Btrfs: struct item endian fixes
[safe/jmp/linux-2.6] / fs / btrfs / ctree.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "kerncompat.h"
4 #include "radix-tree.h"
5 #include "ctree.h"
6 #include "disk-io.h"
7 #include "print-tree.h"
8
9 static int split_node(struct ctree_root *root, struct ctree_path *path,
10                       int level);
11 static int split_leaf(struct ctree_root *root, struct ctree_path *path,
12                       int data_size);
13 static int push_node_left(struct ctree_root *root, struct tree_buffer *dst,
14                           struct tree_buffer *src);
15 static int balance_node_right(struct ctree_root *root,
16                               struct tree_buffer *dst_buf,
17                               struct tree_buffer *src_buf);
18 static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
19                    int slot);
20
21 inline void init_path(struct ctree_path *p)
22 {
23         memset(p, 0, sizeof(*p));
24 }
25
26 void release_path(struct ctree_root *root, struct ctree_path *p)
27 {
28         int i;
29         for (i = 0; i < MAX_LEVEL; i++) {
30                 if (!p->nodes[i])
31                         break;
32                 tree_block_release(root, p->nodes[i]);
33         }
34         memset(p, 0, sizeof(*p));
35 }
36
37 int btrfs_cow_block(struct ctree_root *root,
38                     struct tree_buffer *buf,
39                     struct tree_buffer *parent,
40                     int parent_slot,
41                     struct tree_buffer **cow_ret)
42 {
43         struct tree_buffer *cow;
44
45         if (!list_empty(&buf->dirty)) {
46                 *cow_ret = buf;
47                 return 0;
48         }
49         cow = alloc_free_block(root);
50         memcpy(&cow->node, &buf->node, sizeof(buf->node));
51         btrfs_set_header_blocknr(&cow->node.header, cow->blocknr);
52         *cow_ret = cow;
53         btrfs_inc_ref(root, buf);
54         if (buf == root->node) {
55                 root->node = cow;
56                 cow->count++;
57                 if (buf != root->commit_root)
58                         free_extent(root, buf->blocknr, 1);
59                 tree_block_release(root, buf);
60         } else {
61                 parent->node.blockptrs[parent_slot] = cow->blocknr;
62                 BUG_ON(list_empty(&parent->dirty));
63                 free_extent(root, buf->blocknr, 1);
64         }
65         tree_block_release(root, buf);
66         return 0;
67 }
68
69 /*
70  * The leaf data grows from end-to-front in the node.
71  * this returns the address of the start of the last item,
72  * which is the stop of the leaf data stack
73  */
74 static inline unsigned int leaf_data_end(struct leaf *leaf)
75 {
76         u32 nr = btrfs_header_nritems(&leaf->header);
77         if (nr == 0)
78                 return sizeof(leaf->data);
79         return btrfs_item_offset(leaf->items + nr - 1);
80 }
81
82 /*
83  * The space between the end of the leaf items and
84  * the start of the leaf data.  IOW, how much room
85  * the leaf has left for both items and data
86  */
87 int leaf_free_space(struct leaf *leaf)
88 {
89         int data_end = leaf_data_end(leaf);
90         int nritems = btrfs_header_nritems(&leaf->header);
91         char *items_end = (char *)(leaf->items + nritems + 1);
92         return (char *)(leaf->data + data_end) - (char *)items_end;
93 }
94
95 /*
96  * compare two keys in a memcmp fashion
97  */
98 int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
99 {
100         struct btrfs_key k1;
101
102         btrfs_disk_key_to_cpu(&k1, disk);
103
104         if (k1.objectid > k2->objectid)
105                 return 1;
106         if (k1.objectid < k2->objectid)
107                 return -1;
108         if (k1.flags > k2->flags)
109                 return 1;
110         if (k1.flags < k2->flags)
111                 return -1;
112         if (k1.offset > k2->offset)
113                 return 1;
114         if (k1.offset < k2->offset)
115                 return -1;
116         return 0;
117 }
118
119 int check_node(struct ctree_path *path, int level)
120 {
121         int i;
122         struct node *parent = NULL;
123         struct node *node = &path->nodes[level]->node;
124         int parent_slot;
125         u32 nritems = btrfs_header_nritems(&node->header);
126
127         if (path->nodes[level + 1])
128                 parent = &path->nodes[level + 1]->node;
129         parent_slot = path->slots[level + 1];
130         BUG_ON(nritems == 0);
131         if (parent) {
132                 struct btrfs_disk_key *parent_key;
133                 parent_key = &parent->keys[parent_slot];
134                 BUG_ON(memcmp(parent_key, node->keys,
135                               sizeof(struct btrfs_disk_key)));
136                 BUG_ON(parent->blockptrs[parent_slot] !=
137                        btrfs_header_blocknr(&node->header));
138         }
139         BUG_ON(nritems > NODEPTRS_PER_BLOCK);
140         for (i = 0; nritems > 1 && i < nritems - 2; i++) {
141                 struct btrfs_key cpukey;
142                 btrfs_disk_key_to_cpu(&cpukey, &node->keys[i + 1]);
143                 BUG_ON(comp_keys(&node->keys[i], &cpukey) >= 0);
144         }
145         return 0;
146 }
147
148 int check_leaf(struct ctree_path *path, int level)
149 {
150         int i;
151         struct leaf *leaf = &path->nodes[level]->leaf;
152         struct node *parent = NULL;
153         int parent_slot;
154         u32 nritems = btrfs_header_nritems(&leaf->header);
155
156         if (path->nodes[level + 1])
157                 parent = &path->nodes[level + 1]->node;
158         parent_slot = path->slots[level + 1];
159         BUG_ON(leaf_free_space(leaf) < 0);
160
161         if (nritems == 0)
162                 return 0;
163
164         if (parent) {
165                 struct btrfs_disk_key *parent_key;
166                 parent_key = &parent->keys[parent_slot];
167                 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
168                        sizeof(struct btrfs_disk_key)));
169                 BUG_ON(parent->blockptrs[parent_slot] !=
170                        btrfs_header_blocknr(&leaf->header));
171         }
172         for (i = 0; nritems > 1 && i < nritems - 2; i++) {
173                 struct btrfs_key cpukey;
174                 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[i + 1].key);
175                 BUG_ON(comp_keys(&leaf->items[i].key,
176                                  &cpukey) >= 0);
177                 BUG_ON(btrfs_item_offset(leaf->items + i) !=
178                         btrfs_item_end(leaf->items + i + 1));
179                 if (i == 0) {
180                         BUG_ON(btrfs_item_offset(leaf->items + i) +
181                                btrfs_item_size(leaf->items + i) !=
182                                LEAF_DATA_SIZE);
183                 }
184         }
185         return 0;
186 }
187
188 int check_block(struct ctree_path *path, int level)
189 {
190         if (level == 0)
191                 return check_leaf(path, level);
192         return check_node(path, level);
193 }
194
195 /*
196  * search for key in the array p.  items p are item_size apart
197  * and there are 'max' items in p
198  * the slot in the array is returned via slot, and it points to
199  * the place where you would insert key if it is not found in
200  * the array.
