Btrfs: early inline file data code
[safe/jmp/linux-2.6] / fs / btrfs / ctree.c
1 #include <linux/module.h>
2 #include "ctree.h"
3 #include "disk-io.h"
4 #include "transaction.h"
5
6 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
7                       *root, struct btrfs_path *path, int level);
8 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
9                       *root, struct btrfs_path *path, int data_size);
10 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
11                           *root, struct buffer_head *dst, struct buffer_head
12                           *src);
13 static int balance_node_right(struct btrfs_trans_handle *trans, struct
14                               btrfs_root *root, struct buffer_head *dst_buf,
15                               struct buffer_head *src_buf);
16 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
17                    struct btrfs_path *path, int level, int slot);
18
19 inline void btrfs_init_path(struct btrfs_path *p)
20 {
21         memset(p, 0, sizeof(*p));
22 }
23
24 struct btrfs_path *btrfs_alloc_path(void)
25 {
26         struct btrfs_path *path;
27         path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
28         if (path)
29                 btrfs_init_path(path);
30         return path;
31 }
32
33 void btrfs_free_path(struct btrfs_path *p)
34 {
35         btrfs_release_path(NULL, p);
36         kmem_cache_free(btrfs_path_cachep, p);
37 }
38
39 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
40 {
41         int i;
42         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
43                 if (!p->nodes[i])
44                         break;
45                 btrfs_block_release(root, p->nodes[i]);
46         }
47         memset(p, 0, sizeof(*p));
48 }
49
50 static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
51                            *root, struct buffer_head *buf, struct buffer_head
52                            *parent, int parent_slot, struct buffer_head
53                            **cow_ret)
54 {
55         struct buffer_head *cow;
56         struct btrfs_node *cow_node;
57
58         if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
59                                     trans->transid) {
60                 *cow_ret = buf;
61                 return 0;
62         }
63         cow = btrfs_alloc_free_block(trans, root);
64         cow_node = btrfs_buffer_node(cow);
65         if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
66                 WARN_ON(1);
67         memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
68         btrfs_set_header_blocknr(&cow_node->header, cow->b_blocknr);
69         btrfs_set_header_generation(&cow_node->header, trans->transid);
70         btrfs_inc_ref(trans, root, buf);
71         if (buf == root->node) {
72                 root->node = cow;
73                 get_bh(cow);
74                 if (buf != root->commit_root) {
75                         btrfs_free_extent(trans, root, buf->b_blocknr, 1, 1);
76                 }
77                 btrfs_block_release(root, buf);
78         } else {
79                 btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
80                                         cow->b_blocknr);
81                 btrfs_mark_buffer_dirty(parent);
82                 btrfs_free_extent(trans, root, buf->b_blocknr, 1, 1);
83         }
84         btrfs_block_release(root, buf);
85         mark_buffer_dirty(cow);
86         *cow_ret = cow;
87         return 0;
88 }
89
90 /*
91  * The leaf data grows from end-to-front in the node.
92  * this returns the address of the start of the last item,
93  * which is the stop of the leaf data stack
94  */
95 static inline unsigned int leaf_data_end(struct btrfs_root *root,
96                                          struct btrfs_leaf *leaf)
97 {
98         u32 nr = btrfs_header_nritems(&leaf->header);
99         if (nr == 0)
100                 return BTRFS_LEAF_DATA_SIZE(root);
101         return btrfs_item_offset(leaf->items + nr - 1);
102 }
103
104 /*
105  * The space between the end of the leaf items and
106  * the start of the leaf data.  IOW, how much room
107  * the leaf has left for both items and data
108  */
109 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
110 {
111         int data_end = leaf_data_end(root, leaf);
112         int nritems = btrfs_header_nritems(&leaf->header);
113         char *items_end = (char *)(leaf->items + nritems + 1);
114         return (char *)(btrfs_leaf_data(leaf) + data_end) - (char *)items_end;
115 }
116
117 /*
118  * compare two keys in a memcmp fashion
119  */
120 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
121 {
122         struct btrfs_key k1;
123
124         btrfs_disk_key_to_cpu(&k1, disk);
125
126         if (k1.objectid > k2->objectid)
127                 return 1;
128         if (k1.objectid < k2->objectid)
129                 return -1;
130         if (k1.offset > k2->offset)
131                 return 1;
132         if (k1.offset < k2->offset)
133                 return -1;
134         if (k1.flags > k2->flags)
135                 return 1;
136         if (k1.flags < k2->flags)
137                 return -1;
138         return 0;
139 }
140
141 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
142                       int level)
143 {
144         int i;
145         struct btrfs_node *parent = NULL;
146         struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
147         int parent_slot;
148         u32 nritems = btrfs_header_nritems(&node->header);
149
150         if (path->nodes[level + 1])
151                 parent = btrfs_buffer_node(path->nodes[level + 1]);
152         parent_slot = path->slots[level + 1];
153         BUG_ON(nritems == 0);
154         if (parent) {
155                 struct btrfs_disk_key *parent_key;
156                 parent_key = &parent->ptrs[parent_slot].key;
157                 BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
158                               sizeof(struct btrfs_disk_key)));
159                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
160                        btrfs_header_blocknr(&node->header));
161         }
162         BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
163         for (i = 0; nritems > 1 && i < nritems - 2; i++) {
164                 struct btrfs_key cpukey;
165                 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[i + 1].key);
166                 BUG_ON(comp_keys(&node->ptrs[i].key, &cpukey) >= 0);
167         }
168         return 0;
169 }
170
171 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
172                       int level)
173 {
174         int i;
175         struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
176         struct btrfs_node *parent = NULL;
177         int parent_slot;
178         u32 nritems = btrfs_header_nritems(&leaf->header);
179
180         if (path->nodes[level + 1])
181                 parent = btrfs_buffer_node(path->nodes[level + 1]);
182         parent_slot = path->slots[level + 1];
183         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
184
185         if (nritems == 0)
186                 return 0;
187
188         if (parent) {
189                 struct btrfs_disk_key *parent_key;
190                 parent_key = &parent->ptrs[parent_slot].key;
191                 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
192                        sizeof(struct btrfs_disk_key)));
193                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
194                        btrfs_header_blocknr(&leaf->header));
195         }
196         for (i = 0; nritems > 1 && i < nritems - 2; i++) {
197                 struct btrfs_key cpukey;
198                 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[i + 1].key);
199                 BUG_ON(comp_keys(&leaf->items[i].key,
200                                  &cpukey) >= 0);
201                 BUG_ON(btrfs_item_offset(leaf->items + i) !=
202                         btrfs_item_end(leaf->items + i + 1));
203                 if (i == 0) {
204                         BUG_ON(btrfs_item_offset(leaf->items + i) +
205                                btrfs_item_size(leaf->items + i) !=
206                                BTRFS_LEAF_DATA_SIZE(root));
207                 }
208         }
209         return 0;
210 }
211
212 static int check_block(struct btrfs_root *root, struct btrfs_path *path,
213                         int level)
214 {
215         if (level == 0)
216                 return check_leaf(root, path, level);
217         return check_node(root, path, level);
218 }
219
220 /*
221  * search for key in the array p.  items p are item_size apart
222  * and there are 'max' items in p
223  * the slot in the array is returned via slot, and it points to
224  * the place where you would insert key if it is not found in
225  * the array.
