DIRECT read code does this */
989         if (!page) {
990                 __unplug_io_fn(bdi, page);
991                 return;
992         }
993
994         /*
995          * page->mapping may change at any time.  Get a consistent copy
996          * and use that for everything below
997          */
998         smp_mb();
999         mapping = page->mapping;
1000         if (!mapping)
1001                 return;
1002
1003         inode = mapping->host;
1004         offset = page_offset(page);
1005
1006         em_tree = &BTRFS_I(inode)->extent_tree;
1007         spin_lock(&em_tree->lock);
1008         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1009         spin_unlock(&em_tree->lock);
1010         if (!em)
1011                 return;
1012
1013         offset = offset - em->start;
1014         btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1015                           em->block_start + offset, page);
1016         free_extent_map(em);
1017 }
1018
1019 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1020 {
1021 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1022         bdi_init(bdi);
1023 #endif
1024         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1025         bdi->state              = 0;
1026         bdi->capabilities       = default_backing_dev_info.capabilities;
1027         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
1028         bdi->unplug_io_data     = info;
1029         bdi->congested_fn       = btrfs_congested_fn;
1030         bdi->congested_data     = info;
1031         return 0;
1032 }
1033
1034 static int bio_ready_for_csum(struct bio *bio)
1035 {
1036         u64 length = 0;
1037         u64 buf_len = 0;
1038         u64 start = 0;
1039         struct page *page;
1040         struct extent_io_tree *io_tree = NULL;
1041         struct btrfs_fs_info *info = NULL;
1042         struct bio_vec *bvec;
1043         int i;
1044         int ret;
1045
1046         bio_for_each_segment(bvec, bio, i) {
1047                 page = bvec->bv_page;
1048                 if (page->private == EXTENT_PAGE_PRIVATE) {
1049                         length += bvec->bv_len;
1050                         continue;
1051                 }
1052                 if (!page->private) {
1053                         length += bvec->bv_len;
1054                         continue;
1055                 }
1056                 length = bvec->bv_len;
1057                 buf_len = page->private >> 2;
1058                 start = page_offset(page) + bvec->bv_offset;
1059                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1060                 info = BTRFS_I(page->mapping->host)->root->fs_info;
1061         }
1062         /* are we fully contained in this bio? */
1063         if (buf_len <= length)
1064                 return 1;
1065
1066         ret = extent_range_uptodate(io_tree, start + length,
1067                                     start + buf_len - 1);
1068         if (ret == 1)
1069                 return ret;
1070         return ret;
1071 }
1072
1073 /*
1074  * called by the kthread helper functions to finally call the bio end_io
1075  * functions.  This is where read checksum verification actually happens
1076  */
1077 static void end_workqueue_fn(struct btrfs_work *work)
1078 {
1079         struct bio *bio;
1080         struct end_io_wq *end_io_wq;
1081         struct btrfs_fs_info *fs_info;
1082         int error;
1083
1084         end_io_wq = container_of(work, struct end_io_wq, work);
1085         bio = end_io_wq->bio;
1086         fs_info = end_io_wq->info;
1087
1088         /* metadata bios are special because the whole tree block must
1089          * be checksummed at once.  This makes sure the entire block is in
1090          * ram and up to date before trying to verify things.  For
1091          * blocksize <= pagesize, it is basically a noop
1092          */
1093         if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1094                 btrfs_queue_worker(&fs_info->endio_workers,
1095                                    &end_io_wq->work);
1096                 return;
1097         }
1098         error = end_io_wq->error;
1099         bio->bi_private = end_io_wq->private;
1100         bio->bi_end_io = end_io_wq->end_io;
1101         kfree(end_io_wq);
1102 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1103         bio_endio(bio, bio->bi_size, error);
1104 #else
1105         bio_endio(bio, error);
1106 #endif
1107 }
1108
1109 static int cleaner_kthread(void *arg)
1110 {
1111         struct btrfs_root *root = arg;
1112
1113         do {
1114                 smp_mb();
1115                 if (root->fs_info->closing)
1116                         break;
1117
1118                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1119                 mutex_lock(&root->fs_info->cleaner_mutex);
1120 printk("cleaner awake\n");
1121                 btrfs_clean_old_snapshots(root);
1122 printk("cleaner done\n");
1123                 mutex_unlock(&root->fs_info->cleaner_mutex);
1124
1125                 if (freezing(current)) {
1126                         refrigerator();
1127                 } else {
1128                         smp_mb();
1129                         if (root->fs_info->closing)