201  *
202  * slot may point to max if the key is bigger than all of the keys
203  */
204 int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
205                        int max, int *slot)
206 {
207         int low = 0;
208         int high = max;
209         int mid;
210         int ret;
211         struct btrfs_disk_key *tmp;
212
213         while(low < high) {
214                 mid = (low + high) / 2;
215                 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
216                 ret = comp_keys(tmp, key);
217
218                 if (ret < 0)
219                         low = mid + 1;
220                 else if (ret > 0)
221                         high = mid;
222                 else {
223                         *slot = mid;
224                         return 0;
225                 }
226         }
227         *slot = low;
228         return 1;
229 }
230
231 /*
232  * simple bin_search frontend that does the right thing for
233  * leaves vs nodes
234  */
235 int bin_search(struct node *c, struct btrfs_key *key, int *slot)
236 {
237         if (btrfs_is_leaf(c)) {
238                 struct leaf *l = (struct leaf *)c;
239                 return generic_bin_search((void *)l->items,
240                                           sizeof(struct btrfs_item),
241                                           key, btrfs_header_nritems(&c->header),
242                                           slot);
243         } else {
244                 return generic_bin_search((void *)c->keys,
245                                           sizeof(struct btrfs_disk_key),
246                                           key, btrfs_header_nritems(&c->header),
247                                           slot);
248         }
249         return -1;
250 }
251
252 struct tree_buffer *read_node_slot(struct ctree_root *root,
253                                    struct tree_buffer *parent_buf,
254                                    int slot)
255 {
256         struct node *node = &parent_buf->node;
257         if (slot < 0)
258                 return NULL;
259         if (slot >= btrfs_header_nritems(&node->header))
260                 return NULL;
261         return read_tree_block(root, node->blockptrs[slot]);
262 }
263
264 static int balance_level(struct ctree_root *root, struct ctree_path *path,
265                         int level)
266 {
267         struct tree_buffer *right_buf;
268         struct tree_buffer *mid_buf;
269         struct tree_buffer *left_buf;
270         struct tree_buffer *parent_buf = NULL;
271         struct node *right = NULL;
272         struct node *mid;
273         struct node *left = NULL;
274         struct node *parent = NULL;
275         int ret = 0;
276         int wret;
277         int pslot;
278         int orig_slot = path->slots[level];
279         u64 orig_ptr;
280
281         if (level == 0)
282                 return 0;
283
284         mid_buf = path->nodes[level];
285         mid = &mid_buf->node;
286         orig_ptr = mid->blockptrs[orig_slot];
287
288         if (level < MAX_LEVEL - 1)
289                 parent_buf = path->nodes[level + 1];
290         pslot = path->slots[level + 1];
291
292         if (!parent_buf) {
293                 struct tree_buffer *child;
294                 u64 blocknr = mid_buf->blocknr;
295
296                 if (btrfs_header_nritems(&mid->header) != 1)
297                         return 0;
298
299                 /* promote the child to a root */
300                 child = read_node_slot(root, mid_buf, 0);
301                 BUG_ON(!child);
302                 root->node = child;
303                 path->nodes[level] = NULL;
304                 /* once for the path */
305                 tree_block_release(root, mid_buf);
306                 /* once for the root ptr */
307                 tree_block_release(root, mid_buf);
308                 clean_tree_block(root, mid_buf);
309                 return free_extent(root, blocknr, 1);
310         }
311         parent = &parent_buf->node;
312
313         if (btrfs_header_nritems(&mid->header) > NODEPTRS_PER_BLOCK / 4)
314                 return 0;
315
316         left_buf = read_node_slot(root, parent_buf, pslot - 1);
317         right_buf = read_node_slot(root, parent_buf, pslot + 1);
318
319         /* first, try to make some room in the middle buffer */
320         if (left_buf) {
321                 btrfs_cow_block(root, left_buf, parent_buf,
322                                 pslot - 1, &left_buf);
323                 left = &left_buf->node;
324                 orig_slot += btrfs_header_nritems(&left->header);
325                 wret = push_node_left(root, left_buf, mid_buf);
326                 if (wret < 0)
327                         ret = wret;
328         }
329
330         /*
331          * then try to empty the right most buffer into the middle
332          */
333         if (right_buf) {
334                 btrfs_cow_block(root, right_buf, parent_buf,
335                                 pslot + 1, &right_buf);
336                 right = &right_buf->node;
337                 wret = push_node_left(root, mid_buf, right_buf);
338                 if (wret < 0)
339                         ret = wret;
340                 if (btrfs_header_nritems(&right->header) == 0) {
341                         u64 blocknr = right_buf->blocknr;
342                         tree_block_release(root, right_buf);
343                         clean_tree_block(root, right_buf);
344                         right_buf = NULL;
345                         right = NULL;
346                         wret = del_ptr(root, path, level + 1, pslot + 1);
347                         if (wret)
348                                 ret = wret;
349                         wret = free_extent(root, blocknr, 1);
350                         if (wret)
351                                 ret = wret;
352                 } else {
353                         memcpy(parent->keys + pslot + 1, right->keys,
354                                 sizeof(struct btrfs_disk_key));
355                         BUG_ON(list_empty(&parent_buf->dirty));
356                 }
357         }
358         if (btrfs_header_nritems(&mid->header) == 1) {
359                 /*
360                  * we're not allowed to leave a node with one item in the
361                  * tree during a delete.  A deletion from lower in the tree
362                  * could try to delete the only pointer in this node.