226  *
227  * slot may point to max if the key is bigger than all of the keys
228  */
229 static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
230                        int max, int *slot)
231 {
232         int low = 0;
233         int high = max;
234         int mid;
235         int ret;
236         struct btrfs_disk_key *tmp;
237
238         while(low < high) {
239                 mid = (low + high) / 2;
240                 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
241                 ret = comp_keys(tmp, key);
242
243                 if (ret < 0)
244                         low = mid + 1;
245                 else if (ret > 0)
246                         high = mid;
247                 else {
248                         *slot = mid;
249                         return 0;
250                 }
251         }
252         *slot = low;
253         return 1;
254 }
255
256 /*
257  * simple bin_search frontend that does the right thing for
258  * leaves vs nodes
259  */
260 static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
261 {
262         if (btrfs_is_leaf(c)) {
263                 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
264                 return generic_bin_search((void *)l->items,
265                                           sizeof(struct btrfs_item),
266                                           key, btrfs_header_nritems(&c->header),
267                                           slot);
268         } else {
269                 return generic_bin_search((void *)c->ptrs,
270                                           sizeof(struct btrfs_key_ptr),
271                                           key, btrfs_header_nritems(&c->header),
272                                           slot);
273         }
274         return -1;
275 }
276
277 static struct buffer_head *read_node_slot(struct btrfs_root *root,
278                                    struct buffer_head *parent_buf,
279                                    int slot)
280 {
281         struct btrfs_node *node = btrfs_buffer_node(parent_buf);
282         if (slot < 0)
283                 return NULL;
284         if (slot >= btrfs_header_nritems(&node->header))
285                 return NULL;
286         return read_tree_block(root, btrfs_node_blockptr(node, slot));
287 }
288
289 static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
290                          *root, struct btrfs_path *path, int level)
291 {
292         struct buffer_head *right_buf;
293         struct buffer_head *mid_buf;
294         struct buffer_head *left_buf;
295         struct buffer_head *parent_buf = NULL;
296         struct btrfs_node *right = NULL;
297         struct btrfs_node *mid;
298         struct btrfs_node *left = NULL;
299         struct btrfs_node *parent = NULL;
300         int ret = 0;
301         int wret;
302         int pslot;
303         int orig_slot = path->slots[level];
304         u64 orig_ptr;
305
306         if (level == 0)
307                 return 0;
308
309         mid_buf = path->nodes[level];
310         mid = btrfs_buffer_node(mid_buf);
311         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
312
313         if (level < BTRFS_MAX_LEVEL - 1)
314                 parent_buf = path->nodes[level + 1];
315         pslot = path->slots[level + 1];
316
317         /*
318          * deal with the case where there is only one pointer in the root
319          * by promoting the node below to a root
320          */
321         if (!parent_buf) {
322                 struct buffer_head *child;
323                 u64 blocknr = mid_buf->b_blocknr;
324
325                 if (btrfs_header_nritems(&mid->header) != 1)
326                         return 0;
327
328                 /* promote the child to a root */
329                 child = read_node_slot(root, mid_buf, 0);
330                 BUG_ON(!child);
331                 root->node = child;
332                 path->nodes[level] = NULL;
333                 clean_tree_block(trans, root, mid_buf);
334                 wait_on_buffer(mid_buf);
335                 /* once for the path */
336                 btrfs_block_release(root, mid_buf);
337                 /* once for the root ptr */
338                 btrfs_block_release(root, mid_buf);
339                 return btrfs_free_extent(trans, root, blocknr, 1, 1);
340         }
341         parent = btrfs_buffer_node(parent_buf);
342
343         if (btrfs_header_nritems(&mid->header) >
344             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
345                 return 0;
346
347         left_buf = read_node_slot(root, parent_buf, pslot - 1);
348         right_buf = read_node_slot(root, parent_buf, pslot + 1);
349
350         /* first, try to make some room in the middle buffer */
351         if (left_buf) {
352                 btrfs_cow_block(trans, root, left_buf, parent_buf, pslot - 1,
353                                 &left_buf);
354                 left = btrfs_buffer_node(left_buf);
355                 orig_slot += btrfs_header_nritems(&left->header);
356                 wret = push_node_left(trans, root, left_buf, mid_buf);
357                 if (wret < 0)
358                         ret = wret;
359         }
360
361         /*
362          * then try to empty the right most buffer into the middle
363          */
364         if (right_buf) {
365                 btrfs_cow_block(trans, root, right_buf, parent_buf, pslot + 1,
366                                 &right_buf);
367                 right = btrfs_buffer_node(right_buf);
368                 wret = push_node_left(trans, root, mid_buf, right_buf);
369                 if (wret < 0)
370                         ret = wret;
371                 if (btrfs_header_nritems(&right->header) == 0) {
372                         u64 blocknr = right_buf->b_blocknr;
373                         clean_tree_block(trans, root, right_buf);
374                         wait_on_buffer(right_buf);
375                         btrfs_block_release(root, right_buf);
376                         right_buf = NULL;
377                         right = NULL;
378                         wret = del_ptr(trans, root, path, level + 1, pslot +
379                                        1);
380                         if (wret)
381                                 ret = wret;
382                         wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
383                         if (wret)
384                                 ret = wret;
385                 } else {
386                         btrfs_memcpy(root, parent,
387                                      &parent->ptrs[pslot + 1].key,
388                                      &right->ptrs[0].key,
389                                      sizeof(struct btrfs_disk_key));
390                         btrfs_mark_buffer_dirty(parent_buf);
391                 }
392         }
393         if (btrfs_header_nritems(&mid->header) == 1) {
394                 /*
395                  * we're not allowed to leave a node with one item in the
396                  * tree during a delete.  A deletion from lower in the tree
397                  * could try to delete the only pointer in this node.