1130                                 break;
1131                         set_current_state(TASK_INTERRUPTIBLE);
1132                         schedule();
1133                         __set_current_state(TASK_RUNNING);
1134                 }
1135         } while (!kthread_should_stop());
1136         return 0;
1137 }
1138
1139 static int transaction_kthread(void *arg)
1140 {
1141         struct btrfs_root *root = arg;
1142         struct btrfs_trans_handle *trans;
1143         struct btrfs_transaction *cur;
1144         unsigned long now;
1145         unsigned long delay;
1146         int ret;
1147
1148         do {
1149                 smp_mb();
1150                 if (root->fs_info->closing)
1151                         break;
1152
1153                 delay = HZ * 30;
1154                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1155                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1156
1157                 mutex_lock(&root->fs_info->trans_mutex);
1158                 cur = root->fs_info->running_transaction;
1159                 if (!cur) {
1160                         mutex_unlock(&root->fs_info->trans_mutex);
1161                         goto sleep;
1162                 }
1163                 now = get_seconds();
1164                 if (now < cur->start_time || now - cur->start_time < 30) {
1165                         mutex_unlock(&root->fs_info->trans_mutex);
1166                         delay = HZ * 5;
1167                         goto sleep;
1168                 }
1169                 mutex_unlock(&root->fs_info->trans_mutex);
1170                 trans = btrfs_start_transaction(root, 1);
1171                 ret = btrfs_commit_transaction(trans, root);
1172 sleep:
1173                 wake_up_process(root->fs_info->cleaner_kthread);
1174                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1175
1176                 if (freezing(current)) {
1177                         refrigerator();
1178                 } else {
1179                         if (root->fs_info->closing)
1180                                 break;
1181                         set_current_state(TASK_INTERRUPTIBLE);
1182                         schedule_timeout(delay);
1183                         __set_current_state(TASK_RUNNING);
1184                 }
1185         } while (!kthread_should_stop());
1186         return 0;
1187 }
1188
1189 struct btrfs_root *open_ctree(struct super_block *sb,
1190                               struct btrfs_fs_devices *fs_devices,
1191                               char *options)
1192 {
1193         u32 sectorsize;
1194         u32 nodesize;
1195         u32 leafsize;
1196         u32 blocksize;
1197         u32 stripesize;
1198         struct buffer_head *bh;
1199         struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
1200                                                  GFP_NOFS);
1201         struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
1202                                                GFP_NOFS);
1203         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1204                                                 GFP_NOFS);
1205         struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
1206                                                 GFP_NOFS);
1207         struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
1208                                               GFP_NOFS);
1209         int ret;
1210         int err = -EINVAL;
1211
1212         struct btrfs_super_block *disk_super;
1213
1214         if (!extent_root || !tree_root || !fs_info) {
1215                 err = -ENOMEM;
1216                 goto fail;
1217         }
1218         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1219         INIT_LIST_HEAD(&fs_info->trans_list);
1220         INIT_LIST_HEAD(&fs_info->dead_roots);
1221         INIT_LIST_HEAD(&fs_info->hashers);
1222         spin_lock_init(&fs_info->hash_lock);
1223         spin_lock_init(&fs_info->delalloc_lock);
1224         spin_lock_init(&fs_info->new_trans_lock);
1225
1226         init_completion(&fs_info->kobj_unregister);
1227         fs_info->tree_root = tree_root;
1228         fs_info->extent_root = extent_root;
1229         fs_info->chunk_root = chunk_root;
1230         fs_info->dev_root = dev_root;
1231         fs_info->fs_devices = fs_devices;
1232         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1233         INIT_LIST_HEAD(&fs_info->space_info);
1234         btrfs_mapping_init(&fs_info->mapping_tree);
1235         atomic_set(&fs_info->nr_async_submits, 0);
1236         atomic_set(&fs_info->throttles, 0);
1237         fs_info->sb = sb;
1238         fs_info->max_extent = (u64)-1;
1239         fs_info->max_inline = 8192 * 1024;
1240         setup_bdi(fs_info, &fs_info->bdi);
1241         fs_info->btree_inode = new_inode(sb);
1242         fs_info->btree_inode->i_ino = 1;
1243         fs_info->btree_inode->i_nlink = 1;
1244         fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
1245
1246         sb->s_blocksize = 4096;
1247         sb->s_blocksize_bits = blksize_bits(4096);
1248
1249         /*
1250          * we set the i_size on the btree inode to the max possible int.