363                  * So, pull some keys from the left.
364                  * There has to be a left pointer at this point because
365                  * otherwise we would have pulled some pointers from the
366                  * right
367                  */
368                 BUG_ON(!left_buf);
369                 wret = balance_node_right(root, mid_buf, left_buf);
370                 if (wret < 0)
371                         ret = wret;
372                 BUG_ON(wret == 1);
373         }
374         if (btrfs_header_nritems(&mid->header) == 0) {
375                 /* we've managed to empty the middle node, drop it */
376                 u64 blocknr = mid_buf->blocknr;
377                 tree_block_release(root, mid_buf);
378                 clean_tree_block(root, mid_buf);
379                 mid_buf = NULL;
380                 mid = NULL;
381                 wret = del_ptr(root, path, level + 1, pslot);
382                 if (wret)
383                         ret = wret;
384                 wret = free_extent(root, blocknr, 1);
385                 if (wret)
386                         ret = wret;
387         } else {
388                 /* update the parent key to reflect our changes */
389                 memcpy(parent->keys + pslot, mid->keys,
390                        sizeof(struct btrfs_disk_key));
391                 BUG_ON(list_empty(&parent_buf->dirty));
392         }
393
394         /* update the path */
395         if (left_buf) {
396                 if (btrfs_header_nritems(&left->header) > orig_slot) {
397                         left_buf->count++; // released below
398                         path->nodes[level] = left_buf;
399                         path->slots[level + 1] -= 1;
400                         path->slots[level] = orig_slot;
401                         if (mid_buf)
402                                 tree_block_release(root, mid_buf);
403                 } else {
404                         orig_slot -= btrfs_header_nritems(&left->header);
405                         path->slots[level] = orig_slot;
406                 }
407         }
408         /* double check we haven't messed things up */
409         check_block(path, level);
410         if (orig_ptr != path->nodes[level]->node.blockptrs[path->slots[level]])
411                 BUG();
412
413         if (right_buf)
414                 tree_block_release(root, right_buf);
415         if (left_buf)
416                 tree_block_release(root, left_buf);
417         return ret;
418 }
419
420 /*
421  * look for key in the tree.  path is filled in with nodes along the way
422  * if key is found, we return zero and you can find the item in the leaf
423  * level of the path (level 0)
424  *
425  * If the key isn't found, the path points to the slot where it should
426  * be inserted, and 1 is returned.  If there are other errors during the
427  * search a negative error number is returned.
428  *
429  * if ins_len > 0, nodes and leaves will be split as we walk down the
430  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
431  * possible)
432  */
433 int search_slot(struct ctree_root *root, struct btrfs_key *key,
434                 struct ctree_path *p, int ins_len, int cow)
435 {
436         struct tree_buffer *b;
437         struct tree_buffer *cow_buf;
438         struct node *c;
439         int slot;
440         int ret;
441         int level;
442
443 again:
444         b = root->node;
445         b->count++;
446         while (b) {
447                 level = btrfs_header_level(&b->node.header);
448                 if (cow) {
449                         int wret;
450                         wret = btrfs_cow_block(root, b, p->nodes[level + 1],
451                                                p->slots[level + 1], &cow_buf);
452                         b = cow_buf;
453                 }
454                 BUG_ON(!cow && ins_len);
455                 c = &b->node;
456                 p->nodes[level] = b;
457                 ret = check_block(p, level);
458                 if (ret)
459                         return -1;
460                 ret = bin_search(c, key, &slot);
461                 if (!btrfs_is_leaf(c)) {
462                         if (ret && slot > 0)
463                                 slot -= 1;
464                         p->slots[level] = slot;
465                         if (ins_len > 0 && btrfs_header_nritems(&c->header) ==
466                             NODEPTRS_PER_BLOCK) {
467                                 int sret = split_node(root, p, level);
468                                 BUG_ON(sret > 0);
469                                 if (sret)
470                                         return sret;
471                                 b = p->nodes[level];
472                                 c = &b->node;
473                                 slot = p->slots[level];
474                         } else if (ins_len < 0) {
475                                 int sret = balance_level(root, p, level);
476                                 if (sret)
477                                         return sret;
478                                 b = p->nodes[level];
479                                 if (!b)
480                                         goto again;
481                                 c = &b->node;
482                                 slot = p->slots[level];
483                                 BUG_ON(btrfs_header_nritems(&c->header) == 1);
484                         }
485                         b = read_tree_block(root, c->blockptrs[slot]);
486                 } else {
487                         struct leaf *l = (struct leaf *)c;
488                         p->slots[level] = slot;
489                         if (ins_len > 0 && leaf_free_space(l) <
490                             sizeof(struct btrfs_item) + ins_len) {
491                                 int sret = split_leaf(root, p, ins_len);
492                                 BUG_ON(sret > 0);
493                                 if (sret)
494                                         return sret;
495                         }
496                         BUG_ON(root->node->count == 1);
497                         return ret;
498                 }
499         }
500         BUG_ON(root->node->count == 1);
501         return 1;
502 }
503
504 /*
505  * adjust the pointers going up the tree, starting at level
506  * making sure the right key of each node is points to 'key'.
507  * This is used after shifting pointers to the left, so it stops
508  * fixing up pointers when a given leaf/node is not in slot 0 of the
509  * higher levels
510  *
511  * If this fails to write a tree block, it returns -1, but continues
512  * fixing up the blocks in ram so the tree is consistent.
513  */
514 static int fixup_low_keys(struct ctree_root *root,
515                            struct ctree_path *path, struct btrfs_disk_key *key,
516                            int level)
517 {
518         int i;
519         int ret = 0;
520         for (i = level; i < MAX_LEVEL; i++) {
521                 struct node *t;
522                 int tslot = path->slots[i];
523                 if (!path->nodes[i])
524                         break;
525                 t = &path->nodes[i]->node;
526                 memcpy(t->keys + tslot, key, sizeof(*key));
527                 BUG_ON(list_empty(&path->nodes[i]->dirty));
528                 if (tslot != 0)
529                         break;
530         }
531         return ret;
532 }
533
534 /*
535  * try to push data from one node into the next node left in the
536  * tree.
537  *
538  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
539  * error, and > 0 if there was no room in the left hand block.