398                  * So, pull some keys from the left.
399                  * There has to be a left pointer at this point because
400                  * otherwise we would have pulled some pointers from the
401                  * right
402                  */
403                 BUG_ON(!left_buf);
404                 wret = balance_node_right(trans, root, mid_buf, left_buf);
405                 if (wret < 0)
406                         ret = wret;
407                 BUG_ON(wret == 1);
408         }
409         if (btrfs_header_nritems(&mid->header) == 0) {
410                 /* we've managed to empty the middle node, drop it */
411                 u64 blocknr = mid_buf->b_blocknr;
412                 clean_tree_block(trans, root, mid_buf);
413                 wait_on_buffer(mid_buf);
414                 btrfs_block_release(root, mid_buf);
415                 mid_buf = NULL;
416                 mid = NULL;
417                 wret = del_ptr(trans, root, path, level + 1, pslot);
418                 if (wret)
419                         ret = wret;
420                 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
421                 if (wret)
422                         ret = wret;
423         } else {
424                 /* update the parent key to reflect our changes */
425                 btrfs_memcpy(root, parent,
426                              &parent->ptrs[pslot].key, &mid->ptrs[0].key,
427                              sizeof(struct btrfs_disk_key));
428                 btrfs_mark_buffer_dirty(parent_buf);
429         }
430
431         /* update the path */
432         if (left_buf) {
433                 if (btrfs_header_nritems(&left->header) > orig_slot) {
434                         get_bh(left_buf);
435                         path->nodes[level] = left_buf;
436                         path->slots[level + 1] -= 1;
437                         path->slots[level] = orig_slot;
438                         if (mid_buf)
439                                 btrfs_block_release(root, mid_buf);
440                 } else {
441                         orig_slot -= btrfs_header_nritems(&left->header);
442                         path->slots[level] = orig_slot;
443                 }
444         }
445         /* double check we haven't messed things up */
446         check_block(root, path, level);
447         if (orig_ptr !=
448             btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
449                                 path->slots[level]))
450                 BUG();
451
452         if (right_buf)
453                 btrfs_block_release(root, right_buf);
454         if (left_buf)
455                 btrfs_block_release(root, left_buf);
456         return ret;
457 }
458
459 /*
460  * look for key in the tree.  path is filled in with nodes along the way
461  * if key is found, we return zero and you can find the item in the leaf
462  * level of the path (level 0)
463  *
464  * If the key isn't found, the path points to the slot where it should
465  * be inserted, and 1 is returned.  If there are other errors during the
466  * search a negative error number is returned.
467  *
468  * if ins_len > 0, nodes and leaves will be split as we walk down the
469  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
470  * possible)
471  */
472 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
473                       *root, struct btrfs_key *key, struct btrfs_path *p, int
474                       ins_len, int cow)
475 {
476         struct buffer_head *b;
477         struct buffer_head *cow_buf;
478         struct btrfs_node *c;
479         int slot;
480         int ret;
481         int level;
482
483         WARN_ON(p->nodes[0] != NULL);
484         WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
485 again:
486         b = root->node;
487         get_bh(b);
488         while (b) {
489                 c = btrfs_buffer_node(b);
490                 level = btrfs_header_level(&c->header);
491                 if (cow) {
492                         int wret;
493                         wret = btrfs_cow_block(trans, root, b,
494                                                p->nodes[level + 1],
495                                                p->slots[level + 1],
496                                                &cow_buf);
497                         b = cow_buf;
498                         c = btrfs_buffer_node(b);
499                 }
500                 BUG_ON(!cow && ins_len);
501                 if (level != btrfs_header_level(&c->header))
502                         WARN_ON(1);
503                 level = btrfs_header_level(&c->header);
504                 p->nodes[level] = b;
505                 ret = check_block(root, p, level);
506                 if (ret)
507                         return -1;
508                 ret = bin_search(c, key, &slot);
509                 if (!btrfs_is_leaf(c)) {
510                         if (ret && slot > 0)
511                                 slot -= 1;
512                         p->slots[level] = slot;
513                         if (ins_len > 0 && btrfs_header_nritems(&c->header) ==
514                             BTRFS_NODEPTRS_PER_BLOCK(root)) {
515                                 int sret = split_node(trans, root, p, level);
516                                 BUG_ON(sret > 0);
517                                 if (sret)
518                                         return sret;
519                                 b = p->nodes[level];
520                                 c = btrfs_buffer_node(b);
521                                 slot = p->slots[level];
522                         } else if (ins_len < 0) {
523                                 int sret = balance_level(trans, root, p,
524                                                          level);
525                                 if (sret)
526                                         return sret;
527                                 b = p->nodes[level];
528                                 if (!b)
529                                         goto again;
530                                 c = btrfs_buffer_node(b);
531                                 slot = p->slots[level];
532                                 BUG_ON(btrfs_header_nritems(&c->header) == 1);
533                         }
534                         b = read_tree_block(root, btrfs_node_blockptr(c, slot));
535                 } else {
536                         struct btrfs_leaf *l = (struct btrfs_leaf *)c;
537                         p->slots[level] = slot;
538                         if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
539                             sizeof(struct btrfs_item) + ins_len) {
540                                 int sret = split_leaf(trans, root, p, ins_len);
541                                 BUG_ON(sret > 0);
542                                 if (sret)
543                                         return sret;
544                         }
545                         return ret;
546                 }
547         }
548         return 1;
549 }
550
551 /*
552  * adjust the pointers going up the tree, starting at level
553  * making sure the right key of each node is points to 'key'.
554  * This is used after shifting pointers to the left, so it stops
555  * fixing up pointers when a given leaf/node is not in slot 0 of the
556  * higher levels
557  *
558  * If this fails to write a tree block, it returns -1, but continues
559  * fixing up the blocks in ram so the tree is consistent.
560  */
561 static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
562                           *root, struct btrfs_path *path, struct btrfs_disk_key
563                           *key, int level)
564 {
565         int i;
566         int ret = 0;
567         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
568                 struct btrfs_node *t;
569                 int tslot = path->slots[i];
570                 if (!path->nodes[i])
571                         break;
572                 t = btrfs_buffer_node(path->nodes[i]);
573                 btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
574                 btrfs_mark_buffer_dirty(path->nodes[i]);
575                 if (tslot != 0)
576                         break;
577         }
578         return ret;
579 }
580
581 /*
582  * try to push data from one node into the next node left in the
583  * tree.