1251          * the real end of the address space is determined by all of
1252          * the devices in the system
1253          */
1254         fs_info->btree_inode->i_size = OFFSET_MAX;
1255         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1256         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1257
1258         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1259                              fs_info->btree_inode->i_mapping,
1260                              GFP_NOFS);
1261         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1262                              GFP_NOFS);
1263
1264         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1265
1266         extent_io_tree_init(&fs_info->free_space_cache,
1267                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1268         extent_io_tree_init(&fs_info->block_group_cache,
1269                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1270         extent_io_tree_init(&fs_info->pinned_extents,
1271                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1272         extent_io_tree_init(&fs_info->pending_del,
1273                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1274         extent_io_tree_init(&fs_info->extent_ins,
1275                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1276         fs_info->do_barriers = 1;
1277
1278         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1279         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1280                sizeof(struct btrfs_key));
1281         insert_inode_hash(fs_info->btree_inode);
1282         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1283
1284         mutex_init(&fs_info->trans_mutex);
1285         mutex_init(&fs_info->drop_mutex);
1286         mutex_init(&fs_info->alloc_mutex);
1287         mutex_init(&fs_info->chunk_mutex);
1288         mutex_init(&fs_info->transaction_kthread_mutex);
1289         mutex_init(&fs_info->cleaner_mutex);
1290         mutex_init(&fs_info->volume_mutex);
1291
1292 #if 0
1293         ret = add_hasher(fs_info, "crc32c");
1294         if (ret) {
1295                 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1296                 err = -ENOMEM;
1297                 goto fail_iput;
1298         }
1299 #endif
1300         __setup_root(4096, 4096, 4096, 4096, tree_root,
1301                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1302
1303
1304         bh = __bread(fs_devices->latest_bdev,
1305                      BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
1306         if (!bh)
1307                 goto fail_iput;
1308
1309         memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1310         brelse(bh);
1311
1312         memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1313
1314         disk_super = &fs_info->super_copy;
1315         if (!btrfs_super_root(disk_super))
1316                 goto fail_sb_buffer;
1317
1318         err = btrfs_parse_options(tree_root, options);
1319         if (err)
1320                 goto fail_sb_buffer;
1321
1322         /*
1323          * we need to start all the end_io workers up front because the
1324          * queue work function gets called at interrupt time, and so it
1325          * cannot dynamically grow.