540  */
541 static int push_node_left(struct ctree_root *root, struct tree_buffer *dst_buf,
542                           struct tree_buffer *src_buf)
543 {
544         struct node *src = &src_buf->node;
545         struct node *dst = &dst_buf->node;
546         int push_items = 0;
547         int src_nritems;
548         int dst_nritems;
549         int ret = 0;
550
551         src_nritems = btrfs_header_nritems(&src->header);
552         dst_nritems = btrfs_header_nritems(&dst->header);
553         push_items = NODEPTRS_PER_BLOCK - dst_nritems;
554         if (push_items <= 0) {
555                 return 1;
556         }
557
558         if (src_nritems < push_items)
559                 push_items = src_nritems;
560
561         memcpy(dst->keys + dst_nritems, src->keys,
562                 push_items * sizeof(struct btrfs_disk_key));
563         memcpy(dst->blockptrs + dst_nritems, src->blockptrs,
564                 push_items * sizeof(u64));
565         if (push_items < src_nritems) {
566                 memmove(src->keys, src->keys + push_items,
567                         (src_nritems - push_items) *
568                         sizeof(struct btrfs_disk_key));
569                 memmove(src->blockptrs, src->blockptrs + push_items,
570                         (src_nritems - push_items) * sizeof(u64));
571         }
572         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
573         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
574         BUG_ON(list_empty(&src_buf->dirty));
575         BUG_ON(list_empty(&dst_buf->dirty));
576         return ret;
577 }
578
579 /*
580  * try to push data from one node into the next node right in the
581  * tree.
582  *
583  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
584  * error, and > 0 if there was no room in the right hand block.
585  *
586  * this will  only push up to 1/2 the contents of the left node over
587  */
588 static int balance_node_right(struct ctree_root *root,
589                               struct tree_buffer *dst_buf,
590                               struct tree_buffer *src_buf)
591 {
592         struct node *src = &src_buf->node;
593         struct node *dst = &dst_buf->node;
594         int push_items = 0;
595         int max_push;
596         int src_nritems;
597         int dst_nritems;
598         int ret = 0;
599
600         src_nritems = btrfs_header_nritems(&src->header);
601         dst_nritems = btrfs_header_nritems(&dst->header);
602         push_items = NODEPTRS_PER_BLOCK - dst_nritems;
603         if (push_items <= 0) {
604                 return 1;
605         }
606
607         max_push = src_nritems / 2 + 1;
608         /* don't try to empty the node */
609         if (max_push > src_nritems)
610                 return 1;
611         if (max_push < push_items)
612                 push_items = max_push;
613
614         memmove(dst->keys + push_items, dst->keys,
615                 dst_nritems * sizeof(struct btrfs_disk_key));
616         memmove(dst->blockptrs + push_items, dst->blockptrs,
617                 dst_nritems * sizeof(u64));
618         memcpy(dst->keys, src->keys + src_nritems - push_items,
619                 push_items * sizeof(struct btrfs_disk_key));
620         memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items,
621                 push_items * sizeof(u64));
622
623         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
624         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
625
626         BUG_ON(list_empty(&src_buf->dirty));
627         BUG_ON(list_empty(&dst_buf->dirty));
628         return ret;
629 }
630
631 /*
632  * helper function to insert a new root level in the tree.
633  * A new node is allocated, and a single item is inserted to
634  * point to the existing root
635  *
636  * returns zero on success or < 0 on failure.
637  */
638 static int insert_new_root(struct ctree_root *root,
639                            struct ctree_path *path, int level)
640 {
641         struct tree_buffer *t;
642         struct node *lower;
643         struct node *c;
644         struct btrfs_disk_key *lower_key;
645
646         BUG_ON(path->nodes[level]);
647         BUG_ON(path->nodes[level-1] != root->node);
648
649         t = alloc_free_block(root);
650         c = &t->node;
651         memset(c, 0, sizeof(c));
652         btrfs_set_header_nritems(&c->header, 1);
653         btrfs_set_header_level(&c->header, level);
654         btrfs_set_header_blocknr(&c->header, t->blocknr);
655         btrfs_set_header_parentid(&c->header,
656                                btrfs_header_parentid(&root->node->node.header));
657         lower = &path->nodes[level-1]->node;
658         if (btrfs_is_leaf(lower))
659                 lower_key = &((struct leaf *)lower)->items[0].key;
660         else
661                 lower_key = lower->keys;
662         memcpy(c->keys, lower_key, sizeof(struct btrfs_disk_key));
663         c->blockptrs[0] = path->nodes[level-1]->blocknr;
664         /* the super has an extra ref to root->node */
665         tree_block_release(root, root->node);
666         root->node = t;
667         t->count++;
668         path->nodes[level] = t;
669         path->slots[level] = 0;
670         return 0;
671 }
672
673 /*
674  * worker function to insert a single pointer in a node.
675  * the node should have enough room for the pointer already
676  *
677  * slot and level indicate where you want the key to go, and
678  * blocknr is the block the key points to.
679  *
680  * returns zero on success and < 0 on any error
681  */
682 static int insert_ptr(struct ctree_root *root,
683                 struct ctree_path *path, struct btrfs_disk_key *key,
684                 u64 blocknr, int slot, int level)
685 {
686         struct node *lower;
687         int nritems;
688
689         BUG_ON(!path->nodes[level]);
690         lower = &path->nodes[level]->node;
691         nritems = btrfs_header_nritems(&lower->header);
692         if (slot > nritems)
693                 BUG();
694         if (nritems == NODEPTRS_PER_BLOCK)
695                 BUG();
696         if (slot != nritems) {
697                 memmove(lower->keys + slot + 1, lower->keys + slot,
698                         (nritems - slot) * sizeof(struct btrfs_disk_key));
699                 memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
700                         (nritems - slot) * sizeof(u64));
701         }
702         memcpy(lower->keys + slot, key, sizeof(struct btrfs_disk_key));
703         lower->blockptrs[slot] = blocknr;
704         btrfs_set_header_nritems(&lower->header, nritems + 1);
705         if (lower->keys[1].objectid == 0)
706                         BUG();
707         BUG_ON(list_empty(&path->nodes[level]->dirty));
708         return 0;
709 }
710
711 /*
712  * split the node at the specified level in path in two.