584  *
585  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
586  * error, and > 0 if there was no room in the left hand block.
587  */
588 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
589                           *root, struct buffer_head *dst_buf, struct
590                           buffer_head *src_buf)
591 {
592         struct btrfs_node *src = btrfs_buffer_node(src_buf);
593         struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
594         int push_items = 0;
595         int src_nritems;
596         int dst_nritems;
597         int ret = 0;
598
599         src_nritems = btrfs_header_nritems(&src->header);
600         dst_nritems = btrfs_header_nritems(&dst->header);
601         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
602         if (push_items <= 0) {
603                 return 1;
604         }
605
606         if (src_nritems < push_items)
607                 push_items = src_nritems;
608
609         btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
610                      push_items * sizeof(struct btrfs_key_ptr));
611         if (push_items < src_nritems) {
612                 btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
613                         (src_nritems - push_items) *
614                         sizeof(struct btrfs_key_ptr));
615         }
616         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
617         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
618         btrfs_mark_buffer_dirty(src_buf);
619         btrfs_mark_buffer_dirty(dst_buf);
620         return ret;
621 }
622
623 /*
624  * try to push data from one node into the next node right in the
625  * tree.
626  *
627  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
628  * error, and > 0 if there was no room in the right hand block.
629  *
630  * this will  only push up to 1/2 the contents of the left node over
631  */
632 static int balance_node_right(struct btrfs_trans_handle *trans, struct
633                               btrfs_root *root, struct buffer_head *dst_buf,
634                               struct buffer_head *src_buf)
635 {
636         struct btrfs_node *src = btrfs_buffer_node(src_buf);
637         struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
638         int push_items = 0;
639         int max_push;
640         int src_nritems;
641         int dst_nritems;
642         int ret = 0;
643
644         src_nritems = btrfs_header_nritems(&src->header);
645         dst_nritems = btrfs_header_nritems(&dst->header);
646         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
647         if (push_items <= 0) {
648                 return 1;
649         }
650
651         max_push = src_nritems / 2 + 1;
652         /* don't try to empty the node */
653         if (max_push > src_nritems)
654                 return 1;
655         if (max_push < push_items)
656                 push_items = max_push;
657
658         btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
659                       dst_nritems * sizeof(struct btrfs_key_ptr));
660
661         btrfs_memcpy(root, dst, dst->ptrs,
662                      src->ptrs + src_nritems - push_items,
663                      push_items * sizeof(struct btrfs_key_ptr));
664
665         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
666         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
667
668         btrfs_mark_buffer_dirty(src_buf);
669         btrfs_mark_buffer_dirty(dst_buf);
670         return ret;
671 }
672
673 /*
674  * helper function to insert a new root level in the tree.
675  * A new node is allocated, and a single item is inserted to
676  * point to the existing root
677  *
678  * returns zero on success or < 0 on failure.
679  */
680 static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
681                            *root, struct btrfs_path *path, int level)
682 {
683         struct buffer_head *t;
684         struct btrfs_node *lower;
685         struct btrfs_node *c;
686         struct btrfs_disk_key *lower_key;
687
688         BUG_ON(path->nodes[level]);
689         BUG_ON(path->nodes[level-1] != root->node);
690
691         t = btrfs_alloc_free_block(trans, root);
692         c = btrfs_buffer_node(t);
693         memset(c, 0, root->blocksize);
694         btrfs_set_header_nritems(&c->header, 1);
695         btrfs_set_header_level(&c->header, level);
696         btrfs_set_header_blocknr(&c->header, t->b_blocknr);
697         btrfs_set_header_generation(&c->header, trans->transid);
698         btrfs_set_header_parentid(&c->header,
699               btrfs_header_parentid(btrfs_buffer_header(root->node)));
700         lower = btrfs_buffer_node(path->nodes[level-1]);
701         if (btrfs_is_leaf(lower))
702                 lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
703         else
704                 lower_key = &lower->ptrs[0].key;
705         btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
706                      sizeof(struct btrfs_disk_key));
707         btrfs_set_node_blockptr(c, 0, path->nodes[level - 1]->b_blocknr);
708
709         btrfs_mark_buffer_dirty(t);
710
711         /* the super has an extra ref to root->node */
712         btrfs_block_release(root, root->node);
713         root->node = t;
714         get_bh(t);
715         path->nodes[level] = t;
716         path->slots[level] = 0;
717         return 0;
718 }
719
720 /*
721  * worker function to insert a single pointer in a node.
722  * the node should have enough room for the pointer already
723  *
724  * slot and level indicate where you want the key to go, and
725  * blocknr is the block the key points to.
726  *
727  * returns zero on success and < 0 on any error
728  */
729 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
730                       *root, struct btrfs_path *path, struct btrfs_disk_key
731                       *key, u64 blocknr, int slot, int level)
732 {
733         struct btrfs_node *lower;
734         int nritems;
735
736         BUG_ON(!path->nodes[level]);
737         lower = btrfs_buffer_node(path->nodes[level]);
738         nritems = btrfs_header_nritems(&lower->header);
739         if (slot > nritems)
740                 BUG();
741         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
742                 BUG();
743         if (slot != nritems) {
744                 btrfs_memmove(root, lower, lower->ptrs + slot + 1,
745                               lower->ptrs + slot,
746                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
747         }
748         btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
749                      key, sizeof(struct btrfs_disk_key));
750         btrfs_set_node_blockptr(lower, slot, blocknr);
751         btrfs_set_header_nritems(&lower->header, nritems + 1);
752         btrfs_mark_buffer_dirty(path->nodes[level]);
753         return 0;
754 }
755
756 /*
757  * split the node at the specified level in path in two.
758  * The path is corrected to point to the appropriate node after the split
759  *
760  * Before splitting this tries to make some room in the node by pushing
761  * left and right, if either one works, it returns right away.