1326          */
1327         btrfs_init_workers(&fs_info->workers, fs_info->thread_pool_size);
1328         btrfs_init_workers(&fs_info->submit_workers, fs_info->thread_pool_size);
1329         btrfs_init_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1330         btrfs_start_workers(&fs_info->workers, 1);
1331         btrfs_start_workers(&fs_info->submit_workers, 1);
1332         btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1333
1334         err = -EINVAL;
1335         if (btrfs_super_num_devices(disk_super) > fs_devices->open_devices) {
1336                 printk("Btrfs: wanted %llu devices, but found %llu\n",
1337                        (unsigned long long)btrfs_super_num_devices(disk_super),
1338                        (unsigned long long)fs_devices->open_devices);
1339                 if (btrfs_test_opt(tree_root, DEGRADED))
1340                         printk("continuing in degraded mode\n");
1341                 else {
1342                         goto fail_sb_buffer;
1343                 }
1344         }
1345
1346         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1347
1348         nodesize = btrfs_super_nodesize(disk_super);
1349         leafsize = btrfs_super_leafsize(disk_super);
1350         sectorsize = btrfs_super_sectorsize(disk_super);
1351         stripesize = btrfs_super_stripesize(disk_super);
1352         tree_root->nodesize = nodesize;
1353         tree_root->leafsize = leafsize;
1354         tree_root->sectorsize = sectorsize;
1355         tree_root->stripesize = stripesize;
1356
1357         sb->s_blocksize = sectorsize;
1358         sb->s_blocksize_bits = blksize_bits(sectorsize);
1359
1360         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1361                     sizeof(disk_super->magic))) {
1362                 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1363                 goto fail_sb_buffer;
1364         }
1365
1366         mutex_lock(&fs_info->chunk_mutex);
1367         ret = btrfs_read_sys_array(tree_root);
1368         mutex_unlock(&fs_info->chunk_mutex);
1369         if (ret) {
1370                 printk("btrfs: failed to read the system array on %s\n",
1371                        sb->s_id);
1372                 goto fail_sys_array;
1373         }
1374
1375         blocksize = btrfs_level_size(tree_root,
1376                                      btrfs_super_chunk_root_level(disk_super));
1377
1378         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1379                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1380
1381         chunk_root->node = read_tree_block(chunk_root,
1382                                            btrfs_super_chunk_root(disk_super),
1383                                            blocksize, 0);
1384         BUG_ON(!chunk_root->node);
1385
1386         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1387                  (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1388                  BTRFS_UUID_SIZE);
1389
1390         mutex_lock(&fs_info->chunk_mutex);
1391         ret = btrfs_read_chunk_tree(chunk_root);
1392         mutex_unlock(&fs_info->chunk_mutex);
1393         BUG_ON(ret);
1394
1395         btrfs_close_extra_devices(fs_devices);
1396
1397         blocksize = btrfs_level_size(tree_root,
1398                                      btrfs_super_root_level(disk_super));
1399
1400
1401         tree_root->node = read_tree_block(tree_root,
1402                                           btrfs_super_root(disk_super),
1403                                           blocksize, 0);
1404         if (!tree_root->node)
1405                 goto fail_sb_buffer;
1406
1407
1408         ret = find_and_setup_root(tree_root, fs_info,
1409                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1410         if (ret)
1411                 goto fail_tree_root;
1412         extent_root->track_dirty = 1;
1413
1414         ret = find_and_setup_root(tree_root, fs_info,
1415                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1416         dev_root->track_dirty = 1;
1417
1418         if (ret)
1419                 goto fail_extent_root;
1420
1421         btrfs_read_block_groups(extent_root);
1422
1423         fs_info->generation = btrfs_super_generation(disk_super) + 1;
1424         fs_info->data_alloc_profile = (u64)-1;
1425         fs_info->metadata_alloc_profile = (u64)-1;
1426         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1427         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1428                                                "btrfs-cleaner");
1429         if (!fs_info->cleaner_kthread)
1430                 goto fail_extent_root;
1431
1432         fs_info->transaction_kthread = kthread_run(transaction_kthread,
1433                                                    tree_root,
1434                                                    "btrfs-transaction");