713  * The path is corrected to point to the appropriate node after the split
714  *
715  * Before splitting this tries to make some room in the node by pushing
716  * left and right, if either one works, it returns right away.
717  *
718  * returns 0 on success and < 0 on failure
719  */
720 static int split_node(struct ctree_root *root, struct ctree_path *path,
721                       int level)
722 {
723         struct tree_buffer *t;
724         struct node *c;
725         struct tree_buffer *split_buffer;
726         struct node *split;
727         int mid;
728         int ret;
729         int wret;
730         u32 c_nritems;
731
732         t = path->nodes[level];
733         c = &t->node;
734         if (t == root->node) {
735                 /* trying to split the root, lets make a new one */
736                 ret = insert_new_root(root, path, level + 1);
737                 if (ret)
738                         return ret;
739         }
740         c_nritems = btrfs_header_nritems(&c->header);
741         split_buffer = alloc_free_block(root);
742         split = &split_buffer->node;
743         btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
744         btrfs_set_header_blocknr(&split->header, split_buffer->blocknr);
745         btrfs_set_header_parentid(&split->header,
746                                btrfs_header_parentid(&root->node->node.header));
747         mid = (c_nritems + 1) / 2;
748         memcpy(split->keys, c->keys + mid,
749                 (c_nritems - mid) * sizeof(struct btrfs_disk_key));
750         memcpy(split->blockptrs, c->blockptrs + mid,
751                 (c_nritems - mid) * sizeof(u64));
752         btrfs_set_header_nritems(&split->header, c_nritems - mid);
753         btrfs_set_header_nritems(&c->header, mid);
754         ret = 0;
755
756         BUG_ON(list_empty(&t->dirty));
757         wret = insert_ptr(root, path, split->keys, split_buffer->blocknr,
758                           path->slots[level + 1] + 1, level + 1);
759         if (wret)
760                 ret = wret;
761
762         if (path->slots[level] >= mid) {
763                 path->slots[level] -= mid;
764                 tree_block_release(root, t);
765                 path->nodes[level] = split_buffer;
766                 path->slots[level + 1] += 1;
767         } else {
768                 tree_block_release(root, split_buffer);
769         }
770         return ret;
771 }
772
773 /*
774  * how many bytes are required to store the items in a leaf.  start
775  * and nr indicate which items in the leaf to check.  This totals up the
776  * space used both by the item structs and the item data
777  */
778 static int leaf_space_used(struct leaf *l, int start, int nr)
779 {
780         int data_len;
781         int end = start + nr - 1;
782
783         if (!nr)
784                 return 0;
785         data_len = btrfs_item_end(l->items + start);
786         data_len = data_len - btrfs_item_offset(l->items + end);
787         data_len += sizeof(struct btrfs_item) * nr;
788         return data_len;
789 }
790
791 /*
792  * push some data in the path leaf to the right, trying to free up at
793  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
794  *
795  * returns 1 if the push failed because the other node didn't have enough
796  * room, 0 if everything worked out and < 0 if there were major errors.
797  */
798 static int push_leaf_right(struct ctree_root *root, struct ctree_path *path,
799                            int data_size)
800 {
801         struct tree_buffer *left_buf = path->nodes[0];
802         struct leaf *left = &left_buf->leaf;
803         struct leaf *right;
804         struct tree_buffer *right_buf;
805         struct tree_buffer *upper;
806         int slot;
807         int i;
808         int free_space;
809         int push_space = 0;
810         int push_items = 0;
811         struct btrfs_item *item;
812         u32 left_nritems;
813         u32 right_nritems;
814
815         slot = path->slots[1];
816         if (!path->nodes[1]) {
817                 return 1;
818         }
819         upper = path->nodes[1];
820         if (slot >= btrfs_header_nritems(&upper->node.header) - 1) {
821                 return 1;
822         }
823         right_buf = read_tree_block(root, upper->node.blockptrs[slot + 1]);
824         right = &right_buf->leaf;
825         free_space = leaf_free_space(right);
826         if (free_space < data_size + sizeof(struct btrfs_item)) {
827                 tree_block_release(root, right_buf);
828                 return 1;
829         }
830         /* cow and double check */
831         btrfs_cow_block(root, right_buf, upper, slot + 1, &right_buf);
832         right = &right_buf->leaf;
833         free_space = leaf_free_space(right);
834         if (free_space < data_size + sizeof(struct btrfs_item)) {
835                 tree_block_release(root, right_buf);
836                 return 1;
837         }
838
839         left_nritems = btrfs_header_nritems(&left->header);
840         for (i = left_nritems - 1; i >= 0; i--) {
841                 item = left->items + i;
842                 if (path->slots[0] == i)
843                         push_space += data_size + sizeof(*item);
844                 if (btrfs_item_size(item) + sizeof(*item) + push_space >
845                     free_space)
846                         break;
847                 push_items++;
848                 push_space += btrfs_item_size(item) + sizeof(*item);
849         }
850         if (push_items == 0) {
851                 tree_block_release(root, right_buf);
852                 return 1;
853         }
854         right_nritems = btrfs_header_nritems(&right->header);
855         /* push left to right */
856         push_space = btrfs_item_end(left->items + left_nritems - push_items);
857         push_space -= leaf_data_end(left);
858         /* make room in the right data area */
859         memmove(right->data + leaf_data_end(right) - push_space,
860                 right->data + leaf_data_end(right),
861                 LEAF_DATA_SIZE - leaf_data_end(right));
862         /* copy from the left data area */
863         memcpy(right->data + LEAF_DATA_SIZE - push_space,
864                 left->data + leaf_data_end(left),
865                 push_space);
866         memmove(right->items + push_items, right->items,
867                 right_nritems * sizeof(struct btrfs_item));
868         /* copy the items from left to right */
869         memcpy(right->items, left->items + left_nritems - push_items,