762  *
763  * returns 0 on success and < 0 on failure
764  */
765 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
766                       *root, struct btrfs_path *path, int level)
767 {
768         struct buffer_head *t;
769         struct btrfs_node *c;
770         struct buffer_head *split_buffer;
771         struct btrfs_node *split;
772         int mid;
773         int ret;
774         int wret;
775         u32 c_nritems;
776
777         t = path->nodes[level];
778         c = btrfs_buffer_node(t);
779         if (t == root->node) {
780                 /* trying to split the root, lets make a new one */
781                 ret = insert_new_root(trans, root, path, level + 1);
782                 if (ret)
783                         return ret;
784         }
785         c_nritems = btrfs_header_nritems(&c->header);
786         split_buffer = btrfs_alloc_free_block(trans, root);
787         split = btrfs_buffer_node(split_buffer);
788         btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
789         btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
790         btrfs_set_header_blocknr(&split->header, split_buffer->b_blocknr);
791         btrfs_set_header_generation(&split->header, trans->transid);
792         btrfs_set_header_parentid(&split->header,
793               btrfs_header_parentid(btrfs_buffer_header(root->node)));
794         mid = (c_nritems + 1) / 2;
795         btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
796                      (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
797         btrfs_set_header_nritems(&split->header, c_nritems - mid);
798         btrfs_set_header_nritems(&c->header, mid);
799         ret = 0;
800
801         btrfs_mark_buffer_dirty(t);
802         btrfs_mark_buffer_dirty(split_buffer);
803         wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
804                           split_buffer->b_blocknr, path->slots[level + 1] + 1,
805                           level + 1);
806         if (wret)
807                 ret = wret;
808
809         if (path->slots[level] >= mid) {
810                 path->slots[level] -= mid;
811                 btrfs_block_release(root, t);
812                 path->nodes[level] = split_buffer;
813                 path->slots[level + 1] += 1;
814         } else {
815                 btrfs_block_release(root, split_buffer);
816         }
817         return ret;
818 }
819
820 /*
821  * how many bytes are required to store the items in a leaf.  start
822  * and nr indicate which items in the leaf to check.  This totals up the
823  * space used both by the item structs and the item data
824  */
825 static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
826 {
827         int data_len;
828         int end = start + nr - 1;
829
830         if (!nr)
831                 return 0;
832         data_len = btrfs_item_end(l->items + start);
833         data_len = data_len - btrfs_item_offset(l->items + end);
834         data_len += sizeof(struct btrfs_item) * nr;
835         return data_len;
836 }
837
838 /*
839  * push some data in the path leaf to the right, trying to free up at
840  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
841  *
842  * returns 1 if the push failed because the other node didn't have enough
843  * room, 0 if everything worked out and < 0 if there were major errors.
844  */
845 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
846                            *root, struct btrfs_path *path, int data_size)
847 {
848         struct buffer_head *left_buf = path->nodes[0];
849         struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
850         struct btrfs_leaf *right;
851         struct buffer_head *right_buf;
852         struct buffer_head *upper;
853         struct btrfs_node *upper_node;
854         int slot;
855         int i;
856         int free_space;
857         int push_space = 0;
858         int push_items = 0;
859         struct btrfs_item *item;
860         u32 left_nritems;
861         u32 right_nritems;
862
863         slot = path->slots[1];
864         if (!path->nodes[1]) {
865                 return 1;
866         }
867         upper = path->nodes[1];
868         upper_node = btrfs_buffer_node(upper);
869         if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
870                 return 1;
871         }
872         right_buf = read_tree_block(root,
873                     btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
874         right = btrfs_buffer_leaf(right_buf);
875         free_space = btrfs_leaf_free_space(root, right);
876         if (free_space < data_size + sizeof(struct btrfs_item)) {
877                 btrfs_block_release(root, right_buf);
878                 return 1;
879         }
880         /* cow and double check */
881         btrfs_cow_block(trans, root, right_buf, upper, slot + 1, &right_buf);
882         right = btrfs_buffer_leaf(right_buf);
883         free_space = btrfs_leaf_free_space(root, right);
884         if (free_space < data_size + sizeof(struct btrfs_item)) {
885                 btrfs_block_release(root, right_buf);
886                 return 1;
887         }
888
889         left_nritems = btrfs_header_nritems(&left->header);
890         for (i = left_nritems - 1; i >= 0; i--) {
891                 item = left->items + i;
892                 if (path->slots[0] == i)
893                         push_space += data_size + sizeof(*item);
894                 if (btrfs_item_size(item) + sizeof(*item) + push_space >
895                     free_space)
896                         break;
897                 push_items++;
898                 push_space += btrfs_item_size(item) + sizeof(*item);
899         }
900         if (push_items == 0) {
901                 btrfs_block_release(root, right_buf);
902                 return 1;
903         }
904         right_nritems = btrfs_header_nritems(&right->header);
905         /* push left to right */
906         push_space = btrfs_item_end(left->items + left_nritems - push_items);
907         push_space -= leaf_data_end(root, left);
908         /* make room in the right data area */
909         btrfs_memmove(root, right, btrfs_leaf_data(right) +
910                       leaf_data_end(root, right) - push_space,
911                       btrfs_leaf_data(right) +
912                       leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
913                       leaf_data_end(root, right));
914         /* copy from the left data area */
915         btrfs_memcpy(root, right, btrfs_leaf_data(right) +
916                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
917                      btrfs_leaf_data(left) + leaf_data_end(root, left),
918                      push_space);
919         btrfs_memmove(root, right, right->items + push_items, right->items,
920                 right_nritems * sizeof(struct btrfs_item));
921         /* copy the items from left to right */
922         btrfs_memcpy(root, right, right->items, left->items +
923                      left_nritems - push_items,
924                      push_items * sizeof(struct btrfs_item));
925
926         /* update the item pointers */
927         right_nritems += push_items;
928         btrfs_set_header_nritems(&right->header, right_nritems);
929         push_space = BTRFS_LEAF_DATA_SIZE(root);
930         for (i = 0; i < right_nritems; i++) {
931                 btrfs_set_item_offset(right->items + i, push_space -
932                                       btrfs_item_size(right->items + i));
933                 push_space = btrfs_item_offset(right->items + i);
934         }
935         left_nritems -= push_items;
936         btrfs_set_header_nritems(&left->header, left_nritems);
937
938         btrfs_mark_buffer_dirty(left_buf);
939         btrfs_mark_buffer_dirty(right_buf);