1435         if (!fs_info->transaction_kthread)
1436                 goto fail_cleaner;
1437
1438
1439         return tree_root;
1440
1441 fail_cleaner:
1442         kthread_stop(fs_info->cleaner_kthread);
1443 fail_extent_root:
1444         free_extent_buffer(extent_root->node);
1445 fail_tree_root:
1446         free_extent_buffer(tree_root->node);
1447 fail_sys_array:
1448 fail_sb_buffer:
1449         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1450         btrfs_stop_workers(&fs_info->workers);
1451         btrfs_stop_workers(&fs_info->endio_workers);
1452         btrfs_stop_workers(&fs_info->submit_workers);
1453 fail_iput:
1454         iput(fs_info->btree_inode);
1455 fail:
1456         btrfs_close_devices(fs_info->fs_devices);
1457         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1458
1459         kfree(extent_root);
1460         kfree(tree_root);
1461 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1462         bdi_destroy(&fs_info->bdi);
1463 #endif
1464         kfree(fs_info);
1465         return ERR_PTR(err);
1466 }
1467
1468 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1469 {
1470         char b[BDEVNAME_SIZE];
1471
1472         if (uptodate) {
1473                 set_buffer_uptodate(bh);
1474         } else {
1475                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1476                         printk(KERN_WARNING "lost page write due to "
1477                                         "I/O error on %s\n",
1478                                        bdevname(bh->b_bdev, b));
1479                 }
1480                 /* note, we dont' set_buffer_write_io_error because we have
1481                  * our own ways of dealing with the IO errors
1482                  */
1483                 clear_buffer_uptodate(bh);
1484         }
1485         unlock_buffer(bh);
1486         put_bh(bh);
1487 }
1488
1489 int write_all_supers(struct btrfs_root *root)
1490 {
1491         struct list_head *cur;
1492         struct list_head *head = &root->fs_info->fs_devices->devices;
1493         struct btrfs_device *dev;
1494         struct btrfs_super_block *sb;
1495         struct btrfs_dev_item *dev_item;
1496         struct buffer_head *bh;
1497         int ret;
1498         int do_barriers;
1499         int max_errors;
1500         int total_errors = 0;
1501         u32 crc;
1502         u64 flags;
1503
1504         max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1505         do_barriers = !btrfs_test_opt(root, NOBARRIER);
1506
1507         sb = &root->fs_info->super_for_commit;
1508         dev_item = &sb->dev_item;
1509         list_for_each(cur, head) {
1510                 dev = list_entry(cur, struct btrfs_device, dev_list);
1511                 if (!dev->bdev) {
1512                         total_errors++;
1513                         continue;
1514                 }
1515                 if (!dev->in_fs_metadata)
1516                         continue;
1517
1518                 btrfs_set_stack_device_type(dev_item, dev->type);
1519                 btrfs_set_stack_device_id(dev_item, dev->devid);
1520                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1521                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1522                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1523                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1524                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1525                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1526                 flags = btrfs_super_flags(sb);
1527                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1528
1529
1530                 crc = ~(u32)0;
1531                 crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
1532                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1533                 btrfs_csum_final(crc, sb->csum);
1534
1535                 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
1536                               BTRFS_SUPER_INFO_SIZE);
1537
1538                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
1539                 dev->pending_io = bh;
1540
1541                 get_bh(bh);
1542                 set_buffer_uptodate(bh);
1543                 lock_buffer(bh);
1544                 bh->b_end_io = btrfs_end_buffer_write_sync;
1545
1546                 if (do_barriers && dev->barriers) {
1547                         ret = submit_bh(WRITE_BARRIER, bh);
1548                         if (ret == -EOPNOTSUPP) {
1549                                 printk("btrfs: disabling barriers on dev %s\n",
1550                                        dev->name);
1551                                 set_buffer_uptodate(bh);
1552                                 dev->barriers = 0;
1553                                 get_bh(bh);
1554                                 lock_buffer(bh);
1555                                 ret = submit_bh(WRITE, bh);