870                 push_items * sizeof(struct btrfs_item));
871
872         /* update the item pointers */
873         right_nritems += push_items;
874         btrfs_set_header_nritems(&right->header, right_nritems);
875         push_space = LEAF_DATA_SIZE;
876         for (i = 0; i < right_nritems; i++) {
877                 btrfs_set_item_offset(right->items + i, push_space -
878                                       btrfs_item_size(right->items + i));
879                 push_space = btrfs_item_offset(right->items + i);
880         }
881         left_nritems -= push_items;
882         btrfs_set_header_nritems(&left->header, left_nritems);
883
884         BUG_ON(list_empty(&left_buf->dirty));
885         BUG_ON(list_empty(&right_buf->dirty));
886         memcpy(upper->node.keys + slot + 1,
887                 &right->items[0].key, sizeof(struct btrfs_disk_key));
888         BUG_ON(list_empty(&upper->dirty));
889
890         /* then fixup the leaf pointer in the path */
891         if (path->slots[0] >= left_nritems) {
892                 path->slots[0] -= left_nritems;
893                 tree_block_release(root, path->nodes[0]);
894                 path->nodes[0] = right_buf;
895                 path->slots[1] += 1;
896         } else {
897                 tree_block_release(root, right_buf);
898         }
899         return 0;
900 }
901 /*
902  * push some data in the path leaf to the left, trying to free up at
903  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
904  */
905 static int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
906                           int data_size)
907 {
908         struct tree_buffer *right_buf = path->nodes[0];
909         struct leaf *right = &right_buf->leaf;
910         struct tree_buffer *t;
911         struct leaf *left;
912         int slot;
913         int i;
914         int free_space;
915         int push_space = 0;
916         int push_items = 0;
917         struct btrfs_item *item;
918         u32 old_left_nritems;
919         int ret = 0;
920         int wret;
921
922         slot = path->slots[1];
923         if (slot == 0) {
924                 return 1;
925         }
926         if (!path->nodes[1]) {
927                 return 1;
928         }
929         t = read_tree_block(root, path->nodes[1]->node.blockptrs[slot - 1]);
930         left = &t->leaf;
931         free_space = leaf_free_space(left);
932         if (free_space < data_size + sizeof(struct btrfs_item)) {
933                 tree_block_release(root, t);
934                 return 1;
935         }
936
937         /* cow and double check */
938         btrfs_cow_block(root, t, path->nodes[1], slot - 1, &t);
939         left = &t->leaf;
940         free_space = leaf_free_space(left);
941         if (free_space < data_size + sizeof(struct btrfs_item)) {
942                 tree_block_release(root, t);
943                 return 1;
944         }
945
946         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
947                 item = right->items + i;
948                 if (path->slots[0] == i)
949                         push_space += data_size + sizeof(*item);
950                 if (btrfs_item_size(item) + sizeof(*item) + push_space >
951                     free_space)
952                         break;
953                 push_items++;
954                 push_space += btrfs_item_size(item) + sizeof(*item);
955         }
956         if (push_items == 0) {
957                 tree_block_release(root, t);
958                 return 1;
959         }
960         /* push data from right to left */
961         memcpy(left->items + btrfs_header_nritems(&left->header),
962                 right->items, push_items * sizeof(struct btrfs_item));
963         push_space = LEAF_DATA_SIZE -
964                      btrfs_item_offset(right->items + push_items -1);
965         memcpy(left->data + leaf_data_end(left) - push_space,
966                 right->data + btrfs_item_offset(right->items + push_items - 1),
967                 push_space);
968         old_left_nritems = btrfs_header_nritems(&left->header);
969         BUG_ON(old_left_nritems < 0);
970
971         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
972                 u16 ioff = btrfs_item_offset(left->items + i);
973                 btrfs_set_item_offset(left->items + i, ioff - (LEAF_DATA_SIZE -
974                                       btrfs_item_offset(left->items +
975                                                         old_left_nritems - 1)));
976         }
977         btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
978
979         /* fixup right node */
980         push_space = btrfs_item_offset(right->items + push_items - 1) -
981                      leaf_data_end(right);
982         memmove(right->data + LEAF_DATA_SIZE - push_space, right->data +
983                 leaf_data_end(right), push_space);
984         memmove(right->items, right->items + push_items,
985                 (btrfs_header_nritems(&right->header) - push_items) *
986                 sizeof(struct btrfs_item));
987         btrfs_set_header_nritems(&right->header,
988                                  btrfs_header_nritems(&right->header) -
989                                  push_items);
990         push_space = LEAF_DATA_SIZE;
991
992         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
993                 btrfs_set_item_offset(right->items + i, push_space -
994                                       btrfs_item_size(right->items + i));
995                 push_space = btrfs_item_offset(right->items + i);
996         }
997
998         BUG_ON(list_empty(&t->dirty));
999         BUG_ON(list_empty(&right_buf->dirty));
1000
1001         wret = fixup_low_keys(root, path, &right->items[0].key, 1);
1002         if (wret)
1003                 ret = wret;
1004
1005         /* then fixup the leaf pointer in the path */
1006         if (path->slots[0] < push_items) {
1007                 path->slots[0] += old_left_nritems;
1008                 tree_block_release(root, path->nodes[0]);
1009                 path->nodes[0] = t;
1010                 path->slots[1] -= 1;
1011         } else {
1012                 tree_block_release(root, t);
1013                 path->slots[0] -= push_items;
1014         }
1015         BUG_ON(path->slots[0] < 0);
1016         return ret;
1017 }
1018
1019 /*
1020  * split the path's leaf in two, making sure there is at least data_size
1021  * available for the resulting leaf level of the path.
1022  *
1023  * returns 0 if all went well and < 0 on failure.