940         btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
941                 &right->items[0].key, sizeof(struct btrfs_disk_key));
942         btrfs_mark_buffer_dirty(upper);
943
944         /* then fixup the leaf pointer in the path */
945         if (path->slots[0] >= left_nritems) {
946                 path->slots[0] -= left_nritems;
947                 btrfs_block_release(root, path->nodes[0]);
948                 path->nodes[0] = right_buf;
949                 path->slots[1] += 1;
950         } else {
951                 btrfs_block_release(root, right_buf);
952         }
953         return 0;
954 }
955 /*
956  * push some data in the path leaf to the left, trying to free up at
957  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
958  */
959 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
960                           *root, struct btrfs_path *path, int data_size)
961 {
962         struct buffer_head *right_buf = path->nodes[0];
963         struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
964         struct buffer_head *t;
965         struct btrfs_leaf *left;
966         int slot;
967         int i;
968         int free_space;
969         int push_space = 0;
970         int push_items = 0;
971         struct btrfs_item *item;
972         u32 old_left_nritems;
973         int ret = 0;
974         int wret;
975
976         slot = path->slots[1];
977         if (slot == 0) {
978                 return 1;
979         }
980         if (!path->nodes[1]) {
981                 return 1;
982         }
983         t = read_tree_block(root,
984             btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
985         left = btrfs_buffer_leaf(t);
986         free_space = btrfs_leaf_free_space(root, left);
987         if (free_space < data_size + sizeof(struct btrfs_item)) {
988                 btrfs_block_release(root, t);
989                 return 1;
990         }
991
992         /* cow and double check */
993         btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
994         left = btrfs_buffer_leaf(t);
995         free_space = btrfs_leaf_free_space(root, left);
996         if (free_space < data_size + sizeof(struct btrfs_item)) {
997                 btrfs_block_release(root, t);
998                 return 1;
999         }
1000
1001         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1002                 item = right->items + i;
1003                 if (path->slots[0] == i)
1004                         push_space += data_size + sizeof(*item);
1005                 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1006                     free_space)
1007                         break;
1008                 push_items++;
1009                 push_space += btrfs_item_size(item) + sizeof(*item);
1010         }
1011         if (push_items == 0) {
1012                 btrfs_block_release(root, t);
1013                 return 1;
1014         }
1015         /* push data from right to left */
1016         btrfs_memcpy(root, left, left->items +
1017                      btrfs_header_nritems(&left->header),
1018                      right->items, push_items * sizeof(struct btrfs_item));
1019         push_space = BTRFS_LEAF_DATA_SIZE(root) -
1020                      btrfs_item_offset(right->items + push_items -1);
1021         btrfs_memcpy(root, left, btrfs_leaf_data(left) +
1022                      leaf_data_end(root, left) - push_space,
1023                      btrfs_leaf_data(right) +
1024                      btrfs_item_offset(right->items + push_items - 1),
1025                      push_space);
1026         old_left_nritems = btrfs_header_nritems(&left->header);
1027         BUG_ON(old_left_nritems < 0);
1028
1029         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1030                 u32 ioff = btrfs_item_offset(left->items + i);
1031                 btrfs_set_item_offset(left->items + i, ioff -
1032                                      (BTRFS_LEAF_DATA_SIZE(root) -
1033                                       btrfs_item_offset(left->items +
1034                                                         old_left_nritems - 1)));
1035         }
1036         btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
1037
1038         /* fixup right node */
1039         push_space = btrfs_item_offset(right->items + push_items - 1) -
1040                      leaf_data_end(root, right);
1041         btrfs_memmove(root, right, btrfs_leaf_data(right) +
1042                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
1043                       btrfs_leaf_data(right) +
1044                       leaf_data_end(root, right), push_space);
1045         btrfs_memmove(root, right, right->items, right->items + push_items,
1046                 (btrfs_header_nritems(&right->header) - push_items) *
1047                 sizeof(struct btrfs_item));
1048         btrfs_set_header_nritems(&right->header,
1049                                  btrfs_header_nritems(&right->header) -
1050                                  push_items);
1051         push_space = BTRFS_LEAF_DATA_SIZE(root);
1052
1053         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1054                 btrfs_set_item_offset(right->items + i, push_space -
1055                                       btrfs_item_size(right->items + i));
1056                 push_space = btrfs_item_offset(right->items + i);
1057         }
1058
1059         btrfs_mark_buffer_dirty(t);
1060         btrfs_mark_buffer_dirty(right_buf);
1061
1062         wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
1063         if (wret)
1064                 ret = wret;
1065
1066         /* then fixup the leaf pointer in the path */
1067         if (path->slots[0] < push_items) {
1068                 path->slots[0] += old_left_nritems;
1069                 btrfs_block_release(root, path->nodes[0]);
1070                 path->nodes[0] = t;
1071                 path->slots[1] -= 1;
1072         } else {
1073                 btrfs_block_release(root, t);
1074                 path->slots[0] -= push_items;
1075         }
1076         BUG_ON(path->slots[0] < 0);
1077         return ret;
1078 }
1079
1080 /*
1081  * split the path's leaf in two, making sure there is at least data_size
1082  * available for the resulting leaf level of the path.
1083  *
1084  * returns 0 if all went well and < 0 on failure.
1085  */
1086 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
1087                       *root, struct btrfs_path *path, int data_size)
1088 {
1089         struct buffer_head *l_buf;
1090         struct btrfs_leaf *l;
1091         u32 nritems;
1092         int mid;
1093         int slot;
1094         struct btrfs_leaf *right;
1095         struct buffer_head *right_buffer;
1096         int space_needed = data_size + sizeof(struct btrfs_item);
1097         int data_copy_size;
1098         int rt_data_off;
1099         int i;
1100         int ret;
1101         int wret;
1102
1103         /* first try to make some room by pushing left and right */
1104         wret = push_leaf_left(trans, root, path, data_size);
1105         if (wret < 0)
1106                 return wret;
1107         if (wret) {
1108                 wret = push_leaf_right(trans, root, path, data_size);
1109                 if (wret < 0)
1110                         return wret;
1111         }
1112         l_buf = path->nodes[0];
1113         l = btrfs_buffer_leaf(l_buf);
1114
1115         /* did the pushes work? */
1116         if (btrfs_leaf_free_space(root, l) >=
1117             sizeof(struct btrfs_item) + data_size)
1118                 return 0;
1119
1120         if (!path->nodes[1]) {
1121                 ret = insert_new_root(trans, root, path, 1);
1122                 if (ret)
1123                         return ret;