1556                         }
1557                 } else {
1558                         ret = submit_bh(WRITE, bh);
1559                 }
1560                 if (ret)
1561                         total_errors++;
1562         }
1563         if (total_errors > max_errors) {
1564                 printk("btrfs: %d errors while writing supers\n", total_errors);
1565                 BUG();
1566         }
1567         total_errors = 0;
1568
1569         list_for_each(cur, head) {
1570                 dev = list_entry(cur, struct btrfs_device, dev_list);
1571                 if (!dev->bdev)
1572                         continue;
1573                 if (!dev->in_fs_metadata)
1574                         continue;
1575
1576                 BUG_ON(!dev->pending_io);
1577                 bh = dev->pending_io;
1578                 wait_on_buffer(bh);
1579                 if (!buffer_uptodate(dev->pending_io)) {
1580                         if (do_barriers && dev->barriers) {
1581                                 printk("btrfs: disabling barriers on dev %s\n",
1582                                        dev->name);
1583                                 set_buffer_uptodate(bh);
1584                                 get_bh(bh);
1585                                 lock_buffer(bh);
1586                                 dev->barriers = 0;
1587                                 ret = submit_bh(WRITE, bh);
1588                                 BUG_ON(ret);
1589                                 wait_on_buffer(bh);
1590                                 if (!buffer_uptodate(bh))
1591                                         total_errors++;
1592                         } else {
1593                                 total_errors++;
1594                         }
1595
1596                 }
1597                 dev->pending_io = NULL;
1598                 brelse(bh);
1599         }
1600         if (total_errors > max_errors) {
1601                 printk("btrfs: %d errors while writing supers\n", total_errors);
1602                 BUG();
1603         }
1604         return 0;
1605 }
1606
1607 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1608                       *root)
1609 {
1610         int ret;
1611
1612         ret = write_all_supers(root);
1613         return ret;
1614 }
1615
1616 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1617 {
1618         radix_tree_delete(&fs_info->fs_roots_radix,
1619                           (unsigned long)root->root_key.objectid);
1620         if (root->in_sysfs)
1621                 btrfs_sysfs_del_root(root);
1622         if (root->inode)
1623                 iput(root->inode);
1624         if (root->node)
1625                 free_extent_buffer(root->node);
1626         if (root->commit_root)
1627                 free_extent_buffer(root->commit_root);
1628         if (root->name)
1629                 kfree(root->name);
1630         kfree(root);
1631         return 0;
1632 }
1633
1634 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1635 {
1636         int ret;
1637         struct btrfs_root *gang[8];
1638         int i;
1639
1640         while(1) {
1641                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1642                                              (void **)gang, 0,
1643                                              ARRAY_SIZE(gang));
1644                 if (!ret)
1645                         break;
1646                 for (i = 0; i < ret; i++)
1647                         btrfs_free_fs_root(fs_info, gang[i]);
1648         }
1649         return 0;
1650 }
1651
1652 int close_ctree(struct btrfs_root *root)
1653 {
1654         int ret;
1655         struct btrfs_trans_handle *trans;
1656         struct btrfs_fs_info *fs_info = root->fs_info;
1657
1658         fs_info->closing = 1;
1659         smp_mb();
1660
1661         kthread_stop(root->fs_info->transaction_kthread);
1662         kthread_stop(root->fs_info->cleaner_kthread);
1663
1664         btrfs_clean_old_snapshots(root);
1665         trans = btrfs_start_transaction(root, 1);
1666         ret = btrfs_commit_transaction(trans, root);
1667         /* run commit again to  drop the original snapshot */
1668         trans = btrfs_start_transaction(root, 1);
1669         btrfs_commit_transaction(trans, root);
1670         ret = btrfs_write_and_wait_transaction(NULL, root);
1671         BUG_ON(ret);
1672
1673         write_ctree_super(NULL, root);
1674
1675         if (fs_info->delalloc_bytes) {
1676                 printk("btrfs: at unmount delalloc count %Lu\n",
1677                        fs_info->delalloc_bytes);
1678         }
1679         if (fs_info->extent_root->node)
1680                 free_extent_buffer(fs_info->extent_root->node);
1681
1682         if (fs_info->tree_root->node)
1683                 free_extent_buffer(fs_info->tree_root->node);
1684
1685         if (root->fs_info->chunk_root->node);