1024  */
1025 static int split_leaf(struct ctree_root *root, struct ctree_path *path,
1026                       int data_size)
1027 {
1028         struct tree_buffer *l_buf;
1029         struct leaf *l;
1030         u32 nritems;
1031         int mid;
1032         int slot;
1033         struct leaf *right;
1034         struct tree_buffer *right_buffer;
1035         int space_needed = data_size + sizeof(struct btrfs_item);
1036         int data_copy_size;
1037         int rt_data_off;
1038         int i;
1039         int ret;
1040         int wret;
1041
1042         l_buf = path->nodes[0];
1043         l = &l_buf->leaf;
1044
1045         /* did the pushes work? */
1046         if (leaf_free_space(l) >= sizeof(struct btrfs_item) + data_size)
1047                 return 0;
1048
1049         if (!path->nodes[1]) {
1050                 ret = insert_new_root(root, path, 1);
1051                 if (ret)
1052                         return ret;
1053         }
1054         slot = path->slots[0];
1055         nritems = btrfs_header_nritems(&l->header);
1056         mid = (nritems + 1)/ 2;
1057         right_buffer = alloc_free_block(root);
1058         BUG_ON(!right_buffer);
1059         BUG_ON(mid == nritems);
1060         right = &right_buffer->leaf;
1061         memset(right, 0, sizeof(*right));
1062         if (mid <= slot) {
1063                 /* FIXME, just alloc a new leaf here */
1064                 if (leaf_space_used(l, mid, nritems - mid) + space_needed >
1065                         LEAF_DATA_SIZE)
1066                         BUG();
1067         } else {
1068                 /* FIXME, just alloc a new leaf here */
1069                 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1070                         LEAF_DATA_SIZE)
1071                         BUG();
1072         }
1073         btrfs_set_header_nritems(&right->header, nritems - mid);
1074         btrfs_set_header_blocknr(&right->header, right_buffer->blocknr);
1075         btrfs_set_header_level(&right->header, 0);
1076         btrfs_set_header_parentid(&right->header,
1077                                btrfs_header_parentid(&root->node->node.header));
1078         data_copy_size = btrfs_item_end(l->items + mid) - leaf_data_end(l);
1079         memcpy(right->items, l->items + mid,
1080                (nritems - mid) * sizeof(struct btrfs_item));
1081         memcpy(right->data + LEAF_DATA_SIZE - data_copy_size,
1082                l->data + leaf_data_end(l), data_copy_size);
1083         rt_data_off = LEAF_DATA_SIZE - btrfs_item_end(l->items + mid);
1084
1085         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1086                 u16 ioff = btrfs_item_offset(right->items + i);
1087                 btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
1088         }
1089
1090         btrfs_set_header_nritems(&l->header, mid);
1091         ret = 0;
1092         wret = insert_ptr(root, path, &right->items[0].key,
1093                           right_buffer->blocknr, path->slots[1] + 1, 1);
1094         if (wret)
1095                 ret = wret;
1096         BUG_ON(list_empty(&right_buffer->dirty));
1097         BUG_ON(list_empty(&l_buf->dirty));
1098         BUG_ON(path->slots[0] != slot);
1099         if (mid <= slot) {
1100                 tree_block_release(root, path->nodes[0]);
1101                 path->nodes[0] = right_buffer;
1102                 path->slots[0] -= mid;
1103                 path->slots[1] += 1;
1104         } else
1105                 tree_block_release(root, right_buffer);
1106         BUG_ON(path->slots[0] < 0);
1107         return ret;
1108 }
1109
1110 /*
1111  * Given a key and some data, insert an item into the tree.
1112  * This does all the path init required, making room in the tree if needed.
1113  */
1114 int insert_item(struct ctree_root *root, struct btrfs_key *cpu_key,
1115                           void *data, int data_size)
1116 {
1117         int ret = 0;
1118         int slot;
1119         int slot_orig;
1120         struct leaf *leaf;
1121         struct tree_buffer *leaf_buf;
1122         u32 nritems;
1123         unsigned int data_end;
1124         struct ctree_path path;
1125         struct btrfs_disk_key disk_key;
1126
1127         btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1128
1129         /* create a root if there isn't one */
1130         if (!root->node)
1131                 BUG();
1132         init_path(&path);
1133         ret = search_slot(root, cpu_key, &path, data_size, 1);
1134         if (ret == 0) {
1135                 release_path(root, &path);
1136                 return -EEXIST;
1137         }
1138         if (ret < 0)
1139                 goto out;
1140
1141         slot_orig = path.slots[0];
1142         leaf_buf = path.nodes[0];
1143         leaf = &leaf_buf->leaf;
1144
1145         nritems = btrfs_header_nritems(&leaf->header);
1146         data_end = leaf_data_end(leaf);
1147
1148         if (leaf_free_space(leaf) <  sizeof(struct btrfs_item) + data_size)
1149                 BUG();
1150
1151         slot = path.slots[0];
1152         BUG_ON(slot < 0);
1153         if (slot != nritems) {
1154                 int i;
1155                 unsigned int old_data = btrfs_item_end(leaf->items + slot);
1156
1157                 /*
1158                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
1159                  */
1160                 /* first correct the data pointers */
1161                 for (i = slot; i < nritems; i++) {
1162                         u16 ioff = btrfs_item_offset(leaf->items + i);
1163                         btrfs_set_item_offset(leaf->items + i,
1164                                               ioff - data_size);
1165                 }
1166
1167                 /* shift the items */
1168                 memmove(leaf->items + slot + 1, leaf->items + slot,
1169                         (nritems - slot) * sizeof(struct btrfs_item));
1170
1171                 /* shift the data */
1172                 memmove(leaf->data + data_end - data_size, leaf->data +
1173                         data_end, old_data - data_end);
1174                 data_end = old_data;
1175         }
1176         /* copy the new data in */
1177         memcpy(&leaf->items[slot].key, &disk_key,
1178                 sizeof(struct btrfs_disk_key));
1179         btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
1180         btrfs_set_item_size(leaf->items + slot, data_size);
1181         memcpy(leaf->data + data_end - data_size, data, data_size);
1182         btrfs_set_header_nritems(&leaf->header, nritems + 1);
1183
1184         ret = 0;
1185         if (slot == 0)
1186                 ret = fixup_low_keys(root, &path, &disk_key, 1);
1187
1188         BUG_ON(list_empty(&leaf_buf->dirty));
1189         if (leaf_free_space(leaf) < 0)
1190                 BUG();
1191         check_leaf(&path, 0);
1192 out:
1193         release_path(root, &path);
1194         return ret;
1195 }
1196
1197 /*
1198  * delete the pointer from a given node.
1199  *
1200  * If the delete empties a node, the node is removed from the tree,
1201  * continuing all the way the root if required.  The root is converted into
1202  * a leaf if all the nodes are emptied.