1124         }
1125         slot = path->slots[0];
1126         nritems = btrfs_header_nritems(&l->header);
1127         mid = (nritems + 1)/ 2;
1128         right_buffer = btrfs_alloc_free_block(trans, root);
1129         BUG_ON(!right_buffer);
1130         BUG_ON(mid == nritems);
1131         right = btrfs_buffer_leaf(right_buffer);
1132         memset(&right->header, 0, sizeof(right->header));
1133         if (mid <= slot) {
1134                 /* FIXME, just alloc a new leaf here */
1135                 if (leaf_space_used(l, mid, nritems - mid) + space_needed >
1136                         BTRFS_LEAF_DATA_SIZE(root))
1137                         BUG();
1138         } else {
1139                 /* FIXME, just alloc a new leaf here */
1140                 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1141                         BTRFS_LEAF_DATA_SIZE(root))
1142                         BUG();
1143         }
1144         btrfs_set_header_nritems(&right->header, nritems - mid);
1145         btrfs_set_header_blocknr(&right->header, right_buffer->b_blocknr);
1146         btrfs_set_header_generation(&right->header, trans->transid);
1147         btrfs_set_header_level(&right->header, 0);
1148         btrfs_set_header_parentid(&right->header,
1149               btrfs_header_parentid(btrfs_buffer_header(root->node)));
1150         data_copy_size = btrfs_item_end(l->items + mid) -
1151                          leaf_data_end(root, l);
1152         btrfs_memcpy(root, right, right->items, l->items + mid,
1153                      (nritems - mid) * sizeof(struct btrfs_item));
1154         btrfs_memcpy(root, right,
1155                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1156                      data_copy_size, btrfs_leaf_data(l) +
1157                      leaf_data_end(root, l), data_copy_size);
1158         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1159                       btrfs_item_end(l->items + mid);
1160
1161         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1162                 u32 ioff = btrfs_item_offset(right->items + i);
1163                 btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
1164         }
1165
1166         btrfs_set_header_nritems(&l->header, mid);
1167         ret = 0;
1168         wret = insert_ptr(trans, root, path, &right->items[0].key,
1169                           right_buffer->b_blocknr, path->slots[1] + 1, 1);
1170         if (wret)
1171                 ret = wret;
1172         btrfs_mark_buffer_dirty(right_buffer);
1173         btrfs_mark_buffer_dirty(l_buf);
1174         BUG_ON(path->slots[0] != slot);
1175         if (mid <= slot) {
1176                 btrfs_block_release(root, path->nodes[0]);
1177                 path->nodes[0] = right_buffer;
1178                 path->slots[0] -= mid;
1179                 path->slots[1] += 1;
1180         } else
1181                 btrfs_block_release(root, right_buffer);
1182         BUG_ON(path->slots[0] < 0);
1183         return ret;
1184 }
1185
1186 /*
1187  * Given a key and some data, insert an item into the tree.
1188  * This does all the path init required, making room in the tree if needed.
1189  */
1190 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1191                             *root, struct btrfs_path *path, struct btrfs_key
1192                             *cpu_key, u32 data_size)
1193 {
1194         int ret = 0;
1195         int slot;
1196         int slot_orig;
1197         struct btrfs_leaf *leaf;
1198         struct buffer_head *leaf_buf;
1199         u32 nritems;
1200         unsigned int data_end;
1201         struct btrfs_disk_key disk_key;
1202
1203         btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1204
1205         /* create a root if there isn't one */
1206         if (!root->node)
1207                 BUG();
1208         ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
1209         if (ret == 0) {
1210                 return -EEXIST;
1211         }
1212         if (ret < 0)
1213                 goto out;
1214
1215         slot_orig = path->slots[0];
1216         leaf_buf = path->nodes[0];
1217         leaf = btrfs_buffer_leaf(leaf_buf);
1218
1219         nritems = btrfs_header_nritems(&leaf->header);
1220         data_end = leaf_data_end(root, leaf);
1221
1222         if (btrfs_leaf_free_space(root, leaf) <
1223             sizeof(struct btrfs_item) + data_size)
1224                 BUG();
1225
1226         slot = path->slots[0];
1227         BUG_ON(slot < 0);
1228         if (slot != nritems) {
1229                 int i;
1230                 unsigned int old_data = btrfs_item_end(leaf->items + slot);
1231
1232                 /*
1233                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
1234                  */
1235                 /* first correct the data pointers */
1236                 for (i = slot; i < nritems; i++) {
1237                         u32 ioff = btrfs_item_offset(leaf->items + i);
1238                         btrfs_set_item_offset(leaf->items + i,
1239                                               ioff - data_size);
1240                 }
1241
1242                 /* shift the items */
1243                 btrfs_memmove(root, leaf, leaf->items + slot + 1,
1244                               leaf->items + slot,
1245                               (nritems - slot) * sizeof(struct btrfs_item));
1246
1247                 /* shift the data */
1248                 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1249                               data_end - data_size, btrfs_leaf_data(leaf) +
1250                               data_end, old_data - data_end);
1251                 data_end = old_data;
1252         }
1253         /* setup the item for the new data */
1254         btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
1255                      sizeof(struct btrfs_disk_key));
1256         btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
1257         btrfs_set_item_size(leaf->items + slot, data_size);
1258         btrfs_set_header_nritems(&leaf->header, nritems + 1);
1259         btrfs_mark_buffer_dirty(leaf_buf);
1260
1261         ret = 0;
1262         if (slot == 0)
1263                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
1264
1265         if (btrfs_leaf_free_space(root, leaf) < 0)
1266                 BUG();
1267         check_leaf(root, path, 0);
1268 out:
1269         return ret;
1270 }
1271
1272 /*
1273  * Given a key and some data, insert an item into the tree.
1274  * This does all the path init required, making room in the tree if needed.
1275  */
1276 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1277                       *root, struct btrfs_key *cpu_key, void *data, u32
1278                       data_size)
1279 {
1280         int ret = 0;
1281         struct btrfs_path *path;
1282         u8 *ptr;
1283
1284         path = btrfs_alloc_path();
1285         BUG_ON(!path);
1286         btrfs_init_path(path);
1287         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
1288         if (!ret) {
1289                 ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
1290                                      path->slots[0], u8);
1291                 btrfs_memcpy(root, path->nodes[0]->b_data,
1292                              ptr, data, data_size);
1293                 btrfs_mark_buffer_dirty(path->nodes[0]);
1294         }
1295         btrfs_release_path(root, path);
1296         btrfs_free_path(path);
1297         return ret;
1298 }
1299
1300 /*
1301  * delete the pointer from a given node.
1302  *
1303  * If the delete empties a node, the node is removed from the tree,
1304  * continuing all the way the root if required.  The root is converted into
1305  * a leaf if all the nodes are emptied.