1686                 free_extent_buffer(root->fs_info->chunk_root->node);
1687
1688         if (root->fs_info->dev_root->node);
1689                 free_extent_buffer(root->fs_info->dev_root->node);
1690
1691         btrfs_free_block_groups(root->fs_info);
1692         del_fs_roots(fs_info);
1693
1694         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1695
1696         extent_io_tree_empty_lru(&fs_info->free_space_cache);
1697         extent_io_tree_empty_lru(&fs_info->block_group_cache);
1698         extent_io_tree_empty_lru(&fs_info->pinned_extents);
1699         extent_io_tree_empty_lru(&fs_info->pending_del);
1700         extent_io_tree_empty_lru(&fs_info->extent_ins);
1701         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1702
1703         truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1704
1705         btrfs_stop_workers(&fs_info->workers);
1706         btrfs_stop_workers(&fs_info->endio_workers);
1707         btrfs_stop_workers(&fs_info->submit_workers);
1708
1709         iput(fs_info->btree_inode);
1710 #if 0
1711         while(!list_empty(&fs_info->hashers)) {
1712                 struct btrfs_hasher *hasher;
1713                 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1714                                     hashers);
1715                 list_del(&hasher->hashers);
1716                 crypto_free_hash(&fs_info->hash_tfm);
1717                 kfree(hasher);
1718         }
1719 #endif
1720         btrfs_close_devices(fs_info->fs_devices);
1721         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1722
1723 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1724         bdi_destroy(&fs_info->bdi);
1725 #endif
1726
1727         kfree(fs_info->extent_root);
1728         kfree(fs_info->tree_root);
1729         kfree(fs_info->chunk_root);
1730         kfree(fs_info->dev_root);
1731         return 0;
1732 }
1733
1734 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
1735 {
1736         int ret;
1737         struct inode *btree_inode = buf->first_page->mapping->host;
1738
1739         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1740         if (!ret)
1741                 return ret;
1742
1743         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
1744                                     parent_transid);
1745         return !ret;
1746 }
1747
1748 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1749 {
1750         struct inode *btree_inode = buf->first_page->mapping->host;
1751         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1752                                           buf);
1753 }
1754
1755 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1756 {
1757         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1758         u64 transid = btrfs_header_generation(buf);
1759         struct inode *btree_inode = root->fs_info->btree_inode;
1760
1761         WARN_ON(!btrfs_tree_locked(buf));
1762         if (transid != root->fs_info->generation) {
1763                 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1764                         (unsigned long long)buf->start,
1765                         transid, root->fs_info->generation);
1766                 WARN_ON(1);
1767         }
1768         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1769 }
1770
1771 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1772 {
1773         /*
1774          * looks as though older kernels can get into trouble with
1775          * this code, they end up stuck in balance_dirty_pages forever
1776          */
1777         struct extent_io_tree *tree;
1778         u64 num_dirty;
1779         u64 start = 0;
1780         unsigned long thresh = 16 * 1024 * 1024;
1781         tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
1782
1783         if (current_is_pdflush())
1784                 return;
1785
1786         num_dirty = count_range_bits(tree, &start, (u64)-1,
1787                                      thresh, EXTENT_DIRTY);
1788         if (num_dirty > thresh) {
1789                 balance_dirty_pages_ratelimited_nr(
1790                                    root->fs_info->btree_inode->i_mapping, 1);
1791         }
1792         return;
1793 }
1794
1795 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
1796 {
1797         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1798         int ret;
1799         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1800         if (ret == 0) {
1801                 buf->flags |= EXTENT_UPTODATE;
1802         }
1803         return ret;
1804 }
1805
1806 static struct extent_io_ops btree_extent_io_ops = {
1807         .writepage_io_hook = btree_writepage_io_hook,
1808         .readpage_end_io_hook = btree_readpage_end_io_hook,
1809         .submit_bio_hook = btree_submit_bio_hook,
1810         /* note we're sharing with inode.c for the merge bio hook */
1811         .merge_bio_hook = btrfs_merge_bio_hook,
1812 };