1203  */
1204 static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
1205                    int slot)
1206 {
1207         struct node *node;
1208         struct tree_buffer *parent = path->nodes[level];
1209         u32 nritems;
1210         int ret = 0;
1211         int wret;
1212
1213         node = &parent->node;
1214         nritems = btrfs_header_nritems(&node->header);
1215         if (slot != nritems -1) {
1216                 memmove(node->keys + slot, node->keys + slot + 1,
1217                         sizeof(struct btrfs_disk_key) * (nritems - slot - 1));
1218                 memmove(node->blockptrs + slot,
1219                         node->blockptrs + slot + 1,
1220                         sizeof(u64) * (nritems - slot - 1));
1221         }
1222         nritems--;
1223         btrfs_set_header_nritems(&node->header, nritems);
1224         if (nritems == 0 && parent == root->node) {
1225                 BUG_ON(btrfs_header_level(&root->node->node.header) != 1);
1226                 /* just turn the root into a leaf and break */
1227                 btrfs_set_header_level(&root->node->node.header, 0);
1228         } else if (slot == 0) {
1229                 wret = fixup_low_keys(root, path, node->keys, level + 1);
1230                 if (wret)
1231                         ret = wret;
1232         }
1233         BUG_ON(list_empty(&parent->dirty));
1234         return ret;
1235 }
1236
1237 /*
1238  * delete the item at the leaf level in path.  If that empties
1239  * the leaf, remove it from the tree
1240  */
1241 int del_item(struct ctree_root *root, struct ctree_path *path)
1242 {
1243         int slot;
1244         struct leaf *leaf;
1245         struct tree_buffer *leaf_buf;
1246         int doff;
1247         int dsize;
1248         int ret = 0;
1249         int wret;
1250         u32 nritems;
1251
1252         leaf_buf = path->nodes[0];
1253         leaf = &leaf_buf->leaf;
1254         slot = path->slots[0];
1255         doff = btrfs_item_offset(leaf->items + slot);
1256         dsize = btrfs_item_size(leaf->items + slot);
1257         nritems = btrfs_header_nritems(&leaf->header);
1258
1259         if (slot != nritems - 1) {
1260                 int i;
1261                 int data_end = leaf_data_end(leaf);
1262                 memmove(leaf->data + data_end + dsize,
1263                         leaf->data + data_end,
1264                         doff - data_end);
1265                 for (i = slot + 1; i < nritems; i++) {
1266                         u16 ioff = btrfs_item_offset(leaf->items + i);
1267                         btrfs_set_item_offset(leaf->items + i, ioff + dsize);
1268                 }
1269                 memmove(leaf->items + slot, leaf->items + slot + 1,
1270                         sizeof(struct btrfs_item) *
1271                         (nritems - slot - 1));
1272         }
1273         btrfs_set_header_nritems(&leaf->header, nritems - 1);
1274         nritems--;
1275         /* delete the leaf if we've emptied it */
1276         if (nritems == 0) {
1277                 if (leaf_buf == root->node) {
1278                         btrfs_set_header_level(&leaf->header, 0);
1279                         BUG_ON(list_empty(&leaf_buf->dirty));
1280                 } else {
1281                         clean_tree_block(root, leaf_buf);
1282                         wret = del_ptr(root, path, 1, path->slots[1]);
1283                         if (wret)
1284                                 ret = wret;
1285                         wret = free_extent(root, leaf_buf->blocknr, 1);
1286                         if (wret)
1287                                 ret = wret;
1288                 }
1289         } else {
1290                 int used = leaf_space_used(leaf, 0, nritems);
1291                 if (slot == 0) {
1292                         wret = fixup_low_keys(root, path,
1293                                                    &leaf->items[0].key, 1);
1294                         if (wret)
1295                                 ret = wret;
1296                 }
1297                 BUG_ON(list_empty(&leaf_buf->dirty));
1298
1299                 /* delete the leaf if it is mostly empty */
1300                 if (used < LEAF_DATA_SIZE / 3) {
1301                         /* push_leaf_left fixes the path.
1302                          * make sure the path still points to our leaf
1303                          * for possible call to del_ptr below
1304                          */
1305                         slot = path->slots[1];
1306                         leaf_buf->count++;
1307                         wret = push_leaf_left(root, path, 1);
1308                         if (wret < 0)
1309                                 ret = wret;
1310                         if (path->nodes[0] == leaf_buf &&
1311                             btrfs_header_nritems(&leaf->header)) {
1312                                 wret = push_leaf_right(root, path, 1);
1313                                 if (wret < 0)
1314                                         ret = wret;
1315                         }
1316                         if (btrfs_header_nritems(&leaf->header) == 0) {
1317                                 u64 blocknr = leaf_buf->blocknr;
1318                                 clean_tree_block(root, leaf_buf);
1319                                 wret = del_ptr(root, path, 1, slot);
1320                                 if (wret)
1321                                         ret = wret;
1322                                 tree_block_release(root, leaf_buf);
1323                                 wret = free_extent(root, blocknr, 1);
1324                                 if (wret)
1325                                         ret = wret;
1326                         } else {
1327                                 tree_block_release(root, leaf_buf);
1328                         }
1329                 }
1330         }
1331         return ret;
1332 }
1333
1334 /*
1335  * walk up the tree as far as required to find the next leaf.
1336  * returns 0 if it found something or 1 if there are no greater leaves.
1337  * returns < 0 on io errors.
1338  */
1339 int next_leaf(struct ctree_root *root, struct ctree_path *path)
1340 {
1341         int slot;
1342         int level = 1;
1343         u64 blocknr;
1344         struct tree_buffer *c;
1345         struct tree_buffer *next = NULL;
1346
1347         while(level < MAX_LEVEL) {
1348                 if (!path->nodes[level])
1349                         return 1;
1350                 slot = path->slots[level] + 1;
1351                 c = path->nodes[level];
1352                 if (slot >= btrfs_header_nritems(&c->node.header)) {
1353                         level++;
1354                         continue;
1355                 }
1356                 blocknr = c->node.blockptrs[slot];
1357                 if (next)
1358                         tree_block_release(root, next);
1359                 next = read_tree_block(root, blocknr);
1360                 break;
1361         }
1362         path->slots[level] = slot;
1363         while(1) {
1364                 level--;
1365                 c = path->nodes[level];
1366                 tree_block_release(root, c);
1367                 path->nodes[level] = next;
1368                 path->slots[level] = 0;
1369                 if (!level)
1370                         break;
1371                 next = read_tree_block(root, next->node.blockptrs[0]);
1372         }
1373         return 0;
1374 }
1375
1376