1306  */
1307 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1308                    struct btrfs_path *path, int level, int slot)
1309 {
1310         struct btrfs_node *node;
1311         struct buffer_head *parent = path->nodes[level];
1312         u32 nritems;
1313         int ret = 0;
1314         int wret;
1315
1316         node = btrfs_buffer_node(parent);
1317         nritems = btrfs_header_nritems(&node->header);
1318         if (slot != nritems -1) {
1319                 btrfs_memmove(root, node, node->ptrs + slot,
1320                               node->ptrs + slot + 1,
1321                               sizeof(struct btrfs_key_ptr) *
1322                               (nritems - slot - 1));
1323         }
1324         nritems--;
1325         btrfs_set_header_nritems(&node->header, nritems);
1326         if (nritems == 0 && parent == root->node) {
1327                 struct btrfs_header *header = btrfs_buffer_header(root->node);
1328                 BUG_ON(btrfs_header_level(header) != 1);
1329                 /* just turn the root into a leaf and break */
1330                 btrfs_set_header_level(header, 0);
1331         } else if (slot == 0) {
1332                 wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
1333                                       level + 1);
1334                 if (wret)
1335                         ret = wret;
1336         }
1337         btrfs_mark_buffer_dirty(parent);
1338         return ret;
1339 }
1340
1341 /*
1342  * delete the item at the leaf level in path.  If that empties
1343  * the leaf, remove it from the tree
1344  */
1345 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1346                    struct btrfs_path *path)
1347 {
1348         int slot;
1349         struct btrfs_leaf *leaf;
1350         struct buffer_head *leaf_buf;
1351         int doff;
1352         int dsize;
1353         int ret = 0;
1354         int wret;
1355         u32 nritems;
1356
1357         leaf_buf = path->nodes[0];
1358         leaf = btrfs_buffer_leaf(leaf_buf);
1359         slot = path->slots[0];
1360         doff = btrfs_item_offset(leaf->items + slot);
1361         dsize = btrfs_item_size(leaf->items + slot);
1362         nritems = btrfs_header_nritems(&leaf->header);
1363
1364         if (slot != nritems - 1) {
1365                 int i;
1366                 int data_end = leaf_data_end(root, leaf);
1367                 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1368                               data_end + dsize,
1369                               btrfs_leaf_data(leaf) + data_end,
1370                               doff - data_end);
1371                 for (i = slot + 1; i < nritems; i++) {
1372                         u32 ioff = btrfs_item_offset(leaf->items + i);
1373                         btrfs_set_item_offset(leaf->items + i, ioff + dsize);
1374                 }
1375                 btrfs_memmove(root, leaf, leaf->items + slot,
1376                               leaf->items + slot + 1,
1377                               sizeof(struct btrfs_item) *
1378                               (nritems - slot - 1));
1379         }
1380         btrfs_set_header_nritems(&leaf->header, nritems - 1);
1381         nritems--;
1382         /* delete the leaf if we've emptied it */
1383         if (nritems == 0) {
1384                 if (leaf_buf == root->node) {
1385                         btrfs_set_header_level(&leaf->header, 0);
1386                 } else {
1387                         clean_tree_block(trans, root, leaf_buf);
1388                         wait_on_buffer(leaf_buf);
1389                         wret = del_ptr(trans, root, path, 1, path->slots[1]);
1390                         if (wret)
1391                                 ret = wret;
1392                         wret = btrfs_free_extent(trans, root,
1393                                                  leaf_buf->b_blocknr, 1, 1);
1394                         if (wret)
1395                                 ret = wret;
1396                 }
1397         } else {
1398                 int used = leaf_space_used(leaf, 0, nritems);
1399                 if (slot == 0) {
1400                         wret = fixup_low_keys(trans, root, path,
1401                                               &leaf->items[0].key, 1);
1402                         if (wret)
1403                                 ret = wret;
1404                 }
1405
1406                 /* delete the leaf if it is mostly empty */
1407                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
1408                         /* push_leaf_left fixes the path.
1409                          * make sure the path still points to our leaf
1410                          * for possible call to del_ptr below
1411                          */
1412                         slot = path->slots[1];
1413                         get_bh(leaf_buf);
1414                         wret = push_leaf_left(trans, root, path, 1);
1415                         if (wret < 0)
1416                                 ret = wret;
1417                         if (path->nodes[0] == leaf_buf &&
1418                             btrfs_header_nritems(&leaf->header)) {
1419                                 wret = push_leaf_right(trans, root, path, 1);
1420                                 if (wret < 0)
1421                                         ret = wret;
1422                         }
1423                         if (btrfs_header_nritems(&leaf->header) == 0) {
1424                                 u64 blocknr = leaf_buf->b_blocknr;
1425                                 clean_tree_block(trans, root, leaf_buf);
1426                                 wait_on_buffer(leaf_buf);
1427                                 wret = del_ptr(trans, root, path, 1, slot);
1428                                 if (wret)
1429                                         ret = wret;
1430                                 btrfs_block_release(root, leaf_buf);
1431                                 wret = btrfs_free_extent(trans, root, blocknr,
1432                                                          1, 1);
1433                                 if (wret)
1434                                         ret = wret;
1435                         } else {
1436                                 btrfs_mark_buffer_dirty(leaf_buf);
1437                                 btrfs_block_release(root, leaf_buf);
1438                         }
1439                 } else {
1440                         btrfs_mark_buffer_dirty(leaf_buf);
1441                 }
1442         }
1443         return ret;
1444 }
1445
1446 /*
1447  * walk up the tree as far as required to find the next leaf.
1448  * returns 0 if it found something or 1 if there are no greater leaves.
1449  * returns < 0 on io errors.
1450  */
1451 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
1452 {
1453         int slot;
1454         int level = 1;
1455         u64 blocknr;
1456         struct buffer_head *c;
1457         struct btrfs_node *c_node;
1458         struct buffer_head *next = NULL;
1459
1460         while(level < BTRFS_MAX_LEVEL) {
1461                 if (!path->nodes[level])
1462                         return 1;
1463                 slot = path->slots[level] + 1;
1464                 c = path->nodes[level];
1465                 c_node = btrfs_buffer_node(c);
1466                 if (slot >= btrfs_header_nritems(&c_node->header)) {
1467                         level++;
1468                         continue;
1469                 }
1470                 blocknr = btrfs_node_blockptr(c_node, slot);
1471                 if (next)
1472                         btrfs_block_release(root, next);
1473                 next = read_tree_block(root, blocknr);
1474                 break;
1475         }
1476         path->slots[level] = slot;
1477         while(1) {
1478                 level--;
1479                 c = path->nodes[level];
1480                 btrfs_block_release(root, c);
1481                 path->nodes[level] = next;
1482                 path->slots[level] = 0;
1483                 if (!level)
1484                         break;
1485                 next = read_tree_block(root,
1486                        btrfs_node_blockptr(btrfs_buffer_node(next), 0));
1487         }
1488         return 0;
1489 }